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Abstract 

Congenital cardiovascular malformation (CVM) affects 7/1000 live births.  

Approximately 20% of cases are caused by chromosomal and syndromic conditions.  

Rare Mendelian families segregating particular forms of CVM have also been described.  

Among the remaining 80% of non-syndromic cases, there is a familial predisposition 

implicating as yet unidentified genetic factors. Since the reproductive consequences to 

an individual of CVM are usually severe, evolutionary considerations suggest 

predisposing variants are likely to be rare.  The overall aim of my PhD was to use next 

generation sequencing (NGS) methods to identify such rare, potentially disease causing 

variants in CVM.  

First, I developed a novel approach to calculate the sensitivity and specificity of NGS 

data in detecting variants using publicly available population frequency data. My aim 

was to provide a method that would yield sound estimates of the quality of a sequencing 

experiment without the need for additional genotyping in the sequenced samples.  I 

developed such a method and demonstrated that it provided comparable results to 

methods using microarray data as a reference. Furthermore, I evaluated different variant 

calling pipelines and showed that they have a large effect on sensitivity and specificity.        

Following this, the NovoAlign-Samtools and BWA-Dindel pipelines were used to 

identify single base substitution and indel variants in three pedigrees, where 

predisposition to a different disease appears to segregate following an autosomal 

dominant mode of inheritance. I identified potentially causative variants segregating 

with disease in all three of the pedigrees. In the pedigrees with Dilated Cardiomyopathy 

and Hereditary Sclerosing Poikiloderma these variants were in plausible candidate 

genes.  

Finally, NGS was used to identify rare, potentially disease causing indel variants in 

patients with sporadic, non-syndromic forms of CVM characterised by chamber 

hypoplasia. Two indel calling pipelines were used as a means to increase confidence in 

the identified indels. These two pipelines achieved the highest sensitivity calls using the 

method described above. In the 133 cases, evaluated for 403 candidate genes, indels 

were identified in 4 known causative genes for human cardiovascular disease, namely 

MYL1, NOTCH1, TNNT2, and DSC2. 

 



ii 
 

Acknowledgements 

First of all I would like to thank both my supervisors, Prof. Bernard Keavney and Dr. 

Mauro Santibanez-Koref, for their fantastic supervision, guidance, support and 

encouragement, throughout my PhD. In particular, thank you to Mauro, your perceptive 

nature and blunt, but seemingly always correct (!!), advice was much appreciated. 

I would also like to thank everyone in the SIGM office, Prof. Heather Cordell, Dr. Ian 

Wilson, Yaobo Xu, Helen Griffin, Marla Endriga, Kristin Ayres, Jakris Eu-

Ahsunthornwattana, Matthieu Miossec, Rebecca Darlay (or Baker), Richard Howey and 

Valentina Mamasoula. Your constant support has always helped. I would especially like 

to thank Kristin, Ian and Helen for what seemed like a constant supply of coffee, cakes 

and biscuits throughout my PhD. Also, thank you to Helen for your morning rants about 

the metro, weather and children, it got many a day started with a smile! 

Thank you also to the extended members of the office and SGIM family, such as Dr. 

Joanna Elson and Katie Siddle. Katie remains a source of encouragement. Jo was 

always very encouraging and helped orchestrate many an extended lunch break where 

many a varied discussion occurred. 

Thank you to all the members of the BHF group, Dr. Judith Goodship, Dr. Ana Topf, 

Dr. Thahira Rahman, Dr. Elise Glen, Dr. Darroch Hall, Mr. Rafiqul Hussein, Dr. 

Ruairidh Martin, Dr. Danielle Brown, Mr. Mzwandile Mbele, Ms. Helen Weatherstone. 

I would like to thank Ana, Thahira, Elise, and Raf for always responding to my nagging 

questions for data and advice, particularly Elise whom I sent a great many emails too! 

Mzwandile, it was great to have a fellow South African in the group! Helen, thank you 

for your support and endless help with anything that needed doing!  

 

I would also like to thank both of my assessors, Heather and Dr. Simon Pearce. Your 

insight, support and guidance was very helpful. 

 

Finally, thank you to my fiancé, Jen, for her constant support through my entire PhD. 

She put up with much moaning about my work and abilities! 

 

 

 



iii 
 

Statement of contributions 

Unless specified otherwise, all the work in my thesis is entirely my own. I performed all 

the testing and development of the method proposed in chapter 3, as well as the data 

analysis, variant filtering and candidate gene identification described in chapter 4 and 

chapter 5 of my thesis.  

 

Dr. Mauro Santibanez-Koref dealt with the design of the statistical procedure of the 

method proposed in chapter 3. Dr. Matthew Hurles and Dr. Saeed Al Turki from The 

Wellcome Trust Sanger Institute provided 19 of the sample files used in chapter 3. They 

also provided the microarray data for these 19 samples. 

 

Sequencing of 12 of the samples used in chapter 3 and all of the samples in chapter 4 

was performed by Dr. Thahira Rahman, Dr. Elise Glen, and Mr. Rafiqul Hussein. Prof. 

Judith Goodship provided the samples and clinical information for the cases of 

Atrioventricular Septal Defect and Dilated Cardiomyopathy in chapter 3. Collaborators 

in South Africa, under Prof. Bongani Mayosi at the University of Cape Town provided 

samples and information for the pedigree where cases presented with Hereditary 

Sclerosing Poikiloderma (HSP). Collaborators in Nantes, France, under Dr. Sébastien 

Küry provided sequence information for the second HSP pedigree. Where possible, the 

identified variants were validated by Dr. Elise Glen and Dr. Thahira Rahman. 

 

The study described in chapter 5 was part of a large, international collaboration 

involving researches from across Europe, called HeartRepair. All 133 samples were 

provided by six centres located in The Netherlands (Academic Medical Center, 

Amsterdam and Leids Universitair Medisch Centrum, leiden), England (The University 

of Newcastle, Newcastle Upon Tyne), Belgium (Katholike Universiteit, Leuven, 

University of Leuven, Leuven), and Germany (Max Planck Institute for Molecular 

Genetics and the Max Delbrück Center for Molecular Medicine in Berlin). In particular, 

Dr. Alex Postma (AMC, Amsterdam), Mr. Alejandro Sifrim (Katholike Universiteit, 

Leuven), Dr. Silke Sperling (Max Plank Institute for Molecular Genetics, Berlin), Prof. 

Sabine Klaasen (Max Delbrück Center, Berlin), Dr. Peter ten’ Hoen (LUMC, Leiden), 

Dr. Thahira Rahman, Mr. Rafiqul Hussein, Dr. Ana Topf, Dr. Darroch Hall, Dr. Judith 

Goodship and Prof. Bernard Keavney (Newcastle University), were all involved in the 

sample selection, sequencing, project design, identification and validation of single base 

substitutions. I provided some input for the identification of the single base 

http://www.google.co.uk/url?sa=t&rct=j&q=%27sperling%40molgen.mpg.de%27&source=web&cd=1&cad=rja&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.molgen.mpg.de%2F~heart%2F&ei=1bmXULP6AebO0QWN14CACQ&usg=AFQjCNEBRcmPEazI0Vr-aBRq5D88LG3iyg
http://www.google.co.uk/url?sa=t&rct=j&q=%27sperling%40molgen.mpg.de%27&source=web&cd=1&cad=rja&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.molgen.mpg.de%2F~heart%2F&ei=1bmXULP6AebO0QWN14CACQ&usg=AFQjCNEBRcmPEazI0Vr-aBRq5D88LG3iyg


iv 
 

substitutions, however as described in chapter 5, I performed all analysis for the 

identification of indels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Table of contents 

Abstract………………………………………………………………………………….i 

Acknowledgements……………………………………………………………………..ii 

Contributions…………………………………………………………………………..iii 

Table of contents………………………………………………………………………..v 

List of figures…………………………………………………………………………..ix 

List of tables…………………………………………………………………………...xii 

Abbreviations……………………………………………………………………........xiv 

 

1 Introduction………………………………………………………………...1 

1.1 Summary…………………………………………………………………2 

1.2 Cardiovascular Malformations…………………………………………..3 

1.2.1 Clinical Epidemiology……………………………………….3 

1.2.2 Risk factors…………………………………………………..6 

1.2.3 Environmental risk factors…………………………………...7 

1.2.4 Genetic epidemiology………………………………………..8 

1.2.5 Mendelian forms……………………………………………..8 

1.2.6 Sporadic, non-syndromic forms……………………………10 

1.2.7 Genetic study approaches…………………………………..11 

1.3 NGS in Mendelian Diseases……………………………………………15 

1.4 NGS in Complex Diseases……………………………………………..16 

1.5 NGS platforms………………………………………………………….17 

1.5.1 Sanger Sequencing…………………………………………17 

1.5.2 Roche 454 GS-FLX System………………………………..17 

1.5.3 Applied Biosystem SOLiD…………………………………18 

1.5.4 Illumina Genome Analyser…………………………………19 

1.5.5 Life Technologies Ion Torrent PGM……………………….20 

1.5.6 Third generation sequencing……………………………….20 

1.5.7 Comparison of different sequencing platforms…………….21 

1.6 NGS Data Analysis……………………………………………………..24 

1.7 Specific aims……………………………………………………………25 

2 Methods……………………………………………………………………27 

2.1 Methods overview……………………………………………………...28 

2.2 Samples, target enrichment sequencing………………………………...28 



vi 
 

2.2.1 Whole exome sequencing in Mendelian family samples 

(studied in chapter 4)……………………………………….28 

2.2.2 Targeted sequencing of unrelated cases of CVM (studies in 

chapter 5)…………………………………………………...29 

2.3 Data analysis……………………………………………………………32 

2.3.1 Computers…………………………………………………..32 

2.3.2 Scripting……………………….……………………………32 

2.3.3 Sequence analysis…………………………………………..34 

2.3.4 Accessory programmes……………………………………..34 

3 Using population data for assessing next-generation sequencing 

performance……………………………………………………………….36 

3.1 Aim……………………………………………………………………..37 

3.2 Introduction…………………………………………………………….37 

3.3 Method………………………………………………………………….38 

3.4 Materials………………………………………………………………..39 

3.4.1 Sequence and genotype data………………………………..39 

3.4.2 Comparison of array and sequencing data………………….39 

3.4.3 Selection of polymorphisms………………………………..40 

3.4.4 Sequence analysis…………………………………………..40 

3.5 Results………………………………………………………………….41 

3.5.1 Pipeline comparisons……………………………………….41 

3.5.2 Parameter selection…………………………………………43 

3.5.3 Coverage……………………………………………………45 

3.5.4 Microarray comparison……………………………………..46 

3.5.5 Influence of using different allele frequencies……………..48 

3.6 Discussion………………………………………………………………50 

4 Exome sequencing to identify the causative variants in three diseases 

showing transmission consistent with Mendelian inheritance…………53 

4.1 Aim……………………………………………………………………..54 

4.2 Introduction…………………………………………………………….54 

4.2.1 Dilated cardiomyopathy……………………………………56 

4.2.2 Atrioventricular septal defects……………………………...63 

4.2.3 Hereditary sclerosing poikiloderma………………………...67 

4.3 Materials and Methods…………………………………………………70 

4.3.1 Samples and sequencing……………………………………70 



vii 
 

4.3.2 Sequence analysis…………………………………………..70 

4.3.3 Variant filtering…………………………………………….70 

4.3.4 Variant validations………………………………………….71 

4.4 Results………………………………………………………………….72 

4.4.1 Sequence and variant call overview………………………..73 

4.4.2 Dilated cardiomyopathy family…………………………….74 

4.4.3 Atrioventricular septal defect family……………………….75 

4.4.4 Hereditary sclerosing poikiloderma family………………...77 

4.5 Discussion………………………………………………………………87 

4.6 Conclusions/Future work……………………………………………...102 

5 Identifying disease causing indels using targeted next-generation 

sequence data from patients with congenital cardiovascular 

disorders………………………………………………………………….104 

5.1 Aim……………………………………………………………………105 

5.2 Introduction…………………………………………………………...105 

5.2.1 Sample origin……………………………………………...105 

5.2.2 Phenotypes………………………………………………...106 

5.2.3 Indels and disease…………………………………………108 

5.2.4 Indel identification using NGS data………………………110 

5.2.5 Indel prioritisation………………………………………...112 

5.2.6 Indel validations…………………………………………..112 

5.3 Materials and Methods………………………………………………..113 

5.3.1 Samples, gene selection and sequencing………………….113 

5.3.2 Indel calling……………………………………………….113 

5.3.3 Indel filtering and annotations…………………………….114 

5.4 Results………………………………………………………………...115 

5.4.1 Alignment results…………………………………………115 

5.4.2 BWA-Dindel pipeline……………………………………..115 

5.4.3 BWA-GATK pipeline……………………………………..118 

5.4.4 Indels called by both pipelines……………………………120 

5.4.5 Indel validations…………………………………………..122 

5.5 Discussion……………………………………………………………..124 

5.5.1 Insertion and deletion, MYL1……………………………...125 

5.5.2 Deletion, NOTCH1………………………………………..128 

5.5.3 Deletion, TNNT2…………………………………………..131 



viii 
 

5.5.4 Insertion, DSC2…………………………………………...133 

5.5.5 Deletion, PTGER3………………………………………...137 

5.5.6 Deletion, ANKRD2………………………………………..140 

5.5.7 Insertion, NCOR2…………………………………………142 

5.6 Conclusions…………………………………………………………...145 

6 Summary Discussion…………………………………………………….146 

6.1 Summary of findings………………………………………………….147 

6.2 Limitations of this work………………………………………………148 

6.3 Future directions………………………………………………………153 

6.4 Concluding remarks…………………………………………………...154 

 

A Appendices……………………………………………………………………..156 

B References……………………………………………………………………...176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of figures  

Chapter 1 

Figure 1.1 - Incidence of congenital heart disease per 1000 live births….……………..5 

Figure 1.2 - Prevalence per million live births of different types of CVM……………..6 

Figure 1.3 - Genetic contribution to monogenic and multigenic CVM………………..14 

Figure 1.4 - Identifying genetic variants based on risk allele frequency and strength of 

genetic effect……………………………………………………………………..……..15 

 

Chapter 3 

Figure 3.1 - Specificity and sensitivity of different analysis pipelines used to call single 

base substitutions……………………………….………………………………………42 

Figure 3.2 - Specificity and sensitivity for indel calling pipelines…………………….43 

Figure 3.3 (A, B) - The effect of parameter choice………………..……………….44-45 

Figure 3.4 - Influence of average coverage on sensitivity……………………………..46 

Figure 3.5 - Correlation between sensitivity estimates from microarray data and using 

CEU population frequencies…………………………………………...…………….…48 

Figure 3.6 (A, B) - Effect of reference population misspecification on sensitivity (3.6A) 

and specificity (3.6B)………………………..…………………………………………49 

 

Chapter 4 

Figure 4.1 - Intracellular regions and the genes from these regions that cause 

DCM………………………………………………………………………..…………..58 

Figure 4.2 - DCM pedigree…………………………………………….………………62 

Figure 4.3 (A,B) - Diagrammatic representation of AVSD……………………………63 

Figure 4.4 - AVSD pedigree……………………………………………………………66 

Figure 4.5 – HSP pedigree……………………………………………………………..69 

Figure 4.6 - Filtering steps adopted in both filtering set A and filtering Set B………..72 

Figure 4.7 - Number of unfiltered single base substitutions and indels identified using 

NovoAlign-Samtools for all patients in the DCM pedigree……………………………74 



x 
 

Figure 4.8 - Number of unfiltered single base substitutions and indels identified using 

NovoAlign-Samtools for all patients in the AVSD pedigree……………………..……76 

Figure 4.9 - Unfiltered single base substitutions and indels identified using NovoAlign-

Samtools for all patients in the HSP pedigree………………………………….………79 

Figure 4.10 – Splice site variant identified in the ANKRD20A1 gene in the DCM 

pedigree.………………………………..………………………………………………88 

Figure 4.11 - p.Tyr591Asp variant identified in the FAM111B gene in the HSP pedigree. 

…………………………………………………………………………………………91 

Figure 4.12 - p.S260I  variant identified in the AGAP6 gene in the HSP pedigree. ..…92 

Figure 4.13 - p.A2S variant identified in the CNTNAP3B gene in the HSP pedigree...93 

 

Chapter 5 

Figure 5.1 - Filtering steps used to prioritise indel calls..............................................115 

Figure 5.2 (A,B). Size distribution of insertions (5.2A) and deletions (5.2B) identified 

using the BWA-Dindel pipeline………………………………………………………117 

Figure 5.3 (A,B). Size distribution of insertions (A) and deletions (B) identified using 

the BWA-GATK pipeline……………………………………………………………..119 

Figure 5.4 - Positions of the variable T region and of both indels identified in the MYL1 

gene……………………………………………..........................................................127 

Figure 5.5 - Indel which I identified in the NOTCH1 gene…………………………130 

Figure 5.6 - Position of the identified indel in the TNNT2 gene ……………………133 

Figure 5.7 - Position and degree of conservation of the indel which I identified in the 

DSC2 gene …………………………………………………………………...............136 

Figure 5.8 - Genetic pathway interactions of the PTGER3 gene ……………………138 

Figure 5.9 - The deleted base from the PTGER3 gene …...........................................139 

Figure 5.10 - The position and extent of conservation of the deleted base identified in 

the ANRD2 gene….......................................................................................................141 

Figure 5.11 - The NOTCH1 signalling pathway and the NCOR gene in this 

pathway ………………………………………………………………………………143 

Figure 5.12 - The inserted bases from the NCOR2 gene …..………………………..144 

 

 



xi 
 

Appendix 

Script 2.1 - Script used to run MutationTaster………………………………………..156 

Script 2.2 - Script used calculate the size distribution of insertions and deletions.......157 

Script 2.3 - Script used to identify variant overlaps between the BWA-Dindel and 

BWA-GATK pipelines……………………………………..………….………………158 

Figure 4.1 - Influence of the different filtering steps on variant numbers in the DCM 

cases…………………………………………………………………………………...162 

Figure 4.2 - Influence of the different filtering steps on variant numbers in the AVSD 

cases………………………………………………………………….………………..162 

Figure 4.3 - Influence of the different filtering steps on variant numbers in the HSP 

cases………………………………………..………………………………………….163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

List of tables 

Chapter 1 

Table 1.1 - Comparison of the 454 GS FLX, HiSeq2000, SOLiD 5500xl and Sanger 

3730xl sequencing systems…………………………………………………………….23 

Table 1.2 - Comparison of three next generation, bench-top sequencing platforms…..24 

 

Chapter 3 

Table 3.1 - Mean sensitivity and specificity estimates…………………………………47 

 

Chapter 4 

Table 4.1 - DCM causative genes…………………………………………………..57-60 

Table 4.2 - Sample summary statistics..……………......................................................73 

Table 4.3 - Variants shared between all affecteds which passed the filtering steps in the 

DCM pedigree……....……………………...……………………………......................75 

Table 4.4 - Variants shared between all affecteds which passed the less stringent 

filtering steps in the AVSD pedigree………………………...………………................76 

Table 4.5 - Variants shared between all affecteds identified using the BWA-Dindel 

pipeline and which passed both filtering sets…………………………………………..77 

Table 4.6 - Variants which passed the stringent filtering steps in the HSP 

pedigree……………………………………………………………………………..80-81 

Table 4.7 - Variants which passed the strict filtering set and were identified as 

potentially disease causing by MutationTaster in the HSP pedigree……………….…..80 

Table 4.8 - De novo variants which passed the stringent filtering steps in the second 

HSP pedigree supplied by my collaborators………………………….…………….83-85 

Table 4.9 - Genes in which variants were identified in both HSP pedigrees…………..86 

Table 4.10 - Variants shared between all affecteds, that were identified using the BWA-

Dindel pipeline…………………………………………………………………………86 

 

Chapter 5 

Table 5.1 - Categories, and subcategories, of congenital cardiac malformation that the 

133 patients used in this study suffered from…………………………………………106 



xiii 
 

Table 5.2 - Lengths of insertions and deletions identified in 330 targeted 

genes…………………………………………..………………………………………110 

Table 5.3 - Indels which were identified by both the BWA-Dindel and the BWA-

GATK pipelines……………………………………………………….………………121 

Table 5.4 - Number of indels identified by both pipelines and the number of indels 

unique to each…………………………………………………………………………121 

Table 5.5 - Number of indels identified by both analysis pipelines which were 

validated, or which were false positive calls. …………….…………………………..123 

Table 5.6 - Variant frequency of the 6 validated indels which were identified using both 

pipelines………………………………………………..……………………………...124 

 

Appendix 

Table 2.1 - Lists the genes used in the HeartRepair study………………………159-161 

Table 5.1 - Target base coverage of HeartRepair samples………………………164-166 

Table 5.2 - Filtered indels identified using the BWA-Dindel pipeline for the 133 

HeartRepair samples……………………………………………………………..167-174 

Table 5.3 - Filtered indels identified using the BWA-GATK pipeline for the 133 

HeartRepair samples…………………………………………………………………..175 

 

 

 

 

 



xiv 
 

Abbreviations 

1000G 1000 genomes 

AD autosomal dominant 

AR autosomal recessive 

AS association studies 

AVSD atrioventricular septal defect 

BAM binary alignment map 

bp base pair 

BWA burrows-wheeler alignment 

CASAVA consensus assessment of sequence and variation 

CEU central european 

CHR chromosome 

CNV copy number variants 

CVM cardiovascular malformation 

dbSNP single nucleotide polymorphism database 

DCM dilated cardiomyopathy 

Dindel detection of indels 

DNA deoxyribonucleic acid 

EA ebstein’s anomaly  

EVS exome variant server 

GA genome analyser 

GATK genome analysis toolkit 

Gb giga base 



xv 
 

GSNAP genomic short-read nucleotide alignment program 

GWA genome wide association 

HapMap haplotype map  

HGMD human gene mutation database 

HSP hereditary sclerosing poikiloderma 

Indel insertion/deletion 

KWE keratolytic winter erythema  

LA linkage analysis 

MHC myosin heavy chains 

MYL myosin light chains 

NCBI national center for biotechnology information  

NGS next generation sequencing 

OMIM online mendelian inheritance in man 

PAIVS pulmonary atresia with intact ventricular septum 

SAM sequence alignment map 

SIFT sorting tolerant from intolerant 

SNP single nucleotide polymorphism 

SSAHA sequence search and alignment by hashing algorithm 

UTR untranslated region 

 

 

 

 

 



1 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1. Introduction 
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1.1 Summary 

The overall aim of my PhD was to use next generation sequencing (NGS) methods to 

identify rare, potentially disease causing variants involved in various diseases, 

particularly in Congenital Cardiovascular Malformations (CVM). I explored different 

aspects and uses of NGS for variant identification in three linked sub-projects which all 

progressed concurrently. First, I developed a novel approach to calculate the sensitivity 

and specificity of variant calls in NGS data using publically available SNP frequency 

data. I developed a simple and fast method to calculate the sensitivity and specificity of 

variant calls for an entire NGS data analysis pipeline. The new method generated results 

which were comparable to current methods requiring microarray data, without requiring 

such data as a reference technique.  This work is reported in Chapter 3. 

The knowledge gained regarding the performance of different analysis pipelines was 

used in the second sub-project, in which I analysed whole exome sequence data for 

individuals from three pedigrees using the pipelines optimised in chapter 3, namely 

NovoAlign-Samtools. In each of these pedigrees predisposition to a different disease 

appears to segregate following an autosomal dominant mode of inheritance. I identified 

potentially disease causing variants segregating with disease in all three of the pedigrees. 

In the pedigrees where cases presented with Dilated Cardiomyopathy and Hereditary 

Sclerosing Poikiloderma I identified potentially disease causing variants in plausible 

candidate genes for disease. Genes were considered as plausible candidates based on 

current literature and knowledge on their possible influence on the same, or similar, 

phenotypes. Results of these experiments, including discussion of the genes and variants 

identified, are presented in chapter 4.   

In the third linked sub-project, I used NGS to identify rare, potentially disease causing 

insertion/deletion (indel) variants in patients with various congenital cardiovascular 

malformations. Targeted sequence data for genes believed to be involved in cardiac 

development was generated in 133 cases with particular subtypes of cardiovascular 

malformation clinically considered to represent hypoplasia of one or other of the main 

cardiac chambers. As indels are difficult to identify using NGS methods, I decided early 

on to use two indel calling pipelines as a means to increase confidence in the indels that 

I identified, namely BWA-Dindel and BWA-GATK. The selection of these two analysis 

pipelines was based on current knowledge available in the literature at the time. 

However, during the process, I used my assessment method, when it was fully 
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developed, to calculate the sensitivity and specificity values for a range of different 

indel calling pipelines, and found that the BWA-Dindel and BWA-GATK pipelines did 

indeed achieve the highest sensitivity calls.  In the 133 cases, evaluated for 403 

candidate genes, I discovered previously undescribed frameshifting indels that, given 

the strong evolutionary constraints on such indels, have a high a priori likelihood of 

being related to disease.  Results of these experiments, together with discussion of the 

genes harbouring potentially causative indels, are presented in chapter 5 

As all three of the sub-projects described in chapters 3, 4, and 5 were running 

concurrently from the beginning of my PhD, I considered they would be most cogently 

presented as standalone chapters. As such, they have all been written and developed to 

contain individual introduction and discussion sections. Therefore, in this general 

introduction I will provide a background to CVM, in particular I focus on the current 

knowledge of the genetic factors in such disorders. I then discuss current methods used 

to identify the genetic causes of disease, and why I chose to use NGS over other 

possible techniques. Finally, I provide a background to the different NGS platforms 

presently available, outline the rationale for choosing the methods used throughout the 

thesis, and highlight the different methods for analysing the data produced by these 

sequencers. In the final summary discussion of the thesis (Chapter 6), I highlight and 

describe what I think are the main points and conclusions of each of my data chapters, 

together with the limitations of the work and the prospects for further study. 

    

1.2 Cardiovascular Malformations 

1.2.1 Clinical Epidemiology 

Normal cardiac development is a complex process involving various transcription 

factors during early development (Cresci et al., 2012). The term Congenital 

Cardiovascular Malformation (CVM) refers to alterations in heart structure and function 

arising from abnormal heart development during embryogenesis (Bruneau, 2008; 

Rosamond et al., 2008). CVM’s represent the most common birth defect, with estimates 

of incidence ranging from 4 to 12 per 1000 births per year (Hoffman and Kaplan, 2002). 

However, the exact figure is difficult to determine as many CVMs may remain 

subclinical and may only be detected in later life (Pierpont et al., 2007; Rosamond et al., 

2008; Griffin et al., 2009). The value also depends on the types of defect that are 
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included in the estimation (Warnes et al., 2001; Hoffman and Kaplan, 2002; Pierpont et 

al., 2007; Bruneau, 2008; Ware and Jefferies, 2012). Figure 1.1 demonstrates the 

variation in incidence of cardiovascular malformations from 62 different cardiac centres 

from around the world (From Hoffman and Kaplan (2000)). The majority of centres 

report an incidence of ~7 per 1000 births per year. 

The prevalence of CVM is equally difficult to calculate. A study conducted in Taiwan 

using health care records from the National Health Insurance program, of patients born 

between 2000 and 2006, estimated an overall prevalence of 13.08 per 1000 people (Wu 

et al., 2010). Again, however, this value did depend on the types of CVM that were 

included. For example, if bicuspid aortic valve, which typically presents in middle age, 

is considered a CVM, prevalence figures will depend substantially on the age of the 

cohort enrolled.  Atrial septal defect (ASD) is also not uncommonly diagnosed after 

childhood, although in this case the diagnosis is usually made during young adult life 

rather than middle age.  In a study conducted in Yuma, Arizona, medical records from 

the University Medical Centre in Tucson were used to calculate the prevalence of CVM 

to be ~14 per 1000 people (Mayberry et al., 1990). Yet another study performed in 

England estimated the prevalence of CVM to be 5.6 per 1000 people (Wren et al., 2000). 

This value was calculated from records of cases born between 1985 and 1989 that were 

available from the diagnostic database in the regional cardiology unit at the Freeman 

Hospital, Newcastle upon Tyne. However, due to problems of classification and 

ascertainment, Pierpont et al. (2007) suggest that the true prevalence may in fact be 

much higher than what is calculated in these studies. Although they do not hazard a 

guess as to what this may be. 

The two most common forms of CVM are bicuspid aortic valve defects, occurring in 1% 

- 2% of the population, followed by septation defects, see figure 1.2 (Bruneau, 2008; 

Silversides et al., 2010), although bicuspid aortic valve defects are often removed from 

estimates of prevalence. As can be seen from figure 1.2, there are many different types 

of CVM and various morphological variations (Hoffman and Kaplan, 2002; Rosamond 

et al., 2008). Examples include ventricular septal defects, atrial septal defects, 

atrioventricular septal defects and pulmonary stenosis (Hoffman and Kaplan, 2002). All 

of these different variations and categories make accurate estimates of incidence and 

prevalence difficult to ascertain.  Since the focus of my work is chiefly on data analysis 

in NGS, I do not discuss the clinical aspects of the different types of CVM in detail here. 
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Mortality rates due to CVM vary depending on the defect and its severity (Bruneau, 

2008). For infants born between 1979 and 1997 in the USA, 24% of CVM associated 

deaths arose from patients suffering hypoplastic left heart syndrome, and 5.6% of deaths 

were from transposition of great artery sufferers (Boneva et al., 2001). However, despite 

this variation, up to 85% of CVM patients now survive to adulthood (Warnes et al., 

2001). This is due to dramatic improvements in surgery that have increased survival 

rates, and now the number of adults with the disease exceeds the number of children 

(Burn et al., 1998; Marelli et al., 2007; Pierpont et al., 2007; Bruneau, 2008; Rosamond 

et al., 2008). However, despite advancements in the field, patients can suffer from 

secondary complications later in life, in particular neurological disorders and 

arrhythmias (Bruneau, 2008).  

 

 

Figure 1.1. Incidence of congenital heart disease per 1000 live births. This table is 

from Hoffman and Kaplan (2002) who collated data from 62 cardiac centres.  
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Figure 1.2. Prevalence per million live births of different types of CVM. Values are 

on the log scale. The graph is based on original data from Hoffman and Kaplan 

2002. The “All CVM” column excludes cases of bicuspid aortic valve.  

 

1.2.2 Risk factors 

The known risk factors of CVM only account for ~20% cases (Jenkins et al., 2007; 

Pierpont et al., 2007; Griffin et al., 2009). Most of what is known is based largely on 

studies involving Mendelian syndromes and rare, familial, non-syndromic forms of 

CVM. The origin of most CVM (The remaining 80%) cases is unknown with various 

studies suggesting both environmental and genetic causes (Jenkins et al., 2007; Pierpont 

et al., 2007; Bruneau, 2008; Ware and Jefferies, 2012). Some of the known risk factors 

will be discussed in more detail below. 
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1.2.3 Environmental risk factors 

There is much evidence surrounding the possible influence of external risk factors on 

CVM and an understanding of these factors is important because it could lead to the 

possible prevention of a small number of cases (Jenkins et al., 2007). One example is 

exposure to angiotensin-converting-enzyme inhibitors early on in pregnancy, which has 

been demonstrated to result in an increased CVM risk. In one such study, 209 children 

that were exposed only to ACE inhibitors during the first trimester were identified, as 

well as 202 children exposed to other antihypertensive medications in the first trimester, 

and 29096 children which were not exposed to any antihypertensive drugs during any 

time of pregnancy (Cooper et al., 2006). Information from this study was obtained from 

the Tennessee Medicaid database of children born between 1985 and 2000. The study 

found an increased risk of major congenital malformations, which included CVM, in 

children exposed to ACE inhibitors, as compared to the group of children not exposed 

to any antihypertensive drugs.  

Another example of a risk factor for CVM is phenylketonuria in the mother. In one 

study, a group of 416 children from 412 maternal phenylketonuria pregnancies were 

compared to 100 children from 99 control pregnancies (Levy et al., 2001). Of these, 

CVM was identified in 34 (14%) of the children born from the phenylketonuric mothers, 

in comparison to only 1% from the 100 children of the control group. In addition, an 

article by Jenkins et al. (2007) reviewed the available literature on prenatal and parental 

conditions and exposures and associated risk of CVM up until 2006. This article 

highlighted many of the additional risk factors for CVM, such as maternal rubella, 

diabetes, and alcohol.  

Maternal rubella has been associated with various cardiac defects, such as pulmonary 

valve abnormalities, peripheral pulmonary stenosis, and ventricular septal defects 

(Jenkins et al., 2007). In particular, one such study reviewed literature describing 

congenital heart defects following maternal rubella between 1941 and 1961 (Way, 

1967). Congenital defects were found in 4 – 58% of the cases. Patent ductus arteriosuis 

was the most common (58% of cases) cardiovascular defect seen. 

Maternal pregestational diabetes has also been shown to increase the risk of CVM. 

Specific CVMs associated with maternal pregestational diabetes include laterality and 

looping defects, transposition of the great arteries, and ventricular septal defects 

(Becerra et al., 1990; Jenkins et al., 2007). It has been found that children born from 
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mothers with gestational diabetes mellitus and who required insulin during the third 

trimester of pregnancy, were 20 fold more likely to be born with a major cardiovascular 

malformation when compared to children of non-diabetic mothers (Becerra et al., 1990). 

The study used information on 4929 still born and live babies born between 1968 and 

1980, obtained from the Metropolitan Atlanta Congenital Defects Program. The study 

also included 3 029 healthy babies which were matched based on ethnicity, period of 

birth and hospital of birth. 

Alcohol has been shown to be responsible for a wide range of teratogenic affects during 

pregnancy, including cardiac defects (Jenkins et al., 2007). Although the risks do appear 

to be related to the amount of alcohol consumed during pregnancy. A case-control study 

examining 4705 case mothers and 4329 control mothers found that although sporadic, 

low doses of alcohol may increase the risk of congenital defects, these risks do increase 

with increasing alcohol exposure. Despite various environmental factors having been 

shown to influence CVM risk, the focus of my PhD is on the genetic risk factors. 

 

1.2.4 Genetic Epidemiology 

CVM can be caused by a range of genetic variants, including rare, highly deleterious 

variants resulting in Mendelian forms, and common variants with a weak affect that can 

modulate the risk of complex disease (Manning et al., 2005). Below I will provide a 

brief introduction to some of the Mendelian forms of CVM and their associated genetic 

risks, followed by an introduction to the sporadic, non-syndromic forms of CVM. As 

mentioned earlier, most knowledge on the genetic factors influencing CVM has been 

obtained from studies on Mendelian, syndromic and rare familial forms of non-

syndromic CVM.  

 

1.2.5 Mendelian forms 

The recurrence of some CVM in families provides evidence for a genetic influence on 

many of these defects (Bruneau, 2008; Faita et al., 2012). In fact, familial recurrence 

has been shown for both non-syndromic and syndromic forms of CVM (Wolf and 

Basson, 2010). With regards to inherited CVM, both monogenic (Single gene 

inheritance) and complex, polygenic (Multiple gene inheritance) forms occur (Faita et 
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al., 2012). Information on the frequency of recurrence within these inherited CVMs 

could help to improve understanding of the disease as well as provide the information 

necessary to help affected parents wanting to have children of their own (Burn et al., 

1998). Some of the inherited syndromes displaying CVM include Alagille syndrome, 

Noonan syndrome and Holt-Oram syndrome. These conditions as well as the genetic 

contributions to each will be discussed in more detail below. 

