
Maximising Microprocessor Reliability Through

Game Theory and Heuristics
A Thesis submitted for the degree of Doctor of Philosophy

James Docherty
School of Electrical and Electronic Engineering

February 6, 2014

Abstract

Embedded Systems are becoming ever more pervasive in our society, with most
routine daily tasks now involving their use in some form and the market pre-
dicted to be worth USD 220 billion, a rise of 300%, by 2018. Consumers expect
more functionality with each design iteration, but for no detriment in perceived
performance. These devices can range from simple low-cost chips to expen-
sive and complex systems and are a major cost driver in the equipment design
phase. For more than 35 years, designers have kept pace with Moore’s Law, but
as device size approaches the atomic limit, layouts are becoming so complicated
that current scheduling techniques are also reaching their limit, meaning that
more resource must be reserved to manage and deliver reliable operation. With
the advent of many-core systems and further sources of unpredictability such as
changeable power supplies and energy harvesting, this reservation of capability
may become so large that systems will not be operating at their peak efficiency.

These complex systems can be controlled through many techniques, with
jobs scheduled either offline prior to execution beginning or online at each time
or event change. Increased processing power and job types means that current
online scheduling methods that employ exhaustive search techniques will not
be suitable to define schedules for such enigmatic task lists and that new tech-
niques using statistic-based methods must be investigated to preserve Quality
of Service.

A new paradigm of scheduling through complex heuristics is one way to
administer these next levels of processor effectively and allow the use of more
simple devices in complex systems; thus reducing unit cost while retaining relia-
bility, a key goal identified by the International Technology Roadmap for Semi-
conductors for Embedded Systems in Critical Environments. These changes
would be beneficial in terms of cost reduction and system flexibility within the
next generation of device. This thesis investigates the use of heuristics and
statistical methods in the operation of real-time systems, with the feasibility of
Game Theory and Statistical Process Control for the successful supervision of
high-load and critical jobs investigated. Heuristics are identified as an effective
method of controlling complex real-time issues, with two-person non-cooperative
games delivering Nash-optimal solutions where these exist. The simplified al-
gorithms for creating and solving Game Theory events allow for its use within
small embedded RISC devices and an increase in reliability for systems operating
at the apex of their limits. Within this Thesis, Heuristic and Game Theoretic
algorithms for a variety of real-time scenarios are postulated, investigated, re-
fined and tested against existing schedule types; initially through MATLAB
simulation before testing on an ARM Cortex M3 architecture functioning as a
simplified automotive Electronic Control Unit.

”I don’t know anything, but I do know that everything is interesting
if you go into it deeply enough.” Richard P. Feynman

i

Contents

Preface 1

Acknowledgements 2

1 Introduction 5
1.1 Motivation . 5
1.2 Research Goals and Thesis Contribution 7
1.3 Thesis Structure . 8
1.4 Research Questions . 9

2 Background 10
2.1 Scheduling . 10

2.1.1 Introduction . 10
2.1.2 Real-Time Systems . 12

2.2 Game Theory . 16
2.2.1 Origins . 16
2.2.2 Game Types . 19
2.2.3 Limitations of Nash . 21
2.2.4 Computing Nash Equilibrium 23
2.2.5 Game Theory with Real-Time and Availability 24

2.3 Energy Harvesting . 24
2.3.1 Introduction . 24
2.3.2 Harvesting Types . 25
2.3.3 Deliverable Energy . 26
2.3.4 The Energy Gap . 27

2.4 Statistical Process Control . 29
2.4.1 Background . 29
2.4.2 MINITAB . 29
2.4.3 Capability . 30
2.4.4 Six Sigma . 31

2.5 Automotive Benchmarks and ISO26262 35
2.5.1 CAN System . 35
2.5.2 Vehicle Speed Sensor System 35
2.5.3 Fuel Injector and Spark Control System 36
2.5.4 ISO26262 . 38

ii

3 Energy Harvesting 41
3.1 Introduction . 41
3.2 Methodology . 41

3.2.1 Energy and Scheduling . 41
3.2.2 This Work . 42
3.2.3 Baseline Simulations . 44
3.2.4 System Level Simulation 45
3.2.5 Design of Experiments . 47
3.2.6 Statistical Process Control of Energy 47

3.3 Results . 48
3.3.1 Energy Budgeting . 48
3.3.2 Job/Core Use Simulations 49
3.3.3 Energy Harvesting Model 51
3.3.4 Design of Experiments . 51
3.3.5 Statistical Process Control of Energy 56
3.3.6 Trivial Example . 57
3.3.7 Hybrid Example . 58

3.4 Conclusion . 59

4 Use of Game Theory as a Real-Time Scheduler 63
4.1 Introduction . 63

4.1.1 Real-Time System Scheduling 63
4.2 Methodology . 67

4.2.1 Initial Experiments . 68
4.2.2 Design of Experiments . 68
4.2.3 Optimisation and Reliability Runs 71

4.3 Results . 72
4.3.1 Comparison of Results for Full Game Theoretic and Hy-

brid Runs . 72
4.3.2 Design of Experiments . 72
4.3.3 Reliability Assessment . 80

4.4 Conclusion . 84

5 Heuristic and Real-Time Scheduling 85
5.1 Introduction . 85

5.1.1 Motivation . 85
5.1.2 Real-Time Systems . 86
5.1.3 Scheduling . 86

5.2 Methodology . 86
5.2.1 Development of Heuristic-Based Schedulers 86
5.2.2 Development of a Real-Time Algorithm using Automotive

Benchmarks . 90
5.2.3 Plan of Testing . 93
5.2.4 Design of Experiments . 93
5.2.5 Final Optimization Tests 94

5.3 Results . 94
5.3.1 Heuristic Algorithm . 94
5.3.2 Real-Time Automotive Heuristic Scheduler 100
5.3.3 Proposed Heuristic Scheduler 101
5.3.4 Design of Experiments . 103

iii

5.3.5 Optimization of Final Settings 110
5.4 Conclusion . 115

6 Hardware Testing 117
6.1 Introduction . 117
6.2 Possible Micro-controllers . 117

6.2.1 Raspberry Pi . 117
6.2.2 Arduino Due . 118
6.2.3 Minimorph . 118
6.2.4 Beagleboard . 118

6.3 Determining Micro-controller . 118
6.4 The Arduino Environment . 119

6.4.1 Initial Testing . 120
6.4.2 Use of Libraries . 122
6.4.3 Hardware Interfacing . 122

6.5 Hardware Design . 122
6.5.1 CAN System . 123
6.5.2 Vehicle Speed Sensor System 123
6.5.3 Fuel Injector Control . 125
6.5.4 Other Circuits . 125

6.6 Methodology . 127
6.6.1 Automotive Controller . 127
6.6.2 Energy Harvesting SPC Calculator 129
6.6.3 Nash Equilibrium Calculator 131

6.7 Results . 131
6.7.1 Preliminary Tests . 131
6.7.2 Energy Harvesting SPC Calculator 132
6.7.3 Automotive Controller . 134
6.7.4 Nash Equilibrium Calculator 138

6.8 Conclusion . 138

7 Conclusion and Future Work 140
7.1 Conclusion . 140

7.1.1 Importance of Work and Original Contribution 140
7.1.2 Summary of Findings . 141
7.1.3 Limitations of Thesis . 141

7.2 Future Work . 142

iv

List of Figures

1.1 The Von Neumann Architecture 6
1.2 Number of Cores per chip with Predicted Curve [13] 7
1.3 Layout of Thesis . 8

2.1 A literal job queue for the EDSAC II, Cambridge University 1960
[118] . 11

2.2 Real-time Job Example, showing Activation, Computation and
Deadline . 13

2.3 Real-time Job Types [18] . 14
2.4 Graphical Depiction of a schedule created in EDF with pre-emption 15
2.5 The Prisoners Dilemma . 17
2.6 Mini-Max Game . 18
2.7 Game Matrix showing the prudent outcomes for each system (or-

ange circles). Player 1 and Player 2 both have prudent outcomes
at (B,A), therefore this is a Nash Equilibrium (Red Square) . . . 19

2.8 A Zero-sum game played between two players. 20
2.9 A Mixed Strategy Example . 22
2.10 Graph of Game Matrix in Figure 2.9 22
2.11 A Game with a clearly unreasonable (but unique) Nash Equilibrium 23
2.12 An Energy Harvesting System Block Diagram [4] 25
2.13 Data monitored without SPC . 29
2.14 Data monitored with SPC . 30
2.15 A Capability Report from Minitab showing a Cpk of 1.78 for a

distribution . 31
2.16 DoE Results showing ABC is insignificant 33
2.17 Reduced DoE removing ABC now shows A, B and AC are significant 33
2.18 Main Effects Plot . 34
2.19 A Typical CAN Topology . 36
2.20 An Extended CAN Frame, used in Automotive CAN [34] 36
2.21 Example of Arbitration in a CAN Network [14] 37
2.22 Graph showing how alterations in λ change fuel consumption and

engine running [28] . 37
2.23 Graph showing the change in tailpipe emissions for variations in

λ [28] . 39
2.24 A Complex Ignition Map [1] . 39

3.1 Energy Harvesting Model for system 42
3.2 Energy Use vs. Value to the System. 43

v

3.3 Probability a simulation will complete successfully based on the
number of steps and the ticket consumption ratio 49

3.4 Idle percentage for Core 1 of a 10 core system as the Job Arrival
and Completion Rate Increase . 50

3.5 Idle Percentage, but with a Pause after Completion Added to
balance out overall consumption rates 50

3.6 Number of Clock Cycles successfully completed for a Generation
Rate of 10 and a BMax

0 of 100 as Consumption Rate increases . . 52
3.7 Number of Clock Cycles successfully completed for a Generation

Rate of 10 and a BMax
0 of 1000 as Consumption Rate increases . 52

3.8 Number of Clock Cycles successfully completed for a Generation
Rate of 50 and a BMax

0 of 100 as Consumption Rate increases . . 53
3.9 Number of Clock Cycles successfully completed for a Generation

Rate of 50 and a BMax
0 of 1000 as Consumption Rate increases . 53

3.10 Capability of SPC System when B0 is monitored 54
3.11 Capability of SPC System when Ps is monitored 54
3.12 Main Effects Plot of DoE . 55
3.13 Main Effects Plot for DoE . 55
3.14 Interactions Plot for DoE, showing no interactions 56
3.15 Reliability Analysis of No Management, Trivial Management,

SPC and Hybrid Systems, showing predicted Failure Rate 60
3.16 Probability Plot for various management techniques, showing

predicted number of clock cycles before failure 60
3.17 Probability Plot for various management techniques with a Uni-

form Distribution, showing predicted number of clock cycles be-
fore failure . 61

4.1 A Schedule Feasible under Game Theory but Infeasible under EDF 65
4.2 Example of Figure 2.4 without pre-emption using the Game The-

ory Algorithm with J1 < J2 . 66
4.3 A Feasible Schedule under FCFS or EDF 69
4.4 Due to several occurrences of Job 2, the schedule is now infeasible

by EDF or RM . 69
4.5 The System now runs successfully through removal of one Job 2,

preserving Quality of Service . 69
4.6 Game Matrices for Figure 4.3 at t = 0 and t = 10, clearly showing

the Nash Equilibrium as (Wait,Wait) and (Run,Wait) respectively. 69
4.7 Box-plot showing rate of Missed Job 1 across Simulation Runs . 73
4.8 Scatter-plot showing missed Job 1 as Job 2 Load increases 73
4.9 Box-plot showing rate of Activation for First Come First Served

Scheduler . 74
4.10 Box-plot showing rate of Activation for Job 2 Nash Equilibrium . 74
4.11 Box-plot showing rate of Activation for Prudent Job 1 Activation

when no Nash Equilibrium can be found, but Job 1 must execute 75
4.12 Box-plot showing rate of Activation for Job 2 Arrival when Core

is Idle . 75
4.13 Main Effects Plot for inputs to DoE with respect to Missed Job 1 78
4.14 Interactions Plot for Missed Job 1 78
4.15 Main Effects Plot for inputs to DoE with respect to FCFS Acti-

vation . 79

vi

4.16 Interactions Plot for FCFS Activation 79
4.17 Main Effects Plot for inputs to DoE with respect to running Job

1 Prudently . 81
4.18 Interactions Plot for Prudent Job 1 Activation 81
4.19 Reliability Plot for Low Job 2 Load 82
4.20 Reliability Plot for High Job 2 Load 83
4.21 Graphs of Probability Density Function, Hazard Function and

Survival Function for Low Job 2 Load 83
4.22 Graphs of Probability Density Function, Hazard Function and

Survival Function for High Job 2 Load 84

5.1 Simplified Microprocessor Design for Simulations 87
5.2 Graph showing Cylinder Pressure with respect to Ignition Timing 91
5.3 Piston Damage caused by late ignition 91
5.4 Heuristic Scheduling Example . 94
5.5 The MNEDC . 95
5.6 Scatter-plot showing Clock Cycles Complete for increasing values

of lambda over mu . 97
5.7 Box-plot of Microprocessor Life for varying number of cores . . . 97
5.8 Main Effects Plot of DoE . 98
5.9 Revised Main Effects Plot . 98
5.10 Further Revised Main Effects Plot 104
5.11 Graph of Missed Spark and VSS jobs for a FCFS Scheduler as

the CAN Load increases . 104
5.12 Graph of Missed Spark and VSS jobs for a EDF Scheduler as the

CAN Load increases . 105
5.13 Graph of Missed Spark and VSS jobs for the Heuristic Scheduler

as the CAN Load increases . 105
5.14 Box-plot showing distribution of missed Spark jobs for the three

algorithms . 106
5.15 Box-plot showing distribution of missed VSS jobs for the three

algorithms . 106
5.16 Pareto Plot for the Design of Experiments 108
5.17 Main Effects Plot for the Design of Experiments 108
5.18 Pareto Plot for the Design of Experiments 109
5.19 Main Effects Plot for the Design of Experiments 109
5.20 Interaction Plot for missed VSS Jobs 111
5.21 Regression Plot showing missed Spark Jobs with increasing Queue

Length and fixed CAN Rate. 111
5.22 Regression Plot showing missed VSS jobs with increasing level of

CAN Supersession and fixed CAN Rate. 112
5.23 Regression Plot showing missed Spark Jobs with Queue Length

between 40 and 50. 112
5.24 Regression Plot showing missed Spark Jobs with increasing CAN

Load. 113
5.25 Regression Plot showing missed VSS Jobs with increasing CAN

Load. 113
5.26 Reliability Plot showing the number of runs before expected fail-

ure for FCFS and the Heuristic Algorithm and a CAN Load of
300. 114

vii

5.27 Reliability Plot for a 1000000 cycle run, halting on any missed
Spark Job. 114

6.1 The Arduino Due . 119
6.2 The Arduino Development Environment 120
6.3 Engine Speed Sensor Design . 124
6.4 Vehicle Speed Sensor Design . 124
6.5 Circuit for Delivery of High Voltage to Spark Plug 126
6.6 Full Hardware Design for Interfacing to Arduino 126
6.7 Arduino Connected to Test Circuits 133
6.8 Execution Time for 1000 runs of SPC Calculator using Arduino

Random Number Generation Function 133
6.9 Execution Time for 1000 runs of SPC Calculator using Gaussian

Noise Generator . 135
6.10 Circuit Modification to latch LED1 on in Event of Overrun . . . 136

7.1 High Level Block Diagram of SPC Module 143
7.2 SPC Hardware Design . 143

viii

List of Tables

2.1 Common Operating Systems and Their Schedulers [107] 12
2.2 Queuing Types and Their parameters [107] 13
2.3 Average Power Outputs and Models for Energy Harvesting Sources 26
2.4 Recommended Testing for Differing ASIL Levels [92] 40

3.1 Epsilon Scores for General Linear Model Following DoE 57
3.2 Mann-Whitney Test Results for Monitoring B0 or Ps for SPC

Control . 57
3.3 Mann-Whitney Test Results for Use of SPC Within Power Man-

agement . 58
3.4 Mann-Whitney Test Results for Use of SPC and Trivial Systems

Within Power Management . 59
3.5 Failure Times for Various Management Techniques withBMax

0 =2000,
Ps=50, Pc=35 . 61

4.1 Two-Sample T-Test Results for rate of Missed Job 1 for Full
Game Theory Implementation and Hybrid System 76

4.2 Significant Epsilon Scores for General Linear Model Following
DoE for Missed Job 1 Events . 77

4.3 Significant Epsilon Scores for General Linear Model Following
DoE for Prudent Job 1 Activation 77

4.4 Significant Epsilon Scores for General Linear Model Following
DoE for Prudent Job 1 Activation 80

4.5 Mann-Whitney Results for number of successful cycles completed
before a missed Job 1 occurs for FCFS and the Hybrid Game
Theory Algorithm . 82

5.1 Change in Queue Times and Lengths for a One-Core and Two-
Core System When Job Arrival (λ and Job Service (µ) Rates are
altered . 96

5.2 One-way ANOVA Results for Number of Clock Cycles Completed
Compared to Queuing Method 99

5.3 Epsilon Scores for General Linear Model Following DoE 99
5.4 Missed Spark Jobs based on an increase of CAN Job rate with

Schedulers . 100
5.5 Missed VSS Jobs based on an increase of CAN Job rate with

Schedulers . 101
5.6 Analysis of Variance (ANOVA) Results for Missed Spark jobs

with Respect to Scheduling Algorithm Used 102

ix

5.7 Analysis of Variance (ANOVA) Results for Missed VSS jobs with
Respect to Scheduling Algorithm Used 102

5.8 Epsilon Scores for General Linear Model Following DoE for Missed
Spark Events . 107

5.9 Epsilon Scores for General Linear Model Following DoE for missed
VSS Events . 107

5.10 Analysis of Variance (ANOVA) Results for Missed Spark jobs
with Respect to Scheduling Algorithm Used following Optimization115

6.1 Summary of Prototype Boards 118
6.2 Cause and Effects Matrix for Microprocessor 119
6.3 Wiring Loom for Arduino . 129
6.4 Output Frequencies for U1 and U2 132
6.5 Percentage Errors for use of Integer Calculation and α and β er-

rors sampled using Arduino Random Number Generation Function132
6.6 Percentage Errors for use of Integer Calculation and α and β

errors sampled using Gaussian Noise Generator Running at 3V,
2V and 1V Peak-to-Peak and sampling at 100ms 134

6.7 Mann-Whitney Test Results for Execution Time, Mean Error and
Standard Deviation Error Comparing Bench Run to Sample Run 134

6.8 Error in Engine and Vehicle Speed readings for Arduino at Dif-
fering Frequencies . 135

6.9 LED1 Output for Increasing Value of Frequency at Pin 30 136
6.10 Assumptions for MNEDC Cycle 137
6.11 LED1 Output for MNEDC Cycle 137

x

List of Algorithms

1 Algorithm for Energy Harvesting Investigation 46

2 Scoring Algorithm to create Game Matrices 70
3 Prudence (Lines 1 to 18) and Nash (Lines 19 to 23) Algorithm . . 71

4 Simulation for Heuristic Scheduler 88
5 Tooth to Spark Algorithm . 90
6 Algorithm for CAN RDR Benchmark 92
7 Algorithm for Road Speed Calculation Benchmark 92
8 Algorithm for Automotive Heuristic Scheduler 96

9 Arduino Hello World Program . 121
10 Arduino PWM Program . 121
11 PWM Program designed using Scheduler Library 123
12 Counter Algorithm to test Arduino with VSS and Engine Speed

Sensors . 128
13 Output Algorithm for Arduino . 128
14 Scheduling Control Algorithm . 130

xi

List of Abbreviations

• ABS — Anti-lock Braking

• ANOVA — Analysis of Variance

• ASIL — Automotive Safety Integrity Level

• BAM — Broadcast Announce Message

• CAFE — Corporate Average Fuel Economy

• CAN — Controller Area Network

• Cpk — Capability Index

• DMA — Direct Memory Access

• DMAIC — Define, Measure, Analyse, Improve, Control

• DoE — Design of Experiments

• ECU — Electronic Control Unit

• EDF — Earliest Deadline First

• ELF — Early Life Failures

• EMC — Electromagnetic Compliance

• EMI — Electromagnetic Interference

• EOS — Electrical Overstress

• ESD — Electrostatic Discharge

• ETS — European Test Symposium

• FCFS — First Come First Served

• FET — Field Effect Transistor

• FITS — Failures per Trillion Hours

• FMEA — Failure Mode Effects Analysis

• GLM — General Linear Model

• HALT — Highly Accelerated Life Testing

xii

• HAPM — Harvesting Aware Power Management

• HIL — Hardware in the Loop

• IC — Integrated Circuit

• I-MR — Individual - Moving Range

• ITRS — International Technology Roadmap for Semiconductors

• KPIV — Key Process Input Variables

• LCL — Lower Control Limit

• LSA — Lazy Scheduling Algorithm

• MNEDC — Modified New European Driving Cycle

• MTBF — Mean Time Between Failures

• MTTF — Mean Time to Failure

• MTTR — Mean Time to Repair

• NOx — Oxides of Nitrogen

• OTE — One Time Engineering

• PGN — Parameter Group Number

• PM10 — Particulate Matter below 10µm

• PV — Photovoltaic

• PWM — Pulse Width Modulation

• QoS — Quality of Service

• RDR — Remote Data Request

• RFID — Radio Frequency Identification

• RM — Rate Monotonic

• RR — Round Robin

• RTOS — Real-Time Operating System

• SJF — Shortest Job First

• SPC — Statistical Process Control

• TDC — Top Dead Center

• TMR — Triple Modular Redundancy

• UCL — Upper Control Limit

• VDM — Vienna Development Method

• WCET — Worst Case Execution Time

xiii

Preface

The passion of men for equality is ardent, insatiable, eternal, invin-
cible.
Alexis de Tocqueville

This thesis summarises the work undertaken over the last three years in the
School of Electrical and Electronic Engineering at Newcastle University. The
initial kernel of this research came while reading Ken Binmore’s excellent book
”Game Theory: A Very Short Introduction”, which first introduced me to the
idea that events previously thought of as non-deterministic could be modelled
and controlled mathematically. This combined with ideas raised during Six
Sigma training during my time in industry that any Gaussian process can be
predicted using simple tools, and theories introduced during my MSc to develop
a proposal that quickly grew, being built upon with the outcome contained
within these pages.

1

Acknowledgements

I would like to thank my supervisors; Professor Alex Yakovlev and Dr. Alex
Bystrov for their assistance throughout this thesis. They have often been bea-
cons that have prevented items of work running onto the rocks. Thanks also
go to Dr. Albert Koelmans and Professor Alan Burns for agreeing to be my
internal and external examiners respectively.

I would also like to thank Mr. Graeme Coapes and Mr. Johnson Fernandes
for their helpful discussions, especially at points where all looked hopeless. Also
thanks go to Dr. Panagiotis Asimakopoulos and Dr. Robin Emery for intro-
ducing me to the LATEX language, which has allowed the professional creation
of this thesis.

For their support over many years, special thanks go to my parents Carole
and Brian and to my wife Emma for giving me the courage to take on this task
and for all the tireless support and help she has given over the last three years.

This work was funded by a Doctoral Teaching Account from the EPSRC.

2

Bibliography

Items from this work have appeared in the following publications:

• Journal Papers

1. J. Docherty, A. Bystrov, A. Yakovlev; ”Testing of a Real-Time Heuris-
tic Scheduler with Automotive Benchmarks”; International Journal
of Simulation: Systems, Science and Technology; Volume 14

• Conference Papers

1. J. Docherty, A. Bystrov, A. Yakovlev; ”Simulation and Validation
of a Heuristic Scheduling Algorithm for Multicore Systems”, SIMUL
2013; 27th Oct - 1st Nov 2013;

2. J. Docherty, A. Bystrov, A. Yakovlev; ”Testing of a Real-Time Heuris-
tic Scheduler with Automotive Benchmarks”; UKSIM2013; 10-12
April 2013; doi: 10.1109/UKSim.2013.98

3. J. Docherty, A. Bystrov, A. Yakovlev; ”Identification of Key En-
ergy Harvesting Parameters Through Monte Carlo Simulations”; UK-
SIM2012; 28-30 March 2012; doi: 10.1109/UKSim.2012.73

• Workshop Papers

1. J. Docherty, A. Bystrov, A. Yakovlev; ”The Use of Game Theory
Within Automotive Job Scheduling”; Workshop on Manufacturable
and Dependable Multicore Architectures at Nanoscale (MEDIAN) at
ETS13; May 30-31 2013

2. J. Docherty, A. Bystrov, A. Yakovlev; ”Using Game Theory for Man-
aging Power and Reliability in a Circuit”; Workshop on Low Power
Design Impact on Test and Reliability (LPonTR) at ETS11; May
26-27 2011

3. J. Docherty, A. Yakovlev; ”Game Theoretic Power Management Tech-
niques for Real-Time Scheduling”; Workshop on Micro Power Man-
agement for Macro Systems on Chip at DATE 2011; March 18 2011

3

• Technical Reports and Memos

1. J. Docherty, A. Yakovlev; ”Game Theoretic Power Management Tech-
niques for Real-Time Scheduling”; Technical Memo Series NCL-EECE-
MSD-MEMO-2011-002; January 2011

2. A. Yakovlev; ”Energy Modulated Computing”; Technical Report Se-
ries NCL-EECE-MSD-TR-2010-167; December 2010

4

Chapter 1

Introduction

An investment in knowledge pays the best interest.
Benjamin Franklin

1.1 Motivation

Our dependency and use of electronic devices continues to grow at a rapid rate.
While the market for home computers is flat, the market for embedded systems
passed seven billion units in 2012 and is predicted to reach nine billion by 2015
and be worth over USD 220 billion by 2018 [63]. This has led to many chip
manufacturers, including Intel, to focus on low power, high performance devices
for use in this expanding market [39]. However, each new design adds to the
burden of expectation placed upon designers and manufacturers. Mobile devices
are now expected to be capable of streaming high definition video, coping with
high quality graphics rendering and matching consumers expected quality of
service, often while running on battery power. Other embedded devices have
successfully pervaded our lives with less awareness, controlling many aspects
of our lives from ensuring toast is always perfectly golden brown to sensing an
impact within a car that requires the air-bags to deploy and reduce the risk of
serious injury.

To allow the achievement of these eclectic and varying goals, microproces-
sors have had to increase in the processing power and efficiency. With designers
pushing to obey Moore’s Law, that the number of transistors on a chip will dou-
ble every 18 months [68], turning this law into a design goal and developing new
design methodologies and manufacturing techniques to ensure each generation
of chip stays near target. Initially, more parts were added by simply reducing the
size of each transistor. However as channel length went below 1µm, this quick
fix became more difficult. Currently sizes of < 90nm are common, meaning ex-
otic materials such as strained silicon and high-k dielectrics have been adopted
to retain the increase in performance, though these add cost to the manufacture
of each device, which is passed on to the end customer. Therefore, due to these
changes, it has been suggested that the classic Von Neumann architecture of
computers, which can be seen in Figure 1.1, is no longer a feasible layout for
microprocessors [114]. The increase in parallelism and the need for resources to
be shared between differing job types and roles mean that research into the next

5

Figure 1.1: The Von Neumann Architecture

generation of systems must look beyond this model, which has been effective
for more than 70 years, and instead to more advanced concepts. Designers have
looked beyond the reduction of transistor feature size to increase device count
and are now using multi-core systems to achieve performance targets.

Multi-core systems are of two common types: Heterogeneous, where cores of
different types are mounted on the same processor, and homogeneous environ-
ments where the same structure is repeated many times to give a parallel system
on a single chip. Both these have been widely adopted within the embedded
community, with designers now increasing the number of cores in a newly de-
fined corollary of Moore’s Law that the number of cores will double every 18
months. Currently, this can be seen to be the case, as Figure 1.2 shows.

This increase in processing power comes at a price, which is energy consump-
tion. Smartphone users are all too aware of the need to continually recharge
their devices, with lifetimes measured in hours rather than days. For most con-
sumer devices, the issue of running out of charge is a mild inconvenience, with
the user simply having to put up with being deviceless until they can plug in to
a mains supply. However, within certain applications such as medical devices
a loss of functionality is not acceptable. Therefore, methods of both reducing
consumption and adding energy back to the battery from ambient conditions
are active areas of research, ensuring reliability for these critical devices.

6

Figure 1.2: Number of Cores per chip with Predicted Curve [13]

1.2 Research Goals and Thesis Contribution

This thesis is concerned with the retention of quality of service for consumers.
The work has concentrated on maximising executable time for systems running
from battery or energy harvesting devices, along with the execution of hard real-
time jobs in a mixed system. Energy Management through Statistical Process
control is presented, which gives a significant increase in runtime within simula-
tion for both a generic system and one based upon an established architecture.

Also presented is the use of heuristics based on known rules and game theory
for the execution of real-time jobs within a kernel. This takes the concept of a
system self-optimising and compares it to established schedulers using industry-
defined benchmarks.

Finally, this thesis demonstrates the use of a simple processor to execute
advanced tasks from an automotive benchmark and the feasibility of the devel-
oped heuristic scheduler within hardware. An illustration of the flow, showing
concurrent development of concepts and theories can be seen in Figure 1.3.

The above goals are significant to minimise the trade-off between perfor-
mance and battery consumption for mobile applications and to increase the
longevity of established microprocessor architectures. If an increase in perfor-
mance or lifetime can be delivered for mature products through establishment
of a new management paradigm, it will allow system designers at all abstrac-
tion levels to deliver products that meet consumer expectations of performance,
while using recognised and proven design tools and methods. This development
would be significant as one-time engineering (OTE) costs for a new product
would be reduced or negated, driving down product cost and time to market.

7

Figure 1.3: Layout of Thesis

1.3 Thesis Structure

This Thesis is structured as seven chapters:

1. Chapter 1 outlines the motivation behind this work and the contribution
of this thesis.

2. Chapter 2 summarises the theories behind Real-Time Systems, Game
Theory, Statistical Process Control and some of the tools used. Definitions
of Nash Equilibrium, Cpk, Six Sigma and other key items are made.

3. Chapter 3 studies the use of batteries and other energy storage devices
and methods of maximising reliability. An overview of energy harvesters
and storage devices is presented, along with a summary of existing power
management techniques. The need for new energy control is shown, along
with a method of performing this using Statistical Process Control.

4. Chapter 4 presents the use of Heuristics to manage jobs and retain re-
liability within an embedded system. The use of a simple heuristic is
demonstrated through MATLAB simulation, with further discussion and
demonstration of the feasibility of Game Theory within a single-core en-
vironment.

5. Chapter 5 continues the work from Chapter 4, testing a heuristic sched-
uler within an Automotive Real-Time environment simulated in MAT-
LAB. The designed scheduler is compared to two other common algorithms
and the benefit to system designers demonstrated.

