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Abstract

Incomplete data analysis is often considered with other problems such as

model uncertainty or non-identifiability. In this thesis I will use the idea

of the local sensitivity analysis to address problems under both ignorable

and non-ignorable missing data assumptions. One problem with ignor-

able missing data is the uncertainty for covariate density. At the mean

time, the misspecification for the missing data mechanism may happen

as well. Incomplete data biases are then caused by different sources and

we aim to evaluate these biases and interpret them via bias parameters.

Under non-ignorable missing data, the bias analysis can also be applied to

analyse the difference from ignorability, and the missing data mechanism

misspecification will be our primary interest in this case. Monte Carlo

sensitivity analysis is proposed and developed to make bias model selec-

tion. This method combines the idea of conventional sensitivity analysis

and Bayesian sensitivity analysis, with the imputation procedure and the

bootstrap method used to simulate the incomplete dataset. The selection

of bias models is based on the measure of the observation dataset and the

simulated incomplete dataset by using K nearest neighbour distance. We

further discuss the non-ignorable missing data problem under a selection

model, with our developed sensitivity analysis method used to identify the

bias parameters in the missing data mechanism. Finally, we discuss ro-

bust confidence intervals in meta-regression models with publication bias

and missing confounder.
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Chapter 1

Introduction

Problems of model uncertainty and incomplete data arise frequently in the statistical

sciences. Most of the literature usually assumes that the model is correct and that

we obtain observations on the variables that are described by that model: we have

model certainty and complete data. In reality model certainty is always doubtful and

incomplete sets of data are common.

Much of the theory and practice of statistics involves fitting parametric models for

missing data, which comprises two components: one is for the complete data and the

other is for the missing data mechanism (MDM). The former describes the probability

distributions that fit the observations on the variables, while the latter characterizes

the observation process by which some data may be missing or censored. We will

first review the missing data types in Section 1.1. When we assume model certainty,

many statistical techniques can be used to specify parametric models with missing

data and we will review some of most popular methods in Section 1.2. Next the

model uncertainty analysis will be addressed, and local bias analysis and sensitivity

analysis will be discussed in Section 1.3. Since we will develop a novel approach

of sensitivity analysis and make bias model selection by comparing the observed

data set and a simulated data set, the choice of dissimilarities is important and the

distance measures are reviewed in Section 1.4. Hypothesis testing is also considered

and the procedure of permutation test is described. In Section 1.5, we will outline

the structure of the thesis.

1



Chapter 1. Introduction

1.1 Missing Data Mechanism

Little and Rubin (2002) characterize the missing data mechanism into three types

generally: missing completely at random (MCAR), missing at random (MAR) and

missing not at random (MNAR). The first two missing types are usually considered

as ignorable missing data while the MNAR is then named as non-ignorable missing

data. Lu and Copas (2004) gave precise definitions of MAR and likelihood ignorable,

and discussed the conditions when both are equivalent.

Suppose we have a n-dimensional random vector Z = (z1, . . . , zn)T and a d-dimensional

parameters of interest θ ∈ Θ. A working model f(z; θ) on z ∈ Rn can be assumed

for inference. Suppose that the observation process of Z suffers from missing data

and hence, we need to define a binary random vector R = (r1, . . . , rn)T indicating

the observational status of Z, where ri takes the value 0 when the observation of zi

is missing and the value 1 when zi is observed, i = 1, . . . , n.

ri =

 1, zi observed;

0, zi missing.
(1.1)

The parameterization of the joint distribution of Z and R can always be fitted by the

selection model form

f(z, r; θ, ψ) = f(z; θ)f(r|z, ψ), (θ, ψ) ∈ Θ × Ψ, (1.2)

with the parameters θ and ψ are assumed to be distinct (Rubin, 1976). The item

f(z; θ) fits the probability density of the observations while the conditional density

f(r|z, ψ) characterizes the missingness process on the observations and thus specifies

a model for the missing data mechanism. The pair of random variables (Z,R) induces

an observable random variable Y , which is

Y = Y (Z,R) = (y1, . . . , yn)T . (1.3)

where

yi =

 zi, if ri=1;

R, if ri=0.
i = 1, . . . , n.

2



Chapter 1. Introduction

where the symbol R used in the vector argument means when r = 0 all we know is

that the missing values are distributed at some points in R = (−∞,−∞). In this

case, complete data Z can be separated into two components: the set of the observed

values Zobs and the set of the missing values Zmis.
1 The density of incomplete data

Y can be expressed as:

f(y; θ, ψ) =

∫
(y)

f(z; θ)f(r|z;ψ)dz

= f(zobs; θ)

∫
f(zmis|zobs; θ)f(r|z;ψ)dzmis (1.4)

where (y) on the integration sign means the the marginal density is taken over the

level set, i.e. Y = Y (Z,R). Examples of level sets of y(z, r) can be found in Copas

and Eguchi (2005, p.463).

Thus Rubin’s MAR condition can be expressed as follows. A MDM is said to be

MAR if the conditional distribution f(r|z;ψ) has the special form (Lu and Copas,

2004)

f(r|z;ψ) = h(y(z, r), ψ) for all (z, r) ∈ Z ×R, (1.5)

where, for any fixed ψ and r, h(.;ψ) is a function mapping real number field into [0,1].

Under MAR, the MDM depends on y only through the observed part of the sample

y = y(z, r).

Also it is well known that MCAR is a special case of MAR, where Z and R are

statistically independent in the usual sense. Rubin (1976) and Little and Rubin

(2002) distinguished between missingness completely at random, where the outcomes

are independent of the mechanism governing missingness, and missingness at random,

where there is dependence between, but only in the sense that missingness may depend

on the observed, but not further on the unobserved measurements. Normally MAR

(and MCAR) are named as ignorable in the likelihood setting. Lu and Copas (2004)

give the definition of likelihood ignorable (LIG) to explain the meaning of it:

Definition 1. A MDM is said to be LIG if the integral∫
f(zmis|zobs; θ)f(r|z;ψ)dzmis (1.6)

1The complete data Z can be separated in different ways for different purposes. For example, we
use subscript here to denote a set of the observed values (i.e. Zobs) or missing values (Zmis). Also
in Chapter 6, we use superscript to denote a set of variables which are always observed (Zobs), or a
set of variables with missing data (Zmis).

3



Chapter 1. Introduction

is free of θ for almost all realizations of (z, r) ∈ Z ×R and for all (θ, ψ) ∈ Θ × Ψ .

And they stated that generally MAR is a necessary and sufficient condition for LIG

for complete density family.

When neither MCAR nor MAR hold, we say the data are missing not at random

or non-ignorable, which means that even accounting for all the available observed

information, the reason for observations being missing still depends on the unseen

observations themselves. In this case, it is not always theoretically possible to char-

acterize all parameters for this class of models given a certain choice of covariates,

and this problem is termed as model non-identifiability.

1.2 Missing Data Methods

Over the last several decades a variety of models and methods are proposed to an-

alyze incomplete data. Because standard techniques for regression models require

fully observed information, one simple way to avoid the problem of missing data is

to infer from the subjects that are completely observed. This method, known as a

complete case (CC) analysis, is the technique most commonly used with missing val-

ues in the covariates and/or response, although it can be biased except the data are

MCAR. Another ad hoc method of dealing with missing covariate data is to exclude

those covariate variables with missingness from the analysis. But this procedure can

lead to model misspecification (missing confounder) and is not recommended. Other

approaches like maximum marginal distribution (MLE with EM algorithm), multiple

imputation (MI), fully Bayesian (FB), and weighted estimating equations (WEEs)

methods are getting popular for a wide variety of missing data problems, includ-

ing missing covariate data in the linear regression model, generalized linear models

(GLMs), survival analysis, as well as missing responses in the model of longitudinal

data and meta analysis.

1.2.1 Complete Case Analysis

One simple way to avoid the missing data problem will be to use complete case anal-

ysis, excluding all units for which the outcome or any of the inputs are missing. This

method has advantages such as simplicity, and comparability of univariate statistics,
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since these are all calculated on a common sample base of cases. However, this ap-

proach may suffer biased estimations as it discards incomplete cases and thus loss

some information. Little and Rubin (2002) pointed out that the only unbiased sit-

uation is under MCAR assumption, then the complete case is just one effectively

random subsample of the original dataset. But in other cases, the analysis without

modification will cause seriously biased results and is not recommended.

1.2.2 Likelihood-Based Approach: EM Algorithm

The maximum likelihood method is one of the most popular methods for bias analysis

with missing data. Many articles in the literature discuss missing responses and/or

missing covariates under ignorable or non-ignorable assumption by this method.

These include Little and Rubin (2002), Diggle and Kenward (1994), Ibrahim et al.

(2005) and Molenberghs et al. (2008).

Chen and Ibrahim (2001) proposed semiparametric maximum likelihood estimators

for identifiable regression coefficients. Under the same identity assumption and with

a conditioning argument on MDM, Tang et al. (2003) made inferences based on a

pseudo-likelihood function. Subsample ignorable likelihood for regression analysis

with missing data has also been discussed by Little and Zhang (2011). Empirical

likelihood based inference procedure has been proposed by Rao and Wang (2002)

and Qin and Zhang (2007). There has also been some literature for likelihood based

methods for establishing identifiability and asymptotic properties of estimators in

missing covariate problems such as Robins and Rotnitzky (1995).

Let Dobs and Dmis denote the observed values and missing values respectively. The

marginal probability density of Dobs is obtained by integrating out the missing data

Dmis:

f(Dobs|θ) =

∫
f(Dobs, Dmis|θ)dDmis.

We define the likelihood of θ based on data Dobs but ignoring the missing-data mech-

anism to be any function of θ proportional to f(Dobs|θ):

L(θ|Dobs) ∝ f(Dobs|θ).

More generally, we can include in the model the distribution of a variable indicating

whether each component of D is observed or missing. Similar to notation (1.1), we

5



Chapter 1. Introduction

define an indicator R as follows

R =

 1, D observed;

0, D missing.
(1.7)

We can treat R as a random variable and specify the joint distribution of R and D.

The density of this distribution can be specified as the product of the densities of the

distribution of D and the conditional distribution of R given D, that is,

f(D,R|θ, ψ) = f(D|θ)f(R|D,ψ).

The conditional distribution of R given D indexed by an unknown parameter ψ refers

to the model of the missing-data mechanism we introduced. In some situations the

distribution is known, and ψ is unnecessary. The actual observed data consist of the

values of the variables (Dobs, R), and the distribution of the observed data is:

f(Dobs, R|θ, ψ) =

∫
f(Dobs, Dmis|θ)f(R|Dobs, Dmis, ψ)dDmis.

The likelihood of θ and ψ is any function of θ and ψ proportional to the equation

above:

L(θ, ψ|Dobs, R) ∝ f(Dobs, R|θ, ψ).

And if missing data is LIG, then the distribution of observed data is:

f(Dobs, R|θ, ψ) = f(R|Dobs, ψ)f(Dobs|θ).

The Expectation-Maximization(EM) algorithm is a very general iterative algorithm

for ML estimation in incomplete-data problems. In fact, the range of problems that

can be attacked by EM is very broad and includes problems not usually considered to

be ones arising from missing or incomplete data (e.g. variance components estimation,

iteratively reweighted least squares). The algorithm is comprised of two steps: an

Expectation step and a Maximization step. Specifically, let θ(i) be the current estimate

of the parameter θ. The E step of EM finds the expected loglikelihood if θ were θ(i):

Q(θ|θ(i)) =

∫
l(θ|D)f(Dmis|Dobs, θ = θ(i))dDmis

6
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where l(θ|D) is the log-likelihood of θ.

The M step of EM determines θ(i+1) by maximizing this expected loglikelihood, and

it has the following property:

Q(θ(i+1)|θ(i)) ≥ Q(θ, θ(i)), for all θ.

The E step calculates the conditional average of the ‘missing data’ given the observed

data conditional on the current parameter estimations, and then substitutes these

expectations for the ‘missing data’. The quotations around ‘missing data’ are there

because the missing values themselves are not necessarily being substituted by EM,

which is different from imputation procedure.

The M step is particularly simple to describe: perform maximum likelihood estimation

of θ just as if there were no missing data, that is, as if they had been filled in. Thus

the M step of EM uses the identical computational methods as ML estimation from

l(θ|D). These two steps are then iterated until convergence happens. The stationary

point is a global maximum and EM yields the unique maximum likelihood estimate of

θ from l(θ,Dobs) in well behaved problems (Schafer, 1997, pages 51-55), i.e. problems

with not too many missing entries and not too many parameters.

1.2.3 Imputation Procedures

Imputation is another general and flexible method for handling missing data problems.

There are many ways to make the fill-in, and we list some of the most popular below:

1. Mean imputation: where means from the responding units in the sample are

substituted. The idea is to replace each missing value with the mean of the

observed values for that variable. Let xij be the value of X for units j in

variable i, i = 1, . . . ,m, j = 1, . . . , n. Mean imputation substitutes the mean x̄i

of the ni responding units for units that are sampled but that do not respond:

xr=0
ij = x̄r=1

i . However, this approach can distort the shape of distributions and

then distort relationships between variables.

2. Hot deck imputation: can be broadly defined as a method where an imputed

value is selected from an estimated distribution for each missing value, in con-

trast with mean imputation, where the mean of the distribution is substituted.
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The simplest theory is obtained when imputed values can be selected from the

values for the responding units by a probability sampling design. The hot deck

with replacement selects is the most common one, but its estimator is only

unbiased under unrealistic assumption that the probability of response is not

related to the values of X. The nearest neighbour hot deck (Sander, 1983) and

the sequential hot deck (Colledge et al., 1978) approach may be considered to

improve the method.

3. Regression imputation: replaces missing values with predicted values from a

regression of the missing item given items observed for the unit, usually calcu-

lated from units with both observed and missing variables present. One simple

way is to fit a parametric regression model of variables with missingness against

variables totally observed, based on observed samples only, then predict the

variables with missingness by the regression model (Little and Rubin, 2002).

There are many regression technique, such as stochastic regression imputation

and Bayesian linear regression imputation. Generally, this method is model

based imputation technique and is widely used in multiple imputation meth-

ods.

4. Multiple imputation methods (Rubin, 1978, 1987): impute more than one value

for the missing items. This method is most widely used now and we have a

detailed review below.

Multiple Imputation:

Multiple imputation was first proposed by Rubin (1978) and a comprehensive dis-

cussion can be found in Little and Rubin (2002), Schafer (1997) and Raghunathan

et al. (2001). The method has valid inference on missing data problem, especially

under ignorable missingness assumption and thus has a variety of applications. Single

imputation introduced above has the advantage of allowing standard complete data

methods of analysis, however, it is also difficult to reflect sampling variability under

one model for nonresponse as pointed out by Little and Rubin (2002). While mul-

tiple imputation can overcome this problem as the method involve N complete data

analyses to display variation in valid inferences across the models in dealing with

uncertainty. The analysis of a multiply imputed data set is quite direct. Suppose

(θ̂i,Wi), i = 1, . . . , N are N complete-data estimates and their associated variance

for an estimated θ respectively, calculated from N repeated imputations under one
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model. In order to make inferences for θ we average the results across the individual

imputations:

θ̄ =
1

N

N∑
i=1

θ̂i.

The variability associated with the estimate has two components: the within impu-

tation variance:

W =
1

N

∑
Ŵi,

and the between-imputation variance:

B =
1

N − 1

∑
(θ̂i − θ̄)2

thus the total variability is combined as

V = W + (1 +
1

N
)B.

A rough 95% confidence interval can be obtained as θ̄±2V 1/2, but a better calculation

is to use the approximation of Student’s t distribution:

(θ − θ̄)V −1/2 ∼ tν ,

with the degrees of freedom,

ν = (N − 1)[1 +
1

N + 1

W

B
]2.

Notice that when there is infinite number of imputations (N =∞), the total variance

V reduce to the sum of the two variance components, then the confidence interval is

based on a normal distribution (ν =∞).

Rubin (1987) pointed out that the efficiency of the estimate based on N imputations

of a proportion p of missing data is

(1 +
p

N
)−1,

thus 3-10 imputations may be enough in practical examples.

9



Chapter 1. Introduction

As there are various imputation techniques which can be applied in practice, how

to make a proper imputation strategy must be considered. MI procedure requires

a mechanism and statistical assumptions to make valid inferences. The basic idea

is sampling data from a conditional distribution of variables with missingness on

variables without missingness. Take the missing covariates problem for example,

assume response variables T is completely observed and covariate variables X is

partially missing. R is the missingness indicator defined in equation (1.7). Then the

imputation distribution is given as

f(xmis|t, xobs, R) ∝ f(t|x, θ)f(x)f(R|t, x, ψ).

Specially, when the missing data mechanism is assumed under ignorable missingness,

the MDM need not to be specified in this case, and the above equation reduces as

f(xmis|t, xobs, R) ∝ f(t|x, θ)f(x).

1.3 Model Uncertainty and Sensitivity Analysis

An assessment of uncertainty due to incomplete data or model misspecification is a

topic that has attracted many researchers for several decades, (see e.g Cornfield et al.,

1959; Vemuri et al., 1969; Draper, 1995; Copas and Li, 1997), in which sensitivity

analysis is one of the most commonly used approaches. It has been widely used in

bias analysis for different areas, including: sensitivity analysis for publication bias in

meta-analysis (Copas and Shi, 2000a,b) using the Heckman model (Heckman, 1979),

sensitivity analysis for incomplete contingency tables by Molenberghs et al. (2001),

local sensitivity analysis in Cook (1986), Copas and Eguchi (2001) and probabilistic

sensitivity analysis in Oakley and O’Hagan (2004). Those discussions characterize

the sensitivity analysis in different ways, but their aims are essentially the same: to

examine the influence of individual uncertainty on model based inference. A different

approach is to consider all possible sources of uncertainty by defining a prior density,

and a Monte Carlo sensitivity analysis involves sampling ‘bias parameters and then

inverts the bias model to provide a distribution of bias-corrected estimates’ (Greenland,

2005, p.269). Also Draper (1995) evaluated the model uncertainty through Bayesian
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model averaging while Saha and Jones (2005) applied the bias analysis techniques to

address non-identifiability issues.

1.3.1 Local Sensitivity Analysis

Copas and Eguchi (2005, 2001) discuss local model uncertainty when inference is

based on incomplete data. We still use the notation defined in Section 1.1, denoting

Z for complete data and Y for incomplete data. The data sampling distribution under

complete data is denoted as gZ(z; θ) and its marginal model as gY (y; θ). The working

model fZ under complete data (which is misspecified from gZ) has the corresponding

marginal distribution fY under incomplete data, inference based on fY (misspecified

marginal model) θY has a bias from inference from complete data θZ . The bias is

named as incomplete data bias and the models for measuring the bias are called

bias models. However, Lin et al. (2012) found under identifiable assumption, the

working model fY is not always the same as the marginal model of fZ , and extra

misspecification occurs. Lin et al. (2012) extended Copas and Eguchi’s work and

discussed the so-called marginal model bias in missing confounder problem for GLMs

with nonlinear link functions. The details of local sensitivity analysis for incomplete

data will be discussed in Chapter 2 and 3.

1.3.2 Bias Model and Bayesian Sensitivity Analysis

Sensitivity analysis is mainly used to determine the statistical uncertainty issue in fac-

torizing models or parameter errors. Good references about sensitivity analysis about

modelling uncertainty include Saltelli et al. (2004), Saltelli et al. (2008) and Oakley

and O’Hagan (2004), but in this thesis, we mainly focus on the sensitivity analysis

with nuisance parameters in the missing data problem. Let D and R denote the ob-

servations vector and missingness indicator vector which takes 1 if data is observed or

0 otherwise. The complete data model can be factorized into an extrapolation model

and an observed data model,

f(D,R|θ) = f(Dmis|Dobs, R, θmis)f(Dobs, R|θobs). (1.8)

The observed data distribution f(Dobs, R|θobs) is identifiable and can be fitted by

a parametric or nonparametric approach. However, the extrapolation distribution
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f(Dmis|Dobs, R, θmis) cannot be identified unless extra assumptions are made. Sen-

sitivity of non-identifiable parameters should be considered carefully. Those param-

eters are therefore described as sensitivity parameters or bias parameters (Daniels

and Hogan, 2008; Greenland, 2005), denoted by η. Local sensitivity analysis is based

on derivatives of parameters of interest evaluated at some belief η = η0 which helps

us to understand the robustness of the practical model in a local area, but has lim-

ited value in understanding the consequences of global uncertainty about η. Global

sensitivity analysis considers these more substantial changes individually without lim-

itation (see e.g. Oakley and O’Hagan, 2004) although an unrealistically wide range

is usually a troublesome problem without proper selection on the inputs. Bayesian

techniques were then proposed to overcome the difficulty (McCandless et al., 2007,

2008; Gustafson et al., 2010, see e.g.), offering a route to sample smoothly via a prior

distribution, and it weights possible scenarios rather than the conventional method

which only reflects the investigator’s plausible beliefs. Take one example in Mc-

Candless et al. (2007), let T be disease variable, X1 as exposure and X2, C denote

the measured and unmeasured confounders respectively. They used the factorization

P (T,C|X1, X2) = P (T |X1, C,X2)P (C|X1, X2) and model the confounding effect of

C using logistic regression models:

logit[P (T = 1|X1, C,X2)] = θ0 + θ1X1 + θ2C + θ3X2,

logit[P (C = 1|X1, X2)] = η0 + η1X1 + η2X2.

To interpret the parameter of interest θ = (θ0, θ1, θ2, θ3), we need to specify a joint

prior distribution of (θ, η) as

f(θ|T,X1, X2, C) =

∫
f(θ|T,X1, C,X2, η)f(η|T,X1, C,X2)dη

∝
∫
P (T,X1, C,X2; θ, η)f(θ, η)dη.

In principal, a prior distribution f(θ, η) from any standard parametric family can be

used for Bayesian sensitivity analysis (BSA). In most literatures, priors are usually

specified independently as

f(θ, η) = f(θ)f(η) (1.9)

and the exponential family is always a popular choice. However, there is rarely

discussions on testing the prior choice on the performance of interval estimators, since
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the sensitivity parameter is unknown. Depending on the specified prior distribution,

the posterior average may be asymptotically biased and credible intervals may not

have expected coverage probability, according to Gustafson (2005).

Monte Carlo sensitivity analysis (MCSA) is a type of Bayesian sensitivity analysis

with modifications. Assuming that f(θ|η) is uniformly distributed and posterior

distribution f(η|Dobs, R) is close to the prior distribution f(η), the MCSA procedure

is to sample from

f(θ|Dobs, R) =

∫
f(θ|Dobs, R, η)f(η|Dobs, R)dη ≈

∫
f(θ|Dobs, R, η)f(η)dη;

the details can be found in Greenland (2005). However, since

f(η|Dobs, R) ∝
∫
f(Dobs, R|η, θobs)f(θobs|η)f(η)dθobs

=

∫
f(Dobs, R|θobs)f(θobs|η)f(η)dθobs

= f(Dobs, R|η)f(η),

that means the posterior of the bias parameters is not equal to the prior i.e., f(η|Dobs, R) 6=
f(η); more discussion can be found in Daniels and Hogan (2008).

1.3.3 Missing Data Mechanism Bias

As well as the totally missing confounder problem, partially missing covariates issue

is also very common. The literature analyse the partially missing data in partially

linear models such as Liang et al. (2004) , GLMs such as Ibrahim and Lipsitz (1999),

survival analysis such as Herring et al. (2004) and longitudinal data study such as

Chen and Zhou (2011) etc.

The selection model gZ = f(Z)f(R|Z) and pattern mixture model gZ = f(Z|R)f(R)

are two classes of models described by Little(1993,1994) for missing data problems.

When the MAR assumption is plausible, the selection model formulation seems com-

pelling because it leads to likelihood ignorable for complete density family. However,

as pointed out by Little (1993), valid inference is based on knowledge of the missing

data mechanism; if assumptions about the missing data mechanism are misspecified,

extra uncertainty bias exists and we call it missing data mechanism bias. We will
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consider the model uncertainty under the three types of MDM respectively, and lo-

cal bias analysis is conducted under identifiable assumption. And the incomplete

data bias is separate, particularly as covariate bias, missing data mechanism bias and

marginal model bias (for non-linear models) due to their bias sources. Bias analy-

sis under non-ignorable missing data is particularly difficult and we can assume an

ignorable working model, then the MDM bias actually measures the departure from

non-ignorability. However, the true MDM model is unknown in practice and further

sensitivity analysis is required.

Local sensitivity analysis for misspecified MDM will be discussed generally in Chapter

3 and the problems with non-ignorable missing data will be further disscussed in

Chapter 5 and 6.

1.4 Dissimilarity

In Chapter 4, we will propose a new method for sensitivity analysis. One key step is to

measure the similarity or dissimilarity between the observed data set and a simulated

set.

A quantitative measure of closeness is named as dissimilarity, distance or similarity

(a general term is proximity) (Everitt et al., 2011). Gower and Legendre (1986)

summarized a list of similarity measures for binary data, and Gower (1971) proposed

one general similarity measure to construct proximities for mixed mode data (with

continuous and categorical):

sij =

p∑
k=1

wijksijk/

p∑
k=1

wijk

where sijk is the similarity between the ith and jth individual as measured by the

kth variable, and wijk is typically one or zero depending on whether or not the

comparison is considered valid. For binary and categorical variables with more than

two categories, the component similarities, sijk, take the value one when the two

individuals have the same value and zero otherwise. For continuous variables, Gower

suggests using the similarity measure

sijk = 1− |xik − xjk|/Rk
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where xik and xjk are respectively the kth variable value of the p-dimensional observa-

tions for individuals i and j, and Rk is the range of observations for the kth variable.

More suggested similarity measures can be found in Estabrook and Rodgers (1966),

Legendre and Chodorowski (1977), Lerman (1987) and Ichino and Yaguchi (1994).

Dissimilarity measures or distance measures between individuals are typically cal-

culated to describe the proximities for continuous variables, where a dissimilarity

measure, dij, is termed a distance measure if it fulfills the metric inequality

dij + dim ≥ djm

for pairs of individuals ij, im and jm (Everitt et al., 2011). Also a series of measure-

ment spaces have been proposed for deriving a dissimilarity matrix, such as Euclidean

distance, Minkowski distance , Canberra distance, etc. See Table 1.4. More summary

lists can be found in Gower (1985), Gower and Legendre (1986), Jajuga et al. (2003)

and Everitt et al. (2011). The most commonly used distance is Euclidean distance

dij = [

p∑
k=1

(xik − xjk)2]1/2,

which is a special case (r = 2) of the Minkowski metric

dij = [

p∑
k=1

(xik − xjk)r]1/r.

This distance can be interpreted as physical distance between two p-dimensional

points x′i = (xi1, . . . , xip) and x′j = (xj1, . . . , xjp) in Euclidean space. It is commonly

used to evaluate the proximity of objects in two or three dimensional space and it

works well when a data set has ‘compact’ or ‘isolated’ clusters (Mao and Jain, 1996).

Investigations of the relationships between dissimilarity matrices, distance matrices

and Euclidean matrices are carried out in Gower and Legendre (1986) and Cailliez

and Kuntz (1996). Another widely used distance is Mahalanobis distance, which is

scaled space from the Euclidean norm but would reduce into Euclidean norm when

covariance matrix shrinks into diagonal. It is given as

dij = [

p∑
k

(xi,k − xj,k)TS−1(xi,k − xj,k)T ]1/2
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Table 1.1: Dissimilarity measures for continuous data.
Measure Formula

Euclidean distance dij = [
p∑

k=1

(xik − xjk)2]1/2

Manhattan distance dij =
p∑

k=1

|xik − xjk|

Minkowski distance dij = (
p∑

k=1

|xik − xjk|r)1/r (r ≥ 1)

Canberra distance dij =

 0 for xik = xjk=0;
p∑

k=1

|xik−xjk|
(|xik|+|xjk|)

for xik 6= 0 or xjk 6= 0

Pearson correlation

dij = (1− φij)/2 with

φij =
p∑

k=1

(xik − x̄i.)(xjk − x̄j.)/[
p∑

k=1

(xik − x̄i.)2
p∑

k=1

(xjk − x̄j.)2]1/2

where x̄i. =
p∑

k=1

xik/p

Angular separation
dij = (1− φij)/2 with

φij =
p∑

k=1

xikxjk/[
p∑

k=1

x2ik

p∑
k=1

x2jk]
1/2

Mahalanobis distance dij = [(xi − xj)TS−1(xi − xj)]1/2, S is covariance matrix

with S as covariance matrix.

Figure 1.1 (by Maesschalck et al., 2000) presents points with the same inter-cluster

Euclidean and Mahalanobis distances from centre points by circles and ellipses respec-

tively. The Euclidean distance spread evenly as circles while Mahalanobis distance as

ellipses scaled by its covariance matrix, i.e. point 4 has the same distance as point 20

from centre under the Euclidean metric; but point 20 is farther than point 4 under the

Mahalanobis metric. However, Mahalanobis space will reduce into Euclidean space if

the covariance matrix is diagonal.
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Figure 1.1: Euclidean and Mahalanobis distance illustration. (a) Plot of the simulated
data for two variables x1 and x2 together with the circles representing equal Euclidean
distances towards the centre point; (b) Plot of the simulated data for two variables x1
and x2 together with the ellipses representing equal Mahalanobis distances towards
the centre point.

1.4.1 Nearest Neighbour Distance

A series of methodologies have been developed since people find the necessity of clus-

tering observations into different groups, which include hierarchical and partitional

approaches (hierarchical classification consists of a series of partitions while partitional

methods produce only one). There is literature that summarizes these methodologies

such as Jain and Dubes (1988), and Jain et al. (1999) and Everitt et al. (2011).

Hierarchical Clustering:

Everitt et al. (2011) pointed out that hierarchical clustering techniques may be sub-

divided into agglomerative methods, which begin with each pattern in a singleton

cluster and merge clusters together, and divisive methods which separate the whole

cluster (observations) into finer groupings. Most popular heuristic clustering criteria

include single linkage (nearest neighbour), complete linkage (farthest neighbour) and

average linkage. The single link was first introduced by Florek et al. (1951) and later

by Sneath (1957) and Johnson (1967). It is also known as the nearest neighbour

technique, but if not only the one closest individual defined as its neighbour, but

kth nearest are chosen as neighbours, we call it kth Nearest Neighbour. Complete

linkage is the opposite of single linkage, and the defining feature is that the distance

between groups is that of the most distant pair of individuals. Average linkage - the

distance between all pairs of individuals from each group or weighted average linkage
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(McQuitty, 1966) works well in clustering, and these methods are compared in lots of

studies including Milligan (1981), Cunningham and Ogilvie (1972), Blashfield (1976),

Hubert (1974) and Duflou and Maenhaut (1990).

The single, complete, average linkage is illustrated by Figure 1.2:

Figure 1.2: Examples of three inter-cluster distance measures: single, complete and
average

1. Single linkage (Sneath, 1957): minimum distance between pair of objects, one

in one cluster and one in the other.

2. Complete linkage (Sorensen, 1948): maximum distance between pair of objects,

one in one cluster, one in the other.

3. Average linkage (Sokal and Michener, 1958): average distance between pair of

objects, one in one cluster, one in the other.

Nearest Neighbour Clustering:
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The kth Nearest Neighbour clustering procedure was proposed by Wong and Lane

(1983), and it is designed to be strongly set-consistent based on density estimates.

The earlier literature with discussion of density estimating in clustering procedures

can be found in Bock (1979), Wishart (1969) and Ling (1972).