Alagille syndrome is an autosomal dominant disorder presenting with various 

abnormalities in the liver, heart, skeleton and eyes (Pierpont et al., 2007). In a study 

involving 222 cases, 94% displayed some form of cardiovascular abnormality 

(McElhinney et al., 2002). The most common cardiovascular abnormalities in patients 

with Alagille syndrome include peripheral pulmonary hypoplasia, tetralogy of Fallot, 

and pulmonary valve stenosis (Pierpont et al., 2007). Alagille syndrome can result from 

deletions of chromosome 20p12 or from mutations in the JAG1 gene (McElhinney et al., 

2002; Pierpont et al., 2007).  As an example, in one such study the JAG1 gene was 

analysed in four families where 10 members suffered from Alagille syndrome (Li et al., 

1997). In this study RT-PCR products were screened for mutations by heteroduplex 

mobility analysis. Four coding variants were identified in JAG1 which segregated with 

disease and were identified in all four families, but not in 100 controls. 

Another example is Noonan syndrome, in which 50 - 90% of patients are affected by 

cardiac disorders (Manning et al., 2005; Pierpont et al., 2007; Ware and Jefferies, 2012). 

This is an autosomal dominant disorder characterised by typical facies, pterygium colli, 

short stature and CVM (Marino and Digilio, 2000). Three disease genes in the RAS-

MAP Kinase signalling pathway have been shown to influence Noonan syndrome, 

namely PTPN11, SOS1, and KRAS (Pierpont et al., 2007). For example, a genome-wide 

linkage analysis in a large Dutch pedigree was able to identify the distal part of 

chromosome 12q as being linked to disease (Jamieson et al., 1994).  

Holt-Oram syndrome is an autosomal dominant disorder which is characterised by 

CVMs in patients with upper limb deformities (Pierpont et al., 2007). In a study 

involving 55 Holt-Oram cases, and their parents, 95% of the cases displayed some form 

of cardiac defect (Newbury-Ecob et al., 1996). The various cardiac disorders included 

atrial septal defects and ventricular septal defects. Studies have been able to link 

variants in the TBX5 gene to Holt-Oram syndrome (Pierpont et al., 2007). For example, 
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a genome wide linkage analysis was used to identify mutations in the TBX5 gene as 

responsible for Holt-Oram syndrome in two large families (Basson et al., 1994).   

As well as occurring as part of recognised syndromes, CVM’s can occur as isolated (or 

non-syndromic) inherited defects (Richards and Garg, 2010). For example, genetic 

variants within the NKX2-5 gene have been linked with non-syndromic CVM (Schott et 

al., 1998). In this study, four families displaying high incidences of CVM were analysed. 

In all four families the disease displayed a pattern of inheritance consistent with 

autosomal dominant transmission. A genome wide linkage analysis identified a region 

on chromosome 5, where the NKX2-5 gene is located. The exons of all genes in the 

linkage region were sequenced in all the affected individuals across all four families, 

with the NKX2-5 gene being identified as the only gene to have a shared variant in all 

affected family members. There are also many other cases describing genetic variants 

responsible for non-syndromic CVM. For instance, mutations in the GATA4 gene have 

been linked to cases of isolated CVM (Garg et al., 2003), and mutations in the MYH6 

gene have also been linked to dominantly inherited atrial septal defects (Ching et al., 

2005). 

 

1.2.6 Sporadic, non-syndromic forms 

The genetic causes of sporadic, non syndromic forms of CVM are far more difficult to 

identify (The reasons are discussed in more detail below). However there have been 

some successes. For example, de novo copy number variants (CNVs) have been 

associated with tetralogy of Fallot (Greenway et al., 2009; Soemedi et al., 2012). In the 

study by Soemedi et al. (2012), the frequency of CNVs in 2 256 CVM cases was 

compared with 841 controls. They were able to identify significant differences in the 

deletion burden between the cases and the controls. As well as CNVs, other 

deletion/duplication events have also been shown to share an association with CVM 

(Bruneau, 2008; Ware and Jefferies, 2012), and chromosomal aberrations appear to 

occur fairly frequently in some CVM cases (Pierpont et al., 2007). This has been 

demonstrated in a study examining infants born with CVM between 1981 and 1986, 

where ~13% of them displayed chromosomal abnormalities (Ferencz et al., 1989).  
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1.2.7 Genetic study approaches 

Linkage Analysis (LA) and Association Studies (AS) have commonly been used to try 

and identify the genetic causes of disease (Bailey-Wilson and Wilson, 2011). More 

recently, however, next generation sequencing approaches, sometimes in conjunction 

with linkage or association methods, have been employed to identify the genetic causes 

of various disorders. However, each of these methods have their own particular 

strengths and weaknesses and perform best depending on the disease. Faita et al. (2012) 

provide a diagram (Figure 1.3) describing the genetic contribution to monogenic and 

multigenic CVMs and the study approaches which can be adopted to identify these. In 

the case of complex diseases, many genetic variants occur at a higher population 

frequency and can be identified using a genome wide association approach. In the case 

of Mendelian, monogenic disorders the diseases are caused by rare mutations in specific 

genes, for which a linkage study can be used. NGS may provide a means of identifying 

the genetic causes of both monogenic and complex diseases. 

LA has been used highly successfully for identifying many thousands of disease causing 

variants in a range of Mendelian diseases, including various cardiac disorders (Bailey-

Wilson and Wilson, 2011; Parvez and Darbar, 2011). For example, LA allowed for the 

identification of variants in chromosomes 18q22, 13q34 and 5q21 which are linked to 

bicuspid aortic valve disease (Hinton et al., 2009), and LA was also used to identify a 

missense mutation in the JAG1 gene in families with Alagille syndrome (Eldadah et al., 

2001).   

LA often precedes approaches such as exome sequencing as it allows for all of the 

variants outside of linkage peaks to be excluded, hopefully reducing the number of 

candidate variants to a more manageable number (Bailey-Wilson and Wilson, 2011; 

Smith et al., 2011). These linkage peaks identify regions of identity-by-descent 

matching a particular genetic model (Smith et al., 2011). LA in combination with whole 

exome sequencing has been employed to identify many potentially causative variants in 

autosomal dominant and autosomal recessive disorders (Smith et al., 2011), for example 

in the case of the dominantly inherited Amyotrophic Lateral Sclerosis, ALS (Johnson et 

al., 2010a). That study describes a multigenerational family in which four members 

presented with ALS. Exome sequencing was performed on two of the affected family 

members in which 88 variants were identified. Of the 88 identified variants, 33 were 

validated using Sanger sequencing. Of these 33, only four were present in the VCP gene 
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with a LOD (Logarithm of the odds) score above zero. All four variants were predicted 

by SIFT to be disease causing, and none were present in a group of 200 healthy controls. 

LA and exome sequencing approaches have also been successfully employed to identify 

the causative variants in many recessive disorders, as in the case of autoimmune 

lymphoproliferative syndrome, ALPS (Bolze et al., 2010). That study describes a 

pedigree with multiple affected individuals and in which the disease appears to display 

an autosomal recessive inheritance pattern. Three patients were genotyped for use in the 

LA, and whole exome sequencing was performed on one of these individuals. LA 

identified three regions of homozygosity shared by the patients. All three sites were 

heterozygous in healthy members of the family.  Of the 23146 variants that were 

identified, only 81 were located in the candidate regions. After further filtering, only 1 

non-synonymous variant remained which was not seen in a group of 282 healthy 

controls. 

Despite the various successes, LA only has the power to detect alleles with large affect 

sizes, which are rare in populations, and which have high penetrance (Bailey-Wilson 

and Wilson, 2011). For complex diseases, an alternative approach would be to use a 

Genome Wide Association (GWA) study (Zhu and Xiong, 2012). Due to the availability, 

and decreased costs of genotyping using microarrays, GWA studies have recently 

become a commonly used method in complex disease research (Paynter et al., 2010; 

Bailey-Wilson and Wilson, 2011; Zhu and Xiong, 2012). 

GWA studies are used to identify associations between common alleles and disease 

phenotypes (Bailey-Wilson and Wilson, 2011) and  have proved useful in the search for 

the genetic causes of various different types of CVM (Arking and Chakravarti, 2009; 

Paynter et al., 2010). For example, in the study by Schott et al. (1998), a GWA 

identified NKX2-5 as a possible gene causing various CVM’s. Also, a GWA identified a 

region on chromosome 12q24 as being associated with tetralogy of Fallot (Cordell et al., 

2013 (In press)). Other successful studies include a study in which 7 SNPs were found 

to be associated with cardiovascular disease (Smith et al., 2010), and another study 

identified 3 genes associated with coronary artery disease (Feng and Zhu, 2010).  

However, GWA studies are based on the common disease-common variant model, 

assuming that common variants are likely to be important factors in common disease 

(Reich and Lander, 2001; Juran and Lazaridis, 2011). Supposing that individual rare 

variants only have a small affect on common disease, and also that they have very low 
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population frequencies, present methods for testing for associations have limited power 

(Zhu and Xiong, 2012). Therefore, GWA studies are better powered for common SNPs 

displaying a frequency of ~5% and higher (Hindorff et al., 2009; Manolio et al., 2009; 

Cirulli and Goldstein, 2010). However, some are now including variants with a 

frequency as low as ~1% (Manolio et al., 2009; Cirulli and Goldstein, 2010), but 

association testing using alleles with frequencies of <0.5% still has very low power, 

unless the effect size of the allele is very large (Manolio et al., 2009). Traditional GWA 

studies also assume a degree of sample independence and are therefore unable to assess 

correlated family data (Zhu and Xiong, 2012). Although more modern association 

methods may allow for case-control tests within pedigrees, they still require the allele 

frequencies to be high (Zhu and Xiong, 2012). Additionally, Manolio et al. (2009) 

highlight the importance of sample size in GWA studies, stating that much larger 

sample sizes are required to detect associations using very rare alleles.  

Despite the many success stories using GWA and LA methods, the identified variants 

only appear to explain a very small proportion of the heritability of disease (Zuk et al., 

2012). Here I define heritability as the proportion of phenotypic differences in a 

population that are explained by genetic factors (Manolio et al., 2009). For example, in 

atrial fibrillation, both GWA and LA have been used to successfully identify causative 

genetic variants, but these genes only explain less than 10% of the genetic heritability of 

the disease (Parvez and Darbar, 2011). This phenomenon has been termed “missing” 

heritability, and the current understanding is that this missing heritability lies in 

additional variants which have not been discovered yet (Maher, 2008; Makowsky et al., 

2011; Zuk et al., 2012).  

Manolio et al. (2009) provides a diagrammatic representation of the possible 

relationship between allele frequency and effect size, figure 1.4. The diagram describes 

the difficulty of identifying very rare variants (allele frequency <0.001) with low effect 

sizes. Other explanations include the difficulty in identifying and genotyping certain 

types of variants such as CNVs, a low power to detect gene-gene interactions, and the 

inadequate identification of possible, shared environmental factors (Maher, 2008; 

Manolio et al., 2009).  

Both LA and GWA studies have demonstrated that the “missing heritability” cannot be 

explained by rare, large effect alleles, or by common moderate effect alleles (Manolio et 

al., 2009). However, it is important to be able to correctly identify risk alleles, and the 
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source of this missing heritability (Paynter et al., 2010), as it may lead to a better 

understanding and treatment of the disease (Manolio et al., 2009). Some authors have 

claimed that sequencing could be used to investigate the presence of causative rare 

variants further, and as a means of identifying the sources of this missing heritability 

(Manolio et al., 2009).   

 

 

Figure 1.3. Genetic contribution to monogenic and complex CVM (From Faita et 

al. (2012)). 
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Figure 1.4. Identifying genetic variants based on risk allele frequency and strength 

of genetic effect. The figure is from Manolio et al. (2009). 

 

1.3 NGS in Mendelian Diseases 

NGS approaches have been particularly successful in identifying the causes of various 

Mendelian diseases displaying a recessive mode of inheritance (Lalonde et al., 2010; 

Ng et al., 2010b; Bamshad et al., 2011; De Keulenaer et al., 2012; Pyle et al., 2012). 

This is largely because homozygous, disease causing variants in populations occur 

rarely (Ng et al., 2010b; Ng et al., 2010c; Stitziel et al., 2011). For example, in the case 

of spastic ataxia of Charlevoix-Saguenay (Pyle et al., 2012). In this study, the authors 

were able to identify the SACS gene as the likely cause of disease by using the exomes 

of only two cases. Many of the other studies quoted here are described in more detail in 

chapter 4. 

In chapter 4 I used NGS methods to identify rare variants in diseases appearing to show 

a dominant mode of inheritance. Although, more difficult than causal variant discovery 

in recessive conditions (See chapter 4), various studies have shown a degree of success 

in identifying the causative variants responsible for dominant disease (Johnson et al., 
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2010a; Ng et al., 2010a; Dickinson et al., 2011; Pfeffer et al., 2012). As with the 

recessive studies listed above, these studies are discussed in more detail in chapter 4. 

 

1.4 NGS in Complex Diseases 

As well as identifying potentially disease causing variants in Mendelian conditions, I 

also used NGS methods to identify potentially disease causing variants in sporadic 

forms of CVM (Chapter 5). Of particular interest in this regard was an empirical study 

of exome sequence data from 438 individuals, comprising 184 individuals from the 

International HIV Controllers Study and 254 control individuals (Kiezun et al., 2012). 

In this study several of the important aspects of exome sequencing for disease 

identification in non-Mendelian diseases were discussed, in particular the problem of 

obtaining adequate sample sizes. Using simulated data, the authors expect that over 

10000 exomes would be required to achieve sufficient statistical power to detect 

associations of rare variations with complex traits. Also, the many GWA studies which 

have been carried out to date, demonstrate that common variants underlying complex 

traits are not necessarily located in exonic gene regions, but spread across many more 

regions of the genome (Day-Williams and Zeggini, 2011). However, protein coding 

genes do provide well defined and easily interpretable targets (Kiezun et al., 2012), 

particularly in genes known to be involved in disease, such as the targeted approach I 

used in chapter 5.  

Despite these difficulties, there have been some successes, such as in Type I diabetes 

(Nejentsev et al., 2009). In this study exons and splice sites of 10 candidate genes in 

480 cases and 480 controls were re-sequenced using a 454 GS-FLX sequencer 

(Described below). A total of 212 point mutations were identified using the Staden 

package (http://staden.sourceforge.net/). Of these, 179 were categorised as rare (Minor 

allele frequency <3%), of which 156 had been previously unreported. The authors tested 

for association using all 212 variants by comparing cases and controls, and were able to 

confirm the previously known associations of common SNPs with type 1 diabetes. 

However, they also identified associations with two rarer SNPs, rs35667974 and 

rs35337543, in the IFIH1 gene. Both variants were predicted to alter the expression and 

structure of the gene.    

 

http://staden.sourceforge.net/
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1.5 NGS platforms 

1.5.1 Sanger sequencing 

Since its inception, the Sanger sequencing method has been used in thousands of ground 

breaking studies, such as in the sequencing of the first human consensus sequence 

(Lander et al., 2001; Harismendy et al., 2009). Sometimes called first generation 

sequencing, this method employs dideoxy and arabinonucleoside analogues which act 

as chain terminating inhibitors of DNA polymerase (Sanger et al., 1977). This process 

can generate reads of up to 900 base pairs in length (Zhang et al., 2011; Liu et al., 2012) 

and is frequently used in validation studies. 

Although still considered by many as the “gold standard”  sequencing approach, in 

comparison to more modern approaches it is expensive and has a considerably lower 

output, see table 1.1 (Harismendy et al., 2009; Audo et al., 2012). The recent 

advancements in NGS technologies have made it possible to sequence entire genomes 

and exomes in a relatively short space of time. It is now possible to examine variation in 

multiple genomic segments of several samples (Choi et al., 2009), which could greatly 

improve understanding of the genetics behind complex diseases (Choi et al., 2009; Ng 

et al., 2009), especially in the identification of rare variants (Choi et al., 2009; Cirulli 

and Goldstein, 2010; Parvez and Darbar, 2011). These methods are able to rapidly 

generate millions of sequence reads per patient and provide a fast, cost effective means 

to identify potentially disease causing variants in CVM cases (Mardis, 2008; Arking and 

Chakravarti, 2009).  

 

1.5.2 Roche 454 GS-FLX system 

The 454 GS-FLX system was the first commercially available NGS platform. It utilised 

an emulsion PCR amplification stage followed by a sequencing-by-synthesis technique 

whereby reagents flowing across a slide allow for simultaneous nucleotide extension 

reactions, with each base incorporation emitting a light signal captured by a camera 

(Margulies et al., 2005; Mardis, 2008; Pareek et al., 2011; Zhang et al., 2011).  

Initially the genome is sheared to produce random libraries of DNA fragments. 

Adaptors are added to each fragment, and the fragments are then captured on beads. 

These are then clonally amplified in an emulsion PCR step, and the resultant DNA 
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strands are denatured and deposited into wells of a fibre-optic slide. The slide is 

deposited in a flow chamber where sequencing-by-synthesis occurs. Reagents 

simultaneously flow across the flow chamber allowing for extension reactions where 

nucleotide incorporation results in the release of a light signal which is detected by a 

camera. The intensity of the light signal depicts the number of nucleotides which were 

added at each reaction (Margulies et al., 2005). The most recent 454 GS-FLX system is 

able to generate reads of up to 700bp long (Liu et al., 2012). Although its throughput is 

lower than for the other NGS systems, it is much faster than both the SOLiD and HiSeq 

sequencers and able to generate much longer reads (Liu et al., 2012). The 454 GS-FLX 

system is often used for de novo sequence assembly, cancer and mutation detection 

applications (Liu et al., 2012).    

Roche has also released a bench top sequencer called the GS Junior, in which the library 

preparation and data processing has been simplified and the system can now generate up 

to 14Gb per run (Liu et al., 2012). This sequencer is able to generate up to 100 000 

reads with an average read length of ~400bp’s (http://www.gsjunior.com/instrument-

workflow.php).  

  

1.5.3 Applied Biosystems SOLiD 

The Applied Biosystems SOLiD Sequencer employs an emulsion PCR amplification 

step, before DNA sequencing using fluorescently labelled dinucleotides that are added 

by ligation (Mardis, 2008). This system has many applications, including whole genome 

resequencing, targeted resequencing, transcriptome research (including gene expression 

profiling and small RNA analysis), and epigenomic research (Liu et al., 2012).  

Initially, the genomic DNA is fragmented and oligo adaptors ligated to the ends of the 

DNA fragments. The adaptor sequences are then hybridised to magnetic beads 

containing complementary oligos and the sequences are amplified via emulsion PCR. 

The beads are then attached to the surface of a glass slide and placed in the sequencer. 

During sequencing, a universal primer, complementary to the adapters, is annealed to 

the library fragments. A set of 8mer oligonucleotides and DNA ligase is then added. If 

an oligonucleotide hybridises to the DNA fragment sequence next to the 3’ end of the 

primer, the DNA ligase seals the phosphate backbone. After ligation, the 8mer 

oligonucleotide is identified by a fluorescent label on the fifth or second base position. 

http://www.gsjunior.com/instrument-workflow.php
http://www.gsjunior.com/instrument-workflow.php
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Finally the 6
th

 through 8
th

 bases of the oligonucleotide sequence are removed by 

cleavage, allowing for another round of ligation. The DNA fragment sequence is 

therefore identified in steps of five nucleotide intervals (Mardis, 2008). The ABI SOLiD 

5500xl system can now generate reads of up to 85bp in length and has a total output of 

30Gb per run (Liu et al., 2012). 

 

1.5.4 Illumina Genome Analyser 

The Illumina Genome Analyser (Illumina GA) was the second commercially available 

NGS platform and utilised cluster amplification and a sequencing-by-synthesis 

technique using reversible fluorescently labelled chain terminators (Mardis, 2008; 

Zhang et al., 2011). 

Initially the single stranded genomic DNA is fragmented and adaptor oligonucleotides 

ligated to the individual fragments. The fragments are then added to the surface of a 

glass flowcell comprising 8 lanes with complementary, covalently attached oligos. The 

fragments can then hybridise to the flow cell oligos and then undergo PCR 

amplification in a cluster. The flowcell is transferred to the sequencer and supplied with 

polymerase and fluorescently labelled nucleotides. The fluorescent label identifies the 

base. The 3’ end of each base is inactivated insuring the addition of only one base per 

cycle. Each cycle is followed by an imaging step to identify the particular base that was 

incorporated and the fluorescent group and the 3’ block are removed (Mardis, 2008). 

The original Illumina GA was able to output up to 95Gb of sequence data, comprising 

reads of up to 150bp long (http://www.illumina.com/).  

Then in early 2010, Illumina launched the HiSeq2000 which due to various 

improvements in polymerase, buffer, flowcell, and software, is now able to output up to 

600Gb per run (Liu et al., 2012). Like its predecessor, the HiSeq2000 employs a 

sequencing-by-synthesis approach, but at a 2 – 5 fold higher rate of data acquisition by 

using a four camera system able to detect the intensities of all four bases simultaneously 

(Minoche et al., 2011).  Additionally, in comparison to the Roche 454 GS-FLX system 

and the Applied Biosystems SOLiD systems, the HiSeq2000 is also the cheapest on the 

market, with a sequencing cost of only $0.02/million bases (Liu et al., 2012). The 

HiSeq2000 can be used for a range of different applications; in particular it is frequently 

used in targeted reqequencing and mutation discovery studies.  
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Illumina has also released its own compact, bench top sequencer called the MiSeq. This 

sequencer still makes use of Illumina’s reversible terminator-based sequencing by 

synthesis technique and is able to generate reads of up to 150bp in length and output up 

to 1.5Gb of data (Liu et al., 2012). This lower throughput, fast turnaround sequencer has 

been largely aimed at small laboratories and for use in clinical diagnostics (Quail et al., 

2012). 

 

1.5.5 Life technologies Ion Torrent PGM 

Clonal amplification of the DNA fragments is achieved via an emulsion PCR step on 

the surface of 3-micron diameter beads, called Ion Sphere Particles (Quail et al., 2012). 

These beads are then loaded into proton-sensing wells on a silicone wafer, after which 

each of the four bases is introduced sequentially (Zhang et al., 2011; Quail et al., 2012). 

During the sequencing process, when a nucleotide is incorporated onto the growing 

DNA strand, a hydrogen ion is released which is detected by an ion sensor and 

converted into a digital output (Zhang et al., 2011). The direct connection between 

chemical and digital information improves speed, simplicity and output (Pareek et al., 

2011). 

However, the system does carry with it some disadvantages, as listed by Niedringhaus 

et al. (2011). The author’s state that the need for the reaction wells to be cleared 

between each reaction step can lead to an accumulation of errors, and that the system 

has difficulties sequencing highly repetitive or homopolymer regions.  

 

1.5.6 Third generation sequencing 

As well as the next generation platforms described above, methods utilising single DNA 

molecule sequencing are currently being made available (Zhang et al., 2011). These 

methods do not require amplification and simply read through DNA templates in real 

time, making them potentially more accurate than the NGS platforms (Pareek et al., 

2011; Zhang et al., 2011; Liu et al., 2012).  

For example, the Pacific Biosciences RS which relies on a process termed single 

molecule real time sequencing that employs a sequencing-by-synthesis method which 

uses fluorescently labelled nucleotides and DNA templates attached to the bottom of 
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zero-mode waveguide wells (Pareek et al., 2011; Quail et al., 2012). During this process 

the DNA templates are attached to the bottom of the 50nm wide zero-mode waveguide 

wells (Quail et al., 2012). DNA synthesis is carried out by DNA polymerase in the 

presence of y-phosphate fluorescently labelled nucleotides (Pareek et al., 2011; Quail et 

al., 2012). With each new base incorporation, the flourophores attached to the 

nucleotides are excited, generating a pulse of fluorescence which is detected in real time 

(Quail et al., 2012).   

Some of the advantages of this method of sequencing are listed by Liu et al. (2012). 

These advantages include a decreased sample preparation time of only 4 - 6 hours, a 

PCR step is not required which reduces errors caused by PCR, the turnover rate is very 

fast (An entire run can be completed in a day) and finally, the average read length is 

~1300bp. Despite these apparent advantages, the system suffers from inefficient loading 

of the DNA polymerase into the zero-mode waveguide wells and subsequent 

degradation of the polymerase in these wells, a low accuracy of between 81 – 83%, and 

a high cost per base (Niedringhaus et al., 2011). 

 

1.5.7 Comparison of different sequencing platforms 

Harismendy et al. (2009) compared the base calls generated using Sanger sequencing to 

those generated using the 454 GS-FLX, Illumina GA and the ABI SOLiD platforms. 

They identified heterozygous and homozygous variants in 258 879 base pairs using all 

four methods and found 20 loci that the three NGS technologies were concordant with, 

but discordant with the Sanger calls. Eight of these 20 calls were base calling errors in 

the original samples, while 9 of the remaining 12 discrepancies were found to be 

incorrect in the Sanger sequences.  Sanger sequencing had a 0.9% false positive call rate 

and a 3.1% false negative call rate, whereas the 454 GS-FLX, Illumina Genome 

Analyser and ABI SOLiD displayed false positive rates of 2.5%, 6.3% and 7.8% 

respectively, and false negative rates of 3.1%, 0%, and 0.9% respectively.  

Liu et al. (2012) also provided a comparison between the Sanger sequencing platform 

and three NGS platforms, namely the 454 GS-FLX system, the Illumina HiSeq2000 

system, and the SOLiD 5500xl system (Table 1.1). This table and its information was 

extracted from Liu et al. (2012). As can be seen, the most significant differences 

between the systems are in terms of read length, data output and cost. By far, the most 



22 
 

expensive, with the lowest throughput, is Sanger sequencing. However, it does generate 

very long reads and displays a very high accuracy. 

A further study by Niedringhaus et al. (2011) compared the Sanger, 454 GS-FLX, 

HiSeq2000, and SOLiD sequencing platforms. They too found that although the Sanger 

sequencing method was more expensive and had a lower throughput than the next 

generation platforms, it could generate longer, high quality reads that also displayed 

good quality in repeat and hompolymer regions. They found that the sample preparation 

step was complicated for the 454 GS-FLX system and that it generated low quality 

reads in repetitive and homopolymer regions. However, the 454 GS-FLX sequencer was 

able to generate longer reads than any of the other next generation platforms.  In 

comparison, the SOLiD sequencer produced relatively short reads amongst, but had a 

very high throughput and very low reagent costs. 

Quail et al. (2012) provides a comparison of three next generation bench-top sequencers, 

namely the Illumina Miseq, the Ion Torrent, and the PacBio RS (Table 1.2). Although 

the Illumina MiSeq has the lowest costs and highest output, it also has the shortest read 

length and longest run time. However, the MiSeq also has the lowest error rate at 0.8%, 

with the PacBio RS sequencer having a much higher error rate at 12.86%. 

Due to its very high output, very low per base cost, and its versatility I chose to use the 

Illumina Genome Analyser and Illumina HiSeq2000 as the sequencers of choice in 

chapters 4 and 5 of my thesis. 
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Sequencer 454 GS FLX HiSeq2000 SOLiD 5500xl Sanger 3730xl 

Read length 700 bp 50SE, 50PE, 100PE 85bp 900 bp 

Accuracy 99.90% 98%, (100PE) 99.99% 100.00% 

Output 

data/run 
0.7 Gb 600 Gb 30 Gb 84 Kb 

Time/run 24 Hours ~8 Days 7 Days for SE or 14 Days for PE 20 Mins - 3 Hours 

Cost/million 

bases 
$10 $0.02 $0.13 $2400 

Advantage Read length, fast High throughput Accuracy 
High quality, long 

read length 

Disadvantage 

Error rate with 

polybase more 

than 6, high cost, 

low throughput 

Short read assembly Short read assembly 
High cost low 

throughput 

 

Table 1.1. Comparison of the 454 GS FLX, HiSeq2000, SOLiD 5500xl and Sanger 

3730xl sequencing systems. Table and information has been extracted from Liu et 

al. (2012). SE=Single-end and PE=Paired-end. 
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Platform Illumina MiSeq Ion Torrent PGM PacBio RS 

Instrument Cost $128K $80K $695K 

Sequence yield per run 1.5-2Gb 

20-50Mb on 314 chip, 

100-200Mb on 316 chip, 

1Gb on 318 chip 100Mb 

Sequencing cost per Gb $502 $1000 (318 chip) $2000 

Run Time 27 hours 2 hours 2 hours 

Observed Raw Error 

Rate (%) 0.8 1.71 12.86 

Read length up to 150 bases ~200 bases Average 1500 bases 

 

Table 1.2. Comparison of three next generation, bench-top sequencing platforms. 

The table and information has been adapted from Quail et al. (2005). 

 

1.6 NGS Data Analysis 

Following sequencing, a series of programmes are employed to convert the sequencer 

output into a nucleotide sequence, and ultimately to identify variants, from the 

sequencer output files. A base caller must first be used to convert the output into 

sequence reads and to assign the correct base identity to each sequence (Nielsen et al., 

2011). A sequence aligner is then used to align the sequence reads  to a reference 

sequence, and remove miscellaneous sequences not matching the reference sequence 

(Day-Williams and Zeggini, 2011). Finally a variant caller can be used in order to 

identify variants (Which I define as deviations from the reference sequence) from these 

aligned reads (McKenna et al., 2010; Koboldt et al., 2012). 

There are a whole host of programmes available to perform sequence alignment (Li and 

Durbin, 2009; Wu and Nacu, 2010; Langmead and Salzberg, 2012) and variant calling 

(Li et al., 2009; McKenna et al., 2010; Albers et al., 2011; Koboldt et al., 2012). 

However not all programmes perform equally well, and all have their own potential 

shortfalls (Shen et al., 2010; Albers et al., 2011; Nielsen et al., 2011; Wang et al., 2011). 

There is much variation between these different analysis pipelines, which I explore in 

chapter 3. Therefore, the selection of the appropriate pipeline will have a large effect on 

the potential of a study to identify causative variants. 
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Furthermore, variant callers often identify many thousands of variants (See chapter 4) 

per patient. Therefore one of the challenges in NGS studies is how to decide which of 

these variants are responsible for disease (Ng et al., 2009; Ng et al., 2010c; Zhi and 

Chen, 2012). This presents a major challenge, and as such many “variant filtering” 

procedures have been developed (Ng et al., 2010b; Erlich et al., 2011). Filtering 

methods include the selection of variants present only in cases (Bamshad et al., 2011), 

removing variants identified outside of the target regions (Dickinson et al., 2011), and 

incorporating a prediction programme to assess the potential impact of the variant on 

protein function (Bamshad et al., 2011). However, many of these filtering methods 

imply a choice of genetic/biological model, which may not always be known. A detailed 

discussion of the approaches to variant filtering that I adopted is presented in the 

relevant chapters of this thesis. 

NGS methods have been successfully applied to a range of monogenic, Mendelian 

diseases (Ng et al., 2009; Ng et al., 2010b; Bamshad et al., 2011; Gilissen et al., 2011). 

Due to the large capacity and cost requirements of whole genome sequencing (Teer and 

Mullikin, 2010; Gilissen et al., 2011),  whole exome sequencing is currently the more 

popular approach (Gilissen et al., 2011; Smith et al., 2011). The advantages and 

disadvantages of targeted capture approaches are discussed in chapters 3, 4, and 6. 

 

1.7. Specific aims 

The aim of my PhD was to use NGS methods to identify rare and potentially disease 

causing variants in various diseases, in particular CVMs. First, I implemented analysis 

pipelines, in the process becoming the first researcher in Newcastle University’s 

Institute of Genetic Medicine to analyse NGS whole exome data.  Realising the constant 

questions regarding the adequacy of sequencing quality, coverage, and analysis 

methodology that arise during NGS studies - particularly when nothing is found in a 

promising family and some estimate of the merit of investing further effort is required - 

I developed and tested a method to assess the performance of different NGS variant 

calling pipelines and the adequacy of a given set of sequencing output.  I then applied 

the methods I had developed in two clinical contexts, attempting to identify rare 

variants that were disease-causing. The first used NGS methods to identify variants 

responsible for three Mendelian diseases (Atroventricular Septal Defects, Dilated 

Cardiomyopathy, and Hereditary Sclerosing Poikiloderma), and the second used NGS 
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methods to identify potentially disease causing variants in a group of patients suffering 

from sporadic, non-Mendelian CVMs. In the second project, recognising the 

bioinformatics challenges that remain regarding the accurate calling of indels, I tested 

different analysis pipelines and evaluated their performance using the methods I 

developed earlier in my work.   
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Chapter 2. Methods 
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2.1 Methods overview 

With regard to the bioinformatics analyses that were my principal focus, methods were 

specific to each sub-project and are described in the respective chapter.  In this section, I 

provide an overview of those methods (chiefly laboratory methods) which were 

employed throughout my thesis to generate the data I was responsible for analysing.  

Experimental strategy for the laboratory work was decided by my supervisory team and 

as work progressed, was informed by the results I generated.  Unless specified 

otherwise, the information in this chapter, which is chiefly provided for reference, was 

provided by Dr. Thahira Rahman and Mr. Rafiqul Hussain (University of Newcastle), 

who were the individuals responsible for carrying out the “wet lab” work. However, all 

data analysis and bioinformatics analysis was performed by myself. 

 

2.2 Samples, target enrichment and sequencing 

In chapter 4, I analysed data from cases in three pedigrees suffering from Mendelian 

diseases. In chapter 5 I analysed cases from the HeartRepair project, which consisted of 

133 unrelated individuals suffering from various sporadic CVMs characterised by 

hypoplasia of one or other of the ventricles of the heart. The library preparation, target 

enrichment and sequencing varied between these two studies and will be discussed in 

more detail in this methods chapter.  

 

2.2.1 Whole exome sequencing of Mendelian family samples (studied in chapter 4) 

Blood and saliva samples were collected from members of three pedigrees. In each 

pedigree predisposition to a different disease appeared to segregate following an 

autosomal dominant mode of inheritance. Family trees and discussion of the phenotypes 

are provided in chapter 4. 

Five micrograms of genomic DNA was extracted from pre-existing samples. A Covaris 

instrument (http://covarisinc.com/; University of Newcastle) was used to shear the 

genomic DNA into fragments ranging in size from 150 to 200bp. Fragmented samples 

were then assessed on a DNA1000 lab chip (Agilent) on an Agilent Bioanlyser to 

determine whether they were in the correct size range. The next step involved the end 

repair and adenylation of the fragments, after which Illumina adapters were added. The 

http://covarisinc.com/
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ligated products were then cleaned up to select only those DNA fragments which have 

adapters on both ends. Then in the following PCR stage, additional sequences were 

added to the ends of the adapters so that the final amplified templates contained 

sequences to enable hybridisation with primers bound to the flow cell surface for cluster 

generation (http://www.genomics.agilent.com).  