8

6. Chapter 6 shows the implementation of the scheduler within Chapter 5
on an embedded controller, along with further testing to assess reliability
against the chosen benchmarks.

7. Chapter 7 summarises the key results and achievements, while also sug-
gesting areas for future work and research.

1.4 Research Questions

This thesis aims to examine the link between the use of statistical based tech-
niques, such as game theory and heuristic scheduling, and the possibility of
increasing system availability by reducing missed processing jobs and energy
consumed during execution. It is hypothesised that a system will lose avail-
ability as energy within the system reduces. However, a well-designed energy
management system will provide a saving greater than the extra overhead the
additional circuitry and processing will consume. Therefore, a simple, well de-
signed algorithm should significantly increase the lifetime and corresponding
availability of the system for useful work. Furthermore, by changing from rigid
scheduling paradigms to a technique based on environment awareness, critical
jobs can have their importance preserved beyond the limits usually imposed
by scheduler rules. Therefore, it should be possible to observe a reduction in
missed jobs and and increase in system availability through a combined use of
these scheduling and energy saving techniques.

9

Chapter 2

Background

You look at where you’re going and where you are and it never makes
sense, but then you look back at where you’ve been and a pattern
seems to emerge.
Robert Pirsig, Zen and the Art of Motorcycle Maintenance

2.1 Scheduling

2.1.1 Introduction

Since the earliest computer systems were developed in the post-war period, the
question of how best to share tasks on a processor has been a topic of constant
investigation. As systems increased in complexity and operating systems took
the place of manual program loading; execution order and scheduling became
automatic. As the complexity grew, different methods of scheduling these jobs
became commonplace. A selection of these can be seen in Table 2.2.

First Come First Served (FCFS)

In everyday life, the most common form of queue encountered is this one. Pa-
trons join at the back and continue through the queue until they reach the head.
Once the next clerk becomes available, they will be served. As Table 2.2 shows,
this is a simple system to implement but rapidly degrades in performance if the
number of clerks is not high enough or jobs take an unexpectedly long time to
service. More on FCFS can be seen in Chapter 3.

Shortest Job First (SJF)

In contrast to FCFS, SJF looks through the queue and services the job with
the shortest execution time. This maximises throughput and allows a high
level of utilisation. However this comes at the expense of holding back longer
and possibly more valuable jobs, which can cause a reduction in the quality of
service (QoS) and reduce patron satisfaction. SJF is a common method used in
production lines to improve takt time (the time a unit may remain on station
to keep production flowing) and ensure a smooth supply of jobs.

10

Figure 2.1: A literal job queue for the EDSAC II, Cambridge University 1960
[118]

Priority Queue

Commonly seen in areas such as Airports, Priority Queue is part of the Multi-
level and Cooperative schedulers in Table 2.1. Jobs or Customers are placed in
queues according to the priority assigned by the scheduler and queues are ser-
viced according to their priority level. This system has been successful for air-
lines [83], satisfying premium customers while not overly degrading non-priority
patrons. However, if a surge of priority jobs occurred, this could lead to un-
acceptable waiting for both types of customer and a rapid reduction in QoS.
Therefore the number of queuing levels, clerks servicing jobs and ratio of prior-
ity to non-priority jobs must be carefully considered to prevent this happening.

Round Robin

Used successfully as the IEEE802.5 token ring network, Round Robin (RR)
scheduling is a totally fair method of allocating jobs to devices. Each job re-
ceives exactly the same time and may only use the device if it holds the token.
Once its time has expired, the token must visit all other jobs in the queue before
returning. Since token time is usually short, short jobs receive the advantage
of SJF, while long jobs also have the chance to partially complete. RR is sig-
nificantly more complicated than any of the methods above, with the ability to
add priority further compounding this intricacy. Since all jobs receive the same
time holding the token, very short jobs can be complete before passing it on;
this reduces processor utilisation and therefore efficiency significantly.

Multilevel

Used in the Linux System, this scheduling paradigm works as a mixture of Pri-
ority Queue and FCFS. Several queues exist and the system will service the
highest queue that has jobs present. The primary difference between simple
Priority Queue and this system is jobs can jump up queues to assist their ser-
vicing if a set period of time has elapsed. This gives good and fair time to
processes, while preserving Quality of Service for critical tasks.

11

2.1.2 Real-Time Systems

A real-time system has the added difficulty of not only generating correct re-
sults, but having these dependant on the physical instant they are produced
[55]. The system classically acts as the intermediary between an operator and
a controlled object; interpreting signals and providing instructions through an
interface. A well-designed real-time system should deliver timeliness (correct
output at correct time), consider peak load to prevent missing jobs, predict
scheduling, tolerate and recover from faults and be easy to modify and main-
tain [18].

Real-time systems differ from standard software models through the addition
of a deadline to system considerations [54]. A job within a real time system has
five main parameters:

• Arrival Time Ai

• Start Time Si

• Computation Time Ci

• Finish Time Fi

• Deadline Di

These can be seen graphically in Figure 2.2. A job can be considered late if
Fi −Di > 0 with the slack in a process calculated as Xi = Di −Ai − Ci.

When multiple jobs are run on a system, precedence and processor utilisation
must be taken into account. Processor Utilisation µ =

∑n
i=1

Ci
Ti

where Ti is total
processor time available. µ < 1 will allow all tasks to schedule under certain
schedulers.

Real-time Job Types

Figure 2.3 graphically demonstrates the four common types of job within a real-
time system. Non real-time jobs must be considered as these may be within
some processes. Since these have no deadline, their value (V (fi)) cannot be
considered to reduce at any point. Soft jobs lose value after they pass their
deadline, but continue to have some use until a time t. Therefore, these jobs
can tolerate some late execution and even allow a µ > 1 to occur, provided no

Table 2.1: Common Operating Systems and Their Schedulers [107]

OS Pre-emption Scheduling Algorithm
Windows 3.1x No Cooperative

Windows 95/98 Half Cooperative/Pre-emptive
Windows NT/7 Yes Multilevel Feedback

iOS9 Some Cooperative
iOSX Yes Multilevel Feedback

Linux 2.6.23 Yes Completely Fair
FreeBSD Yes Multilevel Feedback

12

Figure 2.2: Real-time Job Example, showing Activation, Computation and
Deadline

Table 2.2: Queuing Types and Their parameters [107]

Algorithm Overhead Throughput Turnaround Response

First Come First Serve Low Low High Low

Shortest Job First Medium High Medium Medium

Priority Queue Medium Low High High

Round Robin High Medium Medium High

Multilevel High High Medium Low

firm or hard jobs are missed. Firm jobs have a high level of importance, so
receive a value of 0 if they are late. This value means the information within
the task can be perceived to have no worth, though it may finish executing.
Hard real-time jobs are the most critical to control. A miss of these could lead
to hazardous conditions outside of the system that could cause a dangerous
outcome. Misses of hard real-time jobs should therefore be avoided at all costs,
either through careful scheduler choice or system design.

Scheduling of Real-Time Tasks

Schedulers are of two main types: Time-triggered and event-triggered. Event
triggered will activate on arrival of a new task, assess the jobs and alter the
schedule accordingly. Time-triggered activates periodically through a real-time
clock within the system. Since real-time clocks are now common within mod-
ern embedded systems, time-triggered schedulers are more common due to their
predictable temporal behaviour, improved scaling and verification testing over
event-triggered. Though in a system with resource constraints such as a battery-
powered device, event-triggered could be considered superior [54]. The ideal
scheduler and triggering method vary depending on items such as job prece-
dence, ratio of periodic to aperiodic tasks, number of cores available, etc. These
must be considered by the system designer during the concept phase of the de-
sign to ensure high levels of both processor utilisation and system reliability.
While many scheduling algorithms exist for real-time systems, the two most
commonly used are Earliest Deadline First (EDF) and Rate Monotonic (RM),
which will be discussed further in the following sections.

Earliest Deadline First EDF is defined in [18] as follows, ”For n in-
dependent tasks with arbitrary arrival times, an algorithm that at any instant
releases the task with the earliest absolute deadline amongst all ready tasks.”

13

Figure 2.3: Real-time Job Types [18]

This algorithm minimises lateness and can be deemed optimal as it will find
a feasible schedule, should one exist. EDF can be pre-emptive, where jobs may
be stopped mid execution to allow ones with earlier deadlines to execute. An
example of this can be seen in Figure 2.4.

Rate Monotonic RM is defined by [18] as, ”a simple rule that assigns
priorities to tasks according to their request rates. Tasks with higher request
rates (shorter periods) will have higher priorities.”

These priorities are assigned before execution and are static, giving an intrin-
sically pre-emptive system where a currently executing task will be pre-empted
by one with a shorter period. It is optimal for schedules with fixed priority
assignments, though with lower processor utilisation than EDF [18]. However,
this means a critical long task may be blocked by Rate Monotonic, so careful
consideration must be made when using this scheduler, though [82] comments
that Rate Monotonic is optimal for independent tasks on a uniprocessor system
and can be improved by a priority altering system such as that in [60].

In addition to EDF and RM, several other algorithms have been developed
to control systems and manage unpredictability. A design of note is the Lazy
Scheduling Algorithm (LSA) [70]; this has been used in changeable energy en-
vironments to determine optimum execution points for jobs by running a job as
close to its deadline as possible, outperforming EDF and allowing a reduction in
energy storage requirements. For this work, running a job as late as possible is
thought of as optimal, a suggestion also noted in [26], where a job gains priority
when laxity is zero.

14

Figure 2.4: Graphical Depiction of a schedule created in EDF with pre-emption

Dynamic Real-Time Scheduling

Fixed schedules or those that only obey basic rules, while suitable for basic
systems and theoretical examples, reduce in efficiency for complicated devices
where a mixture of real-time and non-real-time tasks are present. To overcome
this, work developing from suggestions made in [17] to reserve CPU runtime for
Hard Real-Time tasks through a variety of methods has taken place. Many of
these techniques look at using established algorithms such as EDF and add flex-
ibility based on heuristics to understand whether resources should be reserved
or job scheduling order altered [59] [22]. For systems running mixed tasks and
with a high element of aperiodic jobs, it was found that the use of EDF with
a preserved area to account for this and allow a secondary temporal deadline
to exist gave improvement in performance. This preserves the EDF scheduling
methods and allows mixed tasks to execute, giving a hybrid scheduler — similar
to the SPRING algorithm in that the scheduler changes to give ideal responses
for the situation at hand. [2].

Heuristics have been used in traffic management [19] and energy manage-
ment [61] within integrated circuits and have been noted as the main feasible
solution for high-complexity situations; due to their ability to react iteratively as
the environment changes [98]. These works consider all aspects of the real-time
taxonomy discussed in Chapter 4 and use approaches such as linear program-
ming and task mapping to resolve a best case solution. In these examples, the
algorithms are relatively short (approximately 30 lines) and are often simulated
in MATLAB due to its ability to handle large data sets. Methods can use ex-
plicit rules to find optimal strategies [76] or more abstract techniques such as
Nash Equilibrium discussed in section 2.2 [3]. Heuristics allow for schedules
that are clearly infeasible to be ignored through initial grouping, which reduces
computation time and can improve performance [21] [23]. This use of heuristics
means some scheduling that would originally have been performed offline can
now take place in real-time, improving the reliability of operation [121]. As

15

complexity of systems increases, the use of rule-based schedulers will become
more commonplace. While these cannot always give the best response, the out-
come will often be suitable in the time taken to calculate it that no detriment
to the quality of service will perceptibly take place [18]. These works show that
for their areas of research, heuristics are a viable tool and can give comparable
results compared to significantly more complicated systems.

While a heuristic system adds complexity, it is thought that the savings gen-
erated offset this penalty by offering a great improvement in efficiency. However,
models must be reduced to their minimum size, only using key parameters to
schedule work; otherwise this efficiency will be greatly reduced. Heuristics are
discussed further in Chapter 5.

As demands for real-time systems over the internet such as Skype and
YouTube have grown, so has the research into scheduling in this area. For
this, the use of Multilevel scheduling has become more popular, allowing traffic
with a need to be timely to pass quickly at the expense of data types such as
downloads. For this, a great deal of job modelling has taken place to determine
best response rates for preservation of Quality of Service [101] [33]. These show
that as traffic increases, the ability to manage it in a complete manner becomes
more difficult. One solution, presented in [58] is once again the use of heuristics
to reduce the investigation length at a small penalty of slightly reduced accu-
racy. The algorithms developed in this paper worked as well as full-solution
algorithms; except in a few specific cases, improving quality of service.

Multi-core and Embedded Systems

Many current real-time algorithms struggle in a multi-core environment due to
the added complexity that extra cores gives. A solution has been to dedicate
jobs to a specific core (the no migration method), which has allowed current
design methods to work in the interim. However, as core numbers increase, this
method will not be acceptable and eventually will be impossible for a designer
to create [22]. One method discussed has been the ability to change scheduling
policy for the algorithm as and when required [57]. These two papers demon-
strate that a fixed method is no longer suitable when working with a complex
system and architecture, meaning that a scheduler must operate in a hybrid ap-
proach, changing when necessary, along with managing a mixture of job types
and environments. Therefore, while existing schedule types such as EDF and
RM are of great use currently, as systems increase in complexity and micropro-
cessors grow in transistor count and number of cores, it can be expected that
statistical and heuristic based schedulers will grow in use and ubiquity.

2.2 Game Theory

2.2.1 Origins

Game Theory can trace its origins back as far at the 18th century, when the first
mathematical strategy solution to a problem was recorded by James Waldegrave
[11]. However it was not until the late 1940s that true investigation into this
branch of mathematics took place. In their work of 1944 [116], John Von Neu-
mann and Oskar Morgernstern concentrated on the sub-games known as two
person, zero sum. Within these games, wins represent a gain of some worth,

16

Figure 2.5: The Prisoners Dilemma
Nash Equilibrium is marked at (−3,−3)

while a loss leads to a deficit of an equal amount. Therefore, when this game is
repeated many times, the outcome for both players will be zero [12]. Von Neu-
mann was the first to develop this understanding and give consistent solutions
across these game types. A zero sum game is shown in Figure 2.8.

As understanding of the theories behind Game Theory grew, the situations
presented became more complex and elaborate. One of the most well-known is
the Prisoners Dilemma, originally suggested by Malcolm Tucker, which leads to
a non-ideal solution for both players. This optimal outcome is a Nash Equilib-
rium, made famous by John Forbes Nash in his seminal work [72]. The Prisoners
Dilemma can be summarised as follows,

After arresting two men, the police place each of them in separate
rooms. A deal is offered to both men independently. If they testify
against their partner and their partner says nothing, they will go
free while the partner will get ten years in prison. If both refuse to
testify, they will go to jail for one year. If both testify against one
another, they will both be jailed for three years.

The game can be seen as the matrix-form model in Figure 2.5, where the matrix
shows the pay-off for each decision. Matrix-form is commonly used in Game
Theory to give a simple summary of outcomes for strategies. Within Figure 2.5,
the first number in a cell corresponds to the outcome for Player One; with the
second number the outcome for Player Two. For strategy pair (Silence, Testify)
in the top-right corner, this gives Player One a ten year sentence (A score of
minus ten), with Player Two receiving a zero year sentence and being set free.
Nash proved that the optimal action in the Prisoners Dilemma is to testify
against your partner. This proof became known as the Nash Equilibrium,

The optimal outcome of a game is one where no player has an
incentive to deviate from his or her chosen strategy after considering
an opponent’s choices.

In this example, this seems counterproductive, as both staying silent leads
to a shorter sentence than testifying. However, by remaining silent a prisoner
trusts his partner to cooperate and failure to do this will lead to a long sentence.

When this experiment was conducted in the 1960s with candidates play-
ing for small amounts of money, 90% of the pairs suffered from mutual or
single-party defection (the equivalent of testifying), even though this lead to

17

Figure 2.6: Mini-Max Game
This game matrix shows the pay-off values for two players based on choices of

strategy A or B. [36]

a reduction in reward over repetitions of the game [99]. Repetition of the ex-
periment with applicants able to discuss their strategies beforehand lead to no
statistical difference in results, allowing us to conclude, in an interesting aside,
that humans are found to be more tempted by short-term gains than long-term
outcomes.

Within these two person games, the recognition of Nash Equilibriums is key
in determining the strategy taken. In a deterministic game, it can be assumed
that a player will attempt to maximise their reward from the game while min-
imising their opponents’. This results in a minimax and maximin approach
detailed in Figure 2.6. For this, as choice is simultaneous and the pay-offs
are known, both players will attempt to minimise their opponents gain while
maximising theirs. Therefore the optimal strategy for Player One will be largest
minimum value for each row (the Maximin, circled) while Player Two will choose
the smallest maximum value (Minimax, circled). In this example, the Strategy
A1,B1 is optimum and therefore a Nash Equilibrium. In a matrix where play-
ers receive different pay-offs for choosing a strategy, such as that in Figure 2.7,
Player One’s best choices against Player Two’s Strategies A-D are B, B, C and
A respectively. Player 2s best choices against Player 1s Strategies A-C are A,
A/D (as these both have the same pay-off against Strategy B from Player 1) and
D respectively. Therefore, in line with the definitions above, Case B/A gives a
Nash Equilibrium and the best choice for each player.

Of course, in a highly non-deterministic system, the Nash Equilibrium at one
instant may not remain stable. In [65] the authors make the case that strictly
seeking Nash Equilibrium may not be ideal, meaning a compromise must be
developed within the algorithm. Despite this, other works such as [53] and [111]
show that within a two-player non-competitive game where a Nash Equilibrium
exists, this often leads to a better outcome for highest priority jobs and therefore
should be used over more complex searching for Pareto Optimal outcomes where
all players have their maximum possible return. The Nash Equilibrium is found
by searching for each players prudent outcomes (the best outcome for each tactic
with respect to your opponents choice of tactic). If both players have a prudent
outcome in the same tactic pair, this pair is a Nash Equilibrium. An example
of this is illustrated in Figure 2.7.

Formally the Nash Equilibrium is defined on (S, f), a game containing n
players and S strategies, where Si contains the strategy for player i (S =
S1x, S2x, ..., Snx) and f = (f1(x), ..., fn(x)) contains the pay-off where xεS.

18

Figure 2.7: Game Matrix showing the prudent outcomes for each system (orange
circles). Player 1 and Player 2 both have prudent outcomes at (B,A), therefore
this is a Nash Equilibrium (Red Square)

If xi is Player i strategy and x−i is the strategy for all other players, then
when each player selects strategy i, this gives a pay-off of fi(x) for each player;
dependent on the strategy chosen by all players. x∗εS is a Nash Equilibrium if:

∀i, xiεSi : fi(x
∗
i , x

∗
−i) ≥ fi(xi, x∗−i) (2.1)

For the Prisoners Dilemma in Figure 2.5, Equation 2.1 can be seen to be true
since a player not choosing the Nash Equilibrium x∗i to testify will receive an
outcome of ten years in jail if the other player chooses their Nash Equilibrium.
Therefore, the inequality holds true and (Silence,Testify) or (Testify, Silence)
are proved to not be Nash Equilibrium.

2.2.2 Game Types

The games played can broadly be split into two types:

• Cooperative: Where players negotiate to ascertain their fair share of a
resource

• Non-Cooperative: Where players optimise their strategy to maximise the
return from a resource

Games can also be two player or many player (> 2), further adding to the
complexity of a situation, and zero-sum or non-zero-sum. In zero-sum games,
the expected outcome of each round will be a constant; assumed to be zero, as
each player will gain an amount or lose an equal amount. An example of this
would be a betting game such as the mixed strategy game matching pennies,
shown in Figure 2.8. In this, two players each have a coin and decide whether to
show the head side or tail side. After simultaneously uncovering their decision;
Player One will win the penny if the faces match while Player Two will win if
they are different. Since one player gains a penny while the other loses one, the
sum per round is zero. This game has no Nash Equilibrium as no response is
ultimately best [12]. This game is formally defined as:

∀xiεSi
∑
iεn

fi(xi) = constant (2.2)

Players within these games can play either mixed or pure strategies. Pure
strategies involve playing the best response at all times, which is the Nash

19

Figure 2.8: A Zero-sum game played between two players.

Equilibrium. In the event of two equilibrium being present, the player will
fluctuate between these with a probability P = 0.5.

When modelling a situation as a game, it is important to consider several
factors [89]:

• Number of players — as complexity increases exponentially with this

• Whether players are monolithic — differences within players sub-goals
may compromise outcomes

• Whether the game is repetitive — a one-time play for resources is more
likely to result in a free-for-all environment where all players push to
maximise their outcomes. However, in repetitive negotiations, a player
could find their reputation damaged by overly aggressive tactics; meaning
repetitive bargaining is often more cooperative than single-shot events

• Linkage effects — whether a decision has knock-on effects to other sub
games

• Existence of multiple issues — these may be mutually exclusive (such as
runtime vs. energy consumption)

• Is an agreement required (within a time-frame) — otherwise does a con-
tingency payment or cancellation take place?

• Does the agreement need to be ratified by a higher authority?

• Is a decision binding?

• Are negotiations private or public — can huddles take place between play-
ers to agree outside of the primary game, or are all agreements made in
sight of all others?

• What are the norms of players — what do they expect or hope to achieve
by negotiations?

Of course, when modelling a game theoretic situation for mathematical sys-
tems, a great deal of these can be removed. The games can also be designed to
control the outcomes and ensure that players choose the best decision based on
logic — something that cannot be relied upon with human players.

Due to the work by Von Neumann and Nash, the majority of research that
has taken place in Game Theory looks at two-person non-cooperative games,

20

especially within finite Automata. Within these two person non-cooperative
games, four primary sub games are evident when pure strategies are used [87]:

• Deadlock Games (Such as the Prisoners Dilemma) where the Nash Equi-
librium is to defect, despite the better outcome from mutual cooperation

• Stag Hunt Games where cooperation gives the Nash Equilibrium. Since
the Nash Equilibrium also is the best outcome, these games are pareto
optimal (No player can improve their outcome without another becoming
worse off) [71].

• Chicken Games where there are two Nash Equilibriums between which
the game will fluctuate

• Non or Multi Nash Equilibrium games where no one strategy dom-
inates and the game therefore is played randomly

While a game may have a no Nash Equilibrium using Pure Strategies, Nash
proved in 1951 that all games have a Nash Equilibrium in either pure or mixed
strategies, building on the work by Von Neumann that proved this was true for
zero-sum games [72]. The proof for this is detailed in [37] and is summarised for
2× n games in Figure 2.9 and Figure 2.10. For the example, Row D Column A
is a pure Nash Equilibrium (illustrated by the box). To find any mixed strategy
equilibrium, each strategys pay-off curve must be created based on the pay-offs
for choosing the particular strategy compared to an opponents choice chosen
with probability p. The graphical outcome shows peak strategy pairs and these
points can either be solved algebraically or by interpreting the graph to ascertain
the optimal value of p to gain this outcome. This is done in Figure 2.10 and
proves the pure Nash Equilibrium of Strategy (D, A) at point (0, 5) (Point 1) as
this maximises both players return without altering their strategy. Point 4 at (1,
5) is not a Nash Equilibrium as Player 2 could increase his outcome by playing
another strategy. Points 2 and 3 require investigation to determine whether
they are Nash Equilibriums. Taking the x-value for Point 2, we see it gives a
strategy of (8

11 ,
3
11) for Player 1 to play Strategy A and Strategy B respectively.

Using the same technique for Player 2, we find Player 1 should play Strategy
B and D with probability (7

9 ,
2
9). This gives us the complete game (0, 79 , 0,

2
9)

(8
11 ,

3
11) — which follows the shape of the line made by B and D. Therefore

neither player can increase their pay-off by changing strategies; meaning this
is a Nash Equilibrium. As mixed Nash Equilibriums are not considered in this
research, the full solution for this is omitted from this thesis but can be found
in [37].

2.2.3 Limitations of Nash

While a Nash Equilibrium often gives a strong or adequate result, on occasions
this is not the case. An example of this can be seen in Figure 2.11 from [41],
which is an extended form of the Prisoners Dilemma. However, it can be seen
that the Nash Equilibrium is significantly worse for both players than other
strategies, but still meets the definition as better outcomes require cooperation
between players and is true when applied to Equation 2.1. This idea is confirmed
by [65] that shows the stability of a set in a non-ideal state. For this simple two

21

Figure 2.9: A Mixed Strategy Example

Figure 2.10: Graph of Game Matrix in Figure 2.9

player example, the agreement between players to accept a non-Nash solution
may be easy to see; but in more complex environments or many player settings,
attempting to convince many players to take the non-Nash solution may be
excessively complicated.

Work with Game Theory is widely undertaken in fields as diverse as Biology
and Economics, but within Electrical Engineering it is also used, especially
within communication theory and traffic routing for items such as bandwidth
efficiency and security. It has also been used within automotive embedded
controllers to manage Hybrid drive-lines, where items within the cost function
have been tuned to give fair weighting and the most ideal outcome [53]. This
was modelled as a non-cooperative game where a driver competed with his
vehicle drive-train and was found to give good outcomes compared to established
algorithms and benchmarks. This gives weight to the idea that non-cooperative
games can give improvements over already existing systems, provided they are
tuned correctly. To do this, the taxonomy and metrics must be clearly defined
at the conceptual stage.

Nash is also limited in effectiveness as the number of players increase. Many

22

Figure 2.11: A Game with a clearly unreasonable (but unique) Nash Equilibrium

player solutions have been developed, but the calculation time for above three
players grows until the time for solution calculation becomes excessive when
compared to the output time [109]. Cooperative games also have this issue,
with attempts to find a solution in Euclidean space becoming overly difficult
beyond two-dimensions [3]. A method of resolving this issue is the mixture
of both game types in a meta-game, first suggested by Howard in [45], where
cooperative sub-games can be used to build coalitions that can be used in a non-
cooperative environment; exploiting superadditivity to give stronger outcomes
than a purely cooperative or non-cooperative environment [97]. By grouping
players into coalitions, a many player game can be reduced as these groups
can be deemed a single entity working towards a common goal. Therefore,
once multiple coalitions have been formed, the controlling non-cooperative game
becomes feasible to calculate and can be created. This method also allows
many repetitions through techniques such as swarm optimisation or genetic
algorithms, which will identify a local maximum and allow its use even if it is not
a Nash Equilibrium [122]. A major concern with this practise is the requirement
for several replications of the algorithm to run to identify a non-Nash maximum,
which may not be acceptable in a situation where speed is a priority. In these
settings, games must be carefully designed to give a clear maximum at the
Nash Equilibrium for quick computation of a suitable result, especially in a
complicated environment such as a multi-core system [88][110]. Therefore, when
optimality of global and dynamic agreement cannot be guaranteed, the use of
Nash Equilibrium gives an outcome deemed adequate for most situations.

2.2.4 Computing Nash Equilibrium

Several methods exist for the computation of a Nash Equilibrium, with the
Lemke-Howson most commonly used [24]. This works by searching through
the matrix space for the best response after beginning at a random strategy.
This means there is no guarantee that the first strategy chosen is good and
the time for searching through all possible paths increases exponentially [103].
To overcome this, some solutions use the Stackelberg Value, where a leader
is appointed, who will always play first and cause other players to base their
tactics on this move. Used commonly in economics, this value will equal a
pure Nash Equilibrium if one exists in the game space; but will also find a
stronger value if one exists. Stackelberg is used widely in communications and
traffic management, as these allow not only a leader to be declared, but also
all information to be available [106]. For a non-deterministic environment, this

23

means Stackelberg Values can not easily be computed, again meaning that Nash
gives a strong result in a significantly shorter space of time.

2.2.5 Game Theory with Real-Time and Availability

Owing to its strength in non-deterministic environments, the exploitation of
Game Theory within scheduling has become more common as architectures
grow and transistor count rises. This idea of a repetitive game that finds the
best operating point for the next period of time has been investigated in several
works, notably [3], [25], [122] and [100]. All these works build a schedule based
on input factors such as available energy, using non-cooperative games to find
solutions. All of these use Nash Equilibriums either as a starting point to search
for optimal values from or as the final result. Since Nash is quick to calculate
for a two-player game, it gives a local maximum or minimum (the saddle point)
and only requires a short search either side of this point to determine whether a
better result can be determined. This search is performed through an iterative
algorithm and allows improvement over a pure Nash solution in some operating
conditions. However, this technique is time consuming and computationally
intensive, meaning that a carefully designed game can give comparable results
for simply calculating the Nash Equilibrium.

For the highly non-deterministic environments considered in this work, where
development of a schedule without apriori knowledge takes place and is desir-
able as soon as possible, the environment must be designed so that the Nash
Equilibrium is a maximal solution, thus removing the need for repeated runs of
a secondary scoring algorithm. Such an idea has not been found in the litera-
ture for practical use and is thought to be an original concept for developing a
feasible schedule quickly and accurately.

2.3 Energy Harvesting

2.3.1 Introduction

Though the ancient Greeks understood the concept of electrostatic charge, it was
not until the 18th century and the development of the Leyden Jar (a forerunner
of the modern capacitor) that scientists began to understand the composition of
electricity and how this could be harnessed [91]. With the development of the
first rechargeable battery in 1859, combined with the concurrent advancements
in dynamo technology, the supply of electrical power through a wind turbine
first took place in 1887 through the work of James Blyth [75].

As understanding increased and technology advanced, smaller quantities of
energy could successfully be harvested from the environment and stored. Im-
provements in battery chemistry and efficiency of devices have now led to small
systems that can run almost exclusively from scavenged energy as and when
needed. This has allowed an increase in inventory turnover and quality of prod-
ucts through the increase in information that can be stored by moving from
1D and 2D bar-codes to passive Radio Frequency Identification (RFID) tags.
This has also lead to the ”Internet of Things” where self-powered sensors have
become ubiquitous and supply terabytes of information on a daily basis.

24

Figure 2.12: An Energy Harvesting System Block Diagram [4]

2.3.2 Harvesting Types

Energy Harvesting systems vary in their design based on the harvesting device
used and level of energy delivery required. A common layout for a system can
be seen in Figure 2.12, which has conditioning and regulation circuits, along
with a storage device such as a battery or capacitor and a management system
that can be based in hardware or software.

Harvesters can be of four main types:

• Solar (Photovoltaic)

• Vibration (Piezoelectric and Magnetic)

• Thermoelectric

• Wind

As well as these common types, those taking energy from events such as
radioactive decay and pressure differences also exist; but are less common [40].

The power these devices are capable of delivering varies based on a great
deal of factors including its location, ambient conditions and suitability of tun-
ing that has taken place. For example, a wind turbine used for micro power
generation can deliver between 50 and 210mW depending on wind speed, while
a piezoelectric harvester harnessing vibration from a running person may only
create 14µW, with this depending on the runner moving at the ideal response
rate of the device.