Let the observations x1, . . . xn be independent, Wong and Lane (1983) estimate the

density at a point x by fn(x) given by

fn(x) = k/[nVk(x)],

where Vk(x) is the volume of the smallest sphere centred at x containing k sample

observations. Then the relationship of ‘neighbour’ for two points is given by

Definition 2. Two observations xi and xj are said to be K-neighbours if

d∗(xi, xj) ≤ dk(xi) or dk(xj),

where d∗ is the Euclidean metric and dk(xi) is the kth nearest-neighbour distance to

point xi.

A distance matrix arises from these density estimates according to the following

definition:

Definition 3. The distance d(xi, xj) between the observations xi and xj is

d(xi, xj) =
1

2
[

1

fn(xi)
+

1

fn(xj)
]

=

 n
2k

[Vk(xi) + Vk(xj)] if xi and xj are neighbours

∞ otherwise.

The kth nearest neighbor rule is considered the simplest and most intuitively appeal-

ing nonparametric classification procedure (Hall et al., 2008). However application

of this method is inhibited by lack of knowledge about its properties, in particular,

the parameter selection, and the absence of techniques for empirical choice of k, and

the presence of noisy or irrelevant features. Much effort has been exerted in select-

ing or scaling features to improve classification. Wong and Lane (1983) suggested

k = 2log2N to be effective for sample size N from 50 to 500 (see Wong and Schaack,

1982). And its increase should correspond to the increase in sample size. Hall et al.
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(2008) detailed the way in which the value of k determines the misclassification error,

and advised empirical choice of k to minimize the average error rate. They considered

the Possion and Binomial models for training samples, and the kth nearest neighbour

method locates the cluster position for each test sample. However, we find these

choices are relatively conservative for the sensitivity analysis. In practice, a series of

k may be considered, for example, different values of K are used in KNN regression

and classification in R package ’caret‘ (from Jed Wing et al., 2013).

1.4.2 Permutation Test

Compared with the abundant discussion about cluster algorithm procedures, little re-

search has investigated the properties of significance tests for distinguishing between

the hypothesis H0 of a ‘homogeneous’ population and an alternative H1 involving

‘clustering’ or ‘heterogeneity’. But fortunately Lee (1979) and Bock (1985) and most

recently Auffermann et al. (2002) contributed to this area. The likelihood ratio (LR)

and union-intersection (UI) criteria and a ‘linear discrimination’ statistics are shown

in Lee (1979), and these tests are claimed to be equivalent. Meanwhile Bock (1985)

considered four types of test statistics: the largest gap between observations, their

mean distance (or similarity), the minimum with-in cluster sum of squares resulting

from a k-mean algorithm and the resulting maximum F statistics. These tests are

used to investigate the uniformity and unimodality hypothesis and alternatives. Al-

though Bock (1985) provided theoretical discussion of the test measure, and a possible

threshold is suggested with the measurement statistics distribution (asymptotically)

estimated, the accuracy for the critical threshold and the power of the test still need

to reconsidered. With the development of computing technology, the bootstrap algo-

rithm (Efron and Tibshirani, 1993) was applied in testing fMRI data by Auffermann

et al. (2002), where Fisher’s linear discriminant function (Fisher, 1936) is chosen as

the statistical measure.

Permutation Test and Bootstrap Test:

When we consider the two samples/clusters problem, Fisher’s permutation test (Fisher,

1971) is popularly used. Our target is to test the null hypothesis H0 of no difference

between two groups X1 and X2,

H0 : X1 = X2
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The equality here meansX1 andX2 assign equal probabilities to all sets, ProbX1
{A} =

ProbX2
{A} for any subset A of the common sample space of the x1 and x2. Normally

the test statistic can be the mean difference, d̂ = |X̄1− X̄2| (for scalar variables), and

we expect that if the H0 is not true, the value of d̂ will be larger than if H0 is true.

To carry out the test, the achieved significance level(ASL) of the test is defined

as the probability of observing at least that large a value d̂∗ when the null hypothesis

is true,

ASL = ProbH0{d̂∗ ≥ d̂}.

The smaller the value of ASL, the stronger the evidence against H0. Fisher’s per-

mutation test is a clever way of calculating an ASL for the general null hypothesis

X1 = X2. First of all, we combine the two groups together as X = (X1,X2), with

sample size N = n1 + n2. We re-write the data frame as D = (X,R), where vector

R indicates which group each observation belongs to. It consists of n1 individuals

from group 1 and n2 individuals from group 2, there are
(
N
n1

)
possible R vectors,

corresponding to all possible ways of partitioning N elements into two subsets of size

n1 and n2. Permutation theory thus considers the permutations of x1’s and x2’s as

equally likely if H0 is true. In other words, let d̂ = S(R,X) for some function S, and

for any one of the
(
N
n1

)
possible vectors R∗, the corresponding test statistics

d̂∗ = d̂(R∗) = S(R∗,X)

should be the same as d̂ under H0. The distribution that puts probability 1/
(
N
n1

)
on

each one of these (d̂∗) is called the permutation distribution of d̂. The permutation

ASL is defined to be the permutation probability that d̂∗ exceeds d̂,

ASLperm = Probperm{d̂∗ ≥ d̂}

= #{d̂∗ ≥ d̂}/
(
N

n1

)

where #{.} denotes the cardinality of the set.

Bootstrap method can be applied to calculate the ASL, which can be done by

ÂSLperm = #{d̂∗(b) ≥ d̂}/B

where b = 1, . . . , B and B is the replication number.
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More generally, two quantities of carrying out a bootstrap hypothesis test are:

1. A test statistic t(x).

2. A null distribution F̂0 for the data under H0.

The empirical distribution F̂0 is a nonparametric estimate specified by the null hy-

pothesis H0 given X.

Given these, we generate B bootstrap values of t(x∗) under F̂0 and estimate the

achieved significance level by

ÂSLboot = #{t(x∗b) ≥ t(x)}/B

Bootstrap tests are useful in situations where the alternative hypothesis in not-well

specified, and normally it requires a large B. The choice of test statistic t(x) will

determine the power of the test, that is , the chance that we reject H0 when it is false.

Permutation algorithm is quite similar to bootstrap algorithm, and the main difference

is that permutation sampling is carried out without replacement while bootstrap with

replacement. And their efficiencies are about the same.

1.5 Structure of the Thesis

This thesis mainly focuses on the missing data problem with the model uncertainty

issue, and the procedure of missingness can be separated into ignorable and non-

ignorable assumptions. Local bias analysis is conducted using an ML method to

assess the impact on the estimation of parameters of interest. We recognize that the

statistical modelling assumption with parametric models is questioned as the lack

of identifiablility or the lack of randomization, thus sensitivity analysis is applied to

these problems.

The structure of the thesis is as follows. We first use incomplete data bias analysis

to address the model uncertainty problems. In Chapter 2, we will discuss the covari-

ate distribution misspecification for partially missing confounder problems. And in

Chapter 3, the covariate distribution misspecification and missing data mechanism
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misspecification are both investigated. We use some examples to illustrate the uncer-

tainty issue and the local bias analysis. In Chapter 4, we concentrate on measuring the

uncertainty sources and propose a novel Monte Carlo sensitivity analysis method to

make bias model selection (MC-BMS). Under ignorable missingness, the uncertainty

about covariates distribution will be the primary concern. And in Chapter 5, we

further apply the incomplete data bias analysis to non-ignorable missing data. And

the missing data mechanism bias is calculated given covariate distribution, although

it may be difficult to specify in practice. Further discussion based on the MC-BMS

method for covariate density specification (based on pattern mixture model frame)

will be given in Chapter 5 and discussion for missing data mechanism modelling

(based on selection model frame) will be given in Chapter 6. We also discuss the

other missing data problem for meta-analysis in Chapter 7, such as publication bias

and missing confounder problems. And a robust confidence interval is proposed for

meta regression models. Chapter 8 contains conclusions and suggestions for future

work.
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Local Sensitivity Analysis for

Missing Covariates Problems

2.1 Introduction

Copas and Eguchi (2005) discussed the model uncertainty issue with missing data

by local bias analysis. They used a parametric model for inference when the data

generating distribution is close to but not necessarily part of the considered parametric

model. Bias is caused by the misspecified working model under incomplete data Y ,

and the bias is called incomplete data bias by Copas and Eguchi (2005). Lin et al.

(2012) noticed that the actual working model may be a conditional model rather than

the marginal model under incomplete data, and the so-called marginal model bias is

measured under an identifiable local analysis assumption. We follow up their work and

extend to partially missing data under ignorable assumption. The bias analysis is a

useful tool for identifying the uncertainty parameters (termed as bias parameters) and

analysing the model misspecifications, and we will apply it to missing data mechanism

misspecification in Chapter 3 and non-ignorable missing data in Chapter 5.

We will introduce Copas and Eguchi’s discussion about uncertainty analysis for miss-

ing data problems in Section 2.2, and interpret the incomplete data bias via bias

parameters. One example about missing confounder problem will be discussed in

Section 2.2.1. We further extend the inference to partially missing confounder prob-

lems, and argue that the model uncertainty issue is also important in this case due
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to the lack of identifiablility or the lack of randomization. The incomplete data bias

analysis will be performed for a linear regression model under missing completely at

random in Section 2.3 and missing at random assumption in Section 2.4. Then we

will discuss the ‘double misspecified’ problems for generalized linear models in Section

2.5.

2.1.1 Missing Data Problem

Incomplete data is very common in epidemiology trials, and an example which illus-

trate some of the missing data problems is the case control studies to assess the link

between alcohol consumption and breast cancer. A linear regression model may be

assumed to examine the effect of alcohol use (denoted as variable X) towards breast

cancer case (the log odds ratio is taken as the response variable T ). Longnecker et al.

(1988) reported significant association between the consumption of alcohol and the

risk of breast cancer based on a meta-analysis of 16 published epidemiological studies.

As agreed by these and later researchers, the estimation of parameter (denoted as θx)

should be adjusted for the potential confounders (e.g. age, see Garland et al., 1999),

which is denoted as C. The regression model is given as

t = θ0 + θxx+ θcc+ e (2.1)

where (θ0, θx, θc) are regression coefficients and e ∼ N(0, σ2) brings t variation.

In practice, the confounder C is not always observed unfortunately and this analysis

is likely to be influenced by missing the values and may lead to potential bias. This

dissertation analyses the incomplete data biases for the missing data problems and

also try to interpret the bias sources via bias parameters. The models we used for

bias analysis is then named bias models.

2.2 Model Uncertainty and Incomplete-Data Bias

A statistical model is merely a parameterized family of probability distributions to

which we believe the true distribution belongs (Amari, 1985). Given collected data,

we specify a model {f(., θ), θ ∈ Θ} for inference about parameter θ, which is usually

a vector and our interest may be part of it. We conceptually assume the observed
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data is from the true distribution, however in practice, data generating distribution,

denoted as g, is not always equal to f . Also we should consider the influence of

missing data.

Copas and Eguchi (2005) discussed the model uncertainty issue and incomplete-data

bias analysis. They suggested a rather general asymptotic setting for exploring the

link between local model uncertainty, defined in an appropriate way. For complete

data Z and incomplete data Y , parametric models gZ and gY specify the distribution

of z and y respectively. In many cases, inference is based on a working model fZ while

z is in fact generated by a nearby distribution gZ . Following Copas and Eguchi’s

discussion, to formulate distribution in a local neighbourhood of fZ , let uZ(z; θ) be

any scalar function of z and parameter θ, standardized to have mean 0 and variance

1 under the model fZ . Then for small values of ε, the sampling model

gZ = gZ(z; θ, ε, uZ) = fZ(z; θ) exp{εuZ(z; θ)} (2.2)

is non-negative and integrates to 1 up to and including first-order terms in ε, and

so identifies a distribution in the neighbourhood of fZ . If ε = 0 then gZ = fZ

meaning the working model is the correct model. Intuitively, ε can be thought of

as the ‘magnitude’ of misspecification and uZ can be thought of as the ‘direction’ of

misspecification. If we fix ε and imagine θ and uZ ranging over all possibilities, gZ

will cover all distribution within a ‘tubular neighbourhood’ of ‘radius’ ε around the

working mode fZ . And the distribution of y = y(z) that is induced by gZ is

gY = gY (y; θ, ε, uZ)

=

∫
(y)

fZ(z; θ) exp{εuZ(z; θ)}dz

≈ fY (y; θ) exp{εuY (y; θ)}, (2.3)

where uY (y; θ) = Ef{uZ(z; θ)|y} and fY is the corresponding working model of fZ

for incomplete data: fY =
∫
(y)
fZdz. The notation (y) on the intergration sign is

interpreted in Section 1.1. These and later approximations are correct to first-order

in terms of ε. We put these inferences into the following lemma:

Lemma 2.1. The data sampling distribution under complete data (Z) is gZ (Equation

2.2), which has the corresponding ‘working model’ fZ. Correspondingly, the incom-

plete data (Y ) distribution is marginal of gZ denoted gY , which has the corresponding
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‘working model’ fY . The estimation of parameters is

θgZ = argθ[Eg{sZ(z; θ)} = 0] ≈ θ + εI−1Z Ef{uZ(z; θ)sZ(z; θ)},

which is the limit of MLE when we use working model fZ but the sampling model is

gZ. The estimation from Y is

θgY = argθ[Eg{sY (y; θ)} = 0] ≈ θ + εI−1Y Ef{uY (y; θ)sY (y; θ)}.

Under the identifiability condition (see Lin et al., 2012), the incomplete-data bias bθ

is defined as the first-order approximation to the difference θgY − θgZ, which is given

by

θgY − θgZ ≈ bθ = εEf [uZ(z; θ){I−1Y sY (y; θ)− I−1Z sZ(z; θ)}] (2.4)

with IY , IZ , sY , sZ as information matrices and score vectors of fY , fZ respectively.

Detailed proof for Lemma 2.1 is given in Appendix 2.7.1. Lemma 2.1 uses the first

order approximation to estimate the bias, and thus require a local analysis assumption

to make inference validly, which means that the misspecification quantity ε is small

so that fZ is in local neighbour of gZ .

Notice that Copas and Eguchi’s definition of incomplete data bias is given as

(θgY − θgZ), which is the difference of estimators from incomplete data distribution

gY and complete data distribution gZ . In most literatures, the bias is commonly

defined as the difference between the estimator and true value, that is (θgY − θtrue).
Copas and Eguchi (2005) (page 470) argued that the difference of (θgZ − θtrue) is

the difference of ‘object of interest’ θINT and ‘object of inference’ θINF . This is a

fundamental problem on how to interpret θ. For example, if θINT is the mean of the

population from which we are sampling, and object of inference θINF is the value

of θ for which the model (noted as gZ) is closest to the true distribution in the

sense of Kullback-Leibler divergence. Royall and Tsou (2003) found θINF = θINT

for the model N(θ, σ2) or Possion (θ) when the model fails, but not for log-normal

distribution. They also argued that parametric inference about θ is meaningful only

when θINF = θINT . Our discussion is based on this assumption, then the difference

between θgZ and θ is not a bias but rather an artifact of the notations.
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2.2.1 Linear Model with Missing Confounder

Assume we have an experiment design which contains response variable T , and inde-

pendent covariates X and C. Variable X usually describes the treatments or therapies

in clinical research. And C represents the confounder. We denote Z = (T,X,C) and

Y = (T,X) as the complete and incomplete data respectively, with confounder C

missing for all observations. We suppose c ∼ N(0, σ2
c ) here but the results can be

extended to other distributions.

Complete data Z = (T,X,C) follows the distribution:

gZ = fT |XC(t, x, c)fXC(x, c).

If X and C are assumed independent, the working model under Z is

fZ = fT |XC(t, x, c)fX(x)fC(c).

According to equation (2.3), incomplete data Y = (T,X) has distribution:

gY = fY exp(εuY )

where fY is the working model under Y

fY = fT |X(t, x)fX(x)

which is actually the marginal model of fZ for the linear regression model if residuals

are normally distributed, see the detailed discussion in Appendix 2.7.3. But if resid-

uals are not normally distributed, the ‘double misspecification’ may be considered,

see Lin et al. (2012). This case usually happens in non-linear models or generalized

linear models, and we will discuss this issue in Section 2.5.

Assume that the response variable has a linear regression model:

t|(x, c) ∼ N(θ0 + θxx+ θcc, σ
2) (2.5)

where σ2 is the variance of t given x and c. If variable c is hidden, then the observable
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response distribution is an ordinary regression model without c

t|x ∼ N(θ0 + θxx, σ
2
t|x). (2.6)

where σ2
t|x is the variance of t given x. Residuals are assumed to be i.i.d with covariates

and it can be proved that σ2
t|x = σ2 + θ2cσ

2
c . Since x is a scalar variable, there is a

bound to limit the quantity of incomplete data bias (Copas and Eguchi, 2005):

Lemma 2.2. Incomplete Data Bias for Linear Model:

The bias of parameter estimation bθx (θx-component) for linear model between com-

plete data model and incomplete data model is bounded by

b2θx
nvarf (θ̂x)

≤ corr(t, c|x)2corr(x, c)2 (2.7)

where n is the sample size.

The first term on the right-hand side of inequality (2.7) is proportional to the partial

correlation between t and c given x, which measures how much we lose since not

observing the hidden variable c. The second term is the dependence between the

treatments (X) and confounder (C) that is caused by the lack of randomization, which

is a measure of non-ignorability in the design. The most troublesome confounder is

one which is linearly correlated with treatment, see more discussion in Appendix

2.7.2.

Corollary 2.1. When corr(x, c) = 0 and under the ignorable assumption we have

bθx = 0.

Below we will extend the uncertainty problems for partially missing confounder data

problems.

2.3 Partially Missing Confounder under MCAR

2.3.1 Bias Models

In this section, we continue to discuss the missing data problem in (2.1). Now con-

founder C is partially missing with probability π, and suppose its missing type is
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missing completely at random, which indicates π is a constant.

We denote R as an indicator vector:

r =

 1, c observed;

0, c missing.
(2.8)

The complete data set is Z = (T,X,C,R), with R Bernoulli distributed R ∼ B(1, π).

And the corresponding incomplete data set is Y = (T,X,C(r), R), where

c(r) =

 c, r = 1;

R, r = 0.
(2.9)

The symbol R used here means when r = 0 all we know is that c takes some value in

R = (−∞,∞).

Starting from the sampling model, we rewrite the density function gZ as follows:

gZ(z; θ, π) = fZ exp{εuz}

= fT |XC(t|x, c; θ)fXC(x, c)h(r; π)

where the missing data mechanism component is h(r; π) = πr(1 − π)1−r. And the

working model (assuming X and C are independent) is given as :

fZ = fT |XC(t|x, c; θ)fX(x)fC(c)h(r; π). (2.10)

Then the misspecification of the model is caused by the association between observed

variable X and missing variable C, represented by

exp{εuz} =
fXC(x, c)

fX(x)fC(c)
. (2.11)

As the misspecification is related to [XC] only 1, we write uZ as uXC in the following.

And bXC represents the incomplete data bias bθ caused by covariate density misspec-

ification. Here the incomplete data bias can also be termed covariate bias according

to the bias source.

1[.] is used throughout this thesis to denote a generic distribution
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As covariate C is partially missing, we split all cases Y into two parts: complete cases

and incomplete cases, Y = (Ycc,Yic). For complete cases (when r = 1)

fYcc = fZ = fT |XC(t|x, c)fX(x)fC(c)h(r = 1;π).

While for incomplete cases (when r = 0)

fYic =

∫
(y)

fZdz

=

∫
(y)

f(t, x, c)h(r = 0;π)dz

=

∫
c

fT |XC(t|x, c)fX(x)fC(c)h(r = 0;π)dc

= fX(x)h(r = 0;π)

∫
c

fT |XC(t|x, c)fC(c)dc

= fT |X(t|x)fX(x)h(r = 0;π),

where fT |X(t|x) =
∫
c
fT |XC(t|x, c)fC(c)dc. Similarly to the discussion given in Section

2.2.1, the working model under incomplete data is fY =
∫
(y)
fZdz, the marginal model

of complete data working model.

Then we write the models into one general form:

fY = f rT |XC(t|x, c; θ)fX(x)f rC(c)h(r; π) (2.12)

where

f rT |XC(c) =

 fT |XC , r=1;

fT |X , r=0.
(2.13)

and

f rC(c) =

 fC(c), r=1;

1, r = 0.
(2.14)

Estimation of parameters θ from fY is calculated by maximizing the log-likelihood of

(2.12), which is biased if covariate correlation is not equal to zero. The incomplete

data bias analysis is conducted below.
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2.3.2 Incomplete Data Bias

For complete data Z = (T,X,C,R), we use a linear fixed effect model to fit the data

t|(x, c) ∼ N(θ0 + θTx x+ θcc, σ
2) (2.15)

where σ2 is the variance of error and variable x can be a vector. And with the

incomplete data :

t|(x, c, r) ∼ N(θ0 + θTx x+ rθcc, σ
2 + (1− r)θ2cσ2

c ).

For complete cases, the incomplete data model is the same with the complete data

model; while for incomplete cases, we assume (t|x, r = 0) ∼ N(θ0 + θTx x, σ
2 + θ2cσ

2
c )

which is similar to the totally missing confounder problem discussed in Section 2.2.1.

Here we use the ML method to estimate the parameters θ = (θ0, θ
T
x , θc) and the

incomplete-data bias. For complete data and incomplete data, the log-likelihood for

the linear model is

lZ(θ; z) = log f(t|x, c; θ)

= Cons− log h(r)− 1

2
log(σ2)− 1

2

(t− θ0 − θTx x− θcc)2

σ2

lY (θ; y) = log f(t|x, c, r; θ)

= Cons− log h(r)− 1

2
log(σ2 + (1− r)θ2cσ2

c )−
1

2

(t− θ0 − θTx x− rθcc)2

σ2 + (1− r)θ2cσ2
c

.

The above formulas have component − log h(r) which is constant under MCAR and

thus can be ignored. Here, we assume σ2 is given (it can be replaced by its estimation

s2 which can be obtained from each study). From log-likelihood lZ and lY , the score

functions under complete data and incomplete data are

sZ(z; θ) =


t−θ0−θTx x−θcc

σ2

(t−θ0−θTx x−θcc)x
σ2

(t−θ0−θTx x−θcc)c
σ2

 and sY (y; θ) =


t−θ0−θTx x−rθcc
σ2+(1−r)θ2cσ2

c

(t−θ0−θTx x−rθcc)x
σ2+(1−r)θ2cσ2

c

(t−θ0−θTx x−rθcc)rc
σ2+(1−r)θ2cσ2

c
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respectively. Fisher information matrix for complete data is

IZ =
1

σ2


1 µx µc

µx Σx E(xc)

µc E(xc) Σc

 , (2.16)

where µx = E(x), µc = E(c), Σx = E(xxT ), Σc = E(c2). Similarly,

IY =
π

σ2


1 E(x|r = 1) E(c|r = 1)

E(x|r = 1) E(xxT |r = 1) E(xc|r = 1)

E(c|r = 1) E(xc|r = 1) E(c2|r = 1)



+
1− π
σ2
Y


1 E(x|r = 0) 0

E(x|r = 0) E(xxT |r = 0) 0

0 0 0


(2.17)

where σ2
Y = σ2 + θ2cσ

2
c . Using Lemma 2.1, we have the incomplete data bias as

θgY − θgZ = εEf [uZ(z; θ){IY −1sY (y; θ)− IZ−1sZ(z; θ)}].

In this chapter, we only concentrate on the covaraite distribution misspecification,

and the incomplete data bias is mainly generated by the correlation between X and

C, so we call it covariate bias particularly, denoted by bXC . For simplifying notations,

we define v = (1, x, rc)T , v1 = (1, x, c)T and v0 = (1, x, 0)T . Since ET |XC(sZ) = 0 for

all x and c, thus

bXC = εIY
−1EfZ{uXCsY } − εIZ

−1EfZ{uXCsZ}

= εIY
−1[πE{uXCsY |r=1}+ (1− π)E{uXCsY |r=0}]

−εIZ−1EXC{uXCET |XC(sZ)}

≈ εIY
−1(1− π)E[uXC

cθc
σ2
Y

v0]

= εθc(1− π)
IY
−1

σY
E(cuXCv0).

In this chapter we consider the uncertainty caused by missing covariate and thus

the misspecification of f(x, c). As shown in formula (2.11), if the misspecification
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quantity is small, then

EfZ (εcuXCv0) = EfZ{cv0 log
f(x, c)

f(x)f(c)
}

≈ EX,C{cv0
f(x, c)− f(x)f(c)

f(x)f(c)
}

= EXC(cv0)− EX,C(cv0)

= (0, cov(x, c), 0)T .

Here EXC indicates the expectation under distribution f(x, c), while EX,C indicates

the expectation under independent distribution f(x)f(c). So we have the incomplete

data bias for θgY as

bXC =
θc(1− π)IY

−1

σ2
Y


0

cov(x, c)

0

 . (2.18)

If covariate correlation corr(x, c) = 0, the incomplete data bias bXC = 0 as we stated

in Corollary 2.1. If we write the inverse of the Fisher information matrix IY as

IY
−1 =


Iθ0θ0 Iθ0θx Iθ0θc

Iθ0θx Iθxθx Iθxθc

Iθ0θc Iθxθc Iθcθc

 ,

then we have the incomplete data bias for θx-component:

bθx ≈ θc(1− π)
Iθxθx

σ2
Y

cov(x, c). (2.19)

If covariate C is totally missing (π = 0), then Iθxθx =
σ2
Y

σ2
x

and

bθx = θc
Iθxθx

σ2
Y

cov(x, c) = (Iθxθx)1/2corr(t, c|x)corr(x, c) (2.20)

since

corr2(t, c|x) ≈ θ2cσ
2
c

σ2
Y

for the regression model (2.15). It is easy to notice from equations (2.19) and (2.20)
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that the incomplete data bias for partially missing data is also impacted by the covari-

ate correlation, but the size of the bias gets smaller than totally missing confounder

problem as (1− π) < 1.

2.4 Partially Missing Confounder under MAR

Another missing data mechanism is termed as missing at random (MAR, Rubin,

1976). It means that the probability that a variable is observed/missing depends on

the values of the other completely observed variables. This concept has been exten-

sively studied, and effective computational methods for handling missing data under

the MAR assumption have been developed, for example, using EM algorithm or Mul-

tiple Imputation. Good references include Tanner (1993), Schafer (1997), Kenward

and Molenberghs (1998), and Little and Rubin (2002) among many others.

In this section, we extend the incomplete data bias analysis of the missing covariates

problem to the missing at random assumption. Under the covariate distribution

misspecification setting, the likelihood for working model fZ with complete data is

LZ ∝ fZ = fT |XC(t|x, c)fX(x)fC(c)h(r|x). (2.21)

Without loss generality the missing data mechanism is assumed to depend on variable

X only, and h(r|x) = h(r = 1|x)rh(r = 0|x)1−r.

The likelihood for incomplete data Y is given as

LY ∝ fY = f rT |XC(t|x, c)fX(x)f rC(c)h(r|x) (2.22)

with distribution fY =
∫
(y)
fZdz as the marginal model of the complete data model.

Since the missing data mechanism h(r|x) does not depend on missing variable C, so

the marginal model can ‘ignore’ this component, according to Definition 1. Thus there

is no technical difficulty to calculate the incomplete data bias. Below we will discuss

some special cases and explain the bias parameters. This can help us to understand

the source of incomplete data bias.
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2.4.1 Incomplete Data Bias

Under linear regression model (2.15), the estimation of parameters by maximising the

log-likelihood from incomplete data model (2.22) is biased and the incomplete data

bias is given as

bXC = εIY
−1EfZ{uXCsY } − εIZ

−1EfZ{uXCsZ}

= εIY
−1E{uXCER|X(sY )}

= εE{uXCsY |r=0h(r = 0|x)}

= εθc
IY
−1

σ2
Y

E(cuXCv0hx)

Put it simply, we use hx to represent the probability of missingness conditional on x:

hx = h(r = 0|x).

The difference with the MCAR section is that the weight hx in the integral

E(cuXCv0hx) =

∫
cuXCv0hxf(x)f(c)dxdc

is no longer a constant probability. But the misspecification εuXC has the same

meaning, and the incomplete data bias can be written as

bXC ≈ θc
IY
−1

σ2
Y

{EXC [cv0hx]− EX,C [cv0hx]}. (2.23)

when we put the quantity of εuXC = log f(x,c)
f(x)f(c)

into the integral. Now we are in-

terested in discovering the difference in bias models between MAR and MCAR, and

interpreting the factors that influence the incomplete data bias.

Since the missing data mechanism depends on x only and can be expressed as

hx = h(r = 0|x) + h′(r = 0|x)x+O(h′′(r = 0|x)) (2.24)

by Taylor’s series. It is easy to notice that the difference between MAR and MCAR

is the existence of the first order of the missing data mechanism h′(r = 0|x) and we

expect the incomplete data bias to be a function of it.

Specifically, if x is a scalar and follows a normal distribution x ∼ N(0, σ2
x), we can
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express incomplete data bias under MAR for a linear regression model as follows:

Theorem 2.1. For a linear regression model

t|(x, c) ∼ N(θ0 + θxx+ θcc, σ
2),

covariate C is partially missing with probability conditional on X: hx = h(r = 0|x).

The incomplete data bias for estimation of parameters θ = (θ0, θx, θc) is given as

bXC =
σx
σY

corr(t, c|x)corr(x, c)I−1
Y


E(h′x)

E(hx)

0

 . (2.25)

The proof is given in Appendix 2.7.4. The item E(hx) is considered the average of

missing probability, which can be approximated by the missing proportion of studies.

The item E(h′x) = 0 under MCAR, but does not equal to zero under MAR, which

illustrates the complexity from MCAR. It is the expectation of the first derivative of

the missing procedure, and can be calculated if a MDM model is specified. We show

one example below.

Assume that the MDM is a logistic linear model:

logit(h(r = 1|x;ψ)) = ψ0 + ψ1x. (2.26)

Then we can get a fairly precise approximation of incomplete data bias if we apply a

skew normal distribution in the integral. In the expression (2.25), we need to evaluate
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E(h′x):

E(h′x) =

∫
h′xf(x)dx

= −
∫
hxf

′(x)dx

x∼N(0,σ2
x)= −

∫
hx
−x
σ3
x

φ(
x

σx
)dx

=
1

σ3
x

∫
(1− h(r = 1|x))xφ(

x

σx
)dx

expit(x)≈Φ(vx)
≈ 1

σ3
x

∫
xφ(

x

σx
)dx− 1

σ3
x

∫
Φ(v(ψ0 + ψ1x))xφ(

x

σx
)dx

= −δ1φ(δ0) = λ

where we denote λ = −δ1φ(δ0) = E(h′x). Here δ0 = vψ0√
1+v2ψ2

1σ
2
x

, δ1 = vψ1√
1+v2ψ2

1σ
2
x

, φ(.)

and Φ(.) are the density function and cumulative distribution of the standard normal

distribution. Also, we use the approximation of expit(x) ≈ Φ(vx) with v as a constant

16
√

3/(15π). The cumulation under skew normal distribution is used in the last step

(see Arnold and Beaver, 2000).

Then the incomplete data bias can be approached by

bXC ≈
θcIY

−1

σ2
Y

cov(x, c)


λ

p

0

 . (2.27)

As we can see, the bias depends on the correlation between covariates corr(x, c), the

average missing proportion p and λ, where λ is the expectation of the first derivative

of the MDM model and depends on the parameter ψ1 in (2.26).