Enrichment then proceeded using either the 38Mb or 50Mb SureSelect Human All Exon 

Capture Kit from Agilent Technologies (http://www.agilent.co.uk). Each enrichment kit 

consisted of custom biotinylated SureSelect oligonucleotides (also known as baits; 

http://www.genomics.agilent.com). The RNA bait-DNA hybrids were captured on 

streptavidin-coated magnetic beads. Amplification by PCR followed, after which the 

target samples were loaded onto the Illumina Genome Analyser IIx for paired end 

sequencing. 

 

2.2.2 Targeted sequencing of unrelated cases of CVM (studied in Chapter 5) 

Peripheral blood or saliva samples were collected from patients of European ancestry. 

Unrelated patients were recruited from four sources: (1) CONCOR (National Registry 

and DNA bank of congenital heart defects), The Netherlands, n=59 (2) National 

Registry for Congenital Heart Defects (NR-CHD), Berlin, Germany, n=13, (3) The 

Institute of Human Genetics, Newcastle University, United Kingdom, n=48, and (4) the 

University Hospital Zürich, Zürich, Switzerland, n=13. Informed consent was obtained 

from all participants according to institutional guidelines after approval of local ethics 

committees. Probands were evaluated by history taking, review of medical records, 

physical examination, 12-lead electrocardiography and transthoracic echocardiography. 

Family members, preferably the parents of the proband (trios), were included wherever 

possible but were only evaluated by history taking and review of medical records. 

Newcastle patients and their parents (when available) were recruited in the Freeman 

Hospital, Newcastle upon Tyne, UK after ethics approval by the Northern and 

Yorkshire Multi-centre Research Ethics committee.  

Genomic DNA was extracted from blood and saliva samples by either the Phenol-

chloroform method or the Oragene kit (DNA Genotek, Canada) respectively. For the 

NR-CHD patients genomic DNA was extracted by the Gentra Autopure LS automated 

DNA purifier (Gentra Systems, Minneapolis, USA) Genomic DNA samples were 
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quantified by Qubit® Fluorometer (Invitrogen, Life Technologies) and their quality 

assessed on a Nanodrop (California, USA). 5 µg of gDNA was suspended in 1X TE 

buffer and made up to 100 µl. This was sonically sheared to fragments with average size 

of 200bp on the Covaris S2 system (Covaris, Massachusetts, USA). After 

fragmentation, samples were purified using QIAquick columns from a QIAquick PCR 

Purification Kit (Qiagen, Hilden, Germany) and eluted in Qiagen buffer EB. The size of 

fragments was assessed on the 2100 Bioanalyzer using DNA1000 chip.  

The indexed paired-end libraries were prepared using reagents from the Illumina 

Genomic DNA Sample preparation kit and Multiplexing sample preparation 

oligonucleotide kit. Nucleotide overhangs produced as a result of the shearing process 

were converted to blunt ends using Klenow enzyme, T4 DNA polymerase, Klenow 

enzyme and T4 PNK. After incubation, samples were purified using QIAquick columns 

from a QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and eluted in Qiagen 

buffer EB. 

Double stranded, blunt, phosphorylated DNA fragments were adenylated at their 3’ends 

in a reaction mix containing Klenow buffer, dATP and Klenow fragment (3' to 5' exo 

minus).  After incubation, samples were purified using QIAquick MinElute columns 

from a MinElute PCR Purification Kit (Qiagen, Hilden, Germany) and eluted in Qiagen 

buffer EB. 

Illumina multiplex paired-end adapters (Multiplexing Sample Preparation 

Oligonucleotide Kit, PE-400-1001, Illumina, San Diego, USA) were ligated to the 

adenylated DNA fragments in a reaction mix containing DNA sample, ligase buffer and 

Illumina multiplex paired-end adapter oligo mix and DNA ligase. After incubation, 

samples were purified using SPRI beads (Qiagen, Hilden, Germany) and eluted in 

Nuclease-free water. Quality and concentration of adapter ligated DNA fragments were 

checked on the 2100 Bioanalyzer using DNA1000 chip.  

Four hundred and three (Appendix table 2.1) genes that were linked to cardiovascular 

malformations in humans or animal models were selected for capture and sequencing 

(further details on gene selection strategy are presented in Chapter 4). DNA sequences 

were downloaded from the UCSC Genome Browser and the coordinates of genomic 

sequences were based on NCBI genome build 36. The target regions encompassed 5152 

exons and 1.68 Mbp. In these regions, 50406 unique capture probes were designed 
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using the eArray algorithm following the manufacturer’s instructions and with 5× tiling 

frequency. The biotinylated 120-mer cRNA probes were synthesised by Agilent 

Technologies (SureSelect target Enrichment System).  

Target enrichment was performed using a SureSelect Custom Target Enrichment Kit 

(Agilent, California, USA). Libraries were made up to147 ng/µL ready for in-solution 

hybridisation with the custom SureSelect biotinylated cRNA oligonucleotides. To reduce 

non-specific hybridization, human Cot-1 DNA (2.5 µL) and 0.6 µL of a custom-made 

oligonucleotide block 3 pool containing equimolar concentrations (100 µM each) of four 

oligonucleotides. 

 

The biotinylated cRNA-DNA hybrids were separated from the hybridisation mixture 

using Dynabead M-280 Streptavidin (Invitrogen, California, USA), washed and cRNA 

baits were digested following recommended protocol. Enriched fragments were purified 

using QIAquick MinElute PCR purification columns from the MinElute PCR 

Purification Kit (Qiagen, Hilden, Germany). 

A post-hybridisation PCR was performed to barcode adapter ligated fragments and to 

selectively amplify enriched samples. The amplification reaction mix was prepared 

using Captured DNS fragments, Phusion High Fidelity DNA Polymerase master mix 

(Finnzymes, Finland), PCR primer InPE 1.0, PCR primer and PCR primer Index 

(Illumina Multiplex PCR kit) and incubated in a thermocycler. Quality and 

concentration of enriched DNA fragments were accessed on 2100 Bioanalyzer using the 

High-Sensitivity DNA kit.  

Five samples were pooled at equimolar concentration and sequenced in a single lane of 

the Illumina GAIIx or Illumina HiSeq2000 sequencer with separate priming for reading 

the 6 nucleotide index sequences. For clustering on the GAIIx version 2 cluster kits 

were used on the GAIIx cluster station and for clustering on the cBot cluster station (for 

HiSeq 2000) version 3 HS cluster kits were used. Version 4 sequencing reagents were 

used for GAIIx and SBSv2 sequencing reagents were used for Hiseq2000. Base calling 

was performed with BclConverter-1.7.1 and subsequent use of Illumina’s GAPipeline-

1.5.1 (GAIIx) or CASAVA-1.7 pipeline (HiSeq2000). Demultiplexing was performed 

with a custom perl script allowing for one mismatch with the expected index sequence. 

For an initial assessment of coverage in targeted regions, sequences were aligned to the 

hg18 genome with bowtie v0.12.7, and only samples with at least 20x coverage in at 
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least 80% of the targeted regions were used. In case of insufficient coverage, 

sequencing was repeated once or twice and resulting fastq files were merged. This was 

done at the AMC, Amsterdam. 

 

2.3 Data analysis 

2.3.1 Computers  

Originally, the work was begun using a Dell PowerEdge 2970 system including 2 AMD 

Opteron HE 212 (2.0GHz) processors. This system had 12 cores, 32GB ram and 8TB 

storage. 

The institute then acquired a cluster including a Dell PowerEdge R510 headnode, and 

16 nodes housed in 4 Dell C6100 chassis. The headnode consisted of 2 Intel Xeon 

E5503 (2.0GHz) processors 8 cores and 12GB ram. The 16 additional nodes comprised 

2 Intel Xeon E5640 (2.67GHz) processors, 8 cores, 48GB ram, and 150GB scratch 

space.  

The cluster was later upgraded to a cluster including the original headnode, the original 

16 nodes mentioned above, 4 new nodes, and a login node. The new login node 

comprised a Dell PowerEdge C1100 system with 2 Intel Xeon E5640 (2.4GHz) 

processors, 8 cores, and 24GB ram. The 4 new nodes are housed in a Dell C6100 

chassis and each node consists of 2 Intel Xeon E5640 (2.66GHz) processors, 8 cores, 

96GB ram and 1TB scratch space. 

In total the cluster provided 20 nodes, 37TB lustre storage (via 2 Dell PowerEdge R510 

processors), 20TB direct cluster NFS storage and 27TB attached NFS storage (via 2 

Dell PowerEdge R715 processors). It runs a Scientific Linux release 6.3 operating 

system, and the OGS/GE 2011.11p1 batch-queuing system. 

 

2.3.2 Scripting  

In all chapters, I constructed analysis scripts using the Perl programming language 

(http://www.perl.org/), versions 5.10.1, 5.12.4, and 5.16.1. Perl scripts were used 

throughout my PhD to perform a range of tasks, and some of the more relevant tasks 

will be highlighted below. 

http://www.perl.org/
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I combined many of the alignment and variant calling programmes into single pipelines 

throughout my PhD. These created single analysis pipelines which, on specification of 

input fastq files and the desired criteria, would perform the alignment, variant calling, 

and the variant prediction stages of the pipeline. Appendix script 2.1 is an example of a 

script that I used to run MutationTaster. 

In chapter 3 I developed a novel method to assess the performance of an entire next 

generation sequencing experiment. Due to the sheer volume of data contained in both 

the HapMap and 1000 Genomes databases, I developed scripts which could be used to 

extract only the on-target SNPs which were required for my method to assess the 

performance of the analysis pipelines (Method described in more detail in chapter 3). 

More importantly though, a script had to be developed which given a list of reference 

SNPs and a VCF file, would calculate the sensitivity and specificity of the variant calls 

(See chapter 3 for more details on the method). Due to the length and complexity of the 

script it will not be made available here, but in the publication of the method. 

Many aspects of chapter 4 involved the development and use of complex scripts for data 

analysis. In addition to the scripts which were used to run the analysis pipelines, this 

chapter also required the use of various scripts to perform all of the downstream data 

analysis steps. For example, given a list of identified variants I developed and used 

scripts that would remove all of the off-target variants and select those not found in the 

dbSNP database as well as removing those variants found in a control list.  

Many of the scripts in chapter 5 performed similar functions to those in chapter 4. For 

instance, removing the off-target variants and those present within the control list (See 

methods in chapter 5). However, this chapter did require some additional scripts that 

were designed and implemented by myself. For example, I had to design a script to 

calculate the length of all the identified insertions and deletions (Appendix script 2.2). I 

also designed a script to identify the overlaps of indels identified by both the BWA-

Dindel and BWA-GATK analysis pipelines (Appendix script 2.3). 
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2.3.3 Sequence analysis 

Base calling was done using GERALD (cassava 1.6.0). 

Alignment was performed using a series of programmes, specified in the relevant 

chapters. These included: 

1) Bowtie v0.12.8 (Langmead et al., 2009) 

2) Bowtie2 v2.0.0beta6 (Langmead and Salzberg, 2012) 

3) BWA v0.5.10 and v0.5.8 (Li and Durbin, 2009) 

4) GMAP (GSNAP) v20120720 (Wu and Watanabe, 2005) 

5) NovoAlign v2.07.13 (www.novocraft.com) 

6) SSAHA2 v2.5.5 (Ning et al., 2001) 

 

Variant calls were also performed using a variety of programmes, which again are 

specified in the relevant chapters. These included: 

1) Dindel v1.01(Albers et al., 2011) 

2) GATK v2.2.9 (McKenna et al., 2010)  

3) Samtools v0.1.8 and v0.1.18 (Li et al., 2009) 

4) Varscan v2.3.1 (Koboldt et al., 2012) 

 

All statistical analyses was performed using the R package (http://www.r-project.org/), 

versions 2.15.0 and 2.15.1.   

 

2.3.4 Accessory programmes 

Both a local version of Annovar (v506 and v510) and the online wAnnovar 

(http://wannovar.usc.edu/) version were used for variant annotations in chapter 4 and 5. 

Given a list of input variants, these two programmes annotate their functional affects 

and match them to public SNP databases using information form databases such as 

Ensembl (http://www.ensembl.org/index.html), 1000 genomes 

(www.1000genomes.org/) and the Exome Variant Server (EVS; 

http://evs.gs.washington.edu/EVS/) project. 

http://www.r-project.org/
http://wannovar.usc.edu/
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MutationTaster (http://www.mutationtaster.org/) was used to predict the pathogenicity 

of variant calls. 

Where applicable, BAM files were converted to fastq files using Bam2fastq v1.1.0 

(http://www.hudsonalpha.org/gsl/information/software/bam2fastq). 

The ngsqctoolkit v2.2.3 (Patel and Jain, 2012) was used to generate the graphs 

displaying average base coverage across the sequence reads in chapter 4. 

The Picard v1.75 set of programmes was used in chapters 4 and 5 to remove duplicate 

reads from the sequence files. 

In addition graphs were generated using the R package and SigmaPlot v11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mutationtaster.org/
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Chapter 3. Using population data for assessing next-generation 

sequencing performance 
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3.1 Aim 

In the work outlined in this chapter, I describe the design of a simple, fast and effective 

method to calculate sensitivity and specificity of variant calls from NGS data. This is 

often done by comparing identified variants with those obtained using a reference 

technique such as a genotyping microarray. I designed a novel technique to calculate 

sensitivity and specificity using publically available population frequency data obtained 

from databases such as the HapMap and 1000 genomes databases.  

I demonstrate that my method provides comparable results to those requiring microarray 

data. I compare different analysis pipelines used to identify single base substitutions and 

indels. As my method relies on allele frequencies obtained from public databases I also 

investigate the impact of using “incorrect” frequency data on sensitivity and specificity, 

and also explored the influence of sequence coverage.  

 

3.2 Introduction 

NGS technologies are often used for the identification of sequence variants predisposing 

to diseases that follow Mendelian inheritance patterns (Ng et al., 2010a; Ng et al., 

2010b; Wang et al., 2010a; Bamshad et al., 2011; Gilissen et al., 2011). Here I will 

define a variant as a deviation from a reference sequence. In particular, the sequencing 

of material enriched for exonic sequences has been successful in many cases but failed 

to identify the causative variants in others (Ng et al., 2009; Bamshad et al., 2011; 

Gilissen et al., 2011). These successes and failures are described in more detail in 

chapter 4. In fact less than 50% of such studies are able to successfully identify the 

disease causing variant (Gilissen et al., 2011). Such apparent failures may have many 

causes but also focus attention on the desirability of simple measures to assess the 

performance of different sequencing and analysis pipelines. The ideal analysis pipeline 

would have a high probability of identifying a variant, while maintaining a low number 

of falsely identified variants reducing the amount of work needed for validation.  

Therefore, I developed a simple and flexible approach for assessing the performance of 

a whole exome or genome sequencing experiment. The method allows for the 

assessment of an entire sequencing study, from sample preparation through to variant 

calling. Here, the focus was on the detection of single base sequence variants as 

opposed to changes in copy number or large rearrangements.  A common approach is to 

compare the identified variants with variants known to be present or absent, by using, 
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for example, genotyping microarrays (Ng et al., 2009). This allows for the probability 

of a specific variant at a given position in an individual to be considered as either 0 or 1. 

However, this obviously requires both sequence data and microarray data to be 

available which will increase the cost of an experiment, and is therefore not always a 

feasible approach.  

An alternative approach, as is proposed here, is to use changes where the probability of 

occurrence in a specific sample can be ascertained. This allows the probability of a 

variant present at a specific position to assume values other than 0 or 1. My approach 

formalises this method by using sites known to be polymorphic in the human population. 

This can also be seen as an extension of methods that rely on quality criteria such as the 

number of variants found in sites known to be polymorphic (Marth et al., 2011; Challis 

et al., 2012). 

The results of such comparisons can be summarised in many ways, such as assessing 

the number or proportion of variants that have previously been reported in databases 

such as HapMap (www.hapmap.org) or the 1000 genomes (www.1000genomes.org).  

Since the focus is on a dichotomous outcome I use here the probabilities of identifying 

the variant given that the variant is really present and of finding no variant at a site 

where none is present. I refer to these probabilities as sensitivity and specificity 

respectively.  

I describe the method in detail below. In the results section I have compared my method 

to the method of calculating sensitivity and specificity using microarray data and 

explored possible applications of the proposed method in NGS studies.  

 

3.3 Method 

I designate with M the presence of a variant allele and with  D  the detection of a 

variant allele. Correspondingly  M  and D  represent the absence of a variant allele and 

the not detecting a variant allele. For an autosomal locus we have: 

             iiiiiiiiiiiiiiii MMpMMDpMMpMMDpMMpMMDpDp ||| 

             iiiiiiiiiiiiiiii MMpMMDpMMpMMDpMMpMMDpDp |||   

Assuming Hardy-Weinberg equilibrium we obtain for the genotype frequencies 

  2

iii fMMp  ,    iiii ffMMp  12  and    21 iii fMMp  , where 
if  designates 
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the frequency of the variant allele. We further designate with s the sensitivity 

 MDps |  and with u the specificity,   MDpu |  and obtain for the remaining 

terms:     ssMMDp iii  2| ,     ussMMDp iii  11| ,   21| uMMDp iii  , 

   21| sMMDp iii  ,    usMMDp iii  1|  and   2| uMMDp iii  . 

We treat all sites as independent and assume that detection probability for one site is 

independent from that for another, thus for an individual the likelihood is  

     




DD Sj

j

Si

i DpDpusl ,  

Where the index DS  represents the set of sites where a variant was detected and 
D

S  the 

sites were only the reference was observed. 

When several individuals are analysed and we assume that their genotypes are 

independent the likelihood of the whole group of individuals can be described as 

 



K

k

k usll
1

,   

 

3.4 Materials 

3.4.1 Sequence and genotype data  

Targeted whole exome sequencing was carried out for 31 (12+19) samples using an 

Illumina Genome Analyser IIx.  Agilent 38Mb target positions were obtained from 

Agilent, and the human genome (Build36.1) was used as reference sequence 

(http://genome.ucsc.edu/).  

Genotype chip data were available for 19 of the 31 samples, comprising a total of 

557124 SNPs on the Illumina 660 genotype chip (https://my.illumina.com/). 10762 of 

these SNPs were located within the target regions.  

 

3.4.2 Comparison of array and sequencing data 

As described in the introduction, my analysis focuses on the ability of detecting variants, 

therefore I assessed at any position whether a variant was detected or not.  The 

sensitivity is defined as the number of sites in which both sequencing and microarrays 

http://genome.ucsc.edu/
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detected a deviation from the reference sequence divided by the number of sites where a 

variant was detected by using the microarrays. Correspondingly the number of sites 

where both methods detected no deviation from the reference sequence divided by the 

number of sites where the microarray detected only the reference residue was used as an 

estimate of the specificity.  

   

3.4.3 Selection of polymorphisms 

The HapMap database was used to obtain allele frequencies in the calculation of 

sensitivity and specificity for the single base substitution variant calls. The HapMap 

database consists of 4083713 SNPs in total (CEU population, build 36, downloaded 28 

October 2010). 10165 overlap with the on target (Agilent 38Mb whole exome targets) 

genotype chip SNPs. Allele frequency data was obtained for each of these SNPs from 

the HapMap database. 

For the calculation of sensitivity and specificity of indel calls, allele frequencies were 

obtained from the 1000 genomes database. As indel positions were not typed on the 

microarray, I used all the indel positions from the 1000 genomes database which were 

located in the target regions (Agilent 38Mb whole exome targets). This provided 8365 

on target indels from the 1000 genomes database for which frequency information was 

also available. 

 

3.4.4 Sequence analysis 

For the identification of single base substitutions, reads were aligned to the reference 

using the following aligners: Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 

2009), GSNAP (Wu and Nacu, 2010), NovoAlign (http://www.novocraft.com/), SOAP2 

(Li et al., 2008b), SSAHA2 (Ning et al., 2001). Variants were identified using either 

Varscan (Koboldt et al., 2009) or Samtools (Li et al., 2009). Unless specified otherwise, 

the default parameters were used for each program. Coverage was assessed from the 

Pileup files.  Coverage depth was varied by sampling with replacement from the SAM 

files. 

 



41 
 

Twelve of the samples were used for indel analysis. Reads were aligned to the human 

genome reference (Build 37, hg19) sequence using Bowtie2 (Langmead and Salzberg, 

2012), BWA and NovoAlign. Indels were identified using Samtools, Dindel (Albers et 

al., 2011) and GATK (McKenna et al., 2010; DePristo et al., 2011). Due to the large 

number of windows produced by Dindel, a minimum threshold of 7 reads covering each 

indel variant was applied. For all other indel callers, the default parameters were used. 

 

3.5 Results 

In this section I first explore some applications of the proposed method, then compare 

its results with estimates generated using the genotypes obtained through the microarray 

as the true genotypes. The method I propose here assumes that the allele frequencies in 

the population from which the samples were drawn are known. At the end of this 

section I explore the effects of using incorrect allele frequencies.  

 

3.5.1 Pipeline comparisons 

Figure 3.1 compares the sensitivity and specificity estimates achieved using the 

different alignment and variant calling programmes for the detection of single 

nucleotide substitutions. The values are based on 31 samples and represent the median 

and the upper and lower quartiles. For 8 samples SSAHA2 failed to produce results and 

generated the messages “error: memory allocation failed cannot allocate memory” or 

“error: memory allocation for array of fasta structures failed cannot allocate memory”.  

Interestingly, the alignment programmes appear to have a stronger effect on sensitivity, 

while the variant calling programmes appeared to effect specificity more strongly. All 

aligners yield similar specificities when used in combination with Samtools and the 

NovoAlign-Samtools and BWA-Samtools pipelines provided the highest sensitivity 

values. Therefore I used the NovoAlign aligner and the Samtools variant caller as the 

standard pipeline for all of the subsequent analyses. The estimates for the specificity 

using Samtools with any aligner were over 0.998. Conversely, the specificity fell below 

0.996 when using Varscan. 
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Figure 3.2 shows the results for different indel calling pipelines. The number of 

positions considered makes estimation of specificity problematic. Sensitivity was poor 

compared to the value for single base substitutions across all pipelines and it was shown 

that Samtools had the lowest sensitivity, while GATK performed best.  The best 

performing pipeline was BWA-GATK. The average estimates for sensitivity using the 

Bowtie2-GATK and Novoalign-GATK pipelines are 0.354 and 0.337 respectively. 

 

  

Figure 3.1. Specificity and sensitivity of different analysis pipelines used to call 

single base substitutions. 
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Figure 3.2 Specificity and sensitivity for indel calling pipelines. 

 

3.5.2 Parameter selection 

Each alignment and variant calling programme has a range of parameters which can be 

set by the user. In general default values are provided but these may not always be 

appropriate and altering these parameters can have a marked effect on sensitivity and 

specificity. Therefore, I used my method to explore the effects of choosing different 

variant calling parameters. To test this I used the NovoAlign-Samtools pipeline but used 

a range of base quality thresholds for variant calling (Figure 3.3A and 3.3B). This is the 

minimum base quality at the position, for a read, required for that read to be included in 

the variant call for that position.   

Figure 3A shows that altering the base quality threshold used in variant calling has a 

dramatic effect on sensitivity, with a rapid drop when the values are set above 20. The 

effect on specificity (Figure 3B) is more modest and increasing the base quality 

threshold beyond 30 has only a limited effect. 
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3.3A 
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3.3B 

 

Figure 3.3 (A, B). The effect of parameter choice. Each point on the graph 

represents the value obtained for one sample using a particular base quality 

threshold. Figure 3.3A represents the influence of parameter choice on sensitivity, 

and Figure 3.3B represents the influence of parameter choice on specificity. 

   

3.5.3 Coverage 

Figure 3.4 explores the effects of average coverage on sensitivity. As expected, 

sensitivity increases as the coverage increases. This reflects the fact that at low coverage 

finding evidence for a variant generally becomes more difficult, thus leading to a low 

sensitivity. With the parameters used such a loss began to be evident when the average 

coverage was below 40 fold.   
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Figure 3.4. Influence of average coverage on sensitivity. Each point on the graph 

represents the sensitivity value calculated for a particular sample at a particular 

target coverage. 

 

3.5.4 Microarray comparison 

As stated above, both sequence data and microarray data were available for 19 of the 

samples. Table 3.1 compares the parameter estimates using the genotyping microarray 

data (Fourth column) and two different sets of allele frequencies (Second and third 

column).  The values in the third column are derived from the genotyping results. 

Compared to microarrays both specificity and sensitivity estimates are slightly lower by 

the frequency method using the CEU population frequencies (Second column).  

One possible reason for this is that the estimates are distorted because the HapMap CEU 

allele frequencies do not match the allele frequencies in my sample. Indeed the 

difference is smaller when the allele frequencies used are derived from the genotyping 

results of the 19 samples (Third column), and the sensitivity is even slightly higher than 

when calculated by comparing to the microarray data (Fourth column). This suggests 

that the sensitivity estimates are influenced by the choice of frequency data and should 

therefore be considered with care.  
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It should also be mentioned that specificity estimates are in the order of 0.999. These 

estimates however are based only on a limited number of polymorphic sites (10165 

sites), suggesting that the ability to adequately assess changes in specificity will be 

limited. This is reflected in the correlation between the estimates obtained from 

microarrays and from population frequencies. While there is a good correlation between 

the estimates for the sensitivity (see Figure 3.5, R
2
=0.71, P=4x10

-50
), the correlation for 

specificity is rather poor although still significant (R
2
=0.39,P=7x10

-21
). 

 

 Estimated from 

 CEU frequencies
a
 Sample frequencies

b
 Microarray

c
 

Sensitivity 

(95% CI
d
) 

0.962 

(0.945-0.970) 

0.979 

(0.962-0.986) 

0.984 

(0.982-0.986) 

Specificity 

(95% CI) 

0.998 

(0.997-0.998) 

0.999 

(0.999-0.999) 

0.999 

(0.999-1.00) 

a
  Allele frequencies for the Hapmap CEU population  

b
  Allele frequencies determined from the all the samples using the microarray genotyping results. 

c
  Genotypes determined using the Illumina 660W chip 

d
: 95% confidence interval for the mean, determined by resampling. 

Table 3.1. Mean sensitivity and specificity estimates. Represented are the estimates 

for the specificity and sensitivity of the NovoAlign-Samtools pipeline.  
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Figure 3.5. Correlation between sensitivity estimates from microarray data and 

using CEU population frequencies. The points represent the values for different 

individuals and analysis pipelines. 

 

3.5.5 Influence of using different allele frequencies  

The method proposed here uses allele frequencies in the calculation of sensitivity and 

specificity. However, allele frequencies vary between populations and the ethnicity of 

the individuals who provided a sample may not always be known. Therefore, I explored 

the influence of using different frequencies on sensitivity and specificity by using allele 

frequencies from all 11 HapMap populations (Figure 3.6A and 3.6B).   

Figure 3.6 suggests that misspecification of population frequencies tends to lead to 

lower estimates of both sensitivity and specificity. However the lines connecting the 

values for the different pipelines calculated using different allele frequencies tend to be 

parallel. This indicates that the results are correlated (p<0.01 for all comparisons) 

suggesting that although the absolute values may vary, the order of the different 

pipelines will remain the same. 
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3.6A

 

3.6B 

 

 



50 
 

Figure 3.6 (A, B). Effect of reference population misspecification on specificity 

(3.6A) and sensitivity (3.6B). The x-axis represents the different HapMAp 

populations for which allele frequency data were available. CEU: Utah residents 

with Northern and Western European ancestry from the CEPH collection; TSI: 

Tuscan in Italy; MEX: Mexican ancestry in Los Angeles, California; GIH: 

Gujarati Indians in Houston, Texas; ASW: African ancestry in Southwest USA; 

MKK: Maasai in Kinyawa, Kenya; CHB: Han Chinese in Beijing, China; JPT: 

Japanese in Tokyo, Japan; CHD: Chinese in Metropolitan Denver, Colorado; 

LWK: Luhya in Webuye, Kenya; YRI: Yoruban in Ibadan, Nigeria. 

 

3.6 Discussion: 

The approach presented here estimates two parameters, sensitivity and specificity, from 

NGS variant calls. I illustrated some of its potential applications by comparing analysis 

pipelines, variant calling parameters and exploring the effects of differences in coverage. 

Since both sensitivity and specificity are influenced by various steps including sample 

preparation, the sequencing itself and the bioinformatic pipelines, the procedure could 

be used to assess the performance of a sequencing experiment globally and could 

complement other commonly used approaches such as the assessment of base call 

quality or of coverage metrics. The main advantage of the method presented here is that 

it does not require a reference technique, such as genotyping using microarrays.  

However, it does rely on the availability of appropriate allele frequencies.  

The use of allele frequencies has two consequences. The first is that compared to the 

situation where the presence or absence of variants is known, using a probability 

introduces a degree uncertainty that is reflected in a larger scatter of the estimates (see 

Table 3.1).  The second is that it forces one to decide which set of allele frequencies to 

use. The choice of the allele frequencies from a specific population or, if available, from 

a particular subpopulation, disregards the possibility that individuals may represent a 

mixture from different populations. This problem could be avoided using a more 

complicated approach that considers, for example, the probability of belonging to a 

certain population, or of carrying certain haplotypes and perhaps allowing these 

probabilities to differ for different regions of the genome. I demonstrated that the 

misspecification of the population frequencies will influence the specificity and 

sensitivity values. However, figure 3.6 suggests that if two procedures have 
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substantially different specificity or sensitivity values, the use of different allele 

frequencies will still tend to preserve the order of the different analysis pipelines. 

One very important issue is the location of the polymorphisms used. Here I chose those 

included in the regions targeted by the enrichment procedure. However, since the 

practical interest here is to detect variants likely to cause disease, it would perhaps be a 

better choice to use all the polymorphisms in coding or non-coding regions. Another 

issue surrounds the type of polymorphism included in the analysis. Here I chose the 

polymorphisms represented in the microarray. These polymorphisms represent a 

selection based on criteria that probably includes the likelihood of being efficiently 

typed using microarray technology. This will probably result in avoiding certain types 

of polymorphisms, such as indels, and polymorphisms in certain locations such as gene 

regions with extreme base compositions. It is possible that sequencing experiments are 

accurate, or inaccurate, in exactly the same regions and this would lead to a bias in the 

sensitivity and specificity values. However, the proposed method allows for a 

comparison of different types of polymorphisms and I showed its application to the 

identification of indels. As expected both specificity and sensitivity appear to be lower 

than the values for single nucleotide substitutions. Although allele frequencies for 

polymorphisms not included in microarrays may not be accurate, my results are 

consistent with published studies that show that indel detection is still a challenging 

issue (Albers et al., 2011; Bansal and Libiger, 2011). Albers et al. (2011) compared the 

false discovery rate of indel calls using Dindel, Varscan and SAMtools. Dindel 

achieved the lowest false discovery rate of 1.56%, while Varscan achieved the highest 

rate of false discoveries, 16.67%.  

Since the interest here was on the detection of rare variants, I was able to dichotomise 

the outcome by scoring at each position whether a variant was present or absent. This 

leads effortlessly into the determination of specificity and sensitivity. However more 

complicated scenarios are possible, such as assessing the calling of each of the three 

possible genotypes defined by a variant/reference allele combination at each position. 

Here, however, I chose the more simple approach.  

Studies frequently focus on sensitivity as oppose to specificity (Pattnaik et al., 2012), 

however specificity is also very important as it may help to assess the amount of 

validation work that is required, which is closely related to false positive rate. A 

specificity of 0.99 and a frequency of deviations from the reference sequence in the 
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order of 1 per 1000 sites would be expected to lead, on average, to approximately ten 

false to one true positive. Therefore, practically useful methods of variant detection 

should have specificities that are much higher than 0.99. Estimating such a parameter 

accurately will require examining a large number of sites. For example, simply counting 

false and true negatives, relying for example on microarray data would require at least 

10 650 variant positions to establish the difference between a method that has 

specificity of 0.999 compared to one with a specificity 0.9999 with 80% power. In the 

present study I relied on sites that are known to be polymorphic, however I could also 

include sites for which there are no reported variants and assume a low minor allele 

frequency for all of these sites. This would increase the number of sites used and 

improve the ability to estimate the specificity.     

Since this procedure is quite simple it would be possible to use it to optimise analysis 

parameters, by integrating it into, for example, a variant caller so that it maximises the 

sensitivity while not allowing specificity to drop below a certain threshold. Such a 

procedure would benefit from the fact that the order appears to be insensitive to the 

choice of population. This would allow for an estimation of the amount of validation 

work required and the likelihood that a change of interest can really be identified, and 

can guide the design of future experiments.  

In summary, I have developed a method to assess the performance of an entire exome 

NGS experiment. The major advantage of my method is that it does not require the use 

of a reference technique, but calculates sensitivity and specificity values using freely 

available frequency data from databases such as HapMap or the 1000 genomes. The 

proposed method is simple, and fast to implement but still produces sensitivity and 

specificity values comparable to those calculated using microarray data. Therefore, such 

a method could be simply used to inform the choice of analysis pipeline, analysis 

parameters or even of experimental protocol.   
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Chapter 4. Exome sequencing to identify the causative variants in 

three diseases showing transmission consistent with Mendelian 

inheritance 
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4.1 Aim 

In the work outlined in this chapter, next-generation sequencing was used to identify 

potentially causative variants in three pedigrees where disease segregates in a 

Mendelian fashion consistent with a monogenic cause. Whole exome sequencing was 

carried out using an Illumina Genome Analyser IIx for both affected and unaffected 

individuals. The NovoAlign aligner and Samtools variant caller were originally used to 

identify both single base substitutions and indels, however on completion of chapter 3 I 

identified the BWA-Dindel pipeline as being a better pipeline for identifying indels. 

Therefore this was used as an additional pipeline for indel identification in the three 

families.   

Various filtering steps were used to identify the most likely variant resulting in disease 

from amongst the many thousands of variants which were identified. I identified 

potentially disease causing variants in plausible candidate genes for disease in the 

pedigrees where cases presented with Dilated Cardiomyopathy and Hereditary 

Sclerosing Poikiloderma. There are various reasons why I was not able to identify any 

potentially disease causing variants in plausible candidate genes in the pedigree where 

cases presented with Atrioventricular Septal Defects, which will be discussed in this 

chapter. 

 

4.2 Introduction 

NGS methods have proved very successful in the search for the genetic causes of 

disease, particularly where disease follows a Mendelian inheritance pattern and appears 

to be monogenic (Ng et al., 2009; Ng et al., 2010b; Bamshad et al., 2011; Gilissen et al., 

2011). Although sequencing the entire genome is a feasible option (Gilissen et al., 

2011),  its uses are limited by the large capacity and cost requirements (Teer and 

Mullikin, 2010; Gilissen et al., 2011). Instead, exome sequencing is a more popular 

approach (Gilissen et al., 2011), because it is cheaper but still allows for the 

identification of variants within the coding portions of genes (Ng et al., 2009; Bamshad 

et al., 2011). 