When considered as a statistical distribution, the power delivered by these
devices also varies. A Photovoltaic Cell for example will give its maximum out-
put at noon on a sunny day, rising to this and falling to near zero after the sun
sets. A vibration harvester mounted in a vehicle by the Holistic Energy Har-
vesting Group at Southampton University showed a less predictable response,
giving peak output when the engine was running at the resonant frequency of the
harvester [104]. Therefore, the energy model can vary from a delta function for
solar cells, a Gaussian function for vibration devices and a uniform response for

25

Table 2.3: Average Power Outputs and Models for Energy Harvesting Sources
[20]

Harvesting Method Power Density Output Model
Solar Cell 15mW/cm3 Uniform/Delta
Piezoelectric 330uW/cm3 Gaussian
Vibration 116uW/cm3 Gaussian
Thermoelectric 40uW/cm3 Gaussian

a thermoelectric system in a consistent operating environment. This variation
makes designing a standard harvesting circuit very difficult, if not impossible.

2.3.3 Deliverable Energy

Photovoltaic Cells

Photovoltaic (PV) cells work through the delivery of electrons from a light source
to the exposed p-n junction of a semiconductor diode, typically made of silicon
[115]. Normally a PV cell will have its energy delivery quoted in watts per
square metre, which can be of the order of 2 − 200mW/m2, dependent on the
light level and composition of silicon. Cells are designed for use under natural
or artificial light and therefore environment for use should be considered when
designing a system using PV cells.

Vibration Systems

Vibration energy is harnessed through either Piezoelectric or Electromagnetic
devices. Piezoelectric material, made of materials such as polyvinylidene flu-
oride, can be manufactured in very thin sheets (100µm) and has the internal
dipoles aligned to allow rapid transfer of electrons when the sheet is placed un-
der tensile stress. The devices give a predictable response through a long life
(> 1000000 cycles). The generated voltage is directly proportional to the strain
present, giving 170V and between 5-20µJ/cm2 for a 1 percent strain. These sys-
tems are < 5 percent efficient, meaning a great deal of harvested energy is lost
and this technology is still only usable in a small number of energy harvesting
cases [64].

Electromagnetic devices work through the passing of a magnet through a
coil to induce an electrical current. Unlike Piezoelectric devices, which deliver
their energy in bursts, electromagnetic systems are much smoother and easily
rectified into usable power for devices and can also be manufactured in compact
casing of 70mm with outputs of 100µW possible.

Both methods of vibration harvesting require tuning to their mounted points
resonant frequency and power output. Operating outside this range will give
degraded output compared to operating at the system ”sweet spot”. Vibration
sources can vary between 0.1 and 10 m/s2 vibrational power and between 60
and 240 Hz frequency [93].

26

Thermoelectric Harvesting

Using the Seebeck Effect, where heat presented to dissimilar metals generates a
voltage at the junction of around 0.2mV/K, thermoelectric harvesters are used
with sources above ambient such as hot water pipes or engine blocks. These
devices give good proportionality to the temperature difference present and can
be sandwiched together to give suitable voltages to run embedded devices.

The technology used in these devices has been known for many years and
used in thermocouples, so is a well exploited system, but requires good tem-
perature differential between the hot and cold sides (> 25K) to be effective,
which can be a limitation as many hot sources are heavily insulated; thus pre-
venting thermoelectric devices being exploited fully due to the lack of suitable
environments.

Wind Turbines

While large scale wind generation for the National Grid has become common-
place, the use of micro-scale generation for small DC devices has grown in
popularity as an emergency or alternative charging source [35]. A major issue
with wind is the high variability over short periods — giving an almost stochas-
tic response. Small turbines can deliver between 2-200mW, depending on their
mounting and ambient conditions. Due to the high variation present, wind can
be considered useful as a standby harvester, or to top-up and extend operational
life, but is not deemed suitable as the sole source for a device unless its duty
cycle is very low [80].

2.3.4 The Energy Gap

Based on the environment the harvester is to be used in, the choice of harvester
can be an arduous process. Designers must consider whether the harvester is
present to extend operational life or to completely power the system, along
with peak power that can be delivered, cost and mounting of the overall device.
Currently, PV systems are very popular due to their high power for area and easy
integration into an embedded device. Since this also is away from any vibration
or heat, the risk of secondary damage to the system being powered is low. As
the main cost of an energy harvesting system is the storage device, reduction
of this and the ability to run an embedded system from a more unpredictable
power supply is of great interest to the energy harvesting community and of
high relevance in the near future.

Within an environment such as moving vehicles, PV has been used to add
additional energy to electric vehicle batteries for running low voltage devices
such as GPS systems without placing strain on the main Lithium Ion Batteries.
However, within a vehicle powered by internal combustion, the main source of
harvestable energy is vibration from the engine and a secondary lower frequency
from the suspension. Therefore, for the purposes of this Thesis and owing to
the maturity of research into PV, this Thesis will investigate the methods of
managing energy harvested from Gaussian sources such as vibration harvesters.

Mechanical modelling for vibration harvesters has taken place, allowing sim-
ulations of expected energy to be completed [5]. All harvester types deliver
varying power density and voltages and require application specific design of

27

the end system to deliver maximum efficiency (see Table 2.3). Since these har-
vesters can only deliver small amounts of energy, embedded systems are being
designed with ever smaller core voltages, meaning that DVFS and other tech-
niques that lower the device voltage would not be feasible to embed. Therefore,
a system with adaptive duty cycling that rejects jobs would assist in increasing
system reliability, with tests found to give positive results [46].

A standard model for energy harvesting [112] can be seen in Figure 3.1 .
This contains an energy harvester that provides energy at the power supply
level (Ps) supplemented by an initial value of energy (B0) within the storage
device, from which the energy is consumed by the circuit. Consumption can
be thought of as dynamic power based on the duty cycle of the processor (Pc)
and a near-constant loss due to the manufacturing process and switching effects
(Pleak). This model can also be thought of as equation (2.3). Energy is then
accumulated over a period T and consumed by Pc and Pleak. Since a value
of energy cannot be negative, a form of ceiling function is used where if the
outcome of an equation is less than zero, it is rounded up to zero [46]:

E(T) = B0 + η

∫ T

0

dPs(t)− Pc(t)e+dt

−
∫ T

0

dPc(t)− Ps(t)e+dt

−
∫ T

0

Pleak(t)dt (2.3)

• BMax
0 = Maximum value of Energy the Energy Storage Device can accept

• B0 = Initial value of Energy in the Energy Storage Device at time T=0;
(0 < B0 < BMax

0)

• E(T) = Available Energy; (0 < E(T) < BMax
0)

• Ps(t) = Power Harvested

• Pc(t) = Power Consumed

• Pleak(t) = Power Lost through Leakage

• η = System Efficiency

• dxe+ = x if x > 0, else 0

As well as different parameters of operation, these harvesters also deliver
their power through varying output profiles [69]. For example; solar cells can
be expected to deliver consistent power through the hours of daylight, while
vibration harvesting will vary based on the duty cycle of the item the harvester
is mounted upon and whether the harvester is correctly tuned to compensate
and maximize for this [27]. Though the conversion efficiency of a harvester
may be very low, the ability to capitalize on waste energy means a low-cost
reliable harvester becomes competitive compared with maintenance costs for
other solutions [94]. These techniques have been used in varied sources, from
self-winding watches to experiments charging cellular devices through energy
expanded by walking [80].

28

Figure 2.13: Data monitored without SPC

2.4 Statistical Process Control

2.4.1 Background

Control of a process within Statistical Process Control is performed by constant
monitoring of the outcome and reacting at critical points. However, the key
issue is identifying these critical points. Looking at Figure 2.13, which gives
an example of sales figures from [117] without using SPC, a reaction may have
taken place after point 13, as this seems to show a dip from the high sales at
Point 12. Indeed, in a business situation bonuses may have been paid out due
to this peak and a manager could be lulled into the belief that something they
did could have caused the rise in a prime example of Post hoc ergo propter
hoc (after this, therefore because of this). What Figure 2.14 shows is the same
data, but with upper and lower control limits identified. These are the plus
and minus three-sigma points for the data under the graph, which 99.73% of
the data should occupy [56]. As can be seen point 12, despite approaching the
upper control limit, is not more than three standard deviations from the mean
and therefore can be considered part of normal process. This investigation,
along with others can be used to identify key points and allow reactive and in
some cases pre-emptive action to take place.

2.4.2 MINITAB

Developed in 1972 from the successful Omnitab system, Minitab is a columnar-
based statistical tools package used heavily with the implementation of six sigma
and for other statistical tests and experiments [66]. Used widely in business and
academia, it is seen as the industry standard for statistics, computation and
graphics [96]. Within this Thesis, a great deal of the statistical analysis; from

29

Figure 2.14: Data monitored with SPC
This shows the peak in Figure 2.13 is nothing more than normal for the

process

graphs to Design of Experiments (DoE) have been set up, run and analysed using
Minitab. For certain areas, such as Capability and DoEs, a brief introduction
with reference to the Minitab methods is included within this chapter.

2.4.3 Capability

A process can be seen as a combination of items and processes that produce
a quantitative output. Since this output will have natural variation, it can be
evaluated.

For a given process, there will be upper and lower limits of specification for
suitable parts; known as the upper control limit (UCL) and Lower Control Limit
(LCL). Parts that fall within these limits will be classified as conforming, with
those outside rejected. When new products or designs are evaluated, a process
capability study is often carried out. This will record all instances of the output
for a given period, such as a shift of work, and determine the distribution of
the output to gain a mean and standard deviation. Once this is complete,
the number falling within the UCL and LCL are calculated, giving a process
capability index (Cpk). This is calculated as follows:

Cpk = min(
(UCL−Mean)

3σ
;

(Mean− LCL)

3σ
) (2.4)

A Cpk of 1 implies that the process fits in the specification limits with no
space for deviation, meaning that any deviation within the process will cause a
percentage of parts to be non-conforming. For a process to be accepted within
many industrial scenarios, a Cpk > 1.67 is desired, allowing a 2.5 sigma drift
before outputs would begin to be out of specification. This is due to the evidence

30

Figure 2.15: A Capability Report from Minitab showing a Cpk of 1.78 for a
distribution

that an output can drift up to 1.5 sigma when a process moves from capability
to production due to stack up of process deviations and other such phenomena.

To show this in Minitab, data was collected from a normally distributed
source with mean of 25 and standard deviation of 1. 100 data points were anal-
ysed using the capability six-pack within Minitab, the results of which can be
seen in Figure 2.15. The embedded charts show stability plus/minus three sigma
for each value and its change from the previously recorded value (I-MR), along
with the ability to see its shape through a histogram and Normality through a
Normal Probability Plot. Finally, the Cp (shape of the distribution) and Cpk
(shape considered with centring). These six graphs allow a simple overview of
a process and whether it is stable and requires improvement.

Drift in a process owing to part wear or changes in material composition
can cause Cpk < 1.67, meaning the risk of items being out of specification may
occur. Methods for returning capability to its target include maintenance of the
equipment, review of the component design or to alter the UCL or LCL.

2.4.4 Six Sigma

The desire for quality within manufacturing has existed since the dawn of the
industrial revolution. While initially trained craftsman would labour at creating
a quality piece, with their reputation suffering if an item failed to meet customer
expectations; as mass manufacture grew in use, the need to take action to iden-
tify and prevent a failure became more prevalent. Building from ideas initially
used by the United States Military during World War Two, Motorola looked at
improving its product quality in the 1980s through the use of SPC, Capability
Studies and a variety of other techniques to manage the key process input vari-
ables (KPIVs) to reduce defects [56]. Six Sigma can be thought of as a tool-kit

31

to perform these improvements through what is known as the DMAIC Process
(Define, Measure, Analyse, Improve, Control) [16].

Any outcome, be it manufacture of electronic components or the manage-
ment of consumer complaints over the phone can be viewed as a process. As
such, they will have inputs (X), and outputs (Y) with Y = f(X) as the inputs
are transformed by the process (f()) into the output. All inputs:

• Must be understood

• Have Variation

• Must be controlled

• Have Capability (see section 2.4.3)

• Need Improvement [78]

As there can be many inputs for one end-product, items that are either
uncontrollable or of low importance must be removed from the model in order
to allow key variables to be identified. This is performed through the use of Six
Sigma Tools, creating a funnel effect to reduce from tens of inputs to perhaps
five critical items, known as key x’s . The funnel effect begins by listing all
known factors in the define phase and using techniques such as cause and effects
analysis (see Chapter 6 for an example of this) in the measure phase. Once this
has taken place, control of the process and preventing drift or faults occurring
becomes the primary goal [78]. This is feasible as the number of inputs ideally
should be in the region of 20-30, a reduction factor of four.

Once the inputs have been reduced, those left are statistically analysed
through a variety of tools. This is deemed passive evaluation, where the current
process data is collected, investigated and reviewed to find any discrepancies.
A simple example could be one specification of the component manufactured
having statistically higher values of failures than others. Further drilling down
on this specification could identify a key difference in either the design or man-
ufacture which can then be taken to the next step. Passive evaluation is present
in this Thesis in Chapters 3 and 4 and reduces inputs down to five or six, ideal
for the next phase.

Improvement of a process is active evaluation, where alterations are made
and their consequences on the outcome are recorded. The most common method
for this is the Design of Experiments (DoE), which systematically determines
the contribution of a factor, along with any interactions that take place with
others in the process. Once the KPIVs of a process are identified, a value for
their set up can be determined and tested. This means for n KPIVs, 2n runs
will have to be completed for a full factorial run, with repeats if more accuracy
is required. If n is large, the number of runs can be reduced through the use of
lower resolutions at the penalty of lower confidence in the changes [102]. DoE’s
are widely used in this Thesis across all technical chapters.

Following collection of data in a DoE, the response is analysed across all
levels of interaction. For a three-variable DoE, this will mean initially analysing
A, B, C, AB, AC, BC and ABC for any statistically significant effects on the
outcome. Figure 2.16 shows the initial outcome of a 2-level, 3-factor DoE with
alterations to A and AC identified as significant. This means the third level
(ABC) can be removed and the DoE analysis repeated to ensure no other effects

32

become significant. As can be seen in Figure 2.17, B now becomes significant.
Graphs of Main Effect and Interaction in Figure 2.18 show contribution of al-
tering variables and whether these alterations cause constructive or destructive
interference with another variable.

Figure 2.16: DoE Results showing ABC is insignificant

Figure 2.17: Reduced DoE removing ABC now shows A, B and AC are signifi-
cant

Upon completion of the Factorial Analysis, the contribution given by each
variable or combination of variables can take place using an Analysis of Variance
(ANOVA). In Six Sigma, often the General Linear Model (GLM) is used, as this
allows univariate analysis [16]. From this, the Sum of Squares outcome (sum
of squared deviation relative to the mean) can be used to calculate the Epsilon

33

Figure 2.18: Main Effects Plot
This shows Temperature alteration has greatest effect, with interactions plot
showing a possible interaction with Chip in the top-right plot. This would be
investigated further to ensure process alterations were not causing problems

Squared value, which is the percentage contribution to the outcome the factor,
combination of factors, or error gives. Therefore, if the error is high, results of
the DoE may not be trusted and a repeated experiment after further analysis
could be required.

34

2.5 Automotive Benchmarks and ISO26262

Within Chapter 6, an embedded device is used to create a fuel Electronic Control
Unit (ECU) for use within an automotive environment. However, to allow this to
successfully be used outside of a laboratory environment, the micro-controller
and other components used require automotive qualification. This would be
performed by completion of tests under ISO26262 and the sign-off of parts by
an independent testing agency. The Benchmarks used are discussed below, along
with the ISO standard.

2.5.1 CAN System

Since the definition of CAN by Bosch in 1984 and the subsequent definition
of ISO11898 in 1991, the Controller Area Network has rapidly gained pop-
ularity within automotive design owing to its defined protocol, feasible high
speeds and high resilience. Data rates of over 1Mbit/s are possible on short bus
lengths (< 30m) with only one twisted pair wire required. In addition to this,
CAN allows for priority, real-time response, resistance to short circuits and non-
destructive bus access. A standard topology can be seen in Figure 2.19, with
two lines (CAN-H and CAN-L) joined in a twisted pair to reduce EMI, termi-
nated by 120Ω resistors to prevent reflections. This design means a system can
operate with reduced capability in the event of a single line failure and also gives
the ability to manage simultaneous transmissions through arbitration. This is
done by assessing the priority or source address in the CAN Frame, shown in
Figure 2.20. This frame design allows for messages to be sent to specific Source
Addresses or for Broadcast Announce Messages (BAM) to be sent to all nodes,
accomplished through the Destination Address within the Parameter Group
Number (PGN). In the event of two nodes attempting to transmit at the same
time, the lowest Source Address within the PGN will dominate through an ar-
bitration phase of the PGN. This can be achieved as dominant (low) bits will
pull the CAN Bus low, meaning the highest priority signal is preserved and a
node sending a recessive (high) bit will cease transmitting. This is illustrated
in Figure 2.21, which also shows the non-destructive nature of the arbitration.

2.5.2 Vehicle Speed Sensor System

Knowledge of the engine speed and position relative to top dead centre (TDC)
are important factors for complete combustion and reliable running of the en-
gine. The translation of this speed through the transmission into the wheels is
also important for a vehicle control unit to know for items as diverse as ride
comfort and passenger safety. Engine speed, engine load and wheel speed in
modern cars are usually calculated through the use of magnetostatic sensors,
such as those making use of the Hall Effect. These give good detection at zero
speed and accurate readings in a compact, highly resilient package [28]. These
Hall Effect sensors are mounted close to a toothed or notched wheel, giving a
digital output corresponding to the proximity of a tooth to the sensor. The
wheel can be encoded through the use of gaps or opposing magnetic poles to
give a signal that identifies TDC, allowing an ECU to react accordingly. A typi-
cal encoding wheel will contain 58 teeth with a two-tooth gap, leading to simple
calculation of engine or vehicle speed through elementary mathematics. The

35

Figure 2.19: A Typical CAN Topology

Figure 2.20: An Extended CAN Frame, used in Automotive CAN [34]

algorithms that interpret this signal must also detect possible efforts to tamper
the system (such as supplying a constant signal to bypass any speed governor)
or any faults that may occur with the sensor.

2.5.3 Fuel Injector and Spark Control System

The control of fuel supplied to a cylinder and the time of combustion is probably
the most critical factor in vehicle reliability, efficiency and operational quality.

36

Figure 2.21: Example of Arbitration in a CAN Network [14]
In this example, Node 2 ceases transmission at Bit 5 of the Identifier after
sensing a dominant bit from Node 1 and Node 3. Node 1 ceases at Bit 2,

allowing Node 3 to win arbitration and control the CAN Bus. The Bus Level
is preserved to the data from Node 3.

Figure 2.22: Graph showing how alterations in λ change fuel consumption and
engine running [28]

37

Until the introduction of the Corporate Average Fuel Economy (CAFE) regu-
lations in the United States in 1975 [73], most petrol engines were controlled
mechanically, with a carburettor mixing fuel and air and spark time controlled
by a distributor cap, which energised the spark plug based on camshaft ro-
tation. Since the design of carburettors to meet the new US and European
emissions standards were significantly more expensive than an equivalent fuel
injection system, these rapidly gained acceptance and are now commonplace in
automotive engines.

As systems have become more advanced, higher efficiency and power output
have been made possible through relocation of the fuel injector, use of higher
pressure within the fuel system (over 10MPa in a modern direct injection system
[28]) and the reduction of emissions through the introduction of catalytic con-
verters and particulate filters. Since ideally 14.7kg of air is required to burn 1kg
of fuel (the stoichiometric ratio) engines aim to run as close to this as possible,
with the Air to Fuel Mixture Ratio (λ) between 0.8 and 1.6 depending whether
the engine is running rich (high fuel consumption to even running; used when the
engine is cold) or lean (low fuel consumption to some uneven running) as shown
in Figure 2.22. Figure 2.23 shows how the variation of λ also affects components
of exhaust gases; where stoichiometric conditions maximise the production of
Oxides of Nitrogen (NOx) and lean conditions increase Hydrocarbons. Both of
these are controlled by the use of Catalytic Converters, which use metals such as
platinum and rhodium in reactions that cause less harmful gases to be emitted
from the tailpipe. For example NOx +O2 → xO2 +N2. Since poor combustion
can lead to damage of the catalytic converter, misfires and a reduction in the
total operating life of the engine, timing of the ignition spark is vital to preserve
the desired value of λ. How soon or late relative to TDC this occurs is relative
to the engine speed and load, both of which are determined by sensors on the
crankshaft and transmission. As the propagation of combustion is relative to
engine speed and delivered fuel, but ideal combustion always occurs just after
TDC, Ignition must begin before TDC and adjust based on speed and load
changes; as well as the value of λ, as lean mixtures require the ignition time to
be brought forward (advanced) further still. With the introduction of electronic
control, the spark timing can be thought of as a function of these three inputs,
allowing a complex ignition map to be created, such as the one in Figure 2.24.
The timing of ignition must also compensate for the time required to propagate
current through the primary ignition coil, induce a current in the secondary coil
and deliver the spark. The length of time this current is allowed to propagate is
known as the dwell period and requires calculation by the fuel system to deliver
optimum combustion.

2.5.4 ISO26262

Ratified in 1991, ISO26262 is an automotive standard for the functional safety
of road vehicles with a maximum weight below 3500kg [49]. This is designed to
give a framework for the development of automotive components from concept
to decommissioning and a level of testing that must take place for each of these
based on their Automotive Safety Integrity Level (ASIL), which is determined
using quality tools such as a Failure Modes Effects Analysis (FMEA). Compo-
nents themselves do not have ASIL’s, rather events occurring due to issues with
the component. For example, the spontaneous and unexpected inflation of an

38

Figure 2.23: Graph showing the change in tailpipe emissions for variations in λ
[28]

Figure 2.24: A Complex Ignition Map [1]

air-bag would be classified as an ASIL-D event (the most severe) but the air-bag
control system would also be required to manage many other events at differing
ASIL levels. The standard has been well received by the automotive industry
and used on items such as the battery system for the Chevrolet Volt Electric
Vehicle [43].

ISO26262 is only a guideline for severity, stating that an event deemed an
ASIL-D should have an occurrence rate below 10−8h−1, but must be used in con-

39

Table 2.4: Recommended Testing for Differing ASIL Levels [92]

0=Not required, += Recommended, ++=Highly Recommended
Method ASIL Standard

A B C D
Environmental with basic functional verification ++ ++ ++ ++

Expanded Function 0 + + ++
Statistical Test (Common Operating Mode) 0 0 + ++

Worst Case Test 0 0 0 +
Over Limit Test + + + +
Mechanical Test ++ ++ ++ ++

Accelerated Life Test + + ++ ++
Mechanical Endurance Test ++ ++ ++ ++

EMC/ESD Tests ++ ++ ++ ++
Chemical Resilience Test ++ ++ ++ ++

junction with engineering knowledge and quality management such as TS:16949
(standard for quality management for design, development, production, instal-
lation and servicing of automotive products) to determine the battery of tests
that must be used [85]. Though the use of ASIL levels to generically standard-
ise a system is not common within the ISO standard, many manufacturers base
their performance testing on these levels for a system [92]. For electronic com-
ponents, recommended tests for an ASIL-D system include mandatory items
such as Electromagnetic Compliance and Immunity (EMC/EMI) and Electro-
static Discharge (ESD), as well as the use of Highly Accelerated Life Testing
(HALT), where the system is subjected to extremes of temperature, humidity
and vibration to exacerbate any failures. This aims to deliver the < 10−8h−1

occurrence rate and common automotive warranty rate of exceeding 160,000km
[79]. While achieving this level of mileage or time would not be possible in a
normal development life-cycle, the use of reliability estimation combined with
HALT or over-limit testing can establish confidence in a system for automotive
qualification. When non-permanent faults such as software issues are consid-
ered, these models can be factored with the tests in Table 2.4 to give a system
wide metric for combined hardware and software failures. These failures are
usually grouped into three classes:

• Those that cause danger or sudden non-operation

• Those that cause significant detriment to performance

• Those that reduce functionality while still allowing use

For an entire system; no occurrences of the top class should occur across the
life of the vehicle, with no occurrences of the second class during the warranty
period, which is now commonly 160,000 km or five years of operation. The third
class of issue may occur infrequently (< 1 within the warranty period) and can
be rectified at the service interval.

40

Chapter 3

Energy Harvesting

We demand rigidly defined areas of doubt and uncertainty!
Douglas Adams, The Hitch-hikers Guide to the Galaxy

3.1 Introduction

Modern systems running on stored energy are expected to have a long lifetime
(reliability metric) while also maximising useful work and availability [47][51].
Initially mobile systems worked using batteries as their primary source of power,
but these either required recharging from a mains power source or monitoring for
replacement. As the number of devices increase, the time and labour required
for this becomes infeasible. Therefore, energy harvesting systems now work in
one of three ways [86]:

• Battery Supplemented: Where the harvester supports the battery to re-
duce its use

• Autonomous: Where the harvester alone meets the system power needs

• Autonomous Hybrid: Where the battery acts as a reservoir, only charged
by the harvesting device

3.2 Methodology

3.2.1 Energy and Scheduling

Energy is a key metric for all next generation microprocessors, with consumption
minimisation noted as a key investigation item by the International Roadmap for
Semiconductors (ITRS) [50]. Harvesting Aware Power Management (HAPM)
can work at all levels of the device, from System to peripherals, with techniques
such as sleep modes, sensor management and duty cycling employed in existing
systems [86].

Within low core voltage embedded systems common power saving methods
such as DVFS are not feasible due to the voltage threshold of materials being
approached in the drive to meet transistor count, therefore a requirement for

41

Figure 3.1: Energy Harvesting Model for system

job management and power scheduling across each harvesting cycle is necessary
to maximize operational lifetime and successful job execution. An example
of duty cycle alteration can be seen in Figure 3.2, where management pauses
the processor during a low energy state to prevent potential failures. More on
Energy Harvesting can be seen in Chapter 2.

3.2.2 This Work

The research presented in this chapter works at the system level, managing
energy through a heuristic-based management scheme. This is based upon work
by Koch and Moser [52], [70], where energy is collected and then consumed until
a lower limit is reached and the effectiveness of the overall system recorded. For
this, equation 2.3 is used. The models from this work identify important points
in scheduling, such as when to suspend jobs and save power, or alter duty cycles
so important work takes place during times of abundant energy.

The energy management models chosen for investigation were:

• No Management - System will run and take no action based on its energy
readings

• Statistical Process Control (SPC) - System will monitor previous values
for energy stored in B0 at the end of a harvesting cycle and reduce the
number of jobs executed if this is more than one standard deviation below
the mean

• Trivial - A guard band system, where the processor is suspended if the
recorded value of B0 is below a pre-set limit

• Hybrid - A mixture of the SPC and Trivial examples above, where SPC
will only be run if the value of B0 is above the guard band limit

42

Figure 3.2: Energy Use vs. Value to the System.
Energy stored in an Energy Storage Device enters a famine state at (1), where
System B suspends processing of jobs to allow energy to recover. System A
continues with execution, causing failure at point (2), and the processor to crash
- giving zero value to work. System B recovers at (3), continuing execution from
its previous state.

43

Prior to all simulations undertaken, a power and sample size calculation
took place in Minitab to ensure small differences could be identified. With an
assumed standard deviation of 30 (based on data from the experiments in section
3.2.3), an α value of 0.05 (95% confidence no significance between values will be
correctly identified) and a β of 0.8 (80% confidence significance between values
will be correctly identified), 10000 samples was deemed sufficient to identify a ∆
difference of 1.24 taking α and β into account. The values used for α and β are
standard values used within six sigma for estimating ∆ [16]. This means small
changes in distributions due to variations in the input could be recognised with
a high level of confidence and allow rapid progression through the experiments.

3.2.3 Baseline Simulations

Within this chapter, preliminary experiments look at how simple management
affects the probability of successful completion and how this changes when shift-
ing from a single-core to multi-core environment, as the embedded system mar-
ket is rapidly shifting towards this architecture layout [110].

A key question is whether job or energy management is necessary. Under
light loads, it is hypothesised that purely ad-hoc management could perform just
as well as dynamic schedulers. Therefore, an initial experiment shall identify
the effectiveness of ad-hoc management.

Simple management of jobs can be thought of based on a premise of travelling
to a destination through several stages where the management of the journey
(purchase of tickets) can be performed either ad-hoc (buying tickets at the point
of onward travel) or in advance. Journey time, much like processor execution
time, can vary. Eventually all time in the processor will be allocated (equivalent
to tickets selling out). To test this, a simulation based on this ticket purchasing
allegory was made. The rules of this simulation were as follows:

• Journey is made up of several stages

• The next stage can only take place if a ticket is available upon arrival

• Travel time is a random value

• All tickets are released simultaneously

• Tickets are consumed at a random rate

• If a ticket is not available, simulation ends

The simulation was run with the following variables:

• Tickets per step: 10-100

• Number of steps: 1-10

• Ticket Consumption per Round: 1-50

After 10000 repeats for each combination of inputs, the probability of successful
completion was outputted to a CSV file for statistical analysis.

To follow on from this generic model of probability, core use was investigated
using a Monte Carlo Simulation, as these have been widely used in design stages
of work to verify correct operation and feasible operation [120]. Parameters for
this were as follows:

44

• Jobs arrive at a random rate per second, with only one job arriving at a
time

• Jobs are completed at a random rate per second

• If a job arrives and many cores are free, the lowest numbered core with
no job will begin processing

• If a job arrives and one core is free, it will begin processing

• If a job arrives and no cores are free, it is placed in a queue

This code simulates a basic first-come-first-served (FCFS) multi-core scheduler
with no job priority, similar to the ad-hoc situation in the previous experiment.
The simulation was run with the following variables:

• Job arrival time (λ): 10-50

• Job completion rate per core (µ): 10-50

• Number of Cores: 1-10

After 72000 repeats for each combination of inputs to give confidence in the
value of ∆, the probability of successful completion was outputted to a CSV
file for statistical analysis, storing the average and maximum wait time, queue
length and core idle time for each run.

3.2.4 System Level Simulation

Following on from these baseline experiments to determine effectiveness of a
simple FCFS model, MATLAB was used to conduct System Level Simulations
with the additional consideration of energy. An algorithm was developed, which
can be seen in Algorithm 1, to determine key parameters and values through
large introductory simulations. Within this algorithm, mean values for Ps,
Pc and Pleak in equation 2.3 are initially set; along with a value for BMax

0 .
The values for Ps, Pc and Pleak are multiplied by a Gaussian random number
generator with Mean=0.5 and Standard Deviation=0.2 to give distributions,
which are then applied to equation (2.3) with B0 not allowed to exceed its
value of BMax

0 . If the value of energy (E) is at or below zero, the simulation is
deemed to have run out of available energy, meaning the system would fail and
the simulation ends. However, if energy is above zero, then B0 stores this value
and the simulation repeats for another harvesting cycle.