2.4.2 Simulation Study

Inference about the covariate bias is given in Theorem 2.1, but the covariate corre-

lation corr(x, c) is not given in practice, and the approximation in equation (2.27)

needs to be examined. So we conduct a simulation study to measure the sensitivity

of the bias parameters towards the estimation of parameter of interest. Complete
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data is generated by the following linear regression model

t = θ0 + θxx+ θcc+ e, e ∼ N(0, σ2)

where covariates (X,C) are multivariate normal distributed. The true values are

θ = (1, 1, 1), µx = µc = 0, σ2
x = 2 and σ2

c = 1, to make the confounder C about

the same scale as X. The correlation corr(x, c), denoted as ρ, takes different values

ρ = (0, 0.2, 0.5, 0.7) for different studies, to represent no correlation, small correlation,

medium correlation and strong correlation. We take the values of σ2 from U(0.16, 1)

to add on t variation, and we set the maximum of σ2 to be 1 such that the size of the

ratio θc
σ2
Y

= θc
θ2cσ

2
c+σ

2 is not too small (greater than 1/2). Here we repeat the simulation

study 100 times to reduce the errors, each with 20 observations.

Variable C is designed to be censored by the missing at random assumption, and the

logistic linear regression model (2.26) is chosen with ψ0 = 1 and ψ1 varied between (0,

-3) representing different censoring strengths. When ψ1 = 0, it will reduce to MCAR,

otherwise MAR. When ψ is too large or too small, the missing data mechanism will

be too extreme and out of our interest.

Figure 2.1 displays the censoring probability curve with different strength of ψ1.

When MDM is under MCAR (black line), the missing data probability is a constant,

and λ = 0 in bias expression (2.27). As the gradient ψ1 increases, the missing data

mechanism is more unlike MCAR; see the grey and red line for example. The effect

of ψ1 on incomplete data bias is shown by simulation results presented in Table 2.1.

For each fixed value of corr(x, c), the incomplete data bias increases with smaller ψ1,

which indicates the negative relation between the bias size and the parameter ψ1.

The evaluation of the bias works well when compared to simulation bias.

When there are no correlation between covariate variables, no bias exists under the

missing at random assumption. In the other cases, the incomplete data bias exists

due to the misspecification of covariate distribution. The relation between incomplete

data bias and variables correlation can be illustrated by Figure 2.2. Figure 2.2 (a)

indicates the MCAR problem (ψ1 = 0), when the correlation of X and C is ignored

incorrectly, and the bias exists. But if corr(x, c) = 0, we can ignore the missing data

mechanism specification, since the estimation of parameters θ will be independent

from ψ under the ignorable missing data assumption, as shown in Figure 2.2 (b).

Figure 2.2 (c) shows the case when the missingness indicator vector R is dependent

on X, while X is also correlated with C. In this situation, the misspecification of
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Figure 2.1: Curves h(r = 1|x) for various MDM models. Black line: MCAR with
h(r = 1) = expit(1); Blue: MAR with h(r = 1|x) = expit(1 − 0.1x); Grey: MAR
with h(r = 1|x) = expit(1− x); Red: MAR with h(r = 1|x) = expit(1− 3x).

(a) MCAR;
corr(x, c) 6= 0

(b) MAR;
corr(x, c)=0

(c) MAR;
corr(x, c) 6= 0

Figure 2.2: Picture of relationship between missingness indicator R with covariate
variables X and C.

f(x, c) causes bias, and the specification between R and X can not be ignored as it

indirectly ‘correlated’ with missing values of C. And additional bias may be induced

if we inference from a misspecified MDM model as we will show in the next chapter.

In all simulation studies, the missing proportion is ranged between 27% and 44% by

given ψ0 = 1. The estimation of parameter θ̂ is adjusted by the covariate bias(CB)

and the 95% confidence interval is calculated as (θ̂ − CB) ± 1.96

√
Var(θ̂) with the

reference distribution θ̂ ∼ N(θ,Var(θ̂)) assumed. The coverage probabilities (rates)

are then calculated for the 100 replications. The simulation results show that the

covariate bias is relatively large when there is medium or strong correlation between
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Table 2.1: Covariate bias under MAR
θ0 θx θc MP

corr(x, c) ψ1 EB(θ̂ − θ) CB CR(%) EB CB CR EB CB CR (%)
ρ=0 0 0.003 0 97 -0.001 0 96 -0.010 0 94 27

-0.1 0.003 0 98 0.001 0 95 -0.019 0 95 27
-0.3 0.002 0 97 0.001 0 96 -0.021 0 95 28
-0.7 0.002 0 98 0.001 0 94 -0.017 0 97 33
-1 0.005 0 98 0.002 0 96 -0.018 0 97 35
-2 0.002 0 98 -0.001 0 96 -0.023 0 98 41
-3 0.003 0 98 0.001 0 96 -0.022 0 98 44

ρ=0.2 0 0.001 -0.001 98 0.009 0.013 94 -0.015 -0.006 96 28
-0.1 0.003 0.003 98 0.012 0.012 94 -0.016 -0.005 97 27
-0.3 0.004 0.008 98 0.011 0.013 94 -0.020 -0.006 96 28
-0.7 0.015 0.014 98 0.015 0.011 93 -0.022 0.002 97 33
-1 0.019 0.021 97 0.017 0.016 96 -0.031 -0.006 96 35
-2 0.023 0.027 98 0.020 0.019 94 -0.033 -0.007 98 41
-3 0.026 0.030 98 0.021 0.021 96 -0.030 -0.009 99 43

ρ=0.5 0 -0.001 -0.017 97 0.031 0.013 90 -0.045 0.011 92 27
-0.1 0.006 0.006 97 0.031 0.043 90 -0.044 -0.051 93 27
-0.3 0.015 0.019 97 0.035 0.037 93 -0.049 -0.035 94 29
-0.7 0.034 0.039 97 0.045 0.029 91 -0.054 0.009 95 33
-1 0.039 0.059 98 0.047 0.054 91 -0.053 -0.058 94 35
-2 0.053 0.069 97 0.056 0.049 92 -0.063 -0.036 96 41
-3 0.052 0.082 97 0.052 0.066 91 0.056 -0.068 96 43

ρ=0.7 0 -0.001 -0.015 95 0.049 0.052 82 -0.079 -0.075 85 27
-0.1 0.006 -0.047 95 0.054 -0.053 81 -0.090 0.221 85 27
-0.3 0.021 0.033 97 0.062 0.078 80 -0.088 -0.110 87 28
-0.7 0.038 0.062 95 0.068 0.079 85 -0.095 -0.066 90 33
-1 0.045 0.087 95 0.073 0.096 83 -0.099 -0.143 88 35
-2 0.068 0.121 94 0.082 0.122 85 -0.093 -0.180 90 41
-3 0.066 0.144 90 0.086 0.131 84 -0.111 -0.202 89 44

MDM model h(r = 1|x) = expit(1−ψ1x). EB: Empirical bias (θ̂−θ) ; CB: Covariate bias
approximation bXC ; CR: coverage rate of adjusted estimator; MP: missing proportion.

X and C. Also the bias approximation works well comparing empirical bias with

estimated covariate bias, and CR is around 95% as we expect when corr(x, c) ≤ 0.5,

and the case with stronger correlations may be beyond the local analysis assumption.

2.5 GLMs with Ignorable Missing Data

In this section, we consider the fT |XC to be a generalized linear model (GLM). There

are quite a few literature discussing MLE for missing covariates in GLMs including

Fuchs (1982), Little and Schluchter (1985), Ibrahim (1990), Ibrahim et al. (1999), etc.

Quasi-likelihood approaches have been explored by Reilly and Pepe (1995), Lawless
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et al. (1999), and Tang et al. (2003).

Lin et al. (2012) argued that for nonlinear regression, if inference is to be based on

incomplete data with local analysis, the estimate of the parameter of interest may

bring additional marginal model bias.

We now consider a GLM with canonical form

fT |XC = exp{tπxc − b(πxc)
a(φ)

+ d(t, φ)}

where πxc = α + θx+ βc and the conditional expectation satisfies

EfT |XC
[t|x, c] = ξ(πxc) = b′(πxc)

where ξ(πxc) is the link function and b′(πxc) = ∂b(πxc)/∂πxc.

It is well known that when the link function is linear, ξ(πxc) = πxc, then coefficient

estimates are unbiased (Gail et al., 1984) under MAR; however, regressions with non-

linear link functions may lead to biased estimates, even in randomized experiments,

if covariates are missing. Much literature has discussed this problem, including Dox

(1972), Struthers and Kalbfleisch (1986) and Breslow and Lin (1995). Besides, Lin

et al. (2012) pointed out that marginal model bias exists thus double misspecification

should be considered. As we mentioned in the the previous sections, the working

model under incomplete data fY =
∫
(y)
fZdz is the marginal model of corresponding

distribution under complete data, or rather under the assumption (Copas and Eguchi

2005, p464): the components of θ which are fully identifiable from observations on

y under model fZ . Lin’s work is based on the consideration that when the working

model is not the marginal model for incomplete data, which happens for nonlinear

regression or GLM with nonlinear link function.

2.5.1 Incomplete Data Bias Analysis

Lin et al. (2012) proposed marginal model bias to measure the difference between the

actual working model under incomplete data and the marginal distribution, and their

discussion mainly focuses on the missing confounder problem. We follow their work

and extend it to the missing covariate problem.
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Recall the true distribution under complete data Z is

gZ = fT |XCfXC(x, c)h(r|x)

with missing data mechanism h(r|x) under MAR assumption. And the working model

is

fZ = fT |XCfX(x)fC(c)h(r|x).

While under incomplete data Y , the marginal distribution is

gY =

∫
(y)

gZdz

=

∫
(y)

fZ exp(εXCuXC)dz ≈ fY exp(εXCuXC|Y )

≈ f ∗Y exp(εXCuXC|Y ) exp(εMuM). (2.28)

Here the misspecification exp(εMuM) is the ratio between the marginal model and

the working model

exp(εMuM) =
fY
f ∗Y
.

In this way, the working model f ∗Y is regarded as ‘doubly misspecified’ from true

density gY with misspecification quantities separated into two parts:

εuY = εXCuXC|Y + εMuM .

For complete cases (r = 1), fYcc = fT |XCfXfCh(r|x) with

fT |XC = exp{tπxc − b(πxc)
a(φ)

+ d(t, φ)}

and incomplete cases (r = 0)

fYic =

∫
(y)

fZdz

=

∫
c

fT |XCfCdcfXh(r|x)

= fT |XfXh(r|x)
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where

fT |X =

∫
c

fT |XCfCdc

= exp{tπx − b(πx)
a(φ)

+ d(t, φ)}(1 +
1

2
β2σ2

c [(
t− ξ(πx)
a(φ)

)2 − ξ′(πx)

a(φ)
] +O(β4σ4

c ))

and let

f ∗T |X = exp{tξx − b(πx)
a(φ)

+ d(t, φ)} (2.29)

with link function

Ef∗
T |X

[t|x] = ξ(α + θx) = ξ(πx),

then the working model under incomplete data can be written as

f ∗Y = f rT |XCfXf
r
Ch(r|x)

with

f rT |XC =

 fT |XC , r = 1;

f ∗T |X , r = 0.

and

f rC =

 f(c), r = 1;

1, r = 0.

If we let πxcr = α + θx + rβc, then f rT |XC = exp{ tπxcr−b(πxcr )
a(φ)

+ d(t, φ)}. Thus the

incomplete data bias can also be decomposed into two components

bias = bM + bXC

with marginal bias given as

bM = εMEf∗Y (uMIY
∗−1sY

∗)

≈ β2σ2
c

2a(φ)
IY
∗−1EX{ξ′′(πx)v0hx}
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and covariate bias as

bXC = εXCEfZ (uXCIY
∗−1sY

∗)− εXCEfZ (uXCIZ
∗−1sZ

∗)

= εXC
IY
∗−1

a(φ)
EX,C{uXCv0[ξ(πxc)− ξ(πx)]hx}

=
IY
∗−1

a(φ)
[EXC{v0[ξ(πxc)− ξ(πx)]hx} − EX,C{v0[ξ(πxc)− ξ(πx)]hx}]

≈ βIY
∗−1

a(φ)
[EXC{cv0ξ′(πx)hx} − EX,C{cv0ξ′(πx)hx}]

The detailed proof is given in appendix 2.7.5.

2.5.2 Simulation Study

Now we conduct a simulation study for a logistic regression model

fT |XC = πtxc(1− πxc)1−t, πxc =
exp{α + θx+ βc}

1 + exp{α + θx+ βc}

with covariate distribution following a multivariate normal distribution. The mean

and variance of covariates are given as 0 and 1 respectively, with covariate variables

correlation ρ selected from (0, 0.3, 0.5) corresponding to no correlation, moderate

and strong correlation. Variable c is designed to be partially observed. The missing

data mechanism is under the ignorable assumption: h(r = 1|x) = expit(ψ0 + ψ1x).

The true values of parameters are (α, θ, β) = (1, 1, 1). We conduct 100 replications

and each has sample size of 100.

The empirical bias is defined as the average difference between the MLEs for incom-

plete data θ̂Y and true value θ, which is approximately approached by the incomplete

data bias as discussed. It contains two components: marginal bias bM and covariate

bias bXC . We are particularly interested in the size and direction of marginal bias.

As shown in Table 2.2, the marginal bias bM is always negative for all the studies

since the second derivation ξ′′(πx) < 0 for the logistic model, and it always exists even

when ρ = 0 and MCAR. It seems independent from the covariate correlation ρ as we

expected and mainly depends on the nonlinearity of the model and the missing data

mechanism. The size of marginal model bias decreases when the value of parameter

ψ1 in the MDM model gets larger. The estimation of covariate bias is similar to what
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we found in linear model simulation, which exists when ρ 6= 0, and it is also affected

by both correlation and missing data selection strength.

2.6 Discussion

The purpose of addressing bias analysis into the sensitivity analysis is to discover

and understand those uncertainty factors in the missing data problems. We usually

eliminated the uncertainties in the working models (to be identifiable) to obtain valid

inference, but the sensitivity of bias models should be considered in real trials and

we assessed it via bias parameters, such as corr(x, c).

In this chapter, we discussed both linear and GLM regression models with missing

covariate problems and misspecification of joint covariate density is considered. It is

interesting to notice that in some occasions (when there is no relationship between

missing confounder and other dependent variables), the missingness can be ignored

and bring no bias towards the estimation of parameter θ although the variance be-

comes larger as pointed out by Copas and Eguchi (2005). However it can not be

ignored in most of the cases. The covariate bias exists due to the lack of considera-

tion over the bias parameters sensitivity.

For a generalized linear model, the working model f ∗Y may be double misspecified from

true distribution gY with incomplete data Y . In this case, the additional marginal

bias is generated and requires adjustment. These biases are then calculated and the

sensitivity of MLEs on the bias parameters is presented in the simulation studies.

Beyond the examples we discussed, the local bias analysis can accommodate various

response regression models and covariates densities, under the condition of identifica-

tion. In this thesis, we use the maximum likelihood methods to estimate the parame-

ters, but when the calculation of parameters becomes difficult we may use numerical

computation methods such as Gaussian integral, MCEM, or Bayesian methods.
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Chapter 2. Local Sensitivity Analysis for Missing Covariates Problems

2.7 Appendix

2.7.1 Proof of Lemma 2.1

Suppose we fit the model fZ(z; θ) to a random sample of n observations from gZ , the

log-likelihood and score function are

l(z; θ) =
n∑
i=1

log(gZ(zi; θ)) =
n∑
i=1

log(fZ(zi; θ)) + εuZ(z; θ),

∂l

∂θ
=

n∑
i=1

sZ(zi; θ) + ε
∂uZ(zi; θ)

∂θ
. (2.30)

As θZ is the MLE of model fZ ,

n∑
i=1

sZ(zi; θ̂Z) = 0

and a Taylor expansion leads to

n∑
i=1

sZ(zi; θ) ≈
n∑
i=1

sZ(zi; θ̂Z) +
n∑
i=1

∂sZ(zi; θ̂Z)

∂θ
(θ − θ̂Z)

=
n∑
i=1

∂sZ(zi; θ̂Z)

∂θ
(θ − θ̂Z).

The equation (2.30) becomes

∂l

∂θ
≈

n∑
i=1

∂sZ(zi; θ̂Z)

∂θ
(θ − θ̂Z) + ε

∂uZ(zi; θ)

∂θ
. (2.31)

As n→∞, the expression (2.31) tends to 0, and so we have

EfZ (
∂sZ(zi; θgZ)

∂θ
)(θ − θ̂Z) + εEfZ (

∂uZ(zi; θ)

∂θ
) ≈ 0. (2.32)
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The first term in (2.32) is

EfZ (
∂sZ(zi; θ̂Z)

∂θ
) = −IZ .

The second term is

EfZ (
∂uZ
∂θ

) = −EfZ (uZsZ),

which can be easily derived by differentiating both sides of the following:

EfZ (uZ) =

∫
Z

uZfZdz = 0.

Expression (2.32) then becomes:

−IZ(θ − θgZ)− εEfZ (uZsZ) ≈ 0,

and this leads to

θgZ = argθ[Eg{sZ(z; θ)} = 0] ≈ θ + εI−1Z Ef{uZ(z; θ)sZ(z; θ)}.

in the sense of almost sure convergence. Similarly, if we are sampling from gY , the

limiting value of θ̂Y is

θgY = argθ[EgY {sY (y; θ)} = 0] ≈ θ + εI−1Y Ef{uY (y; θ)sY (y; θ)}.

Thus, the incomplete data bias can be defined as:

θgY − θgZ ≈ bθ = εEf [uZ(z; θ)I−1Y sY (y; θ)− I−1Z sZ(z; θ)]. (2.33)

2.7.2 Proof of Lemma 2.2

For a linear regression model under complete data Z = (T,X,C):

t = θ0 + θxx+ θcc+ e, e ∼ N(0, σ2).
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We consider the scalar confounder C totally missing. And incomplete data Y =

(T,X):

t = θ0 + θxx+ e, e ∼ N(0, σ2 + θ2cσ
2
c ).

Assume X ∼ N(0, σ2
x), C ∼ N(0, σ2

c ), and denote ρ=corr(x, c), the log-likelihood

under complete data Z and incomplete data Y are

lZ = − log(σ2)− (t− θ0 − θxx− θcc)2

2σ2
, (2.34)

lY = − log(σ2 + θ2cσ
2
c )−

(t− θ0 − θxx)2

2(σ2 + θ2cσ
2
c )

(2.35)

respectively. The θx-component of the score function sZ and sY are

sZ =
(t− θ0 − θxx− θcc)x

σ2
,

sY =
(t− θ0 − θxx)x

(σ2 + θ2cσ
2
c )

respectively, and the information matrices (diagonal) of fZ and fY for θx-component

are

IZ = EfZ (−∂l2/∂θxθx) = E(
x2

σ2
) =

σ2
x

σ2
,

IY = EfY (−∂l2/∂θxθx) = E(
x2

σ2 + θ2cσ
2
c

) =
σ2
x

σ2
Y

where σ2
Y = σ2 + θ2cσ

2
c . According to Lemma 2.1,

b = εI−1T |XEfZ (sT |XuXC)

= ε(
σ2
Y

σ2
x

)EfZ (
(t− θ0 − θxx)xuXC

σ2
Y

)

= ε(
σ2
Y

σ2
x

)EfZ (
(θcc+ e)xuXC

σ2
Y

)

= εθcσ
−2
x EfZ (cuXCx)

as we assume that e and (x, c) are independent, thus

EfZ{exuXC} = 0.
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The size of the standardized bias is now

b2IY = b2(
σ2
x

σ2
Y

) =
ε2θ2c
σ2
Y

(EfZ (cuXCx))σ−1x EfZ (cuXCx)

≤ ε2θ2c
σ2
Y

EfZ (cx)2σ−2x EfZ (u2XC).

The equation is held when uXC = cdx for some constant vector d. While exp{εuXC} =
f(x,c)
f(x)f(c)

= f(x)f(c|x)
f(x)f(c)

= f(c|x)
f(c)

, so f(c|x) = exp(εcdx)f(c). This means that for small ε

the conditional distribution of c given x is approximately

gC|X ∼ N(εσ2
cdx, σ

2
c ). (2.36)

So c becomes

c ≈ εσ2
cdx+ ec, ec ∼ N(0, σ2

c )

where ec is independent of x. Here variable X is just scalar, in which case the

correlation between c and x that is implied by distribution (2.36) is εσcdσx.

EfZ (cx)2 = EfZ{(εσ2
cdx+ ec)

2x2}

= EfZ{ε2σ4
c (dx)2x2 + 2εσ2

cdx
2ec + e2cx

2}

= ε2σ4
cd

23σ4
x + σ2

xσ
2
c

≈ σ2
xσ

2
c ,

and the approach is true when ε is supposed to be small. Similarly,

EfZ (c2d2x2) ≈ d2σ2
xσ

2
c .

The upper bound would be

ε2θ2c
σ2
Y

EfZ (cx)2EfZ (cdx)2σ−2x

=
ε2θ2c
σ2
Y

d2(σ2
xσ

2
c )

2σ−2x

= (εσcdσx)
2 θ

2
cσ

2
c

σ2
Y

.
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The correlation between t and c give x is

corr(t, c|x)2 =
θ2cσ

2
c

σ2
Y

. (2.37)

And

corr(x, c) = εσcdσx. (2.38)

So the size of the squared standardized bias is bounded by

b2IY ≤ corr2(t, c|x)corr2(x, c). (2.39)

If the sample size is n, then I−1Y ≈ nvarf (θ̂x), so

b2

nvarf (θ̂x)
≤ corr2(t, c|x)corr2(x, c). (2.40)

When ρ = 0, the incomplete data bias equals to 0.

2.7.3 Proof of the Marginal Model

To prove fY as the marginal model of fZ , we need to prove fT |X =
∫
fT |XCfCdc.

From Equation (2.5) and (2.6), we have

fT |XC =
1√
2πσ

exp{−(t− θ0 − θxx− θcc)2

2σ2
}, (2.41)

and

fT |X =
1√

2π(σ2 + θ2cσ
2
c )

exp{−(t− θ0 − θxx)2

2(σ2 + θ2cσ
2
c )
}. (2.42)
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For the cases with missing data:∫
fT |XC(t;x, c)fC(c)dc

=

∫
1√
2πσ

exp{−(t− θ0 − θxx− θcc)2

2σ2
} 1√

2πσc
exp{− c2

2σ2
c

}dc

=
1√
2πσ

1√
2πσc

∫
exp{−(t− θ0 − θxx)2

2σ2
i

+
2θcc(t− θ0 − θxx)

2σ2
− θ2cc

2

2σ2
− c2

2σ2
c

}dc

=
1√
2πσ

1√
2πσc

exp{−(t− θ0 − θxx)2

2σ2
}
∫

exp{2θcc(t− θ0 − θxx)

2σ2
− θ2cc

2

2σ2
− c2

2σ2
c

}dc

=
1√
2πσ

exp{−(t− θ0 − θxx)2

2σ2
}

√
σ2

θ2cσ
2
c + σ2

exp{θ
2
cσ

2
c (t− θ0 − θxx)2

2σ2(θ2cσ
2
c + σ2)

}

=
1√

2π(σ2 + θ2cσ
2
c )

exp{−(t− θ0 − θxx)2

2(σ2 + θ2cσ
2
c )
}.

That is fT |X =
∫
fT |XCfCdc. The proof can be easily extended to multi-dimensional

variables of x.

2.7.4 Proof of Theorem 2.1

According to equation (2.23), the incomplete data bias under MAR is

bXC ≈ θc
IY
−1

σ2
Y

{EXC [cv0hx]− EX,C [cv0hx]}.

The missingness relies on observed covariate variable x, and it is assumed to be normal

distributed x ∼ N(0, σ2
x). Then the item

EXC [cv0hx]− EX,C [cv0hx]

= EX [v0hx{EC|X(c)− EC(c)}]

= ρ
σc
σx
EX [xv0hx)]

Let h′(r = 0|x) = ∂h(r=0|x)
∂x

as the first derivative for h(r = 0|x). And denote φ(.),

Φ(.) as the standard normal Probability density function and Cumulative distribution
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function. The component

E(xhx) =

∫
xhxfxdx

= −
∫
h′x

∫ x

−∞
xfxdx

= σx

∫
φ(

x

σx
)h′xdx

= σ2
xEX(h′x)

and

E(x2hx) =

∫
x2hxfxdx

= σ2
xhx→∞ −

∫
h′x

∫ x

−∞
x2fxdx

= σ2
xhx→∞ −

∫
h′x[σxxφ(

x

σx
) + σ2

xΦ(
x

σx
)]dx

= σ2
xhx→∞ + σx

∫
h′xxfxdx− σ2

x

∫
h′xΦ(

x

σx
)dx

= σ2
xhx→∞ − σ2

x

∫
h′′x

∫ x

−∞
xfxdxdx− σ2

x[hx→∞ −
1

σx

∫
hxφ(

x

σx
)dx]

= σ2
x[EX(hx) +

∫
h′′xfxdx] = σ2

x[EX(hx) + EX(h′′x)].

If the second derivative h′′(r = 0|x) of MDM is small, then the bias has an approxi-

mation

bXC =
θcI
−1
Y

σ2
Y

cov(x, c)


EX(h′x)

EX(hx)

0

 .

2.7.5 Proof of Incomplete Data Bias for GLMs under MAR

For the models under complete data:

gZ = fT |XCfXCh(r|x);

fZ = fT |XCfXfCh(r|x)
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and the corresponding marginal model under incomplete data is gY , fY which is shown

in equations (5.3). The actual working model is

f ∗Y = f rT |XCfXf
r
Ch(r|x).

Lin et al. (2012) give the marginal model bias bM = εMEf∗Y (uMIY
∗−1sY

∗). Two

misspecification functions (MF) are involved between the true distribution gZ and

working model f ∗Y .

MF 1 : exp(εXCuXC) =
gZ
fZ

; exp(εXCuXC|Y ) =
gY
fY

;

MF 2 : exp(εMuM) =
fY
f ∗Y

;

where uXC|Y = Ef∗Z (uXC |Y ).

Let lT |XC = log(fT |XC), and l∗T |X = log(f ∗T |X), so that we have

∫
t

fT |XCdt = 1,
∂fT |XC
∂πxc

= l′T |XCfT |XC ,

and ∫
t

f ∗T |Xdt = 1,
∂f ∗T |X
∂πx

= l∗
′

T |Xf
∗
T |X ,

where l′T |XC =
∂lT |XC

∂πxc
and l∗

′

T |X =
∂l∗

T |X
∂πx

. So the score function under incomplete data

is

sY
∗ = l∗

′

T |XCr


1

x

cr



=
t− ξ(πxcr)

a(φ)


1

x

cr


where

l∗
′

T |XCr =

 lT |XC , r = 1;

l∗T |X , r = 0.
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We are fitting f ∗Y to a random sample of n observations from gY , and the limiting

value of the MLE θ̂Y as n→∞ is

θgY = argθEg[sY
∗ = 0]

≈ θ + εXCEf∗Y [uXC|Y IY
∗−1sY

∗] + ε∗Ef∗Y [u∗Y IY
∗−1sY

∗].

Here we have

εXCEf∗Y [uXC|Y IY
∗−1sY

∗] ≈ εXCEfZ [uXCIY
∗−1sY

∗]

as

εXCEf∗Y [uXC|Y IY
∗−1sY

∗]

≈ εXC

∫
(y)

uXC|Y IY
∗−1sY

∗f ∗Y exp(1− εMuM)dy

≈ εXC

∫
(y)

uXC|Y IY
∗−1sY

∗f ∗Y dy −O(εXCεM)

≈ εXCEf∗Z [uXCIY
∗−1sY

∗].

Then the incomplete data bias is

b ≈ θgY − θgZ
= εXCEfZ [uXC{IY ∗−1sY ∗ − IZ∗−1sZ∗}] + εMEf∗Y {uMIY

∗−1sY
∗}

with

bXC = εXCEfZ [uXC{IY ∗−1sY ∗ − IZ∗−1sZ∗}];

bM = εMEf∗Y {uMIY
∗−1sY

∗}.
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First for misspecification problem of covariate distribution, covariate bias bXC is :

bXC = εXCEfZ [uXC{IY ∗−1sY ∗ − IZ∗−1sZ∗}]

= εXCIY
∗−1EfZ [uXCsY

∗]

= εXCIY
∗−1EfZ [uXC l

∗′
T |XCr


1

x

cr

]

= εXCIY
∗−1EfZ{uXC [

t− ξ(πxcr)
a(φ)

]


1

x

cr

}
=

IY
∗−1

a(φ)
EXC{v0[ξ(πxc)− ξ(πx)]hx} −

IY
∗−1

a(φ)
EX,C{v0[ξ(πxc)− ξ(πx)]hx}

≈ β
IY
∗−1

a(φ)
EXC{cv0ξ′(πx)hx} − β

IY
∗−1

a(φ)
EX,C{cv0ξ′(πx)hx}

since ET |XC(l′T |XC) = 0.

And

bM = εMEf∗Y {uMIY
∗−1sY

∗}

= Ef∗Y {log
f ∗Y
f ∗Y
IY
∗−1sY

∗}

= Ef∗Y {log
fT |X
f ∗T |X

IY
∗−1sY |r=0

∗hx}

≈ IY
∗−1E{1

2
β2σ2

c [(l
′
T |X)2 + l

′′

T |X ]l′T |Xv0hx}

=
1

2
β2σ2

cIY
∗−1Efx{Ef∗T |X [l∗

′

T |X ]3v0hx}

=
β2σ2

c

2a(φ)
IY
∗−1Efx{ξ

′′
(πx)v0hx}.
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Chapter 3

Local Sensitivity Analysis for

Misspecified Missing Data

Mechanism

3.1 Introduction

The majority of the literature handles the missing data problem through a selection

model (Little and Rubin, 2002) f(D,R; θ, ψ) = f(D; θ)f(R|D;ψ), and inference is

based on probability distribution f(D; θ) that fit the observations on the variables

and the observation process, or rather missing data mechanism (MDM) f(R|D;ψ).

The assumptions of ignorable and parametric modelling are the most frequently ref-

erenced, for example, a logistic linear model. This literature includes Scott and Wild

(2002) with missing data in a case-control study discussed, Chen et al. (2010) consid-

ering missing response and missing covariate problems with longitudinal study and

Ibrahim et al. (1999) with generalized linear regression models. Lu and Copas (2004)

stated: ‘A closely related, but logically distinct, concept is ignorability’. Rubin (1976)

pointed out that, when making sampling distribution inferences about the parame-

ter of the data θ, it is appropriate to ignore the process that causes missing data if

the missing data are ‘missing at random’. However, we should be aware that those

inferences may have problems if models are misspecified, and an uncertainty analysis

is then necessary to be considered in practice.
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3.1.1 Uncertainty Problems for MDM

Basically, the uncertainty problem is not commonly discussed under ignorable miss-

ingness as the parameters involved are identifiable and thus ‘can’ be estimated. How-

ever, the inference with the ‘ignorable’ assumption is based on belief in the correctly

specified distributions and missing data mechanism, or rather the trust of the working

model. But knowledge is often limited as a result of the lack of randomization or lack

of observations, e.g., or because assumptions are not proposed properly (failure of

trial design). In these cases, the conventional analysis may encounter problems, and

it may be better to discuss the sensitivity analysis for the potential uncertainties.