Although exome sequencing does not assess the potential impact of non-coding variants 

(Bamshad et al., 2011), less than 1% of the identified variants in Mendelian disease 

have been found in non-coding regions (Ng et al., 2008). Furthermore, many of the non-
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synonymous variants which have been identified in coding regions have been shown to 

be deleterious (Kryukov et al., 2007; Stenson et al., 2009; Ng et al., 2010b; Bamshad et 

al., 2011; Kiezun et al., 2012), and the large effect of causal mutations in Mendelian 

diseases suggests that the variants are largely coding (Ng et al., 2010c).  

On the other hand, it is possible for the genetic variants causing some of these diseases 

to be present in the non-coding regions of the genome (Hirschhorn and Daly, 2005). For 

example, deep intronic substitutions in the CDKN2A have been shown to cause some 

types of melanoma (Harland et al., 2001), and in other cases, intronic substitution 

events in the SLC12A3 gene have been proposed to cause Gitelman’s Syndrome (Nozu 

et al., 2009). 

Despite its popularity, the majority of exome sequencing projects have proved 

unsuccessful in identifying the causative variants responsible for disease (Gilissen et al., 

2011; Zhi and Chen, 2012). Gillisen et al. (2011) suggest that only 50% of studies 

involving rare, well defined Mendelian conditions are able to identify the genetic causes. 

One of the major challenges of exome sequencing is how to distinguish the disease 

causing variants from the non damaging, rare or even unique variants also present 

within an individual (Ng et al., 2009; Ng et al., 2010c; Erlich et al., 2011; Stitziel et al., 

2011; Zhi and Chen, 2012). To this end various filtering methods have been developed 

to reduce the number of identified variants to encompass only those most likely to cause 

disease. The advantages and disadvantages of these methods will be discussed in more 

detail in the discussion section of this chapter. 

In this chapter I aimed to employ exome sequencing to identify the causative variants 

for three different diseases segregating in a Mendelian fashion consistent with a 

monogenic cause.  Sequence data was available for individuals from three pedigrees 

(Figures 4.2, 4.4, and 4.5). The affected individuals suffer from Dilated 

Cardiomyopathy (DCM), Atrioventricular Septal Defect (AVSD), and Hereditary 

Sclerosing Poikiloderma (HSP). Single base substitutions and indels were initially 

identified using the NovoAlign aligner and Samtools variant caller. However, the results 

obtained in chapter 3 indicated that the BWA aligner and Dindel variant caller would be 

more appropriate methods for indel identification. Therefore, the BWA-Dindel pipeline 

was employed as an additional indel calling pipeline. I include indel calls from both 

pipelines. 
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The identified variants were then filtered using methods commonly employed in the 

literature. After filtering I hoped to be able to identify potentially disease causing 

variants in plausible candidate genes of interest. Here I defined plausible candidate 

genes of interest as genes which appear interesting at first, based on current 

understanding of gene function and related diseases from databases such as OMIM. For 

example, potentially disease causing variants in genes that result in phenotypes similar 

to the ones in the present study. I will use this term throughout this chapter. For clarity 

the three different diseases will be introduced under their own subheadings below. 

 

4.2.1 Dilated cardiomyopathy 

Cardiomyopathies comprise a range of cardiac disorders affecting the heart muscle 

(Schonberger and Seidman, 2001; Towbin et al., 2006). They are categorised based on 

their anatomic and haemodynamic attributes (Schonberger and Seidman, 2001). The 

two major forms of cardiomyopathy are dilated cardiomyopathy (DCM) and 

hypertrophic cardiomyopathy (Parvari and Levitas, 2012). The affected individuals in 

this study suffer from DCM.  

DCM is the most common form of cardiomyopathy, making up more than 80% of all 

cases (Schonberger and Seidman, 2001; Luk et al., 2009). It results in the myocardial 

walls stretching and thinning which negatively affects ventricular function (Luk et al., 

2009). This diminished contractile function is one of the more serious haemodynamic 

features of the disease, and can lead to various complex, compensatory neurohumoral 

responses which later result in heart failure (Schonberger and Seidman, 2001). The 

clinical symptom of DCM is eventual heart failure often associated with arrhythmia and 

sudden death (Parvari and Levitas, 2012). 

The severity of symptoms and survival varies considerably between patients and 

diagnosis is often made using non-invasive cardiac imaging (Schonberger and Seidman, 

2001). Although the disease can manifest in early childhood, it is usually only identified 

later in life at which point it has often progressed to end-stage myocardial fibrosis 

(Schonberger and Seidman, 2001; Luk et al., 2009).   

Estimating the incidence and prevalence of individual conditions is difficult as the effect 

of disease may remain subclinical (Raju et al., 2011). A ten year study conducted in the 

USA estimated the incidence of DCM to be ~6 per 100000 people per year, with a 
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prevalence of ~36.5 per 100 000 people (Codd et al., 1989). Whereas the Paediatric 

Cardiomypathy Registry estimates the annual incidence of DCM to be 1.13 cases per 

100 000 people aged 18 years or younger (Parvari and Levitas, 2012). 

The underlying causes of DCM are varied, and include both environmental and genetic 

factors (Tsubata et al., 2000; Miyamoto et al., 2001; Schonberger and Seidman, 2001; 

Luk et al., 2009; Hazebroek et al., 2012). Some of the principal causes include viral 

myocarditis (usually occult and unable to be proven at the time of presentation with 

DCM), thyroid disease (reversible with therapy), immunological processes, toxins (such 

as alcohol and heavy metals), drugs (notably anticancer chemotherapy) and infiltrative 

processes (Schonberger and Seidman, 2001; Hazebroek et al., 2012). Nevertheless, the 

causes of up to 65% of cases remains unknown, a condition termed “idiopathic” DCM 

(Parvari and Levitas, 2012). 

Among these idiopathic cases, genetic causation is prominent. Familial forms of DCM, 

which are mostly monogenic, account for 25-35% of idiopathic DCM cases (Miyamoto 

et al., 2001; Towbin et al., 2006; Luk et al., 2009; McDermott et al., 2012). Although 

autosomal dominant transmission accounts for about 70% of inherited DCM cases 

(Tesson et al., 2000; Mahon et al., 2005; Hazebroek et al., 2012), three other modes of 

inheritance have also been identified, namely autosomal recessive, X-linked and 

mitochondrial inheritance (Luk et al., 2009; Hazebroek et al., 2012).  

The discovery of the genes responsible for DCM has proven difficult, largely due to the 

presence of both substantial aetiological and genetic heterogeneity (Mahon et al., 2005). 

Multiple genetic regions and genes have been shown to be involved (Tsubata et al., 

2000). Various methods have been used to identify these causative genes. These include 

using direct candidate gene sequencing in affected individuals (van der Zwaag et al., 

2012), association (Zarrouk Mahjoub et al., 2012) and linkage studies (Yoskovitz et al., 

2012), or through a combination of approaches such as sequencing and association 

methods (Herman et al., 2012).  

Dellefave & McNally (2010) provide an electron micrograph of a cardiomyocyte which 

describes specific intracellular regions and the genes in these regions which have been 

shown to cause DCM (Figure 4.1). In addition, Hershberger et al. (2010) and Parvari & 

Levitas (2012) both provide detailed lists of known genes responsible for DCM. Table 

4.1 is taken from Parvari & Levitas (2012), and describes all of the genes known to 

cause cardiomyopathies, in particular DCM. Most causative genes seem to encode for 
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cytoskeletal and sarcomeric proteins, thus affecting the structure of the muscle 

(Dellefave and McNally, 2010; Hershberger et al., 2010; Hazebroek et al., 2012; 

Parvari and Levitas, 2012).  

 

 

 

Figure 4.1. Intracellular regions and the genes from these regions that cause DCM. 

From Dellefave & McNally (2010).  
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Clinical type Inheritance Gene name (symbol) 

HDCM/DCM/RDCM AD Myosin heavy chain 7, (MYH7) 

HDCM/DCM/atrial septal defect type 

3 AD Myosin heavy chain 6, (MYH6) 

HDCM/DCM/RDCM/LVNC AD Troponin T2, cardiac (TNNT2) 

HDCM/DCM/LVNC AD Tropomyosin 1 (TPM1) 

HDCM/DCM AD Myosin binding protein 3, cardiac (MYBPC3) 

HDCM/DCM/RDCM AD, AR Troponin I3, cardiac (TNNI3) 

HDCM/DCM AD Actin alpha cardiac (ACTC1) 

HDCM/DCM AD/AR Titin (TTN) 

HDCM/DCM AD Troponin C1, cardiac (TNNC1) 

HDCM/DCM AD Cystein- and glycine-rich protein 3 (CSRP3) 

HDCM/DCM AD Titin cap (TCAP) 

HDCM/DCM AD Vinculin (VCL) 

HDCM/DCM AD Ankyrin repeat domain containing protein (ANKRD1) 

DCM/RDCM AD Desmin (DES) 

DCM AD Lamin A/C (LMNA) 

DCM AD Sarcoglycan-delta (SGCD) 

DCM AD Actinin alpha 2 (ACTN2) 

DCM/LVNC AD Lim domain binding 3 (LDB3) 

DCM AD Phospholamban (PLB) 

DCM AD Presenilin 1 (PSEN1) 

DCM AD Presenilin 2 (PSEN2) 

DCM AD ATP binding cassette C9 (ABCC9) 

DCM AD Sodium channel voltage-gated 5A (SCN5A) 

DCM/HDCM AD Muscle-restricted coiled-coil (MURC) 

DCM/HDCM AD Crystallin-alpha B (CRYAB) 

DCM AD Four and a half Lim domains 2 (FHL2) 

DCM AD Laminin alpha 4 (LAMA4) 

DCM AD Nebulette (NEBL) 

DCM/HDCM/RDCM AD Myopalladin (MYPN) 

DCM AD RNA-binding motif protein 20 (RBM20) 

HDCM/DCM AD Nexilin (NEXN) 

DCM AD Bcl2-associated athanogene 3 (BAG3) 

DCM XR Dystrophin (DMD) 

DCM XR Emerin (EMD) 

DCM/LVNC XR Tafazzin (TAZ) 

DCM XR Fukutin (FKTN) 

DCM/ARVC AR Desmoplakin (DSP) 

DCM AR Dolichol kinase (DOLK) 
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Continuation of table 4.1 

DCM AR GATA zinc finger domain-containing protein 1 (GATAD1) 

DCM/ARVC AR/AD Plakoglobin (JUP) 

DCM AR Flavoprotein (SDHA) 

 

Table 4.1. DCM causative genes. The table is from Parvari et al. (2012). AD: 

autosomal dominant; AR: autosomal recessive; ARVC: arrhythmogenic right 

ventricular cardiomyopathy; DCM: dilated cardiomyopathy; HDCM: 

hypertrophic cardiomyopathy; RDCM: restrictive cardiomyopathy; LVNC: left 

ventricular noncompaction; XR-X-linked recessive. 

 

Familial DCM risk is usually attributed to coding nucleotide variants that alter the 

amino acid sequence. For example, Tsubata et al. (2000) were able to identify a T451G 

change in the delta-sarcoglycan gene which was shared between affected individuals of 

a family suffering from DCM. This variant was not present in any of the unaffected 

individuals of the family, nor in a group of 200 controls. Mutations in sarcoglycans 

result in cytoskeletal abnormalities, and animal models with mutations in these genes 

frequently develop DCM (Towbin et al., 1999). In another study, the exons of 10 genes, 

half of which comprised sarcomere genes, were sequenced in a group of 264 patients 

suffering from DCM (Lakdawala et al., 2012). Forty clinically relevant variants were 

identified, none of which were present in a set of 200 healthy controls. This, together 

with the variants being found in genes known to cause DCM provides strong support for 

these variants influencing disease in these patients. 

The family I analysed is depicted in figure 4.2. The pedigree shows that cases of DCM 

occur throughout the family, and both male and female individuals are affected. The 

pattern of DCM in this pedigree is consistent with an autosomal dominant mode of 

inheritance with incomplete penetrance. Sequence data was available for three cousins 

(v-5, v-13, v-15) and an uncle (iv-6), all four of whom suffer from DCM.  

With regard to clinical presentation of the affected individuals, family member IV-6 had 

a heart transplant for DCM at the age of 54. Patient V-5 was diagnosed with DCM at 

~40 years of age, and later died (although the age and cause of death are unknown). 

Patient V-15 was diagnosed with DCM at ~28 years of age, and with diabetes at ~37 
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years of age. Patient V-15 also displayed renal problems, however these were secondary 

to an renal tract outflow obstruction in infancy and thought to be unrelated to DCM. 

Family screening was triggered by the occurrence of multiple DCM cases in the 

pedigree and during the course of this process patient V-13, who was asymptomatic, 

was shown on echocardiography to have an established global dilated cardiomyopathy. 
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Figure 4.2. DCM pedigree. Sequence data was available for individual samples v-5, v-13, v-15, IV-6 (Indicated by a red squares).
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4.2.2 Atrioventricular septal defects 

AVSD is a complex disorder, covering a range of congenital heart conditions of varying 

severities (Hartman et al., 2011). They involve incomplete septation of the 

atrioventricular valves and septa (Marino and Digilio, 2000; Craig, 2006; Miller et al., 

2010). The most severe form of AVSD, complete AVSD, occurs when both the atrial 

and ventricular septa do not develop properly, and when a single, common 

atrioventricular valve remains after development, as seen in figure 4.3A (Marino and 

Digilio, 2000; Robinson et al., 2003). In the less severe form, partial AVSD, there is a 

deficiency of the atrial septum where there are separate right and left atrioventricular 

openings that do not close, figure 4.3B (Omeri et al., 1965; Robinson et al., 2003; Craig, 

2006). Although complete AVSDs are detected at birth, children with the less severe 

forms may be asymptomatic so that detection occurs only at an older age (Robinson et 

al., 2003; Minich et al., 2010).  

 

 

 

Figure 4.3 (A,B). Diagrammatic representation of AVSD.  4.3A = Complete AVSD. 

4.3B = Partial AVSD. 
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AVSD’s account for ~5-7% of all congenital heart defects with an incidence of ~0.24-

0.31 per 1000 births per year, and a prevalence of ~3.5-4.1 per 10 000 people (Craig, 

2006; Reller et al., 2008; Hartman et al., 2011). They can occur as part of other 

recognised syndromes or as a single identifiable condition (Marino and Digilio, 2000; 

Robinson et al., 2003; Hartman et al., 2011). However, about 85% of cases are 

associated with other syndromes (Marino and Digilio, 2000). For example, AVSD is 

common in children with Down’s syndrome, with the complete form affecting between 

17 - 50% of them (Marino and Digilio, 2000; Craig, 2006). Additionally, AVSD has 

been shown to be associated with the 3p-syndrome, a rare disease resulting from a 

deletion in chromosome 3, where it affects about a third of all cases (Green et al., 2000).  

As well as occurring as part of other identifiable syndromes (Sheffield et al., 1997; 

Robinson et al., 2003), there are some reported families in which multiple affected 

individuals occur with no other syndromic features (Wilson et al., 1993; Kumar et al., 

1994; Sheffield et al., 1997). This indicates a pattern consistent with autosomal 

dominant inheritance and incomplete penetrance (Marino and Digilio, 2000; Robinson 

et al., 2003; Craig, 2006) in those families.  

Various studies have been conducted in an attempt to identify the genes responsible for 

this disease. For example, a linkage study was performed on a large family containing 

14 affected individuals (Sheffield et al., 1997). Although the study failed to identify the 

particular genes responsible, a linkage region on chromosome 1 was identified. A 

further study by Robinson et al. (2003) analysed 50 unrelated individuals displaying full 

or partial AVSD to test for an association between CRELD1 mutations and disease. Ten 

coding exons of CRELD1 were sequenced in all the cases and they were able to identify 

three single base variants which were not identified in at least 100 controls and 

concluded that these represent disease associated variants. Also, the strong association 

of AVSD with Down Syndrome indicates causative genes on chromosome 21 (Locke et 

al., 2010), and Trisomy 18 has also been implicated in some AVSD cases (Digilio et al., 

1999).  

The pedigree I analysed is shown in figure 4.4 and contains 31 individuals, 10 of whom 

have AVSD. Sequence data was available for four of the family members (samples ii-5, 

iii-22, iv-30, iv-36). The occurrence of AVSD in the pedigree is consistent with an 

autosomal dominant mode of inheritance with incomplete penetrance (Wilson et al., 

1993). As AVSD’s occur predominantly as part of other syndromes, non-syndromic 
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Mendelian families such as these provide a very useful means of identifying possible 

causative genes and in understanding the disease further. The clinical findings for each 

member of the family are described in detail in the original paper by Wilson et al. 

(1993). Below, I will provide a brief description of the individuals analysed in the 

present study (As in Wilson et al. 1993).    

Individual iv-30 was born with a complete AVSD with an aortic shelf coarctation.  The 

aortic defect was treated using balloon dilation, and the AVSD surgically repaired. 

Facial features suggested the patient did not suffer from Down syndrome, and no other 

chromosomal abnormalities could be identified using high-resolution chromosome 

analysis. Although displaying no clinical evidence of AVSD, due to family history, 

individual ii-5 was described as an obligate carrier. This individual had three sons, none 

of which displayed any clinical symptoms of AVSD, one of which (iii-18), however, 

had a further two fully affected children. Individual iii-22, the son of obligate carrier ii-8, 

was affected and had to undergo surgery to repair the AVSD. Finally, individual iv-36, 

the son of obligate carrier ii-18, was born with AVSD, which was also repaired. This 

individual also had two brothers, one affected and one unaffected. 

Wilson et al. (1993) performed a linkage study on this pedigree using a series of 

microsatellite polymorphisms along chromosome 21. Due to AVSDs being the 

predominant heart defect in children with Down Syndrome, they focused on the region 

of trisomy 21, and were able to exclude loci from this region as the cause of AVSD in 

this family.  
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Figure 4.4. AVSD pedigree. Sequence data was available for individuals samples ii-5, iii-22, iv-30, iv-36 (Indicated by red squares). 
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4.2.3 Hereditary sclerosing poikiloderma 

Hereditary sclerosing poikiloderma (HSP) is a very rare disease, and to my knowledge 

only 12 other cases have been described in the literature, (Lee et al., 2012). In addition, 

I am aware of one other case from collaborators in Nantes, France, under Dr. Sébastien 

Küry, DVM at the Institut de Biologie (Service de Génétique Médicale, Laboratoire de 

génétique moléculaire). Although this case has not yet been published, Dr. Küry did 

provide sequence data for the unaffected parents and the affected offspring, which I 

analysed in addition to the sequence data generated in-house on the South African 

family described below.  

HSP was first described in seven individuals from two unrelated families as a hereditary 

disorder displaying distinct features (Weary et al., 1969) including widespread 

poikiloderma (A skin condition which can present with hyper/hypo-pigmentation and 

sclerosis), sclerosis of the palms and soles, linear or reticular hyperkeratotic and 

sclerotic bands in various regions, clubbing of the fingers, and calcinosis of tissues 

(Weary et al., 1969; Lee et al., 2012). Lee et al. (2012) describe the widespread 

poikiloderma and sclerotic bands as being the most important features in diagnosing the 

disease. As symptoms are not present at birth, detection only occurs in early childhood 

with the onset of progressive poikiloderma (Grau Salvat et al., 1999). 

Studies have noted that individuals affected with HSP and related family members 

sometimes also display cardiovascular abnormalities, such as heart valve defects and 

ventricular hypertrophy, thus also implicating cardiovascular disease as part of the 

phenotypic spectrum in HSP (Weary et al., 1969; Grau Salvat et al., 1999; Lee et al., 

2012). Most affected families indicate that HSP is consistent with an autosomal 

dominant form of inheritance with incomplete penetrance (Weary et al., 1969; Khumalo 

et al., 2006; Lee et al., 2012). This appears to be the case in the pedigree I analysed, 

figure 4.5. The causative genetic defect for HSP has not yet been identified. 

Five members of the pedigree I analysed suffer from HSP. A full clinical report on each 

patient is given in Khumalo et al. (2006). A description for the three family members 

for which sequence data were available follows. The family members included two 

affected siblings (ii-4 and ii-5) and an unaffected mother (i-3). During childhood 

individual ii-5 displayed heat intolerance and skin lesions including hyper- and hypo-

pigmentation and epidermal atrophy, and by age 9 had developed Achilles tendon 

contractures. The tendon contractures were surgically treated at age 14. By adulthood 
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she had also developed telangiectasias, a mottled skin, epidermal atrophy around the 

face, fine to no body hair, and tendon abnormalities. Her arms and legs had virtually no 

hair and mottled skin pigmentation. She had atrophy of both thenar and hypothenar 

eminences and was unable to fully extend her fingers. She also suffered from 

hypohidrosis, which together with the sparse hair, suggested ectodermal dysplasia. Her 

brother, individual ii-4, displayed similar skin and limb characteristics, as well as heat 

intolerance, but suffers from no tendon abnormalities (Khumalo et al., 2006). He 

suffered a slight cardiomegaly and left ventricular hypertrophy.  

Two other affected patients, the father (i-2) and an a half brother (ii-3), were said to 

have suffered from similar conditions. However, both had died as a result of pulmonary 

fibrosis prior to the present study commencing and no sequence data were available for 

them (Khumalo et al., 2006).  However, collaborators in South Africa were able to 

extract DNA from the deceased brother using a paraffin embedded liver sample.  
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Figure 4.5. HSP pedigree. Sequence data was available for individuals samples ii-4, ii-5, and i-3 (Indicated by red squares). 
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 4.3 Materials and Methods 

4.3.1 Samples and sequencing 

DNA was extracted from blood using standard methods. This was done in the 

laboratory at The University of Newcastle by Thahira Rahman and Rafiqul Hussain, and 

described in chapter 2. Targeted NGS sequencing was performed as described in 

chapter 2. In the current study, target enrichment was carried out using the SureSelect 

Agilent 38Mb Human All Exon targeting kit (http://www.genomics.agilent.com).   

  

4.3.2 Sequence analysis  

GERALD (CASAVA-1.6.0) was used as base caller and to generate the Fastq files. 

Read quality was assessed using average base quality, calculated using the NGS QC 

Toolkit v2.2.3 (Patel and Jain, 2012). 

The NovoAlign aligner v2.07.13 (http://www.novocraft.com) was used to map the 

sequences to the Human Genome (Build 37) and the Samtools/bcftools v0.1.17 (Li et al., 

2009) package was originally used to identify both single base substitution and indel 

variants. However, it was later decided that the BWA-Dindel pipeline would be a better 

pipeline for identifying indels (see chapter 3). Therefore, BWA-Dindel was also used as 

a method to identify indels. I will present indel results from both pipelines. Aside from 

the selection of only unique alignments in NovoAlign, default alignment and variant 

calling criteria were used in all programmes. 

Variants were filtered and annotated using custom written perl scripts. MutationTaster 

v20100416 (Schwarz et al., 2010) and wAnnovar v2011-11-20 (Wang et al., 2010b), 

were used to annotate variants and to assess potential variant pathogenicity.  

 

4.3.3 Variant filtering 

There is a risk that variant filtering methods could inadvertently remove the disease 

causing variant. Therefore, in cases where a potentially disease causing variant in a 

plausible candidate gene of interest was not identified I implemented an additional, less 

stringent set of filtering criteria, filtering set B (Figure 4.6). Both sets are described in 

detail below.  

http://www.genomics.agilent.com/
http://www.novocraft.com/
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The first step of filtering set A (Stringent filtering) involved the selection of only the on-

target variants using the Agilent Exome target positions. Indel variants were allowed to 

lie within 500 base pairs of the target positions, while single base substitutions had to be 

completely located within the target regions. All homozygous variants were then 

removed and only those variants present in all of the affected individuals were selected. 

Variants occurring within the Exome Variant Server (EVS) and 1000 Genomes 

databases at a frequency exceeding 1% were then also removed. A control list of 

variants was also used as a filter to remove possible errors. The control list contains 

single base substitutions from 119 unrelated exomes, and indel variants from 114 

unrelated exomes. All exome data comprising the control lists had been sequenced in-

house using the Agilent 50Mb Whole Exome Targeting kit and the Illumina Genome 

Analyser IIx. The list was compiled by Dr. Helen Griffin (2012, pers. comm). All 

variants present in the control list at a frequency of more than 1% were removed. Only 

coding, non-synonymous and splice variants were then selected for analysis with 

MutationTaster. 

The first step of filtering set B (Less stringent) involved the selection of only the on-

target variants from the Agilent Exome target positions. Indel variants were allowed to 

lie within 500 base pairs of the target positions, while single base substitutions had to be 

completely located within the bait regions. The second filtering step involved selecting 

only heterozygous variants present in all of the affected individuals. All variants 

occurring in the EVS and 1000 Genomes databases were then removed, as well as those 

occurring within the control list, at a frequency exceeding 1%. As well as coding, non-

synonymous and splice variants, filtering set B also included non-coding and 

synonymous variants for assessment using MutationTaster, making it less stringent than 

filtering set A (See figure 4.7). 

 

4.3.4 Variant validations 

Variants were validated using Sanger sequencing, in labs at The University of 

Newcastle by Dr. Elise Glen. 
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Figure 4.6. Filtering steps adopted in both filtering set A and filtering Set B. 

 

4.4 Results 

The results section is divided into two parts. The first provides an overview of the 

sequencing and variant call results, including details on the amount of sequence data 

that was generated, the sequence and alignment quality, sensitivity and specificity 

estimates, and the effect of the filtering criteria. The second part provides more detailed 

results on the potentially disease causing variants that were identified in each family. 
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4.4.1 Sequence and variant call overview 

Between ~107x10
6
 and ~160x10

6
 paired end reads were generated across all of the 

samples. A mean target base coverage of between 102 and 191 was achieved across all 

samples and over 97% of the target bases were covered at least 1 fold, and over 85% 

were covered at least 20 fold (Table 4.2). Where I looked, the base quality was above 35 

for at least the first 40 bases of each read, only dropping down to ~30 towards the ends 

of the reads. 

 

 Samples 

Mean target 

coverage 

%bases > 

20fold 

%bases > 

10fold 

%bases > 

5fold 

%bases > 

1fold 

DCM Patient 1 - Affected 177.63 90.03 94.3 96.46 98.37 

DCM Patient 2 - Affected 177.63  86.73 91.84  94.83  97.99  

DCM Patient 3 - Affected 177.63 86.41  91.48  94.52  97.91  

DCM Patient 4 - Affected 177.63 87.07 92.8 95.74 98.28 

            

AVSD Patient 1 - Affected 121.47 85.29 91.37 94.61 97.3 

AVSD Patient 2 - Affected 116.83 86.54 92.63 95.65 98.17 

AVSD Patient 3 - Affected 144.07 86.19 92.19 95.41 98.18 

AVSD Patient 4 - Affected 150.89 90.37 94.61 96.64 98.29 

            

HSP Patient 1 - Affected 191.62 86.95 91.98 94.89 97.73 

HSP Patient 2 - Affected 177.63 90.04 94.3 96.46 98.37 

HSP Patient 3 - Unaffected 179.88 88.66 93.44 95.9 98.15 

 

Table 4.2. Sample summary statistics. The table describes the mean target base 

coverage and percentage target bases covered 20 fold and above, 10 fold and above, 

5 fold and above, and 1 fold and above. Values for each patient of each pedigree 

are given.  

 

More than 93% of the variants could be removed by selecting only the on-target 

variants, those variants shared amongst affected individuals, and by removing the 
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homozygous changes (Appendix figures 4.1 – 4.3). Therefore, a very large proportion 

of the variants could be removed by using only the first three filtering steps. 

 

4.4.2 Dilated cardiomyopathy family 

In excess of 200000 variants were identified across all the samples from this family, of 

which at least 88% comprised single base substitutions (Figures 4.7). After applying 

filtering set A, 4 variants remained (Table 4.3). Only the HYDIN variant was predicted 

as disease causing by MutationTaster. However, this variant was also observed in all 

samples from the AVSD and the HSP pedigrees, and is therefore not a good candidate 

for disease in this family. 

The filtering criteria were then relaxed (Filtering set B), after which 11 variants 

remained (Table 4.3). Three were predicted as disease causing by MutationTaster, the 

HYDIN mutation, the SLC38A10 mutation, and a splice site mutation in the 

ANKRD20A1 (chr9, 67927076). Out of these three only the ANKRD20A1 variant is not 

a recognised SNP, and ANKRD20A1 is related to ANKRD1 which can cause DCM. 

 

 

Figure 4.7. Number of unfiltered single base substitutions and indels identified 

using NovoAlign-Samtools for all patients in the DCM pedigree. 
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Chrom.  Position Reference Indel Gene EVS 1000G dbSNP135 

Control 

list 

Filter 

set 

chr1 87045902 ACCTAC - CLCA4 0 0 rs77067122 0 B 

chr9 38397083 G A ALDH1B1 0.005856 0.0023 rs41278335 0 B 

chr9 67927076 G A ANKRD20A1 0 0   0 B 

chr9 67968476 C T 

ANKRD20A1, 

ANKRD20A3 0 0 rs4055530 0 

A,B 

chr10 46999607 - 

AGGTG 

GGGG GPRIN2 0 0 rs58801928 0 

B 

chr10 126463282 T C METTL10 0.000197 0 rs139315006 0 A,B 

chr11 17352482 CAA - NUCB2 0 0 rs72423941 0 B 

chr11 56467881 T C 

OR9G1, 

OR9G9 0 0 rs73474900 0 

B 

chr11 56468212 G A 

OR9G1, 

OR9G9 0 0 rs591369 0 

A,B 

chr16 70896017 A - HYDIN 0 0 rs57797337 0 A, B 

chr17 79219505 TGA - SLC38A10 0 0 rs3833102 0 B 

 

Table 4.3. Variants shared between all affecteds which passed the filtering steps in 

the DCM pedigree. Columns titled EVS, 1000G, Control list give the variant allele 

frequency as listed in the exome server project (5400), 1000 genomes, and the 

control list respectively. All positions based on HG19 reference. 

Using the BWA-Dindel pipeline for indel identification, I was unable to identify any 

indels which passed either filtering set A (Stringent) or filtering set B (Less stringent). 

 

4.4.3 Atrioventricular septal defect family 

In excess of 170000 variants were identified across all the samples of this family, of 

which at least 88% were single base substitutions (Figure 4.8). After stringent filtering 

(Filtering set A), only the HYDIN variant was described by MutationTaster as 

potentially disease causing (Table 4.4). However, this variant was also identified in all 

the samples from both the DCM and HSP pedigree. 
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Therefore, the relaxed set of filtering criteria was applied to the data (Filtering set B), 

however this resulted in only one additional variant being identified in the OR9G1 gene 

(Table 4.4), which is a synonymous change and not predicted as disease causing by 

MutationTaster.  

 

Figure 4.8. Number of unfiltered single base substitutions and indels identified 

using NovoAlign-Samtools for all patients in the AVSD pedigree. 

Chr. Position Reference Indel Gene EVS 1000G dbSNP135 

Control 

list 

Filter 

set 

chr6 30558478 - A ABCF1 0 0 rs4148252 0 A,B 

chr11 56467881 T C OR9G1,OR9G9 0 0 rs73474900 0 B 

chr11 56468212 G A OR9G1,OR9G9 0 0 rs591369 0 A,B 

chr16 70896017 A - HYDIN 0 0 rs57797337 0 A,B 

 

Table 4.4. Variants shared between all affecteds which passed the less stringent 

filtering steps in the AVSD pedigree. Columns titled EVS, 1000G, Control list give 

the variant allele frequency as listed in the exome server project (5400), 1000 

genomes, and the control list respectively. All positions based on HG19 reference. 
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Using the BWA-Dindel pipeline, 5 indels were predicted as disease causing (Table 4.5). 

The same 5 were identified and predicted as disease causing using both filtering set A 

(Stringent), and filtering set B (Less stringent). None were in plausible candidate genes. 

Chromosome Position Reference Indel Gene EVS 1000G dbSNP135 

Control 

list 

chr6 29912029 G - HLA-A 0 0 rs149455102 0 

chr16 70896016 A - HYDIN 0 0 rs11337008 0 

chr16 81242149 TT - PKD1L2 0 0 rs150289691 0 

chr17 21319651 GAG - KCNJ12 0 0 rs112163749 0 

chr22 38120176 CCT - TRIOBP 0 0 rs146565844 0 

 

Table 4.5. Variants shared between all affecteds identified using the BWA-Dindel 

pipeline and which passed both filtering sets. All were predicted as disease causing 

by MutationTaster. Columns titled EVS, 1000G, Control list give the variant allele 

frequency as listed in the exome server project (5400), 1000 genomes, and the 

control list respectively. All positions based on HG19 reference. 

 

4.4.4 Hereditary Sclerosing Poikioderma family 

In excess of 88000 variants were identified for all of the samples from this family, 

comprising at least 88% single base substitutions (Figure 4.9). Using the stringent set of 

filtering criteria (Filtering set A) I was able to identify 56 variants (Table 4.6), of these 

30 were predicted as potentially disease causing by MutationTaster (Table 4.7). Of 

particular interest are the variants in the BLK and ALOXE3 genes, as previous studies 

indicate that changes to these two genes result in skin disorders presenting with 

keratosis and icthyosis (Starfield et al., 1997; Appel et al., 2002; Jobard et al., 2002).  

However, both have been observed in the EVS and 1000 Genomes data, substantially 

reducing their candidacy for causing HSP.   

Collaborators in Nantes provided exome sequencing data on a trio family consisting of 

one affected offspring with HSP with a phenotype very similar to that described by 

Khumalo et al. 2006 (the family sequenced in-house).  In this family, which was 

simplex, a strategy involving searching for de novo variants in the affected offspring 

was followed.  This process identified a novel, non-synonymous variant in the 
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FAM111B gene (c.1789A>G) which is unreported in the dbSNP, 1000 Genomes or 

EVS databases. I also identified a non-synonymous variant in this gene (c.1771T>G; 

Table 4.6), which was present in both affected siblings, but not in the unaffected mother. 

The variant I identified within the FAM111B gene has been validated, alters the amino 

acid, and is not located in either the dbSNP135 or 1000 genomes databases. Also 

FAM111B was validated in the affected, deceased brother using DNA extracted from a 

paraffin embedded liver sample. 

I reanalysed their sequencing data using my pipeline and after stringent filtering were 

able to identify 101 de novo variants, including the FAM111B variant (Table 4.8). In 

addition to the FAM111B, two additional genes were shared between the two pedigrees 

(Table 4.9). Of these, the variants in the CNTNAP3B present in my sample and my 

collaborators’ patient are known SNPs, rs62558062 and rs3739621 respectively. 

However, these are possibly very rare SNPs as they are not present in the EVS, or 1000 

genomes databases, or in the control list. 