The simulation repeats for 10000 harvesting cycles and with ten repeats to
prove consistency of results. Results for each simulation are outputted to a CSV
file for statistical analysis.

To determine the effectiveness of the simulation, tests were run with the
following parameters:

• Ps=1-50

• Pc=1-50

• Pleak=1-5

• n=0.5-0.9

• BMax
0 =100-1000

45

for repeat = 1:10 do
for Pc = 5:50 do

Ps=50, Pleak=3, n=0.8;

for BMax
0 = 50:50:2000 do

while Clock < 100000 do
if B0 > BMax

0 then
B0=BMax

0 ;
end
Ps=random number*Psrate;
Pc=random number*Pcrate;
Pleak=random number*Pleakrate;
SDPs=StDev all Ps;
MeanPs=Mean all Ps;
if B0 < MeanPs-(3*SDPs) then

Pc=1;
end
if B0 < MeanPs-(2*SDPs) then

Pc=0.5*Pc;
end
if B0 < MeanPs-(SDPs) then

Pc=0.8*Pc;
end
S1=n*(Ps-Pc);
S2=(Pc-Ps);
if S1 < 0 then

S1=0;
end
if S2 < 0 then

S2=0;
end
Power=B0-S1-S2-Pleak;
if Power <= 0 then

Break;
end
B0=Power;
Clock++;

end
Output Clock;

end

end

end
Algorithm 1: Algorithm for Energy Harvesting Investigation

46

3.2.5 Design of Experiments

This preliminary work showed effects of varying all inputs, with changes pri-
marily seen from altering Ps, Pc and BMax

0 through passive data observation
(see section 2.4.4). Therefore, a Design of Experiments (DoE) was conducted
to determine each variables overall contribution and whether any interaction
between variables took place. Once insignificant higher-orders were removed, a
minimised model was found, which can then be mathematically analysed by the
General Linear Model (GLM) to give the percentage contribution (ε) that each
parameter, including error, delivers to the overall system [67]. The DoE was
set up in Minitab as a two-level, five input, full factorial DoE with five repeats,
giving 160 data points (5x25). Parameters were as follows:

• Ps=20/50

• Pc=20/40

• Pleak=2/5

• n=0.5/0.8

• BMax
0 =100/1000

Results from the DoE were analysed using Minitab and reduced to allow investi-
gation using the General Linear Model, giving contributory effects and suitable
ratios of Ps, Pc and BMax

0 for successful operation in a harvesting environment
that has a Gaussian output profile. In these, energy is centred around a mean
(µ) with the distribution of points set by the standard deviation (σ). A larger
standard deviation means points will be further from the mean on either side,
which could cause energy supply issues for a circuit powered by the harvester.

3.2.6 Statistical Process Control of Energy

Once the DoE was complete, simulations using Statistical Process Control was
carried out to manage jobs based on how the current energy value relates to
previous levels. For a Gaussian model, the output should never move more than
three standard deviations from the mean. If this occurs, then it can be assumed
that the process has changed either through alteration in the harvesters’ ability
to generate energy or from the embedded system increasing its energy demands,
meaning action must be taken to return the output to control. This is a key
criterion of Statistical Process Control (SPC) key to monitoring an output [117].
To conduct this, the algorithm was run three further times:

• With no energy management, for a baseline

• With Ps monitored and actions taken off this

• With B0 monitored and actions taken off this

When Energy Management was activated, the value of Pleak was increased from
5 to 12, simulating the increased energy requirements of the energy management
circuit. The goal of these tests was to identify if a simple check on a 32 point
mean and standard deviation could identify when a system was approaching a

47

low energy state and take action accordingly. A 32 point mean was chosen due
to being able to use a five-bit counter within a hardware design as well as being
well above the minimum sample size needed to identify a one sigma drift in a
distribution. For this, the following rules were applied:

• If point was more than one standard deviation below the mean, 20% power
reduction took place

• If point was more than two standard deviations below the mean, 50%
power reduction took place

• If point was more than three standard deviations below the mean, all jobs
were suspended to allow the famine state to recover

Following collection of the data for these tests, statistical analysis took place to
determine whether an improvement in the number of successful clock cycles had
taken place. Since the majority of this data was found to be non-Gaussian, the
Kruskal-Wallis test was used for 3-parameter analysis, with Mann-Whitney for
2-parameters. These tests are accepted within six-sigma analysis as suitable for
these kinds of data, providing variance is found to be equal for all parameters
[10]. Capability Studies were also used to give understanding of how well a
method spotted a low energy state to maximise execution.

From these tests, a concern raised was the possibility of a trivial manage-
ment system performing at parity or superseding the effects of the SPC system
for a greater saving in power and area. Therefore, the above experiment was
repeated with all lines in algorithm 1 activated to compare results from having
no management, SPC Management or Trivial Management. The trivial system
merely looks at the value of B0 and takes action based on this as a guard band
system. If B0 is below a level, the processor is suspended to allow recovery,
replicating the three standard deviation example above. It was also theorised
that a Hybrid mixture of these two methods would give better results than
either SPC or a Trivial Management system alone, even accounting for the ex-
tra energy required. Therefore, a further experiment was conducted where the
Trivial system was employed first, followed by the SPC system. If the Trivial
system found an issue, it would suspend operation before the high consumption
SPC controller was activated.

3.3 Results

This section gives the results of tests details in the Methodology regarding Bud-
geting, Core Use and Energy Management. These results are discussed along
with the execution of further experiments from their findings. Within the En-
ergy Harvesting sections, ”Clock” refers to the number of successful harvesting
cycles taking place before system failure.

3.3.1 Energy Budgeting

Figure 3.3 shows the probability of successful completion decreases as the num-
ber of steps in the journey or consumption per round increases. This gives
evidence that for complicated systems, ad-hoc management is not suitable

48

Figure 3.3: Probability a simulation will complete successfully based on the
number of steps and the ticket consumption ratio

and managing power will give better performance, even accounting for the
area/power overhead required for a circuit to perform this analysis. When
the data in Figure. 3.3 is broken down further, a strong correlation to a linear
increase (R-squared of 94%) can be drawn when the simulation was run for a
fixed number of steps. Therefore, a system that knows the number of jobs in
its schedule queue could interpolate a possible consumption for the next round
of operation, compare this to the stored energy available and take appropriate
action if there is found to be deficient energy in the storage device apriori . This
proves the need for schedule management in complex multi-core systems, and
will be explored further in Chapters 4 and 5.

3.3.2 Job/Core Use Simulations

Figure 3.5 shows that the addition of a pause when a core has completed exe-
cution balances out the workload across all cores. Without this step, even for
high arrival rates, higher-numbered cores do not have a comparable usage per-
centage to lower-numbered cores, as illustrated in Figure 3.4. Over the life of
a microprocessor, this could lead to reliability issues; especially with the lower
numbered cores [10]. This method could give a simple solution to the manage-
ment of core usage, by the simple addition of a wait command at the end of
execution. However, this is only a preliminary example; therefore these tests
were repeated with jobs having precedence constraints to ensure related jobs are
not dispatched to cores with large separation. This work also does not consider
the bus loading and issues with items such as L1 and L2 Cache accesses, which
are a main consumer of time and energy within a microprocessor architecture
[95].

49

Figure 3.4: Idle percentage for Core 1 of a 10 core system as the Job Arrival
and Completion Rate Increase

Figure 3.5: Idle Percentage, but with a Pause after Completion Added to balance
out overall consumption rates

50

A simulation using models presented in [38] with 10% of jobs having priority
over all other jobs by entering a fast track showed no statistical increase in job
execution time for non-priority jobs, with a significant decrease for priority jobs.
However, this is still modelled from a FCFS design, meaning lower numbered
cores have greater workloads. A possible method presented by [38] of having
a lead token that passes between cores on a regular basis could give a solution
to this issue. However, this reiterates the importance of schedule management,
and alternate methods of scheduling jobs will be investigated in the subsequent
chapters.

3.3.3 Energy Harvesting Model

A key finding of the graphs in Figure 3.6 - Figure 3.9 is the prevalence BMax
0

has on the number of successfully completed cycles. For low values of storage,
it is highly unlikely that a system will complete the simulation successfully.
Experimental data shows that a value approximately 30-times greater than the
generation rate per round is needed to have any chance of successfully running
for an extended period. These tests also show that even when this is the case,
due to the effect of harvester efficiency and leakage, consumption must only
be approximately half of generation, otherwise it has a marked effect on the
reduction of availability. Though it must be noted that the effects of leakage
and efficiency taken on their own seem slight compared to the consumption rate.

Capability Studies

As can be seen in Figure 3.10 to Figure 3.11, the use of B0 for monitoring is
significantly more effective than the use of Ps. As the energy arriving at the
system can be thought of as stochastic, the observations for Ps show no trend in
the Last 25 Observations and the overall data is left skewed; whereas the data
for B0 displays an overall trend in the Last 25 Observations and an element of
normality within the normal probability plot, skewed by the maximum value
for B0 being capped at 1000. Cp and Cpk for the systems varies also, with B0

improving Cp by a factor of 1.61 and Cpk by 5.86. Therefore, the monitoring of
the energy stored within the storage device, as well as being easier to practically
measure than the energy delivered by the device, also gives significantly better
capability and a longer lifetime of operation (n = 9104 for B0 and 1859 for Ps).

3.3.4 Design of Experiments

As can be seen from Figure. 3.12 — Figure. 3.14, the expected availability of the
system decreases consistently when the energy consumption rate increases. The
DoE identifies several levels of significance, including a fourth order between
Generation, Consumption, Efficiency and Bo. This means that all permuta-
tions must be considered from first to fourth order when run through the GLM.
Table 3.1 shows clearly that for the design of experiments, key contributors to
the outcome were generation and consumption rates, along with the amount of
stored energy available. These alone give a total contribution score of 45.33%.
Also noteworthy is the second and third order interactions of generation with
consumption, generation with storage, consumption with storage and genera-
tion with consumption and storage. When all these factors are considered, they

51

Figure 3.6: Number of Clock Cycles successfully completed for a Generation
Rate of 10 and a BMax

0 of 100 as Consumption Rate increases

Figure 3.7: Number of Clock Cycles successfully completed for a Generation
Rate of 10 and a BMax

0 of 1000 as Consumption Rate increases

52

Figure 3.8: Number of Clock Cycles successfully completed for a Generation
Rate of 50 and a BMax

0 of 100 as Consumption Rate increases

Figure 3.9: Number of Clock Cycles successfully completed for a Generation
Rate of 50 and a BMax

0 of 1000 as Consumption Rate increases

53

Figure 3.10: Capability of SPC System when B0 is monitored

Figure 3.11: Capability of SPC System when Ps is monitored

54

Figure 3.12: Main Effects Plot of DoE
This shows A, B, C, D, AB, AE, BE, ABE, ABE and ABDE have a Statistically
Significant Effect

Figure 3.13: Main Effects Plot for DoE
This shows Generation Rate, Consumption Rate and BMax

0 have main effects
on Mean Clock Cycle

55

Figure 3.14: Interactions Plot for DoE, showing no interactions

account for 99.97% of the available contribution. The remaining 0.03% contains
all other factors and interactions, with error only accounting for 0.02% . How-
ever, it must be noted that this experiment is a simulation, which would account
for these strong contributions. Tests with a real-life harvester and embedded
system will give a greater percentage error, but with main contributors to ε still
being Ps, Pc and BMax

0 .

3.3.5 Statistical Process Control of Energy

When these tests were initially run, no significance was found. However, by
altering the algorithm to only run the SPC tests when the value of energy in the
storage device was below the mean value, power consumed by the SPC module
was considered to be reduced and several results became statistically significant.
This proves the feasibility of using SPC within the power management module
and its beneficial effects to system availability.

As can be seen in Table 3.5, SPC Management gives a 2.5x improvement in
number of completed harvesting cycles compared to no management. Its B10
life (time at which 10% of units under test would be expected to fail) increases
from 2119 cycles to 5244, giving a statistically significant improvement in unit
lifetime. As Pleak values are lowered further, the number of successful cycles
increases further. Therefore, if the SPC system can be designed efficiently and
minimising its power consumption relative to the main processor, it can be
concluded that significant increases in Availability could be achieved.

56

Table 3.1: Epsilon Scores for General Linear Model Following DoE

Source P-Value ε
Gen 0.000 14.475
Cons 0.000 14.533
Leak 0.004 0.001
Eff 0.007 0.001
BMax

0 0.000 15.328
Gen*Cons 0.000 13.738
Gen*Leak 0.949 0.000
Gen*Eff 0.709 0.000
Gen*BMax

0 0.000 14.196
Cons*Leak 0.368 0.000
Cons*Eff 0.750 0.000
Cons*BMax

0 0.000 14.204
Leak*Eff 0.360 0.000
Leak*BMax

0 0.096 0.000
Eff*BMax

0 0.009 0.001
Gen*Cons*Leak 0.055 0.001
Gen*Cons*Eff 0.016 0.001
Gen*Cons*BMax

0 0.000 13.498
Gen*Leak*Eff 0.651 0.000
Gen*Leak*BMax

0 0.534 0.000
Gen*Eff*BMax

0 0.583 0.000
Cons*Leak*Eff 0.450 0.000
Cons*Leak*BMax

0 0.796 0.000
Cons*Eff*BMax

0 0.796 0.000
Leak*Eff*BMax

0 0.497 0.000
Gen*Cons*Eff*BMax

0 0.011 0.001
Gen*Cons*Leak*BMax

0 0.010 0.001
Error 0.021
Total 100.0

Table 3.2: Mann-Whitney Test Results for Monitoring B0 or Ps for SPC Control

BMax
0 Pc Monitoring Median P-Value Conclusion

Method
2000 40 B0 4867 0.0376 B0 Outperforms

40 Ps 1496

3.3.6 Trivial Example

As can be seen from Table 3.4, the use of SPC gives better results than trivial
management when BMax

0 is large. In cases where BMax
0 is low (below 500),

trivial management gives better results due to the regularity with which B0

57

Table 3.3: Mann-Whitney Test Results for Use of SPC Within Power Manage-
ment

BMax
0 Pc Management Median P-Value Conclusion

Method
1000 35 None 762 0.00 SPC Outperforms

35 SPC 1728
1500 35 None 3460 0.00 SPC Outperforms

35 SPC 9329
40 None 440.5 0.00 SPC Outperforms
40 SPC 699.5
45 None 169.5 0.00 SPC Outperforms
45 SPC 253.5
50 None 120.5 0.027 SPC Outperforms
50 SPC 135.5

2000 35 None 13886 0.00 SPC Outperforms
35 SPC 38982
40 None 534 0.01 SPC Outperforms
40 SPC 667.5
45 None 231 0.00 SPC Outperforms
45 SPC 285.5
50 None 163 0.00 SPC Outperforms
50 SPC 217.5

will be below the limits set in the algorithm, therefore meaning management of
power is more frequent.

3.3.7 Hybrid Example

To compensate for these cases, a hybrid approach that manages both was tested,
but found to not give better results. This is most likely due to the extra power
required to run both tests, which is irrelevant at low or high energy storage.
This section of the system will be revisited at a later date to further improve
the possible design feasibility, as this management technique has potential for
systems with a small energy reserve and predictable energy delivery, such as
solar cells.

58

Table 3.4: Mann-Whitney Test Results for Use of SPC and Trivial Systems
Within Power Management

BMax
0 Pc Management Median P-Value Conclusion

Method
500 45 None 38 0.01 Trivial Outperforms

45 SPC 32.5
45 Trivial 55.0
50 None 38 0.00 Trivial Outperforms
50 SPC 24
50 Trivial 55.0

1000 35 None 762 0.00 SPC Outperforms
35 SPC 1729
35 Trivial 697

1500 35 None 3460 0.00 SPC Outperforms
35 SPC 9329
35 Trivial 2770
40 None 441 0.00 SPC Outperforms
40 SPC 700
40 Trivial 424
45 None 170 0.00 SPC Outperforms
45 SPC 254
45 Trivial 182
50 None 120.5 0.02 SPC Outperforms
50 SPC 135.5
50 Trivial 118.5

2000 35 None 13886 0.00 SPC Outperforms
35 SPC 38982
35 Trivial 6984
40 None 769 0.01 SPC Outperforms
40 SPC 1020
40 Trivial 676
45 None 231 0.01 SPC Outperforms
45 SPC 286
45 Trivial 243
50 None 163 0.00 SPC Outperforms
50 SPC 217.5
50 Trivial 172.5

3.4 Conclusion

This work shows that a model of a purely Gaussian energy harvester could
be created and managed successfully, with an increase in availability evident
for a suitable harvester. The experiments prove that a system can run for an
extended period without management when the following conditions are met:

• Mean energy generation rate Ps > 2Pc mean energy consumption rate
(sufficient powerful harvester)

59

Figure 3.15: Reliability Analysis of No Management, Trivial Management, SPC
and Hybrid Systems, showing predicted Failure Rate

Figure 3.16: Probability Plot for various management techniques, showing pre-
dicted number of clock cycles before failure

• Maximum value of storage BMax
0 > 20Ps mean energy generation rate

(suitably large energy storage device)

60

Figure 3.17: Probability Plot for various management techniques with a Uniform
Distribution, showing predicted number of clock cycles before failure

Table 3.5: Failure Times for Various Management Techniques with BMax
0 =2000,

Ps=50, Pc=35

Management Method B10 Life B50 Life B90 Life
None 2118 12814 40359
SPC 5244 38665 138116

Trivial 1474 7350 20461
Full Hybrid 1173 5285 13796

Meta Hybrid 1257 5427 13787

Tests with alternate harvesting environments such as uniform input distri-
butions, which are common with harvesters such as a thermoelectric system [4],
also show similar results to the Gaussian environment, with Ps > 2Pc and a
large value of B0 required to give significant operating times as can be seen in
Figure 3.17.

The use of SPC as an energy management scheme has a beneficial effect
on successful runtime within an Autonomous Hybrid Embedded System, giving
up to 2.5 times the successful life time compared to no management. Trivial
systems do outperform for a low value of BMax

0 (< 20Ps in these experiments)
and would be useful in Autonomous Systems where no battery is present to
supplement the harvester.

While these increases do not mean the system will run indefinitely, the in-
crease in operational lifetime is beneficial for items that cannot easily be main-
tained, either through inaccessibility or volume of devices. Improved operation

61

for minimal area penalty is highly desirable in these systems, therefore giving
this simple system significant impact on the embedded market.

Work in Chapter 6 revisits this work with more complicated jobs and sched-
ules, including those with precedence and priority, such as the EDF scheduler
and other examples from [18], as well as tests using the Arduino embeded de-
vice. While construction of the system in VHDL and placement into an FPGA
or other device was considered, it was deemed unnecessary for preliminary in-
vestigations as use of an established device could give rapid implementation and
allow the concept to be proved as feasible.

62

Chapter 4

Use of Game Theory as a
Real-Time Scheduler

Who in the world am I? Ah, that’s the great puzzle.
Lewis Carroll, Alice’s Adventures in Wonderland

4.1 Introduction

Though embedded systems have existed for many years, only recently with the
advent of low dollar per square-inch silicon costs and high processing power
has their use has become ubiquitous in our day to day lives. The failure of an
embedded device can have outcomes varying from a minor inconvenience such
as a slow internet connection to life-threatening issues including failure to apply
anti-lock controls to wheel brakes on a car or other vehicle.

While the increase in processing power has led to more utilisation, this comes
hand in hand with higher processor utilisation. Systems take on extraneous jobs
outside of their core remit, which can cause key jobs to be missed while the
kernel deals with these lower priority jobs. Several methods of scheduling exist
to cope with this, but could be thought of as inadequate for high-complexity
systems. Therefore, a new paradigm in scheduling must be created that can
adequately cope with unpredictable systems and the sources of non-determinism
that drive these. One possible method for this, which has already been shown
to have success within fields such as communication, is Game Theory. Through
work identified in Section 2.2, this has been shown to have effective outcomes
within complex systems. As such, investigation for real-time systems, both
single and multi-core, is of great interest and thought of as critical for future
system development.

4.1.1 Real-Time System Scheduling

For this chapter, we consider the scheduling of jobs within real-time systems,
the background for which can be found in Section 2.1.2. A design such as the
one proposed, with varying levels of criticality for jobs is common in embedded
system design. In the unit under test, there are two main jobs with parameters
as follows:

63

• Job 1: Hard Real Time, Variable Activation and Computation Time, Vari-
able Deadline, Aperiodic activation, 100µs WCET

• Job 2: Soft Real Time, Variable Activation Time, Set Computation Time
and Deadline, Aperiodic Activation, 10µs WCET

With two such contrasting jobs, several already existing algorithms are not
capable of delivering a feasible schedule. Under light loads, First Come First
Served (FCFS) will manage acceptably, but will fail if the arrival rate of either
job increases beyond a functional limit. This is also the case for Earliest Deadline
First (EDF) and Rate Monotonic (RM), which has already been shown in [30] .

Iideally a system should be deterministic, but in this case jobs can be con-
sidered non-deterministic with arrivals not know apriori. Algorithms that use
exhaustive search such as Bratley’s Algorithm for EDF [18] therefore cannot
deliver a feasible solution as a job tree cannot be created. Due to this, a more
flexible system that can deliver a schedule from a full tree if one exists but can
also manage a dynamic online schedule is thought to be of great use in the
current and future embedded system market.

This Work

While Heuristic Algorithms have been found to give improvements for simple
systems with a small number of job types, as the number of categories increases
the effort required to create this heuristic would proliferate exponentially, even-
tually reaching a point where creating a heuristic for all possibilities would be
infeasible.

Cooperative vs. Non-cooperative The work in this chapter is based
on a non-cooperative game, though the use of cooperative games has been dis-
cussed as a possible method of getting more ideal results [62] [81]. This is not
without issue, as the implementation of cooperative games is significantly more
complicated than the non-cooperative types and is not considered during this
work, which is in the early phases of its development. Wooldridge points out in
[119] that a system must be designed with sufficient incentive for players and
be simple enough to allow rational choices to be made, providing assumptions
set in the design have been adequately developed.

The algorithm in this chapter uses a heuristic based system, similar to the
Spring Kernel [105] . This contains a function H that sets to an input parameter
to give flexible scheduling. When H = ai ≡ FCFS and when H = Di ≡ EDF ,
making Spring a useful paradigm. However this also requires knowledge of each
jobs resource requirements to deliver a determined arrival time. The Game
Theoretic Algorithm differs as this bases execution on perceived value, which can
be fixed in design or dynamically altered by the system. Currently the system
is designed as a 1|mixed, nopreem|Lmax, meaning it is capable of managing
aperiodic and periodic jobs together on a uniprocessor machine to minimise
lateness. Figure 4.1 shows a schedule that cannot be created under EDF as it
reacts to the arrival of J1 at t=0, blocking J2 from completion and causing an
overrun at t=4. This figure also shows the Game Theory solution to the problem,
which waits to execute J1 based on the lazy scheduling theory, allowing J2 to
arrive and be scheduled.

64

Figure 4.1: A Schedule Feasible under Game Theory but Infeasible under EDF

65

Figure 4.2: Example of Figure 2.4 without pre-emption using the Game Theory
Algorithm with J1 < J2

For this, J1 is missed as it is deemed of lower importance than J2. The
algorithm also differs at t=5 as J4 does not execute until after J5 as this is

possible under the Lazy Scheduling caused by the algorithm.

66

Figure 4.2 is based on Figure 2.4, but with no pre-emption. This cannot be
feasibly scheduled as Ui > 1 at time t=2, meaning that a conflict between J1
and J2 arises. Depending on the system design, two outcomes can take place:

1. At t=0, if Priority J1 > Priority J2 then J1 will execute, leaving J2 to
wait until t=2 to begin, which in turn will cause J3 to be missed as no
pre-emption is present

2. At t=0, if Priority J1 < Priority J2 then J2 will execute, causing J1 to
be missed

The goal of the Game Theory scheduler is as follows: In a mixed periodic
and aperiodic system, the Game Theory Algorithm will successfully execute all
hard jobs, including where Processor Utilisation is above 1; providing Utilisation
of the subset of hard jobs is below 1.

In addition, for a system of equal priorities, the algorithm will create a
feasible schedule dynamically, should one exist.

4.2 Methodology

The Game Theoretic Scheduler overcomes issues caused by Heuristic Algorithms
by scoring jobs based on their remaining execution time multiplied by a coef-
ficient for choosing to either run the job at the particular instant or to wait.
These coefficients can be either constant and set in the system design phase,
or a variable that the algorithm can choose to alter based on factors such as
processor load — giving a dynamic scheduler in a concise package. These scores
are then placed in matrices, giving sets of two-player non-cooperative games.
These can then be tested using Algorithm 2 and Algorithm 3 to find the most
prudent outcomes for both jobs. Once this is complete, the Nash Equilibrium
with the highest utility score for the highest priority job will execute. If no Nash
Equilibrium is found, the most prudent decision for the highest priority job in
the queue will be chosen. Job priority is set by the run/wait coefficients; thus
removing the need for complicated systems such as multi-level scheduling.

An example of the execution can be seen in Figure 4.3 – Figure 4.4. Figure
4.3 shows a feasible schedule, where jobs activate and have enough time to
complete execution prior to their deadline, meaning no issues occur. Figure
4.4 however shows a schedule that is infeasible due to the processor utilisation
> 1. In this case, an abundance of short jobs have caused the hard real-time
job to miss its deadline at 125 time units. The scheduler in this case is not
aware of priority levels and therefore does not discern the difference between
the hard and soft real-time jobs. Other scheduling algorithms such as multi-
level queuing would prevent this miss by running the highest priority job first.
Though it should be noted that doing this would cause all three of the short
lower priority jobs to be missed, giving a significant detriment to the Quality of
Service.

Figure 4.5 gives a compromised solution based on Game Theory. At 25 time
units, the system scores whether to run Job 1 or Job 2 based on their benefit,
calculated by Algorithm 2. The outcome significantly favours Job 1 executing,
even though this means Job 2 will miss its deadline. This is similar to the
work in [26] where a job increases its priority once the slack remaining in its

67

execution time is zero, but with no need for priority levels. The level of laxity
or importance of a job type is set during the system design by the establish-
ment of values for the constants used to create the utility values. Algorithm
2 performs this through checking each job in the queue relative to its laxity
(Deadline(Di) − (ComputationT ime(Ci) + CurrentT ime) > 0) and its laxity
in the next time period (CurrentT ime + 1). This builds a two-person game
matrix where each player has two options: to run or to wait. The constants
chosen during construction of the matrix such as those in lines 8 and 28 force
the matrix to favour Job 1 over Job 2 (Hard Real-Time over Soft Real-Time),
allowing decisions regarding the future to be made apriori and prevent a missed
critical job due to injection of a new lower priority job, thus avoiding issues such
as the domino effect — where the introduction of a job causes all other job to
miss their deadline by the cascade increase in Ci. This is depicted graphically
in Figure 4.6, which is a Game Theory depiction of Figure 4.3 at times t = 0
and t = 10, with Prudence and Nash Equilibrium marked as in Figure 2.7. At
t = 10 the Nash Equilibrium favours running Job 1 over Job 2, therefore this
will take place. After this, there is only one job in the queue, meaning all Job
2 scores will be zero and the job will execute at the next available opportunity.

4.2.1 Initial Experiments

Following completion of the system designs in Algorithms 3 and 2, tests were
conducted in MATLAB. This was used due to its ability to handle large matrices
and mathematical manipulations, allowing rapid testing and debugging of the
process under test. Monte Carlo simulations at a variety of Job 2 activation
rates were run to determine the number of missed hard real-time jobs and the
success rate of the system in finding Nash Equilibrium. Both Job 1 and Job
2 were determined as random arrival times under a Poisson process, with jobs
computation times set by separate Poisson processes for Job 1 and Job 2. As
can be seen in the job definitions above, Job 2 completes execution ten times
faster than Job 1 and therefore can have a significantly higher activation rate.
The runs from these Monte Carlo Simulations allowed the effectiveness of the
algorithm to be assessed, as well as comparing an approach that always used
the Game Theoretic Approach to one that uses FCFS in light load, similar to
previous work in [30].

4.2.2 Design of Experiments

Following the initial tests and satisfaction that the algorithms ran successfully,
a Design of Experiments was used to determine the main effects for the Game
Theoretic Scheduler and optimise these. For this system, a two-level DoE was
used, where each input has two possible values. Five inputs were selected based
on knowledge of the system and these were tested through the DoE three times,
giving 96 total runs. Again, MATLAB was used for this, completing the DoE
quickly and in a CSV format, able to be analysed in Minitab. Parameters for
the DoE were as follows:

• Job 2 Activation Rate: 300/500

• Job 2 Game Theory Score Coefficient: 10/20

68

Figure 4.3: A Feasible Schedule under FCFS or EDF

Figure 4.4: Due to several occurrences of Job 2, the schedule is now infeasible
by EDF or RM

Figure 4.5: The System now runs successfully through removal of one Job 2,
preserving Quality of Service

Figure 4.6: Game Matrices for Figure 4.3 at t = 0 and t = 10, clearly showing
the Nash Equilibrium as (Wait,Wait) and (Run,Wait) respectively.

69

1: for all JobsinQueue do
2: Util1[Job] = Di − (Clock + Ci)
3: Util2[Job] = Di − ((Clock + 1) + Ci)
4: end for
5: for all JobsinQueue do
6: if JobType == Job1 then
7: if Util1[Job] > 0 then
8: RunUtil[Job] = Util1[Job]
9: else if Util1[Job] == 0 then

10: RunUtil[Job] = 100000
11: else
12: RunUtil[Job] = −100000
13: end if
14: if Util2[Job] > 0 then
15: WaitUtil[Job] = 3 ∗ Util2[Job]
16: else if Util2[Job] == 0 then
17: WaitUtil[Job] = 100
18: else
19: WaitUtil[Job] = −100000
20: end if
21: end if
22: if JobType == Job2 then
23: if Util1[Job] > 0 then
24: RunUtil[Job] = Util1[Job]
25: else if Util1[Job] == 0 then
26: RunUtil[Job] = 100
27: else
28: RunUtil[Job] = Util1[Job]
29: end if
30: if Util2[Job] > 0 then
31: WaitUtil[Job] = 2 ∗ Util2[Job]
32: else if Util2[Job] == 0 then
33: WaitUtil[Job] = 1
34: else
35: WaitUtil[Job] = −10
36: end if
37: end if
38: end for

Algorithm 2: Scoring Algorithm to create Game Matrices

70

1: Temp1 = 1
2: Temp2 = 1
3: Prudence1[NumberofP layer1Strategies]
4: Prudence2[NumberofP layer2Strategies]
5: for all Rows do
6: for all Column do
7: if Player1Utility(Rows, Temp1) ≤ Player1Utility(Rows,Columns)

then
8: Prudence1[Rows] = Temp1
9: end if

10: end for
11: end for
12: for all Columns do
13: for all Rows do
14: if Player2Utility(Prudence2, Columns) ≤

Player1Utility(Row,Columns) then
15: Prudence2[Columns] = Temp2
16: end if
17: end for
18: end for
19: for all Strategies do
20: if Prudence1 == Prudence2 then
21: return Nash
22: end if
23: end for

Algorithm 3: Prudence (Lines 1 to 18) and Nash (Lines 19 to 23) Algorithm

• Job 1 Game Theory Score Coefficient: 10/20

• Job 2 Score Coefficient Accumulate on non-run: On/Off

• Queue Length to activate Game Theory Scheduler over FCFS: 20/40

The results were analysed to identify epsilon levels of contribution to the
outcome and detect any interactions between factors.