When we reconsider the missing covariates problem, we see that the true covariate

distribution and missing data mechanism are actually unknown in practice. And

our usual model assumptions may be questioned in some occasions. One example

is US Federal Highway Administration Data in 2001 as we will discuss in Section

3.4. Data are collected in each state of the USA, and a linear regression model is

assumed by Weisberg (2005) to explain the fuel consumption against four covariate

variables: Federal-aid highway miles, personal Income, Drivers number and state

gasoline tax. An incomplete data set will be designed artificially by dropping some of

the income values with an ignorable missing data model. The covariate distribution

is required to make the bias adjustment for MLEs, or perform multiple imputation for

the ‘missing’ values. It can usually be specified as a parametric model based on the

observations in complete cases since f(Dmis|Dobs, R) = f(Dmis|Dobs) under ignorable

missing data assumption (see e.g. Rubin, 1987; Molenberghs et al., 2008). However,

we notice for some trials especially with small sample sizes, that approach may not

be valid for identifying a parametric conditional model on the complete cases. In

this case, the missing data mechanism modelling should be considered carefully since

misspecification of MDM may bring in additional bias, which is named as missing

data mechanism bias in this thesis. In this way ‘ignorable’ missingness assumption

can no longer be ‘ignored’.

The rest of the chapter is arranged as follows. We will discuss the MDM misspeci-

fication problem generally in Section 3.2, and use the incomplete data bias analysis

to assess the influence of uncertainty in Section 3.3. Then we will consider three ex-

amples. Section 3.4 will discuss the fuel consumption data example (with incomplete

data designed under MAR), and local bias analysis is performed comparing with other

methods without concern of uncertainty issue. We further consider a study in Section
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3.5.1 when the missing data mechanism is assumed as MCAR but the true model is

under MAR. The missing data mechanism bias will be induced. And Section 3.5.2

will discuss complex missing data mechanisms, and working from a logistic linear

model as usual may result in bias. Both covariate bias and missing data mechanism

bias are investigated by simulation studies.

3.2 Bias Models with Misspecified MDM

Now we recall missing covariate problems. Complete data Z contains (T,X,C,R)

and incomplete data is Y = (T,X,C(r), R) with C partially missing, and R is the

indicator vector of missingness.

The data generating model under Z is:

gZ = fT |XC(t|x, c; θ)fXC(x, c)h(r|t, x, c). (3.1)

The regression model fT |XC can be any regression model and h(r|t, x, c) represents

the missing data mechanism, which is allowed to be ignorable or non-ignorable. The

working model (assuming MDM model is h1(r|t, x)) is :

fZ = fT |XC(t|x, c; θ)fXC(x, c)h1(r|t, x) (3.2)

with the misspecification of MDM as:

exp{εRuR} =
h(r|t, x, c)
h1(r|t, x)

. (3.3)

Here h1(r|t, x) is supposed to be identifiable and usually selected as a parametric

model (e.g. logistic linear model under MAR). When we further consider the covariate

density uncertainty, we can assume that X and C are independent:

f ∗Z = fT |XC(t|x, c; θ)fX(x)fC(c)h1(r|t, x) (3.4)

with misspecification of covariate distribution:

exp{εXCuXC} =
fXC(x, c)

fX(x)fC(c)
. (3.5)
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Thus we can write another general form for gZ

gZ = fZ exp(εRuR) = f ∗Z exp(εXCuXC) exp(εRuR).

Here (εXC , εR) can be thought of as the ‘magnitude’ of misspecifications, and (uXC , uR)

can be thought of as the ‘direction’ of misspecifications. The two misspecifications

exp{εXCuXC} and exp{εRuR} correspond to two uncertainty issues: the uncertainty

of covariates distribution and the uncertainty of MDM.

We first consider the uncertainty of MDM based on the true distribution for [XC] :

gZ → fZ , and this step actually can transpose the non-ignorable missingness into ig-

norable missingness, the non-identifiable issue into identifiable. Next we will measure

the uncertainty of covariates distribution under identifiable model f ∗Z as previously

discussed. The illustration graph of the bias models is given in Figure 3.1. The arrows

from gZ to f ∗Z indicate the model misspecifications, i.e. MDM misspecification (uR)

and covariate distribution misspecification (uXC). The arrows from complete data to

incomplete data (e.g. gZ → gY ) indicate that the corresponding model for Y is the

marginal density of Z. Also the marginal distribution misspecification as discussed

under GLMs (see Section 2.5) is illustrated by f ∗Y → f ∗∗Y . Those different type of

biases will be discussed in the next section.

gZ

uR
fZ

uXC
fZ
∗

gY

uR|Y

fY
uXC|Y

fY
∗

uM
fY
∗∗

marginal

Figure 3.1: Bias models with misspecifications.
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For incomplete data Y = (T,X,C(r), R), the data generating distribution is

gY =

∫
(y)

gZdz

=

∫
(y)

fZ exp(εRuR)dz ≈
∫
(y)

fZ + fZεRuRdz

= fY +

∫
(y)

fZεRuRdz
uR|Y =EfZ

(uR)

≈ fY exp(εRuR|Y )

or gY
fZ=f∗Z exp(εXCuXC)

≈
∫
(y)

f ∗Z exp(εXCuXC)dZ +

∫
(y)

fZεRuRdz

≈
∫
(y)

f ∗Z(1 + εXCuXC)dZ + fY εRuR|Y

uXC|Y =Ef∗
Z
(uXC)

= f ∗Y + f ∗Y εXCuXC|Y + fY εRuR|Y

≈ f ∗Y exp(εXCuXC|Y ) exp(εRuR|Y )

where

f ∗Y =

∫
(y)

f ∗Zdz

is the marginal model of f ∗Z on Y and

fY =

∫
(y)

fZdy

=

∫
(y)

f ∗Z exp(εXCuXC)dz

≈
∫
(y)

f ∗Z(1 + εXCuXC)dz

≈ f ∗Y exp(εXCuXC|Y )

is the marginal model of fZ on Y . And uXC|Y = EfZ∗ (uXC |Y ); uR|Y = EfZ (uR|Y ).

The actually working model under incomplete data is f ∗Y given by

f ∗Y = f rT |XC(t|x, c(r); θ)fX(x)f rC(c)h1(r|t, x) (3.6)
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with

f rC(c) =

 fC(c), r=1;

1, r = 0.

and

f rT |XC(c) =

 fT |XC , r=1;

fT |X , r=0.

If we further consider the marginal misspecification from f ∗Z to f ∗Y , the bias analysis

will be more complicated and we will have discussion later.

3.3 Incomplete Data Bias

We denote bXC and bR as the incomplete data bias components caused by misspecified

covariates association and misspecified missing data mechanism.

The following theorem gives formula on how to calculate the bias.

Theorem 3.1. The data generating distribution for complete data Z is noted as

gZ = gZ(z; θ, εR, εXC , uR, uXC) = f ∗Z(z; θ) exp{εXCuXC} exp{εRuR}

where f ∗Z is the working model, and the limiting value of MLE is denoted θgZ. Cor-

respondingly, the sampling distribution under incomplete data Y is gY which is the

marginal model of gZ:

gY = f ∗Y (y; θ) exp{εRuR|Y } exp{εXCuXC|Y }

where uXC|Y = Ef∗Z (uXC(z; θ)|Y ) and uR|Y = EfZ (uR(z; θ)|Y ). So we use the model

f ∗Y (y; θ) to fit the observations sampling from gY , the limiting value of MLE under Y

is denoted θgY . Using Lemma 2.1, the incomplete data bias bθ under the identifiability

condition is given by

bθ ≈ θgY − θgZ
= εXCI

∗
Y
−1Ef∗Z [uXCs

∗
Y ]− εXCI∗Z

−1Ef∗Z [uXCs
∗
Z ] + εRI

∗
Y
−1EfZ (uRs

∗
Y )− εRI∗Z

−1EfZ (uRs
∗
Z)

63



Chapter 3. Local Sensitivity Analysis for Misspecified Missing Data Mechanism

with s∗Y and I∗Y as score function and information matrix under model f ∗Y , while s∗Z
and I∗Z are under f ∗Z.

The proof of theorem is given in Appendix 3.7.1.

In theorem 3.1, gZ is non-negative and integrates to 1 up to and including first-order

terms in (εRuR, εXCuXC) and it is distributed in the neighbourhood of f ∗Z .

Correspondingly, gY has a distribution in the neighbourhood of f ∗Y ,

gY ≈ f ∗Y exp(εRuR|Y ) exp(εXCuXC|Y ).

Based on the argument given around Figure 3.1, two types of biases need to be

considered. One is caused by the misspecified MDM and the other is caused by the

misspecified distribution for [XC]. Thus first two terms in the bias expression is

described as covariate bias:

bXC = εXCI
∗
Y
−1Ef∗Z [uXCs

∗
Y ]− εXCI∗Z

−1Ef∗Z [uXCs
∗
Z ],

and the last two terms as MDM bias:

bR = εRI
∗
Y
−1EfZ (uRs

∗
Y )− εRI∗Z

−1EfZ (uRs
∗
Z).

The bias bXC is mainly caused by the correlation of observed covariates X and missing

covariate C, while the bias bR is mainly caused by the non-identifiability of missing

data mechanism.

When we consider the non-ignorable missing data problem, the working model may

be wrongly assumed to be MAR. In this case MDM bias will be calculated differently.

This problem will be discussed in Chapter 5.

For nonlinear model or GLM model, we need to consider the marginal model bias as

well; see Figure 3.1 (f ∗Y → f ∗∗Y ). The discussion is similar to that in Section 2.5.
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3.4 Fuel Consumption Data Example

US Federal Highway Administration published fuel consumption data over 50 United

States and the District of Columbia in 2001; it was analysed in Weisberg (2005)

(Chapter 1, page 15). The aim of the research is to understand the effect on fuel con-

sumption (T ) with Federal-aid highway miles (X1), personal Income (X2), Drivers

number (X3) and state gasoline tax (X4). Summarized variables after using transfor-

mation and standardization are listed in Table 3.1. The linear regression model with

parameter θ = (θ0, θ1, θ2, θ3, θ4)
T estimated using complete data is

t̂ = 154.19 + 18.55x1 − 6.14x2 + 0.47x3 − 4.23x4.

Table 3.1: Variables in fuel consumption data
FuelC Gasoline sold for road use, thousands of gallons
State State name
Pop 2001 population age 16 and over
Miles Miles of Federal-aid highway miles in the state
Drives Number of licensed drivers in the state
Fuel (T ) 1000 × FuelC/Pop
logMiles (X1) Base-two logarithm of Miles
Income (X2) Per person personal income for the year 2000, in thousands of dollars
Dlic (X3) 1000 × Drivers/Pop
Tax(X4) Gasoline state tax rate, cents per gallon

Source: Highway Statistics 2001. http://www.fhwa.dot.gov/ohim/hs01/index.htm.

We find the relevance of regression relationship between fuel and the other variables

in Figure 3.2, also the correlation between some covariates. The correlation matrix

is listed in Table 3.2.

Table 3.2: Correlation of covariates in fuel consumption data

Logmiles (X1) Income (X2) Dlic (X3) Tax (X4)
Logmiles (X1) 1.000 -0.296 0.031 -0.044

Income (X2) -0.296 1.000 -0.176 -0.011
Dlic (X3) 0.031 -0.176 1.000 -0.086
Tax (X4) -0.044 -0.011 -0.086 1.000

Bias analysis for incomplete data:
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Figure 3.2: Scatterplot matrix for fuel consumption data

We design the incomplete dataset by letting Income (X2) be missing with probability

h(r = 0|x1) = 1− expit(1+0.5(x1− x̄1)− (x1− x̄1)2) where x̄ is the average E(x) and

r is the indicator for missingness of Income, which equals 1 when data is observed or

0 otherwise. Then we obtain incomplete data Y = (T,X1, X
(r)
2 , X3, X4)

1. To make

it identifiable, we assume corr(x2, xi) = 0, for i = 1, 3, 4. Using incomplete data Y

parameter θ can be estimated by ML method (denoted as θgY ):

L ∝ fY = f(t|x1, x(r)2 , x3, x4)f(x1, x3, x4)f(x
(r)
2 )h(r|x1).

This is the marginal model of fZ = f(t|x1, x2, x3, x4)f(x1, x3, x4)f(x2)h(r|x1) on com-

plete data.

Bias analysis for misspecified models with missing data is conducted and bias of θ̂gY

is given as:

Bias(θ̂gY ) = θ2
IY
−1

σ2
Y

E{x2v0h(r = 0|x1)} (3.7)

with v0 = (1, x1, 0, x3, x4)
T . Given the variable correlations listed in Table 3.2, the ad-

1Raw data and a simulated incomplete data are presented in Appendix 3.7.2
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justed estimation θ̂ can be calculated by using this formula and the results are shown

in Table 4.3. Given the MDM model, the incomplete data bias (θgZ − θgY ) measures

the misspeficiation of covariate distribution. As noticed, the covariate bias for θ1 is

significantly affected by the correlation between covariates; the other estimators are

slightly biased, because of the small correlations between those variables.

Besides, we conduct complete case (CC) analysis and multiple imputation (MI) anal-

ysis with Bayesian linear regression imputation (‘mice’ in software R) method (van

Buuren and Groothuis-Oudshoorn, 2011). The complete case estimation is seriously

biased, which interprets the influence of personal Income toward fuel consumption in

the wrong direction. Estimation based on multiple imputation method with MAR as-

sumption works better than complete case analysis. But the bias is also large. These

two methods provide the results without concern on model uncertainty, and reflect

the necessary to consider the potential misspecifications.

Table 3.3: Simulation study result

θ0 θ1 θ2 θ3 θ4
θ̂gZ 154.193 18.545 -6.135 0.472 -4.228
SE 194.906 6.472 2.194 0.129 2.030

θ̂gY Given MDM 149.762 22.581 -6.404 0.484 -4.802
1.MCAR 147.029 24.212 -7.299 0.480 -5.203
2.Logit Linear 148.535 22.788 -7.306 0.473 4.088
3.GAM(Nonp) 148.557 22.312 -7.326 0.471 -5.246

Others MI 155.176 11.808 -8.300 0.393 -5.474
CC 164.041 -1.247 -6.998 0.331 -7.689

Note: θ̂gZ is calculated based on complete dataset, with the standard error ‘SE’. θ̂gY
is the estimation without adjustment of incomplete data bias. Three fitting models
for MDM are considered: MCAR, logistic linear model and generalized additive model
2 (Hastie and Tibshirani, 1990) with nonparametric method; adjusted estimations are
given respectively. Multiple imputation (MI) is performed under MAR with ‘mice’ (i.e.
Bayesian linear regression method) in R software and CC is complete case analysis.
Simulation study is repeated 100 times.

The generalized additive model is similar to generalized linear model, where an
exponential family distribution is specified for the response variable T (for example
normal, binomial or Poisson distributions) along with a link function ξ relating the
expected value of T to the predictor variables via a structure such as

ξ(E(Y )) = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm)

where xi, i = 1 . . .m are predictor variables and the ‘smooth functions’ fi(xi) may be
specified parametrically (e.g. polynomial) or non-parametrically.
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Covariate distribution uncertainty:

We noticed that the calculation of incomplete data bias in formula (3.7) requires the

specification of the conditional distribution f(x2|x1, x3, x4). And it can usually be

specified on complete cases under ignorable missingness:

f(x2|x1, x3, x4) = f(x2|x1, x3, x4, r = 1), (3.8)

but it is not always certainly going to have the density ‘f’ calculated accurately be-

cause of a lack of randomization, especially in a trial with small sample size (Stubben-

dick and Ibrahim, 2003). For example, when we fit the conditional density as a normal

distribution 3

x2|(x1, x3, x4) ∼ N(γ0 + γ1x1 + γ3x3 + γ4x4, τ
2)

The estimators of parameter γ = (γ0, γ1, γ3, γ4, τ
2) under complete cases by distribu-

tion f(x2|x1, x3, x4, r = 1;γ) are actually ‘biased’ from under all cases f(x2|x1, x3, x4;γ);

as shown in Table 3.4. And correspondingly the crucial variable correlations such as

corr(x1, x2) are not precisely estimated, e.g. ĉorr(x1, x2) =-0.552 based on modelling

strategy (3.8). See Figure 3.3 for estimations from 100 repeated studies. Although

the estimators for γ is not seriously biased (which may because the normal distribu-

tion is a good fit, see footnote) as shown in Table 3.4, the evaluation of the covariate

correlations have moderate bias. In this case, the sensitivity analysis is necessary to

be realistically considered to evaluate those bias parameters.

Table 3.4: Parameter estimation for conditional covariate density

γ0 γ1 γ2 γ3
all cases MLE 28.403 -0.875 -0.010 -0.037

SE 0.604 0.411 0.008 0.135
p-value 0.000 0.038 0.222 0.783

complete cases MLE 28.066 -0.724 -0.014 -0.039
SE 0.967 1.125 0.014 0.189

p-value 0.000 0.456 0.351 0.591

3Since x2 is the personal income, normal distribution seems a reasonable assumption, and the
p-values of Shapiro Wilk normality test for regression residuals based on all cases and complete cases
are 0.373 and 0.989 respectively.
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Figure 3.3: Estimation of correlations.

Missing data mechanism uncertainty:

As indicated by Theorem 3.1, once the uncertainty issue exists in specifying covariate

distributions, the missing data mechanism modelling is required. Since true missing

data mechanism h(r|x1) is unknown in missing data problems, we consider different

MDM working models, for example: 1) MCAR; 2) logistic linear model; and 3) gen-

eralized additive model (Hastie and Tibshirani, 1990) with non-parametric method.

Simulation results are listed in Table 3.3. It shows the existance of MDM bias, al-

though not serious in this example, and we should always bear this problem in mind.

We also found that the non-parametric fitting is one of best considerations for complex

missing data mechanism models (e.g. logistic quadratic model used in this simula-

tion study) and fitting by MCAR and logistic linear model will be misspecified. The

benefit of using non-parametric model will also be discovered in the non-ignorable

examples.
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3.5 Numerical Results under Misspecified MDM

3.5.1 An Example: MAR-MCAR

The misspecification problem of covariate density has been discussed in Chapter 2,

and in this section we will address the MDM misspecification for a specific example

when the true MDM is under MAR but is wrongly supposed as MCAR.

Assume a linear model

t|(x, c) ∼ N(α + θx+ βc, σ2)

with C partly missing. Covariate X has a Bernoulli distribution X ∼ B(1, px):

x =

 1, px;

0, 1-px.

with density function as f(x) = pxx(1− px)1−x. Then E(x) = px and σ2
x = px(1− px).

The assumption of missingness for C is MAR and it depends on X through a logistic

form:

logit{h(r = 1|x)} = ψ0 + ψ1x.

Under MCAR assumption, we have h(r = 1|x = 1) = h(r = 1|x = 0), but when

the true MDM is MAR: h(r = 1|x = 1) = expit(ψ0 + ψ1) while h(r = 1|x =

0) = expit(ψ0). We denote π1 = h(r = 1|x = 1) and π0 = h(r = 1|x = 0), thus

ψ1 = logit(π1) − logit(π0), which describes the difference of observed probability on

different values of x, and it also reflects the departure from MCAR to MAR. We still

use the notation hx = h(r = 0|x) for simiplicity. Using formula (2.23), we have

EXC(chx)− EX,C(chx)

= EX [hxEC|X(c)]− EC(c)EX(hx)

= EX [hxρ
σc
σx

(x− E(x))]

= ρ
σc
σx
{EX(xhx)− E(x)EX(hx)}

= ρ
σc
σx

[pxπ1 − pxπ]

= cov(x, c)(π1 − π0),
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where the marginal density E(hx) is calculated as:

π = E(hx) = pxh(r = 0|x = 1) + (1− px)h(r = 0|x = 0)

= pxπ1 + (1− px)π0.

Similarly

EXC [cxhx]− EX,C [cxhx]

= EX [xhxEC|X(c)]− EX [xhx]EC(c)

= ρ
σc
σx
{EX(x2hx)− E(x)EX(xhx)}

= ρ
σc
σx

(pxπ1 − pxpxπ1)

= cov(x, c)π1.

Then incomplete data bias under MAR is

b =
βcov(x, c)

σ2
Y

I−1
Y


π1 − π0
π1

0

 . (3.9)

If π1 = π0 = π, it reduces as MCAR, and the incomplete data is expressed as:

bXC =
β

σ2
Y

I−1
Y E(cuXCv0π) =

βcov(x, c)

σ2
Y

I−1
Y


0

π

0

 . (3.10)
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But this creats the MDM bias and it can be estimated using Theorem 3.1:

bR = εRI
−1
Y E(uRsY )− εRI−1

Z E(uRsZ)

= I−1
Y E(π log(

hx
π

)sY |r=0) + E((1− π) log(
1− hx
1− π

)sY |r=1)

≈ β

σ2
Y

I−1
Y E[(hx − π)cv0]

=
βcov(x, c)

σ2
Y

I−1
Y


π1 − π0
π1 − π

0


which is approximately equal to the departure between the incomplete data bias

under MAR (3.9) and MCAR (3.10). The differences (π1− π0) and (π1− π) measure

how much the missingness depends on the covariate X, which also index the cost of

treating MAR as MCAR in this specific issue.

Below we perform a simulation study to compare the size of both bias sources and

identify the importance of correctly specifying the MDM model. We let (α, θ, β) =

(0.2, 0.6, 1), px = 0.3 and σ2
c = 1 such that the size of bias is relatively large. The

sample size is chosen as n=(50, 200, 1000) and simulation study is conducted with

100 replications. The simulation results are shown in Table 3.5 where corr(x, c) is

fixed at a medium level: corr(x, c)= 0.5. We can see that both the covariate bias

and MDM bias increase with smaller ψ1 (moving further from MCAR). MDM bias is

almost in the same scale as covariate bias when corr(x, c) is large or MDM is more

far away from MCAR.

Confidence interval of effect size is calculated and adjusted: θ̂ = θ̂gY −bXC−bR, and

coverage rates (CR) of 100 replications are shown in the tables. CR1 is the coverage

rate with covariate bias adjustment only θ̂ = θ̂gY − bXC , as seen from the table, CR

is usually better than CR1. The difference shows the cost of MDM misspecification,

which is apparent to be related with the sample size (where the estimators are more

accurate and bias adjustment seems more necessary).

3.5.2 Misspecified MDM Model under MAR

Much of literature discussing the missing data problem is based on MAR assump-

tion. The logistic linear model is popularly used for MDM specification. In practice,
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Table 3.5: Covariate bias and MDM bias
α θ β

n ψ1 EB bXC bR CR CR1 EB bXC bR CR CR1 EB bXC bR CR CR1
n=50 0 -0.052 -0.038 -0.001 95 95 0.171 0.135 0.004 83 82 -0.066 -0.019 -0.001 93 87

-0.5 -0.052 -0.053 0.002 97 97 0.182 0.186 0.012 90 90 -0.060 -0.041 -0.001 93 93
-1 -0.044 -0.062 0.006 95 95 0.252 0.229 0.065 89 92 -0.084 -0.048 -0.009 94 90
-2 -0.050 -0.060 0.018 99 99 0.535 0.303 0.198 88 76 -0.118 -0.028 -0.014 95 91
-3 -0.045 -0.064 0.025 98 98 0.635 0.355 0.263 95 82 -0.125 -0.018 -0.011 97 87
-5 -0.049 -0.068 0.029 96 96 0.763 0.433 0.348 87 77 -0.114 -0.002 -0.002 98 90

n=200 0 -0.045 -0.049 0.001 90 90 0.147 0.165 0.001 86 89 -0.058 -0.039 0.001 95 92
-0.5 -0.044 -0.049 0.001 91 93 0.181 0.173 0.011 89 90 -0.066 -0.039 -0.002 93 92
-1 -0.057 -0.055 0.007 95 95 0.277 0.210 0.062 85 81 -0.075 -0.037 -0.010 92 87
-2 -0.055 -0.059 0.017 98 98 0.434 0.281 0.161 90 75 -0.103 -0.027 -0.015 97 77
-3 -0.072 -0.062 0.024 90 89 0.639 0.347 0.252 92 46 -0.117 -0.017 -0.012 96 69
-5 -0.078 -0.067 0.029 92 91 0.780 0.429 0.346 92 44 -0.116 -0.003 -0.002 93 66

n=1000 0 -0.042 -0.047 -0.001 88 91 0.156 0.158 -0.001 90 91 -0.058 -0.036 0.001 99 86
-0.5 -0.048 -0.048 0.001 91 97 0.181 0.166 0.009 88 85 -0.059 -0.037 -0.002 96 86
-1 -0.056 -0.054 0.007 96 94 0.279 0.207 0.062 92 66 -0.076 -0.036 -0.011 97 64
-2 -0.059 -0.059 0.017 96 94 0.46 0.278 0.156 90 16 -0.102 -0.028 -0.015 95 35
-3 -0.061 -0.063 0.024 95 93 0.624 0.349 0.246 90 5 -0.110 -0.018 -0.012 90 10
-5 -0.061 -0.065 0.029 92 89 0.785 0.422 0.344 92 3 -0.099 -0.003 -0.003 79 13

MDM model h(r = 1|x) = expit(1− ψ1x). EB: empirical bias (θ̂gY − θ).

however, the true MDM is often complicated. For example, we can have the missing

data mechanism models in the form of

M1 (Logistic Quadratic)

h(r = 1|x) = expit(ψ0 + ψ1x+ ψ2x
2);

or M2 (Log-Log Quadratic)

h(r = 1|x) = 1− exp{− exp(ψ0 + ψ1x+ ψ2x
2)}.

We now use Theorem 3.1 to analyse the bias caused by a misspecified MDM model.

Suppose the true missing data mechanism depends on X, denoted as h(r|x), while

the actually working model is denoted as h1(r|x) (e.g. logistic linear model). Then
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the misspecification for MDM component is

exp(εRuR) =
h(r|x)

h1(r|x)
. (3.11)

As in equation (2.24) we use Taylor series approximation:

hx = h(r = 0|x) + h′(r = 0|x)x+O(h′′(r = 0|x)).

In Theorem 2.1, we calculated the incomplete data bias for the linear regression model,

which depends on the expectation of the censoring probability hx and includes up to

its first derivative. But for complex models the high order items such as E(h′′x) can no

longer be abandoned. We should add this item to the bias expression, for example,

the incomplete data bias is

bXC =
βI−1

Y

σ2
Y

cov(x, c)


EX(h′x)

EX(hx) + EX(h′′x)

0

 ,

under linear regression model t|(x, c) ∼ N(α+θx+βc, σ2) with X ∼ N(0, σ2
x). Details

were given in Appendix 2.7.4.

A simulation study is conducted below. The true value is (α, θ, β) = (0.2, 0.6, 1)

with both X and C assumed standardised normally distributed with corr(x, c) =

0.5. Moderate variation for t|(x, c) is taken from U(0.16, 1). 1000 observations are

generated with C missing through logistic quadratic (M1) or log-log quadratic model

(M2). Here we fix ψ0 = 1 and ψ1 = 0.5, but vary ψ2 between(-1.5, 1). Then, we

calculate the covariate bias bXC and missing data mechanism bias bR, and obtain the

average ratio |bR|/|bXC | for 100 replications. The results are shown in Figure 3.4. The

horizontal line corresponds to |bR|/|bXC | = 1, indicating the same size for both biases.

As seen from the figures, although the missing data mechanism bias is often smaller

than the covariate bias (i.e. ratio around 0.5), this is not uniformly true when ψ2

getting larger, both bias sizes actually decrease but covariate bias apparently decrease

much faster than MDM bias. More attentions should be paid for these cases.

More simulations under various missing data mechanisms are given in Appendix 3.7.3.
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Figure 3.4: Simulation study: ratio of missing data bias and covariate bias. ψ2 ∈
(−1.5, 1).

3.6 Discussion

In this chapter we addressed another uncertainty problem in missing data mecha-

nism specification. We realized that the usual parametric model fitting may cause

additional bias, which is termed as missing data mechanism bias. It calculates the

departure of the conditional working model from the true model. And this bias is

compared with covariate bias which was discussed in Chapter 2.

The model uncertainties involved in the missing data were explained in Figure 3.1,

where we first consider the misspecification of MDM and then misspecification of co-

variate density. These two uncertainties may coexist in many missing data problems.

A simulation study based on fuel consumption data was given in Section 3.4 . Incom-

plete data was generated artifically, then model uncertainties were assessed and the

incomplete data bias analysis was calculated. When we consider the MDM misspec-

ification only, three different models were used to fit the MDM, and the simulation

results showed that nonparametric fitting works better than the other two. When

we further consider the covariate density misspecification, serious bias exists. This

example draws our attention to the model misspecification issue for ignorable missing

data, which requests a careful concern about the model assumptions.

Then we discussed two simulation studies to compare the size of both biases (covariate

bias and MDM bias). The first example had a MCAR assumption but the true model

was MAR. Ignoring differences between these two assumptions resulted in MDM

bias. The second example assumed a logistic linear model while the true missing
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data mechanism was more complicated. The MDM bias calculated in the simulation

studies was considerably large, suggesting MDM model selection should be made

properly.

There are some difficulties in estimating the bias parameters in the incomplete data

bias analysis based on observed knowledge, and these parameters are treated as un-

certainty parameters in sensitivity analysis. The detailed discussions will be given in

Chapter 4. Local bias analysis is a general tool to analyse the uncertainty problems,

and we will further consider the non-ignorable missing data in Chapter 5.

3.7 Appendix

3.7.1 Proof of Theorem 3.1

The true distribution gZ for Z = (T,X,C,R) is

gZ = fT |XCfXCh(r|t, x, c)

with c partially missing and the model is assumed as h(r|t, x, c). The fitting model

is double misspecified from gZ :

gZ = fZ exp(εRuR) = f ∗Z exp(εRuR) exp(εXCuXC)

where

fZ = fT |XCfXCh1(r|t, x)

f ∗Z = fT |XCfXfCh1(r|t, x).

From step gZ to fZ , it is a MDM misspecification problem and from step fZ to f ∗Z , it

is a missing covariate problem. We fit f ∗Z to a random sample of n observations from

gZ , the limiting value of the MLE θ̂Z as n→∞ is

θgZ = argθ[EgZ{s∗Z(z; θ)} = 0] ≈ θ + εXCEf∗Z (uXCI
∗
Z
−1s∗Z) + εREfZ (uRI

∗
Z
−1s∗Z).

where I∗Z , s
∗
Z are Fisher information matrix and score function under model f ∗Z .
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Under incomplete data Y , the marginal distribution of gZ is gY

gY =

∫
(y)

gZdy

=

∫
(y)

fZ exp(εRuR)dy ≈ fY exp(εuR|Y )

=

∫
(y)

f ∗Z exp(εXCuXC|Z) exp(εRuR)dy ≈ f ∗Y exp(εXCuXC|Y ) exp(εRuR|Y )

where

uR|Y = EfZ (uR(z; θ)|Y ),

uXC|Y = Ef∗Z (uXC(z; θ)|Y ).

The actually working model for incomplete data Y is f ∗Y (y; θ), and

f ∗Y (y; θ) = f rT |XCfXf
r
c h1(r|t, x).

We assume the difference between f ∗Y and fY is small, so that for a small value of εR,

we can write

fY = f ∗Y exp(εXCuXC|Y (y; θ)).