FAM111B is a gene of unknown function which to date has not been implicated in any 

human disease. Expression analysis, performed by Dr. Elise Glen, showed that the gene 

is expressed in skin fibroblasts. 
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Figure 4.9. Unfiltered single base substitutions and indels identified using 

NovoAlign-Samtools for all patients in the HSP pedigree. 
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Chr. Position Reference Indel Gene EVS 1000G dbSNP135 Control list 

chr2 1457549 G C TPO 0 0   0 

chr2 17692189 C T RAD51AP2 0.001258 0.0009 rs183882477 0 

chr2 24929631 A G NCOA1 0 0   0 

chr2 242169660 C T HDLBP 0 0   0 

chr3 19479731 G A KCNH8 0.001208 0.0014 rs138531032 0 

chr3 45942584 C T CCR9 0.001301 0.0009 rs139107036 0.003521127 

chr4 8416586 T G ACOX3 0.007436 0.01 rs73211315 0.007042254 

chr5 56778305 A G ACTBL2 0.003346 0.0005 rs148214432 0.003521127 

chr5 169446042 G A DOCK2 0.000186 0 rs149008494 0 

chr6 90422360 C T MDN1 0.003718 0.0009 rs62417304 0.003521127 

chr6 126210797 G A NCOA7 0.004467 0.0018 rs35223550 0 

chr7 26224760 G A NFE2L3 0.003811 0.0037 rs148159120 0.007042254 

chr7 120965470 - CCCA WNT16 0 0 rs55710688 0 

chr8 11412934 G A BLK 0.003625 0.0009 rs141865425 0.007042254 

chr8 20036702 C T SLC18A1 0.001115 0 rs17215808 0 

chr8 30916058 A G WRN 0.00316 0.0014 rs34477820 0.003521127 

chr8 33361016 C T TTI2 0.001208 0 rs150984360 0 

chr9 20995555 C T FOCAD 0.001859 0.0014 rs145021526 0 

chr9 33953294 G A UBAP2 0.001022 0.0009 rs150275904 0.003521127 

chr9 43685298 G T CNTNAP3B 0 0 rs62558062 0 

chr9 125391777 - A OR1B1 0 0 rs11421222 0 

chr10 50732139 C T ERCC6 0.009481 0.01 rs4253047 0.003521127 

chr10 51768664 G T AGAP6 0 0   0 

chr11 4389407 G - OR52B4 0 0 rs11310407 0 

chr11 58893431 T G FAM111B 0 0   0 

chr11 62381864 G A ROM1 0 0   0 

chr11 63487475 G C RTN3 0.0066 0.0023 rs7936660 0.003521127 

chr11 66360021 C T CCDC87 0.007157 0.0046 rs1110707 0.003521127 

chr11 66468736 C T SPTBN2 0.000093 0   0 

chr12 4737404 C T AKAP3 0.005298 0.0018 rs71579261 0 

chr13 75887003 T C TBC1D4 0.00197 0.01 rs149821147 0 

chr13 96511850 A G UGGT2 0.007639 0.01 rs9525072 0.007042254 

chr16 14028081 C T ERCC4 0.004276 0.0032 rs1799802 0 

chr16 20335264 C T GP2 0.003253 0.0032 rs145297751 0 

chr16 55844871 T C CES1 0.001394 0 rs140704082 0.003521127 

chr16 56871605 G A NUP93 0 0   0 

chr16 67000764 C T CES3 0 0   0 

chr16 71318184 C G FTSJD1 0 0   0 

chr16 85697023 G A KIAA0182 0.000651 0 rs146762745 0 
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Table 4.6 Continued 

chr17 3594281 G - P2RX5 0 0 rs3215407 0 

chr17 7224519 T A NEURL4 0.005058 0.0037 rs145900596 0 

chr17 8006708 G A ALOXE3 0.000558 0.0009 rs147149459 0 

chr17 8195873 C T SLC25A35 0.000279 0 rs146737646 0 

chr17 10322333 C G MYH8 0.003067 0 rs146732664 0 

chr17 10409243 G A MYH1 0.003067 0.0005 rs142560385 0 

chr17 11572991 T G DNAH9 0.000093 0 rs142009409 0 

chr17 46620525 G C HOXB2 0.000372 0   0 

chr18 12329644 G A AFG3L2 0.001208 0.0018 rs117182113 0 

chr18 23619302 A T SS18 0 0   0 

chr19 6754659 A T SH2D3A 0 0   0 

chr19 21132126 G A ZNF85 0.00084 0.0014 rs140775014 0 

chr19 21477325 A T ZNF708 0.002231 0.0014 rs77583547 0 

chr19 52004794 - C SIGLEC12 0 0 rs67024588 0 

chr19 52004795 - T SIGLEC12 0 0   0 

chr22 41616779 G A L3MBTL2 0 0   0 

chr22 45198034 C T 

ARHGAP8, 

0.006507 0.01 rs41278883 0 PRR5-

ARHGAP8 

 

Table 4.6. Variants which passed the stringent filtering steps in the HSP pedigree. 

Columns titled EVS, 1000G, Control list give the variant allele frequency as listed 

in the exome server project (5400), 1000 genomes, and the control list respectively. 

All positions based on HG19 reference. 
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Chr. Position Reference Indel Gene 

chr1 150199051 TTCCTC - ANP32E 

chr2 242169660 C T HDLBP 

chr3 19479731 G A KCNH8 

chr3 45942584 C T CCR9 

chr5 56778305 A G ACTBL2 

chr6 126210797 G A NCOA7 

chr7 26224760 G A NFE2L3 

chr8 11412934 G A BLK 

chr8 20036702 C T SLC18A1 

chr9 20995555 C T KIAA1797 

chr9 33953294 G A UBAP2 

chr9 125391777 - A OR1B1 

chr10 51768664 G T AGAP6 

chr11 4389407 G - OR52B4 

chr13 75887003 T C TBC1D4 

chr13 96511850 A G UGGT2 

chr15 71276488 AAC - LRRC49 

chr16 10524660 GAC - ATF7IP2 

chr16 14028081 C T ERCC4 

chr16 56871605 G A NUP93 

chr16 71318184 C G FTSJD1 

chr17 3594281 G - P2RX5 

chr17 8006708 G A ALOXE3 

chr17 10409243 G A MYH1 

chr17 46620525 G C HOXB2 

chr18 12329644 G A AFG3L2 

chr18 23619302 A T SS18 

chr19 30500143 TGA - URI1 

chr22 41616779 G A L3MBTL2 

chr22 45198034 C T 
PRR5-

ARHGAP8 

 

Table 4.7. Variants which passed the strict filtering set and were identified as 

potentially disease causing by MutationTaster in the HSP pedigree. All positions 

based on HG19 reference. 
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Chr. Position Reference Indel Gene EVS 1000G dbSNP135 
Control 

list 

chr1 2126139 C G C1orf86 0 0 rs6662296 0 

chr1 2433578 C A PLCH2 0 0   0 

chr1 108152557 G T VAV3 0.001766 0.0014 rs138334746 0.002092 

chr1 117158857 C T IGSF3 0 0   0.002092 

chr1 12907408 T A 
HNRNPCL1, 

0.000651 0 rs146075045 0.008368 
LOC649330 

chr1 149902766 G A MTMR11 0 0   0 

chr1 156438602 T C MEF2D 0 0   0 

chr1 161514691 A T FCGR3A 0 0   0 

chr1 230561391 C A PGBD5 0 0   0 

chr1 247615264 G - OR2B11 0 0   0 

chr2 74466662 A G SLC4A5 0 0   0 

chr2 109098822 T C GCC2 0 0   0 

chr2 236761415 - GGGC AGAP1 0 0   0 

chr2 240029799 T G HDAC4 0 0   0 

chr3 49329992 G T USP4 0 0   0 

chr3 73673586 GC - PDZRN3 0 0   0 

chr4 159590833 C T C4orf46 0 0   0 

chr5 7820771 T C ADCY2 0 0   0 

chr5 139422562 C G NRG2 0 0   0 

chr5 140604659 G A PCDHB14 0 0   0 

chr6 26444248 T A BTN3A3 0 0   0 

chr6 29911119 G C HLA-A 0 0 rs3173419 0.006276 

chr7 2353998 G T SNX8 0 0   0 

chr7 2552898 - GTGG LFNG 0 0   0 

chr7 48349604 C G ABCA13 0 0   0 

chr7 51098567 GTCT - COBL 0 0   0 

chr7 73249193 - 
TTCCA 

WBSCR27 0 0 
  

0 
CAGGCG 

chr7 73249197 - 
TCAGG 

WBSCR27 0 0 
  

0 
CGGTCC 

chr7 95926236 C T SLC25A13 0 0   0 

chr7 149506211 - G SSPO 0 0   0 

chr7 151684361 C A GALNTL5 0 0   0 

chr7 153750014 G A DPP6 0 0 rs2240820 0 

chr8 22436870 C A PDLIM2 0 0   0 

chr8 25279148 G A GNRH1 0 0   0 
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Table 4.8 continued 

chr8 52732981 C G PDCMTD1 0 0   0 

chr9 21228151 G C IFNA17 0 0   0 

chr9 33558121 G T ANKRD18B 0 0   0 

chr9 33796703 C G PRSS3 0 0   0 

chr9 43822704 G A CNTNAP3B 0 0 rs3739621 0 

chr9 139964853 G C SAPCD2 0 0   0 

chr10 51748530 - C AGAP6 0 0   0 

chr10 51827896 C T FAM21A 0 0 rs11552619 0 

chr10 74790045 G A P4HA1 0 0   0 

chr10 81272467 A T EIF5AL1 0 0   0 

chr10 121196274 G T GRK5 0 0   0 

chr10 125780764 GT GGGT CHST15 0 0   0 

chr10 126312137 C T FAM53B 0.000093 0   0 

chr11 1078654 G T MUC2 0 0   0 

chr11 32119977 C A RCN1 0 0   0 

chr11 46342260 - T CREB3L1 0 0   0 

chr11 49974777 C T OR4C13 0 0   0 

chr11 58893449 A G FAM111B 0 0   0 

chr11 64669850 C G ATG2A 0.000469 0 rs149707582 0 

chr12 10167883 C T CLEC12B 0 0   0 

chr12 52629122 C T KRT7 0 0   0 

chr12 56094151 G A ITGA7 0 0   0 

chr12 117977558 C - KSR2 0 0   0 

chr12 132633381 T C NOC4L 0 0   0 

chr13 28942761 G C FLT1 0 0   0 

chr13 52650273 C T NEK5 0.000558 0 rs139136964 0.002092 

chr13 78272278 - C SLAIN1 0 0 rs71102772 0 

chr14 93176029 C A LGMN 0 0   0 

chr15 31521516 T - LOC283710 0 0   0 

chr15 35086927 G A ACTC1 0 0   0 

chr15 40545052 G A C15orf56 0 0   0 

chr15 75131978 C T ULK3 0.000207 0   0 

chr15 75981901 C T CSPG4 0 0   0 

chr16 2159179 G A PKD1 0 0   0 

chr16 15112733 G C PDXDC1 0 0   0 

chr16 15489840 C A MPV17L 0 0   0 

chr16 88677735 G T ZC3H18 0 0   0 

chr16 88772985 C A CTU2 0 0   0 
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Table 4.8 continued 

chr17 7734052 C T DNAH2 0 0   0 

chr17 34499245 G C TBC1D3B 0.0051 0   0.004184 

chr17 39296135 G A KRTAP4-6 0 0.0037 rs28405099 0 

chr17 40336172 TC - HCRT 0 0   0 

chr17 44626083 C A LRRC37A2 0 0   0 

chr17 61660896 T - DCAF7 0 0   0 

chr18 72997837 A C TSHZ1 0 0   0 

chr19 5610086 C A SAFB2 0 0   0 

chr19 16582756 T C EPS15L1 0 0   0 

chr19 33355209 T C SLC7A9 0 0   0 

chr19 35504178 C A GRAMD1A 0 0   0 

chr19 40421674 G T FCGBP 0 0   0 

chr19 41060188 G T SPTBN4 0 0   0 

chr19 43411160 G C PSG6 0.000093 0 rs140788501 0 

chr19 50040423 C A RCN3 0.000279 0.0005 rs142564622 0 

chr20 126310 AC - DEFB126 0 0   0 

chr20 2083466 A T STK35 0 0   0 

chr20 19261648 T C SLC24A3 0 0   0 

chr20 23965998 T G GGTLC1 0 0 rs62195276 0 

chr20 62065186 C A KCNQ2 0 0   0 

chr21 36042747 G T CLIC6 0 0   0 

chr22 41252508 C T ST13 0 0   0 

chrX 8699935 C T KAL1 0 0   0 

chrX 48895943 T C TFE3 0 0   0 

chrX 54780125 T A ITIH6 0 0   0 

chrX 100749038 C T ARMCX4 0 0 rs34379067 0 

chrX 100749041 A G ARMCX4 0 0   0 

chrX 111000833 C G ALG13 0 0   0 

chrX 153690631 G A PLXNA3 0.008909 0.0036 rs141197316 0.006276 

 

Table 4.8. De novo variants which passed the stringent filtering steps in the second 

HSP pedigree identified by my collaborators. Columns titled EVS, 1000G, Control 

list give the variant allele frequency as listed in the exome server project (5400), 

1000 genomes, and the control list respectively. All positions based on HG19 

reference. 
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Gene 

Chr,position,reference,variant 

(Patient sample) 

Chr,position,reference,variant 

(Collaborators patient) 

AGAP6 chr10, 51768664,G,T chr10,51748530, -,C 

CNTNAP3B chr9,43685298,G,T chr9,43822704,G,A        

FAM111B chr11,58893431,T,G chr11,58893449,A,G 

 

Table 4.9. Genes in which variants were identified in both HSP pedigrees. All 

positions based on HG19 reference. 

 

Using the BWA-Dindel pipeline as an additional indel calling pipeline, 4 indels passed 

filtering set A and were predicted as potentially disease causing, and 5 passed filtering 

set B and were predicted as potentially disease causing (Table 4.10). None of the 

variants were identified in plausible candidate genes of interest. 

 

Chromosome Position Reference Variant Gene EVS 1000G dbSNP135 

Control 

list 

Filtering 

set 

chr10 55582230 AGG - PCDH15 0 0 - 0 A,B 

chr10 127668864 GAA - FANK1 0 0.01 rs146106149 0 A,B 

chr19 30500119 TGA - URI1 0 0 rs3840928 0 A,B 

chr19 49657711 CAT - HRC 0 0 rs66501117 0 A,B 

chr21 47707039 - AAAAAA YBE 0 0 rs71318058 0 B 

 

Table 4.10. Variants shared between all affecteds, that were identified using the 

BWA-Dindel pipeline. All were predicted as disease causing by MutationTaster. 

Columns titled EVS, 1000G, Control list give the variant allele frequency as listed 

in the exome server project (5400), 1000 genomes, and the control list respectively. 

All positions based on HG19 reference. 
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4.5 Discussion 

I identified potentially damaging variants, segregating with disease in all three families. 

In particular, I was able to identify potentially disease causing variants in the HSP and 

DCM pedigrees. Variants in all three pedigrees were identified using whole exome 

enrichment and NGS, in combination with widely used sequence analysis and variant 

filtering methods. I was unable to identify any potentially disease causing variants in 

plausible candidate genes in the AVSD pedigree. There are various possible reasons for 

this (Discussed below). A detailed discussion of the results obtained for the DCM and 

HSP families will be given below, followed by a discussion on reasons why I think 

potentially disease causing variants may not have been recognised in the other two 

pedigrees.  

 

DCM variants 

The ANKRD20A1 is a little known gene which is part of the ankyrin repeat domain 20 

family (http://www.genecards.org). However, it is related to the ANKRD1 gene which 

has been shown as a candidate gene for DCM (Moulik et al., 2009). For example, the 

study by Moulik et al. (2009) screened 208 DCM patients for variants in the ANKRD1 

gene. The study identified three missense mutations. Functional studies indicated that 

these variants result in differential stretch-induced gene expression. 

I identified a splice site variant in the ANKRD20A1 gene (Figure 4.10), which due to 

previous reports of the influence of ANKRD1 genes on DCM, may be of importance.  

 

 

 

 

 

http://www.genecards.org/
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Figure 4.10. Splice site variant identified in the ANKRD20A1 gene in the DCM pedigree.

 



89 
 

HSP variants 

I identified five variants of potential interest in members of the HSP family. All the 

variants represent single base substitutions and are located in the affected siblings, but 

not in the unaffected mother. Although not predicted as potentially disease causing by 

MutationTaster, the FAM111B, AGAP6, and CNTNAP3B genes are of interest as variants 

were identified in these genes in both my cases and in the cases of my collaborators. 

Due to the rarity of HSP, identifying shared genes containing non-synonymous variants 

in both unrelated pedigrees greatly increases their candidacy as possible candidates for 

disease. These three genes will be discussed in more detail below. 

Firstly, I identified a non-synonymous variant in the FAM111B gene. This missense 

variant results in a p.Tyr591Asp change and is conserved across different species 

(Figure 4.11). The missense variant identified by my collaborators results in a 

p.Arg597Gly change. In both families the variant was present in only the affected 

individuals and had not been previously listed in public SNP databases. The FAM111B 

gene is also known as a Cancer-associated Nucleoprotein and belongs to the FAM111 

family (http://genome.cse.ucsc.edu; 23 December 2012). Very little is known of the 

gene, but it is likely to be an enzyme with peptidase cysteine/serine trypsin-like 

functions (Dr. Sébastien Kury; perscomm). The functional consequences of aberrations 

in this gene have not been previously identified, and Dr. Elise Glen (perscomm; 

University of Newcastle) has shown that it is expressed in the skin, and not in the liver.  

Secondly I identified a non-synonymous single base substitution in the AGAP6 gene. 

This missense variant is in a conserved region of the gene and results in a p.S260I 

change (Figure 4.12). As with FAM111B, a non-synonymous variant was also observed 

in the AGAP6 gene in the HSP case provided by my collaborators. This gene is 

officially known as “ArfGAP with GTPase domain” 

(http://www.ncbi.nlm.nih.gov/gene/414189) and is a putative GTPase activating protein 

(http://www.uniprot.org/uniprot/Q5SRD3). The gene is of unknown function and no 

human genetic condition is known to result from mutations in the gene.  

 

Finally, I identified a non-synonymous, missense variant within the CNTNAP3B in both 

my cases and the case from my collaborators. The variant is in a conserved region and 

results in a p.A2S change (Figure 4.13). Unfortunately, as with the last two genes, very 

little appears to be known about the function of CNTNAP3B besides that it may be 

http://genome.cse.ucsc.edu/
http://www.ncbi.nlm.nih.gov/gene/414189
http://www.uniprot.org/uniprot/Q5SRD3
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involved in cell adhesion processes (http://www.uniprot.org/uniprot/Q96NU0). As 

mentioned previously, although very little is known about the functions of these three 

genes, given that this is a very rare disease, and affected individuals in both families 

have non-synonymous variants in the same genes, indicate that these genes could be 

related to HSP in these two families. 

 

 

 

 

 

 

 

http://www.uniprot.org/uniprot/Q96NU0
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Figure 4.11. p.Tyr591Asp variant identified in the FAM111B gene in the HSP pedigree. 
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Figure 4.12. p.S260I  variant identified in the AGAP6 gene in the HSP pedigree.  
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Figure 4.13. p.A2S variant identified in the CNTNAP3B gene in the HSP pedigree.
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Aside from these three genes, I was also able to identify variants in two additional genes 

of possible interest in the two affected cases. However, these genes were not shared with 

the case of my collaborators but due to the possible functions of these two genes, they 

still warrant further discussion.  

The first  is a known (rs141865425) missense variant resulting in a c.G713A SNP 

change, with a population frequency <1% (1000 genomes database). It is located in a 

conserved region of the BLK gene. BLK belongs to the Src family kinases, which are 

thought to function in the cell proliferation and differentiation pathways (Islam et al., 

1995; Zwollo et al., 1998). In particular, BLK is expressed in B lymphoid cell lines 

(Dymecki et al., 1990), and in immature T cell lines (Islam et al., 1995). More recently, 

the gene has also been found to be expressed in the spleen, liver, leukocytes, ovary, 

muscle and testis (Appel et al., 2002). 

Interestingly, the BLK gene is located in the 8p22-q23 chromosomal region thought to 

contain a gene responsible for Keratolytic Winter Erythema, KWE (Starfield et al., 1997; 

Appel et al., 2002). KWE is an autosomal dominant skin disorder resulting in erythema, 

keratosis and peeling of the palms and soles (Appel et al., 2002). Many of the features 

of KWE are shared amongst the family suffering from HSP, in particular the keratosis 

and sclerosis of the palms of the hands and soles of the feet (Weary et al., 1969; Lee et 

al., 2012).  

 A study performed by Starfield et al. (1997) identified a region on chromosome 8 

which was linked to KWE. The study involved a German family with 20 affected and 

14 unaffected individuals. A panel of 230 genome wide, evenly spaced microsatellite 

markers was used to identify regions of linkage. Appel et al. (2002) designed and 

sequenced 7 BAC clones spanning the linkage region for KWE that was identified by 

Starfield et al. (1997). The BAC clones were used to identify a total of 12 transcripts 

covering the linkage region, one of which corresponded to the BLK gene. Direct 

sequencing of the gene was carried out using the individuals from the German pedigree 

in Starfield et al. (1997), and variants were subsequently identified. However, they were 

unable to identify any potentially pathogenic mutations in the KWE patients. The 

functional implications of the BLK gene, in particular its presence in the linkage region 

for KWE, make it a good candidate for HSP in this family. Although it is a SNP, it has a 

very low population frequency (<1%), so it may still be of interest with regard to HSP 

in this pedigree.  
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Finally I identified a missense c.C1889T change in the ALOXE3 gene, which was 

predicted as disease causing by MutationTaster. ALOXE3 is one of the five active LOX 

genes that are expressed predominantly in keratinised epithelia and functions in 

keratinocyte differentiation (Yu et al., 2003). Variants within the ALOXE3 gene have 

previously been reported to cause Non-bullous Ichthyosiform Erythroderma, NIE 

(Jobard et al., 2002). Icthyoses comprise a heterogenous group of disorders 

characterised largely by scaly skin, with NIE in particular being characterised by 

hyperkeratosis and displaying an autosomal recessive pattern of inheritance (Oji and 

Traupe, 2006). By analysing 8 NIE patients from 6 families, Jobard et al. (2002) 

identified 3 nonsense mutations and a frameshift deletion shared by all the patients, and 

not found in 120 control individuals. 

As with the BLK variant, the variant I identified in ALOXE3 is a SNP, but it does have a 

very low population frequency. The possibility of mutations within the ALOXE3 gene 

causing NIE, and the overlapping features of NIE with HSP, I think make this a 

potentially interesting variant.  

 

Reasons for not identifying potentially disease causing variants 

As mentioned previously, there are various reasons why I may not have identified any 

potentially disease causing variants in plausible candidate genes in the pedigree where 

cases presented with AVSD. Many of these reasons involve challenges of using exome 

capture in the detection of causative variants, and include, for example, sample choice, 

various technical limitations of target capture and sequencing, and in obtaining 

sufficient coverage. All these issues will be discussed in detail below. 

 

Sample selection 

Deciding which individuals, and of course how many, are to be sequenced in a pedigree 

is a very important consideration in exome sequence studies. When searching for very 

rare alleles, it may not be necessary to sequence all the affected individuals within a 

pedigree. In these cases Bamshad et al. (2011) suggest that because of the high 

probability of identity-by-descent, sequencing only two distantly related individuals 

within a pedigree could provide enough information to identify the disease causing 
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variants. As an example, the exomes of two siblings were sequenced in an attempt to 

identify the causative variants for an inherited lipid metabolism disorder called 

hypobetalipoproteinemia (Musunuru et al., 2010). As the disease is inherited in an 

autosomal recessive fashion, the investigators restricted their search to homozygous, 

novel variants present in both individuals and not present in the dbSNP database. Ng et 

al. (2010) also used NGS methods to discover the gene responsible for Miller syndrome 

by sequencing the exomes of only four unrelated individuals. The study identified two 

variants within the ANGPTL3 gene, which were either not present in, or heterozygous in, 

38 control exomes. However, both of these examples represent studies on recessive 

disorders which have proved more successful (Bamshad et al., 2011). 

Nevertheless, NGS studies on dominant disorders have proved successful, in particular 

when searching for causative de novo variants in dominant Mendelian disorders by 

sequencing of parent-offspring trios (Bamshad et al., 2011). For example, this study 

design was successfully implemented to identify the causative variants in ten patients 

suffering from unexplained mental retardation (Vissers et al., 2010). The study used the 

sequenced exomes of parent-offspring trios and identified an average of 21 755 variants 

per individual. Variants were further prioritised by selecting only non-synonymous and 

splice site variants and removing all those present within dbSNP and an in-house variant 

database. Finally, all remaining inherited variants were removed, resulting in a final list 

of 51 variants. Thirteen of the remaining variants could be validated via Sanger 

sequencing, 9 of which were present in 7 of the affected individuals, and absent in 1 664 

controls. All 9 variants occurred in different genes, four of which displayed evidence for 

having a causal link to mental retardation in model organisms and protein interaction 

studies. 

 

Data analysis issues of exome sequencing 

Following sequencing, a base calling algorithm is used to determine the nucleotides 

from the intensity files produced by the sequencer (Nielsen et al., 2011). Some of the 

main difficulties involved in base calling, for which all base callers have to correct, are 

phasing, pre-phasing and decreased signal intensity with each cycle (Ledergerber and 

Dessimoz, 2011).  Phasing occurs when a sequence fails to add a base during a cycle, 

while pre-phasing is a term used to describe the situation where multiple bases are 

added during one cycle. An additional issue is that of cross-talk which refers to the 
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overlap in emission spectra of the four fluorescent labels, which can impede 

identification of the correct base (Coonrod et al., 2012). Reducing the error rate of base 

calls is important as it effects the downstream analyses and may result in a sequence not 

being aligned to the reference, being aligned to the incorrect position along the 

reference, or could result in false variant calls (Malhis et al., 2009; Nielsen et al., 2011). 

Many programmes are available to align reads to a reference, such as Bowtie-2 

(Langmead and Salzberg, 2012), NovoAlign (http://www.novocraft.com), BWA (Li and 

Durbin, 2009) and GSNAP (Wu and Nacu, 2010). Each of these programmes varies in 

its ability to correctly align reads to a reference (Li and Durbin, 2009; Wang et al., 2011; 

Pattnaik et al., 2012). For example Wang et al. (2011) compared the performance of 

various alignment algorithms by calculating the percentage of reads the program was 

able to map to the reference. The best performing program in their study was SHRiMP 

which aligned 81.23% of the reads to the reference, whereas the worst performing 

program was RMAP which only aligned 55.98% of the reads to the reference. Pattnaik 

et al. (2012) found that Bowtie was much faster than NovoAlign, but that it was only 

able to align 54.18% of the reads to the reference, whereas NovoAlign aligned 85.47% 

of the reads to the reference. 

The alignment step has obvious implications for the accurate identification of variants, 

and it is important for these programmes to produce accurate read alignment quality 

scores as these can later be used by the variant caller (Nielsen et al., 2011). However, 

accurate alignment does present with various difficulties, such as distinguishing true 

alignments from amongst multiple alignments (Wang et al., 2011), distinguishing 

sequencing errors from real genomic differences (Nielsen et al., 2011), and the fact that 

some areas of the genome are just difficult to align to, in particular those areas 

displaying a high level of inherent diversity within a population (Albers et al., 2011; 

Nielsen et al., 2011). For example, along homopolymer stretches where the indel 

polymorphism rate within a population is higher than in other genomic regions (Albers 

et al., 2011). Regions of the genome containing high numbers of indels are difficult to 

align to (Harismendy et al., 2009; Albers et al., 2011; Coonrod et al., 2012), where the 

presence of indel variants within the reads has been shown to increase both false 

positive and false negative calls (DePristo et al., 2011). 

Once reads have been aligned to the reference, variants can be identified as deviations 

in the reads from the reference sequence. The difficulty in this step involves accurately 
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distinguishing the true genetic variations from the errors produced in sequencing or 

alignment (Shen et al., 2010; Wang et al., 2011). There are many programmes available 

to call genetic variants from aligned reads, such as Varscan-2 (Koboldt et al., 2012), 

Dindel (Albers et al., 2011), Samtools/bcftools (Li et al., 2009) and GATK (McKenna 

et al., 2010). As with the different alignment programmes, the use of different variant 

callers can have a marked effect on sensitivity (Ji, 2012; Pattnaik et al., 2012). In 

conjunction with the bowtie aligner, using Samtools as a variant caller, Pattnaik et al. 

(2012) was able to match only ~40% of their identified variants to the dbSNP database, 

whereas by using GATK over 80% of the identified variants matched the dbSNP 

database. 

Many studies have used similar methods to those which I used to identify the genetic 

variants responsible for different diseases (Ng et al., 2009; Johnson et al., 2010b; 

Krawitz et al., 2010; Musunuru et al., 2010; Ng et al., 2010b; Wang et al., 2010a; 

Norton et al., 2011), including various in-house studies (Dickinson et al., 2011; Horvath 

et al., 2012; Pfeffer et al., 2012; Pyle et al., 2012). For example, in the study carried out 

by Pyle et al. (2012). However, there were some differences between the methods. The 

key difference between the methods employed by Pyle et al. (2012), and those 

employed here is in the use of different variant calling software. The study by Pyle et al. 

(2012) made use of the BWA aligner and Varscan variant caller to identify single 

nucleotide substitutions. Conversely, I made use of the NovoAlign aligner and 

Samtools/bcf tools variant caller to identify single nucleotide substitutions. However, in 

chapter 3 I demonstrated that, for the identification of single nucleotide substitutions, 

the NovoAlign-Samtools analysis pipeline is more sensitive than the BWA-Varscan 

analysis pipeline. 

 

Technical issues of exome sequencing 

The accuracy of variant calls is often seen to be strongly affected by the base quality 

score and sequencing depth (Nielsen et al., 2011; Pattnaik et al., 2012). In particular the 

depth of coverage has been shown to have a large effect on the false positive rate in 

Illumina sequence reads (Wang et al., 2008; Harismendy et al., 2009). A lack of 

sufficient coverage would also lead to increased numbers of false negatives and the 

disease causing variant not being identified (Zhi and Chen, 2012). Harismendy et al. 

(2009) demonstrated that at a sequence depth of ~10 fold, Illumina sequences have a 



99 
 

false positive rate of 0.7, while at a coverage of ~68 fold this drops to only 0.1. This is 

also true for indel variants where sensitivity has been shown to rise from less than 0.85 

to more than 0.95 at coverage depths of 10 and 20 respectively (Qi et al., 2010). 

However, as >95% of the target bases were covered more than 10 fold, I think that the 

targets were sufficiently covered in the present study. See also chapter 3 where I 

assessed the affect of coverage depth on sensitivity. 

A major flaw of exome sequencing is that not all of the coding regions are actually 

covered by commercial targeting kits (Asan et al., 2011; Parla et al., 2011; Sulonen et 

al., 2011). The problem arises in trying to define a set of targets that would encompass 

the exome, as not all of the protein coding sequences making up the human genome are 

known (Bamshad et al., 2011). Two widely used exome capture kits include the Agilent 

SureSelect kit and the NimbleGen kit. 

Parla et al. (2011) assessed the ability of both the Nimblegen (26.2Mb targets) and 

Agilent (37.6Mb targets) kits to capture known coding regions based on their intended 

targets of the CCDS. They found that the Agilent kit covered 97% of the CCDS targets, 

whereas the Nimblegen kit only covered 88% of the CCDS targets. However, Asan et al. 

(2011) found that a higher proportion of reads could be mapped to the reference 

sequence using the Nimblegen technology (>10% higher), rather than the Agilent 

technology. This superior target enrichment using the Nimblegen targeting kit has also 

been confirmed in other studies (Clark et al., 2011; Sulonen et al., 2011) 

The performance of both the Nimblegen and Agilent kits in variant identification 

studies was tested by Asan et al. (2011). They found that at a sequencing depth of 30 

fold, Nimblegen displayed a higher sensitivity, and they were able to identify 12 400 

variants in the targeted coding regions common to both kits, whereas when using the 

Agilent kit only 12 000 SNPs were identified in these regions. However, they also 

found that the Agilent kit detected 13 500 coding SNPs outside of these common coding 

regions, whereas the Nimblegen kit only detected 12 600 coding SNPs outside of these 

regions. They attribute this to the higher capture efficiency of the Nimblegen kit, and 

the larger area (~4Mb larger) captured by the Agilent kit. 

However, at 20 fold coverage Sulonen et al. (2011) found that both Nimblegen and 

Agilent kits could provide comparable, highly sensitive SNP calls (>97%) which they 

calculated by using the SNPs captured on the Illumina Human660W-Quad v1 SNP chip. 

This was further corroborated by Clark et al. (2011), who found a concordance of >99% 
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when SNP calls from both were compared to the Illumina 1M-Duo SNP chip. In chapter 

3, I used the NovoAlign aligner and Samtools variant caller to identify variants within 

19 exomes. On average, I was able to identify in excess of 98% of the on target markers 

on the Illumina 660W SNP chip.  

 

Issues of filtering in exome sequencing 

Exome sequencing studies often identify many thousands of variants. For example, I 

identified >88000 variants in the HSP pedigree and >222000 variants in the DCM 

pedigree. Due to these very large numbers of variants, various filtering steps are often 

used to reduce this number to a more manageable size. Often, one of the first steps used 

to reduce down the number of identified variants is the removal of all the variants 

occurring outside of the target regions (Dickinson et al., 2011; Horvath et al., 2012; 

Pfeffer et al., 2012; Pyle et al., 2012). The obvious danger with this technique is that the 

causative variant may lie outside of the target regions. 

By selecting only variants present within the targeted regions, I was assuming that the 

causative variant is exonic. However, Cooper et al. (2010) estimated that up to ~14% of 

the mutations within the Human Gene Mutation Database (A database containing 

known genes responsible for human inherited diseases) are located within the intronic 

and regulatory regions of genes (Cooper et al., 2010). There are also many examples 

where intronic variants and those found in 3’ and 5’-untranslated regions have been 

found to affect disease (Scheper et al., 2007; Chen et al., 2010). For example, in the 

case of a Retinitis Pigmentosa (RP) where linkage mapping suggested the involvement 

of the PRPF31 gene, extensive screening of the genes exons failed to identify the 

causative variant (Rio Frio et al., 2009), and sequencing the entire PRPF31 gene 

allowed Rio Frio et al. (2009)  to identify a deep intronic single base substitution 

causing RP in this family. Also, Scheper et al. (2007) provides examples of various 

inherited diseases caused by mutations within the 5` UTR’s of genes, such as in 

hereditary hyperferritinaemia. 

As well as selecting only on-target variants, I also removed variants recorded in public 

databases such as 1000 genomes. For a single European sample it is expected that 

between 74% - 95% of all identified variants will be present in a public database 

(Bentley et al., 2008; DePristo et al., 2011; Coonrod et al., 2012). This value has 
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obviously increased over time, and now in excess of ~95% of variants should be 

expected to be present in public databases. More than 96% of the variants I identified in 

all three families were already recorded in public databases. Of course, this method 

assumes that the variants present in these databases are common in the population and 

cannot therefore be the causative variant for a rare disorder, and often results in a 

considerable reduction in the numbers of variants from the candidate list (Ng et al., 

2009; Wang et al., 2010a; Bamshad et al., 2011; Norton et al., 2011; Coonrod et al., 

2012).  