4.2.3 Optimisation and Reliability Runs

Following the successful completion of the DoE, further simulation runs were
undertaken to determine the optimum values for inputs identified as critical.
Since Job 1 Execution is most critical, the runs concentrate on finding the ideal
operating point for this to be maximised at the expense of other metrics and
system run-time. The finalised algorithm was then tested with a variety of CAN
Load rates to give an expected lifetime, which allows comparison to established
and previously developed algorithms and delivery of metrics to determine effec-
tiveness of this algorithm over others.

71

4.3 Results

4.3.1 Comparison of Results for Full Game Theoretic and
Hybrid Runs

Execution time for 100000 Runs

• Full Game Theory: 121458 seconds

• Hybrid Game Theory: 118472 seconds

• Hybrid (Optimised value from [30]): 105171s

The use of a hybrid approach, when optimised, reduces runtime by 15 percent
through the non-activation of Nash Equilibrium calculation in light loading
conditions such as when one job is present. As calculation time is a key metric
to be considered when designing a scheduler, this reduction can be considered
significant if and only if the Quality of Service is preserved.

When compared using a two-sample T-Test, only Figure 4.9, Figure 4.10
and Figure 4.12 gave statistically significant differences between the full Game
Theory implementation and the Hybrid approach. More activations of Job 2 by
Nash or arrival with core idle occurred for the Full Game Theory implementation
and more runs of FCFS for the Hybrid system.

For Figure 4.9 running the system in Hybrid gives a higher Median and
Inter-Quartile Range. Therefore the use of a test to run FCFS over GT can be
concluded to significantly increase the running of this aspect of the scheduler.
While the missed jobs do not significantly change, the runtime is reduced by
ten percent.

For Figure 4.10 Less CAN Jobs Nashes are found with the Hybrid solution,
most are being taken up by the FCFS Scheduler.

For Figure 4.11 the outputs are statistically and graphically similar — there-
fore no increase in risk of missing Job 1 when running FCFS.

For Figure 4.12 Inter-Quartile Range of the Hybrid Simulation is larger,
but with less outliers. Therefore, as with Figure 4.10, the FCFS Scheduler is
reducing the number of CAN Jobs needing to queue.

These results from preliminary tests show that a hybrid approach gives some
improvements over the full Game Theory implementation. As Figure 4.11 clearly
shows, there is little difference between missed hard real-time jobs between
approaches. This is confirmed by Table 4.1, which demonstrates no statistical
difference between distributions or centres for full Game Theory and the Hybrid
Approach (P = 0.078). Therefore, the goal of reducing runtime while preserving
QoS has been achieved.

4.3.2 Design of Experiments

Job 1 Optimisation

A high level of interaction took place within this run, with a fourth order found
to be significant, meaning all first, second and third orders must also be con-
sidered. Following placement into the General Linear Model in Table 4.2, the
score applied to the utility calculations for Job 2 and Job 1 gives 21 percent of
the contribution towards missed Job 1, with interactions involving Job 2 Load

72

Figure 4.7: Box-plot showing rate of Missed Job 1 across Simulation Runs

Figure 4.8: Scatter-plot showing missed Job 1 as Job 2 Load increases

73

Figure 4.9: Box-plot showing rate of Activation for First Come First Served
Scheduler

Figure 4.10: Box-plot showing rate of Activation for Job 2 Nash Equilibrium

74

Figure 4.11: Box-plot showing rate of Activation for Prudent Job 1 Activation
when no Nash Equilibrium can be found, but Job 1 must execute

Figure 4.12: Box-plot showing rate of Activation for Job 2 Arrival when Core
is Idle

75

Table 4.1: Two-Sample T-Test Results for rate of Missed Job 1 for Full Game
Theory Implementation and Hybrid System

Source Mean Standard Deviation
Game Theory 0.23 124
Hybrid 0.54 1.86

P-Value 0.078

giving a further 15 percent. Figure 4.13 shows the score for Job 2 (CANScore)
causes large changes in values, as does the value for Job 1 score (SparkScore).

When Job2Score > Job1Score, more Spark Jobs are missed, meaning Job1Score >
Job2Score wil prevent this. Some interactions are present in Figure 4.14, show-
ing that increasing the Job 2 Score if no Nash Equilibriums are found causes
more Job 1 to be missed if the Queue Length to run the Game Theoretic Algo-
rithm is small. This is due to more Job 2 jobs being tested using Game Theory,
which is also the case for the interaction between Queue Length and Job 2 Load
and Job 2 Accumulation and Lambda.

From these results, we can determine that the design of the game is crit-
ical to its success. This was noted in Section 2.2.2. In the situation where
Job1Score � Job2Score, Job 1 misses drop to near zero, meaning the fun-
damental design of the scheduler must be carefully considered at the concept
phase of the system creation. By ensuring all jobs have appropriate scoring co-
efficients assigned, a multilevel equivalent system can be created with only one
job queue. Accumulation factors may also be added to increase job priority, in
a similar way that jobs in multilevel queues can be moved up by the scheduler
if a number of rounds take place without service. Though to have this operate
successfully, the size of the queue for activating the Game Theory Scheduler
must be set accurately.

76

Table 4.2: Significant Epsilon Scores for General Linear Model Following DoE
for Missed Job 1 Events

Source P-Value ε
Job 2 Score 0.004 7.222
Job 1 Score 0.005 7.062
Job 2 Score * Job 1 Score 0.004 7.193
Job 2 Accumulator * Job 2 Rate 0.037 3.744
Job 2 Score * Job 2 Accumulator * 0.039 3.683
Job 2 Rate
Job 1 Score * Job 2 Accumulator * 0.038 3.706
Job 2 Rate
Job 1 Score * Job 2 Score * 0.038 3.712
Job 2 Accumulator * Job 2 Rate
Error 57.244
Total 93.566

Table 4.3: Significant Epsilon Scores for General Linear Model Following DoE
for Prudent Job 1 Activation

Source P-Value ε
Queue Length to 0.000 14.045
Activate Game Theory
Job 2 Rate 0.000 27.155
Queue Length * Job 2 Rate 0.000 11.225
Job 2 Score * Job 2 Accumulator 0.042 2.010
Queue Length * Job 2 Score * 0.031 2.279
Job 1 Score
Error 35.843
Total 92.557

FCFS Optimisation

One third order interaction was found to be significant on this system. When
tested in the General Linear Model, 52 percent of contribution to this section of
the algorithm running came from Queue Length or Job 2 Load as can be seen
in Table 4.3. Since this section was optimised in the work presented in Chapter
5, this experiment shows that the settings carry over from simple heuristics to
the Game Theoretic Algorithm. The absence of interactions in Figure 4.16 and
major contribution from Job 2 Loading seen in Figure 4.15 clearly demonstrate
this.

To successfully use the hybrid algorithm, system designers must therefore
consider the types of job and their loading to the device under worst-case set-
tings. Statistical modelling could be used for this, with the possibility of au-
tomating this work through the creation of a design tool for creation of systems
with the Game Theory Algorithm. For a commercial version of this algorithm,

77

Figure 4.13: Main Effects Plot for inputs to DoE with respect to Missed Job 1

Figure 4.14: Interactions Plot for Missed Job 1

78

Figure 4.15: Main Effects Plot for inputs to DoE with respect to FCFS Activa-
tion

Figure 4.16: Interactions Plot for FCFS Activation

79

Table 4.4: Significant Epsilon Scores for General Linear Model Following DoE
for Prudent Job 1 Activation

Source P-Value ε
Queue Length to 0.029 2.368
Activate Game Theory
Job 2 Score 0.000 10.012
Job 1 Score 0.000 9.327
Job 2 Rate 0.000 14.075
Queue Length * Job 2 Rate 0.032 2.293
Job 2 Score * Job 1 Score 0.000 12.686
Queue Length * Job 2 Score * 0.010 3.363
Job 1 Score
Error 38.027
Total 92.151

such a design feature is considered highly desirable and a possible area of future
research.

Wait, Job 2 Nash and Job 2 when Core is Idle optimisation

All three of these sections within the Game Theoretic Algorithm had the same
common factors. As with the Spark Optimisation above, these were the scores
for Job 2 and Job 1 utility, giving over 36 percent of the contribution for all
three algorithms within the General Linear Model. Again as with Spark, if
Job2Score > Job1Score, more Spark Jobs are missed, proving that Job1Score >
Job2Score for the system to work successfully. Therefore, these areas of the al-
gorithm can be considered to be a corollary of the optimisation work undertaken
to minimise missed Job 1 and the queue length to activate the Game Theory
algorithm.

Prudent Job 1 Optimisation

Again a third order interaction was present, with Job 2 Load and Job 2 and
Job 1 utility delivering 46 percent of the contribution to changes in this output.
As with the above heuristics, Job1Score > Job2Score for successful system
operation, as the interaction between these can be seen in Figure 4.18, once
again meaning optimisation of Job 1 and FCFS also optimise this area of the
algorithm.

4.3.3 Reliability Assessment

As the graphs in Figure 4.19 to Figure 4.22 show, there is little difference in the
results for FCFS and the Hybrid Game Theory Algorithm at light Job 2 Load.
This is due to the Hybrid Approach using FCFS at light loads and therefore only
occasionally activating the Game Theoretic System. As Load increased, shown
in Figure 4.20, the difference becomes more significant, with an improvement
in B50 life (the point at which 50 percent of tests fail) of a factor of 32 percent

80

Figure 4.17: Main Effects Plot for inputs to DoE with respect to running Job 1
Prudently

Figure 4.18: Interactions Plot for Prudent Job 1 Activation

81

Table 4.5: Mann-Whitney Results for number of successful cycles completed
before a missed Job 1 occurs for FCFS and the Hybrid Game Theory Algorithm

Low Job 2 Load
Source Median
Game Theory 2784.5
FCFS 2941.5

P-Value 0.8738

High Job 2 Load
Source Median
Game Theory 1078.0
FCFS 1106.5

P-Value 0.2061

Figure 4.19: Reliability Plot for Low Job 2 Load

and a B90 improvement of 92 percent. A run using solely the Game Theory
Algorithm gave an improvement over the Hybrid Approach at high loads, but a
detriment to performance at low loads. When the lifetimes were placed into a
probability plot in Figure 4.19, a consistent 27 percent improvement of B10, B50
and B90 lives were observed against a 15 percent increase in run time; meaning
the trade-off of run time against availability was considered fair.

Figs 4.21 and 4.22 also shows this increase in life, but include Probability
Density Function, which shows the higher clustering of jobs at an early life for
FCFS at high Job 2 load; meaning the system effective lifetime is shorter with

82

Figure 4.20: Reliability Plot for High Job 2 Load

Figure 4.21: Graphs of Probability Density Function, Hazard Function and
Survival Function for Low Job 2 Load

FCFS over the Game Theory Scheduler. This is also reflected in the Survival and
Hazard functions, which demonstrate the Game Theory Scheduler is capable of
reducing the peak failure rate and allowing higher job loads to be adequately
managed.

83

Figure 4.22: Graphs of Probability Density Function, Hazard Function and
Survival Function for High Job 2 Load

4.4 Conclusion

The Game Theoretic Algorithm significantly reduces the misses of Job 1 in the
two benchmark tests described. This improvement in system availability comes
at the penalty of increased run time. By using a first come first served system
during periods of light load, the availability is conserved while appreciably re-
ducing the execution time. By the use of a design of experiments, the system
is able to be optimised quickly and deliver high processor availability during
simulation runs. In this current form, the system does not use pre-emption, but
such an addition would simply require an addition to Algorithm 2 that executes
whenever a new job arrives and the processor is occupied.

84

Chapter 5

Heuristic and Real-Time
Scheduling

There is no greater folly than to be very inquisitive and laborious to
find out the causes of such a phenomenon as never had an existence,
and therefore men ought to be cautions and to be fully assured of
the truth of the effect before they venture to explicate the cause.
John Webster, The Displaying of Supposed Witchcraft

5.1 Introduction

Chapters 3 and 4 prove the viability of using Statistical Methods and rule-based
systems to improve availability and Quality of Service for embedded systems.
However, the work in these chapters is based on high level simulated models.
To investigate whether these techniques are viable for real-life systems, further
investigation with established benchmarks and commercially available architec-
tures is required. Within this chapter, the development of such benchmarks and
experiments takes place.

5.1.1 Motivation

The Automotive Industry is a major consumer of embedded systems and a
strong driver of development and innovation. The average car now has more
than 40 Electronic Control Units (ECUs), with some vehicles possessing up to
80 [31]. These control units have jobs varying from climatic control to safety
critical roles such as air-bag deployment and emission regulation. As with most
industries, minimization of cost is a primary motivator, meaning that a small
reduction in the overall dollar cost per vehicle will lead to a significant saving for
the consumer and increased profitability. Therefore, using lower specification
and cost embedded controllers within the on-board ECUs could be a significant
driver of development over the next five to ten years [84].

85

5.1.2 Real-Time Systems

In this chapter, we develop a method of scheduling where tasks of different
levels of criticality within a system, including those which must meet real-time
criteria, are combined in the same system. This is common within an automotive
environment, and places additional requirements on the design of such devices.
This, along with the differences in scheduling compared to standard paradigms
is discussed in Section 2.1.2.

Section 5.2 covers the benchmarks used, with the algorithm in Algorithm 4
managing the jobs within this taxonomy.

5.1.3 Scheduling

The complexity of some mixed-mode algorithms can be thought of as detri-
mental when working with minimal overhead and could be counterproductive
to system availability. Therefore, for working with high processor utilisation,
a new method of finding optimum schedules without adversely adding to the
overall computation time would be highly beneficial and a strong driver of cost
reduction.

One solution that may meet this criteria is the use of Heuristic Algorithms,
which obey simple rules based on deterministic factors within the system, mean-
ing the uncertainty can be managed and an optimal schedule delivered within
a usable time-frame. Designers can use these known facts to manage the non-
deterministic aspects of the environment and deliver an optimal schedule in a
timely manner. Rule based schedulers are attracting interest, especially with
the increase in gate and core count on an integrated circuit causing complexity
to increase exponentially.

The models developed tend to take on simple rules, which over time lead to
a stabilized outcome. Ideally this outcome will maximize for all players, making
the game pareto optimal. This way, if a sudden change occurs, the game will
become unstable and eventually settle over a set of repetitions. Within a system,
this scheduler would have many players and input variables, therefore a method
must be developed that can reduce these into an optimal model and manage
scheduling based on key parameters only.

5.2 Methodology

5.2.1 Development of Heuristic-Based Schedulers

To develop a heuristic based algorithm, a simplified system was modelled in
MATLAB. This took the form of Figure 5.1, with jobs arriving and being sent
to cores by a scheduler. The cores would manage these jobs and inform the
scheduler when they are available to accept new tasks.

Three models were chosen for testing. These were:

• First Come First Served (FCFS)

• Priority Queuing

• Heuristic Algorithm under investigation.

86

Figure 5.1: Simplified Microprocessor Design for Simulations

An issue with FCFS, Priority Queue and other scheduling algorithms is the
failure to dynamically manage cores to maximize system availability. Many also
lack the ability to manage precedence and are unaware of energy as an input.
The proposed solution in this chapter provides these important items, while
also managing job direction through simple heuristics, rather than a complex
management program.

System Level Simulation

An algorithm, which can be seen in Algorithm 4, was created to allow System
Level Simulations to take place. This let a series of jobs be run through a Monte
Carlo Simulation. Jobs are created based on a rate (λ) and processed based on
another rate (µ), similar to the work conducted in Chapter 3. One to three
cores can also be implemented, allowing the difference in queue times, queue
length and processor utilization to be observed. For this jobs are assumed to be
arriving from activation (t0) at a rate of λe−λt and processed at a rate of µe−µt.
The simulation is run over 72000 cycles with 10 repeats for each case and λ/µ
values of 10, 30 and 50. One, two and three cores are active in versions of the
simulation and all simulations are repeated ten times to give confidence in the
consistency and capability of the simulation model.

Once job arrival and service rates are determined in lines 4-5, the system en-
ters the 72000 operational cycles. The algorithm considers available energy prior
to scheduling and adjusts the level to activate the Heuristic section through vari-
able MaxQueueLength. Cores are only activated to service jobs if the current
queue length is greater than this variable, preventing the excessive consumption
of energy but increasing total operation time for jobs. If all cores are active

87

1: Set λ and µ
2: Set Flags and Clock to zero, Energy to 100
3: for ArrivalT imeandServiceT ime = 1 to 72000 do
4: ArrivalT ime(n) = λe−λt

5: ServiceT ime(n) = µe−µt

6: end for
7: while Clock < 72000 do
8: if Energy < 50 then
9: MaxQueueLength = 2

10: else
11: MaxQueueLength = 4
12: end if
13: for AllActiveCores do
14: ServiceT ime−−
15: end for
16: if QueueLength > 0 then
17: if CoreisEmpty & Coreisactive then
18: PlaceJobonCore
19: else if CoreEmpty & CoreInactive & QueueLength > Max

then
20: ActivateCore, P laceJob
21: end if
22: if Clock = ArrivalofNewJob then
23: if CoreisEmpty& Coreisactive then
24: PlaceJobonCore
25: end if
26: else if CoreisEmpty & Coreisinactive &

QueueLength > MaxQueueLength then
27: ActivateCoreandP laceJob
28: else if Allcoresarebusy &

Jobisnon− priority then
29: PlaceJobinQueue
30: QueueLength+ +
31: else if Allcoresarebusy & Jobispriority then
32: PlaceJobinPriorityQueue
33: end if
34: end if
35: for Each Active Core 1− x do
36: Core(x)EnergyConsumed=U(0.002, 0.005)
37: end for
38: Energy=Energy-AllCore(x)EnergyConsumed-N (0.01, 0.005)
39: if Energy <= 0 then
40: Break
41: end if
42: UpdateWaitT ime, IdleT ime,QueueLengths
43: Clock + +
44: end while
45: print Value of Energy, Cores, λ, µ, Average Wait Time, Max Wait Time,

Average Queue Length, Max Queue Length, Clock, Cores 1-3 Idle
Percentage

Algorithm 4: Simulation for Heuristic Scheduler

88

and a job is low priority, it will be placed into the queue at the tail, replicating
FCFS. However, priority jobs will be placed into the priority queue, which will
be serviced by the next available core. All data was outputted to a CSV file on
completion of 72000 cycles.

Data from the simulations was collected and analysed using Minitab to look
for statistical differences between scheduler types and key parameters to be used
in any improvement exercises.

Addition of Energy

Once these experiments were complete, giving a baseline of algorithm effective-
ness, the extra uncertainty of energy was added to the simulations. This was
done by placing a battery into the simulation with a percentage of charge. The
FIFO and Priority Queues were unaware of this and therefore continued execut-
ing jobs at the same rate until failure. However, as the state of charge decreased,
the aggression of the heuristic algorithm in activating cores decreased, meaning
the execution time for jobs increased. While this would seem to decrease the
quality of service, the goal is to maximise lifetime of the system. Since less cores
are activated, both the static and dynamic energy consumption are decreased
thereby increasing the operational life of the system. Priority queuing is still
active and priority jobs will be fast tracked to the core, with jobs currently
occupying it halted. Once all priority tasks are cleared from the system, the
non-priority jobs may resume executing. In extreme cases, the scheduler may
activate a core to push through more priority jobs, thus maintaining quality
of service for a small energy penalty. Though this will shorten the operational
life of the entire system, missing priority jobs could be hazardous, especially
in real-time or safety critical systems — meaning that this reduction in system
lifetime is justified by keeping key systems active. For this simulation, the data
was again outputted to a CSV file on completion of the 72000 cycles or if system
energy reached zero during simulation.

Design of Experiments

Following this preliminary work, a Design of Experiments was conducted to
determine each variables overall contribution and whether any interaction be-
tween variables took place. This model was then analysed by the General Linear
Model (GLM) to give the percentage contribution (ε) that each parameter, in-
cluding error, delivers to the overall system. The DoE was set up in Minitab
as a two-level, four input, full factorial DoE with five repeats, giving 80 data
points (5x24). Parameters were as follows:

• Level of Battery to increase Queue Length for Core Activation = 30/60

• Kick Out of non-priority jobs for priority jobs = Off/On

• λ=10/50

• µ=10/50

These results were analysed to determine key parameters for the GLM to
determine the contributions each factor gives to the overall effect. These factors
can allow further testing to give ideal results and an optimal scheduler design
for the Heuristic Environment.

89

1: LoadSpeedandLoadLookup
2: CheckEngineState
3: if EngineState == Stall then
4: Anti− StallFueling
5: else if EngineState == Crank then
6: CrankFueling
7: else if EngineState == Decel then
8: DecelerationFueling
9: else if EngineState == Run then

10: ReadEngineSpeed
11: ReadEngineLoad
12: InjectionDuration = LookupfromSpeedandLoad
13: InjectionT ime = LookupfromSpeedandLoad
14: Advance = LookupfromSpeedandLoad
15: Dwell = LookupfromSpeedandLoad
16: else
17: EngineNotRunning
18: end if

Algorithm 5: Tooth to Spark Algorithm

5.2.2 Development of a Real-Time Algorithm using Au-
tomotive Benchmarks

To simulate the scheduler, a platform and benchmarks were first chosen. For the
hardware, the Atmel SAM3X8E was selected. This is a single core chip based on
the ARM Cortex M3 architecture, widely used in embedded control [9]. This is
also fitted to the Arduino Due [8], an open source prototype platform, allowing
easy crossover of this work to hardware testing, which can be seen in Chapter
6. For benchmarks, an assortment of jobs from the Embedded Microprocessor
Benchmark Consortium [32] were reviewed and the following were chosen:

Tooth to Spark

Correct timing of the ignition spark within a gasoline engine is vital, not only
for good delivery of power, but also to ensure tailpipe emissions are within legal
limits. If the spark is too early (overly advanced), combustion will be similar to
the top line of Figure 5.2, rising quickly and giving a great deal of later detona-
tions (known as ”knock”) that are harmful to an engine piston and cylinder (see
Figure 5.3). If the spark is too late (overly retarded), combustion occurs too
late in the crank angle, reducing efficiency. Correct timing (second line of Fig-
ure 5.2) should give peak pressure just after TDC, maximizing the conversion
of thermal energy to mechanical energy. Within the EEMBC Benchmarks, the
algorithm for calculating Tooth to Spark time can be seen in Algorithm 5 and
must calculate the correct air/fuel mix and ignition timing, outputting these
based on the engine conditions. This benchmark must also recognize when the
engine is out of run state or in a zero fuel condition and adjust injection timing
accordingly. This algorithm assumes stoichiometric conditions, where the ratio
of available air/fuel and required air/fuel for full combustion is 1.

90

Figure 5.2: Graph showing Cylinder Pressure with respect to Ignition Timing

Figure 5.3: Piston Damage caused by late ignition

91

1: ReceiveCANMessage
2: if ReceivedAddress! = NodeAddress then
3: Ignore
4: else
5: if MessageType == RDR then
6: SendRDRAck
7: SendData
8: else
9: StoreData

10: end if
11: end if

Algorithm 6: Algorithm for CAN RDR Benchmark

1: TakeCounterReading
2: TakeT imeSinceLastReading
3: Revs = Counter−PrevCounter

TeethPerRev

4: Distance = Revs
SampleT ime

5: Distance = Distance ∗ TyreSize
6: KMH = Distance∗3600

1000
7: PrevCounter = Counter
8: OutputKMH
Algorithm 7: Algorithm for Road Speed Calculation Benchmark

CAN Remote Data Request

Since the development of Automotive CAN by Bosch in 1990 [28], it has become
the main standard for in-vehicle communication. Since all systems (nodes) share
the same CAN Bus, it is vital that traffic is managed to prevent Bus overloading.
Messages within CAN can be sent to all nodes (Broadcast Announce Messages:
BAM) or specifically to one Source Address. For this Benchmark, shown in
Algorithm 6, the controller must recognize messages sent to it; ignoring those
for other nodes, store the data if needed or reply if the message sent is a Remote
Data Request (RDR). This gives a good test of system memory management and
use of communication protocols, ensuring the processor is capable of handling
these types of request.

Road Speed Calculation

A vehicle must be capable of calculating road speed for many reasons: It must
know if the sensor is operating correctly, it must identify tampering and give a
valid output back to the vehicle speedometer so the driver can accurately know
their speed. Road speed is normally calculated from the number of rotations
made by a toothed wheel, counted by a transducer such as a Hall Effect sensor.
Since the number of teeth per revolution is known, along with the circumference
of the wheel, deducing road speed is a case of simple mathematics based on
the number of pulses recorded over a sampling period. The algorithm for this
Benchmark is shown in Algorithm 7.

For this simulation, the jobs were assumed to have the following parameters
for Activation, Computation, Deadline, Period and Worst Case Execution Time

92

(WCET):

1. Tooth to Spark: Hard Real-Time; Variable Ai, Variable Ci; Variable Di;
Aperiodic; 100µs WCET

2. CAN Remote Data Request: Soft Real-Time; Variable Ai; Set Ci; Set Di;
Aperiodic; 10µs WCET

3. Road Speed Calculation: Firm Real-Time; Set Ai, Set Ci; Set Di; Periodic
(10ms); 25µs WCET

Due to sources of non-determinism within these benchmarks, there are situa-
tions where EDF and RM are both sub-optimal and cannot deliver 100% of jobs
before their respective deadlines. Therefore, the scheduler must decide which
jobs can be ignored to ensure optimal operation of the system and therefore
vehicle.

Within these tests, it can be seen that Tooth to Spark is not only the most
critical, but also the most difficult to control.Missed jobs could lead to incorrect
combustion; meaning the engine emissions are not compliant with the law and
could also cause physical damage to areas such as the piston. For this bench-
mark, Ai and Di will alter with respect to engine speed and Ci will vary with
respect to fuel time and how advanced/retarded ignition time must be com-
pared to engine top dead centre (TDC). Given that a spark ignition engine runs
at a maximum of 8000rpm, has four cylinders and a standard spark coil takes
1ms to charge; the minimum time available for calculation of a spark is 500us,
assuming a consistent firing of 30 degrees before TDC.

Figure 5.4 shows a flexible system based on Algorithm 4. This adds the
value of priority into the system, allowing hard or firm real-time jobs to run
at the expense of soft jobs. In this example, a missed CAN message or vehicle
speed sensor reading is less serious than a missed spark time: the CAN Protocol
automatically retransmits a non-acknowledged message after a period of time
[28] and the speed sensor algorithm allows for occasional missed transmissions;
since noise disrupting the sensor reading can cause inaccuracies in their calcu-
lation. If this occurs, then the algorithm will reject the calculated result [42],
though continual missed readings would lead to a fault being flagged within the
engine management ECU.

5.2.3 Plan of Testing

To test the viability of different schedule types, these three jobs were built in
MATLAB, with an overall time-triggered scheduler running at 1µs monitoring
their operation. This schedule model was then run in First Come First Served
(FCFS), EDF and the algorithm in Algorithm 4 in cases where all jobs could
execute successfully, along with scenarios where overruns would occur.

5.2.4 Design of Experiments

Following validation of the three scheduling types, a Design of Experiments was
used to optimize the Heuristic Scheduler. The DoE was set up in Minitab as
a two-level, three input, full factorial DoE with three repeats, giving 24 data
points (3x23). Parameters were as follows:

93

Figure 5.4: Heuristic Scheduling Example
In this example, the system is aware Job 1 has more importance than Job 2

and therefore runs Job 1 at the latest possible interval based on its WCET to
successfully execute while also killing one instance of Job 2 to ensure system

availability

• Queue Length to activate Heuristic = 2/10

• Number of CAN Jobs to supersede VSS in V (fi) = 5/20

• CAN Job Arrival Rate=150/400

These results were analysed to determine key parameters for the GLM and
determine the contributions each factor gives to the overall effect.

5.2.5 Final Optimization Tests

Following on from the DoE, which gives a level of contribution to each input
factor, final runs to determine optimal conditions for use were performed. These
runs generate data that when analysed in a regression plot give maximum and
minimum operating points for the system. From these, static settings for the
schedule can be derived. It may also be possible to feed these values back into
the algorithm, allowing for automatic fine tuning of the schedule parameters;
altering items such as Queue Limits during bursts of high intensity to preserve
Hard Real-Time jobs. Finally, a long term simulation was run, simulating the
operating cycle across the Modified New European Driving Cycle (MNEDC)
shown in Figure 5.5, used in Europe for proving new engines meet emission leg-
islation by simulating four urban driving cycles and one extra-urban cycle over
an 1180s run. Within the automotive industry this is used to determine fuel
economy and emissions such as CO2, NOx (Oxides of Nitrogen) and Particu-
late Matter below 10µm (PM10), but is also used by certification agencies to
test software compliance [28]. Therefore it is deemed acceptable for simulation
testing of this new scheduling system.

5.3 Results

5.3.1 Heuristic Algorithm

This short experiment shows that within an FCFS environment, the addition of
a second core drastically reduces the wait time for jobs, especially when λ > µ.

94

Figure 5.5: The MNEDC
This gives a mixture of urban and extra-urban driving and is used for type

approval of new vehicles [74]

Even when λ < µ, maximum waiting times for execution can be excessive in
a single-core environment. Therefore, while simple to implement and good in
many common cases, FCFS must be considered sub optimal for the schedule
design. However, we will continue to run tests and include it due to the use it
gives us as a baseline measurement.

For the simulations undertaken, Table 5.2 shows the outcome for tests con-
ducted where λ = µ and energy was considered. For this cycle, the Heuristic
Algorithm outperforms both FCFS and Priority Queuing by a factor of 3, giving
a statistically significant result. In cases where λ ≥ µ, the Heuristic Algorithm
consistently outperforms its rivals and also gives significantly longer operating
life in situations where λ < µ due to the dynamic deactivation of superfluous
cores. This result is shown for other values of λ

µ in Figure 5.6, demonstrating
that the Heuristic Scheduler outperforms both FCFS and Priority Scheduling
for a range of values and no statistical change in results as load rate increases
found in a regression test (P=0.507, therefore no correlation between job rate
and clock cycles completed).