The working model f ∗Y can be regarded as misspecified with misspecification quantities

εuY = εXCuXC|Y (y; θ) + εRuR|Y (y; θ). Then we fit f ∗Y to a random sample of n

observations from gY , the limiting value of MLE θ̂Y as n→∞ is

θgY = argθ[EgY {s∗Y (y; θ)} = 0] ≈ θ + εEf∗Y (uyI
∗
Y
−1s∗Y )

= θ + εXCEf∗Y (uXC|Y I
∗
Y
−1s∗Y ) + εREf∗Y {uR|Y I

∗
Y
−1s∗Y }.

Following Theorem 1, we can have the incomplete-data bias as

bθ ≈ θgY − θgZ
= εXCEf∗Y (uXC|Y I

∗
Y
−1s∗Y ) + εREf∗Y {uR|Y I

∗
Y
−1s∗Y }

−(εXCEf∗Z (uXCI
∗
Z
−1s∗Z) + εREfZ (uRI

∗
Z
−1s∗Z)).
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Because

εXCEf∗Y (I∗Y
−1uXC|Y s

∗
Y )

= εXCI
∗
Y
−1
∫
uXC|Y s

∗
Y f
∗
Y dy

fY =f∗Y exp(εXCuXC|Y )
= εXCI

∗
Y
−1
∫
uXC|Y s

∗
Y fY exp(−εXCuXC|Y )dy

≈ εXCI
∗
Y
−1
∫
uXC|Y s

∗
Y fY (1− εXCuXC|Y )dy

= εXCI
∗
Y
−1
∫
uXC|Y s

∗
Y fY dy − εXCI∗Y

−1
∫
uXC|Y s

∗
Y fY εXCuXC|Y dy

uXC|Y =Ef∗
Z
(uXC)

= εXCI
∗
Y
−1
∫

(

∫
(y)

uXCf
∗
Zdy)s∗Y fY dy − ε2XCI∗Y

−1E[uXC|Y s
∗
Y uXC|Y ]

= εXCI
∗
Y
−1
∫
(y)

uXCs
∗
Y f
∗
Zdz −O(εXCεXC)

≈ εXCEf∗Z (I∗Y
−1uXCs

∗
Y )

and

εREf∗Y (I∗Y
−1uR|Y s

∗
Y )

= εRI
∗
Y
−1
∫
uR|Y s

∗
Y f
∗
Y dy

uR|Y =EfZ
(uR)

= εRI
∗
Y
−1
∫

(

∫
(y)

uR|ZfZd(y))s∗Y f
∗
Y dy

= εRI
∗
Y
−1
∫
(y)

uR|Zs
∗
Y fZdz

≈ εREfZ (I∗Y
−1uRs

∗
Y ).

So we have

εXCEf∗Y (I∗Y
−1uXC|Y s

∗
Y ) ≈ εXCEf∗Z (I∗Y

−1uXCs
∗
Y ),

εREf∗Y {uR|Y I
∗
Y
−1s∗Y } ≈ εREfZ{uRI∗Y

−1s∗Y }.

Thus

b ≈ θgY − θgZ
= εXCI

∗
Y
−1Ef∗Z [uXCs

∗
Y ]− εXCI∗Z

−1Ef∗Z [uXCs
∗
Z ]

+εREfZ (uRI
∗
Y
−1s∗Y )− εREf∗Z (uRI

∗
Z
−1s∗Z).
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One thing to notice is that the information matrix (I∗Z under f ∗Z or IZ under fZ) and

score function (s∗Z under f ∗Z or sZ under fZ) are not changing during the bias models

(gZ , fZ , f
∗
Z), which means I∗Z = IZ for example. Incomplete data is in the same case

with complete data.

3.7.2 Fuel Consumption Data

Fuel Dlic Income Logmiles Tax

AL 690.2644 1031.3801 23.471 16.52711 18.00

AK 514.2792 1031.6411 30.064 * 13.73429 8.00

AZ 621.4751 908.5972 25.578 15.75356 18.00

AR 655.2927 946.5706 22.257 * 16.58244 21.70

CA 573.9129 844.7033 32.275 * 17.36471 18.00

CO 616.6115 989.6062 32.949 * 16.38960 22.00

CT 549.9926 999.5934 40.64 * 14.35191 25.00

DE 626.0239 924.3448 31.255 * 12.50532 23.00

DC 317.4924 700.1953 37.383 * 10.58308 20.00

FL 586.3461 1000.1242 28.145 16.83983 13.60

GA 750.9074 933.3026 27.94 * 16.81796 7.50

HI 426.3494 829.9971 28.221 * 12.06272 16.00

ID 628.4279 925.1934 24.18 15.49904 25.00

IL 526.2377 819.4367 32.259 17.07806 19.00

IN 666.5365 879.2352 27.011 * 16.52096 15.00

IA 647.0016 867.4907 26.723 16.79153 20.00

KS 600.9024 909.0653 27.816 17.03966 21.00

KY 659.7413 871.9985 24.294 16.26799 16.40

LA 633.7348 800.6851 23.334 * 15.89247 20.00

ME 584.0926 932.9716 25.623 * 14.46862 22.00

MD 602.2862 844.9638 33.872 * 14.90228 23.50

MA 543.2321 920.6589 37.992 * 15.11179 21.00

MI 642.9706 914.6338 29.612 16.89404 19.00

MN 672.9191 782.8124 32.101 17.01324 20.00

MS 683.5020 860.8079 20.993 16.16940 18.40

MO 689.3661 899.8468 27.445 16.92375 17.00

MT 666.5978 974.2352 22.569 16.08479 27.00
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NE 617.6905 963.7331 27.829 16.50131 24.50

NV 614.8940 923.8037 30.529 15.23848 24.75

NH 689.6521 980.4662 33.332 * 13.92073 19.50

NJ 597.6403 873.1364 36.983 15.14271 10.50

NM 646.5273 898.9639 22.203 15.86986 18.50

NY 374.1641 744.3802 34.547 * 16.78547 22.00

NC 645.4418 935.3808 27.194 * 16.62678 24.10

ND 666.1887 907.8909 25.068 * 16.40193 21.00

OH 572.0756 880.1512 28.4 16.83944 22.00

OK 657.0605 814.8619 23.517 16.78205 17.00

OR 556.3455 948.0717 28.35 16.02721 24.00

PA 518.3286 848.5881 29.539 16.87249 26.00

RI 482.3269 798.1338 29.685 * 12.56343 29.00

SC 711.7331 914.8527 24.321 16.01382 16.00

SD 697.0528 943.8959 26.115 16.35052 22.00

TN 638.2311 942.0444 26.239 16.42236 20.00

TX 681.1001 835.2956 27.871 * 18.19829 20.00

UT 591.4999 935.7885 23.907 * 15.36523 24.50

VT 691.0227 1075.2882 26.901 * 13.80282 20.00

VA 681.0311 889.9195 31.162 * 16.10985 17.50

WA 576.0697 930.8562 31.528 16.30537 23.00

WV 562.4109 904.8936 21.915 15.17512 25.65

WI 581.7937 882.3291 28.232 16.78165 27.30

WY 842.7918 970.7527 27.23 14.73619 14.00

* index the data (Income) is designed to be missing

3.7.3 Simulation Studies for Complex Misspecified Models

For a linear regression model

t|(x, c) ∼ N(α + θx+ βc, σ2)

with covariates as multivariate normal distributed. Data is generated with true value

(α, θ, β) = (0.2, 0.6, 1) and σ2 takes value from U(0.16, 1). Mean and variance is 0
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and 1 for both x and c respectively. The correlation ρ=corr(x, c) is selected to vary

between (0,0.1,0.3,0.5) for different studies.

M1 (Logit Linear)

h(r = 1|x) = expit(ψ1 + ψ2x)

M2 (Logit Quadratic)

h(r = 1|x) = expit(ψ0 + ψ1x+ ψ2x
2)

M3 (Log-Log Linear)

h(r = 1|x) = 1− exp{− exp(ψ0 + ψ1x)}

M4 (Log-Log Quadratic)

h(r = 1|x) = 1− exp{− exp(ψ0 + ψ1x+ ψ2x
2)}

M5 (Jump)

h(r = 1|x) =

 ψ1, if x ≤ 0;

ψ2, if x ≥ 0.

M6 (Fragment)

h(r = 1|x) =

 0, if ψ1 ≤ x ≤ 0;

ψ2, others.

Confounder C is partly missing by a complex missing data mechanism as listed (M1–

M6), while three working models are assumed: 1) MCAR; 2) logistic linear model

(MAR); 3) non-parametric model (Nonp). The average estimation of θ̂ for 100 repli-

cations is shown in the tables below. For each study we generate 1000 samples to

have precise parameter estimation and small standard error (se). As seen from ta-

bles, fitting from non-parametric methods is often better than the other two models,

especially for continuous complex models (in M2, M3 and M4). MCAR assumption

does not work well in many cases, and logistic linear model fitting does not work well

in M4 and some cases of M6. Model selection or sensitivity analysis is necessary to

obtain more accurate results.
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Chapter 4

Monte Carlo Sensitivity Analysis

and Selection of Bias Models

4.1 Introduction

Local sensitivity analysis for model uncertainty problem with missing data was ad-

dressed by incomplete data bias analysis. Unfortunately, it is often difficult to calcu-

late the bias parameters in experimental trials due to lack of knowledge. The examples

we previously discussed show that the evaluation of bias parameters such as corr(x, c)

can be a realistic problem for ignorable missing data. Also if the missingness is under

so-called non-ignorable missing data mechanism (Little and Rubin, 2002), bias model

may suffer from identification problem and valid inference is restricted at the stage

of limited observed information; see Chapter 5 and Chapter 6 for details. In some

special cases we may utilize a follow-up study to estimate those bias parameters (see

e.g. Kim and Yu, 2011). However, it may be difficult to conduct further investigation

in most of the cases, for example epidemiology designs, and also extra bias may result

from lack of randomization and independence between former observations and follow

up samples.

Sensitivity analysis is one of commonly used approaches in assessing uncertainty via

bias parameter η or the related bias model. Conventional sensitivity analysis considers

the range of all the plausible results, while a Monte Carlo sensitivity analysis sample

the bias parameters from a prior distribution and then inverts the bias model to
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Chapter 4. Monte Carlo Sensitivity Analysis and Selection of Bias Models

provide a distribution of bias-corrected estimates (Greenland, 2005, p.269). We follow

the idea, but instead of obtaining a ‘posterior’ average for the parameter of interest

based on a prior density which is usually difficult to justify, we attempt to select one

bias model based on the nearest neighbour distance between the observed data and

the data simulated from bias models. This model can be treated as the most plausible

model in all the considered bias models.

The rest of the chapter is organized as follows. Section 4.2 will first describe briefly

the idea of Monte Carlo sensitivity analysis, followed by a detailed discussion of our

proposed method for bias model selection. The method will be applied to several miss-

ing data problems in Section 4.3 and Chapter 6 and will be illustrated by numerical

results of simulation studies and real data problems.

4.2 Monte Carlo Sensitivity Analysis and Bias Model

Selection

4.2.1 Sensitivity Analysis and Bias Parameter

Let D = (Dobs, Dmis) be a set of complete data including observed and unobserved

data and R be missingness indicator vector which takes the value 1 if data observed

or 0 otherwise. The complete data model can be factorized into an extrapolation

model and an observed data model as follows.

f(D,R|θ) = f(Dmis|Dobs, R, θmis)f(Dobs, R|θobs). (4.1)

Here, θmis and θobs denote parameters indexing the extrapolation and observed data

models respectively. The observed data distribution f(Dobs, R|θobs) is identifiable and

can be fitted by a parametric or nonparametric model. However, the extrapolation

distribution f(Dmis|Dobs, R, θmis) cannot be identified unless extra assumptions are

made. Those parameters are described as sensitivity parameters or bias parameters

(Daniels and Hogan, 2008; Greenland, 2005), denoted by η. The following are some

features: (i) η is a function of the parameter θmis; (ii) fit of the model to the observed

data f(Dobs, R|θobs) is independent from the bias parameter; and (iii) when the bias

parameter is fixed, the full data model f(D,R|θ) is identified. One way to identify
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the bias parameter under selection model frame is to use the following equation:

f(Dmis|Dobs, R, θmis) ∝ f(R|Dmis, Dobs, ψ)f(Dmis|Dobs, θ∗),

where ψ is the parameter describing missing data mechanism and θ∗ is the parameter

of conditional distribution of missing variables given observed variables. Thus the bias

parameter η is a function of (ψ, θ∗). We need to bear in mind that Dmis component is

unobservable and therefore at least part of (ψ, θ∗) are inestimable under non-ignorable

missingness. In some cases, for example the models discussed in Section 6.3, we need

to consider ψ only.

Local sensitivity analysis is based on derivatives of θ, the parameters of interest, eval-

uated at some belief η = η0 where the model with η0 is usually the practical model

used in inference. This method indicates how the estimate of θ changes correspond-

ing to the input values of η which are allowed to be perturbed in a neighborhood

of η0. This helps to understand the robustness of the practical model in a local

area but has limited value in understanding the consequences of global uncertainty

about η. In contrast, the global sensitivity analysis considers those more substantial

changes individually without limitation based on its sample space (see e.g. Oakley

and O’Hagan, 2004) although an unrealistically wide range is frequently a problem.

Bayesian techniques in some sense partly overcome the difficulty (see e.g. McCandless

et al., 2007, 2008; Gustafson et al., 2010), offering a route to sample smoothly via a

prior distribution which weights possible scenarios rather than the traditional method

which only reflects the investigator’s plausible beliefs.

Monte Carlo Sensitivity Analysis (MCSA) is a type of Bayesian sensitivity analysis

with modifications. Assuming that f(θ|η) is uniformly distributed and posterior

distribution f(η|Dobs, R) is close to the prior distribution f(η), the MCSA procedure

is to sample from

f(θ|Dobs, R) =

∫
f(θ|Dobs, R, η)f(η|Dobs, R)dη ≈

∫
f(θ|Dobs, R, η)f(η)dη.

The details can be found in Greenland (2005), and the problems caused by replac-

ing the posterior of the bias parameters by its prior are discussed by Daniels and

Hogan (2008). Bayesian sensitivity analysis however relies on the prior distribution

of the bias parameters and the hierarchical bias model. The posterior average may be
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asymptotically biased and credible intervals may not have expected coverage proba-

bility due to possible wrong prior choice, according to Gustafson (2005). Monte Carlo

sensitivity analysis may cause extra bias due to an incorrect sampling distribution.

We propose a novel method in the next subsection by combining the idea of tradi-

tional and Bayesian approaches and by focusing on the influence of each individual η

and then select the most plausible value from all possible values.

4.2.2 Bias Model Selection

Let F be a population of the complete data, and we wish to infer the parameter of

interest θ using model L(F ; θ). An experimental design sample D is drawn randomly

from F , and θ̂ calculated from the model L(D; θ) is usually unbiased without missing

data and model misspecification. However, observed data, denoted by Dobs, often

conceal some values under a certain missing data mechanism. Conventional inference

employs a model L(Dobs; θ) under assumptions such as identification of the model or

missing at random (MAR). Those assumptions are often invalid under some ‘imper-

fect’ situations such as missing confounders or measurement errors with non-ignorable

missingness. This results in bias. The effect of biased sources on L may be modelled

by a bias model via a bias parameter η. For missing data problem, η is a function

of (ψ, θ∗) as discussed in the previous subsection. Once η is given, the evaluation is

available by the model L(Dobs; θ, η). For example, we may use multiple imputation

by resampling the missing values by their conditional distributions given observed

variables and η; the generated data is denoted by Dmis,η. Thus the imputed dataset

Dη = (Dobs, Dmis,η) is complete and inference can be carried out in the usual way for

complete data.

Assume that, given ηtrue, we can get unbiased estimation from the corresponding

model L(Dobs; θ, ηtrue). Unfortunately, ηtrue is usually unknown and it cannot be

estimated from Dobs under some conditions, e.g. non-ignorable missingness. In MCSA

(Monte Carlo sensitivity analysis) a prior distribution is assumed, η ∼ f(η), η ∈ Γ .

Inference is based on the average of the marginal posterior of bias model L(Dobs; θ, η)

on its prior density:

f(θ|Dobs) =

∫
f(θ|Dobs, η)f(η|Dobs)dη

∝
∫
L(Dobs; θ, η)f(θ, η)dη.
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An incorrect choice of this prior distribution may, however, lead to extra bias. The

method we proposed below will avoid this problem. Instead of using posterior average,

we attempt to find one η or a small set of η’s which may be close to ηtrue. We call

this or these values as ‘most plausible’ value(s).

F
sample conceal η

conditional 

 resample

conceal measure

D Dobs Dη Dη, obs s(Dη, obs, Dobs)

L

θ θ
^

L

θ
^

η

Figure 4.1: Diagram of bias model

For any given η, let θ̂η be the estimate of θ obtained from L(Dobs; θ, η), for example

the maximum likelihood estimate by maximizing its marginal likelihood or by using

the imputed method as discussed before. Consider a series of possible η ∈ Γ to return

a set of estimates:

{θ̂η : L(Dobs; θ, η), η ∈ Γ}, (4.2)

where η can be for example generated from its prior distribution. For each of given

η’s, θ̂η is calculated and the bias resource is described by L(Dobs; θ, η). We can,

therefore, generate a ‘complete’ data set of Dη. Using the MDM specified given η,

an ‘incomplete’ data set Dη,obs can be simulated from the ‘complete’ data set Dη.

If the value of η is close to ηtrue, Dη and D would come from the same population

distribution; so do the simulated ‘incomplete’ data set Dη,obs and the raw ‘incomplete’

data Dobs. We then define a distance s(Dη,obs, Dobs) to measure the ‘closeness’ or

‘similarity’ between them. The model with the smallest distance can be selected as

the most plausible model. We call this method as Monte Carlo bias model selection

(MC-BMS or BMS). Its procedure is described as follows (also see Figure 4.1).

(i) Select one η in Γ , or generate it from a prior distribution f(η) if we have prior

knowledge about η;

(ii) Estimate θ̂η using bias model L(Dobs; θ, η) given η;

(iii) Simulate a complete dataset Dη from L(Dobs; θ̂η, η) given θ̂η and η and censor

the simulated sample Dη into an incomplete dataset Dη,obs using the MDM

model specified by η (Dη,obs is comparable with Dobs);
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(iv) Calculate distance s(Dη,obs, Dobs);

(v) Repeat Steps (i) to (iv) for a set of η and select the one with the smallest

distance or select a small set of η if the distance is very close to the smallest

one for each of them.

In Steps (i) and (ii) we use methods of conventional sensitivity analysis and calculate a

series of estimation θ̂η for a set of η. This can be used to investigate how the estimation

changes along η where η is usually associated with an interpretable quantity for

example partial correlation between an observed covariate and a missing confounder

(see e.g. Lin et al., 2012). Conclusions can be made based on prior knowledge or

historic data for the interpretable quantity. The MCSA method needs to select a

prior distribution and generate random numbers from the selected prior distribution

f(η). An overall estimate of θ is calculated via Bayesian average.

In Step (iii) we first sample Dη from its distribution conditional on the observed data,

given bias parameter η and the corresponding estimation of θ̂η. We further censor

Dη into an incomplete dataset Dη,obs, which is comparable with Dobs. This requires

a missing data mechanism (MDM) model which may depend on bias parameter η.

We may use a parametric model such as a logistic linear model or a semiparametric

model as we will use in chapter 6. There is no unified method on how to simulate

Dη or Dη,obs. Specific technique is upon individual problem; see more discussion for

specific examples given in Section 4.3.

The last two steps are to calculate the distance between simulated data set and the

observed data set and to select the most plausible bias model or a small set of the

most plausible models. The key here is which distance should be used to measure

the ‘closeness’ or ‘similarity’ between datasets Dη,obs and Dobs. This is particularly

important for large-dimensional cases. To measure similarity or dissimilarity of two

clusters, various statistical distances are available to be considered. We may calculate

the distance for each pair of data points in Dη,obs and Dobs, and then use the minimum

distance (single linkage by Sneath (1957)), maximum distance (complete linkage by

Sorensen (1948)) or the average distance (Sokal and Michener, 1958). An alternative

method is to use the K-nearest neighbour (KNN) method, which was first introduced

by Fix and Hodges (1951) as a nonparametric density measure. This measure works

well in most of the examples. The detailed description is given in Appendix 4.6.1.

Remark 1. Bias model L(Dobs; θ, η) depends on the bias parameter η and it depends

on the hierarchical structure as well, as discussed around equation (4.1); so do Dη,obs.
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When we compare the models by using the distance between Dη,obs and Dobs, we

actually consider both the bias model structure and the value of bias parameter.

This will be further illustrated in the next sections.

Remark 2. In Steps (iv) and (v), it may be numerically unstable if we compare bias

models based on the distance between Dobs and one set of Dη,obs. One way to solve

this problem is to use an average distance by sampling more than one set of Dη,obs

for the same η.

4.2.3 Hypothesis Test for η

D We considered some dissimilarity measures s(Dobs, Dη,obs) in Section 4.2.2, and they

can also be used as test statistics. We expect that if the H∗0 is not true, the value

of distance s(Dobs, Dη,obs) will be larger than if H∗0 is true. The achieved significance

level (ASL) in the permutation test (Fisher, 1971) is defined as the probability of

observing a larger value s∗ when the null hypothesis is true

ASL = PrH∗0{s
∗ ≥ s}.

We can also calculate the critical value (denote as sα) at certain significance level α

based on the estimators s∗ from permutation samples.

Before we show the examples, we introduce some rules for the bias selection procedure.

Plausible Set Rule. For any ηi ∈ Γ , if

PrH∗0{s(Dobs, Dηi,obs) < sα} < α

then ηi will be rejected. In practice, we may choose α = 0.05.

Bias Model Selection Option 1 (BMS-1). Plausible set of bias parameters is

given as:

Γα = {ηi : s(Dobs, Dηi,obs) < sα, ηi ∈ Γ}.

All the values of ηi excluding in Γα will not be chosen according to CI Rule.

Bias Model Selection Option 2 (BMS-2). If we are interested in obtaining one

selection of η, it is reasonable to choose the value with largest ASL (smallest distance)
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since the smaller the ASL, the stronger the evidence against H∗0 .

η̃ = argη min{s(Dobs, Dη,obs)},

θ̃ = argθ max{L(Dobs; θ, η̃)}.

Remark 3. The plausible subset Γα may be used in Bayesian sensitivity analysis,

where the posterior distribution f(η|Dobs) can be approximately calculated as

f(η|Dobs) =
PrH0(η = ηi|Dobs)∑
ηi∈Γ PrH0(η = ηi|Dobs)

where Γ should be replaced by Γα, and a prior p(η) is defined on Γα. And for each ηi,

the probability PrH0(η = ηi|Dobs) is proportional to p(ηi)f(Dobs|ηi), denoted as wi.

And the parameter θ is estimated as

θ̃ =
∑
i

wiθ̂ηi/
∑
i

wi. (4.3)

This method actually improves the MCSA by Greenland (2005), and we call it Monte

Carlo sensitivity analysis with Bayesian model average (MC-BMA or BMA).

BMS Method-1 evaluates a plausible set Γα ⊂ Γ at a certain significance level (e.g.

5%). BMS Method-2 concerns the ‘maximum likely’ one from all plausible values and

this method performs efficiently since the hypothesis test is not required.

4.3 Numerical Result

4.3.1 An Example

We first apply the Monte Carlo bias model selection method (MC-BMS) to ignorable

missing data problems. We used the local bias analysis method to address the model

uncertainty in missing covariate problems in previous chapters and calculated the

incomplete data bias for the effect size estimation. Under a linear regression model
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t|(x, c) ∼ N(α + θx+ βc, σ2), the incomplete data bias is given as

bXC ∝ corr(x, c)IY
−1(E(h′x), E(hx), 0)T . (4.4)

according to Section 2.4. The covariate correlation corr(x, c) generates and governs

the incomplete data bias, and it is usually difficult to measure in practice.

Now we treat it as a bias parameter and we use MC-BMS to estimate ρ=corr(x, c).

Covariate x is assumed as normal distributed x ∼ N(5, 1) and conditional distribution

(c|x) follow uniform distribution U(1 +ρ σc
σx
x, 3 +ρ σc

σx
x). The variance of c is σ2

c which

is assumed as 0.444 and the covariate correlation is corr(x, c)=0.5. Here c is partly

missing with probability hx = 1− expit{1 + (x− x̄)− 2(x− x̄)2} with x̄=E(x). True

value is (α, θ, β)=(0.5,1,1). The sample size is 100.

In this study, we perform a Monte Carlo sensitivity analysis first to discover the

uncertainty of output from the input: ρ. We sample under a series of scenarios,

specifically, ρ = (-1,-0.99,-0.98,. . . , 1). Given each ρ, we use local bias analysis to

adjust the parameter estimations.

Next we conduct a bias model selection process, to select the best value of ρ from all

the plausible scenarios by comparing the observed data and simulated data. To do

this, we borrow the idea of bootstrapping residuals method to simulate the incomplete

data. We first sample the missing values of c by a conditional model f(c|x, ρ) to obtain

the imputed c∗. Then the response variable t is bootstrapped by adding the residuals

ε∗ ∼ N(0, σ̂2):

t∗ = α̂ + θ̂x+ β̂c∗ + ε∗.

We then calculate the distance between cluster D∗ρ = (t∗, x) and cluster D∗ = (t, x),

and the distance measures introduced in Section 4.2.2 are used. As pointed out in

Remark 2, we repeat the procedure several times and use the average distance to

reduce sampling errors. We call the repeated times as Monte Carlo sample size, or

MC size. Here MC size is 10.

We present the bias parameter ρ against the corresponding average measurements for

100 repeated studies s(D∗, D∗ρ) at Figures 4.2 and 4.3 and show the evaluations of ρ̃

in Table 4.1.

• Single linkage distance is not a suitable measure for bias model selection. The

shortest distance of the clusters seems too sensitive to edge effect.
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• Complete linkage distance has a better trend than single distance, but we may

find relatively large validation during the replications.

• Selections under average distance give relatively robust results for both Eu-

clidean and Mahalanobis metric as show in figure 4.2. There is clearly a concave

shaped trend with a bottom around true value 0.5, and the confidence intervals

are relatively narrow.

• Results of KNN measure under Euclidean and Mahalanobis metric (presented in

figure 4.3) are robust for all cases with parameter K chosen as 2,3,5 respectively.

KNN method is described as a nonparametric method, and thus not restricted

by a certain statistical density.
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Figure 4.2: Selection of corr(x, c) under hierarchical measure.

Now we test the null hypothesis, H∗0 , of no difference between observed cluster Dobs

and test cluster Dρ,obs.

H∗0 : Dobs = Dρ,obs

As was shown in the above figures, the average dissimilarity and KNN measure are

during the best criteria, they are then used as the test statistics in the Fisher permu-

tation test, which is introduced in the first chapter. The achieved significance level
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Figure 4.3: Selection of corr(x, c) under KNN measure. Upper panel use Euclidean
metric and lower panel use Mahalanobis metric.

(ASL) in the permutation test is calculated as the probability of observing a larger

value s∗ when the null hypothesis is true

ASL = PrH0{s∗ ≥ s}.

To use the permutation test, we combine the samples first, denote DA = (Dobs, Dρ,obs).

We resample n = 100 data from DA as the first cluster D
(i)
1 and the rest as second

cluster D
(i)
2 , for i = 1, . . . B and B is the permutation time. We choose B = 1000.

Then we calculate the values of {s∗ : s∗i = s(D
(i)
1 , D

(i)
2 )} under the proposed distance

measure (i.e. Euclidean average distance). The ASL is estimated by

ÂSLperm = #{s∗ ≥ s}/B.

where #{.} denotes the cardinality of the set, and s is the plausible distances s(Dobs, Dρ,obs)

given a fixed ρ in this case. If we choose the significant level at 5%, then the crit-

ical value (denoted as sα) can be calculated from the resampled data, i.e. sα =

Quantile0.95(s
∗). So the interval of accepted ρ at 5% significant level (denoted as

Γα ⊂ Γ ) is considered as collection of possible values for bias parameter. For ex-
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ample, if we use the Euclidean average distance as the test statistics, the average

acceptable corr(x, c) through 100 replications is (0.207,0.831). And the plausible set

for θ estimation is given as (0.78, 1.13). Prior is defined in Γα, i.e. uniform distri-

bution. BMS and BMA results are shown in Table 4.1, and these two methods work

quite similarly.

Table 4.1: Sensitivity analysis results of selecting corr(x, c)

E-S E-C E-A E-KNN
BMS-1 (-0.458, 0.944) (-0.144, 0.856) (0.207, 0.831) (0.170, 0.733)
BMS-2 -0.004 0.444 0.541 0.457
BMA 0.065 0.421 0.528 0.453

M-S M-C M-A M-KNN
BMS-1 (-0.424, 0.905) (0.150, 0.752) (0.256, 0.685) (0.208 0.726)
BMS-2 -0.001 0.454 0.468 0.452
BMA 0.0479 0.465 0.469 0.464

E: Euclidean metric; M: Mahalanobis metric. S: Single distance; C: Com-
plete distance; A: Average distance.

Except ASL, the power of the test at 5% significant level can be further calculated

by Monte Carlo methods, which is shown in Figure 4.4, with the grey dashed lined

indicating 80% power ratio.

• Average distance and KNN distance work well to have relatively narrow con-

fidence interval under both Euclidean and Mahalanobis metric. Mahalanobis

average (MA) distance is the best in this example.

• KNN distance under Euclidean metric (E-KNN) seems to be the most sensitive

measure to distinguish different ρ, as seen from ASL plot (Figure 4.4) that it

has the apparent peak.

• The power of test at points excluded from Γ is relative large (over 80%), and

the smallest power ratio is located around true value.

4.3.2 More Simulation Studies

More simulation studies are conducted aiming to examine the performance of MC-

BMS under the average distances and KNN methods. The settings are the same
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Figure 4.4: Achieved significance level and power of test
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with Section 4.3.1, but variable c is assumed to censor under different missing data

mechanisms:

• MCAR: h(r = 1)=expit(1)

• Logit Linear (LL): h(r = 1|x) = expit(1− (x− x̄))

• Logit Quadratic (LQ): h(r = 1|x) = expit(1 + (x− x̄)− (x− x̄)2).

and covariate correlation ρ=corr(x, c) is allowed to vary between (0.1, 0.2, . . ., 0.7).

We use three working models to fit the missing data mechanism: 1) MCAR 2) para-

metric model (logistic linear) and 3) nonparametric modelling; and Bayesian Infor-

mation Criteria (BIC) is used to make MDM models selection. We repeat 100 times

with each sample size equaling 100. Simply, ρ is considered as the single bias pa-

rameter which is then measured by MC-BMS method, and we sample a number of

values from its sample space: ρ = (−0.5,−0.4, . . . , 1). The estimator (ρ̃) is calculated

with MC-BMS and MC-BMA methods, and the average of the 100 replications and

its root mean square error (RMSE) are shown in Table 4.2. It is found that both

BMS and BMA method perform very well for most cases and it is robust under all

the four distance measures. Inference is assumed to be efficient locally, but we found

the results are also robust for large values of ρ.

4.4 Monte Carlo Sensitivity Analysis for Fuel Con-

sumption Data

We apply the MC-BMS method into the Fuel consumption data example to address

the uncertainty analysis with missing data issue discussed in Section 3.4. As we

pointed previously, evaluation of the incomplete data bias

Bias(θ̂gY ) = θ2
IY
−1

σ2
Y

E{x2v0h(r = 0|x1)}

requires the specification of the distribution f(x2|x1, x3, x4). We perform a Monte

Carlo sensitivity analysis on two dimensional bias parameters (corr(x1, x2),corr(x2, x3)).