However, there is a risk that the causative variant may be present in the population and 

therefore also in these databases, albeit at a low frequency. This is particularly relevant 

in the case of recessive disorders where carriers do not present with the disease 

phenotype (Bamshad et al., 2011). Therefore, it is becoming more popular to employ 

minor allele frequency thresholds when removing variants that are present in these 

databases (Bamshad et al., 2011; Stitziel et al., 2011).  

Applying a base coverage threshold to remove poorly supported variant calls is also 

often used as a filtering criterion. Coverage values falling outside of the normal range, 

i.e. excessively high or low coverage at a particular position, may result in false positive 

or negative calls (Bentley et al., 2008; Coonrod et al., 2012). As well as total coverage 

at a position, a minimum coverage of the variant allele has also been shown to be 

valuable in identifying false positive and negative calls (Mokry et al., 2010).  

A further filtering approach which can be implemented is to incorporate a prediction 

programme to estimate the potential impact of variants on protein function (Jordan et al., 

2010; Bamshad et al., 2011). In the current study, the MutationTaster prediction 

programme was used to assess the pathogenicity of variants. MutationTaster is a free 

programme which uses evolutionary conservation, annotation and structural information 

to assess the impact of a particular variant (Schwarz et al., 2010). Many other 

programmes also are available to predict potential variant pathogenicity, such as SIFT 

(Kumar et al., 2009) and PolyPhen-2 (Adzhubei et al., 2010). 

One of the major concerns regarding these prediction algorithms is the variations in 

sensitivity and specificity achieved between them (Chan et al., 2007; Hicks et al., 2011). 

Hicks et al. (2011) assessed the sensitivity and specificity of various prediction 

programmes, and highlighted a large variation in the results obtained using the different 

algorithms. For example, Polyphen2 and SIFT achieved sensitivity values of 0.9 and 
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0.85 respectively and specificity values of 0.40 and 0.52 respectively. In another study 

the accuracy of predictions between four different algorithms was assessed. The worst 

performing method was a program called A-GVGD (Tavtigian et al., 2006), which 

achieved a sensitivity of 72.9, whereas Polyphen was able to achieve a sensitivity of 

83.3 (Chan et al., 2007). Although prediction programmes may not correctly predict 

variant effects, they are still considered a useful means of prioritising variants in 

sequencing studies (Karchin, 2009; Jordan et al., 2010). 

Another common filtering approach is to focus only on those changes which alter the 

amino acid. By using the Human Gene Mutation Database, Kryokov et al. (2007) 

calculated that up to 20% of all missense mutations could result in a complete loss of 

protein function. They also estimated that up to 53% of all de novo missense mutations 

can be considered as mildly deleterious, which they defined as mutations which do 

effect, but not completely eliminate, protein function. Although removing all of the 

synonymous and common variants may provide an effective means of reducing the 

overall number of variants, there is a chance that these may include the disease causing 

variants (Ku et al., 2011).  

 

4.6 Conclusions/Future work 

In this chapter I identified variants potentially causing HSP and DCM. In the HSP 

pedigree, these include variants in the BLK, ALOXE3, FAM111B, AGAP6, and 

CNTNAP3B genes. Of particular interest are the variants in the FAM111B, AGAP6, and 

CNTNAP3B genes. Although, current literature and knowledge regarding the effect of 

variants in these genes suggest that they could potentially influence HSP in this family, 

functional analyses will be required to determine their role in disease. I also identified a 

variant in the ANKRD20A1 gene which could be responsible for disease in the DCM 

pedigree. There are various reasons why I was not able to identify any potentially 

disease causing variants in plausible candidate genes in the AVSD pedigree.  

In particular, the first three stages of variant filtering (i.e. the removal of off-target 

variants, selecting only those variants shared amongst affected individuals, and 

removing the homozygous changes) removed more than 90% of the identified variants. 

This suggests that these three steps are a very effective means of reducing variants down 

to a more manageable number, and should presumably make up the first three stages in 
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any filtering approach. However, care should be taken when removing variants 

occurring outside of the targets, as they may still be important. 

Therefore, any future work should alter the filtering criteria I used, or possibly more 

importantly, use a whole genome sequencing approach to capture more of the genome. 

However, this approach is currently limited by current cost and resource requirements. 

Furthermore, it may prove valuable to search for other kinds of variants, such as copy 

number variants. I only identified single nucleotide and indel variants, however, it is 

possible that disease in the DCM and AVSD families are caused by genomic variants 

such as CNV’s. See chapter 1 and 6 for a detailed discussion on these issues.  
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Chapter 5. Identifying disease causing indels using targeted next 

generation sequence data from patients with congenital 

cardiovascular disorders 
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5.1 Aim 

This study was conducted as part of an international collaborative project which aimed 

to identify rare variants potentially causing certain congenital heart malformations, in 

particular those characterised by ventricular hypoplasia. This was done by sequencing 

selected genes in a group of patients with various congenital malformations. My role 

within the project was to analyse targeted NGS data to identify potentially disease 

causing insertion/deletion (indel) events in these patients.    

 

5.2 Introduction 

5.2.1 Sample Origin 

One hundred and thirty three patient samples were provided by six centres located in 

The Netherlands (Academic Medical Center, Amsterdam and Leids Universitair 

Medisch Centrum, leiden), England (The University of Newcastle, Newcastle Upon 

Tyne), Belgium (Katholike Universiteit, Leuven, University of Leuven, Leuven), and 

Germany (Max Planck Institute for Molecular Genetics and the Max Delbrück Center 

for Molecular Medicine in Berlin). These patients suffer from a range of congenital 

cardiac disorders (Details on sample phenotyopes are provided in table 5.1) that are 

characterised by underdevelopment (hypoplasia) of either the left or the right ventricular 

chamber.  

 

 

 

 

 

 

 

 

 

 

 

 

http://www.google.co.uk/url?sa=t&rct=j&q=%27sperling%40molgen.mpg.de%27&source=web&cd=1&cad=rja&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.molgen.mpg.de%2F~heart%2F&ei=1bmXULP6AebO0QWN14CACQ&usg=AFQjCNEBRcmPEazI0Vr-aBRq5D88LG3iyg
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______________________________________________________________________ 

Right Ventricular hypoplasia/malformation: 

Double inlet left ventricle - 21 

Tricuspid atresia - 25 

Right ventricular hypoplasia - 6 

Pulmonary atresia with intact ventricular septum - 12 

Ebstein’s anomaly - 25 

Left Ventricular hypoplasia/malformation: 

Hypoplastic left heart syndrome - 8 

Mitral valve atresia - 4 

Left ventricular hypoplasia - 6 

Other: 

Noncompaction - 19 

Univentricular heart - 7 

______________________________________________________________________ 

Table 5.1. Categories, and subcategories, of congenital cardiac malformation that 

the 133 patients used in this study suffered from. The numbers represent the 

number of patients. 

 

5.2.2 Phenotypes 

All cases suffer from what are broadly termed “univentricular heart” defects, that 

comprise a range of malformations which are not easy to classify (Khairy et al., 2007). 

All these malformations have a poor prognosis and if left untreated, survival into late 

adulthood is rare (Hager et al., 2002). The cases in this study were categorised as 

suffering from right ventricular malformations and left ventricular malformations. In 

addition there is a group of 26 cases classified as “Other”, because they did not fit 

strictly into any of the subcategories. 
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Left ventricular hypoplasia comprises a range of congenital heart abnormalities 

characterised by the severe underdevelopment of the left side of the heart and which 

often prove to be lethal (Trivedi et al., 2011; Hickey et al., 2012). It is frequently 

associated with obstruction to left ventricular outflow, where the degree of hypoplasia is 

proportional to the degree of obstruction (Hickey et al., 2012). In severe cases, the left 

ventricle is unable to support systemic circulation, and the only options available for 

long term survival include neonatal heart transplant or a sequence of complex open-

heart operations during infancy (Fruitman, 2000; Trivedi et al., 2011; Hickey et al., 

2012).  It is generally accepted that lack of flow during embryonic development plays a 

critical role in the pathogenesis of left ventricular hypoplasia; in models where left sided 

flow can be readily modelled (eg the chick embryo), restriction of left sided flow 

reproducibly results in hypoplasia of left heart structures. Therefore, genes particularly 

involved in the development of critical left heart structures such as the mitral valve and 

aortic valve might be considered particularly good candidates for involvement in left 

heart hypoplasia. In addition, however, some studies have shown the presence of 

mutations in transcription factors critical to the specification of left ventricular 

myocardium in patients with left heart hypoplasia (Grossfeld, 2007; Hickey et al., 2012). 

Numbers, however, remain small due to the rarity and serious nature of this group of 

phenotypes, which remain the CVM phenotypes most likely to result in childhood death. 

Also, since the widespread availability of fetal cardiology services, the incidence of 

hypoplastic left heart syndrome, which is generally detectable using fetal 

echocardiography, has decreased due to termination of affected foetuses. As seen in 

table 5.1, even the pooled resources of a number of international congenital heart 

disease units resulted in the availability of relatively small numbers of patients with left 

ventricular hypoplasia. 

Right ventricular (RV) hypoplasia describes a group of cyanotic congenital heart 

disease conditions characterised by a small right ventricle, and which can lead to 

congestive heart failure and cyanosis during infancy (Goh et al., 1998). RV hypoplasia 

can be caused by the underdevelopment of one or more of a variety of structures on the 

right side of the heart, including the tricuspid valve, right ventricle (as a primary event), 

pulmonary valve, and the pulmonary artery (Van der Hauwaert and Michaelsson, 1971; 

Dib et al., 2012). The degree of underdevelopment is highly variable, with very severe 

forms presenting in early infancy, while in the less severe forms the patient can survive 
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to adulthood (Dib et al., 2012).  As is seen from Table 5.1, patients with RV hypoplasia 

from various causes were more readily collected from the collaborating centres.  It is 

however important to be aware that the right-sided conditions studied in Table 5.1 are 

far from common; for example pulmonary atresia with intact ventricular septum 

represents only 1-3% of all congenital heart disease, and Ebstein’s anomaly occurs in 

less than 1:20000 live births. Both right and left-sided phenotypes were therefore 

selected for rarity and severity; it was reasoned that selection of this group of patients 

would maximise the chances of finding rare variants of large phenotypic effect through 

NGS. 

 

5.2.3 Indels and disease 

Here I will define indels as deviations from the reference sequence where bases are 

either removed (deletions) or have been added (insertions). It is estimated that every 

individual harbours between 0.3 – 0.6 million indels, making these the second most 

common form of genetic variation, following SNPs (Levy et al., 2007; Bansal and 

Libiger, 2011; Lemos et al., 2012). Indels display very large variations in both 

distribution and size across the human genome, with sizes ranging from 1 to several 

1000 base pairs (bp) in length (Bhangale et al., 2005; Levy et al., 2007; Wheeler et al., 

2008; Lemos et al., 2012). For example, using 454 FLX sequence reads and a 

combination of the BLAT and cross_match 

(http://www.phrap.org/phredphrapconsed.html) programmes, Wheeler et al. (2008) were 

able to identify 222718 indels in a single individual, which ranged in size from 2 – 

38896bp long (Table 5.2).  

 

There is also a large amount of variation in indel frequency across different gene 

regions (MacArthur et al., 2012). Bhangale et al. (2005) identified 2393 indels in a set 

of 330 targeted genes, and found that indels occurred more frequently in the 3’-UTRs 

than in the 5’-UTRs of genes. This pattern is explained by the greater tolerance to 

truncation close to the end of the coding regions (MacArthur et al., 2012). However, 

despite this variation across different gene regions they identified very few indels in the 

coding regions of the genes, which they attributed to a strong negative selection on 

coding indels. The scarcity of coding indels in human genes is further corroborated by 

Wheeler et al. (2008), in which less than 1% of the 222718 indels they identified were 

located in coding regions.  

http://www.phrap.org/phredphrapconsed.html
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Due largely to the difficulties involved in identifying indels using NGS methods (Bansal 

and Libiger, 2011), which are discussed in more detail below, far less is known about 

the effect of indels on genes than is known about SNPs (Cartwright, 2009; Mills et al., 

2011; Hu and Ng, 2012; Lemos et al., 2012). This, despite indels of less than 20 base 

pairs long accounting for nearly one quarter of known Mendelian disease mutations (Hu 

and Ng, 2012). Therefore, a detailed knowledge of indel variation and distribution in 

patient samples would be very useful to understand their potential influence on disease 

(Mills et al., 2011).  
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Length Deletions Insertions 

1 664 (41.76) 397 (57.87) 

2 309 (19.43) 68 (9.91) 

3 188 (11.82) 39 (5.69) 

4 185 (11.64) 79 (11.52) 

5 69 (4.34) 26 (3.79) 

6 29 (1.82) 17 (2.48) 

7 14 (0.88) 11 (1.6) 

8 20 (1.26) 6 (0.87) 

9 12 (0.75) 4 (0.58) 

10 9 (0.57) 7 (1.02) 

11 12 (0.75) 0 (0) 

12 17 (1.07) 0 (0) 

13 8 (0.5) 3 (0.44) 

>=14 54 (3.4) 29 (4.23) 

Table 5.2. Lengths of insertions and deletions identified in 330 targeted genes. 

Values represent insertion and deletion counts, while the values in brackets 

represents the proportion. From Bhangale et al. (2004). 

 

5.2.4 Indel identification using NGS data 

The development of tools to accurately identify indels is a very important step in the 

search for the genetic causes of disease (Bansal and Libiger, 2011). Various different 

programmes have been developed to try and identify indels from NGS reads, including 

MAQ (Li et al., 2008a), dindel (Albers et al., 2011), and GATK (McKenna et al., 2010). 

However, the performance and accuracy of these different programmes varies (Vallania 

et al., 2010; Albers et al., 2011). Using simulated data, Albers et al. (2011) compared 
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the false discovery rate of indel calls using Dindel, Varscan and SAMtools. Dindel 

achieved the lowest false discovery rate of 1.56%, while Varscan had the highest rate of 

false discoveries, 16.67%. In my analysis in chapter 3, I calculated the sensitivity values 

for different indel calling pipelines and found large differences between them. Across 12 

samples, the BWA-Dindel pipeline performed the best, achieving an average sensitivity 

of ~35%. Conversely, the NovoAlign-Samtools pipeline performed the worst, achieving 

an average sensitivity of <5%. This is considerably lower than the values achieved when 

identifying single nucleotide substitutions, highlighting the difficulties involved in 

identifying indels using NGS methods. 

 

Despite this, many studies have been able to identify disease causing indels using these 

approaches (Wei et al., 2011; Carmignac et al., 2012; Drielsma et al., 2012; Fuchs-

Telem et al., 2012; Pyle et al., 2012; Wang et al., 2012; Weterman et al., 2012). For 

example Wei et al. (2011) identified an exonic, frameshift deletion in the DMD gene 

causing Duchenne muscular dystrophy. Target capture was performed using a 

Nimblegen custom capture array, and sequencing performed using an Illumina 

HiSeq2000. Sequence reads were aligned to the human genome using BWA and indels 

were identified using GATK. They identified a large deletion of exon 1 in the DMD 

gene that was present in all affected samples, but not found in 100 controls. In a further 

study by Pyle et al. (2012), the BWA-Dindel analysis pipeline was used to identify one 

and two base pair deletions in the SACS gene causing prominent sensorimotor 

neuropathy. The mutations were identified in two affected siblings and not present in 

346 control samples, or in the 1000 genomes project.  

 

Despite various successes, identifying indels using short read sequence data does 

present with various problems (Albers et al., 2011). In particular, correctly mapping 

reads containing indels to the reference (Lunter and Goodson, 2011), particularly in 

cases where reads contain large insertions, is difficult (Albers et al., 2011). Still further 

problems may include, an increased rate of indel false positive calls in highly 

polymorphic gene regions, and the presence of technological artefacts such as 

polymerase slippage during PCR amplification (Albers et al., 2011; Bansal and Libiger, 

2011). 
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5.2.5 Indel prioritisation 

As with SNPs, programmes designed to locate indels will identify many thousands of 

variants per patient (Wei et al., 2011). Therefore, there is a need for methods which 

could be used to filter these indel variants down to a more manageable number (Zia and 

Moses, 2011; Hu and Ng, 2012). As well as reducing the total number of potential 

indels that need to be validated, applying variant filters could help improve the 

specificity of indel calls (Albers et al., 2011). As an example, Albers et al. (2011) 

suggest that, at the very least, indels should be required to be present on both the 

forward and reverse strands. Additionally, Mardis et al. (2009) suggest applying a 

coverage threshold to indel calls by, for example, only accepting those supported by at 

least 2 reads. Wei et al. (2011) prioritise indels by selecting only those which alter the 

protein and removing those present within the dbSNP, 1000 genomes and HapMap 

databases, as well as those present in an in-house list of controls. This is particularly 

relevant in the context of my study where I was expecting the variants to be rare and 

therefore not present, or present at a low frequency, in public databases. 

 

One of the simplest means to prioritise indels may include selecting coding, frameshift 

indels (Hu and Ng, 2012), as these are reported to occur very rarely (Wheeler et al., 

2008); see also the 1000 genomes (http://www.1000genomes.org/) and Exome Variant 

Server (http://evs.gs.washington.edu/EVS/) databases. However, not all indels occurring 

in coding regions lead to a loss of function, some are functionally neutral, and indels 

occurring outside of the coding regions could also have a considerable impact on genes 

by, for example, altering splicing (Pagani and Baralle, 2004; Zia and Moses, 2011; Hu 

and Ng, 2012). Alternatively, Wei et al. (2011) suggest employing a disease database, 

such as the HGMD (http://www.hgmd.cf.ac.uk/), as a means of selecting indels which 

may already be known to cause disease. Another more complex means to prioritise 

indels is by using a prediction programme (Lemos et al., 2012). However, as mentioned 

in chapter 4, Lemos et al. (2012) warn of discrepancies between the results produced by 

some of these programmes.  

 

5.2.6 Indel validations 

Even after prioritisation, validation rates for indels are lower than for single nucleotide 

substitutions (Weber et al., 2002; Mardis et al., 2009). For example, using PCR methods 

Weber et al. (2002) could only achieve a validation rate of 58% for indels of at least 

http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
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2bp’s long. For single base indels this rate dropped down to ~14%, and as single base 

indels are the most common type of indel, their low validation rate is an important issue. 

In another study, Mardis et al. (2009) used the MAQ aligner and Samtools variant caller 

to identify possible disease causing indels in a patient suffering from Acute Myeloid 

Leukemia. They identified 142 indels, of which they were only able to validate 23 

(~16%). 

 

5.3 Materials and Methods 

5.3.1 Samples, gene selection, and sequencing 

Centres in The University of Newcastle, Newcastle Upon Tyne (Prof. B Keavney), the 

AMC, Amsterdam (Dr Alex Postma), and the Max Delbrück Center, Berlin (Prof Sabine 

Klaasen), provided 133 samples. Centres in Newcastle and Amsterdam provided 67 

samples each, while centres in Berlin provided 26 of the samples. Samples were 

obtained from individuals suffering from a range of congenital cardiovascular 

malformations.  

 

Targeted genes were prioritised in four stages by the lead authors of the study in all 

three centres. Firstly, genes containing mutations which have previously been reported 

to cause human CVM were selected. Secondly, genes shown to be involved in CVM in 

mice or other model organisms were selected. Thirdly, genes known to participate 

directly in known regulatory gene networks for heart development were selected. 

Finally, genes involved in known gene networks for CVM, not necessarily directly, 

were selected. The final gene list consisted of 403 genes (Supplementary table 2.1).  The 

number of genes represented on the array was limited by the size of the capture possible 

using the Agilent SureSelect system at the time the project began. Sequencing was 

performed in Amsterdam (LUMC, Leiden) using an Illumina Genome analyser IIx. 

More detail on the methods used here are provided in chapter 2. 
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5.3.2 Indel calling 

The BWA aligner was used to map the reads to the human genome reference sequence 

(Build 37, hg19). Given the known lack of specificity of indel calls in NGS data, I 

decided to use two variant callers, Dindel (Albers et al., 2011) and the Genome Analysis 

Toolkit (GATK) indel caller (McKenna et al., 2010; DePristo et al., 2011), focusing on 

the indels that were detected using both pipelines. It was hoped that this would increase 

the confidence of indel calls and decrease the amount of effort required in attempts at 

validation (using Sanger sequencing) of the many false positive variants that might be 

detected by one pipeline alone. Only reads that aligned uniquely to the reference and 

non-duplicate reads were selected using a combination of custom written Perl scripts 

and the Picard MarkDuplicates routine (http://picard.sourceforge.net/). Only the filtered 

indels called by both pipelines were validated using Sanger sequencing. 

 

5.3.3 Indel filtering and annotations 

As a first filtering step, all off-target variant calls were removed, and the filtered list 

submitted to wAnnovar (http://wannovar.usc.edu/) for indel annotations. Following 

annotations, only exonic, frameshifting and splice site indels were selected, and because 

I wanted to identify rare variants, all indels present in the EVS database, consisting of 

variant calls from 5400 human exomes, and 1000 genomes databases, comprising 

variant calls from multiple genomes, at a frequency exceeding 1% were removed 

(Figure 5.1). A control list of variants was also used as a filter. The control list contains 

indel variants from 114 unrelated exomes (Generated locally). All exome data 

comprising the control list had been sequenced in house using the Agilent 50Mb Whole 

Exome Targeting kit and the Illumina Genome Analyser IIx. The list was compiled by 

Dr. Helen Griffin (2012, pers. comm). All variants present within the control list at a 

frequency of more than 1% were removed. MutationTaster v20100416 (Schwarz et al., 

2010) was used to assess potential variant pathogenicity.  

 

 

 

 

http://picard.sourceforge.net/
http://wannovar.usc.edu/
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Figure 5.1. Filtering steps used to prioritise indel calls. 

 

 

5.4 Results 

5.4.1 Alignment results  

Average target base coverage ranged from 18 – 704x across all 133 samples. Between 

85 - 97% of the target bases were covered at least once, and between 25 - 93% of the 

target bases were covered to a minimum of 10 fold (Appendix table 5.1). 

  

5.4.2 BWA-Dindel pipeline 

Using the BWA-Dindel pipeline, an average of 696 non-unique indels were identified in 

each sample. This comprised 7223 unique indels, of which 3026 were insertions and 
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4197 were deletions. Insertions ranged in size from 1bp - 25bp’s long, with insertions of 

1bp long being the most frequent (Figure 5.2A). Deletions ranged in size from 1bp - 

40bp’s long, and as with the insertions, deletion lengths of 1bp were the most frequent 

(Figure 5.2B). 

After filtering 317 indels remained (Appendix table 5.2). 
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5.2A 

 

  

 

 

 

 

 

 

 

 

 

 

5.2B 

Figure 5.2 (A,B). Size distribution of insertions (5.2A) and deletions (5.2B) that I 

identified using the BWA-Dindel pipeline. 
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5.4.3 BWA-GATK pipeline 

Using the BWA-GATK pipeline, an average of 526 non-unique indels were identified in 

each sample. This comprised 2873 unique indels, of which 1272 were insertions and 1 

601 were deletions. Insertions ranged in size from 1bp - 24bp’s in length, with 1bp 

insertions being the most frequent (Figure 5.3A). Deletions ranged in length from 1bp 

long - 40bp’s long, with deletions of 1bp long being the most frequent (Figure 5.3B). 

 

After filtering 35 indels remained (Appendix table 5.3). 
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5.3A 

5.3B 

Figure 5.3 (A,B). Size distribution of insertions (A) and deletions (B) that I 

identified using the BWA-GATK pipeline. 
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5.4.4 Indels called by both pipelines 

Of the 317 filtered indels from the BWA-Dindel pipeline and the 35 filtered indels from 

the BWA-GATK pipeline, 25 were identified by both (Table 5.3). Two hundred and 

ninety two were unique to the BWA-Dindel pipeline, and 10 were unique to the BWA-

GATK pipeline (Table 5.4). 
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Chromosome Position Reference Variant Gene Alteration 

chr1 2235396 - G SKI frameshift insertion 

chr1 71418662 G - PTGER3 frameshift deletion 

chr1 92185675 - C TGFBR3 frameshift insertion 

chr1 120612003 GG - NOTCH2 frameshift deletion 

chr1 201334355 T - TNNT2 frameshift deletion 

chr1 202407190 T - PPP1R12B frameshift deletion 

chr2 66739381 - T MEIS1 frameshift insertion 

chr2 121747069 - A GLI2 frameshift insertion 

chr2 211179765 - T MYL1 frameshift insertion 

chr2 211179766 T - MYL1 frameshift deletion 

chr3 71090482 - C FOXP1 frameshift insertion 

chr4 123748299 - C FGF2 frameshift insertion 

chr9 139405664 C - NOTCH1 frameshift deletion 

chr10 88478558 - C LDB3 frameshift insertion 

chr10 92679010 - T ANKRD1 frameshift insertion 

chr10 99338053 G - ANKRD2 frameshift deletion 

chr11 2869086 - GG KCNQ1 frameshift insertion 

chr11 2869088 - GC KCNQ1 frameshift insertion 

chr12 115109685 - A TBX3 frameshift insertion 

chr12 124824739 - GCCG NCOR2 frameshift insertion 

chr12 124885147 - G NCOR2 frameshift insertion 

chr14 73664749 - GG PSEN1 frameshift insertion 

chr16 3778897 - C CREBBP frameshift insertion 

chr20 6750839 - G BMP2 frameshift insertion 

chr20 33334734 - A NCOA6 splice site 

 

Table 5.3. Indels which were identified by both the BWA-Dindel and the BWA-

GATK pipelines. All positions based on HG19 reference. 

 

 

 

Samples 

Unique indels 

(Total) 

Unique indels 

(Filtered) Found in both Unique to 

BWA-GATK 133 2873 35 25 10 

BWA-DINDEL 133 7223 317 25 292 

 

Table 5.4. Number of indels identified by both pipelines and the number of indels 

unique to each. 
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5.4.5 Indel validations 

Of the 25 indels identified by both pipelines 13 occurred in samples provided by the 

laboratory at Newcastle University and were therefore available for immediate 

validation. Of these, 6 were identified as true positives, 5 were found to be false 

positives, and 2 remain unconfirmed (Table 5.5). The remaining 12 indels occurred in 

samples that were not from Newcastle and I am still waiting for validation.  Therefore, 

of the 13 indels that occurred in available samples currently 6 have been proven to be 

true positives (Table 5.5). 

At the time of the writing of this thesis, the MYL1 deletion (Chromosome 2, position 

211179765) which is likely to be true because it is found within a variable T region and 

a single base deletion was validated one base pair position upstream from it, remains 

unconfirmed. There is also a recognised insertion of a “T”, rs71888939, which is one 

base position upstream from my validated insertion. I am also awaiting results for, the 

NOTCH2 variant (Table 5.5) that is located in a region where the primers were not 

specific enough (i.e. they aligned to two regions of the chromosome), and will have to 

be redesigned. Furthermore, I identified a 4 base pair long insertion (-/GCCG) in the 

NCOR2 gene. However, Sanger sequencing validated this variant as a reported 9bp (-

/GCCGCTGCT) insertion, rs77661573 (Table 5.6).  
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Chromosome Position Reference Variant Gene Validation notes 

chr1 2235396 - G SKI False 

chr1 71418662 G - PTGER3 True 

chr1 120612003 GG - NOTCH2 Unconfirmed 

chr1 201334355 T - TNNT2 True 

chr2 66739381 - T MEIS1 False 

chr2 121747069 - A GLI2 False 

chr2 211179765 - T MYL1 

Possibly true 

(Variable T 

region) 

chr2 211179766 T - MYL1 True 

chr4 123748299 - C FGF2 False 

chr9 139405664 C - NOTCH1 True 

chr10 99338053 G - ANKRD2 True 

chr11 2869088 - GC KCNQ1 False 

chr12 124824739 - GCCG NCOR2 

True, but 

validated as 9bp’s 

long 

 

Table 5.5. Number of indels identified by both analysis pipelines which were 

validated, or which were false positive calls. All positions based on HG19 

reference. 
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Gene Number of samples (%) EVS5400 1000genomes dbSNP Control list 

PTGER3 1(<1) 0 0.0041 0 0 

TNNT2 1 (<1) 0 0 0 0 

ANKRD2 1(<1) 0 0 0 0 

NCOR2 16 (12) 0 0 rs77661573 0 

MYL1 2 (1.5) 0 0 0 0 

NOTCH1 1 (1) 0 0 0 0 

 

Table 5.6. Variant frequency of the 6 validated indels which were identified using 

both pipelines. Sanger sequencing identified the NCOR2 variant as a 9 base pair 

SNP, rs7761573. 

 

 

5.5 Discussion 

Next-generation sequencing identified 25 potentially disease causing indels in 133 

patients suffering from congenital cardiovascular malformations. All of the identified 

indels were located in the coding regions of genes and resulted in frameshifts. As all of 

the targeted genes are suspected to be involved in cardiovascular malformations, these 

indels may be related to disease in these samples. However, further functional studies 

would still need to be conducted in order to identify the true consequences of these indel 

variants. 

 

Of the 25 indels called by both pipelines, 13 were identified in samples from Newcastle, 

and therefore available for immediate validation. Although a validation rate of only 46% 

was achieved, this is consistent with, or better than other studies reported in the 

literature. For example Weber et al. (2002), only achieved confirmation rates of 14% 

and 58% for indels of 1bp and 2bp’s long respectively. The 6 validated indels, all 

occurred in different genes, namely PTGER3, ANKRD2, NCOR2, MYL1, NOTCH1, and 

TNNT2. These genes will be discussed in more detail below. In addition, an indel was 

identified within the DSC2 gene in 7 of thesamples. This indel was not present in the 

final list as it had a frequency of 1.4% in the control list. However, it is a previously 

reported insertion and has been proposed to influence cardiovascular development 

(Beffagna et al., 2007; Syrris et al., 2007; De Bortoli et al., 2010; Gehmlich et al., 

2011). In addition, its population frequency has been estimated to be ~3% (Syrris et al., 
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2007; De Bortoli et al., 2010), and therefore its presence within the control list is not 

unexpected.  

 

5.5.1 Insertion and deletion, MYL1 

The Myosin Light Chain 1 (MYL1) gene is located at chromosomal position 2q33-q34, 

is 1052 base pairs long and comprises 7 exons (NCBI). I identified a single base 

insertion in one of the samples in MYL1 that resulted in a frameshift of the first exon. It 

is located within a variable T region and was therefore difficult to validate (See figure 

5.4). However, I also identified a single base deletion within the same variable T region 

in two additional samples. This deletion was only one base pair upstream from the 

previous insertion, and has been validated. It too results in a frameshift in exon 1 of the 

MYL1 gene. There is also a SNP located one base pair position upstream from my 

deletion, rs71888939. This highlights the variability of this gene region, and the 

possible difficulties in correctly identifying the positions of indels in this region. 

Despite this variability, MYL1 may still be of interest.  

The first stage in the development of the heart involves the formation of myofibrils in 

the cardiomyocytes, which allow for heart contraction (England and Loughna, 2012). 

Once fully developed, heart muscle contraction is accomplished by myosin containing 

filaments pulling on filaments composed largely of actin (Timson, 2003). Muscle 

myosin is a hexamer consisting of two myosin heavy chains (MHC) and four myosin 

light chains (MYL) (Barton et al., 1985; Timson, 2003; Rottbauer et al., 2006; England 

and Loughna, 2012). MYL chains are encoded for by eight genes, one of which is MYL1 

(England and Loughna, 2012). 

 

Genes encoding for MYL chains influence heart development, contraction and 

maintenance, and in model organisms, defects in these genes lead to hypertrophic 

cardiomyopathy (Shimada et al., 2009). More specifically, the myosin light chains are 

involved in the regulation of heart contraction (Timson, 2003), and disruption to these 

genes will severely affect cardiac function (Huang et al., 2003; Shimada et al., 2009). 

The study by Huang et al. (2003) suggests that myosin light chain 2 (MLC2a) is very 

important in the development of the atrial myofibrillar apparatus. They developed mice 

mutants with a non-functioning MLC2a gene, all of which died before birth due to 

severe atrial malformations. Also, Rottbauer et al. (2006) demonstrated that the removal 

of MLC2 function leads to a severe disruption of cardiac function in zebrafish. They 



126 
 

found that atrial and ventricular cardiomyocytes in zebrafish in which MLC2 function 

had been abolished, were unable to contract. 

 

The insertion at position 211179765, chromosome 2 (c.2_3insA), was identified in a 

single individual displaying a pulmonary atresia with intact ventricular septum (PAIVS), 

while the deletion at position 211179766, chromosome 2 (c.1delA), was identified in 

two individuals displaying non compaction and PAIVS respectively. Both variants occur 

in a highly conserved region early on in exon 1 (Figure 5.4) of the gene, were predicted 

as potentially disease causing, and are not present in the EVS5400, 1000 genomes or in 

the dbSNP databases (Table 5.6). The variants are also not present in the control list, but 

the indel was present in 8 random controls sequenced by Dr. Elise Glen. 

 

PAIVS is a rare congenital disorder, making up about 1% of all congenital cardiac 

disorders, and is characterised by a complete obstruction of blood flow from the right 

ventricle to the pulmonary trunk and left ventricle (Gutgesell, 1975; Trusler et al., 1976; 

Ashburn et al., 2004). It is a morphologically diverse malformation showing large 

variations in the anatomy of the right ventricle and coronary arteries (Bull et al., 1982; 

Mi et al., 2005). 

 

Non compaction cardiomyopthies are heart muscle disorders which can arise in either 

children or adults and manifest as heart failure (Engberding et al., 2010). As well as 

occurring as singular isolated cases, they can also occur within multiple members of 

families (Oechslin et al., 2000; Ichida et al., 2001; Engberding et al., 2010). The genetic 

causes of non compaction cardiomyopathies are diverse and have been shown to be 

caused by various genes such as MYH7, ACTC and TNNT2 (Klaassen et al., 2008). 

Chapter 4 of my thesis also highlights other genes which have been shown to be 

responsible for some forms of cardiomyopathy. 

 

The influence of myosin light chains on proper cardiac development, and subsequent 

function, make the MYL1 a good candidate for the disease gene in these three 

individuals. However, the variability of this region will make it difficult to assess the 

true impact of these indels on disease. 
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Figure 5.4. The position of the variable T region and the position of both indels which were identified in the MYL1 gene 

(http://genome.ucsc.edu). 
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5.5.2 Deletion, NOTCH1 

A single base deletion was identified in the NOTCH1 gene. The NOTCH1 gene is 

located at chromosomal position 9q34.3, is 9309 base pairs long and comprises 34 

exons (NCBI). The deletion results in a frameshift in exon 16 of the gene (c.2527delG), 

and brings the reading frame forward by one position. It is in a highly conserved region 

(Figure 5.5), was predicted to be potentially disease causing, and not present in the 

EVS5400, 1000 genomes, or dbSNP databases (Table 5.6). It was also not present in the 

control list. However, I can not confirm whether it is a de novo variant as at the time of 

writing my thesis the fathers DNA was not available. 