When tests were conducted with single and dual core architectures the re-
sults, seen in Figure 5.7, show the Heuristic Algorithm continued to outperform
both FCFS and Priority Queuing. With only one core active, Heuristic meth-
ods give a factor of two increase in operational lifetime due to the dynamic
management of cores and their deactivation during light loading — similar to
the sleep mode present in many modern microprocessors. As the core count in-

95

1: if ΣCi < minDi then
2: Continue
3: else
4: if ΣCi < SparkDi then
5: if ΣCi − CANCi < SparkDi then
6: KillCANJob
7: CANKill + +
8: else if ΣCi − V SSCi − CANCi < SparkDi then
9: KillV SSJob

10: KillCANJob
11: CANKill + +
12: else if SparkCi < SparkDi then
13: KillCurrentJob
14: KillV SSJob
15: KillCANJob
16: CANKill + +
17: else
18: SetInjectionParameters = 0
19: end if
20: else if ΣCi < V SSDi then
21: if (ΣCi − CANCi < SparkDi)&CANKill < 10 then
22: KillCANJob
23: CANKill + +
24: else if ΣCi − CANCi < SparkDi)&CANKill >= 10 then
25: CANKill = 0
26: KillV SSJob
27: end if
28: end if
29: end if

Algorithm 8: Algorithm for Automotive Heuristic Scheduler

Table 5.1: Change in Queue Times and Lengths for a One-Core and Two-Core
System When Job Arrival (λ and Job Service (µ) Rates are altered

λ µ Average Maximum Average Maximum Core 1 Core 2
Queue Queue Queue Queue Idle Idle
Time Time Length Length Percentage Percentage

50 40 5640 9345 73.73 129 0.04 N/A

50 40 154.70 814 0.91 11 30.29 37.46

50 60 233.25 757 2.30 12 18.28 N/A

50 60 69.51 571 0.17 5 49.37 69.55

creases, the effectiveness of the Heuristic Management can still be seen, giving
improvements of 61 % for two cores and 35 % for three.

Following analysis of the DoE, Figure 5.8 shows an increase in Lambda, as
well as deactivation of the Kick Out function have a significant effect on the
number of successful clock cycles completed. Further analysis, shown in Figure
5.9, reveals that increasing the value of MaxQueueLength in Algorithm 4 gives
some increase to operational life and concurs with Figure 5.8 that being able
to remove tasks from processors to allow execution of priority jobs (the ”kick-
out” function) reduces operational life of the system – as this will increase the

96

Figure 5.6: Scatter-plot showing Clock Cycles Complete for increasing values of
lambda over mu

Figure 5.7: Box-plot of Microprocessor Life for varying number of cores

97

Figure 5.8: Main Effects Plot of DoE
This shows an increase in Lambda, as well as deactivation of the Kick Out
function have a significant effect on the number of successful clock cycles

completed.

Figure 5.9: Revised Main Effects Plot
This shows further inputs to those in Figure 5.8. As well as Lambda and Kick

Out still having an effect, increasing the maximum queue length before
another core is activated also can be seen to increase successful clock cycles.

98

Table 5.2: One-way ANOVA Results for Number of Clock Cycles Completed
Compared to Queuing Method

Queueing Mean Standard P-Value Conclusion
Method Deviation

FCFS 971.00 0.25 0.00 Heuristic
Priority Queue 970.96 0.32 Outperforms

Heuristic 2848.79 0.54

Table 5.3: Epsilon Scores for General Linear Model Following DoE

Source P-Value ε
Power Saving 0.000 0.152
Kick Out 0.000 33.162
Lambda 0.000 33.097
Mu 0.756 0.000
Power Saving*Kick Out 0.000 0.153
Power Saving*Lambda 0.000 0.156
Power Saving*Mu 1.00 0.000
Kick Out*Lambda 0.000 33.125
Kick Out*Mu 0.022 0.000
Lambda*Mu 0.165 0.000
Power Saving*Kick Out*Lambda 0.000 0.155
Error 0.000
Total 100.0

utilisation of processors and thus affect energy consumption. Due to this, a
second analysis only looking at priority jobs was undertaken and can be seen in
Figure 5.10. For this, deactivating Kick Out can be seen to have a large effect
on missed priority jobs as these are now made to wait until a core has completed
execution, rather than allowing the job immediate access.

The results from these experiments were placed into a GLM within Minitab
to see determine main contributions to the microprocessor lifetime. The results
for this, shown in Table 5.3, clearly demonstrates the contribution the kick-out
function and lambda have on the system, accounting for 99 percent of the effect
seen. For these runs, error can be seen to be zero, due to the level of non-
determinism afforded by the simulation being low. For repeat runs on a real
microprocessor, this value would be expected to rise significantly.

99

Table 5.4: Missed Spark Jobs based on an increase of CAN Job rate with
Schedulers

CAN Missed Spark Missed Spark Missed Spark
Job Rate FCFS EDF Heuristic

(Proposed Work)

10 0 20 0

20 0 0 0

30 0 585 0

40 0 241 0

50-90 0 0 0

100 0 350 0

110 0 3 0

120 0 12 0

130 0 0 0

140 0 8 0

150 0 885 0

160 0 419 0

170 0 213 0

180 0 3 0

190 0 1483 0

200 0 0 0

210 0 10 0

220 0 769 0

230 0 389 0

240 0 3 0

250 9 128 0

260 3 3 2

270 0 148 10

280 0 223 4

290 1 70 4

300 6 286 22

310 3 236 27

320 0 0 145

330 89 208 0

340 43 156 182

350 179 370 17

360 431 7 143

370 1 2142 182

380 148 1710 85

390 213 1 250

400 630 282 0

410 171 1944 0

420 295 860 181

430 320 1596 326

440 0 532 1102

450 360 4683 52

460 413 5 762

470 408 3 40

480 1347 943 316

490 1389 2494 0

500 271 5 76

5.3.2 Real-Time Automotive Heuristic Scheduler

Time for Execution of 100000 cycles

• FCFS: 2776 seconds

• EDF: 13152 seconds

• Heuristic Scheduler (Algorithm 8): 2790 seconds

FCFS Scheduler

Figure 5.11 and Tables 5.4 and 5.5 show that the number of missed Spark and
VSS jobs increases as the arrival rate of CAN jobs increase. When checked on a
regression plot, the value for Spark has a high R2 value of 56% and is statistically
significant (P = 0.000). This means a change in y (missed spark jobs) can be
correlated to a change in x (CAN Job arrival rate), with 56% of points matching
this interdependence. Therefore, this shows that for a high CAN Load, FCFS
is not suitable as the regular arrival of CAN jobs monopolizes the processor,
preventing critical jobs from successfully running.

100

Table 5.5: Missed VSS Jobs based on an increase of CAN Job rate with Sched-
ulers

CAN Missed VSS Missed VSS Missed VSS
Job Rate FCFS EDF Heuristic

(Proposed Work)

10 0 30 0

20 0 0 0

30 0 371 0

40 0 20 0

50 0 18 0

60 0 6 0

70 0 12 0

80-110 0 0 0

120 0 9 0

130 0 0 0

140 0 4 0

150 0 27 0

160 0 146 0

170 0 177 0

180 0 0 0

190 0 26 0

200 0 65 0

210 0 0 0

220 0 11 0

230 0 22 0

240 0 7 0

250 0 0 0

260 0 0 0

270 0 218 0

280 0 922 12

290 0 83 0

300 0 333 36

310 0 33 7

320 0 0 0

330 51 30 0

340 0 158 87

350 72 377 0

360 129 0 99

370 164 48 93

380 189 49 149

390 166 0 134

400 189 111 0

410 166 36 0

420 223 12 236

430 257 16 143

440 0 188 253

450 256 73 237

460 310 0 286

470 347 0 351

480 300 2426 365

490 0 0 0

500 431 0 0

EDF Scheduler

Figure 5.12 and Table 5.4 shows a sporadic increase in Spark and VSS jobs
misses as the arrival rate of CAN jobs increase. The value for Spark has a
low R2 value of 20.5% and is statistically significant (P = 0.005). Since this is
EDF, the low Ci and short Di of the CAN Jobs causes misses for both Spark
and VSS. Adding pre-emption would not solve the issue, as the CAN Ai is so
frequent that it is absorbing all available processor runtime and causing the
other jobs to miss their deadlines. Therefore, in this case, EDF is not optimal.
Rate Monotonic would also not be suitable, since CAN has the most regular
activation time, this means it would receive the highest priority and continue
to consume all processor availability.

5.3.3 Proposed Heuristic Scheduler

Figure 5.13 and Table 5.4 show a reduction in missed jobs as the CAN Job
rate increases. However, this has a comparable outcome to the EDF Algorithm,
with R2 of 26.9% and P = 0.001 for missed Spark Jobs, meaning that high

101

Table 5.6: Analysis of Variance (ANOVA) Results for Missed Spark jobs with
Respect to Scheduling Algorithm Used

Source Mean Standard Deviation
FCFS 134.6 295.8
EDF 488.6 868.4
Heuristic 78.6 197.7

P-Value 0.000

Table 5.7: Analysis of Variance (ANOVA) Results for Missed VSS jobs with
Respect to Scheduling Algorithm Used

Source Mean Standard Deviation
FCFS 60.5 112.7
EDF 121.3 366.8
Heuristic 49.8 98.8

P-Value 0.245

CAN Loads can still cause issues. While these numbers are similar, the equa-
tion driving the regression is significantly different, with a lower gradient and
intercept than the EDF example. However, Figure 5.14 shows that not only
is the peak value of missed jobs lower, but also the overall distribution. Due
to the low number occurring across the simulation, Figure 5.15 shows a similar
distribution for FCFS and the Heuristic Algorithm, which was expected.

As the algorithm runs in near equivalent time to the FCFS and significantly
faster than EDF, this is deemed to be a substantial improvement. Since this is
a hybrid approach, working in FCFS under light loading, it gives a compromise
between the short runtime of FCFS and complex management of jobs only when
this is required.

Statistical Analysis of Results

These results in Table 5.6 show that for missed Spark Jobs, FCFS and the
Heuristic Scheduler significantly outperform EDF. When analysed separately,
they give a non-statistically significant difference (P = 0.268), but higher values
for CAN Load could cause a significant outcome. However, it is thought that
these values would lie outside of normal operating conditions; therefore these
will not be tested.

For VSS in Table 5.7, no statistical difference can be seen at a 95% Confi-
dence interval. Again, this could occur for higher values of CAN Load, but was
not investigated as part of this work.

102

5.3.4 Design of Experiments

Missed Spark Events The Design of Experiments shows only one sta-
tistically significant outcome for missed Spark Jobs. Figure 5.17 clearly shows
the increase in CAN arrival rate gives a direct proportionality to the increase
in missed Spark jobs, which is to be expected as these are dominating the pro-
cessor. However, it also shows that the point of switching between FCFS and
the heuristic scheduler can also be important. By increasing the number of jobs
within the queue from 2-10 before the heuristic scheduler activates, the aver-
age number of missed spark jobs dropped by 20%. This shows that the hybrid
approach adopted by this Heuristic is of critical importance in reducing the
number of missed jobs, by only activating the slower priority-based scheduler
when it is needed.

Table 5.8 shows the General Linear Model output for the DoE. This shows
the CAN Arrival Rate is dominant in missed spark jobs, contributing 24% to this
event. Queue length on its own and combined with this gives an 8% contribution,
with error accounting for 68%. The error value is high due to the high amount of
non-determinism within the system caused by parameters such as engine speed
and engine load giving non-linearity and therefore deviation from the GLM.
This value could be reduced through steady-state operation of the system in a
known window of use, but for this initial DoE it is deemed acceptable as the
epsilon scores have proved which variables are key in their effect.

103

Figure 5.10: Further Revised Main Effects Plot
This shows the change in Priority Jobs missed when inputs are altered for the
Heuristic Algorithm. Deactivating Kick Out can be seen to have a large effect

on missed priority jobs as these are now made to wait until a core has
completed execution, rather than allowing the job immediate access.

Figure 5.11: Graph of Missed Spark and VSS jobs for a FCFS Scheduler as the
CAN Load increases

104

Figure 5.12: Graph of Missed Spark and VSS jobs for a EDF Scheduler as the
CAN Load increases

Figure 5.13: Graph of Missed Spark and VSS jobs for the Heuristic Scheduler
as the CAN Load increases

105

Figure 5.14: Box-plot showing distribution of missed Spark jobs for the three
algorithms

Heuristic shows a lower maximum value and lower overall distribution of
missed jobs

Figure 5.15: Box-plot showing distribution of missed VSS jobs for the three
algorithms

Due to the low period of this job, little overall difference can be observed

106

Table 5.8: Epsilon Scores for General Linear Model Following DoE for Missed
Spark Events

Source P-Value ε
Queue Length 0.348 3.948
CAN Superseding 0.949 0.018
CAN Arrival Rate 0.029 24.362
Queue Length*CAN Superseding 0.926 0.038
Queue Length*CAN Arrival Rate 0.348 3.948
CAN Superseding*CAN Arrival Rate 0.949 0.018
Queue Length*CAN Superseding 0.926 0.038
*CAN Arrival Rate
Error 67.631
Total 100.0

Table 5.9: Epsilon Scores for General Linear Model Following DoE for missed
VSS Events

Source P-Value ε
Queue Length 0.971 0.005
CAN Superseding 0.352 3.441
CAN Arrival Rate 0.009 32.723
Queue Length*CAN Superseding 0.859 0.121
Queue Length*CAN Arrival Rate 0.980 0.002
CAN Superseding*CAN Arrival Rate 0.347 3.524
Queue Length*CAN Superseding 0.851 0.138
*CAN Arrival Rate
Error 60.045
Total 100.0

Missed VSS Events The Design of Experiments shows only one statis-
tically significant outcome for missed VSS Jobs. Figure 5.19 clearly shows the
increase in CAN arrival rate gives a direct proportionality to the increase in
missed VSS jobs, which is to be expected as these are dominating the proces-
sor. However, it also shows the number of missed CAN Jobs required to allow
CAN to dominate VSS has a minor effect. By increasing the number of missed
CAN jobs from five to 20, the number of missed VSS jobs drops by a factor
of two. Figure 5.20 also shows an interaction between Queue Length and CAN
supersession. This is caused by the more frequent execution of Algorithm 4 at a
low value of Queue Length, meaning the opportunity for CAN jobs to supersede
VSS Jobs occurs more frequently. Changes in this interaction may be higher at
more extreme values for these parameters, but whether these levels would occur
in a real-life system is debatable.

Table 5.9 shows the General Linear Model output for the DoE. This shows
the CAN Arrival Rate is dominant in missed spark jobs, contributing 32% to
this event. CAN supersession on its own and combined with this gives an 7%

107

Figure 5.16: Pareto Plot for the Design of Experiments
This shows that only Factor C (increasing CAN Arrival Rate) has a significant

effect on the rate of missed Spark Jobs

Figure 5.17: Main Effects Plot for the Design of Experiments
This shows that increasing the value for running the Heuristic Scheduler

causes a reduction in the number of missed Spark Jobs. This also reduces the
number of missed jobs caused by the increase in CAN Jobs

108

Figure 5.18: Pareto Plot for the Design of Experiments
This shows that only Factor C (increasing CAN Arrival Rate) has a significant

effect on the rate of missed VSS Jobs

Figure 5.19: Main Effects Plot for the Design of Experiments
This showing that increasing the value for running CAN Jobs in place of VSS
Jobs (Lines 21-27 in Algorithm 4) decreases the number of missed VSS jobs.
Unlike in Figure 5.17, Queue length has no real effect, due to the long period

between VSS Jobs

109

contribution, with error accounting for 60%. As with the previous DoE, the
high value of error is caused by the non-determinism within a complex system.
For this initial experiment, which has identified key inputs for testing, this value
of error is deemed acceptable.

5.3.5 Optimization of Final Settings

Once the DoE was complete, a further run was made with CAN Loading set
to a value known to cause missed Spark and VSS Jobs. This allowed Queue
Length and CAN Deactivation to be altered and the effects on missed jobs
recorded. To ensure accuracy and confidence in the results, the number of
required samples was calculated using a 1-sample t-test power and sample size
calculation. Assuming a Type I Error (α - False Positive) of 5% and a Type
II Error (β - Missed Failure) of 20%, giving a Power value of 0.8. For the
Standard Deviations in Table 5.6, this gave a required sample of 128. Once
these were complete, regression plots in Figure 5.21 and Figure 5.22 show a
strong regression for Spark Jobs (P = 0.011, R2 = 21.1%) but no contribution
for VSS (P = 0.185, R2 = 6.2). A repeat run for Spark Jobs with Queue
Length between 40 and 50, shown in Figure 5.23, gave no contribution (P =
0.804, R2 = 0.4). This allows us to conclude that a Queue Length of 40 and a
CAN Supersession rate of 20 would be suitable values for an optimal run. Since
missed jobs within the Heuristic Scheduler are found to occur above a CAN
Load of 300, a final run with CAN between 300 and 600 was performed, which
can be seen in Figure 5.24 and Figure 5.25. Spark shows a weak correlation
(P = 0.047, R2 = 10.5) with a strong correlation from VSS (P = 0.000, R2 =
91.8) meaning that missed VSS Jobs could be predicted from the previous CAN
Load. With more test samples, the number of missed Spark jobs could become
statistically insignificant, meaning that this section of the Heuristic Algorithm
is now optimized.

Table 5.10 shows whether the changes made have had a statistically signifi-
cant contribution to the number of jobs missed for a CAN Load of 400. As can
be seen, since P > 0.05 this has not been proved. However, the reduction in the
number of missed jobs is visible and could become more significant at higher
CAN Loads.

Reliability plots, shown in Figure 5.26 for FCFS and Heuristic Algorithms
shows a slight increase in overall system availability for the Heuristic Algorithm.
B50 life (the number of cycles at which 50% of the population will have at least
one failure) has increased from 5014 to 5899; an improvement of 15% . This
increase in availability is dependent on the CAN Load, meaning this should be
carefully controlled to maximise system uptime. A long run, shown in Figure
5.27, demonstrates the effectiveness of optimisation. For 50 runs, 43 reached
1000000 cycles without failure and were censored from the analysis. The seven
failures all occurred in early life, giving the system a B10 life of 7222 cycles and
a B90 life of 1389335.

110

Figure 5.20: Interaction Plot for missed VSS Jobs
This shows a possible interaction for Queue Length to activate Heuristic

Scheduling and number of missed CAN Jobs required to raise priority above
VSS. For a higher value of Queue Length, fewer jobs are missed at a low value

of CAN supersession

Figure 5.21: Regression Plot showing missed Spark Jobs with increasing Queue
Length and fixed CAN Rate.
The data clearly shows a negative regression, improving as Queue Length to

activate the Heuristic Algorithm increases

111

Figure 5.22: Regression Plot showing missed VSS jobs with increasing level of
CAN Supersession and fixed CAN Rate.

No contribution is evident

Figure 5.23: Regression Plot showing missed Spark Jobs with Queue Length
between 40 and 50.

No contribution is evident

112

Figure 5.24: Regression Plot showing missed Spark Jobs with increasing CAN
Load.

A weak correlation is present

Figure 5.25: Regression Plot showing missed VSS Jobs with increasing CAN
Load.

A strong contribution is evident

113

Figure 5.26: Reliability Plot showing the number of runs before expected failure
for FCFS and the Heuristic Algorithm and a CAN Load of 300.

Figure 5.27: Reliability Plot for a 1000000 cycle run, halting on any missed
Spark Job.

114

Table 5.10: Analysis of Variance (ANOVA) Results for Missed Spark jobs with
Respect to Scheduling Algorithm Used following Optimization

Source Mean Standard Deviation
FCFS 418.7 416.1
Heuristic 315.1 285.8

P-Value 0.148

5.4 Conclusion

The initial work in this chapter shows that under low loads (λ < µ), a first come
first served scheduler is capable of managing all jobs easily. With only one core
active, FCFS gives a high value of maximum wait time compared to average
wait time. Therefore this would not be suitable for a system with priority jobs.
With two cores active however, this wait time reduces dramatically and priority
queuing may not be required. However, when λ > µ, priority queuing and
multiple active cores becomes a feasible way to manage jobs.

The heuristic algorithm presented provides the flexibility of both strategies,
combined with dynamic core management and therefore increased energy ef-
ficiency. By altering the queue length required to activate a new core with
respect to energy available the algorithm, this extra non-deterministic aspect
can be managed and the quality of service for an end user maintained.

When λ� µ, a drop in performance for all scheduling methods takes place.
As the arrival rate is so much larger than the service rate, the queue grows
exponentially; meaning processor utilisation is always at 100 %. Due to this,
no dynamic core management can take place and all schedulers perform at a
comparable rate. Within these simulations, this leads to FCFS and Priority
Queuing outperforming the Heuristic Algorithm, as the model designed consid-
ered the extra complexity required and increased leakage power accordingly —
causing lifetime for the Heuristic Algorithm to be reduced.

While this system has only been tested up to three cores, it is thought that
the algorithm would feasibly cope with a larger number of available devices in
its current design. Since the scheduler operates as an overseer for all devices,
it simply places jobs onto the first core it finds available; or activates a core
if required. A limitation for this is the simulation work required to determine
suitable values for MaxQueueLength and the Energy at which to alter this.
This work also currently presumes a homogeneous layout, but it is expected
that heterogeneous microprocessors (where cores of different design are placed
on the same silicon) will become more commonplace in the near future.

The Automotive Heuristic Scheduling Algorithm successfully reduces the
number of missed spark jobs for a negligible increase in execution time. Through
the use of a Design of Experiments, an optimal value for all input variables
within the heuristic system has been determined. Repeated runs on MATLAB
with these optimized values found a further reduction in missed spark jobs for
an equivalent execution time and a low number across the MNEDC Cycle in
Figure 5.5. Repetition with higher CAN Load found an improvement in missed

115

jobs for the Heuristic Scheduler over FCFS. VSS also shows strong correlation to
CAN Load rate, meaning a further improvement could be made by monitoring
previous CAN Loads and determining a level to pause CAN for other jobs based
on this, possibly based on Statistical Process Control; similar to work in Chapter
3.

Spark jobs are only missed at high CAN Loads. It is concluded that when
CAN loading is very high, the processor is given over so exclusively to this that
it causes missed deadlines due to small amounts of runtime deviation within
other jobs. More complex algorithms could compensate for this, but would
require more advanced processors; which is a contradiction to the goals of this
chapter. Therefore, to use a lower level processor such as the one simulated
here, system designers must be mindful of lower priority jobs and their possible
monopolisation of a processor, so must adjust parameters accordingly to prevent
this occurring.

This work shows, through simulation, that a low complexity embedded sys-
tem is capable of running multiple complex benchmarks within an automotive
environment. By using a hybrid approach of FCFS and heuristics, a signifi-
cant reduction in the number of critical missed jobs can be seen for a minimal
increase in runtime.

The use of simulation has allowed rapid alteration and testing of these algo-
rithms, at significantly reduced cost compared to hardware testing in an engine
test cell. Issues have been debugged on line, which would not be possible with
hardware testing, with no risk of hardware damage.

This chapter proves the concept of a heuristic algorithm is viable and can
dynamically manage a multi-core stored energy environment with minimal com-
plexity. Key factors in its management have been identified and initially tested
through simulation, which has allowed rapid testing of the many permutations
and validation of the concept. The progression of this work is to conduct a De-
sign of Experiments (DoE) to optimize the algorithm through determining each
input variables overall contribution to both wait time and system availability.
DoEs have been used in previous work to great effect in identifying key items
within an energy harvesting environment [29].

While conceptually the design can be construed as sound, tests in a practical
multi-core architecture will determine whether the algorithm works in a real-
world aplication. Tests using a real-world processor and desmonstrating the
hardware implementation of this algorithm can be seen in Chapter 6.

116

Chapter 6

Hardware Testing

It is pointless to do with more, what can be done with less
William of Ockham

6.1 Introduction

As the previous chapters show, the use of heuristics and Game Theory in
scheduling yields an improvement in results for real-time and energy harvesting
systems. However, these results are only based in simulation, meaning they can
only be seen as a proof of concept. To take this further, the algorithms must be
ported from simulation into a micro-controller and tested.

6.2 Possible Micro-controllers

To test this work in hardware, it was decided to use an up-to-date processor
with high capabilities. Though a multi-core system was initially suggested, it
was decided to minimise development and learning time by using a single-core
system based on an educational or prototyping platform. Four such systems
were identified that could deliver the benchmarks in Chapter 5. These were:

• Raspberry Pi

• Arduino Due

• Imagination Technologies Minimorph

• Texas Instruments Beagleboard

6.2.1 Raspberry Pi

Created specifically for teaching in schools and universities, the Raspberry Pi
is a stripped down computer that has found popularity within the engineering
community [90]. The board runs a version of the Debian Operating System,
with Python as the primary programming language. Options for interfacing are
available, making this board highly successful; with over 1 million sold in the
first 18 months [7] .

117

Table 6.1: Summary of Prototype Boards

Arduino Due Minimorph Raspberry Pi Beagleboard

OS Arduino C Linux Debian Linux

Cores 1 1 1 1

Processor ARM Cortex XENIF TZ1090 ARM1176JZFS ARM
M3 SAM3X8E Cortex 8

Memory 512MB 255MB 512MB 256MB

SD Interface Upgradeable No Yes Yes

Switchable Yes No Yes Yes
Clock

Board 2W 2.5W 3.5W 2W
Power

Consumption

Real Time Yes Yes No Yes
Capable

Forum Yes No Yes No
Support

6.2.2 Arduino Due

Developed in Italy, the Arduino family of Micro-controllers are an established
platform for prototyping [8]. Widely used by amateur and professional engi-
neers, they allow easy interfacing to external components and programming
of the on-board micro-controller though a bespoke compiler, running a variant
of the C programming language capable of managing a variety of inputs and
outputs.

6.2.3 Minimorph

Designed to help professionals develop embedded solutions [48], the Minimorph
is developed by Imagination Technologies for companies to ease integration of
their devices into larger systems. The board manages all interfacing, allowing
the user to concentrate on managing signal conditioning and decisions. Running
Linux gives access to application and device support, along with maximising the
capabilities of the on-board DSP.

6.2.4 Beagleboard

Manufactured by Texas Instruments, the Beagleboard is an open source device
designed for the education market [108]. Similar to the Raspberry Pi, it runs
a Linux Shell and is capable of producing high-quality graphics and sound en-
coding. An update to this has been the ”BeagleBone” released in 2012, which
is similar to the Arduino in concept and delivery.

A summary table of each board’s features can be seen in Table 6.1

6.3 Determining Micro-controller

To determine the most suitable board from these four, a Cause and Effects
Matrix was used. This is a common tool in the Measure Phase of Six Sigma
(see 2.4.4), allowing quantitative and objective analysis to determine the most
suitable or noteworthy items. To use this, an item is given importance; scored
from 1 to 10. Each board is then scored on how well it fits this suitability with
a score of 1 (remotely fits), 3 (moderately fits) or 9 (strong fit).

118

Table 6.2: Cause and Effects Matrix for Microprocessor

Factor Score 10 8 7 6 6

Processor Use of Power Switchable Forum Development Total
Real-Time Consumption Clock Support Tools

Arduino Due 3 9 9 9 9 273

Minimorph 9 3 1 1 3 145

Raspberry Pi 3 1 9 9 9 209

Beagleboard 3 3 9 1 1 129

Figure 6.1: The Arduino Due

For this C&E, the following factors were taken into account and scored, with
the results in Table 6.2:

• Use of Real Time: Score 10

• Power Consumption: Score 8

• Switchable Clock: Score 7

• Level of Forum Support: Score 6

• Development Tools Available: Score 6

As Table 6.2 shows, due to the ability to switch clocks and run a Real-
Time Operating System (RTOS), combined with strong Forum Support and
Development Tools, the Arduino Due was chosen as the development board on
which to conduct tests.

6.4 The Arduino Environment

The Due runs at 84MHz with a 32-bit core. With 96kb of SRAM on-board and
a Direct Memory Access (DMA) Controller, it is a small but powerful embedded

119

Figure 6.2: The Arduino Development Environment

system capable of flexible reconfiguration and execution of complex algorithms
through the ARM Cortex M3 architecture selected at the primary controller.
Through the use of the Harvard Architecture [6], which gives instructions and
data separate buses, the controller can deliver significant speed advantages over
more complex controllers and can deliver operations on 4 byte wide data in a
single CPU clock cycle.

6.4.1 Initial Testing

The Arduino is programmed through a USB Connection to a host PC and
use of a development environment shown in Figure 6.2. The syntax is based on
C-semantics allowing quick development with fundamental programming knowl-
edge. Unlike ”classic” C, where only a void main() is declared, the Arduino
language has two void() classifications that exist to set and run parameters
within the controller. The void setup() routine runs once and is used to ini-
tialise Input-Output parameters and perform any preliminary calculations on
variables. Following this, the void loop() function runs continually to perform
calculations and output results. A simple ”Hello World!” example that makes
the on-board LED blink is shown in Algorithm 9.

As it uses C, mathematical and logical actions can be performed on vari-
ables to set up and run simple loops. An example of this, adding pulse width
modulation (PWM) to Algorithm 9 can be seen in Algorithm 10. This uses
variables to control the time Pin 13 is set high and low, with a counter set to
allow phasing of the LED brightness in a continual up and down cycle.

120

1: Pin 13 as Digital Output
2: void loop
3: loop
4: Set Pin 13 High
5: Wait 1 Second
6: Set Pin 13 Low
7: Wait 1 Second
8: end loop

Algorithm 9: Arduino Hello World Program

1: void setup
2: Set Pin 13 as Digital Output
3: y = 25
4: void loop
5: loop
6: Set Pin 13 High
7: Wait x ms
8: Set Pin 13 Low
9: Wait y − x ms

10: if UpDown == 1 then
11: x+ = 1
12: else
13: x− = 1
14: end if
15: if x == 0 or x == 25 then
16: UpDown = not UpDown
17: end if
18: end loop

Algorithm 10: Arduino PWM Program

121

An issue with both these algorithms is using delay() within the Arduino
environment to wait causes the processor to pause, meaning no further work
can be carried out. Therefore, further algorithms perform waiting through the
use of interval timers using the free-running counters millis() and micros()

discussed below. This allows the loop section of the program to continually run
and execute all functions with no degradation to QoS.