Since gasoline Tax (x4) has little correlation with Income (x2), we ignore corr(x2, x4).
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Chapter 4. Monte Carlo Sensitivity Analysis and Selection of Bias Models

First of all, we choose the correlation ρ1= corr(x1, x2) and ρ2=corr(x2, x3) between -1

to 1 with interval 0.1. Given any pair of the values ρ = (ρ1, ρ2), θ̂ can be evaluated

through local bias analysis, and it is denoted as θ̂ρ. Then the missing value of income

x2 is imputed according to conditional distribution f(x2|x1, x3, x4; ρ1, ρ2) while the

fuel consumption t is bootstrapped through linear regression model f(t|x1, x2, x3, x4; θ̂ρ).
To reduce sampling error we choose the MC size as 100. The bias model selec-

tion process is conducted by calculating the distance between the simulated data

D∗ρ = (t∗, x1, x3, x4) and corresponding observed data D∗ = (t, x1, x3, x4). And we use

four distance measures: 1) Euclidean average distance; 2) Mahalanobis average dis-

tance; 3) KNN measure under Euclidean metric; 4) KNN measure under Mahalanobis

metric.

The contour plot in Figure 4.5 (a) shows the selection results of bias parameters by

average distance under Mahalanobis metric and Figure 4.5 (b) shows the results of

averaged ASL during the replications. We noticed that no pair of bias parameters

is rejected if the significance level is selected at 5%, however, we can still find some

pairs may perform better than the others. As shown in Figure 4.5 (b), the area inside

the red color line is considered as the most possible location of bias parameters.

One simplest way to calculate the BMA estimator is to choose the achieved signifi-

cance level as the weight wi as in formula (4.3), and results are presented at Table

4.3. The bias model selection methods perform robustly for all the four measures,

and it works better than inference without consideration of the model uncertainty

(results shown as complete case (CC) analysis or Multiple imputation (MI)). BMA

method works quite similarly as BMS, but how to identify the posterior weight (or

specify prior) is always difficult.

4.5 Discussion

In this Chapter, we were concerned with the sensitivity analysis for the missing data

problems and developed a new Monte Carlo bias model selection method. Conven-

tional inference based on observed data Dobs only is usually short of knowledge or

lack of randomization thus it is always difficult to approach the true value of θ with

missing data problems. Sensitivity analysis treats the tilting parameter η as the input

of uncertainty analysis, and we calculate the plausible values for the outcome given

inputs with Monte Carlo sampling procedure. We then aim to find the best value (or
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Figure 4.5: Contour plots for selection of corr(x1, x2) and corr(x2, x3) for fuel con-
sumption data. Fig (a): distance; Fig (b): achieved significance level. Mahalanobis
average distance is used as in MC-BMS method.
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Table 4.3: Simulation results with covariate density uncertainty

θ0 θ1 θ2 θ3 θ4
MLE θ̂gZ 154.193 18.545 -6.135 0.472 -4.228

BMS E-A 154.597 17.553 -6.073 0.482 -4.252
M-A 154.249 18.389 -6.137 0.472 -4.257
E-KNN 154.249 18.466 -6.324 0.394 -4.357
M-KNN 153.558 20.128 -6.114 0.471 -4.237

BMA E-A 153.862 19.359 -6.075 0.494 -4.215
M-A 154.597 18.554 -6.073 0.482 -4.252
E-KNN 152.188 18.649 -6.146 0.468 -4.261
M-KNN 154.144 18.653 -6.133 0.473 -4.253

Others MI 155.176 11.808 -8.300 0.393 -5.474
CC 164.041 -1.247 -6.998 0.331 -7.689

a small set of the best values) among all the considered values for η. The selection

process is taken as measuring the distance between observed data and simulated data

given each η, and several clustering distances are used.

We conducted some simulation studies to examine this method. The advantages of

KNN and average distance have been discovered clearly. In particular, the average

distance under Mahalanobis metric perform robustly in the hypothesis test, but non-

parametric measure KNN may work better to describe small pattern differences.

We further applied the MC-BMS method into the missing covariate problems for

Fuel consumption data, and found that the MC-BMS method works robustly and the

advantage is found compared with conventional missing data analysis methods. This

novel approach is very flexible and useful, and we will apply it into the non-ignorable

missing data problems in the following chapters.
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4.6 Appendix

4.6.1 K Nearest Neighbour

Two observations xi and xj are defined as k-neighbours if (see Definition 1, page 364

Wong and Lane, 1983):

d(xi, xj) ≤ dk(xi) or dk(xj),

where d is the Euclidean metric and dk(xi) is the kth nearest-neighbour distance to

point xi. To define a distance between two clusters by KNN method, we need a

definition of KNN between an individual point and a cluster first.

Definition 4. Given a cluster D = {xi, i = 1, . . . , n}, an individual observation xj is

said to be neighbour of cluster D if there exists at least one point xi in cluster D that

d(xi, xj) ≤ dk(xi),

where d is the Euclidean metric and dk(xi) is the kth nearest-neighbour within cluster

distance to point xi.

If a test sample D∗ = {xj, j = 1, . . . ,m} is distributed similarly with cluster D,

then we expect most of observations in D∗ to be the nearest neighbour of D. But if

not, that means the difference between the two clusters is apparent and the distance

should be large. Mathematically, we write I as indicator function, which takes value

1 if the condition is satisfied or 0 if the condition is failed. Then the percentage of

observations in test sample D∗ with the nearest neighbour relationship of cluster D

can be calculated by the average E(I1), with each element defined as:

I
(j)
1 =

 1,
∑

xi∈D{I(d(xi, xj) < dk(xi)} > 0;

0, otherwise.
(4.5)

Here
∑

xi∈D{I(d(xi, xj) < dk(xi)} takes integer in {0, 1, 2, ..n}. Only when it equals

0, the observation xj is not the nearest neighbour of cluster D.

When we compare two clusters D and D∗, this measure is symmetric. Similarly, the

percentage of points in cluster D which are the nearest neighbours of test sample D∗
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is calculated by E(I2):

I
(i)
2 =

 1,
∑

xj∈D∗{I(d(xi, xj) < dk(xj)} > 0;

0, otherwise.
(4.6)

with dk(xj) is kth nearest-neighbour distance to point xj within cluster D∗. The

average of E(I1) and E(I2)

s(D,D∗) =
1

2
(E(I1) + E(I2))

is considered an similarity measure and 1 − s(D,D∗) taken as the ‘KNN distance’

measure in this paper.

Other measures such as Mahalanobis metric may also be used.

104



Chapter 5

Local Bias Analysis for

Non-Ignorable Missing Data

5.1 Introduction

Beyond ignorable missingness, non-ignorable missing data mechanism is also very

common. What this means is: even accounting for all the observed variables, the

reason for the missingness of observations still depends on the values of the unseen

observations. We consider the multivariate regression analysis of a n-dimensional

vector of an incomplete data set D = (D1, . . . , Dn) where each Di is independent

from the other and includes the response variable ti and covariate variables xi, ci.

We consider the problem when confounder C is not always observed, and denote R

as an indicator vector R = (r1, . . . , rn)T such that ri=1 when ci is observed or 0

when ci is missing; i = 1, . . . , n. In regression analysis the focus is on inferring the

conditional distribution of response variable T given these covariates X,C: [T |XC]

with a given joint distribution of [XC]. The fully observed information will comprise

Z = (T,X,C,R), and the incomplete data is Y = (T,X,Cobs, R) correspondingly.

The difference in modelling [R|D] between non-ignorable and ignorable missing data

assumptions will be our interest in this chapter.

There is an extensive literature regarding regression models with non-ignorable miss-

ing responses and covariates. For example, Ibrahim et al. (1999) discussed non-

ignorable missing covariates in generalized linear models, and Paik (2004) considered
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matched case control analysis with non-ignorable missingness and Saha and Jones

(2005) estimate asymptotic bias of the linear mixed effects with non-ignorable as-

sumption. A standard approach is to assume a parametric model for [R,D] and pa-

rameters are estimated by the maximum likelihood method. Selection models (Ch.12

Little and Rubin, 2002) factorize the distribution [R,D] into a model for [D] and a

model for [R|D]. The distribution [R|D] needs to be identified when the missing data

mechanism is non-ignorable (Rubin, 1976), which in our context means the MDM

depends on C.

Unfortunately, little information is known about the form of [R|D] in practice, and

bias in the estimation of parameter θ can be resulted from misspecification of the

models; see for example Diggle and Kenward (1994). Besides the ML method, the

inverse probability weighted estimating equations approach (Robins et al., 1994) and

the multiple imputation method (Ibrahim et al., 2005) also require correct specifi-

cation of the form of MDM to ensure unbiased analysis. Unlike ignorable missing

data, non-identifiability in modelling [R|D] is the real problem of non-ignorable miss-

ing data. Characterizing model identifiability is a very difficult task requiring deep

technical machinery. Chen et al. (2004) presented necessary and sufficient conditions

for model identifiability in generalized linear models for missing covariates problem.

Some extensions have been given in Huang et al. (2005).

The problems with these concerns as we may encounter in the missing data problem

comprise:

(i) Model Uncertainty : the respondent and non-respondent variables have exactly

the same values conditional on observed variables for MAR missing data (Ru-

bin, 1987), but model uncertainty exists in the sense that trials suffer ‘lack

of randomization’. And these problems continue to happen in non-ignorable

missing data. The uncertainty lies in the regression models, covariate density

modelling and missing data mechanism specification. It was also discovered in

missing confounder and publication bias problems.

(ii) Non-identifiability : a specific model for missing data mechanism is necessary for

non-ignorable missing data, and it may be fitted by a parametric model (logistic,

probit, e.g.) or a semiparametric model (see Kim and Yu, 2011). However, it

is always difficult to judge whether the model is proper or not.
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The inference in this chapter will continue the discussion with the bias adjustment

from local sensitivity analysis, but missing data mechanism bias will no longer be easy

to calculate because of the identifiability issue. Here we consider a transformation

between a selection model and pattern mixture model to allow the MAR counterpart

to fit the MNAR part.

5.2 Bias Analysis for MNAR

5.2.1 Double Misspecified Models

Theorem 3.1 provides a general tool to analyse bias model uncertainty for any missing

data problems. This method is valid for MNAR assumption as well. For complete

data Z = (T,X,C,R), the joint distribution is:

gZ = fT |XC(t|x, c)fXC(x, c)h(r|t, x, c).

Under the MNAR assumption, MDM model h(r|t, x, c) depends on the missing co-

variate C. In practice, we usually consider an identifiable working model (i.e. MAR)

h1(r|t, x):

fZ = fT |XC(t|x, c)fXC(x, c)h1(r|t, x).

The misspecification of fZ from true model gZ is exp(εRuR) = h(r|t,x,c)
h1(r|t,x) . Also with the

assumption that X and C are independent, the working model will be

f ∗Z = fT |XC(t|x, c)fX(x)fC(c)h1(r|t, x),

with covariate distribution misspecification exp(εXCuXC) = fXC(x,c)
fX(x)fC(c)

induced.

The corresponding model with incomplete data will have the form

gY =

∫
(y)

gZdz =

∫
(y)

fZ exp(εRuR)dz

= fY exp(εRuR|Y )

≈ f ∗Y exp(εXCuXC|Y ) exp(εRuR|Y ). (5.1)

The models gY , fY , f
∗
Y are the corresponding marginal models under complete data
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gZ , fZ , f
∗
Z . We are assuming the misspecification sources are in local analysis assump-

tions and thus we can have the approximation in equation (5.1) to the first order.

The working model used to calculate the estimation of parameters θ̂gY is

f ∗Y = fT |XC(t|x, c(r))fX(x)f rC(c)h1(r|t, x).

To simplify notations, we denote hZ = h(r = 0|t, x, c) and hY = h1(r = 0|t, x). Using

Theorem 3.1, we have the covariate bias bXC as follows:

bXC = εXCEf∗Z [uXC{I∗Y
−1sY

∗ − I∗Z
−1sZ

∗}]

= εXCI
∗
Y
−1Ef∗Z [uXCs

∗
Y |r=0]

≈ I∗Y
−1{EXC [s∗Y |r=0hY ]− EX,C [s∗Y |r=0hY ]}

where MDM working model hY is assumed from MAR assumption, and covariate

distribution f(x, c) is required in order to evaluate the incomplete data bias. The

MDM bias is given by:

bR = εREfZ [uRI
∗
Y
−1s∗Y ]

= εRI
∗
Y
−1EfZ [uRhY s

∗
Y |r=0]

= I∗Y
−1EfZ [log(

hZ
hY

)s∗Y |r=0hY ]

≈ I∗Y
−1EfZ [(hZ − hY )s∗Y |r=0]. (5.2)

5.2.2 Triple Misspecified Models

Following discussion in Section 2.5, when we consider the non-ignorable missingness

in generalized linear models following discussion, a triple misspecification will ensue.

The data sampling distribution under incomplete data Y is

gY ≈ f ∗Y exp(εRuR|Y ) exp(εXCuXC|Y )

= f ∗∗Y exp(εMuM) exp(εRuR|Y ) exp(εXCuXC|Y ) (5.3)
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where the misspecification exp(εMuM) is the ratio of the marginal model and the

working model

exp(εMuM) =
f ∗Y
f ∗∗Y

.

The working model f ∗∗Y can be written as

f ∗∗Y = f rT |XCfXf
r
Ch1(r|t, x),

where

f rT |XC =

 fT |XC , r = 1;

f ∗T |X , r = 0.

with f ∗T |X given at equation (2.29) and

f rC =

 fC(c), r = 1;

1, r = 0.

The distribution f ∗∗Y is triple misspecified from gY , and the three misspecification

quantities are:

εuY = εXCuXC|Y + εRuR|Y + εMuM .

Correspondingly, the incomplete data bias are separated into three components ac-

cording the bias sources:

bias = bM + bXC + bR,

with marginal model bias

bM = εMEf∗∗Y (uMIY
∗∗−1sY

∗∗)

=
β2σ2

c

2a(φ)
IY
∗∗−1EX{ξ′′(πx)v0hY },

covariate bias

bXC = εXCEf∗∗Y (uXC|Y IY
∗∗−1sY

∗∗)− εXCEf∗Z (uXCIZ
∗∗−1sZ

∗∗)

=
IY
∗∗−1

a(φ)
EX,C{log(

f(c|x)

f(c)
)v0[ξ(πxc)− ξ(πx)]hY }

=
IY
∗∗−1

a(φ)
[EXC{v0[ξ(πxc)− ξ(πx)]hY } − EX,C{v0[ξ(πxc)− ξ(πx)]hY }],
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and MDM bias

bR = εREfZ{uR[IY
∗∗−1sY

∗∗ − IZ∗∗−1sZ∗∗]}

=
IY
∗∗−1

a(φ)
E{log(

hZ
hY

)v0[ξ(πxc)− ξ(πx)hY ]}

≈ IY
∗∗−1

a(φ)
E{[hZ − hY ]v0[ξ(πxc)− ξ(πx)]}.

As we see in the equations, marginal model bias can be calculated based on identi-

fiable model f ∗∗Y while covariate bias and missing data mechanism bias are obtained

requiring two models: covariate distribution f(x, c) and missing data mechanism. In

practice the true MDM model h(r|t, x, c) is always difficult to fit, especially because of

the non-identifiablility issue for non-ignorable missing data, thus further consideration

(for example, sensitivity analysis) is necessary.

5.3 Inference about MDM Bias

Under the ignorable missing data assumption, the MDM model can be fitted by a

parametric model such as logistic linear model or non-parametric method such as

generalized additive model (Hastie and Tibshirani, 1990). In non-ignorable missing

data problems, we recognized that both the covariate distribution and the missing

data mechanism modelling are unknown and this leads to a non-identifiability prob-

lem. Sensitivity analysis (see e.g. Cook, 1986; Oakley and O’Hagan, 2004; Greenland,

2005; McCandless et al., 2007; Daniels and Hogan, 2008; Gustafson et al., 2010) is

a valid method to handle the uncertainty analysis, but how to reduce the dimension

of bias parameters is a key step and will be discussed below. Specifically if we can

deduce the evaluation of non-ignorable missing data mechanism through its marginal

model, then we may make similar inferences with ignorable missingness.

Let D be the whole dataset, which can be divided into an observed variable compo-

nent Dobs which contains variables which are always observed and a missing variable

component Dmis, which contains variables with non-response values. 1 Missing data

1The use of superscript is different with subscript as used before, see Section 1.1 for their dif-
ferences. For example, if complete data D = (T,X,C) and variable C is partially missing, then
Dobs = (T,X) and Dmis = (C); while Dobs includes all observed values Dobs = (T,X,Cobs) and
Dmis = (Cmis).
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indicator R is defined as before. According to Bayes’ Theorem, the true MDM model

[R|D] can be written as

h(R|D) =
f(D|R)h(R)

f(D)

=
f(Dmis|Dobs, R)f(Dobs|R)h(R)

f(Dmis|Dobs)f(Dobs).
(5.4)

A working model for MDM in incomplete data distribution f ∗Y (or f ∗∗Y in GLMs) is

usually under an identifiable MAR model:

h(R|Dobs) =
f(Dobs|R)h(R)

f(Dobs)
. (5.5)

The ratio of equation (5.4) and (5.5) is

h(R|D)

h(R|Dobs)
=
f(Dmis|Dobs, R)

f(Dmis|Dobs)
,

where f(Dmis|Dobs) is the conditional distribution of missing variables given ob-

served variables Dobs and f(Dmis|Dobs, R) is the distribution on specific patterns

only. This ratio equals 1 under ignorable assumption, where h(R|D) = h(R|Dobs).

But f(Dmis|Dobs, R) is apparently different from f(Dmis|Dobs) under non-ignorable

missingness, and it is also one of the significant differences between non-ignorable

and ignorable missingness (Rubin, 1987). How to model the distributions for each

pattern, especially for the incomplete cases, is our concern.

As we know, R is Bernoulli distributed, with probability h(R = 1|D) and h(R =

0|D). In this case, the distribution [Dmis|Dobs] is the weighted average on both parts:

f(Dmis|Dobs, R = 1) and f(Dmis|Dobs, R = 0), with the weights equal to the marginal

density of missing data mechanism h(R|D) for R = 1 and R = 0 respectively:

f(Dmis|Dobs) = f(Dmis|Dobs, R = 1)h(R = 1|Dobs)+f(Dmis|Dobs, R = 0)h(R = 0|Dobs).

(5.6)

We must emphasize that, the probability h(R|Dobs) is the marginal model of the true

missing data mechanism, h(R|Dobs) = EDmis|Dobs [h(R|Dobs, Dmis)], which can be cal-

culated by Bayesian inference through equation (5.5). It may also be fitted as a proper

conditional model, such as a generalized additive model with non-parametric method
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(see Section 3.4), but using parametric models may lead to further misspecification.

Below we will discuss one example.

For a linear regression model

t|(x, c) ∼ N(α + θx+ βc, σ2) (5.7)

with c partially missing and suppose the true missing data mechanism depends on

(x, c) by a logistic linear model:

R ∼ Bernoulli(1, πxc)

logit(πxc) = ψ0 + ψ1x+ ψ2c. (5.8)

In this case the probability of data censoring is hZ = h(r = 0|x, c) and the corre-

sponding model under MAR hY is the model without c: h(r = 0|x). The ratio hZ
hY

in

bias expression is given as

hZ
hY

=
h(r = 0|x, c)
h(r = 0|x)

=
f(c|x, r = 0)

f(c|x)
,

which is the ratio of conditional covariate distribution of f(c|x) between incomplete

cases and all cases. If covariate distribution [XC] is assumed as multivariate normal

distributed, then the marginal model is

h(r = 1|x) = Ec|x(πxc)

≈ πx +
1

2
ψ2
2σ

2
cξ
′′(ψ0 + ψ1x) +O(ψ2

2σ
4
c ) (5.9)

with πx = ξ(ψ0 + ψ1x) and link function ξ(.) = expit(.). The symbol ξ′′ indicates

the second derivative of ξ(.). Apparently, fit of the marginal model of missing data

mechanism through a logistic linear model will be misspecified, because it ignores the

high order items. But we may consider to fit nonparametrically. Below we conduct a

simulation study to test the inference.

The true value of parameter is selected as (α, θ, β) = (0.5, 0.5, 1), and σ2 takes value

from uniform distribution in (0.16,1). Covariate variables (X,C) are assumed to have

a multivariate normal distribution, both have standard N(0, 1) marginal distribution

with corr(x, c) taken as (0,0.1,0.2,0.3,0.4,0.5). Sample size is 100. The confounder C

112



Chapter 5. Local Bias Analysis for Non-Ignorable Missing Data

is designed to be missing with probability h(r = 0|x, c) = 1− expit(1−x−2c), which

generates about 36% missing values. As we discussed, the marginal model of MDM is

required to evaluate the bias quantities, and we use Bayes’ approach (formula (5.5)),

a logistic linear model and non-parametric method to fit it. Results are presented in

Table 5.1, with estimations taken as an average of 100 replications.

Table 5.1: Simulation results for θ̂
Bayes Nonparametric Logistic Linear

corr(x, c) EB bXC bR CR bXC bR CR bXC bR CR
ρ= 0 0.039 0 0.034 0.95 0 0.035 0.95 0 0.109 0.88
ρ= 0.1 0.056 0.022 0.042 0.90 0.022 0.043 0.90 0.023 0.086 0.90
ρ= 0.2 0.081 0.049 0.039 0.97 0.047 0.042 0.94 0.048 0.098 0.92
ρ= 0.3 0.121 0.079 0.049 0.89 0.078 0.052 0.89 0.081 0.122 0.87
ρ= 0.4 0.145 0.111 0.050 0.92 0.108 0.053 0.92 0.113 0.137 0.77
ρ= 0.5 0.174 0.156 0.048 0.91 0.157 0.049 0.89 0.164 0.152 0.72

EB: empirical bias (θgY − θ). CR: coverage rate for adjusted estimation.

Remarks:

• The marginal model is free of missing covariate C, which can be fitted by

a parametric model (5.9) under MNAR form (5.8) assumed, however as we

discussed, unless we have strong belief in the model form it is difficult to approve

or oppose it.

• As we see in this example, an apparent parametric model such as the logistic

linear regression model (πx) is not a good fit of the marginal distribution h(r|x),

even if the true MDM is in the logistic linear regression form (equation 5.8).

• The proper fitting should follow equation (5.5) or be approached with a non-

parametric method (such as general additive modelling) to take into account

the high order terms as in equation (5.9). Without further information on the

true MDM form, we suggest using nonparametric modelling.

• The covariate distribution f(x, c) can not be fitted given observed data only,

and more information may be collected from other literature sources. Sensitivity

analysis is our preferred method and one example is give in Appendix 5.6.1.

More simulation studies can be found in Appendix 5.6.2.

113



Chapter 5. Local Bias Analysis for Non-Ignorable Missing Data

5.4 Numeric Result for GLMs

5.4.1 Equine Data Example

It is worth noting that the local bias analysis can accommodate both continuous and

discrete variables. In this section we present the evaluation of triple misspecification

bias for a real data example under non-ignorable missing assumption. The equine

epidemiology example is considered as a matched case-control study by Sinha et al.

(2005). The aim is to investigate how a disease indicator T (a case of colic versus a

control received for any condition other than colic) depends on age (C) measured on a

continuous scale and a binary covariate (X) indicating whether the horse experienced

a recent diet change or not. In total 998 cases are observed. The logistic regression

model estimated by the maximum likelihood method based on the complete data set

is

logit(Pr(t = 1|x, c)) = −0.611 + 2.097x+ 0.0474c.

The effect of recent diet change towards disease is of interest. Its estimate is θ̂ = 2.097.

Suppose that the individual is selected with probability function

h(r = 1|t, x, c) = expit(ω(t, x) + ψ1c+ ψ2xc) (5.10)

which induces about 43% missingness in exposure variable (C) given (ψ1, ψ2) =

(0.5,−1) and ω(t, x) = 1. Incomplete data bias analysis is conducted and the re-

sult is listed in Table 5.2. In the study, the MAR counterpart of the missing data

Table 5.2: Bias analysis result for Equine data under MNAR

θZ SE θY θ̂Y bXC bM bR b̂R
θ0 -0.611 0.068 -0.712 -0.593 -0.006 0.002 -0.122 -0.115
θx 2.097 0.029 2.298 2.093 0.025 -0.016 0.237 0.196
θc 0.047 0.011 0.046 0.037 0.001 -0.001 0.010 0.009

θ̂Y is estimation with adjustment from incomplete data bias bXC + bR + bM . MDM bias
bR is calculated given true mechanism (5.10), while b̂R is evaluated based on inference
in Section 5.3.

mechanism: h(r = 1|x) is evaluated by a generalized additive model with nonpara-

metric method (Hastie and Tibshirani, 1990). As seen in Table 5.2, we find that

covariate bias and marginal bias for MLEs under incomplete data are relatively small
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in this example, while the missing data mechanism bias predominates over all the

incomplete data bias sources. The approximation b̂R works very well when compared

with bR, and it supports our inference by transposing the MNAR problem into its

MAR counterpart.

5.4.2 Simulation Study

A simulation study is conducted with the response variable distributed as a logistic

linear model T ∼ B(1, πxc):

fT |XC = πtxc(1− πxc)1−t, πxc =
exp{α + θx+ βc}

1 + exp{α + θx+ βc}
.

Covariate variables are generated as multivariate normal distribution as before, with

corr(x, c) selected from (0,0.3,0.5). True values are (α, θ, β) = (1, 1, 1). Variable C is

designed to be partially missing in this simulation, with the missing data mechanism

under non-ignorable assumption:

h(r = 1|x, c) = expit(ψ0 + ψ1c+ ψ2xc).

Incomplete data bias is calculated, and the average estimators of 100 replications

are presented in Table 5.3. The marginal bias seems not vary much for different

corr(x, c) and MDM models. The covariate bias doesn’t exist when corr(x, c) = 0,

but it increases with corr(x, c). The MDM bias exists in each study and has a relative

large bias size compared with marginal bias and covariate bias, especially for α and β

components. The evaluation of MDM bias from MAR counterpart modelling works

well. This is clearly seen by comparing the two coverage probabilities (CR and CR1).

5.5 Discussion

The incomplete data bias under non-ignorable assumption is analysed for both linear

and generalized linear regression models in this chapter. The specification of missing

data mechanism is difficult to achieve under non-ignorable missing data because of

identifiability issue. Consequently, we transposed the MNAR problem into its cor-

responding MAR counterpart. The marginal model of MDM is required, which was
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Chapter 5. Local Bias Analysis for Non-Ignorable Missing Data

fitted nonparametrically by a generalized additive model. Simulation results show

that these techniques work very well.

Under the pattern mixture model frame, the covariate distribution is the key but it

is difficulty to identify in real terms. Further investigation, such as follow up study

or sensitivity analysis, should be considered.

5.6 Appendix

5.6.1 Model Selection of Covariate Distribution

As noticed, the evaluation of incomplete data biases requires information on covariate

distribution, which can be approximately calculated from complete cases under ignor-

able missingness. However this approach can be seriously biased under non-ignorable

missing data, because of significant difference between complete case pattern and in-

complete case pattern. In practice, we may use historic data or a follow up study

(see e.g. Kim and Yu, 2011) to obtain this information, but it is not always simple to

conduct a further investigation, and also extra bias may exist due to lack of random-

ization. One possible solution is to apply the MC-BMS method proposed in previous

chapter.

Simply, we take one simulation study conduced from Table 5.1 with corr(x, c) = 0.5.

The correlation corr(x, c) is treated as the single bias parameter, with ρ sampled be-

tween (-1, 1) with an interval 0.05. We use a nonparametric model to fit the marginal

distribution of missing data mechanism h(r|x). MC-BMS approach is conducted sim-

ilarly as ignorable missing data, but the bias adjustment may be slightly complex as

with MDM bias evaluation.

Figure 5.1 shows the bias model selection result with nearest neighbour method mea-

sure under Euclidean and Mahalanobis metric. The averaged achieved significant

level (ASL) is also calculated and shown in Figure 5.2. The power of testing pattern

differences is much lower (below 0.2) in this case, then the method of calculating

confidence interval (see Chapter 4) is no longer valid for this example. However, the

smallest distance selection (BMS-2) by KNN have a clear selection result, as shown

in Figure 5.1 (a) and (b). The bottom of the curve is very close to the true value 0.5.

The KNN distance is clearly capable to discover small pattern differences. And it is
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robust for both Euclidean and Mahalanobis norm and also for different ‘K’ (parameter

in KNN).
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Figure 5.1: Selection of corr(x, c).

Monte Carlo sensitivity analysis (MCSA, Greenland, 2005) and multiple imputation

method (under MAR) are also used to calculate θ̂, and we find MC-BMS gives the best

result (θ̂=0.478). MCSA (θ̂=0.739) works even worse than the multiple imputation

method under the ignorable assumption (θ̂=0.614), which indicates the uniform prior

U(-1,1) is not a good choice. Bayesian model average (BMA) method improves the

MCSA but the result is not as good as MC-BMS, as seen in Table 5.4.

Chapter 6 will extend the Monte Carlo bias model selection method to ‘selection

model frame’ for non-ignorable missing data problem.

Table 5.4: Sensitivity analysis results
α θ β

True value 0.500 0.500 1.000
BMS 0.477 0.478 1.052
MCSA 0.536 0.739 0.952
BMA 0.521 0.669 0.977
MAR 0.713 0.614 1.062
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Figure 5.2: Achieved significance level

5.6.2 Simulation Studies for Complex MNAR models

Below we show more simulation studies under non-ignorable assumption. We generate

two covariate variables by multivariate normal distribution:x
c

 ∼ N

0

0

 ,

1 ρ

ρ 1

 (5.11)

with ρ = (0, 0.1, 0.3, 0.5). And response variable

t|(x, c) ∼ N(α + θx+ βc, σ2) (5.12)

with setting the true value of parameter (α, θ, β) = (0.5, 0.5, 1) and σ2 takes value

from U(0.16, 1). We consider several MDM models for the procedure of dropping C,

let π = h(r = 1|t, x, c) and the designs are:

M1 (Expit Linear)

π =
exp(ψ0 + ψ1c)

1 + exp(ψ0 + ψ1c)

where (ψ0, ψ1) = (1, ψ1).

M2 (Expit Linear: with x, c)

π =
exp(ψ0 + ψ1c+ ψ2x)

1 + exp(ψ0 + ψ1c+ ψ2x)
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where (ψ0, ψ1, ψ2) = (1, ψ1,−1).

M3 (Expit Nonlinear: quadratic in c)

π =
exp(ψ0 + ψ1c

2)

1 + exp(ψ0 + ψ1c2)

where (ψ0, ψ1) = (1, ψ1).

M4 (Expit Nonlinear: interaction)

π =
exp(ψ0 + ψ2c+ ψ3x+ ψ1cx)

1 + exp(ψ0 + ψ2c+ ψ3x+ ψ1cx)

where (ψ0, ψ1, ψ2, ψ3) = (1, ψ1, 1, 1).

M5 (Complementary log-log Linear: with x)

π = 1− exp{− exp(ψ0 + ψ1c+ ψ2x)}

where (ψ0, ψ1, ψ2) = (1, ψ1, 1).