The NOTCH1 gene forms part of the highly conserved Notch signalling pathway which 

is involved in cell-cell communications, in particular, it is an integral pathway involved 

in cell-fate determinations (Gordon et al., 2008; de la Pompa and Epstein, 2012) and its 

signalling regulates organogenesis and cellular processes, including proliferation and 

apoptosis in mammals (MacGrogan et al., 2011). NOTCH signalling is especially 

important for the formation of the heart, which requires the coordinated development of 

multiple parts (de la Pompa and Epstein, 2012). There are currently four recognised 

NOTCH genes which all play a very important role in proper cardiac development 

(High and Epstein, 2008; MacGrogan et al., 2011; de la Pompa and Epstein, 2012).     

 

Disruptions to the Notch signalling genes have been shown to cause various 

cardiovascular developmental disorders (Krantz et al., 1999; Eldadah et al., 2001; Garg 

et al., 2005). MacGrogan et al. (2011) provide a good review of the role that NOTCH 

signalling plays in cardiac development. In particular during valve development, where 

the epithelial-mesenchyme transition, which is activated by endocardial Notch 

signalling, give rise to the valve primordial. For example, Garg et al. (2005) have 

demonstrated that mutations within the NOTCH1 gene can lead to aortic valve disease. 

They analysed a multi-generational pedigree with 11 cases of congenital heart disease, 9 

of which displayed aortic valve disease. Direct sequencing of the NOTCH1 gene 

revealed a R1108X nonsense mutation present in all cases. This variant was not found in 

unaffected family members or in 1 136 control samples. There are also many mouse 

models supporting the influence of the Notch pathway genes on cardiovascular defects 

(Krebs et al., 2000; Duarte et al., 2004). For example, Krebs et al. (2000) developed 

both NOTCH1-deficient and NOTCH4-deficient mice. The resultant embryos had severe 

abnormalities in angiogenic vascular remodelling. 
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The insertion I identified (Chromosome 9, position 139405664) was found in a patient 

with mitral valve atresia. Mitral valve abnormalities are often complex, with severe 

forms occurring rarely (Remenyi and Gentles, 2012). The true incidence is difficult to 

assess as it is often classified with other congenital cardiac malformations (Summerell 

et al., 1968). For example, in Marfan Syndrome where mitral valve disease is the 

leading cause of death in children suffering from this disorder (Ng et al., 2004). 

However, the genetic causes of some forms of non-syndromic cardiac valve diseases 

have also been identified, such as in isolated, non-syndromic valvular dystrophy (Kyndt 

et al., 2007). By sequencing the FLNA gene Kyndt et al. (2007) identified mutations in 

all of their 43 cases that were not present in unaffected family members or in 500 

controls.  

 

The influence of NOTCH1 in various cardiac disorders involving abnormal valve 

development (Garg et al., 2005; McKellar et al., 2007; McBride et al., 2008; Acharya et 

al., 2011) make this gene a good candidate for disease in this patient. 
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Figure 5.5. Indel which I identified in the NOTCH1 gene (http://genome.ucsc.edu). 
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5.5.3 Deletion, TNNT2 

The TNNT2 gene is located at chromosomal position 1q32, is 1153 base pairs long, and 

comprises 17 exons (NCBI). I was able to identify and validate a single base deletion in 

the TNNT2 gene (c.330delA). The deletion is in a conserved region and results in a 

frameshift in exon 9 of this gene (Figure 5.6). It was also predicted to be potentially 

disease causing by MutationTaster. TNNT2 is part of the troponin protein complex that 

regulates the interaction of myosin and actin, thereby influencing the contraction of 

vertebrate striated muscle (Zot and Potter, 1987; Morimoto et al., 2002; Huang et al., 

2009). The complex comprises three interacting proteins that stimulate contraction of 

the heart in response to the presence of Ca
2+

 (Morimoto et al., 2002; Parmacek and 

Solaro, 2004; Huang et al., 2009). 

Deletions within cardiac troponin T genes, such as TNNT2, have been shown to cause 

various cardiomyopathies, such as dilated cardiomyopathy (Kamisago et al., 2000; 

Morimoto et al., 2002; Villard et al., 2005) and hypertrophic cardiomyopathy (Forissier 

et al., 1996; Marian and Roberts, 2001). For example, by sequencing the TNNT2 gene, 

Forissier et al. (1996) were able to identify a Arg102Leu missense mutation found only 

in the four affected individuals. Mutation screening was performed using a single strand 

conformation polymorphism analysis and sequencing using the Biosystem 373A DNA 

sequencer. The variant was not present in the healthy family members, or in 92 healthy 

controls. Also, by sequencing various sarcomere protein encoding genes in a set of 

patients displaying dilated cardiomyopathy, Kamisago et al. (2000) were able to identify 

a three nucleotide deletion in troponin T in all the affected family members, but not in 

the healthy members of the family, or in 200 unrelated controls. 

 

The deletion was only identified in a single patient displaying Ebsteins Anomaly (EA). 

EA is a complex congenital malformation characterised by a structural deformity of the 

tricuspid valve that results in a wide range of morphological and physiological changes 

(Correa-Villasenor et al., 1994; Attenhofer Jost et al., 2007). The malformation results 

in the abnormal flow of blood through the right side of the heart resulting in right 

ventricular dilation in about 60% of patients with EA (Attenhofer Jost et al., 2007). 

Various genes have been found to cause EA, such as GATA4 and NKX2.4 (Digilio et al., 

2011). However, the enlargement of the heart chambers and decreased cardiac function 

through chamber enlargement seen in EA and the strong influence of TNNT2 mutations 
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on cardiomyopathies implicates this gene as possibly disease causing in this individual. 

Other possible genetic causes of EA have been discussed in more detail in chapter 4. 
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Figure 5.6. Position of the identified indel in the TNNT2 gene (http://genome.ucsc.edu). 
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5.5.4 Insertion, DSC2 

The DSC2 gene is found at chromosomal position 18q12.1, is 5257 base pairs long, and 

comprises 17 exons (NCBI). I identified a E896fsX900insertion in a conserved region 

of the DSC2 gene (Figure 5.7), that was predicted to be potentially disease causing. It 

was found in 7 of the samples, but was not present in my final table because it had a 

frequency >1% in  the control list. The presence of this insertion within the control list 

is expected as it is known to have a low level population frequency estimated to be ~3% 

(Syrris et al., 2007; De Bortoli et al., 2010). The insertion was identified in the final 

exon (Exon 17) of the gene, and affects the final 4 amino acids of the exon, truncating 

the protein. It was found in ~5% of the samples, and not present in the dbSNP database. 

However, it is present in the 1000 genomes project at a frequency of 1%. The difference 

in allele frequencies between the samples and the 1000 genomes is significant 

(p=0.00026). This specific variant has been previously reported in a number of studies 

assessing its potential as a cause of right ventricular cardiomyopathy (Syrris et al., 2006; 

De Bortoli et al., 2010; Gehmlich et al., 2011).   

A study by De Bortoli et al. (2010) found the variant in 5 of their 112 cardiomyopathy 

cases (allele frequency = 2.2%) but also in 6 out of 200 (allele frequency = 1.5%) of 

their healthy controls. This difference is not statistically significant and while not able to 

show an association of the insertion with disease, a functional analysis showed that the 

insertion altered the proper desmosomal localisation along cell boundaries. Also, 

alternative splicing produces two DSC2 isoforms, DSC2a and DSC2b (Syrris et al., 

2006). The insertion only alters the DSC2a isoform and not the DSC2b isoform, and it is 

possible that DSC2b is compensating for the alteration in DSC2a in the control samples 

in which the insertion was identified (De Bortoli et al., 2010). Syrris et al. (2006) state 

that due to the importance of desmocollins for cell adhesion, mutations in these genes 

would result in the decreased desmosome function and the possible detachment and 

death of cardiac myocytes, therefore negatively influencing cardiac development. 

 

The patients in whom this variant was identified suffered from a range of cardiac 

abnormalities including EA, non compaction, PAIVS, right ventricular hypoplasia, 

double inlet left ventricle and hypoplastic left heart syndrome. Although, this variant 

has been reported to largely cause right ventricular cardiomyopathies (Syrris et al., 2006; 

De Bortoli et al., 2010; Gehmlich et al., 2011), its potential effect on cardiac myocytes 
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and therefore proper cardiac development could implicate it in a range of other cardiac 

developmental disorders. 
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Figure 5.7. Position and degree of conservation of the indel which I identified in the DSC2 gene (http://genome.ucsc.edu). 
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5.5.5 Deletion, PTGER3 

The PTGER3 gene is a little known gene located at chromosomal position 1p31.2 

(http://www.ncbi.nlm.nih). This gene is expressed in the heart and is part of the G-

Protein coupled receptor family, and is one of the four receptors of Prostaglandin E2 

which may be involved in several biological functions. The gene is involved in various 

pathways, some of which influence smooth muscle contraction and relaxation, figure 

5.8. For example, PTGER3 interacts with KNG1 and PTGER1 which both influence 

smooth muscle contraction (http://www.genecards.org). 

 

I identified a c.1185delC deletion in the PTGER3 gene in a single individual suffering 

from EA. The deletion is located in chromosome 1 at position 71418662 and results in a 

frameshift in the last exon of this gene (exon 4). It was predicted to be potentially 

disease causing and is in a region which is conserved in three other organisms (Figure 

5.9), however, it is described as being intronic in all but one of the known transcripts 

(NM_198718). It is not found in the EVS or dbSNP databases, but the variant has been 

seen in the 1000 genomes at a frequency of below 1% (Table 5.6). Also, at the time of 

writing this thesis, the presence of this variant had not been validated in the parents, so I 

am unsure whether it is de novo. 

Due to the limited information on this gene and the fact that the deletion occurs in the 

final exon of PTGER3, as well as it being described largely as an intronic region, it 

would be very difficult to identify the influence of this variant on disease in this patient. 

http://www.ncbi.nlm.nih/
http://www.genecards.org/
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Figure 5.8. Genetic pathway interactions of the PTGER3 gene. From 

http://www.genecards.org. 

 

 

 

 

 

http://www.genecards.org/
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Figure 5.9. The deleted base from the PTGER3 gene (http://genome.ucsc.edu). 
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5.5.6 Deletion, ANKRD2 

The ANKRD2 gene encodes the ANKRD2 protein which is one of the three members of 

the conserved muscle ankyrin repeat proteins that may be involved in muscle stress 

response pathways (Miller et al., 2003). Human Ankrd2 is similar to proteins found in 

mice, rats and rabbits, but in all these organisms they are expressed predominantly in 

cardiac muscle, however in humans they are expressed predominantly in skeletal muscle 

(Pallavicini et al., 2001; Belgrano et al., 2011). It has been hypothesised, that although 

the human and mice proteins may be functionally related, they may well show 

specialisation for the tissues they are expressed in (Pallavicini et al., 2001), therefore 

may not be active in the heart. 

 

I identified a frameshift deletion in chromosome 10 (c.327delG) in the ANKRD2 gene in 

a patient which suffers from double inlet left ventricle. At the time of writing my thesis, 

this variant had not been validated in the parents yet. The deletion was identified in a 

conserved region of the gene (Figure 5.10), and was predicted to be potentially disease 

causing. However, because of the features of Ankrd2 described above, I am unable to 

state whether this gene is a plausible candidate for disease in this patient.  
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Figure 5.10. The position and extent of conservation of the deleted base identified in the ANRD2 gene (http://genome.ucsc.edu). 
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5.5.7 Insertion, NCOR2 

The NCOR2 gene encodes a nuclear receptor co-repressor responsible for the mediation 

of transcription silencing in certain genes.  The gene encodes for a protein member of 

thyroid hormone and retinoic acid receptor associated co-repressors 

(http://www.genecards.org). This gene is part of the NOTCH signalling pathway (Figure 

5.11), which as described earlier, is a very important pathway in heart development. 

 

I identified a frameshift variant (c.5470_5471insCGGC) in exon 37 (Of 47) in this gene. 

The variant was identified in 16 patients suffering from a range of cardiac 

malformations including EA, noncompaction, tricuspid atresia, univentricular heart, 

pulmonary atresia with intact intraventriculal septum, and double inlet ventricle. The 

variant is located in a region conserved across a range of organisms (Figure 5.12), and 

was predicted to be potentially disease causing. However, the variant was validated as a 

9bp insertion (/GCCGCTGCT) that is located in dbSNP (rs77661573), meaning that it is 

in fact not frameshifting. Also, rs77661573 is identified in the majority of people in the 

EVS database, and was validated using Sanger Sequencing (Dr. Elise Glen) in 7 random 

controls. The variant is also present in both parents. Therefore, this variant is likely not 

responsible for disease in these patients. 
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Figure 5.11. The NOTCH1 signalling pathway and the NCOR gene in this pathway 

(http://pathwaymaps.com).  

 

 

 

 

 

 

 

http://pathwaymaps.com/
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Figure 5.12. The inserted bases from the NCOR2 gene (http://genome.ucsc.edu). 
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5.6 Conclusions 

Using two different indel calling pipelines I was able to identify potentially disease 

causing variants in a group of 133 patients suffering from various congenital 

cardiovascular malformations, 46% of which were validated.  All genes studied in this 

experiment had been selected for their influence on cardiac development and function, 

so it is possibly questionable to assert that certain genes out of the selected 403 are of 

greater interest than others a posteriori.  However, it is noticeable that four of the genes 

harbouring indels are known causative genes for human cardiovascular disease, namely 

MYL1, NOTCH1, TNNT2, and DSC2. However it is important to note that these results 

do not infer causality, and despite their potential to influence disease in these patients, 

functional studies still need to be performed on these indels to assess their functional 

importance in cardiovascular development.   

 

An important future direction for this work is to validate whether these indels are de 

novo. At the writing of this thesis, DNA was only available for some of the parents. 

Therefore, I could not assess whether all of the variants I identified were in fact de novo. 

Since these cases are assumed not to come from Mendelian families,  Iassumed that in 

most cases, rare, de novo variants are responsible for disease in these patients. This 

would need to be assessed further. 

 

The selection of the BWA-Dindel and BWA-GATK pipelines was done at the onset of 

the study based on current knowledge available in the literature; many studies had 

demonstrated that these were the most appropriate indel callers available at the time. 

Also, as this study progressed, so did the work in chapter 3 in which I designed a novel 

method for assessing the performance of NGS variant calls. Indeed, in my analysis 

BWA-Dindel and BWA-GATK did achieve the highest sensitivity values, in comparison 

to the other pipelines.  

 

As the data chapters (Chapters 3, 4, and 5) of my thesis each contain in depth 

discussions, the summary discussion (Chapter 6) which follows, will recap the main 

findings of my thesis and highlight the areas which I think are important. It will also 

focus on the limitations and future directions of this work. 

 

 

 



146 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6. Summary Discussion 
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6.1. Summary of findings 

The aim of my PhD was to use NGS methods to identify rare, potentially disease 

causing variants involved in various diseases, particularly in CVM. My thesis took the 

form of three linked sub-projects, which developed concurrently with one another. In 

the first, I developed a novel approach to calculate the sensitivity and specificity of 

variant calls in NGS data using population SNP frequency information. This method 

allowed me to test the performance of various alignment and variant calling 

programmes. The NovoAlign-Samtools pipeline achieved the highest sensitivity and 

specificity values for identifying single nucleotide substitutions, and the BWA-Dindel 

and BWA-GATK pipelines achieved the highest sensitivity and specificity values for 

identifying indel variants.  

The three pipelines mentioned above were used in the remaining two sub-projects of my 

PhD. In the first of these, I attempted to identify potentially disease causing variants in 

three families with disorders appearing to segregate in a Mendelian dominant fashion.  

These were atrioventricular septal defect (AVSD), dilated cardiomyopathy (DCM) and 

hereditary sclerosing poikiloderma (HSP). In the pedigrees where cases presented with 

DCM and HSP I was able to identify potentially disease causing variants in plausible 

candidate genes for disease. In the second sub-project, I used NGS to identify 

potentially disease causing and novel variants in a group of unrelated individuals 

suffering from various CVMs selected (by my colleagues in clinical cardiology) to 

involve either right or left ventricular hypoplasia.  In these analyses I focused on indel 

variants, given the recognised challenges in correctly identifying these variants.  In the 

133 cases, evaluated for 403 candidate genes, I discovered 4 previously undescribed, 

frameshifting indels that, given the strong evolutionary constraints on such indels and 

the known consequences of variants in these genes, have a high a priori likelihood of 

being related to disease.   

Since historically CVM has been a condition with a high early mortality, selective 

pressure on causative variants is likely to have been strong.  Therefore, with regard to 

the adoption of NGS methodology in “sporadic” cases, it was a reasonable hypothesis 

when I commenced my project that common variants causing an increase in CVM risk 

might not exist, or be very few in number and of very small effect.  I reasoned that risk 

alleles were more likely to be rare in the population, justifying a sequencing approach.   
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6.2 Limitations of this work 

Limitations of the method proposed in chapter 3 

My method for calculating sensitivity and specificity provided comparable results to 

methods requiring microarray data. Using this method, I was able to compare different 

variant calling pipelines and identify the best performing pipelines as those generating 

the highest sensitivity and specificity values. However, in the case of specificity, values 

are always close to 1. In fact, specificity values substantially lower than 1 would make 

NGS non-viable, as the number of false positives would be too large. Therefore, it is 

necessary to assess very small differences between pipelines in assigning a rank order. 

In instances where the number of variants is not high, such as was the case for indels, 

this assessment is difficult. This is not strictly a limitation of my method, but more a 

limitation of available data. 

I made use of the HapMap and 1000 genomes databases to obtain population allele 

frequency information. I could increase the number of markers by including information 

from other databases. However, there is a large amount of overlap between the different 

databases, therefore this will not lead to a substantial increase in the number of markers.   

An alternative means to increase the number of available markers for the calculation of 

specificity would be to include sites for which there are no reported variants and assume 

a low minor allele frequency for all of these sites. This would increase the number of 

sites used and improve the ability to estimate specificity. Additionally, since I was 

interested in using NGS to identify rare variants responsible for disease, it may be 

appropriate to use all the polymorphisms present in the coding regions, and possibly in 

regions outside of these. Although the results are not presented I did indeed try this by 

making use of all of the HapMap SNPs which were present in the Agilent whole exome 

targets, not just the on-target SNPs represented in the microarray. This resulted in a 

lower sensitivity being achieved for all pipelines, with the NovoAlign-Samtools 

pipeline achieving the highest sensitivity of ~85%. One possible reason for this drop in 

sensitivity is that the polymorphisms present on microarrays represent a selection based 

on criteria that include the probability of being efficiently typed. It is possible that NGS 

is accurate, or inaccurate, in exactly the same regions. 

Results presented in chapter 3 based on my approach had indicated little difference in 

specificity between the GATK and Dindel pipelines. However, empirical evidence 



149 
 

presented in chapter 5 indicated that there was in fact a difference in specificity values 

between the two pipelines with respect to indel calling. After filtering, the BWA-GATK 

pipeline only identified 35 indels, while the BWA-Dindel pipeline identified 317 indels. 

Variant calls from the BWA-Dindel pipeline achieved a laboratory validation rate below 

30%, whereas when using the BWA-GATK pipeline a validation rate approaching 50% 

was achieved, indicating a significantly higher specificity with BWA-GATK that had 

not been detected using my method. The explanation for this apparent discrepancy is 

related to variation between the read coverage parameter selected in the two chapters.  

Due to the large number of windows produced when using the Bowtie2 aligner in 

combination with Dindel in chapter 3, a minimum threshold of 7 reads covering each 

indel variant had to be applied in all instances where Dindel was used. For all other 

indel callers tested in chapter 3, the default parameters were used, which only impose a 

minimum threshold of 1 read covering each indel. However, the BWA-Dindel pipeline 

in chapter 4 and 5 generated far fewer windows and as such I was able to make use of 

the default parameter sets (a minimum threshold of 1 read covering each indel). Due to 

the variability in the performance of different indel calling pipelines, to increase the 

confidence of the indel calls in chapter 5, I used the intersection of both the BWA-

Dindel and BWA-GATK pipeline. This approach seemed to increase the validation rate 

and remove many of the false positive calls.   

As well as the method I proposed, there are other performance measures which could be 

used. For example, a popular performance metric is the proportion of identified variants 

at sites known to be polymorphic. The known polymorphic sites are obtained from 

databases such as dbSNP and the 1000 genomes. Although this is a commonly used 

method to assess the performance of a variant calling pipeline, it will not allow for the 

identification of the best performing pipeline, because  this estimate will be very high 

(>95%) in most cases. Also, the proportion of identified variants matching SNPs in 

public databases is likely to increase in the future as methods improve and as the 

number of SNPs in these databases increases. The increasing number of variants in 

these databases will mean that an even greater proportion of identified variants will 

match the polymorphic sites. However, this will also increase the power of my method 

for calculating sensitivity and specificity by providing a greater number of allele 

frequencies. Using the proportion of identified variants matching polymorphic sites in 

public databases as a performance measure may also bias results towards a particular 

pipeline. For example, using an analysis pipeline to identify variants, and then assessing 
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its performance by matching the identified variants to a database which used the same 

(or a very similar) pipeline, will obviously lead to high degree of concordance. 

An alternative performance metric to use could be by assessing base call quality, 

alignment quality or coverage. These measures are often used as performance metrics in 

the literature; however they only assess the performance of the base caller and aligner, 

not the entire pipeline. Conversely, my method provides a means of assessing the 

performance of an entire NGS analysis pipeline. However, all these methods could 

certainly be used in conjunction with one another to provide a complete overview of all 

aspects of the pipeline used in an NGS experiment.  Further work could be undertaken 

to provide an appropriate framework to unify these methods and provide a suitable user 

interface for routine use; however, this was beyond the scope of the present work. 

 

Limitations of causative variant identification in chapter 4 

I was able to identify potentially disease causing variants in plausible candidate genes in 

both the DCM and the HSP pedigrees, but not in the AVSD pedigree. These genes were 

identified as potential candidates based on the current understanding of their function, 

as identified from databases such as OMIM. However, there are possibly many genes 

for which no functional information or influence on disorders displaying similar 

characteristics may be available, but which may still influence disease in these 

pedigrees. For example, in the case of the FAM111B gene I identified in the HSP 

pedigree. There is very little information available for this gene, and had it not been for 

the second pedigree which was identified by my collaborators in Nantes, France, I 

would not have identified this gene as a plausible candidate for disease in this family. 

There are also several other potential reasons for failure to identify a likely causative 

variant in the AVSD pedigree.  First, the causative variants may not have been captured 

by the exon capture kit, due to the various technical limitations of the method, or they 

may have been removed by one of the filtering steps (See chapter 3 and 4). In particular, 

the causative variant may well occur outside of the exonic regions. 

Also, I relied on the MutationTaster programme to assess the potential pathogenicity of 

the variants. Many studies have highlighted the potential shortfalls of using such 

prediction programmes (See chapter 4 and 5). Indeed, had it not been for the 

identification of a second HSP pedigree, I would likely have removed the FAM111B 
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gene as a plausible candidate as the variant was not predicted to be disease causing by 

MutationTaster. 

Another possibility is that the variants causing disease in the AVSD pedigree are not 

necessarily distinct in all four affected individuals. One of the filtering steps I used 

involved selecting only variants common to all the affected individuals. This of course 

assumes that the presence of affected individuals with AVSD is as a result of them 

having inherited the same disease causing variant (Bamshad et al., 2011). However, this 

may not necessarily be true and there is a chance that for at least one of the affected 

individuals in the pedigree, disease is as a result of a variant which was not inherited 

(Gilissen et al., 2011).  

 

Limitations of causative variant identification in chapter 5 

Recent data from the 1000 Genomes and EVS projects indicate that frameshifting indels 

are not only much rarer than non-synonymous single nucleotide substitutions, but that 

they are evolutionarily younger, and therefore a priori have a higher likelihood of being 

disease-causing. However, due to the difficulties involved in identifying indels, if 

disease was indeed caused by such variants there is a chance that the causative variant 

was not identified in my analysis. Additionally, methods for identifying copy number 

variants using NGS approaches remain at an early stage of development; I did not 

attempt to study CNVs in my present work. Previous observations indicate that CNVs 

do indeed contribute to CVM risk (Greenway et al., 2009; Soemedi et al., 2012); 

however, in the analysis of sporadic patients, any that had been shown to have a 

potentially causative CNV (>1Mb) based on analyses done by others within the host lab 

on SNP chip data were removed from analysis. 

One of the main limitations of this work is that of sample size. For instance, using 

simulated data, Kiezun et al. (2012) expect that over 10 000 exomes would be required 

to achieve sufficient statistical power to detect associations of rare variations with 

complex traits. This was highlighted in a study investigating the role of rare genetic 

variants in breast cancer, which targeted 507 genes implicated in DNA repair and 

sequenced these on an Illumina HiSeq2000 in  1 150 cases (Ruark et al., 2013). The 

study identified 1 044 protein truncating variants, and stratified the genes based on the 

number of different, rare truncating variants present in the samples. The PPM1D gene 
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was the most overrepresented in this regard. To further explore the role of PPM1D in 

breast and ovarian cancer they performed a large scale case-control replication 

experiment using 7 781 unrelated individuals with breast and/ovarian cancer and 5 861 

controls. They identified protein truncating variants in 25 of the 7 781 cases, and only 1 

of the 5 861 controls (p=1.12 x 10
-5

). This study highlights the large sample sizes which 

are likely to be required in such a case-control study.  The relatively small sample size 

in this work represented all the patient resource from a multi-centre international 

collaboration, since the CVM phenotypes I studied are rare.  The seriousness of the 

conditions and their rarity led to thehypothesis at the outset of this work that rare 

deleterious variants might be significantly over-represented in cases, even in a relatively 

small discovery cohort.  The work was commenced before the bulk of the 1000 

Genomes data (eg the paper of MacArthur et al. 2012) was released showing a large 

excess of rare variants in the population, due to bottlenecks and weak selection, 

compared to what would be predicted from previous simulation-based studies. The 

discovery from that data that each of us harbours about 100 strictly defined loss of 

function alleles and 20 fully inactivate genes, with more than 50 heterozygous OMIM 

alleles, clearly mandates much larger studies if rare variants are to be successfully 

identified. 

  

Issues of causality 

It is important to note that even though variants were identified in plausible candidate 

genes, this does not imply causality. For infrequently occurring or unique variants, 

laboratory validation for each variant may be the only route to establishing a causal 

relationship.  For more frequently occurring variants, or aggregated variants within 

particular genes, causality may seem more likely where there is an overrepresentation of 

variants in cases when compared to controls (thus establishing association). However, 

causality still remains an experimental issue that was beyond the scope of this work.  Of 

note, even among common variants identified by GWAS in various diseases, molecular 

mechanisms accounting for the associations have in general yet to be discovered.  
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6.3. Future directions 

Bioinformatic challenges 

As the method proposed in chapter 3 is simple to implement, it would be possible to 

integrate it into a variant caller. It could then be used in much the same way as the 

recalibration steps used by the GATK variant caller to improve variant calls. The benefit 

of such a procedure was demonstrated in chapter 3 where a base quality >20 resulted in 

a large drop in sensitivity, while a base quality of >30 only resulted in a small increase 

in specificity. The ideal analysis pipeline should maximise sensitivity and specificity by 

optimising analysis parameters such as the base quality threshold. 

A further aspect which would have to be considered in any future work would be 

whether or not to carry out whole genome sequencing. In both the analysis of the family 

data and in the analysis of the unrelated HeartRepair samples a targeted sequencing 

approach was used. For the family data a whole exome targeting approach was used, 

and for the analysis of the unrelated samples, the exons of 403 genes were targeted. 

Possibly a better option would be to sequence the whole genome in all samples as this 

would capture more of the genetic information. However, a major problem with whole 

genome sequencing is that it will identify a great many variants for which very 

little/nothing is known.  Also, the costs of whole genome sequencing are very high, for 

which a low coverage yield is obtained. Most whole genome sequencing experiments 

only achieve a coverage of ~10 fold. In chapter 3, I demonstrated that at a coverage of 

10 fold, the sensitivity is only ~20%. However, whole genome sequencing does benefit 

from not having an enrichment step and the associated biases of enrichment. 

Also, as mentioned earlier, it is quite possible that the diseases in these cases are not 

caused by single base substitutions or by indels. Of particular interest would be the 

identification of CNVs. At the time of writing my thesis, methods for identifying CNVs 

robustly using short-read NGS data had not been well established or tested, and I did 

not attempt to identify these types of genetic variants. However, large CNVs should be 

identified and assessed in any future analysis. 
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Future work for the variants identified in chapter 4 

I was able to identify three genes of particular interest in the HSP family, namely 

FAM111B, AGAP6, and CNTNAPSB. These three genes are of great interest because 

they were mutated in both HSP pedigrees. Due to the rarity of HSP, identifying genes 

mutated in both the unrelated pedigrees should be prioritised in any future work. For 

FAM111B, my collaborators are currently performing skin biopsies on both pedigrees.  

FAM111B expression in skin fibroblasts will be compared, and the expression levels of 

“classic” fibrotic genes (eg Collagen 1, TIMP-1, TGFB1, PDGF) evaluated in 

fibroblasts from case and control patients. Although I will not be directly involved in 

these analyses, a similar approach can also be taken for the AGAP6 and CNTNAPSB 

genes, where expression levels in cases and controls could be compared.  

It is also possible to use exome data from a small number of samples to perform 

association tests between cases and controls. Samtools, for example, provides some 

functionality in this regard. However, these methods are not widely used, largely 

because they have not been thoroughly tested. However, methods such as these could 

provide extra supporting evidence for my results. Recently, methods have also been 

developed to identify CNV’s using only a small number of exomes. The potential 

importance of CNV’s in disease has been discussed throughout my PhD, and even 

though methods for CNV detection using only a small number of exomes are presently 

limited, it would be an important step in any future analysis on these samples.  

 

Future work for the variants identified in chapter 5 

With regards to the HeartRepair study of sporadic CVM cases, the sequencing will be 

repeated in cases and controls in a replication cohort on the genes of interest. Of 

particular interest are the MYL1, NOTCH1, TNNT2, and DSC2 genes, because they are 

known causative genes for human cardiovascular disease. A similar approach has been 

performed for the single nucleotide polymorphisms which have been identified by 

collaborators in Belgium. Dr. Elise Glen (University of Newcastle) used the EVS 

database as a control database to obtain allele frequencies for the 403 genes used in the 

HeartRepair study. She then compared the allele frequencies from the 133 cases against 

this set of controls using a chi-square test. In this first round of analysis, the NKX2.3 

gene was found to be overrepresented for variants in the cases (chi2 = 1.17E-06). A 
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similar approach could be used for the indel data to identify any genes showing an 

overrepresentation of variants; however, far larger numbers of samples would need to 

undergo targeted capture and sequencing in order to provide a sufficient number of 

indels to enable any such statistical comparison to be conducted.  This could be used as 

a test case, and if any genes are shown to be overrepresented, additional cases and 

controls could be sequenced. 