6.4.2 Use of Libraries

The Arduino Environment gives strong support to the use of libraries, which
are identical to h files used in formal C. Designed by users and developers, these
can reduce design time by giving defined functions for items such as digital or
analogue IO or more complicated routines such as the creation of Hash Functions
for digital signatures. For this research, a library called Scheduler was found
on the Arduino Playground that allowed calling of functions at a time interval
set within a built in command [15]. The Scheduler Library runs through two
functions: void update() that checks whether a function within the queue
must be called and void schedule(function,time) that adds a specific void

function to the scheduler and defines how many milliseconds should elapse until
this is called. The time aspect of this is managed by built in counters millis()
that acts as a free-running clock within the Arduino once power is applied and
runs for 50 days before an overflow and micros() which runs 1000 times faster
than millis() for finer time management.

To test the Scheduler library effectiveness, the PWM example in Algorithm
10 was redesigned as Algorithm 11, calling PWM control as functions, with the
time for execution set by variables.

6.4.3 Hardware Interfacing

One major advantage of the Arduino over systems such as the Raspberry Pi
is the easy interfacing of external discrete components through the IO sockets
mounted around the edge of the PCB that can be clearly seen in Figure 6.1.
This is deemed such a critical difference that in [113] the authors give advice
on interfacing an Arduino to a Raspberry Pi through a USB connection to run
Python scripts on external devices. On the Arduino Due, 54 pins are available as
digital IO (12 configurable as PWM), 12 as Analogue inputs and 2 as Analogue
outputs. All IO pins are capable of delivering 130mA of current, with power
managed on the PCB by a separate regulator circuit. This means while the
Cortex-M3 operates at 3.3V, up to 12V can be supplied into the board to control
ancillary components. Therefore, while the board can give out a 5V supply
limited to 800mA, only 3.3V can be used on IO pins, otherwise serious damage
to the Micro-controller could occur. This means any external circuits used
with the board must be designed accordingly to limit input voltage and prevent
electrical overstress (EOS) taking place.

6.5 Hardware Design

Once tests of the benchmark algorithms on the Arduino were complete, the
external circuits to control conditions within the microprocessor were designed,

122

1: void setup
2: Set Pin 13 as Digital Output
3: x = 1, y = 32, UpDown = 1
4: Schedule SetHigh in 1ms
5: void loop
6: loop
7: Check Scheduler for any required executions
8: end loop
9: void SetHigh

10: Set Pin 13 High
11: Schedule SetLow in y − xms
12: void SetLow
13: Set Pin 13 Low
14: Schedule pwmUp
15: Wait x ms
16: Set Pin 13 Low
17: Wait y − x ms
18: if UpDown == 1 then
19: x+ = 1
20: else
21: x− = 1
22: end if
23: if x == 0 or x == 25 then
24: UpDown =not UpDown
25: end if
Algorithm 11: PWM Program designed using Scheduler Library

tested and fitted to the board. The systems under test are discussed in the
sections below.

6.5.1 CAN System

For this work, the CAN libraries within Arduino will be used to transmit a CAN
Signal onto a CAN Bus. Within the EEMBC Benchmark simulated in Algorithm
6, the system only transmits when a CAN Message is received containing a
remote data request. Since the Arduino Due already has a CAN Transceiver
fitted, this RDR will be sent by a simulated CAN Node on-board the Arduino.
Output is on the ADCH header through pins 7 and 8, transmitting onto CANLo
and CANHi respectively.

6.5.2 Vehicle Speed Sensor System

For the VSS system designed on the Arduino, only Vehicle Speed and Engine
Speed will be used. These will be delivered through the use of astable 555 timers
as seen in Figure 6.3 and Figure 6.4. The use of variable resistors gives a wide
operating range, allowing assorted values of vehicle and engine speed to be fed
into the system for analysis. As the on/off time of a 555 is determined by the
equation f = 1.45

(R1+2R2)C
, this gives a frequency range of 3157Hz to 18947Hz for

Engine Speed and 582Hz to 3062Hz for Vehicle Speed.

123

Figure 6.3: Engine Speed Sensor Design

Figure 6.4: Vehicle Speed Sensor Design

124

6.5.3 Fuel Injector Control

Within this design, only two cylinders are considered, with the Arduino deter-
mining injection and dwell time, along with the injection volume based on engine
speed, engine load and the value of λ detected at the exhaust. The output cir-
cuit is shown in Figure 6.5. This uses a low-side driver to energise the coil with
a fly-back diode fitted in parallel to the inductive load, allowing dissipation of
the coil current when the Field Effect Transistor (FET) is opened. This design
is still commonplace within the automotive market and deemed more feasible
to implement than systems relying on capacitance or magnetos that are seen in
high performance and compact engines [42]. Two cylinders were used as this
design of engine has recently seen a return in popularity after the success of the
twin-air design used by Fiat on their new version of the 500 and are capable of
delivering high fuel economy for low emissions, which could lead to a resurgence
in this design in the near future.

6.5.4 Other Circuits

In addition to the circuits above, inputs simulating the accelerator and starter
motor; along with a digital input to force overruns were added to the completed
design. The full circuit can be seen in Figure 6.6.

The accelerator was chosen to be a simple single potentiometer due to the
ease of implementation. Though automotive designs would normally use dual-
potentiometer and include proximity switches to give redundancy and the ability
to disable the throttle in should an issue arise, it was felt that since this project
is not investigating the qualification of accelerators under ISO26262 that only
using a single potentiometer throttle would be acceptable for development pur-
poses.

To place the engine into a cranking (starting) state, a simple active-low
switch (SW1) was placed onto a digital IO pin to simulate the activation of
the starting motor. This will place the controller into the cranking state of the
EEMBC Tooth to Spark benchmark and demonstrate the algorithm design is
capable of delivering the full benchmark. A second switch (SW2) is present to
place the algorithm into a wait cycle and force the processor to miss real-time
jobs. This is present to ensure the system can recover from an overrun should
one occur. Both these switches are configured as active-low as this removes the
risk of an over-voltage taking place on a pin of the Arduino that could cause
damage. Active-low is commonplace within automotive design for this reason
[77].

To protect the main micro-controller from further damage, all inputs to the
Arduino are connected to the 3.3V supply through clipping diodes. These are
used so that any voltage over 3.3V present on a digital line will be dissipated
through the Diode (D1 as an example) and prevent over-voltages on the digital
IO Pins and are a suggested design addition in [44].

125

Figure 6.5: Circuit for Delivery of High Voltage to Spark Plug

Figure 6.6: Full Hardware Design for Interfacing to Arduino

126

6.6 Methodology

6.6.1 Automotive Controller

Each circuit above was connected to the Arduino and tested seperately to ensure
the device was capable of performing the required functions.

VSS and Engine Speed Calculation

To test the system with the two astable circuits, an algorithm shown in Algo-
rithm 12 was created. This ran at the Nyquist limit for the engine speed sensor,
which was calculated as 1

2∗20000 = 25µs, based on the highest frequency present
being 18947Hz and the Nyquist limit required being min(2∗freq). The circuits
were set to a known frequency and checked using an oscilloscope. Following this,
the Arduino was connected to these waveforms and run for five minutes. After
this time, the number of pulses registered was outputted through the console
window in the Arduino Environment. A target of less than three percent error
was deemed acceptable for the Arduino to be considered capable of successfully
monitoring VSS and Engine Speed.

Analogue Inputs

As stated previously, the Arduino has 12 Analogue inputs available. This allows
analogue inputs such as the accelerator and engine load to be directly attached to
these pins without additional analogue to digital conversion; as this is managed
internally. To test this, Algorithm 12 was modified to set Pins A0 and A1 as
analogue inputs and output the values of these to the terminal at a 25µs interval.
The counter section of this algorithm was ignored, as this was not required to
read in analogue values.

Switch Inputs and Outputs

To test the input switches and outputs from the FET and LED, an algorithm
shown in Algorithm 13 was created. This observed the inputs from SW1 and
SW2 in Figure 6.6 and activated Pins 22, 24 and 40 when these were read as
zero, meaning the switch was closed. As the Arduino is capable of sourcing
130mA at 3.3V, the gate resistors and LED output resistor (R8, R9 and R10)
were chosen to be 56Ω to ensure an overcurrent did not occur.

CAN Circuit

For the CAN Circuit, a library was downloaded from the Arduino Playground.
This was then used to output signals at a 1ms interval to the CANLo and
CANHi lines, which were observed using an oscilloscope. As this library con-
tained built-in functions, these were later called from Algorithm 6 to test pe-
riodic CAN functionality, as this would be required in the full function tests.
Timing was managed through the on-board millis() counter, also showing the
Arduino was capable of running using a form of time-triggered interrupt.

127

1: void setup
2: Set Pin 22 and Pin 24 as Digital Inputs
3: void loop
4: loop
5: if Pin22State 6= PreviousP in22State then
6: PreviousP in22State = Pin22State
7: Pin22Counter + +
8: end if
9: if Pin24State 6= PreviousP in24State then

10: PreviousP in24State = Pin24State
11: Pin24Counter + +
12: end if
13: Wait 25µs
14: Output Pin22Counter&Pin24Counter
15: end loop

Algorithm 12: Counter Algorithm to test Arduino with VSS and Engine
Speed Sensors

1: void setup
2: Set Pin 22, Pin 24 and Pin 26 as Digital Outputs
3: Set Pin 28 and Pin 30 as Digital Inputs
4: void loop
5: loop
6: if Pin28 == 0 then
7: Pin22 = 1
8: Pin24 = 1
9: end if

10: if Pin30 == 0 then
11: Pin26 = 1
12: end if
13: Wait 25µs
14: end loop

Algorithm 13: Output Algorithm for Arduino

128

Table 6.3: Wiring Loom for Arduino

Arduino Pin Device Colour
22 555 U1 Pin 3 (VSS Output) Green
24 555 U2 Pin 3 (Engine Output Yellow
30 SW1 (Cranking/CAN Message Switch) Purple
32 SW2 (Overrun Switch Grey
36 Q1 (Cylinder 1 FET) Blue
38 Q2 (Cylinder 2 FET) Orange
40 LED1 (Overrun LED) Green
A0 R5 Wiper (Accelerator Input) White
A1 R6 Wiper (Engine Load Input) Brown
CANRx CANLo Yellow
CANTx CANHi White
3.3V Board Power Red
0V Board Ground Black

Wiring Loom

Following these tests, the input and output wires were attached to a loom and
connected to the Arduino through the I/O pins present on the PCB. The wiring
setup can be seen in Table 6.3. The use of different colours allowed easy identifi-
cation during the debugging process and checking of signals through oscilloscope
or digital voltmeter probes if required.

Automotive Controller Algorithm Development

Following on from the completion of the initial tests, the above programs were
integrated into a scheduling algorithm based on Algorithm 8 and incorporating
Algorithms 5, 6 and 7. Due to the creation of these systems as primitives in
the previous chapter, the algorithm was designed using techniques based on
the Vienna Development Method (VDM) to ensure all jobs were called and
scheduled correctly. The developed algorithm can be seen in Algorithm 14. As
each component had been previously tested and the system had been successfully
simulated in MATLAB, the design required minimal debugging. All job Ci and
Di from this chapter were used also, as these values were calculated using the
above algorithms within the Arduino environment.

6.6.2 Energy Harvesting SPC Calculator

In Chapter 3, a suggestion of hardware implementation was made in Chapter 3.
Due to the ease of development, rather than pursue a VHDL implementation
of this design into an FPGA, it was decided to emulate Algorithm 1 within the
Arduino environment. For this, a 32-entry Array was defined to store input
values, with these coming initially from the built in random() function and
later from a signal generator connected to a digital IO pin of the Arduino. The
experiment aimed to identify the percentage error within the Arduino from the
use of Integer numbers for Mean and Standard Deviation calculation, as well as

129

1: void setup
2: Set Following as Digital Inputs: Pins 22, 24, 30, 32
3: Set Following as Digital Outputs: Pins 36, 38
4: Set Following as Analogue Inputs: Pins A0, A1
5: Set Following as CAN Pins: Pins CANRx, CANTx
6: void loop
7: loop
8: if Pin24 6= PreviousP in24 then
9: PreviousP in24 = Pin24

10: EngCounter + +
11: end if
12: if EngCounter == 29 then
13: Schedule Algorithm 5 (Spark) on Pin 36
14: Store Ci and Di for job in Scheduler
15: end if
16: if EngCounter == 58 then
17: EngCounter = 0
18: Schedule Algorithm 5 (Spark) on Pin 38
19: Store Ci and Di for job in Scheduler
20: end if
21: if Pin22 6= PreviousP in22 then
22: PreviousP in22 = Pin22
23: V SSCounter + +
24: end if
25: if millis()− V SSTimer == 10 then
26: V SSTimer = millis()
27: Schedule Algorithm 7 (VSS)
28: Store Ci and Di for job in Scheduler
29: end if
30: if Pin30 == 0 then
31: Schedule Algorithm 6 (CAN)
32: Store Ci and Di for job in Scheduler
33: end if
34: if Pin32 == 0 then
35: Delay 1ms
36: end if
37: Run Algorithm 8 (Scheduler)
38: Wait 25µs
39: end loop

Algorithm 14: Scheduling Control Algorithm

130

the α and β errors for identification of energy levels more than one, two or three
Standard Deviations below the mean. Though the power consumption of the
Arduino could not be directly controlled from the development environment,
it was thought that this could act as a low power observer, only activating on
arrival of a new value from the energy harvester through an interrupt, allowing
the processor to enter a sleep mode in which it will draw < 2.5µA. The use of
Arduino also reduces development time significantly as common mathematical
functions such as squares and square roots are incorporated into the language,
meaning no self-designed functions are required to create the SPC module.

6.6.3 Nash Equilibrium Calculator

To test the viability of the Arduino for the Game Theoretic Algorithm in Chap-
ter 4, a Nash finder was created within the environment based on Algorithms 2
and 3. Two-dimensional arrays were used in place of the matrices within MAT-
LAB, with location of the maximum values for column and row transposed into
one-dimensional arrays that were compared for any matching values — meaning
a Nash Equilibrium had been found. The algorithm also stored the maximum
overall value for one job, allowing the prudent outcome to be used in the event of
no Nash Equilibrium being found. Matrix values were manually loaded prior to
compilation and the corresponding Nash coordinates outputted through the Ar-
duino console window. If no Nash Equilibrium was present, the console window
would show the coordinates of the prudent outcome for the first job loaded.

6.7 Results

6.7.1 Preliminary Tests

The circuits in Figure 6.6 were constructed on prototype board using discrete
components from the electronics laboratory at Newcastle University. With all
components fitted and running, total current drawn at 3.3V was 0.04A, well
inside the capabilities of the Arduino for current sourcing. These components
were connected to the pins specified in Figure 6.6.

Vehicle and Engine Speed Inputs

Within the test circuits, U1 and U2 are both present to provide different square
wave inputs to the Arduino. Through using the 555 in an astable mode, the
frequency of these waves (f) can be calculated using equation 6.1, giving a
theoretical range of 583-3062 Hz for U1 and 3158 - 18947 Hz for U2. Results
from practical tests of these circuits can be seen in Table 6.4. This shows values
close to the expected, allowing these circuits to be used with the Arduino.

f =
1.45

(R1 + 2R2)C
(6.1)

Ignition Control Circuit

Circuits Q1 and Q2 were constructed to allow switching of a small coil from a
relay as a reduced scale spark system. When 3.3V was supplied from the power

131

Table 6.4: Output Frequencies for U1 and U2

Circuit Lowest Frequency/Hz Highest Frequency/Hz
U1 574 2647
U2 3230 219700

Table 6.5: Percentage Errors for use of Integer Calculation and α and β errors
sampled using Arduino Random Number Generation Function

Item Error%
Mean Error 3.28
Standard Deviation Error 0.11
α Error 0
β Error 0

supply to the gate through R5 and R6, the FET reached saturation within 30ns.
On switch-off, diodes D8 and D9 successfully dissipated the energy stored in the
coil, allowing the coil to be ready for use within 1ms. From these results, the
circuit was allowed to be used with the Arduino.

Other Circuits

Potentiometers R5 and R6 successfully gave readings from 0V to 3.3V, with
switches S1 and S2 floating when open and reading 0V when depressed. LED1
was controlled by the Arduino using Algorithm 9, with Pin 13 connected to
the external LED through the Header Connections. From all these tests, the
full circuit was deemed to simulate operation of a vehicle adequately for the
purposes of these tests, allowing these to be interfaced to the Arduino and this
to be used as an engine ECU.

6.7.2 Energy Harvesting SPC Calculator

As Figure 6.8 shows, the Arduino handles SPC Calculation within 52µs and
with a low error for Mean and Standard Deviation shown in Table 6.5. Further
tests with the board sampling a Gaussian signal generator can be seen in Table
6.6, with a comparison of execution times and errors using a Mann-Whitney
Test shown in Table 6.7. No significant differences (P < 0.05) are present for
either execution time or error, showing that the Arduino is running consistently
and with feasible results from both the on-board generator and an external
source. When the benchmark calculation was moved to the beginning of the
void loop() section, the execution time increased to a mean value of 85µs due
to the extra time required to read and quantise an analogue input pin by the
Arduino. Table 6.6 shows an increase in Standard Deviation error as peak to
peak voltage decreases. This is due to the population becoming more densely
packed and thus the Standard Deviation becoming smaller. For a steady state
harvester with very small variance (such as a photovoltaic cell), this could lead

132

Figure 6.7: Arduino Connected to Test Circuits

Figure 6.8: Execution Time for 1000 runs of SPC Calculator using Arduino
Random Number Generation Function

133

Table 6.6: Percentage Errors for use of Integer Calculation and α and β errors
sampled using Gaussian Noise Generator Running at 3V, 2V and 1V Peak-to-
Peak and sampling at 100ms

Item 3V 2V 1V
Mean Error 3.37 3.28 3.21
Standard Deviation Error 0.69 5.11 6.74
α Error 5.99 4.50 11.1
β Error 1.40 0.710 0.1

Table 6.7: Mann-Whitney Test Results for Execution Time, Mean Error and
Standard Deviation Error Comparing Bench Run to Sample Run

Item P-Value
Mean Error 0.40
Standard Deviation Error 0.52
Execution Time 0.81

to an overly aggressive energy management system, as α error increases from
6 percent to 11 percent through this reduction. This can be compensated for
though increasing the buffer size to calculate populations from; though this
would increase required resource, which is contrary to the goals of this circuit.
A more suitable method, often used in safety control software, would be for two
consecutive points to be logged as out of control to flag a fault. When this was
done at 1V peak to peak, α error reduced to 4.1 %, reducing false occurrences
of faults by more than half.

6.7.3 Automotive Controller

Preliminary Tests

After running the Arduino connected to the astable outputs for five minutes, the
number of pulses recorded was compared to the calculated number expected.
Results, which can be seen in Table 6.8, showed a small experimental error, be-
lieved to be due to loop delays in the created algorithm. These errors were below
those deemed acceptable for use in Engine Speed or Vehicle Speed calculation,
qualifying the Arduino for use with these areas of the Fuel ECU.

When the analogue inputs were read through the console window, values
between 0 and 1024 were observed. This is in line with the Arduino specification,
which states that Analogue Inputs A0 to A11 have ten bits of resolution as
standard. To further test this, analogReadResolution() was changed within
the program to test from eight to 12 bits resolution, giving ranges of 256 bits
and 4096 bits respectively. For this work and to allow compatibility with other
Arduino controller types, ten bits was deemed a sufficient level of clarity and
continued to be used in later tests. This test also proved the viability of using
clipping diodes within the circuit, as when 4V was supplied through an external

134

Table 6.8: Error in Engine and Vehicle Speed readings for Arduino at Differing
Frequencies

Engine VSS Expected Actual Error
Frequency Frequency Counter Counter Percent
600 4000 18000/1200000 17981/1198685 0.11/0.11
1500 10000 45000/3000000 44497/2999745 1.12/0.01
2500 20000 75000/6000000 74763/5989631 0.32/0.17

power supply, only the maximum value was recorded and 3.3V observed at Pin
A0.

Depressing SW1 and SW2 successfully illuminated LED1 and presented a
voltage at the gates of Q1 and Q2 respectively, demonstrating that the Arduino
was capable of registering an active-low input. To further test this, an algorithm
was created that illuminated the LED when SW1 was depressed, latched this
value and would only extinguish LED1 if SW2 was depressed. When tested,
this worked as specified, proving all areas of the Arduino and algorithms were
suitable for use and allowing steady state Fuel ECU tests to be conducted.

Steady State Tests

Algorithm 14 was loaded into the Arduino Due, U1 and U2 were set to their
lowest frequencies of 583Hz and 3158Hz respectively, R5 and R6 were set to
1.5V and the program was activated. LED1 did not illuminate, showing no
overruns were present. When checked with an oscilloscope, the Gate Voltage of

Figure 6.9: Execution Time for 1000 runs of SPC Calculator using Gaussian
Noise Generator

135

Q1 and Q2 could be seen to rise in the same time as in section 6.7.1. When
SW1 was closed, a CAN Pulse could be seen on Pins CANHi and CANLo and
LED1 did not illuminate. From this, it could be concluded that the Arduino
was operating correctly and successfully controlling the Spark, CAN and VSS
Signals.

Increasing CAN Rate

To increase the CAN Rate, Pin 30 was disconnected from SW1 and placed onto
a signal generator. This was set to give a square wave output and increase the
number of CAN Jobs scheduled. The hypothesis for this was an increased CAN
rate would cause a Spark job overrun and illumination of LED1. To test this,
the signal generator was set between values of 100Hz and 1000Hz and LED1
observed for any illumination over a five minute period. To ensure this would
be recorded, a 7432 Quad 2-input OR Gate was added to the circuit as seen in
Figure 6.10. This would act as a latch between the Arduino output and LED1
to hold any brief voltage seen on Pin 40. Results for this can be seen in Table
6.9.

Figure 6.10: Circuit Modification to latch LED1 on in Event of Overrun

Table 6.9: LED1 Output for Increasing Value of Frequency at Pin 30

Input Frequency / Hz State of LED1
100 Off
200 Off
300 Off
400 Off
500 Off
600 Off
700 Off
800 Off
900 Off
1000 Off

For all these values of frequency on Pin 30, the LED did not illuminate. Due

136

to the layout of Algorithm 14, Spark jobs are scheduled before CAN jobs that
occur on the same loop. Furthermore, due to the program running at 25µs, it
is thought that a great deal of jobs at the higher frequencies are filtered, with
others removed by the heuristic nature of the algorithm, preventing an overrun
from occurring due to CAN Overload. This was confirmed as depressing SW2
caused LED1 to illuminate, proving an overrun could be detected by the system.

Dynamic Tests

To test the effectiveness of Algorithm 14 in a real-life environment, a test using
the MNEDC Cycle seen in Figure 5.5 was conducted. As only vehicle speed
is given within this cycle, assumptions of other items such as engine load and
accelerator percentage were made. These can be seen in Table 6.10.

Table 6.10: Assumptions for MNEDC Cycle

Situation Accelerator Engine Load Engine
Percentage Percentage Speed/rpm

Ramping Up 100 100 Relative to Vehicle Speed

15km/h 10 10 1000
Steady State

30km/h 15 15 1200
Steady State

50km/h 25 25 1500
Steady State

70km/h 50 40 2000
Steady State

100km/h 70 60 2500
Steady State

120km/h 80 70 3000
Steady State

Ramping Down 0 0 Relative to Vehicle Speed

As can be seen in Table 6.10, the level of complexity in controlling the
MNEDC cycle is too great for the use of manual circuits such as those in Figure
6.6. Therefore, a second Arduino Due was borrowed from the School of Mechan-
ical and Systems Engineering to provide these outputs for the MNEDC Cycle.
The digital and analogue output pins on the board were configured to give the
signals required for the MNEDC Cycle from Table 6.10, running at a 25µs loop.
The ECU under test was connected to the second Due and the MNEDC Cycle
run for CAN input frequencies of 100, 500 and 1000Hz, with LED1 observed for
any illumination. Results for this test can be seen in Table 6.11.

Table 6.11: LED1 Output for MNEDC Cycle

Input Frequency / Hz State of LED1
100 Off
500 Off
1000 Off

Once again, LED1 did not illuminate across any of the 20 minute test cycles.
From this, it can be concluded that the Arduino Due can successfully control
three real-time jobs at a variety of settings and loads in a practical environment.

137

6.7.4 Nash Equilibrium Calculator

Using examples within Chapter 2 of this Thesis, game matrices were placed into
the arrays within the Arduino to determine whether Nash Equilibriums could
be found. For the examples given (Figure 2.5, Figure 2.7 and Figure 2.9), the
Algorithm successfully identified the correct Nash Equilibrium in a mean time of
14µs. This showed that the calculation of Nash Equilibrium using the method
in this Thesis was possible and could give an accurate result in adequate time.

6.8 Conclusion

This chapter provides support to Chapters 3 and 5 in showing that the Arduino
Due, a device costing under 40 dollars, can be used to control a complicated sys-
tem using previously developed libraries and the Heuristic Scheduler previously
simulated in MATLAB.

With CAN Loading set to an appropriate level, the system runs continually
with no overruns detected — unless SW1 is depressed to cause these. Owing to
the design of Algorithm 8, the overrun is quickly dealt with by purging infeasible
jobs from the queue, allowing a return to normal operation as soon as SW1 is
detected as open circuit.

The heuristic algorithm successfully ran across the MNEDC cycle, a real-
life assessment cycle used in engine development, with no overruns present;
showing that the processor in the Arduino Due could be used in a practical
environment and deliver correct operation. The tests conducted here would
cover the Expanded Function, Common Operating Mode and Worst Case Tests
for an automotive part under ISO26262, as seen in Table 2.4. Over Limit testing
was not conducted due to the risk of damage to the Arduino Due, but could be
performed by increasing the input voltages beyond 3.3V and setting the CAN
delivery rate to a level beyond worst-case.

Owing to the optimisation carried out previously, combined with the testing
of all software components both in MATLAB and as individual primitives during
the Arduino development, the hardware implementation of all algorithms took
place with virtually no debugging required. Therefore, this work shows, through
practical implementation, that a low complexity embedded system is capable of
running multiple complex benchmarks within an automotive environment. By
using a hybrid approach of FCFS and heuristics, a significant reduction in the
number of critical missed jobs can be seen for a minimal increase in runtime.

This chapter also proves the viability of the SPC Technique introduced in
Chapter 3 and shows that, for a Gaussian System, it can identify low-energy
situations with very high accuracy. This accuracy was further improved by
making the system require two consecutive points below one standard deviation
to occur before action was taken, giving a false occurrence error below five
percent when this was added. To further this work, the designed system could
be added to a real-life energy harvester and placed as the overseer for a circuit
under test — when two points more than one standard deviation below the
mean are identified, a simple digital output from the Arduino could be given to
the operating circuit, instructing it to perform power saving; either through a
technique such as DVFS or by removing low priority jobs from the wait queue,
as suggested in Chapter 3. If successful, this design could be fabricated within

138

an area of the circuit under test and allow power saving to be performed more
effectively on the device.

Though only preliminary implementation of the Game Theory system was
carried out, this chapter also shows that a Nash Equilibrium can be successfully
calculated within the Arduino Environment, meaning that the testing of the
scheduler designed in Algorithm 2 could take place. Proof that the Game The-
oretic Algorithm operates successfully in a practical environment is therefore
thought of as a key area of future research.

139

Chapter 7

Conclusion and Future
Work

In the following year, therefore, London was set on fire in case anyone
should have been left over from the Plague, and St Paul’s Cathedral
was built instead. This was also a Good Thing and was the cause of
Sir Christopher Wren, the memorable architect.
W.C.Sellar & R.J.Yeatman, 1066 and all that

7.1 Conclusion

7.1.1 Importance of Work and Original Contribution

As previously stated in this thesis, the use of embedded systems in a variety of
settings and environments continues to rise to improve product quality, efficient
operation, traffic flow, air quality and many other areas of life. Often these uses
are so small that people are unaware of their existence, but for this to continue,
devices must become smaller, more power efficient and reliable to totally pervade
our existences.

Through the chapters in this thesis, it has been shown that short, rule-
based algorithms can successfully manage energy consumption and job schedules
effectively to improve availability of microprocessor lifetime and prioritise job
execution.

While statistical techniques, heuristics and game theory have been proven
in their use through the literature, this work expands on much of the previ-
ously published findings and includes an investigation into Real-Time systems,
which are of vital importance in many embedded system environments. Through
submission at conferences and workshops, the concept of using rule-based algo-
rithms has been seen as novel and a future direction for research into schedulers
as devices increase in complexity. These techniques not only have been shown
to improve availability through simulation, but also allow lower specification —
and hence, lower cost microprocessors to be used in environments such as the
Automotive ECU designed in Chapter 5. This work also showed usefulness in
a multi-core environment, which is a key future area of research for all forms of
scheduler, especially Real-Time systems.

140

7.1.2 Summary of Findings

Chapter 3 investigates the use of Gaussian Energy Harvesters in an Autonomous
Hybrid system and finds that the rate of power delivery must be at least twice
the power consumption rate to assure a system can give constant operation.
While this seems counter-intuitive, a result such as this occurs due to the
crossover between Gaussian distributions of similar sizes. Investigations in this
chapter show that the use of Statistical Process Control to monitor the re-
maining energy stored can give aposteriori management that vastly improves
operational life of the system for minimal sacrifice in execution time.

Chapter 4 shows the use of a Game Theoretic Model in scheduling a variety
of job types on a single-core environment. Through careful game design and
the use of Nash Equilibrium in a non-cooperative environment, availability of a
system was improved over other queuing types through the use of an iterative
algorithm. The use of Nash, combined with the game design, gave a near-
optimal outcome for simple algorithm design and was deemed to be the optimal
outcome given the time constraints placed on the system to create a feasible
schedule.

Chapter 5 takes the ideas from the previous chapter and tests these using
established embedded benchmarks. From tests using popular scheduler types, a
heuristic scheduler was created that runs at higher job loading with less missed
jobs, for a negligible increase in execution time. Through the use of design
development tools such as Six Sigma, this algorithm is optimised to give maxi-
mum performance and tested using automotive standard tests. Again, through
simulation, rapid prototyping and development of the system took place, giving
a hybrid scheduler that outperformed its rivals.

The work from Chapters 3 and 5 were then placed into an embedded device
for testing in Chapter 6. Once the optimal device was selected and input circuits
manufactured, tests took place that validated the simulation results on a modern
and commonly-used ARM Architecture. A simple Fuel ECU was constructed
and placed onto automotive standard test cycles to determine performance and
optimise the algorithms for use.

7.1.3 Limitations of Thesis

Within Chapter 4, the Game Theoretic Scheduler was only designed using Non-
Cooperative Games using Nash Equilibrium to determine a suitable schedule.
However, it has been proved that non-cooperative methods such as finding the
Stackelberg Value or using Cooperative Games can give a better outcome than
only using Nash. Therefore, testing the developed algorithm with a variety of
alternate Game Theoretic Techniques would allow validation of the system and
possible improvements over Nash.