M6 (Sin Linear)

π = ‖sin(ψ0 + ψ1c+ ψ2x)‖

where (ψ0, ψ1, ψ2) = (1, ψ1, 1).

In all models, let ψ1 = c(2, 1, 0,−1,−2) in different instances. The incomplete data

biases (bXC and bR) are estimated given the covariate distribution [XC] and given

the missing data mechanism [R|T,X,C], while the estimation of MDM bias b̂R is

calculated with h(r|t, x, c) assumed to be unknown, and we fit its marginal model

hY = h(r = 0|t, x) by a generalized additive model with nonparametric method and

bias is then evaluated according to the inference in Section 5.3. In the simulations,

sample size is chosen as M = 1000 and the studies are replicated 100 times. Estima-

tion of θ is given as the average of all the replications.

The simulation results are listed in Tables 5.5 to 5.10. We show some significant

findings below:

• Approximation about the missing data mechanism bias works well, when com-

paring the estimation of b̂R with bR or the coverage rates CR with CR1.
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Table 5.5: MNAR simulation 1
MDM corr(x, c) EB IB bXC bR b̂R CR CR1

expit(1 + 2c) ρ = 0 -0.04 0.06 0 0.06 -0.02 98 96
ρ = 0.1 1.50 2.38 1.60 0.77 0.71 98 92
ρ = 0.3 4.34 7.25 5.26 1.99 1.99 84 84
ρ = 0.5 9.52 13.9 10.5 3.47 3.24 67 70

expit(1 + c) ρ = 0 -0.19 0.06 0 0.07 -0.03 98 94
ρ = 0.1 1.46 1.70 1.30 0.40 0.35 99 97
ρ = 0.3 3.54 5.28 4.31 0.97 0.96 90 86
ρ = 0.5 7.55 10.2 8.45 1.78 1.57 76 75

expit(1− c) ρ = 0 -0.05 0 0 0 0.02 96 95
ρ = 0.1 1.21 1.65 1.31 0.33 0.24 95 92
ρ = 0.3 3.78 5.31 4.33 0.97 1.12 92 89
ρ = 0.5 7.11 10.1 8.33 1.77 1.57 80 78

expit(1− 2c) ρ = 0 -0.17 0.01 0 0.01 0.03 96 97
ρ = 0.1 1.24 2.27 1.58 0.69 0.68 95 93
ρ = 0.3 4.61 7.32 5.21 2.11 1.89 82 83
ρ = 0.5 9.44 13.8 10.4 3.33 3.30 65 64

Note: EB is the empirical bias (θ̂Y − θ). IB is the estimated incomplete
data bias (θ̂Y − θ̂Z), which is the sum of covariate bias bXC and MDM bias
bR. b̂R is the estimation based on inference section 5.3. CR is coverage rate
of adjusted θ̂Y , with incomplete data bias adjustment bXC + bR. CR1 is
with adjustment of bXC + b̂R. All outputs listed ×10−2.

Table 5.6: MNAR simulation 2
MDM corr(x, c) EB IB bXC bR b̂R CR CR1

expit(1− x+ 2c) ρ = 0 -2.89 -3.00 0 -3.01 -3.19 95 93
ρ = 0.1 -1.62 -0.69 1.75 -2.44 -2.53 93 92
ρ = 0.3 1.67 3.72 5.23 -1.51 -1.18 93 88
ρ = 0.5 6.17 9.59 9.61 -0.02 -0.12 73 74

expit(1− x+ c) ρ = 0 -2.48 -2.71 0 -2.71 -2.66 100 98
ρ = 0.1 -0.73 -0.82 1.67 -2.50 -2.53 99 95
ρ = 0.3 1.85 2.87 4.97 -2.10 -2.17 96 93
ρ = 0.5 6.12 7.51 8.90 -1.40 -1.74 91 88

expit(1− x− c) ρ = 0 2.20 2.48 0 2.48 2.85 99 92
ρ = 0.1 3.66 4.49 1.77 2.72 2.87 94 93
ρ = 0.3 7.20 9.03 6.07 2.96 3.23 89 86
ρ = 0.5 12.2 15.6 12.4 3.20 3.11 71 70

expit(1− x− 2c) ρ = 0 3.05 2.95 0 2.95 3.12 96 89
ρ = 0.1 4.82 5.48 1.87 3.61 3.47 95 90
ρ = 0.3 7.82 10.7 6.57 4.18 4.06 78 77
ρ = 0.5 13.3 18.2 14.0 4.25 4.36 54 46
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Table 5.7: MNAR simulation 3
MDM corr(x, c) EB IB bXC bR b̂R CR CR1

expit(1 + 2c2) ρ = 0 -0.18 0 0 0 -0.17 99 95
ρ = 0.1 -0.08 0.11 0.49 -0.38 -0.24 98 99
ρ = 0.3 0.95 0.36 1.58 -1.22 -1.28 94 92
ρ = 0.5 2.20 0.74 3.04 -2.29 -1.97 92 83

expit(1 + c2) ρ = 0 0.02 -0.01 0 -0.01 0.12 97 95
ρ = 0.1 0.37 0.26 0.64 -0.38 -0.51 96 89
ρ = 0.3 1.45 0.77 2.12 -1.35 -1.23 97 93
ρ = 0.5 3.09 1.63 4.09 -2.46 -2.05 91 91

expit(1− c2) ρ = 0 -0.15 -0.07 0 -0.07 -0.08 97 97
ρ = 0.1 1.93 3.66 2.32 1.34 1.38 93 94
ρ = 0.3 7.34 11.5 7.43 4.10 3.95 75 76
ρ = 0.5 15.2 20.5 14.3 6.23 6.03 56 56

expit(1− 2c2) ρ = 0 -0.19 0.12 0 0.12 0.03 100 94
ρ = 0.1 3.45 4.74 3.11 1.62 1.64 97 92
ρ = 0.3 9.90 14.8 9.78 5.03 4.76 66 69
ρ = 0.5 20.8 26.1 18.9 7.18 7.17 58 57

Table 5.8: MNAR simulation 4
MDM corr(x, c) EB IB bXC bR b̂R CR CR1

expit(1 + x+ c+ 2x× c) ρ = 0 -9.02 -11.4 0 -11.4 -11.7 91 80
ρ = 0.1 -6.94 -9.15 1.66 -10.8 -11.2 94 85
ρ = 0.3 -3.74 -5.55 3.93 -9.47 -8.88 86 83
ρ = 0.5 -0.470 -2.83 5.08 -7.90 -7.34 85 81

expit(1 + x+ c+ x× c) ρ = 0 -5.11 -7.03 0 -7.03 -7.48 95 89
ρ = 0.1 -3.96 -5.4 1.33 -6.74 -6.99 96 88
ρ = 0.3 -1.65 -2.62 3.46 -6.08 -5.85 95 93
ρ = 0.5 1.24 -0.18 5.01 -5.19 -4.66 87 86

expit(1 + x+ c− x× c) ρ = 0 5.39 7.16 0 7.16 7.43 96 93
ρ = 0.1 7.54 9.16 1.69 7.48 7.51 97 95
ρ = 0.3 11.8 14.4 6.62 7.77 7.68 83 82
ρ = 0.5 18.8 22.1 14.8 7.33 7.18 77 79

expit(1 + x+ c− 2x× c) ρ = 0 8.69 11.3 0 11.3 11.8 94 77
ρ = 0.1 11.2 14.0 2.23 11.7 11.9 85 75
ρ = 0.3 16.9 20.5 8.82 11.7 12.0 80 73
ρ = 0.5 25.7 30.2 19.5 10.5 10.5 70 63
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Table 5.9: MNAR simulation 5
MDM corr(x, c) EB IB bXC bR b̂R CR CR1

1-exp{− exp(1 + x+ 2c)} ρ = 0 3.80 3.91 0 3.91 3.93 98 98
ρ = 0.1 5.06 5.97 1.47 4.49 4.51 96 95
ρ = 0.3 7.77 10.5 5.44 5.07 5.23 87 85
ρ = 0.5 11.5 17.1 11.4 5.61 5.37 49 55

1-exp{− exp(1 + x+ c)} ρ = 0 3.51 3.92 0 3.91 4.08 97 96
ρ = 0.1 4.55 5.41 1.34 4.06 4.07 93 97
ρ = 0.3 6.82 9.04 4.82 4.22 4.32 87 87
ρ = 0.5 10.2 14.3 10.1 4.20 4.09 68 72

1-exp{− exp(1 + x− c)} ρ = 0 -3.47 -3.97 0 -3.97 -3.89 99 93
ρ = 0.1 -2.86 -2.73 1.20 -3.92 -3.81 99 94
ρ = 0.3 -0.63 -0.24 3.16 -3.40 -3.53 99 97
ρ = 0.5 1.56 2.32 5.11 -2.79 -2.95 90 87

1-exp{− exp(1 + x− 2c)} ρ = 0 -3.98 -3.98 0 -3.98 -3.96 97 94
ρ = 0.1 -2.99 -2.03 1.27 -3.30 -3.61 99 98
ρ = 0.3 -0.82 1.74 3.56 -1.82 -2.02 85 85
ρ = 0.5 2.24 6.04 6.14 -0.11 0.02 58 55

Table 5.10: MNAR simulation 6
MDM corr(x, c) EB IB bXC bR b̂R CR CR1

‖sin(1 + x+ 2c)‖ ρ = 0 -0.05 -0.07 0 -0.07 0.024 99 96
ρ = 0.1 1.46 1.74 1.66 0.08 -0.22 96 94
ρ = 0.3 4.43 5.34 5.34 0.01 0.04 97 89
ρ = 0.5 9.15 10.3 10.4 -0.03 -0.16 90 90

‖sin(1 + x+ c)‖ ρ = 0 0.38 0.60 0 0.60 0.68 98 98
ρ = 0.1 1.71 2.11 1.69 0.41 0.30 96 97
ρ = 0.3 4.52 5.59 5.35 0.24 0.14 95 96
ρ = 0.5 9.48 10.6 10.5 0.13 0.07 89 87

‖sin(1 + x− c)‖ ρ = 0 -0.24 -0.57 0 -0.57 -0.58 97 94
ρ = 0.1 0.49 0.84 1.71 -0.87 -0.93 99 96
ρ = 0.3 3.34 4.25 5.63 -1.38 -1.33 94 91
ρ = 0.5 6.56 8.56 10.8 -2.22 -2.49 92 91

‖sin(1 + x− 2c)‖ ρ = 0 0.02 -0.01 0 -0.01 0.06 97 97
ρ = 0.1 1.08 1.62 1.65 -0.02 -0.05 99 96
ρ = 0.3 4.59 5.32 5.29 0.03 0.01 95 91
ρ = 0.5 8.92 10.3 10.4 -0.08 -0.03 89 88
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• When corr(x, c) = 0, the covariate bias is zero as expected, but the MDM bias

exists. This is one of the significant differences from the MAR assumption.

• Comparing with bXC , the MDM bias bR is not large in all simulations. But when

there is an interaction influence (M4) or quadratic form (M3), the MDM bias

gets considerable large size. In this case, fitting MDM from ignorable missing

data assumption or a logistic linear model may not work so well.

• In the simulation, we choose sample size to be large enough to have precise

evaluations for two bias components. If the study sample size is too small,

the variance of θ̂ will be too large to discover the significant differences. But

we should always be aware of the uncertainty issue for the missing data mecha-

nism specification, especially when there is uncertainty in covariates distribution

modelling.
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Chapter 6

Bias Model Selection for

Non-Ignorable Missing Data

6.1 Introduction

The joint density of data D and the missingness R: f(R,D) can be factorized as

pattern mixture models f(D|R)f(R) or selection models f(R|D)f(D). Both of them

have useful features, and the comparation of the two modelling approachs can be

found in e.g. Glynn et al. (1986), Kenward and Molenberghs (1999), Little (1995)

and Little and Rubin (2002). As we discussed, inference on pattern mixture models

can avoid the non-ignorable missing data mechanism selection process. However, it

requires priori knowledge on the distribution of all variables f(D), or rather a model

structure assumption on incomplete cases f(D|R = 0). Since these information is

very rare, we consider missing data problem in selection models frame in this chapter

by specifying the missing data mechanism f(R|D), following the work of Ibrahim

et al. (2001), Oakley and O’Hagan (2004) , Molenberghs et al. (2001) and Tang et al.

(2003). An explicit parametric model may be built as (Ibrahim et al., 2001)

logit{h(R = 1|Dobs, Dmis)} = ψ0 + ψ1D
obs + ψ2D

mis

where full specification is necessary under missing not at random (MNAR), and sen-

sitivity analysis is advocated (Horowitz and Manski, 2000) because of lack of iden-
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tifiability. This can be replaced by a semiparametric selection model (Kim and Yu,

2011)

logit{h(R = 1|Dobs, Dmis)} = ω(Dobs) + ψDmis, (6.1)

where ω(·) is a nonparametric function ω(.) and ψ is an unknown parameter. This

model takes a nonparametric model on the observed partDobs and a simplified form on

the missing variable Dmis. The discussion in this chapter will use this semiparametric

model to specify the missing data mechanism, and analysis will be conducted with

the multiple imputation method to fill in missing values in the incomplete cases

based conditional distribution f(Dmis|Dobs, R = 0). Monte Carlo bias model selection

method (BMS) will be applied to select a proper value of the bias parameter. We

will discuss several specific missing data problems in this section, including mean

estimation with non-ignorable missing data, model misspecification for missing data

mechanism and regression analysis with missing covariates.

6.2 Mean Estimation with Non-Ignorable Missing

Data

Assume that X is continuously distributed with its mean µ as the parameter of

interest. The complete data set is D = (Xobs, Xmis) and MDM depends on the

missing value itself. Let R be missing data indicator which is equal to 1 if the data

is observed or 0 otherwise. Assume that MDM is modelled by a logistic model

h(R = 1|X = x) = expit{ψ(x+ λ)} (6.2)

where expit(x) = exp(x)/(1 + exp(x)) and λ is assumed to be known as in Tang

et al. (2003) (it can be estimated if the proportion of the missing data is known).

The parameter of interest is µ = E(X), the mean of the complete data. It can be

expressed by

µ = ER (EX(X|R))

= E(X|R = 1)h(r = 1) + E(X|R = 0)h(r = 0)

= πµ1 + (1− π)µ2,
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where π = h(r = 1) is the marginal probability which can be estimated by the

observed proportion; µ1 and µ2 are the means of the observed data and the missing

data respectively. So evaluation of µ2 is the main task. Using Bayes theorem, we

have

f(x|r = 0) =
h(r = 0|x)f(x)

h(r = 0)

= f(x|r = 1)
h(r = 1)

h(r = 0)

h(r = 0|x)

h(r = 1|x)
. (6.3)

Denote that πx = h(r = 0|x), then

h(r = 0|x)

h(r = 1|x)
=

1− πx
πx

=
1

exp(ψ(x+ λ))

is the odds of missing when X = x. The second equation comes from MDM model

(6.2). The mean of the missing data can therefore be expressed by

µ2 =

∫
xf(x|r = 0)dx

=

∫
xf(x|r = 1)

π

1− π
1

exp(ψ(x+ λ))
dx

=
π

1− π
EX|R=1

[
X

exp(ψ(X + λ))

]
.

In this example, ψ is the bias parameter. From the observed data, we are unable to

estimate ψ since it depends on the missing data as well.

6.2.1 Simulation Study

We now conduct a simulation study to demonstrate how to use the proposed MC-BMS

approach and how it performs. The true values are selected as µ = 28.4, σ2 = 19.82

and ψ = −0.5, λ = −28 in model (6.2), indicating the average missing proportion is

about 51.3%. Sample size of the complete data is 51. In this example λ is assumed

to be fixed and ψ is treated as an unknown bias parameter. A MC-BMS approach

is designed as follows. We first select a series of ψ, and in this example we simply

choose its value from the interval of (-1,1). For each selected ψ, we evaluate the

density f(x|r = 0) by (6.3) and then use the density function to sample the missing
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data, and denote the imputed values as xmis,ψ. Thus, Dψ = (xobs, xmis,ψ) forms a

simulated complete data set. If the selected bias parameter is close to the ‘true value’

ψtrue, Dψ should be close to the true complete data set D = (xobs, xmis). Since Dψ

and D cannot be compared directly since D involves unobserved data xmis, we further

generate a set of xψ,obs from Dψ using MDM (6.2) with the given value of ψ. The

simulated set of xψ,obs is comparable with the observed dataset xobs. The closeness of

xψ,obs and xobs is measured by K-nearest neighbour distance. We choose the ψ with

the smallest distance.

Usually the sample size of missing data may be not very large (which is about 26

in this simulation study), and one run of the procedure may suffer from sampling

error and result in unstable conclusion. Figure 6.1 shows the results with the MC

size of 1000. KNN distance takes the minimum at ψ = −0.53 when K = 2. The

corresponding estimate is µ̂ = 27.5. We also consider the other values of K. As shown

in the same figure, all of them give the similar results although the values of KNN

distance is less sensitive to ψ for larger values of K. Discussion on how to choose K

can be found in for example Hall et al. (2008) and Nigsch et al. (2006).
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Figure 6.1: Bias parameter selection. Upper panel: KNN distances versus different
values of ψ; Lower panel: KNN distance versus the corresponding estimate of µ for
the given value of ψ.
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We should point out that the approach with smaller value of K is often quite sensitive

to the simulated data set Dψ, we should use a relative large value of MC size in this

case.

Table 6.1 presents the simulation study results of 100 replications with different MC

sizes and differentK’s of KNN distance. The average of µ̂ calculated by using observed

data only is 25.64. Table 6.1 shows that the MC-BMS approach gives much better

results comparing with the true value of µ = 28.4. It also shows that the estimates are

Table 6.1: Bias model selection: simulation study

average of µ̂ average of selected ψ
MC size 10 20 100 1000 10 20 100 1000

K=2 27.84 27.69 27.70 27.67 -0.572 -0.531 -0.541 -0.531
K=3 27.94 27.52 27.34 27.41 -0.572 -0.484 -0.390 -0.391
K=4 28.42 28.05 27.37 27.35 -0.690 -0.596 -0.435 -0.425
K=5 29.23 28.50 27.74 27.85 -0.883 -0.673 -0.512 -0.463

quite consistent for different values of K even for small number of MC sizes. Figure

6.2 gives the histograms of the selected ψ with different MC sizes. It suggests that

the method with MC size 100 or over usually gives quite robust result.

6.3 Regression Models with Non-Ignorable Miss-

ing Data

We now consider a regression problem with missing confounders. LetD = (Dobs, Dmis),

where Dobs denotes the variables that are always observed; while Dmis denotes the

variables that are totally or partly missing. We still use R as the missing indicator

and assume that the MDM (missing data mechanism) depends on both Dobs and

Dmis.

logit{h(R = 1|Dobs, Dmis)} = ω(Dobs) + ψDmis, (6.4)

where Dobs may include all observed covariates and the observed response variable as

well and ω(·) is a nonparametric function ω(.) and ψ is an unknown parameter. This

model takes a nonparametric model on the observed part Dobs and a simplified form

on the missing variable Dmis.

Based on discussions similar to those around (6.3), we get the following result.
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Figure 6.2: Bias parameter selection: histograms of the selected ψ with different MC
sizes.

Lemma 6.1. Let D = (Dobs, Dmis) and Dobs is a set of observed variables and Dmis

is a set of variables with missing data. Let R be the missing data indicator. The

conditional distribution of the missing data Dmis (i.e. when R = 0) given observed

data Dobs is given by

f(Dmis|Dobs, R = 0) = f(Dmis|Dobs, R = 1)
Q(D)

E(Q(D)|Dobs, R = 1)
, (6.5)

where

Q(D) =
h(R = 0|D)

h(R = 1|D)
(6.6)

is the conditional odds of nonresponse with h(r|D) as the missing data mechanism.

The proof is given in Appendix 6.5.1.

The expression (6.5) gives the distribution of missing data given the observed data. It

is the key to estimate parameters of interest with non-ignorable missing data. When

this model can be determined, the parameters of interest can be estimated. We now

apply the lemma to the semiparametric logistic regression model to fit MDM. Rewrite
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(6.4) as

πD = h(R = 1|D) = expit(ω(Dobs) + ψDmis). (6.7)

Note that the component on observed part ω(Dobs) will disappear in the fraction at

equation (6.5). The formula is simplified as

f(Dmis|Dobs, R = 0) = f(Dmis|Dobs, R = 1)
exp(−ψDmis)

E(exp(−ψDmis)|Dobs, R = 1)
. (6.8)

The parameter ψ is considered as tilting parameter that determines the amount of

departure from the ignorability of the MDM.

In formula (6.5) or in (6.8), we need two models to compute the conditional distri-

bution of missing data: f(Dmis|Dobs, R = 1) and h(R = 1|Dobs, Dmis). A consistent

estimate of f(Dmis|Dobs, R = 1) can be parametrically fitted such as a conditional

logistic model by Sinha et al. (2005) or nonparametrically fitted with a kernel estima-

tor as discussed by Kim and Yu (2011). Thus the only uncertainty in formula (6.8)

is the parameter ψ. This is the bias parameter which cannot be estimated from the

observed data. We usually use a sensitivity analysis method to study how estimation

of the parameter of interest depends on ψ or the associated interpretable quantities

(see e.g. Kim and Yu, 2011).

Here we use the MC-BMS method discussed in Chapter 4 to select the most plausible

value of ψ. We first choose a value of ψ, and then simulate missing data from (6.5)

or (6.8). The simulated data are imputed to form a simulated complete data and

then a subset Dψ,obs is resampled based on MDM with the given ψ and the simulated

complete data. Dψ,obs is compared with the true observed data Dobs using the nearest

neighbour distance. To eliminate sampling error, we used average distance calculated

from repeated Dψ,obs. As we suggested in the previous section, we usually use the MC

size of 100. The details will be illustrated by two examples discussed in the following

subsections.

6.3.1 Fuel Consumption Data Example

We now consider a missing not at random problem based on Fuel consumption data

and let income (X2) be partly missing with probability h(R = 0|D) = 1− expit(1 +

(x1 − x̄1)− 0.5(x2 − x̄2)), where r is the missing data indicator and x̄ = E(x). This

model is used to simulate data in this example.
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In our MC-BMS method, we use the following semiparametric MDM model:

h(r = 1|t, x1, x2, x3, x4) = expit(ω(t, x1, x3, x4) + ψx2). (6.9)

Applying equation (6.8) to this example, we impute the missing values from:

f(x2|t, x1, x3, x4, r = 0) = f(x2|t, x1, x3, x4, r = 1)
exp(−ψx2)

E(exp(−ψx2)|t, x1, x3, x4, r = 1)
.

We use a normal distribution to fit the conditional distribution:

(x2|t, x1, x3, x4, r = 1) ∼ N(γ0 + γ1t+ γ2x1 + γ3x3 + γ4x4, τ
2).

Considering that X2 is the personal income, normal distribution seems a reasonable

assumption.

Now we can simulate a ‘complete’ dataset Dψ = (T,X1, X
∗
2 , X3, X4) for each given ψ,

and we can estimate parameter (θ̂ψ, σ̂
2
ψ) from a linear regression model with dataset

Dψ. To conduct a stable selection step by using KNN distance, we use ‘bootstrap-

ping residuals’ method to obtain D∗ψ = (T ∗, X1, X
∗
2 , X3, X4), where T ∗ is re-sampled

conditional on the following linear regression model with the estimates (θ̂ψ, σ̂
2) and

imputed covariates X∗ = (X1, X
∗
2 , X3, X4):

t∗|x1, x∗2, x3, x4 ∼ N(θ̂Tψx
∗, σ̂2

ψ).

So T ∗ is simulated by adding residuals on the predicted values, where the residuals are

sampled from a normal distribution N(0, σ̂2
ψ). We then calculate the distance between

Do∗
ψ = (T ∗, X1, X3, X4) and its associated observed data set Dobs = (T,X1, X3, X4).

We still use the average distance with MC size of 100 to eliminate sampling errors.

In this example, we choose ψ in (−5, 5) with interval of 0.2. Figure 6.3 shows the

KNN distances with K = 2 against the values of ψ. It achieves minimum at ψ = −0.6

and we consider it as the ‘most plausible’ value of ψ. The corresponding estimates

are very close to the ones obtained from the complete data; see the results in Table

6.2.

As comparison, we also considered the MCSA by Greenland (2005) and BSA by Mc-

Candless et al. (2007) (see the detailed procedure in Appendix 6.5.2). Table 6.2 shows
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the simulation results with 100 replications. Estimation based on MAR assumption is

also listed. MCSA method works well except the estimation of θ1 and θ2, this may be

because the missingness depends on x1 and x2 but it is usually not easy to give a good

prior distribution for bias parameter ψ. BSA gives an even worse result indicating

the uniform prior U(-5, 5) is not a good choice. Overall the MC-BMS method gives a

much better result than the others. All the estimates are very close to the estimates

calculated from the complete data.

Table 6.2: Simulation study for fuel consumption data

θ̂0 θ̂1 θ̂2 θ̂3 θ̂4
Complete data 154.19 18.55 -6.14 0.472 -4.228
MAR 128.62 33.65 -10.90 0.440 -4.843
MCSA 153.60 22.87 -3.44 0.494 -4.292
BSA 131.51 31.77 -10.17 0.445 -4.753
MC-BMS 152.33 18.24 -3.99 0.493 -4.394
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Figure 6.3: Selection of bias parameter ψ for fuel consumption data: KNN (K=2)
distance versus values of ψ.
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6.3.2 Simulation Studies for Misspecified Models

Now we conduct a simulation study to further examine the proposed MC-BMS

method for non-ignorable missing covariates. We consider a complete data exam-

ple D=(T,X,C) from the following linear regression model:

(t|x, c) ∼ N(α + θx+ βc, σ2), (6.10)

where C is partly missing. The observed data is Dobs = (T,X,Cobs), meaning that

all of (T,X,C) are observed for the complete cases (R = 1) and only (T,X) are

observed for the missing cases (R = 0). We used a semiparametric MDM model in

this example:

h(r = 1|t, x, c) = expit(ω(t, x) + ψc). (6.11)

Here ψ is the bias parameter and it is inestimable since it depends on the missing

values of c. The conditional distribution of the missing variable C given (T,X) can

be derived by using Lemma 6.1, which is

f(c|t, x, r = 0) = f(c|t, x, r = 1)
exp(−ψc)

E[exp(−ψc)|t, x, r = 1]
. (6.12)

The conditional distribution of c for the complete cases f(c|t, x, r = 1) is fitted by a

normal distribution:

cobs|(tobs, xobs) ∼ N(γ0 + γ1xobs + γ2tobs, τ
2
c ).

The unknown parameters (γ0, γ1, γ2, τ
2
c ) are estimated from Dobs.

In the simulation study, the true values of the parameters are (α, θ, β) = (1, 1, 1),

and σ2 takes value from a uniform distribution in (0.16, 1). Covariates variables

(X,C) are assumed to be continous distributed, with X ∼ U(0, 2) and (C|X) ∼
U(ρ σc

σx
x + 1, ρ σc

σx
x + 4) with corr(x, c) taken as either 0.5 or -0.5. We considered the

following MDM models in four different scenarios:

S1. Logit Linear: h(r = 1|x, c) = expit(2− 0.6c+ 0.2x2), corr(x, c) = 0.5;

S2. Logit Interaction: h(r = 1|x, c) = expit(−1 + c+ x− xc), corr(x, c) = −0.5;

S3. Logit Quadratic: h(r = 1|x, c) = expit(3− 0.3c2), corr(x, c) = 0.5;
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S4. Log Log Linear: h(r = 1|x, c) = 1− exp{− exp(0.5− c+ x)}, corr(x, c) = −0.5.

Note that the true mechanism may have the interaction or quadratic component, but

the fitting model (6.11) has no consideration on it and can be biased. This study also

aims to show how MC-BMS method performs when the MDM is misspecified.

For each given ψ, we first generate cψ,mis from (6.12), and then estimate (α, θ, β) and

σ2 using the simulated ‘complete’ data set with cmis imputed by cψ,mis. We then use

the estimates to generate a new set of complete data D∗ψ = {(t∗i , xi, c∗i ), i = 1, . . . , n}
where c∗i takes either the observed data cobs,i or the imputed data cψ,mis,i, and t∗i is

generated using model (6.10) with xi and c∗i by adding a ‘bootstrapping residual’

(i.e. the one generated from N(0, σ2
ψ)). The MC-BMS approach is to compare D∗ψ1 =

{(t∗i , xi), i = 1, . . . , n} with Dobs1 = {(ti, xi), i = 1, . . . , n} using a KNN distance.

To consider the comparison we also used the model with MAR assumption, i.e. using

(6.11) without the item of ψc. Table 6.3 presents the average values of the estimates

via 100 replications. The values of RMSE (root mean squared error) are listed in

brackets. It shows that the MC-BMS performs very well even for S2 to S4. The

MDM (6.11) we used in MC-BMS is actually misspecified in S2 to S4. In S2 it ignores

the interaction; S3 (6.11) uses a linear predictor for c with logistic link function but

the actual one is nonlinear; while in S4 different link function is used. However the

selected bias model using MC-BMS still give quite good results. In all the scenarios,

MC-BMS performs better than the model with MAR assumption.

Table 6.3: Simulation study: average estimates and RMSE (in brackets)

MC-BMS MAR
α θ β α θ β

True 1 1 1 1 1 1
S1 0.993 (0.130) 0.993 (0.075) 1.010 (0.046) 1.003 (0.521) 0.988 (0.493) 1.013 (0.047)
S2 0.884 (0.494) 1.129 (0.275) 0.977 (0.165) 0.949 (0.620) 1.191 (0.732) 0.981 (0.143)
S3 0.739 (0.386) 0.981 (0.116) 1.113 (0.162) 0.732 (0.368) 0.992 (0.504) 1.129 (0.172)
S4 0.919 (0.503) 1.038 (0.246) 1.007 (0.199) 1.378 (1.010) 0.834 (0.408) 1.038 (0.201)

6.4 Discussion

In this Chapter, we were concerned with the sensitivity analysis for non-ignorable

missing data problems under the selection models framework. The missing data
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mechanism is specified as a semiparametric model, with bias parameter (η = ψ)

evaluated through Monte Carlo bias model selection (MC-BMS) method. Given a

value of η, we make imputation on Dmis (when R = 0) to obtain a complete dataset

Dη. How to generate Dmis from a bias model is the key step of MC-BMS approach.

Several examples are demonstrated in Section 6.2 and 6.3, in which Lemma 6.1 plays

a key role. The detailed technique has been reported for those examples, and they

can be extended to other missing data problems.

The ‘closeness’ of the simulated data and the observed data is measured by the

distance between the two sets of samples. We have tried a variety of distances and

found that KNN distance is proper for the approach. The advantage has also been

discovered in previour chapters.

Mean function example has been discussed in sensitivity analysis for many years (see

e.g. Rubin, 1987; Daniels and Hogan, 2008), and it is always difficult to calculate the

sample mean since the concealed observations are unknown. But MC-BMS method

performs very well for this non-ignorable missing data problem. And we noticed

although the results can be slightly different on different values of K (parameter in

KNN) and Monte Carlo size, the method actually performs quite robustly.