 

6.4 Concluding remarks 

During my PhD, I developed a method to calculate the sensitivity and specificity of 

NGS variant calls, which unlike current methods, does not require microarray data as a 

reference. It is a fast and simple to use method which can be used to test the 

performance of an entire NGS analysis pipeline. Using a whole exome sequencing 

approach I was also able to identify potentially disease causing variants in three families 

displaying Mendelian disorders. Additionally, using targeted sequence data I was able 

to identify potentially disease causing indels in group of unrelated individuals suffering 

from various sporadic CVMs.  
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Appendices: 

 

use warnings; 

use Getopt::Long; 

my $Index=""; 

my ($command1, $command2, $command3=""; 

GetOptions ("CWD:s"=>\$command1,"InputFile:s"=>\$command2,"SampleId:s"=>\$command3); 

my $CWD=$command1; 

my $Input=$command2; 

my $Id=$command3; 

my $CurrentDir=$CWD; 

chomp $CurrentDir; 

my @DirContent=`ls $CurrentDir`; 

my $file="$CurrentDir/$Input"; 

my $ConvertedFile=ConvertFileForMutaionTaster($file,$Id); 

my $snp2snippetOut=$CurrentDir."/snp2snippetResults_hg19_".$Id.".txt"; 

my $ErrorsRemoved=$CurrentDir."/snp2snippetResults_hg19_".$Id.".txt_ErrorsRemoved"; 

`perl snp2snippet.pl $Input -g ref.fa -t EnsemblTranscripts_37.R59.tsv > $snp2snippetOut`;  

`perl snp2snippet_removeSBVerrors.pl --file $snp2snippetOut`; 

`perl mutation_taster_batch_query.pl -i $ErrorsRemoved`; 

`perl mutation_taster_results.pl`; 

 

sub ConvertFileForMutaionTaster{ 

 my $file=$_[0]; 

 my $Id=$_[1]; 

open FILE, $file; 

my $out=”Output.txt”; 

open OUT, “>>$out”; 

while(<FILE>){ 

  chomp $_; 

  my @SplitLine=split('\t', $_); 

  my $Position=$SplitLine[2]; 

  my $Id=$SplitLine[0]."_".$Position."_".$Position."_".$SplitLine[3]."_".$SplitLine[4]; 

  print OUT “$SplitLine[0]\t$Position\t$SplitLine[4]\t$Id\n"; 

} 

close FILE; 

close OUT; 

return($Out); 

exit; 

 

Script 2.1 Script used to run MutationTaster. 
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#!/usr/bin/perl -w 

my $currentdir=`pwd`; 

chomp $currentdir; 

my @dircontent=`ls $currentdir`; 

my %insertion=(); 

my %deletion=(); 

my $in="Input.txt"; 

open IN, "$in"; 

while(<IN>){ 

        chomp $_; 

        my @splitline=split('\t', $_); 

        if(length $splitline[3]==1){ 

                my $inslength=length $splitline[4]; 

                my $adjinslength=$inslength-1; 

                if(!exists $insertion{$adjinslength}){ 

                        $insertion{$adjinslength}=1; 

                }else{ 

                        $insertion{$adjinslength}=$insertion{$adjinslength}+1; 

                } 

        }elsif(length $splitline[4]==1){ 

                my $dellength=length $splitline[3]; 

                my $adjdellength=$dellength-1; 

                if(!exists $deletion{$adjdellength}){ 

                        $deletion{$adjdellength}=1; 

                }else{ 

                        $deletion{$adjdellength}=$deletion{$adjdellength}+1; 

                } 

        } 

} 

close IN; 

exit; 

 

Script 2.2 Script used calculate the size distribution of insertions and deletions. 
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my $out="Output.txt"; 

open OUT, ">>$out"; 

my %gatk=(); 

my $gatk="gatkinput.txt"; 

open GATK, "$gatk"; 

while(<GATK>){ 

chomp $_; 

if($_=~/chr\S+/){ 

my @splitline=split('\t', $_); 

$match=”$splitline[0].$splitline[1].$splitline[2].$splitline[3].$splitline[4].$splitline[5].$splitline[6]”; 

$gatk{$match}=1; 

}} 

close GATK; 

my $counter=0; 

my $dindel="bwainput.txt"; 

open DINDEL, "$dindel"; 

while(<DINDEL>){ 

chomp $_; 

if($_=~/chr\S+/){ 

my @splitline=split('\t', $_); 

$match=”$splitline[0]$splitline[1].$splitline[2].$splitline[3].$splitline[4].$splitline[5].$splitline[6]”; 

if(exists $gatk{$match}){ 

my @splitvalues=split('_',$gatk{$match}); 

print OUT 

"$splitline[0]\t$splitline[1]\t$splitline[2]\t$splitline[3]\t$splitline[4]\t$splitline[5]\t$splitline[6]\n"; 

}else{ 

$counter++; 

}}} 

close GATK; 

close OUT; 

print $counter; 

exit; 

 

Script 2.3 Script used to identify variant overlaps between the BWA-Dindel and 

BWA-GATK pipelines. 
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Gene name         

ACTC1 NTF3 HOPX hsa-mir-133a-1 ARSE 

ACTN2 NTRK3 HSPB7 hsa-mir-133a-2 CLIC2 

ACVRL1 (ALK1) PDGFA IGF1 hsa-mir-208a SRY 

ADAM17 PDLIM3 IGFBP3 hsa-mir-208b TNNI1 

ADAM19 PDPK1 ISL1 hsa-mir-15b TNNI2 

ADRB1 PHC1 ITGA11 hsa-mir-15a NPTX1 

BMP2 PITX2 ITGA4 hsa-mir-21 SPOCK3 

BMP4 PKP2 ITGA7 mmu-mir-715 

 
BMP10 PLN ITGB1BP2 mmu-mir-190 

 
BMPR1A PPP3R1 (CNB1) ITGB1BP3 mmu-mir-22 

 
BMPR1B PRKAG2 (AMPK) JAK2 mmu-mir-199a-1 

 
BRAF PTPN11 JPH1 mmu-mir-15a 

 
CAV3 RXRA LAMA2 mmu-mir-378 

 
CFC1 RYR2 LAMA5 mmu-mir-466j 

 
CHD7 SALL1 LBR mmu-mir-17 

 
CITED2 SCN5A LBX1 mmu-mir-23a 

 
CREBBP SEMA3C LIMK1 mmu-mir-143 

 
CRELD1 SGCB MAP2K3 mmu-mir-23b 

 
CRYAB SGCD MAP2K6 mmu-mir-1186 

 
CSRP3 SGCG MAP3K7IP1 hsa-mir-23b 

 
DES SLC2A4 MAPK12 hsa-mir-27b 

 
DSC2 SLC6A6 MBNL1 hsa-mir-130a 

 
DSG2 SLC8A1 MBNL3 hsa-mir-106a 

 
DSP SMYD1 MEF2A hsa-mir-199a-1 

 
EGFR SOX9 MEF2B hsa-mir-199a-2 

 
ELN SRF MEF2D hsa-mir-22 

 
ERBB2 TAZ MET hsa-mir-199b 

 
ERBB3 TBX1 MIB1 hsa-mir-202 

 
ERBB4 TBX2 MKL2 DGCR14 

 
EVC TBX20  MRAS CLTC 

 
FBN1 TBX3 MTPN IL15 

 
FGF2 TBX5 MUSK DVL2 

 
FGF8 TCAP MYL1 SC5DL 

 
FGF9 TEAD1 MYL4 TFAP2B 

 
FGFR1 TGFB2 MYL5 CECR1 

 
FGFR2 TGFBR3 MYL6 CUGBP2 

 
FOXC1 TMEM43 MYL6B PAX3 

 
FOXC2 TMPO MYL9 DRAP1 

 
FOXM1 TNNC1 MYOCD IGF2 
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Table 2.1 Continued 

FOXP1 TNNI3 MYOD1 NODAL 

GAB1 TNNT2 MYOG CECR2 

GATA4 TPM1 MYOM1 EXT1 

GATA5 TXNRD2 MYOM2 SATB1 

GATA6 UFD1L PBRM1 NR2F2 

GJA1 VCL PGAM2 DRG2 

GJA5 VEGFA POU6F1 RAI1 

GLA WNT7b PPP1R12A IRX5 

HAND1 ZFPM1 PPP1R12B DGCR2 

HAND2 ZFPM2 (FOG2) PPP3CA DVL1 

HBEGF ZIC3 PPP3CB ENG 

HDAC2 SMAD6 PRDM6 KCNJ2 

HDAC5 ROCK1 PRKAR1A NR2C2 

HDAC7A WNT5a PRKCA Irx3 

HDAC9 ISL1 PRKDC PLXNA2 

HEY1 FOXA2 PRKG1 Hoxb2 

HEY2 BOP1 PSEN1 HTR2B 

HHEX ANK2 PTGER3 SHH 

HIRA ANKRD2 PTGER2 KCNQ1 

HOPX (HOP) ANKRD1 PTPRJ KCNE1 

HOXA3 BARX2 RAB3GAP2 NFATC4 

HRAS BARX1 SHOX2 CITED1 

IDUA CASQ2 SMYD1 NFATC1 

IGF1R CAV2 SOX15 NSD1 

INSR CNBP SOX2 FKBP6 

IRX4 CTF1 SOX6 TBL2 

JAG1 CXADR TBX18 NDN 

JAG2 DNER TEAD1 UBE3A 

JUN DVL3 WNT3A PRKCZ 

JUP EDN2 SIRT2 EXO1 

KCNA5 DYRK1B SMPX SH3YL1 

KRAS EFEMP2 SMTN SEPT2 

LAMP2 EGLN1 SSPN CHL1 

LDB3 EGR3 TMOD4 NCBP2 

LEFTY1 ELN WNT4 IRF2 

LEFTY2 EMD ZEB2 LMBR1 

LMNA EVC2 DPF3 MAML1 

MAP2K1 (MEK1) FBLN5 TLL1 MAFK 

MAP2K2 (MEK2) FGF12 SOX4 SMARCA1 

MAPK14 FGF19 MEIS1 CACNA1B 

MEF2C FGF2 ACVR2B GTPBP4 
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Table 2.1 Continued 

MESP1 FGF6 ZYX BCCIP 

MYBPC3 FGF9 NCAM1 YY1AP1 

MYH6 FHL1 SKI NINJ2 

MYL2 FHL3 FOXO3 CHFR 

MYL3 FKRP SIRT1 RAN 

MYL7 FKTN HES1 CDC16 

MYLK2 FLNC LBH PCSK6 

MYOZ2 FOXH1 LRRC20 OCA2 

NCOA6 FOXK1 TWIST1 PIGQ 

NCOR2 FOXL2 PIAS1 GALNS 

NF1 FOXO4 MSX1 RPA1 

NFATC3 FOXP1 MYLK3 ADCYAP1 

NKX2-3 GLI2 MYH7 ADNP2 

NKX2-5 GTF2I MAP3K7IP2 FSTL3 

NOS3 GTF2IRD1 ADAM17  PEG3AS 

NOTCH1 HDAC4 PROX1 BIRC7 

NOTCH2 HDAC5 hsa-mir-1-2 PRMT2 

NPPA HDAC7 hsa-mir-1-1 NCAM2 

NRG1 HDAC9 hsa-mir-133b TYMP 

 

Table 2.1. Lists the genes used in the HeartRepair study. 
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Figure 4.1. Influence of the different filtering steps on variant numbers in the 

DCM cases. 4.1A = Filtering set A, 4.1B = Filtering set B. 

 

 

Figure 4.2. Influence of the different filtering steps on variant numbers in the 

AVSD cases. 4.2A = Filtering set A, 4.2B = Filtering set B. 
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Figure 4.3. Influence of the different filtering steps on variant numbers in the HSP 

cases. 4.3A = Filtering set A, 4.3B = Filtering set B. 
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Sample 
%target covered 

 >20fold 
%target covered  

>10fold 
%target covered  

>5fold 
%target covered 

 >1fold 

Sample1 82.64 89.88 93.42 97.25 

Sample2 94.19 96.10 97.22 98.61 

Sample3 95.78 97.02 97.81 98.78 

Sample4 92.47 95.04 96.60 98.25 

Sample5 94.92 96.29 97.30 98.53 

Sample6 87.24 91.98 94.77 97.75 

Sample7 92.01 94.98 96.66 98.46 

Sample8 89.57 93.43 95.59 97.91 

Sample9 92.54 95.07 96.57 98.35 

Sample10 89.53 93.23 95.46 97.97 

Sample11 91.69 94.81 96.48 98.36 

Sample12 89.21 93.01 95.18 97.71 

Sample13 89.96 93.69 95.91 98.18 

Sample14 89.46 93.33 95.56 97.98 

Sample15 88.27 92.41 95.01 97.90 

Sample16 91.63 94.40 96.12 98.11 

Sample17 92.45 95.03 96.61 98.38 

Sample18 90.99 94.23 96.08 98.16 

Sample19 45.19 77.67 88.47 95.88 

Sample20 92.39 95.14 96.71 98.46 

Sample21 93.96 95.95 97.21 98.54 

Sample22 88.90 93.06 95.31 97.90 

Sample23 93.74 95.86 97.15 98.57 

Sample24 89.96 93.59 95.72 97.99 

Sample25 88.60 92.91 95.26 97.86 

Sample26 89.36 93.52 95.77 98.08 

Sample27 85.96 91.68 94.74 97.83 

Sample28 85.42 91.18 94.22 97.55 

Sample29 85.39 91.24 94.35 97.63 

Sample30 89.46 93.50 95.72 98.06 

Sample31 94.33 96.20 97.35 98.59 

Sample32 88.46 93.09 95.56 98.08 

Sample33 84.48 91.64 94.84 97.47 

Sample34 95.18 96.35 97.17 98.27 

Sample35 89.84 93.85 96.08 98.38 

Sample36 85.22 92.61 95.61 98.14 

Sample37 93.93 95.73 96.96 98.41 

Sample38 69.93 86.57 92.86 97.53 

Sample39 91.05 94.32 96.23 98.35 

Sample40 91.42 94.43 96.32 98.32 

Sample41 95.03 96.61 97.65 98.69 

Sample42 83.39 90.54 94.03 97.50 

Sample43 86.76 93.37 96.41 98.50 

Sample44 83.60 90.97 94.29 97.64 
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Table 5.1 Continued 

Sample45 93.25 95.44 96.88 98.43 

Sample46 93.80 95.69 97.01 98.42 

Sample47 88.18 92.78 95.25 97.97 

Sample48 93.65 95.68 96.99 98.50 

Sample49 94.24 96.09 97.31 98.60 

Sample50 83.06 89.67 93.38 97.05 

Sample51 86.74 92.16 94.96 97.78 

Sample52 83.81 91.85 95.42 98.13 

Sample53 94.67 96.42 97.42 98.65 

Sample54 87.34 92.19 94.90 97.74 

Sample55 84.01 89.81 93.30 97.15 

Sample56 83.14 90.70 94.18 97.62 

Sample57 89.85 93.58 95.71 98.24 

Sample58 88.08 94.14 96.83 98.62 

Sample59 94.00 95.96 97.13 98.50 

Sample60 91.91 94.68 96.31 98.14 

Sample61 94.25 96.00 97.24 98.66 

Sample62 92.04 94.80 96.33 98.26 

Sample63 96.41 97.39 98.00 98.73 

Sample64 93.10 95.45 96.85 98.30 

Sample65 85.07 90.52 93.82 97.16 

Sample66 95.30 96.72 97.64 98.62 

Sample67 91.50 94.25 95.84 97.79 

Sample68 90.36 93.61 95.67 97.99 

Sample69 88.47 92.60 94.89 97.53 

Sample70 90.82 93.82 95.61 97.92 

Sample71 93.47 95.44 96.70 98.28 

Sample72 94.10 95.91 97.09 98.49 

Sample73 91.63 94.38 96.14 98.06 

Sample74 90.51 94.17 95.95 98.08 

Sample75 92.89 95.11 96.45 98.21 

Sample76 93.07 95.40 96.82 98.38 

Sample77 86.47 93.32 96.46 98.55 

Sample78 91.64 94.61 96.32 98.23 

Sample79 86.26 91.01 93.96 97.33 

Sample80 89.51 93.48 95.69 98.15 

Sample81 90.57 93.82 95.85 98.08 

Sample82 94.21 96.03 97.24 98.60 

Sample83 85.36 90.59 93.76 97.43 

Sample84 88.93 92.52 94.92 97.74 

Sample85 92.45 95.10 96.66 98.43 

Sample86 83.20 89.43 92.73 96.44 

Sample87 89.38 93.88 96.03 98.03 

Sample88 77.12 87.62 92.87 97.13 

Sample89 90.65 94.52 96.44 98.27 
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Table 5.1 Continued 

Sample90 92.34 95.13 96.65 98.27 

Sample91 87.35 92.24 94.97 97.71 

Sample92 91.98 94.68 96.31 98.11 

Sample93 81.06 89.59 93.37 97.10 

Sample94 92.01 94.85 96.54 98.27 

Sample95 90.92 94.06 95.76 97.72 

Sample96 92.92 95.40 96.88 98.49 

Sample97 91.38 94.11 95.67 97.51 

Sample98 87.26 92.04 94.69 97.57 

Sample99 91.54 94.40 96.12 97.94 

Sample100 88.44 92.43 94.91 97.74 

Sample101 80.52 88.19 92.15 96.22 

Sample102 91.13 94.17 96.01 98.06 

Sample103 82.59 89.45 93.08 96.87 

Sample104 86.31 91.73 94.57 97.63 

Sample105 93.65 95.35 96.55 97.92 

Sample106 74.59 86.19 91.45 96.23 

Sample107 80.94 88.74 92.68 96.72 

Sample108 91.91 94.60 96.25 97.99 

Sample109 88.88 92.77 95.17 97.92 

Sample110 90.41 93.72 95.73 97.78 

Sample111 94.75 96.33 97.44 98.60 

Sample112 90.57 93.76 95.63 97.67 

Sample113 89.93 93.20 95.16 97.36 

Sample114 90.59 94.14 96.17 98.25 

Sample115 87.03 91.60 94.49 97.61 

Sample116 85.65 92.09 95.01 97.89 

Sample117 88.24 92.76 95.28 97.95 

Sample118 83.21 90.73 94.15 97.38 

Sample119 91.61 94.48 96.23 98.21 

Sample120 94.45 96.22 97.41 98.68 

Sample121 89.34 93.53 95.73 98.17 

Sample122 87.14 92.13 94.76 97.69 

Sample123 90.53 93.99 95.94 98.07 

Sample124 87.58 92.63 95.24 98.00 

Sample125 91.21 94.46 96.25 98.36 

Sample126 92.69 95.26 96.74 98.50 

Sample127 91.14 94.48 96.33 98.35 

Sample128 85.51 90.90 93.93 97.31 

Sample129 90.47 93.85 95.89 98.18 

Sample130 89.81 93.62 95.75 98.09 

Sample131 80.88 89.75 93.65 97.33 

Sample132 88.38 92.73 95.10 97.80 

Sample133 88.49 92.93 95.41 97.89 

Table 5.1. Target base coverage of HeartRepair samples. 
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Chrom. Position Ref. Variant Gene EVS5400 

1000 

Genomes dbsnp135 control list 

chr11 65688382 G - DRAP1 0 0   0 

chr9 140807675 A - CACNA1B 0 0   0 

chr19 19258537 A - 

MEF2B,MEF2BNB-

MEF2B 0 0   0 

chr17 17697123 GC - RAI1 0 0   0 

chr16 86601682 G - FOXC2 0 0   0 

chr9 140917757 C - CACNA1B 0 0   0 

chr5 156021946 A - SGCD 0 0   0 

chr15 68606119 G - ITGA11 0 0   0 

chr20 60905911 G - LAMA5 0 0   0 

chr1 120612003 GG - NOTCH2 0 0   0 

chr16 3778372 C - CREBBP 0 0   0 

chr5 122515971 A - PRDM6 0 0   0 

chr2 240002822 T - HDAC4 0 0   0 

chr6 1611589 C - FOXC1 0 0   0 

chr2 220290413 G - DES 0 0   0 

chr16 88601159 C - ZFPM1 0 0   0 

chr22 19754108 G - TBX1 0 0   0 

chr1 201334355 T - TNNT2 0 0   0 

chr12 9091915 G - PHC1 0 0   0 

chr3 38622801 G - SCN5A 0 0   0 

chr8 38271271 C - FGFR1 0 0   0 

chr12 124820088 T - NCOR2 0 0   0 

chr10 99338053 G - ANKRD2 0 0   0 

chr5 122425851 CA - PRDM6 0 0   0 

chr3 157823620 C - SHOX2 0 0   0 

chr1 202407190 T - PPP1R12B 0 0   0 

chr1 156106799 A - LMNA 0 0   0 

chr10 72061238 T - LRRC20 0 0   0 

chr12 5154544 T - KCNA5 0 0   0 

chr9 140918091 C - CACNA1B 0 0   0 

chr6 43139816 G - SRF 0 0   0 

chr10 99337655 G - ANKRD2 0 0   0 

chr7 74149837 AAGA - GTF2I 0 0   0 

chr2 211179766 T - MYL1 0 0   0 

chr19 4102407 A - MAP2K2 0 0   0 

chr14 23895248 T - MYH7 0 0   0 

chr1 155630185 C - YY1AP1 0 0   0 

chr12 124831127 C - NCOR2 0 0   0 

chr19 47259864 T - FKRP 0 0   0 

chr6 50791258 TA - TFAP2B 0 0   0 

chr1 220379328 T - RAB3GAP2 0 0   0 

chr9 141013169 G - CACNA1B 0 0   0 

chr8 145699791 A - FOXH1 0 0   0 
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Table 5.2 Continued 

chr16 624455 G - PIGQ 0 0   0 

chr20 60895929 C - LAMA5 0 0   0 

chr4 102001782 A - PPP3CA 0 0   0 

chr11 2869100 A - KCNQ1 0 0   0 

chr9 139396296 G - NOTCH1 0 0   0 

chr9 139405664 C - NOTCH1 0 0   0 

chr12 9085217 C - PHC1 0 0   0 

chr7 73521406 G - LIMK1 0 0   0 

chr1 156106096 A - LMNA 0 0   0 

chr5 88056864 C - MEF2C 0 0   0 

chr11 2154242 G - IGF2 0 0   0 

chr12 56491631 A - ERBB3 0 0   0 

chr1 202533599 A - PPP1R12B 0 0   0 

chrX 131518723 G - MBNL3 0 0   0 

chr14 105634397 C - JAG2 0 0   0 

chr12 9086909 T - PHC1 0 0   0 

chr4 5758035 C - EVC 0 0   0 

chr1 202396297 T - PPP1R12B 0 0   0 

chr1 202464500 CA - PPP1R12B 0 0   0 

chr15 90294049 G - MESP1 0 0   0 

chr3 14180757 C - TMEM43 0 0   0 

chr5 153857387 G - HAND1 0 0   0 

chr15 90294203 GC - MESP1 0 0   0 

chrX 136649076 C - ZIC3 0 0   0 

chr20 60898582 G - LAMA5 0 0   0 

chr2 220290416 C - DES 0 0   0 

chr12 51589833 C - POU6F1 0 0   0 

chr12 114804154 T - TBX5 0 0   0 

chr4 174450159 C - HAND2 0 0   0 

chr1 151144790 AT - TMOD4 0 0   0 

chr7 73470659 - T ELN 0 0   0 

chr10 94449776 - G HHEX 0 0   0 

chr17 17697130 - A RAI1 0 0   0 

chr16 46744687 - A MYLK3 0 0   0 

chr18 77171468 - C NFATC1 0 0   0 

chr4 114275546 - C ANK2 0 0   0 

chr4 123748299 - C FGF2 0 0   0 

chr12 124820063 - CAAC NCOR2 0 0   0 

chr17 21215536 - A MAP2K3 0 0   0 

chr19 40317590 - CCCC DYRK1B 0 0   0 

chr12 5603608 - C NTF3 0 0   0 

chr12 33031069 - G PKP2 0 0   0 

chr12 52308249 - G ACVRL1 0 0   0 

chr12 115109685 - A TBX3 0 0   0 

chr12 124829420 - C NCOR2 0 0   0 
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Table 5.2 Continued 

chr11 2869086 - G KCNQ1 0 0   0 

chr10 75758098 - C VCL 0 0   0 

chr17 7130528 - C DVL2 0 0   0 

chr16 3823776 - G CREBBP 0 0   0 

chr16 3828061 - GG CREBBP 0 0   0 

chr15 68612614 - C ITGA11 0 0   0 

chr15 90293392 - C MESP1 0 0   0 

chr19 7119593 - C INSR;INSR 0 0   0 

chr19 40321175 - C DYRK1B 0 0   0 

chr18 19751314 - G GATA6 0 0   0 

chr18 29125917 - AC DSG2 0 0   0 

chr22 31492745 - G SMTN 0 0   0 

chr22 50968118 - G TYMP 0 0   0 

chr20 6750839 - G BMP2 0 0   0 

chr20 10626013 - G JAG1 0 0   0 

chr7 128483879 - GG FLNC 0 0   0 

chr7 128497213 - C FLNC 0 0   0 

chr7 143078671 - GCCCC ZYX 0 0   0 

chr6 50807921 - TC TFAP2B 0 0   0 

chr6 126073017 - G HEY2 0 0   0 

chr5 1880895 - G IRX4 0 0   0 

chr5 155771583 - GG SGCD 0 0   0 

chr4 5800385 - G EVC 0 0   0 

chr4 114274870 - A ANK2 0 0   0 

chr4 114275546 - CC ANK2 0 0   0 

chr3 55508547 - G WNT5A 0 0   0 

chr3 152163311 - C MBNL1 0 0   0 

chr3 193855814 - G HES1 0 0   0 

chr2 121746627 - GC GLI2 0 0   0 

chr1 1273756 - C DVL1 0 0   0 

chr1 16343694 - G HSPB7 0 0   0 

chr1 231557037 - GC EGLN1 0 0   0 

chr1 237777981 - AA RYR2 0 0   0 

chr9 130588044 - G ENG 0 0   0 

chr9 139391543 - G NOTCH1 0 0   0 

chr8 11565886 - GC GATA4 0 0   0 

chr8 80677838 - C HEY1 0 0   0 

chr1 59248148 - G JUN 0 0   0 

chr12 131360223 - GTAA RAN 0 0   0 

chr12 124824739 - GCCG NCOR2 0 0   0 

chr17 29686010 - G NF1 0 0   0 

chr7 128483890 - C FLNC 0 0   0 

chr9 139413208 - G NOTCH1 0 0   0 

chr17 17697121 - A RAI1 0 0   0 

chr6 139694497 - C CITED2 0 0   0 
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Table 5.2 Continued 

chr17 37883553 - G ERBB2 0 0   0 

chr5 172662040 - TTTG NKX2-5 0 0   0 

chr5 172659759 - C NKX2-5 0 0   0 

chr17 21204186 - T MAP2K3 0 0   0 

chr5 153857391 - T HAND1 0 0   0 

chr12 5154214 - GG KCNA5 0 0   0 

chr12 48185398 - GG HDAC7 0 0   0 

chr11 2869088 - GC KCNQ1 0 0   0 

chr17 39925377 - G JUP 0 0   0 

chr16 3778897 - C CREBBP 0 0   0 

chr14 24845989 - G NFATC4 0 0   0 

chr18 77171472 - CG NFATC1 0 0   0 

chr22 17662874 - A CECR1 0 0   0 

chr20 60884404 - C LAMA5 0 0   0 

chr7 73535521 - C LIMK1 0 0   0 

chr7 128483879 - G FLNC 0 0   0 

chr4 995530 - G IDUA 0 0   0 

chr4 4864617 - C MSX1 0 0   0 

chr4 5620311 - C EVC2 0 0   0 

chr4 5800385 - GG EVC 0 0   0 

chr3 152163311 - CC MBNL1 0 0   0 

chr3 181430234 - G SOX2 0 0   0 

chr2 88387383 - G SMYD1 0 0   0 

chr2 121747180 - G GLI2 0 0   0 

chr2 220283241 - G DES 0 0   0 

chr1 156106155 - G LMNA 0 0   0 

chr1 202318126 - G PPP1R12B 0 0   0 

chr1 208202181 - C PLXNA2 0 0   0 

chr1 226074643 - GC LEFTY1 0 0   0 

chr1 226125353 - GG LEFTY2 0 0   0 

chr1 231557037 - C EGLN1 0 0   0 

chr9 139396883 - C NOTCH1 0 0   0 

chr8 2091344 - G MYOM2 0 0   0 

chr17 7189170 - G SLC2A4 0 0   0 

chr14 73664749 - GG PSEN1 0 0   0 

chr7 4722241 - C FOXK1 0 0   0 

chr7 35288308 - G TBX20 0 0   0 

chr6 1610775 - G FOXC1 0 0   0 

chr6 1612158 - G FOXC1 0 0   0 

chr4 123748299 - CC FGF2 0 0   0 

chr3 193855820 - G HES1 0 0   0 

chr12 98909901 - G TMPO 0 0   0 

chr12 124826453 - G NCOR2 0 0   0 

chr15 23932221 - G NDN 0 0   0 

chr15 48712976 - G FBN1 0 0   0 
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Table 5.2 Continued 

chr15 48720570 - G FBN1 0 0   0 

chr15 68480091 - T PIAS1 0 0   0 

chr14 105617337 - G JAG2 0 0   0 

chr22 19463076 - G UFD1L 0 0   0 

chr20 6750841 - GC BMP2 0 0   0 

chr7 128478720 - G FLNC 0 0   0 

chr4 5586474 - C EVC2 0 0   0 

chr2 223086008 - G PAX3 0 0   0 

chr1 231557219 - C EGLN1 0 0   0 

chr12 124885147 - G NCOR2 0 0   0 

chr10 88478558 - C LDB3 0 0   0 

chr22 39826174 - TC TAB1 0 0   0 

chr20 60884469 - C LAMA5 0 0   0 

chr20 60899259 - G LAMA5 0 0   0 

chr5 88024395 - G MEF2C 0 0   0 

chr4 114158192 - G ANK2 0 0   0 

chr1 1275458 - C DVL1 0 0   0 

chr17 29686003 - T NF1 0 0   0 

chr2 145156625 - T ZEB2 0 0   0 

chr12 2975681 - G FOXM1 0 0   0 

chr16 3823776 - GG CREBBP 0 0   0 

chr16 51175706 - G SALL1 0 0   0 

chr18 77171472 - A NFATC1 0 0   0 

chr20 60897798 - G LAMA5 0 0   0 

chr1 120548001 - T NOTCH2 0 0   0 

chr10 115804489 - G ADRB1 0 0   0 

chr1 2161015 - C SKI 0 0   0 

chr12 48185398 - G HDAC7 0 0   0 

chr21 48081813 - C PRMT2 0 0   0 

chr3 14526404 - C SLC6A6 0 0   0 

chr1 92185675 - C TGFBR3 0 0   0 

chr8 118830716 - G EXT1 0 0   0 

chr5 1881946 - G IRX4 0 0   0 

chr17 29686007 - G NF1 0 0   0 

chr4 5800389 - C EVC 0 0   0 

chr9 139413094 - G NOTCH1 0 0   0 

chr19 47259732 - CC FKRP 0 0   0 

chr10 101295306 - G NKX2-3 0 0   0 

chr10 115805199 - G ADRB1 0 0   0 

chr17 59482922 - C TBX2 0 0   0 

chr18 19752017 - G GATA6 0 0   0 

chr18 3215058 - G MYOM1 0 0   0 

chr10 101295394 - G NKX2-3 0 0   0 

chr9 141014796 - C CACNA1B 0 0 rs34080813 0 

chr16 54967277 - G IRX5 0 0   0 
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Table 5.2 Continued 

chr12 133425243 - C CHFR 0 0   0 

chr17 17701501 - C RAI1 0 0   0 

chr16 46744687 - AA MYLK3 0 0   0 

chr2 66739378 - A MEIS1 0 0   0 

chr6 108985582 - TC FOXO3 0 0   0 

chr10 92679010 - T ANKRD1 0 0   0 

chr13 23898659 - C SGCG 0 0   0 

chr12 56092638 - C ITGA7 0 0   0 

chr12 114793568 - A TBX5 0 0   0 

chr10 11356106 - G CELF2 0 0   0 

chr10 75857054 - G VCL 0 0   0 

chr18 3116449 - G MYOM1 0 0   0 

chr4 114275830 - C ANK2 0 0   0 

chr3 152174125 - C MBNL1 0 0   0 

chr2 66739381 - T MEIS1 0 0   0 

chr1 120459193 - CG NOTCH2 0 0   0 

chr17 39925395 - C JUP 0 0   0 

chr17 78449427 - A NPTX1 0 0   0 

chr19 4117556 - C MAP2K2 0 0   0 

chr19 7119592 - C INSR 0 0   0 

chr6 1612231 - T FOXC1 0 0   0 

chr4 995896 - C IDUA 0 0   0 

chr2 40655623 - T SLC8A1 0 0   0 

chr2 145157529 - C ZEB2 0 0   0 

chr9 96715377 - C BARX1 0 0   0 

chr12 52309205 - C ACVRL1 0 0   0 

chr11 2869086 - GG KCNQ1 0 0   0 

chr11 129306804 - T BARX2 0 0   0 

chr18 19751197 - G GATA6 0 0   0 

chr7 44105053 - C PGAM2 0 0   0 

chr7 143085428 - A ZYX 0 0   0 

chr6 108985155 - G FOXO3 0 0   0 

chr1 1991007 - C PRKCZ 0 0   0 

chr9 139413210 - C NOTCH1 0 0   0 

chr12 56092638 - GC ITGA7 0 0   0 

chr10 88659814 - G BMPR1A 0 0   0 

chr17 7189172 - GT SLC2A4 0 0   0 

chr17 29686003 - TT NF1 0 0   0 

chr17 37883560 - GC ERBB2 0 0   0 

chr15 68599984 - C ITGA11 0 0   0 

chr5 122435478 - G PRDM6 0 0   0 

chr5 172659762 - C NKX2-5 0 0   0 

chr4 996233 - AA IDUA 0 0   0 

chr3 193855818 - A HES1 0 0   0 

chr2 239988508 - C HDAC4 0 0   0 
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Table 5.2 Continued 

chr1 226075310 - C LEFTY1 0 0  0 

chr1 2235396 - G SKI 0 0  0 

chr20 10626015 - GGTTT JAG1 0 0   0 

chr2 239975199 - G HDAC4 0 0   0 

chr7 151372701 - T PRKAG2 0 0   0 

chr12 56088713 - G ITGA7 0 0   0 

chr2 234170 - C SH3YL1 0 0   0 

chr14 105616985 - G JAG2 0 0   0 

chr21 48069627 - G PRMT2 0 0   0 

chr1 2106679 - C PRKCZ 0 0   0 

chr20 10626015 - GGGTT JAG1 0 0   0 

chr2 121747069 - A GLI2 0 0   0 

chr5 139722381 - T HBEGF 0 0   0 

chr9 140772466 - G CACNA1B 0 0   0 

chr18 77211049 - G NFATC1 0 0   0 

chr6 1612155 - G FOXC1 0 0   0 

chr3 71090482 - C FOXP1 0 0   0 

chr1 120464352 - G NOTCH2 0 0   0 

chr15 25616578 - A UBE3A 0 0   0 

chr2 121747180 - GG GLI2 0 0   0 

chr9 140946627 - G CACNA1B 0 0   0 

chr8 119122640 - C EXT1 0 0   0 

chr10 75854057 - C VCL 0 0   0 

chr3 138665524 - C FOXL2 0 0   0 

chr1 237777981 - TA RYR2 0 0   0 

chr10 123263420 - A FGFR2 0 0   0 

chr19 7119590 - G INSR 0 0   0 

chr4 114213583 - C ANK2 0 0   0 

chr14 105617343 - G JAG2 0 0   0 

chr20 10626013 - GG JAG1 0 0   0 

chr9 140946548 - C CACNA1B 0 0   0 

chr6 121768197 - ATCT GJA1 0 0   0 

chr6 139694488 - C CITED2 0 0   0 

chr1 228238594 - C WNT3A 0 0   0 

chr1 59248275 - GCCC JUN 0 0   0 

chr16 3860722 - G CREBBP 0 0   0 

chr3 55508479 - T WNT5A 0 0   0 

chr17 57768006 T - CLTC 0 0   0 

chr7 128481026 T - FLNC 0 0   0 

chr1 156108278 G - LMNA 0 0   0 
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Table 5.2 Continued 

chr11 1860757 G - TNNI2 0 0   0 

chr17 66508691 - G PRKAR1A 0 0   0 

chr20 33334734 - AAA NCOA6 0 0   0 

chr1 71418662 G - PTGER3 0 0.0041   0 

chr7 35288303 - G TBX20 0 0   0.002358491 

chr2 211179765 - T MYL1 0 0   0.002358491 

chr18 29125917 - C DSG2 0 0   0.002358491 

chr20 33334734 - A NCOA6 0 0   0.002358491 

chr17 21207781 - T MAP2K3 0 0   0.004716981 

 

Table 5.2. Filtered indels identified using the BWA-Dindel pipeline for the 133 

HeartRepair samples. 
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Chrom. Position Ref. Variant Gene EVS5400 
1000 
Genomes dbsnp135 control list 

chr1 120612003 GG - NOTCH2 0 0   0 

chr1 201334355 T - TNNT2 0 0   0 

chr1 202407190 T - PPP1R12B 0 0   0 

chr10 99338053 G - ANKRD2 0 0   0 

chr2 211179766 T - MYL1 0 0   0 

chr11 112832341 CA - NCAM1 0 0   0 

chr9 139405664 C - NOTCH1 0 0   0 

chr12 124824739 - GCCG NCOR2 0 0   0 

chr3 71090482 - C FOXP1 0 0   0 

chr5 139722381 - TT HBEGF 0 0   0 

chr12 124824739 - G NCOR2 0 0   0 

chr10 88478558 - C LDB3 0 0   0 

chr10 88478560 - C LDB3 0 0   0 

chr12 2983338 - C FOXM1 0 0   0 

chr1 92185675 - C TGFBR3 0 0   0 

chr1 226127214 - G LEFTY2 0 0   0 

chr2 121747069 - A GLI2 0 0   0 

chr6 50807921 - C TFAP2B 0 0   0 

chr11 2869086 - GG KCNQ1 0 0   0 

chr11 2869088 - GC KCNQ1 0 0   0 

chr12 115109685 - A TBX3 0 0   0 

chr14 73664749 - GG PSEN1 0 0   0 

chr16 3778897 - C CREBBP 0 0   0 

chr20 6750839 - G BMP2 0 0   0 

chr4 123748299 - C FGF2 0 0   0 

chr12 124885147 - G NCOR2 0 0   0 

chr10 92679010 - T ANKRD1 0 0   0 

chr2 66739381 - T MEIS1 0 0   0 

chr1 2235396 - G SKI 0 0   0 

chr9 140773612 - A CACNA1B 0 0   0 

chr9 140777194 A - CACNA1B 0 0   0 

chr1 71418662 G - PTGER3 0 0.0041   0 

chr4 168155291 CA - SPOCK3 0 0.01   0 

chr2 211179765 - T MYL1 0 0   0.002358491 

chr20 33334734 - A NCOA6 0 0   0.002358491 

 

Table 5.3. Filtered indels identified using the BWA-GATK pipeline for the 133 

HeartRepair samples. 
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