The Game Theoretic Algorithm has only been tested in a single-core en-
vironment; with SPC and Heuristic Algorithms tested with only up to three
cores. As discussed in Chapter 5, the testing of more than three cores was not
conducted within this thesis due to the excessive computational time required,
but the feasibility of this system for a many-core system would be a necessary
development to assess its viability for the next generation of embedded systems,
which are predicted to reach several hundred cores within the next decade.

Though benchmarks have been used in Chapters 4 and 5, only three were cho-

141

sen to allow simplified testing and direct comparison within this thesis. While
both Game Theory and the Heuristic Algorithm have been found to give some
improvement over current scheduling paradigms, this investigation is very much
in the early stages and requires more research to prove the effectiveness of both
algorithm types.

Chapter 3 shows how SPC gives a viable improvement in availability for
a system running with an energy harvester, but only considers Gaussian and
Uniform Harvester types. While these are popular, the most common type used
is Photovoltaic Cells, which operate with a delta function ideally and a heavily
random delta function owing to the influence of artificial lighting and cloud cover
predominantly. The energy management within this only considers situations
where DVFS or other power management techniques such as clock gating are
not available. This limits the proof of SPC to a conceptual realisation and more
work is required in this area.

7.2 Future Work

In order to develop the work within this thesis further, the theoretical and
simulation examples developed require further testing within a practical en-
vironment. For development of the SPC Energy Management program, this
must be added to an existing multi-core embedded system within the scheduler
and tested with commercial and developmental harvesters. Once the method
has been found to be suitable, more advanced management techniques such as
DFVS could be added and run at specific statistical results from the harvester
output. Long term monitoring for Autonomous Hybrid Solutions such as so-
lar arrays also could be considered to increase the lifetime of a system through
managing power once the harvesting source goes into its regular cycle of famine.

A possible diagram for the hardware implementation can be seen in Figure.
7.1, which performs the SPC results and provides a coded output based on the
level of energy management required. One concern within this is the use of
Standard Deviation, which, through its use of square roots, would require a
complicated logic circuit. The use of dividers and multipliers would also add
complexity and reduce the speed of this circuit.

An architecture for this system was designed and can be seen in Figure.
7.2. This removes the need for multipliers by having a logical right-shifter. The
complexity of the square root is also removed by placing the approximate values
in a lookup table, rather than having them explicitly calculated each round. This
also removes the need for floating point, as a comparison experiment between
”true” values and the approximation created by this model had less than 1.6%
error when only nearest integer values for mean and standard deviation were
used.

In addition to this, as the system works as a heuristic model and build-
ing the matrix takes time, simulations of the game theoretic algorithm running
with Stackelberg values and cooperative games would provide validation or im-
provement over the Nash Equilibrium system developed and allow testing of
this further developed algorithm with a larger variety of job types — includ-
ing those with precedence to evaluate performance of all Game Theory types
in a more complex non-deterministic environment. These could also be tested,
along with the Heuristic Algorithm, using a grid computing system to evaluate

142

Figure 7.1: High Level Block Diagram of SPC Module

Figure 7.2: SPC Hardware Design

143

a full-lifetime run for many cores and determine whether this can outperform
an expert system for availability conservation. A many core environment is
necessary as the number of cores on a single piece of silicon is predicted to
reach more than 300 by 2020. Therefore, tests of massive many-core layouts
would be necessary to prove the versatility and usefulness of the Heuristic Al-
gorithm against other more-advanced scheduling paradigms. While MATLAB
is a useful tool for performing this, the run times for a 300 core simulation
on a desktop computer would be excessive. One solution to this would be the
use of a grid computer such as HTCondor to run the Monte Carlo simulation
across a distributed system; thus reducing the test time and allowing validation
of this concept on a massive many-core architecture. It is likely that a hybrid
approach, using pruning and filtering techniques would give the most efficient
performance, as certain situations would be managed by a standard schedule
design, saving the use of heuristics for intensive or high-difficulty cases. Through
this method, it is thought that the heuristic design could be preserved and used
on more complicated systems without the need for redesign at each iteration.

Though the automotive fuel ECU was successfully constructed using an Ar-
duino Due, this was only tested using simulated data signals from discrete de-
vices. As only three jobs were tested simultaneously, the use of this device for
successful replacement of current ECU’s cannot be determined. This device
requires more testing in a true automotive environment, with real-world com-
ponents or signals captured from these in a hardware in the loop (HIL) test.
This would demonstrate the capability of the system to interpret, calculate
and output results to power ignition coils and manage all other jobs an ECU
must control that were not considered in this chapter such as bus communica-
tion; but would be required for automotive qualification. Tests on a multi-core
environment would also be required, to determine the true scalability of the
Heuristic Algorithm. This work could lead to significant reductions in vehicle
development time and major cost savings for automotive OEM’s. Furthermore,
the entire system would require testing to ISO26262 standards for an ASIL-D
part, including HALT and endurance testing . If these tests were successful
and proved the viability of the SAM3X8E ARM micro-controller for use in the
Fuel ECU, automotive qualification would be required, through work detailed
in Section 2.5.

Statistical techniques and job modelling have existed for many years and
been used to improve capability and save time in various industries and roles.
Work has often required definite proof whether an item is good or bad, or a
difference has been noted before action will be taken. However, as this thesis
shows, by adopting a rule-based system and accepting a near-optimal outcome
over a truly-optimal one, we can improve performance and availability through
time saving and allow a system to run successfully for longer than if we over-
burden it through searching for perfection.

144

Bibliography

[1] 205 Forum. Sample Ignition Graph, 2012. Available http://www.track-
monkey.co.uk, Accessed 9 Aug 2013.

[2] Luca Abeni. Resource Reservation in Dynamic Real-Time Systems. Real-
Time Systems, (27):123–167, 2004.

[3] Ishfaq Ahmad. Using game theory for scheduling tasks on multi-core
processors for simultaneous optimization of performance and energy. 2008
IEEE International Symposium on Parallel and Distributed Processing,
pages 1–6, April 2008.

[4] Mustafa Imran Ali. Design Considerations of Harvested-Energy Manage-
ment. Phd thesis, University of Southamption, 2012.

[5] S F Ali, M I Friswell, and S Adhikari. Piezoelectric energy harvesting with
parametric uncertainty. Smart Materials and Structures, 19(10):105010,
2010.

[6] F Anceau. The architecture of microprocessors. Addison-Wesley, Woking-
ham, England ; Reading, Mass., 1986.

[7] Crispin Andrews. Raspberry Pi - retro computer of the future. E&T
Magazine, March 2013.

[8] Arduino. Arduino, 2013. Available: www.arduino.cc . Accessed 1 August
2013.

[9] Atmel. SAM3X4/8E Datasheet, 2012. Available:
http://www.atmel.com/images/doc11057s.pdf . Accessed 28th July
2013.

[10] Andrea Bartolini, Matteo Cacciari, Alessio Cellai, Manuel Morelli, and
Andrea Tilli. Fault Tollerant Thermal Management for High-Performance
Multicores. In Diana Marculescu and Suzanne Lesecq, editors, Workshop
on Micro Power Management for Macro Systems on Chip as part of DATE
11, Grenoble, France, 2011.

[11] David Bellhouse. The Problem of Waldegrave. Electronic Journal for
History of Probability and Statistics, 3(2), 2007.

[12] K G Binmore. Fun and games : a text on game theory. D.C. Heath,
Lexington, Mass., 1992.

145

[13] Shekhar Borkar. Thousand Core Chips A Technology Perspective. In
Design Automation Conference, pages 746–749, 2007.

[14] Robert Bosch. Automotive Electrics and Automotive Electronics. Wiley-
Blackwell, London, 5th editio edition, 2007.

[15] Alexander Brevig. Scheduler Library, 2009. Available:
http://playground.arduino.cc/Code/Scheduler . Accessed 5 July 2013.

[16] Forrest W Breyfogle. Implementing six sigma : smarter solutions using
statistical methods. Wiley, Hoboken, NJ, 2nd edition, 2003.

[17] A Burns. Scheduling hard real-time systems: a review. Software Engi-
neering Journal, 6(3):116, 1991.

[18] Giorgio C Buttazzo. Hard real-time computing systems : predictable
scheduling algorithms and applications. Springer, New York, 2nd edition,
2005.

[19] Ewerson Carvalho, N Calazans, and F Moraes. Heuristics for Dynamic
Task Mapping in NoC-based Heterogeneous MPSoCs. In Rapid System
Prototyping, 2007. RSP 2007. 18th IEEE/IFIP International Workshop
on, pages 34–40, 2007.

[20] S Chalasani and J M Conrad. A survey of energy harvesting sources for
embedded systems. In Southeastcon, 2008. IEEE, pages 442–447, 2008.

[21] Hui Cheng. A High Efficient Task Scheduling Algorithm Based on Het-
erogeneous Multi-Core Processor. 2010 2nd International Workshop on
Database Technology and Applications, (3):1–4, November 2010.

[22] Hyeonjoong Cho, Haisang Wu, Binoy Ravindran, and E Douglas Jensen.
On Multiprocessor Utility Accrual Real-Time Scheduling With Statisti-
cal Timing Assurances. In In IFIP Embedded and Ubiquitous Computing
(EUC, 2006.

[23] D. Dal and N. Mansouri. Power Optimization With Power Islands Synthe-
sis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 28(7):1025–1037, July 2009.

[24] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou.
The Complexity of Computing a Nash Equilibrium. SIAM Journal on
Computing, 29(1):195–259, 2009.

[25] A David, K G Larsen, Li Shuhao, and B Nielsen. A Game-Theoretic
Approach to Real-Time System Testing. In Design, Automation and Test
in Europe, 2008. DATE ’08, pages 486–491, 2008.

[26] Robert I. Davis and Alan Burns. FPZL Schedulability Analysis. 2011 17th
IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 245–256, April 2011.

[27] G Despesse, T Jager, C Condemine, and P D Berger. Mechanical vibra-
tions energy harvesting and power management. In Sensors, 2008 IEEE,
pages 29–32, 2008.

146

[28] K Dietsche and M Klingebiel. Bosch Automotive Handbook. John Wiley
& Sons Inc., Postfach, 7 edition, 2007.

[29] J Docherty, A Bystrov, and A Yakovlev. Identification of Key Energy Har-
vesting Parameters Through Monte Carlo Simulations. In D Al-dabass,
editor, UK SIM 2012, volume 0, pages 486–490, Cambridge, UK, 2012.

[30] J Docherty, A Bystrov, and Alex Yakovlev. Simulation Testing of a Real-
Time Heuristic Scheduler with Automotive Benchmarks. In D. Al-dabass,
editor, UK SIM 2013, Cambridge, UK, 2013.

[31] Christof Ebert and Capers Jones. Embedded Software: Facts, Figures,
and FutureTitle. Journal of Computers, 42(4):42–52, 2009.

[32] EEMBC. The Embedded Microprocessor Benchmark Consortium, 2013.
Available: http://www.eembc.org/ . Accessed 17 June 2013.

[33] M.a. El-Gendy, a. Bose, and K.G. Shin. Evolution of the internet QoS
and support for soft real-time applications. Proceedings of the IEEE,
91(7):1086–1104, July 2003.

[34] Mohammad Farsi and Manuel Barbosa. CANopen implementation : ap-
plications to industrial networks. Research Studies Press, Baldock, Hert-
fordshire, 1 edition, 1999.

[35] Firebox. HY Mini Wind Turbine, 2013. Available www.firebox.com .
Accessed 8 August 2013.

[36] Michael John Fryer. An introduction to linear programming and matrix
game theory. E. Arnold, London, 1978.

[37] Rick Gillman and David Housman. Models of conflict and cooperation.
American Mathematical Society, Providence, R.I., 2009.

[38] Donald Gross. Fundamentals of queueing theory. Wiley, Hoboken, N.J.,
4th edition, 2008.

[39] GSMArena. Intel announces dual-core ’Clovertrail+’ Atom processors.
GSM Arena, page 1, February 2013.

[40] Adnan Harb. Energy harvesting: State-of-the-art. Renewable Energy,
36(10):2641–2654, October 2011.

[41] Shaun Hargreaves Heap and Yanis Varoufakis. Game theory : a critical
introduction. Routledge, London ; New York, 1995.

[42] V Hillier and P Coombes. Fundamentals of Motor Vehicle Technology.
Nelson Thornes Ltd, Cheltenham, 4 edition, 1991.

[43] Qi Van Eikema Hommes. ASSESSMENT OF THE ISO 26262 STAN-
DARD , ROAD VEHICLES FUNCTIONAL SAFETY . Technical re-
port, Society of Automotive Engineers, 2012.

[44] Paul Horowitz and Winfield Hill. The art of electronics. Cambridge Uni-
versity Press, Cambridge England ; New York, 2nd edition, 1989.

147

[45] Nigel Howard. Paradoxes of rationality: theory of metagames and political
behavior. MIT Press, Cambridge, 1971.

[46] J Hsu, S Zahedi, A Kansal, M Srivastava, and V Raghunathan. Adaptive
Duty Cycling for Energy Harvesting Systems. In Low Power Electron-
ics and Design, 2006. ISLPED’06. Proceedings of the 2006 International
Symposium on, pages 180–185, 2006.

[47] IEEE. Harvest for the world [energy harvesting techniques]. Power Engi-
neer, 20(1):34–37, 2006.

[48] Imagination Technologies. Imagination announces Minimorph develop-
ment system for connected devices, 2011. Available www.imgtec.com .
Accessed 7 May 2013.

[49] International Standards Organisation. ISO26262: Road Vehicles, Func-
tional Safety, 2011. Available www.iso.org . Accessed 1 July 2013.

[50] ITRS. International Roadmap for Semiconductors, 2011. Available
www.itrs.net . Accessed 8 August 2013.

[51] Alex Janek and Christian Steger. Power Management Strategies for
Battery-driven Higher Class UHF RFID Tags Supported by Energy Har-
vesting Devices. In IEEE Workshop on Automatic Identification Advanced
Technologies, pages 122–127, 2007.

[52] P Koch. How to interface energy harvesting models with multiprocessor
scheduling paradigms. In Wireless Communication, Vehicular Technol-
ogy, Information Theory and Aerospace & Electronic Systems Technol-
ogy, 2009. Wireless VITAE 2009. 1st International Conference on, pages
21–25, 2009.

[53] Ilya V Kolmanovsky and Claude Dextreit. Game Theory Controller for
Hybrid Electric Vehicles. IEEE Transactions on Control Systems Tech-
nology, (99):1–12, 2013.

[54] Hermann Kopetz. Event-Triggered versus Time-Triggered Real-Time Sys-
tems. In International Workshop on Operating Systems of the 90’s and
Beyond, page 16, Berlin, 1991. Springer-Verlag.

[55] Hermann Kopetz. Real-time systems : design principles for distributed
embedded applications. Kluwer Academic Publishers, Boston, 1997.

[56] Alan Larson. Demystifying six sigma : a company-wide approach to con-
tinuous improvement. AMACOM, New York, 1 edition, 2003.

[57] Jinkyu Lee and Kang G. Shin. Controlling Preemption for Better Schedu-
lability in Multi-Core Systems. In 2012 IEEE 33rd Real-Time Systems
Symposium, pages 29–38. Ieee, December 2012.

[58] Peng Li and Binoy Ravindran. Fast , Best-Effort Real-Time Scheduling
Algorithms. IEEE Transactions on Computers, 53(9):1159–1175, 2004.

148

[59] Shuhui Li, Shangping Ren, Yue Yu, Xing Wang, Li Wang, Gang Quan,
and Senior Member. Profit and Penalty Aware Scheduling for Real-Time.
IEEE Transactions on Industrial Informatics, 8(1):77–89, 2011.

[60] Xueqiao Li, Shuang Liang, and Yuan Chen. Research and Improvement of
Rate-monotonic Scheduling Algorithm. In Computer, Mechatronics, Con-
trol and Electronic Engineering (CMCE), 2010 International Conference
on, pages 66–69, 2010.

[61] Peder Lindberg, James Leingang, Daniel Lysaker, Samee Ullah Khan, and
Juan Li. Comparison and analysis of eight scheduling heuristics for the op-
timization of energy consumption and makespan in large-scale distributed
systems. The Journal of Supercomputing, 59(1):323–360, April 2010.

[62] Jason R. Marden and Adam Wierman. Overcoming limitations of game-
theoretic distributed control. Proceedings of the 48h IEEE Conference on
Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, pages 6466–6471, December 2009.

[63] MarketPublishers. Embedded Systems Market Reviewed & Forecast by
GIA in Report. Yahoo Finance, page 1, May 2013.

[64] Measurement Specialties. Piezofilm, 2013. Available www.mess-spec.com
. Accessed 8 Aug 2013.

[65] Maria Michalopoulou and Petri Mahonen. Game theory for wireless net-
working: Is a Nash equilibrium always a desirable solution? 2012 IEEE
23rd International Symposium on Personal, Indoor and Mobile Radio
Communications - (PIMRC), pages 1249–1255, September 2012.

[66] Minitab. Minitab, 2013. Available www.minitab.com . Accessed 10 June
2013.

[67] Douglas C Montgomery. Design and analysis of experiments. Wiley, Hobo-
ken, NJ, 7th edition, 2009.

[68] Gordon E Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, 1965.

[69] C Moser, L Thiele, D Brunelli, and L Benini. Adaptive Power Management
in Energy Harvesting Systems. In Design, Automation & Test in Europe
Conference & Exhibition, 2007. DATE ’07, pages 1–6, 2007.

[70] Clemens Moser, Davide Brunelli, Lothar Thiele, and Luca Benini. Real-
time scheduling for energy harvesting sensor nodes. Real-Time Systems,
37(3):233–260, July 2007.

[71] Herve Moulin. On Strategy Proofness and Single Peakedness. Public
Choice, 35(4):437–455, 1980.

[72] John Forbes Nash. Non-Cooperative Games. The Annals of Mathematics,
54(2):286–295, 1951.

149

[73] National Highway Traffic Safety Administration. Light-Duty Vehicle
Greenhouse Gas Emission Standards and Corporate Average Fuel Econ-
omy Standards, 2010. Available www.nhtsa.gov . Accessed 1 April 2013.

[74] United Nations. United Nations Environment Programme, 2013. Avail-
able www.unep.org . Accessed 7 June 2013.

[75] Niki Nixon. Timeline: The History of Wind Power, October 2008. Avail-
able www.guardian.co.uk . Accessed 7 June 2013.

[76] Y. Nomura, M. Iwamoto, T. Yamanouchi, and M. Watanabe. A heuris-
tics guided scheduling framework for domains with complex conditions.
Proceedings Sixth International Conference on Tools with Artificial Intel-
ligence. TAI 94, pages 752–755, 1994.

[77] Malcolm Nunney. Light and Heavy Vehicle Technology. Butterworth-
Heinemann, London, 4 edition, 2006.

[78] John Oakland. Statistical Process Control. Butterworth-Heinemann, Ox-
ford, 5 edition, 2003.

[79] Milton Ohring. Reliability and failure of electronic materials and devices.
Academic Press, San Diego, 1998.

[80] J A Paradiso and T Starner. Energy scavenging for mobile and wireless
electronics. Pervasive Computing, IEEE, 4(1):18–27, 2005.

[81] Jaeok Park and Mihaela van der Schaar. The Theory of Intervention
Games for Resource Sharing in Wireless Communications. IEEE Journal
on Selected Areas in Communications, 30(1):165–175, January 2012.

[82] Moonju Park and Heemin Park. An Efficient Test Method for Rate Mono-
tonic Schedulability. IEEE Transactions on Computers, (99):1–8, 2012.

[83] M. Parlar and M. Sharafali. Dynamic Allocation of Airline Check-In
Counters: A Queueing Optimization Approach. Management Science,
54(8):1410–1424, August 2008.

[84] Giancarlo Medeiros Pereira, Miguel Afonso Sellitto, Miriam Borchardt,
and Albert Geiger. Procurement cost reduction for customized non-critical
items in an automotive supply chain: An action research project. Indus-
trial Marketing Management, 40(1):28–35, January 2011.

[85] George Peters and Barbara Peters. Automotive Vehicle Safety. CRC Press,
London, 2002.

[86] D Pimentel and P Musilek. Power management with energy harvesting
devices. In Electrical and Computer Engineering (CCECE), 2010 23rd
Canadian Conference on, pages 1–4, 2010.

[87] William Poundstone. Prisoner’s Dilemma. Oxford University Press, Ox-
ford, 1 edition, 1993.

[88] Diego Puschini. Optimisation dynamique et distribuée des architectures
MPSoC basée sur la théorie des jeux. Phd thesis, Montpellier, 2009.

150

[89] Howard Raiffa. The Art and Science of Negotiation. Belknap Press of
Harvard University Press, Cambridge, MA, 1 edition, 1982.

[90] Raspberry Pi Foundation. Raspberry Pi, 2012. Available
www.raspberrypi.org . Accessed 1 Aug 2013.

[91] Jessica Riskin. Science in the Age of Sensibility The Sentimental Empiri-
cists of the French Enlightenment. University of Chicago Press, Chicago,
1 edition, 2002.

[92] Insa Rouen. WorkShop Audace : ISO 26262 and reliability. In Anal-
yse des causes de défaillances des composants des systèmes mécatroniques
embarqués, pages 1–17, Saint-Etienne-du-Rouvray, France, 2012.

[93] S Roundy, D Steingart, L Frechette, P Wright, and Jan M Rabaey. Power
sources for wireless sensor networks. In Wireless Sensor Networks, pages
1–17. Springer, Berlin, 2004.

[94] M D Rowe, Min Gao, S G K Williams, A Aoune, K Matsuura, V L
Kuznetsov, and Fu Li Wen. Thermoelectric recovery of waste heat-case
studies. In Energy Conversion Engineering Conference, 1997. IECEC-97.,
Proceedings of the 32nd Intersociety, pages 1075–1079 vol.2, 1997.

[95] Kaushik Roy and Sharat Prasad. Low power CMOS VLSI circuit design.
Wiley, New York, 2000.

[96] Barbara Ryan and Brian Joiner. Minitab Handbook. Duxbury Press,
Belmont, 3 edition, 1994.

[97] W Saad, Zhu Han, M Debbah, A Hjorunges, and T Basar. Coalitional
Game Theory for Communication Networks. Signal Processing Magazine,
IEEE, 26(5):77–97, 2009.

[98] M. Saksena. Real-time system design: a temporal perspective. Confer-
ence Proceedings. IEEE Canadian Conference on Electrical and Computer
Engineering (Cat. No.98TH8341), 1:405–408, 1998.

[99] Alvin Scodel. Probability Preferences and Expected Values. The Journal
of Psychology, 56(2):429–434, 1963.

[100] Sanjit a. Seshia and Alexander Rakhlin. Game-theoretic timing analysis.
2008 IEEE/ACM International Conference on Computer-Aided Design,
pages 575–582, November 2008.

[101] K.G. Shin. Statistical real-time communication over ethernet. IEEE
Transactions on Parallel and Distributed Systems, 14(3):322–335, March
2003.

[102] Sammy Shina. Six Sigma for electronics design and manufacturing.
McGraw-Hill, New York, 2002.

[103] Y Shoham and K Leyton-Brown. Multiagent Systems: Algorithmic, Game
Theoretic and Logical Foundations. Cambridge University Press, Cam-
bridge, 1 edition, 2009.

151

[104] Southampton University. Holistic Energy Harvesting Group, 2013. Avail-
able www.holistic.ecs.soton.ac.uk/ . Accessed 12 August 2013.

[105] J.A. Stankovic and K Ramamritham. The Spring kernel: a new paradigm
for real-time systems. IEEE Software, 8(3):62–72, 1990.

[106] Yi Su and Mihaela Van Der Schaar. A New Look at Multi-user Power
Control Games. In IEEE International Conference on Communications,
pages 1072–1076, 2008.

[107] Andrew S Tanenbaum. Modern Operating Systems. Pearson/Addison
Wesley, Upper Saddle River, N.J., 3rd edition, 2009.

[108] Texas Instruments. Beagleboard, 2013. Available www.beagleboard.org .
Accessed 7 May 2013.

[109] C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic ap-
proach to controller design for hybrid systems. Proceedings of the IEEE,
88(7):949–970, July 2000.

[110] Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Diego Pus-
chini, and Fabien Clermidy. An Introduction to Multi-Core System on
Chip Trends and challenges. Springer, New York, 1 edition, 2011.

[111] Ramona Trestian, Olga Ormond, and Gabriel-Miro Muntean. Game
Theory-Based Network Selection: Solutions and Challenges. IEEE Com-
munications Surveys & Tutorials, 14(4):1212–1231, 2012.

[112] Chi-Ying Tsui and Wing-Hung Ki. A Batteryless Vibration-based Energy
Harvesting System for Ultra Low Power Ubiquitous Applications. 2007
IEEE International Symposium on Circuits and Systems, pages 1349–
1352, May 2007.

[113] Eben Upton and Gareth Halfacree. Raspberry Pi User Guide. John Wiley
& Sons Inc., London, 2012.

[114] Janos Vegh, Jozsef Vasarhelyi, Jan Turan, and Daniel Drotos. The
von neumann computer model on the mirror of new technologies. In
Carpathian Control Conference (ICCC), 2013 14th International, pages
411–416, 2013.

[115] M Villalva, J Gazoli, and E Filho. Comprehensive approach to model-
ing and simulation of photovoltaic arrays. IEEE Transactions on Power
Electronics, 24(5):1198–1208, 2009.

[116] John Von Neumann and Oskar Morgenstern. Theory of games and eco-
nomic behavior. Princeton University Press, Princeton, N.J. ; Woodstock,
60th anniv edition, 2007.

[117] Donald J Wheeler. Understanding Variation: the Key to Managing Chaos
. Longman Higher Education, 1993.

[118] John Wilcock. The Staffordshire University Comput-
ing Futures Museum Cambridge Page, 2010. Available
www.fcet.staffs.ac.uk/jdw1/sucfm/cambridge.htm . Accessed 3 June
2013.

152

[119] Michael Wooldridge. Does Game Theory Work? IEEE Intelligent Sys-
tems, 27(6):76–80, November 2012.

[120] G K Yeap and Farid N Najm. Low power VLSI design and technology.
World Scientific, Singapore ; River Edge, N.J., 1996.

[121] Baoxian Zhao, Hakan Aydin, and Dakai Zhu. Reliability-Aware Dynamic
Voltage Scaling for Energy-Constrained Real-Time Embedded Systems.
In Computer Design, 2008. ICCD 2008. IEEE International Conference
on, volume 546244, pages 633–639, 2008.

[122] Guanghui Zhou, Pingyu Jiang, and George Q. Huang. A game-theory ap-
proach for job scheduling in networked manufacturing. The International
Journal of Advanced Manufacturing Technology, 41(9-10):972–985, June
2008.

153

Index

Architectures
Arduino, 62, 117, 118

Environment, 119
Libraries, 122

Automotive, 85, 117
CAN, 35, 92
Moore’s Law, 5
Multi-Core, 6, 49, 86, 87, 95
Spark, 36
Transistor Size, 5
Von Neumann, 5
VSS, 35, 92

Automotive, 90
CAN, 35, 92, 115
ECU, 85, 129
MNEDC Cycle, 94, 137
Spark, 36, 90, 103, 115
VSS, 35, 92, 107, 115

Availability
Hazards, 63
ISO26262, 144
Lifetime Analysis, 56, 116, 138
Reduction, 51

Design of Experiments, 32, 47, 68, 93,
107

General Linear Model, 33, 47, 56,
72, 77, 89

Energy Harvesting, 24
Leyden Jar, 24
Lifetime, 51
Model, 28, 45, 89
Photovoltaic Cells, 26
Quality of Service, 27, 41, 115
System Layout, 25, 42, 51
Thermoelectric, 27
Vibration, 26
Wind, 27

Game Theory, 16

Cooperative Game, 19
Factors to consider, 20
Game Types, 21
Improvements, 84
In Automotive, 22
Maximin, 18
Meta-Games, 23
Minimax, 18
Nash Equilibrium, 17, 22, 64, 76

Calculating, 23
Definition, 17, 19
Limitations, 18, 21

Non-Cooperative Game, 19, 64
Prisoners Dilemma, 17, 21
Real-Time Systems, 24
Solution, 64, 67
Stackelberg Value, 23
Two Person Zero Sum, 16

Heuristics, 7, 16, 64, 67, 86, 90, 93, 115
Optimisation, 110
Viability, 116, 137

MATLAB, 86, 93
Monte Carlo Simulation, 87
Moore’s Law, 5
Multi-Core, 16, 95, 115

Corollary of Moore’s Law, 6
Rise in Use, 44
Types, 6

Multi-core
Rise in Use, 86
Rise in use, 5

Nash Equilibrium, 17, 64, 76
Calculating, 23, 67, 138
Definition, 17, 19
In Mixed Strategies, 22
Limitations, 18, 21

Nash, John, 16
Nash Equilibrium, 17

154

Power Consumption
Availability, 42
Duty Cycle, 28
DVFS, 28
Energy Harvesting, 24, 89
Load Balancing, 49
Quality of Service, 5, 27, 41, 51,

115
Reliability, 6
Safety Critical Devices, 6

Prisoners Dilemma, 21
Published Papers, 3

UKSIM2013, 64

Quality of Service, 5, 16

Real-Time Systems, 12
Automotive, 90, 93, 115
Domino Effect, 68
Earliest Deadline First, 13, 64

Infeasible, 64, 101
Game Theory, 24
Job Types, 13, 63
Other Schedulers, 14
Parameters, 12, 93
Processor Utilisation, 12
Quality of Service, 16
Rate Monotonic, 14
SPRING Algorithm, 15, 64
Taxonomy, 86

Research Goals, 7
Answers, 140
Originality, 7, 140
Questions, 9
Thesis Structure, 8

Scheduling
Ad-Hoc, 49
Automotive, 86
Comparison of, 13, 86
Definition, 67
Heuristic, 64, 67
Heuristics, 86, 90, 93, 115, 116
Operating System Types, 12
Optimisation, 15, 77, 110
With Energy, 42, 89

Six Sigma, 31
Alpha and Beta Error, 110, 142
Analysis Techniques, 48, 72
Capability, 30

Design of Experiments, 32, 68, 89,
93, 107

DMAIC, 32, 118
General Linear Model, 33, 47, 72,

77, 89
Minitab, 29, 89, 99
Power and Sample Size, 44

Statistical Process Control, 29
Capability, 30, 51
Distribution, 29
Hardware Implementation, 129, 142
Implementation, 42, 47
Poisson Process, 68, 87
Results, 56

In Hardware, 132

Vienna Development Method, 129
Von Neumann, John, 16

155