We further applied the MC-BMS method in regression models under non-ignorable

missing covariates. We used a semiparametric model and keep the dimension of bias

parameters low. As we discussed before the key of success is to find how we can

simulate Dmis from f(Dmis|Dobs, R = 0). We used the formula in Lemma 6.1 and

used a linear regression model to fit f(Dmis|Dobs, R = 1) in our examples. This can

certainly be improved. Since the fit for f(Dmis|Dobs, R = 1) involves no missing data,

many parametric or nonparametric methods can be used. The MC-BMS method

works robustly and it always make a proper vote on selection of the ‘best’ from

plausible values. This method is indeed very flexible and useful, it can be extended

into many other missing data problems and uncertainty analysis.
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6.5 Appendix

6.5.1 Proof of Lemma 6.1

Using Bayes Theorem, we have

f(Dmis|Dobs, R = 0) =
h(R = 0|D)f(Dmis|Dobs)

h(R = 0|Dobs)
.

Similarly, we have

f(Dmis|Dobs, R = 1) =
h(R = 1|D)f(Dmis|Dobs)

h(R = 1|Dobs)
.

This leads to the following equation

f(Dmis|Dobs, R = 0) = f(Dmis|Dobs, R = 1)
h(R = 0|D)

h(R = 1|D)

h(R = 1|Dobs)

h(R = 0|Dobs)

Let Q(D) be the one defined in (6.6), then we have

E(Q(D)|Dobs, R = 1) =

∫
h(R = 0|Dobs, Dmis)

h(R = 1|Dobs, Dmis)
f(Dmis|D0, R = 1)dDmis

=

∫
f(Dmis|D0, R = 1)

h(R = 1|Dobs, Dmis)
h(R = 0|Dobs, Dmis)dDmis

=

∫
f(Dmis|Dobs)

h(R = 1|Dobs)
h(R = 0|Dobs, Dmis)dDmis

=

∫
f(Dmis|Dobs, R = 0)

h(R = 0|Dobs)

h(R = 1|Dobs)
dDmis

=
h(R = 0|Dobs)

h(R = 1|Dobs)
.

This proves the Lemma.
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6.5.2 BSA Details used in Section 6.3.1

Assume that the prior of ψ is a uniform distribution, then Bayesian Sensitivity Anal-

ysis (BSA) can be conducted by the following Gibbs sampler (McCandless et al.,

2007):

1. Obtain a reasonably starting value for (θ, ψ);

2. For j=1, 2 . . . , sample D
(j)
mis from its conditional distribution in (6.5) given θ(j−1)

and ψ(j−1);

3. Sample θ(j) using a Metropolis Hastings step with target density f(θ|Dobs, D
(j)
mis)

and proposal distribution obtained by regression model of response variable on

covariates;

4. Sample ψ(j) using a Metropolis Hastings step with target density f(ψ|Dobs, D
(j)
mis)

and proposal distribution obtained by semiparametric MDM model.

Discard a suitable number of initial iterations, and the sequence (θ(j), ψ(j)) comprise

a sample from the required posterior distribution.
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Robust Confidence Interval with

Missing Data in Meta Analysis

7.1 Introduction

Meta-analysis is frequently used in medical research to estimate the overall effect of

an experience or exposure towards the risk of diseases. For example, Longnecker et al.

(1988) reviewed the multiple studies on the association between alcohol consumption

and risk of breast cancer, and further discussion of allowing the correlation between

estimated log-odds ratios was considered by Greenland and Longnecker (1992) and

publication bias problem was considered by Shi and Copas (2004). Fixed-effects

model and random-effects model are two widely used procedures. Various type of

confidence intervals (CI) for treatment effect have been proposed for those two mod-

els. The discussion of identifying a proper CI for meta analysis averaged effect size

has continued for decades, good literature includes DerSimonian and Laird (1986)

which used random-effects models with a normal distribution assumed for between

study effects; Hardy and Thompson (1996) which used a likelihood method; and Sidik

and Jonkman (2002) which used the odds of two chi-square distributed statistics as

a t-test ratio being expected to work well specially for small sample size trials. More

recently, Henmi and Copas (2010) centred the confidence interval on a fixed-effects

estimator, but allow for heterogeneity by including an assessment of the extra uncer-

tainty induced by the random-effects setting. They found that this method, namely
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HC method, is more robust than the others particularly when there is publication

bias. We use the idea of the HC confidence interval but extended into meta-regression

analysis with trend estimation.

The rest of the chapter is arranged as follows. In Section 7.2, we first introduce

fixed-effects model and random-effects model in meta regression analysis and we

will review several commonly used confidence intervals including DerSimonian-Laird

method(DL), Likelihood ratio method (LR), Restricted maximum likelihood method

(RM) and Sidik and Jonkman’s method (SJ). Section 7.3 will give the detailed dis-

cussion on how to extend Henmi and Copas’s method (HC) to meta regression model.

The variance of effect size is evaluated by an approximated gamma distribution. A

bootstrap method is also presented in this section. In section 7.4, we conduct simu-

lation studies on cases without and with publication bias. The comparison between

all discussed methods is presented. We further consider missing confounder problems

in Section 7.5. Conclusion will be made in Section 7.6.

7.2 Meta Regression Model and Confidence Inter-

vals

We consider a meta-analysis model for trend estimation with heterogeneity in this

section, but the results can be easily extended to a general multi-level regression

model.

For a meta-analysis with m studies, a model for trend estimation is defined as follows

(see the details in Shi and Copas, 2004). For the i-th study,

ti = θixi + εi, i = 1, . . . ,m (7.1)

where ti = (ti1, . . . , tini
)T and the notations xi and εi are defined accordingly. The

response variable tij in dose-analysis is usually a log-odds ratio for a group with

dosage xij against a control group. When sample sizes are not very small, tij has

an approximate normal distribution. However, since tij’s are calculated from groups

with different dose-levels against the same control group, they are not independent.

The error items εi have zero means and the covariance matrix Var(εi) = Ωi. The

covariance matrix can be calculated from the original data (see Shi and Copas, 2004).
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If we consider a fixed-effects model, i.e. θi = θ in (7.1), we can easily get an estimate

of θ by using either least square or maximum likelihood method, which is

θ̂F =

∑m
i=1 x

T
i Ω

−1
i ti∑m

i=1 x
T
i Ω

−1
i xi

. (7.2)

We call it a fixed-effects estimate.

If we consider a random-effects model, we can further assume that

θi ∼ N(θ, τ 2). (7.3)

If both Ωi and τ 2 are given, the estimate of θ is given by (using either least square

or maximum likelihood method, although the latter needs normal assumptions)

θ̂R =

∑m
i=1 x

T
i Σ

−1
i ti∑m

i=1 x
T
i Σ

−1
i xi

, (7.4)

where

Σi = Ωi + τ 2xix
T
i .

To estimate τ 2, we may consider the following Q-statistics

Q =
m∑
i=1

(ti − θ̂Fxi)TΩ−1i (ti − θ̂Fxi), (7.5)

where θ̂F is the estimate from a fixed-effects model given by (7.2). The DerSimonian-

Laird estimate is given by

τ̂ 2 = max

0,
Q− (N − 1)∑m

i=1 x
T
i Ω

−1
i xi −

∑m
i=1(x

T
i Ω

−1
i xi)2∑m

i=1x
T
i Ω

−1
i xi

 (7.6)

where N =
∑m

i=1 ni.

We now use some conventional approaches to construct confidence intervals for θ, the

parameter of interest in meta-analysis and dose-analysis model (7.1), and will propose

a new one in the next section.
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From (7.2) it is easy to know that Var(θ̂F ) = 1/
∑m

i=1 x
T
i Ω

−1
i xi, thus approximately

Z =
θ̂F − θ

(
∑m

i=1 x
T
i Ω

−1
i xi)

−1/2 ∼ N(0, 1).

The confidence interval with confidence level of 1−α constructed from the fixed-effects

model is (
θ̂F − zα/2(

m∑
i=1

xTi Ω
−1
i xi)

−1/2, θ̂F + zα/2(
m∑
i=1

xTi Ω
−1
i xi)

−1/2

)
(7.7)

where zα/2 is the α/2 upper quantile of the standard normal distribution. We call

this a fixed-effects (FE) confidence interval.

7.1 DerSimonian-Laird Method (DL)

From (7.4) we get that Var(θ̂R) = 1/
∑m

i=1 x
T
i Σ

−1
i xi, thus the confidence interval

based on the random-effects model can be constructed similarly to the one for the

fixed-effects model. This leads to the following result(
θ̂R − zα/2(

m∑
i=1

xTi Σ
−1
i xi)

−1/2, θ̂R + zα/2(
m∑
i=1

xTi Σ
−1
i xi)

−1/2

)
(7.8)

for level 1 − α, where τ 2 is evaluated by the DerSimonian-Laird estimate given in

(7.6). We therefore call it the DerSimonian-Laird method.

7.2 Likelihood Ratio Method (LR)

Given m studies, the log-likelihood for (θ, τ 2) is expressed by

l(θ, τ 2) =
N

2
log(2π)− 1

2

m∑
i=1

log |Σi| −
1

2

m∑
i=1

(ti − θxi)TΣ−1i (ti − θxi), (7.9)

where N =
∑
ni. The profile log-likelihood for θ is therefore

lp(θ) = l(θ, τ̂ 2ML(θ)), (7.10)
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where τ̂ 2ML(θ) is the maximizer of (7.9) given θ.

Let θ̂ML and τ̂ 2ML be the maximum likelihood calculated from (7.9), then we have the

following approximation result

−2
(
lp(θ)− l(θ̂ML, τ̂

2
ML)

)
∼ χ2

1.

This results in the following LR confidence interval{
θ : lp(θ) > l(θ̂ML, τ̂

2
ML)− 1

2
z2α/2

}
. (7.11)

There is no analytical form so a numerical method should be used. The right-hand

side of the inequality is a constant. So the confidence interval can be constructed

based on the profile log-likelihood given in (7.10).

7.3 Restricted Maximum Likelihood Method (RM)

The profile log-likelihood for τ 2 is given by

lp(τ
2) = l(θ̂ML(τ 2), τ 2),

where θ̂ML(τ 2) is the maximizer of (7.9) given τ . It has an analytical form given by

(7.4). The restricted maximum likelihood estimate of τ̂ 2RE is the one calculated by

maximizing the above profile likelihood. We then construct a confidence interval by

(7.8) but evaluated at τ 2 = τ̂ 2RE. This is called the restricted maximum likelihood

method.

7.4 Sidik and Jonkman’s method (SJ)

Using the fact that

m∑
i=1

(ti − θ̂Rxi)TΣ−1i (ti − θ̂Rxi) ∼ χ2
N−1 approximately
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we know that
(θ̂R − θ)/(

∑m
i=1 x

T
i Σ

−1
i xi)

−1/2√∑m
i=1(ti − θ̂Rxi)TΣ

−1
i (ti − θ̂Rxi)/(N − 1)

has a t-distribution with N − 1 degrees of freedom. This leads to the following

approximate confidence interval

θ̂R ± tN−1,α/2

√∑m
i=1(ti − θ̂Rxi)TΣ

−1
i (ti − θ̂Rxi)

(N − 1)
∑m

i=1 x
T
i Σ

−1
i xi

where tN−1,α/2 is the upper α/2 quantile of the related t-distribution.

7.3 Extension of HC methods

The basic idea of Henmi and Copas (2010) is to construct a confidence interval centred

on a fixed-effects estimate although the model we are using is a random-effects model.

They argued that the method is more robust than the conventional one particularly

when there is publication bias. We extend the method to the trend estimation model

(7.1) in this section and will investigate if this will also provide a robust result in

meta-regression analysis. The results can be applied directly to a general multi-level

model. A new bootstrap method is also proposed.

7.3.1 Trend Estimation in Meta-Analysis

We start our derivation from the fixed-effects estimate (7.2), i.e.

θ̂F =

∑m
i=1 x

T
i Ω

−1
i ti∑m

i=1 x
T
i Ω

−1
i xi

=

∑m
i=1 x

T
i Ω

−1
i ti

W1

.

Here we define the following notations

W1 =
m∑
i=1

xTi Ω
−1
i xi, and Wj =

∑m
i=1(x

T
i Ω

−1
i xi)

j

W1

, j = 2, 3, 4. (7.12)
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Bear in mind that ti follows a random-effects model (7.1) and (7.3), the variance of

θ̂F is calculated by

s2HC = Var(θ̂F ) =

∑m
i=1 x

T
i Ω

−1
i {Ωi + τ 2xix

T
i }Ω−1i xi

W 2
1

=
1 + τ 2W2

W1

. (7.13)

We are interested in the following quantity:

ZHC =
θ̂F − θ
ŝHC

, (7.14)

where ŝHC is given by (7.13) with τ 2 replaced by τ̂ 2 in (7.6), the DerSimonian-Laird

estimate, which can be rewritten as

τ̂ 2 = max

{
0,

Q− (N − 1)

W1 −W2

}
.

Thus, the quantity ZHC is expressed by

ZHC =


V

f(Q)
if Q ≥ N − 1;

V if Q < N − 1,

(7.15)

where Q is given by (7.5),

V =

∑m
i=1 x

T
i Ω

−1
i (ti − θxi)√
W1

. (7.16)

and

f(Q) =

√
1 +

W2(Q− (N − 1))

W1 −W2

.

To construct confidence interval of θ from (7.14) or (7.15), we need to derive the

distribution of ZHC or the quantile of the distribution. It can be calculated by the
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following formula through a conditional distribution given V .

P (ZHC ≤ z) =


1−

∫∞
z
P (Q ≤ f−1(v

z
)|V = v)f(v)dv if z ≥ 0;

∫ z
−∞ P (Q ≤ f−1(v

z
)|V = v)f(v)dv if z < 0,

(7.17)

where f(v) is the density function of V , which is the normal distribution with zero

mean and variance (1 + τ 2W2).

The conditional distribution of Q given V can be approximated by a Gamma distri-

bution following the argument given in Henmi and Copas (2010). The conditional

mean and variance are given respectively by

µv = E(Q|V = v)

= (N − 1) + τ 2(W1 −W2) + τ 4d(W3 −W 2
2 ); (7.18)

σ2
v = Var(Q|V = v)

= 2(N − 1) + 4τ 2(W1 −W2) + 2τ 4(W1W2 − 2W3 +W 2
2 ) + 4τ 4d(W3 −W 2

2 )

+4τ 6d(W4 − 2W2W3 +W 3
2 ) + 2τ 8(d2 − d21)(W3 −W 2

2 )2, (7.19)

where

d = d1 − (1 + τ 2W2)
−1 and d1 = (1 + τ 2W2)

−2v2. (7.20)

The proof of (7.18) is given in Appendix 7.7.1 and (7.19) in Appendix 7.7.2. Thus,

P
(
Q ≤ f−1(

v

z
)|V = v

)
≈ g(z, v) = Γ

(
f−1(

v

z
);
σ2
v

µv
,
µ2
v

σ2
v

)
,

where Γ (x; a, b) is the cumulative distribution function of the Gamma distribution

Γ (a, b). From (7.17), the 1−α/2 quantile, z1−α/2, of ZF is the solution of the following

equation ∫ ∞
z

g(z, v)f(v)dv =
α

2
. (7.21)

Similarly, the α/2 quantile, zα/2, is the solution of the following equation

∫ z

−∞
g(z, v)f(v)dv =

α

2
. (7.22)
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The solutions can be calculated numerically.

The confidence interval of θ with level 1− α is given by

(θ̂F + zα/2ŝHC , θ̂F + z1−α/2ŝHC). (7.23)

7.3.2 Bootstrap Methods (BS)

An alternative way to calculate quantiles of ZHC in (7.14) or (7.15) is bootstrap (Efron

and Tibshirani, 1993), which is a popular nonparametric way in mean estimation,

variance evaluation and confidence interval construction in regression analysis. The

resampling technique is considered either parametrically or nonparametrically with

sampling lots of replicated new sample from a replacement allowed bootstrapping

pairs or bootstrapping residuals (see Chapter 9 Efron and Tibshirani, 1993).

We use the idea introduced in Noortgate and Onghena (2005), bootstrap samples

are obtained by resampling residuals and random effects from the related parametric

models. Suppose that the unknown parameters θ and τ have been estimated, the

procedure used to calculate quantiles of ZHC is described as follows.

1. Draw a set of random errors ε∗i from the ni-dimensional normal distribution

N(0, Ω̂i) for i = 1, . . . ,m;

2. Draw a random effect θ̂∗i from the normal distribution N(θ̂, τ̂ 2) for i = 1, . . . ,m;

3. Use the samples generated in Steps 1 and 2 to obtain samples of response

variable t∗i for i = 1, . . . ,m using (7.1) and the original covariates.

4. Use the generated data set to estimate unknown parameters θ and τ and cal-

culate the value of zHC using formula (7.14) or (7.15).

The procedure is usually repeated a large number of times and a set of samples of

zHC are calculated based on the bootstrap samples. The numerical 2.5% quantiles

and 97.5% quantiles can be used to replace the theoretical results given in (7.21) and

(7.22) to construct 95% bootstrap confidence interval. Based on the large sample

theory for bootstrap, the numerical bootstrap quantile converges to the true quantile

when the bootstrap sample size is sufficiently large.
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7.4 Simulation Study with Publication Bias

We conduct simulation studies based on the alcohol consumption and breast cancer

example discussed in Shi and Copas (2004). It includes 14 studies (two studies are

removed from the original sixteen studies due to difficulty of extracting raw data).

We choose n studies randomly with replacement, where values for exposure variable

xi are taken from the original data, but the response variable ti (the log-odds ratio

between cases and controls) is generated by (7.1) with random effects generated from

θi ∼ N(θ, τ 2) with θ = 0.01 and τ 2 ∈ {(0, 0.1, 0.5, 1)×10−4}. Residuals ei is generated

from the normal distribution with N(0, Ω̂i), and Ω̂i is estimated from the original

data. Then for each study, we obtain the pairs of (ti,xi), denoting the generated data

by D = {(ti,xi), i = 1, . . . , n}. The effect size θF and θR are respectively calculated

from the fixed-effects and the random-effects models based on the simulated data set

D. The whole procedure is repeated 1000 times and the coverage rates (probabilities)

are calculated for different types of confidence intervals.

Henmi and Copas (2010) observed that the coverage rate of confidence intervals is

affected by the sample size, and HC confidence interval is more robust than others

especially when n > 10. To investigate the association of the performance with the

sample size, we take n = (10, 15, 20, 25, 30, 35, 40).

7.4.1 Confidence Intervals without Publication Bias

We first conduct a simulation study for the meta regression model without assuming

publication bias. The true value of θ is 0.01. We calculate the estimation from the

random-effects model and fixed-effects model according to the discussion given in

Sections 2 and 3. And 95% level confidence intervals for the estimations under HC,

BS (with 500 samples), DL, FE, LR, RM, SJ methods are calculated. We present the

coverage rates for these CIs in Figure 7.1 and Table 7.1.

As we can see, all the methods perform very well expect the FE method, and those

coverage probabilities approach to 95% as we expected. FE works well only at the

first case when there is no heterogeneity (τ 2 = 0) introduced in the meta analysis,

but fails in other plots when there is heterogeneity. Overall HC method fits the 95%

nominal probability very well. The bootstrap has a slightly narrower range for the CI

which makes the coverage rate a little smaller than 95% when the sample size n < 30.
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(b) τ2 = 0.1× 10−4
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(c) τ2 = 0.5× 10−4
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(d) τ2 = 10−4

Figure 7.1: Coverage probabilities of the confidence intervals without assuming pub-
lication bias. The dotted line stands for the 95% nominal probability.

This may be improved by increasing bootstrap sample sizes. The coverage rates for

other methods are all close but slightly below 95%.

For all the methods the coverage rates are improved with the increase of sample size,

which matches the finding by Henmi and Copas (2010) for a simple mean model in

meta-analysis.

Table 7.1: Coverage probabilities without publication bias (τ 2 = 0.5× 10−4)
n Bootstrap HC DL FE LR RM SJ
10 92.0 93.6 90.7 60.5 88.8 89.1 91.4
15 93.9 95.3 92.5 57.7 91.5 91.8 93.4
20 94.8 96.0 94.1 59.8 92.9 93.6 94.4
25 94.5 95.1 93.3 58.9 92.9 93.5 93.2
30 95.7 95.9 94.2 60.9 93.6 93.9 94.6
35 95.7 95.5 94.3 58.7 93.7 94.3 94.7
40 95.9 96.3 94.4 59.4 93.6 94.8 94.5
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7.4.2 Confidence Intervals with Publication Bias

We further conduct two simulation studies concerning the publication bias problem

in meta analysis. We use the following selection model (Begg and Mazumda, 1994):

Pr(selected|θi) = exp

(
−b{Φ(− θi − θ√

Var(θi)
)}γ
)

where the selection probability depends on the significance of effect size. Here Var(θi)

is the variance of θi in the ith study and Var(θi) = (xi
TΩi

−1xi)
−1. We consider the

parameter b = 4 and γ to be 1.5 and 3 corresponding to strong and moderate selection.

These selection functions imply that studies with small effect size θi’s are less likely

to be published than studies with large effect size, which reflects the motivation of

the design. Results are shown in Figures 7.2 and 7.3 under the two settings.

Due to the publication bias, the estimation is biased as shown in Figure 7.4. When τ 2

increases, the publication bias gets larger, and consequently the coverage probabilities

decrease more as shown in Figures 7.2 and 7.3. Under both moderate and strong

selection bias, we see that the bias of θ̂F obtained from the fixed-effects model is

typically less than the bias of θ̂R from the random-effects model. HC and BS are

centred on θ̂F while the others (except FE) are centred on θ̂R. This explains why HC

and BS perform better than the others when there is publication bias.

We also noticed that the coverage probabilities decrease with larger sample size and

they are below 95%. Where there are publication bias particularly when the hetero-

geneity is serious, the HC and BS methods work less sensitive than others.

7.5 Missing Confounder Problems in Meta-Analysis

We continue the CIs comparison with missing data issue to further consider missing

confounder problem in meta-analysis, which is not a new topic in clinical studies.

Copas and Eguchi (2005) pointed that if a hidden variable c is independent of x, then

the missing c is ignorable as the estimation of effect size θ is not influenced. But if c is

associated with x as well as t, then it is a potential confounder and effect evaluation

θ̂ is significantly biased due to ignoring the confounder. The discussions of missing

confounder in linear regression model can be found in Copas and Eguchi (2005) and
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Figure 7.2: Coverage probabilities of the confidence intervals under the moderate
publication bias (γ = 3).

generalized linear model in Lin et al. (2012). Below we use a simulation study to

illustrate how the coverage probabilities of confidence intervals for θ are affected by

this problem.

7.5.1 Simulation Study

The true model for the i-th study is assumed as

ti = θxi + βci + εi.

We take true value of 0.5 for both θ and β. Confounder ci is designed to be continu-

ously distributed:

ci ∼ N(0, σ2
c ).
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(c) τ2 = 0.5× 10−4
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Figure 7.3: Coverage probabilities of the confidence intervals under the strong publi-
cation bias (γ = 1.5).

The correlation coefficient corr(x, c) is selected as 0.3 (moderate correlation) and

0.5 (strong correlation), and the standard deviation of c is assumed as half (when

corr(x, c) = 0.3) and one third (when corr(x, c) = 0.5) of x. In this case the biases of

θ̂ will be approximately 0.004 for study with corr(x, c) = 0.3 and 0.008 for corr(x, c) =

0.5, and we should remember the standard deviation of θ̂ is about 0.002.

Meta regression analysis is carried out by formula (7.1), which is actually misspecified

and confidence intervals are calculated under the discussed methods. Figures 7.5 and

7.6 show the coverage probabilities with 1000 replications.

The advantage of HC and BS are also clearly discovered in the simulation study al-

though DL and SJ methods works also quite well. It is interesting to notice that

the coverage probabilities improve when the heterogeneity becomes stronger. This is

probably because the item θixi is more dominated in the model for the larger τ 2, and

the influence due to the missing c becomes smaller. This results in smaller bias. The

coverage probability also deteriorates for larger sample size since the standard devi-
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Figure 7.4: Biases of the fixed-effects and random-effects estimates under moderate
and strong publication bias: (a)(b) with moderate publication bias (γ = 3); (c)(d)
with strong publication bias (γ = 1.5).

ation of the parameter becomes smaller and the estimator without bias adjustment

seems more serious. This is also discovered in the simulation study in Section 3.5.1.

7.6 Discussion

In this paper, we extended the HC method for calculating confidence interval to meta

regression model. A bootstrap model is also presented. Simulation studies show that

the HC and BS methods consistently perform better than other methods in almost

all the cases particularly for the problems with publication bias.

However we should point out that although HC and BS methods perform quite well

and robustly, it still give bias coverage when there is missing data particularly the

non-ignorable missing data as discussed in this paper. For non-ignorable missing data

problem some other methods should also be used, for example sensitivity analysis
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Figure 7.5: Coverage probabilities of the confidence intervals with moderate correlated
missing confounder.

(Copas and Eguchi, 2005; Shi and Copas, 2004), Monte-Carlo sensitivity analysis

(Greenland, 2005) or Bias model selection method.

7.7 Appendix

7.7.1 Proof of Equation (7.6)

Consider a fixed-effects model from (7.1) and the estimate of θ given in (7.2). Let

t∗i = ti − θxi, θ̂∗ = θ̂F − θ,
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Figure 7.6: Coverage probabilities of the confidence intervals with strong correlated
confounder missing.

the Q-statistic defined in (7.5) can be expressed as

Q =
m∑
i=1

(t∗i − θ̂∗xi)TΩ−1i (t∗i − θ̂∗xi)

=
m∑
i=1

[
t∗Ti Ω

−1
i t
∗
i − 2θ̂∗xTi Ω

−1
i t
∗
i + θ̂∗2xTi Ω

−1
i xi

]
.

Note the fact that

θ̂∗ =

∑m
i=1 x

T
i Ω

−1
i t
∗
i∑m

i=1 x
T
i Ω

−1
i xi

,
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we have

m∑
i=1

E
[
θ̂∗2xTi Ω

−1
i xi

]
=

m∑
i=1

xTi Ω
−1
i xiE

(
θ̂∗2
)

=

∑m
i=1 x

T
i Ω

−1
i E

(
t∗i t
∗T
i

)
Ω−1i xi∑

xTi Ω
−1
i xi

.

Similarly,

m∑
i=1

E
[
θ̂∗xTi Ω

−1
i t
∗
i

]
=

m∑
i=1

xTi Ω
−1
i E

(
t∗i t
∗T
i

)
Ω−1i xi∑

xTi Ω
−1
i xi

.

For the random-effects model (7.1),

Var(t∗i ) = Σi = Ωi + τ 2xix
T
i ,

and thus

Var(Ω
−1/2
i t∗i ) = Ini

+ τ 2Ω
−1/2
i xix

T
i Ω

−1/2
i .

This leads to

E
[
t∗Ti Ω

−1
i t
∗
i

]
= E

[(
Ω
−1/2
i t∗i

)T (
Ω
−1/2
i t∗i

)]
= trace

[
Var

(
Ω
−1/2
i t∗i

)]
= ni + τ 2trace

[
Ω
−1/2
i xix

T
i Ω

−1/2
i

]
= ni + τ 2xTi Ω

−1
i xi.
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We therefore have the following result

E(Q) =
∑

ni + τ 2
∑

xTi Ω
−1
i xi −

m∑
i=1

xTi Ω
−1
i

(
Ωi + τ 2xix

T
i

)
Ω−1i xi∑

xTi Ω
−1
i xi

=
∑

ni + τ 2
∑

xTi Ω
−1
i xi − 1−

∑
(xTi Ω

−1
i xi)

2∑
xTi Ω

−1
i xi

τ 2

= N − 1 + τ 2
(∑

xTi Ω
−1
i xi −

∑
(xTi Ω

−1
i xi)

2∑
xTi Ω

−1
i xi

)
.

Equating the above expectation with the sample statistic Q yields the DerSimonian-

Laird estimate in (7.6).

7.7.2 Proof of Equation (7.19)

We use an idea similar to the one used in Henmi and Copas (2010) to derive the

conditional mean and variance of Q given V . We first define the following statistical

variables.

u = (u1, u2, . . . , uN)T = ETMt∗, (7.24)

where E = (e1, e2, . . . , eN), e1 = W
−1/2
1 x,

x =


x1

x2

...

xm

 , M =


Ω−11 0 · · · 0

0 Ω−12 · · · 0
...

...
...

0 0 · · · Ω−1m

 , t∗ =


t1 − θx1

t2 − θx2

...

tm − θxm

 ,

and thus u, t∗ are N × 1 vectors while E and M are N × N matrices. Note that

N =
∑

i ni and ni is the dimension of ti for the i-th study. We further assume that

{e1, e2, . . . , eN} is an orthonormal basis of RN with respect to the following inner

product

〈t, t′〉 = tTMt
′
=

m∑
i=1

tTi Ω
−1
i t

′
i, (7.25)

where t is partitioned into ti’s with dimension ni for i = 1, . . . ,m, so is t
′
. This leads

to ETME = IN and u = ETMEE−1t∗. Consequently we have

t∗ = Eu = u1e1 + u2e2 + . . .+ uNeN . (7.26)
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From (7.24) and (7.16), we know that

u1 = W
−1/2
1

m∑
i=1

xTi Ω
−1
i t
∗
i = V.

In addition, we have

u1e1 =

∑m
i=1 x

T
i Ω

−1
i t
∗
i

W1

x.

Substituting θ̂F by equation (7.2) in (7.5), Q is expressed as

Q =
m∑
i=1

{
(ti − θxi)−

∑
j x

T
j Ω

−1
j (tj − θxj)
W1

xi

}T

Ω−1i{
(ti − θxi)−

∑
j x

T
j Ω

−1
j (tj − θxj)
W1

xi

}
= 〈t∗ − u1e1, t∗ − u1e1〉

= 〈u2e2 + . . .+ uNeN , u2e2 + . . .+ uNeN〉

= u22 + . . .+ u2N .

The conditional distribution of Q given V can therefore be derived from the condi-

tional distribution of u−1 = (u2, . . . ,uN)T given u1. From the definition given in

(7.24) we know that u has a multivariate normal distribution with zero mean and the

following covariance matrix

Var(u) = ETM (M−1 + τ 2A)ME = IN + τ 2ETMAE,

where A is an N ×N matrix defined as

A =


x1x

T
1 0 · · · 0

0 x2x
T
2 · · · 0

...
...

...

0 0 · · · xmxTm

 ,
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and MA is defined as

MA = MAM =


Ω−11 x1x

T
1Ω

−1
1 0 · · · 0

0 Ω−12 x2x
T
2Ω

−1
2 · · · 0

...
...

...

0 0 · · · Ω−1m xmxTmΩ−1m

 .

We partition Var(u) into the following form.

 1 + τ 2eT1MAe1, τ 2eT1MAE−1

τ 2ET
−1MAe1, IN−1 + τ 2ET

−1MAE−1

 =

 1 + τ 2W2, τ 2eT1MAE−1

τ 2ET
−1MAe1, IN−1 + τ 2ET

−1MAE−1

 ,

where E−1 = (e2, . . . , eN). In the above equation we used the fact that

eT1MAe1 = W−1
1

m∑
i=1

(
xTi Ω

−1
i xix

T
i Ω

−1
i xi

)
= W−1

1

m∑
i=1

(
xTi Ω

−1
i xi

)2
= W2. (7.27)

The conditional distribution of u−1 is therefore a normal distribution. The conditional

mean and the conditional covariance matrix are respectively given by

µ = E(u−1|u1) = τ 2(1 + τ 2W2)
−1u1E

T
−1MAe1, (7.28)

Γ = Var(u−1|u1)

= IN−1 +ET
−1
{
τ 2MA − τ 4(1 + τ 2W2)

−1MAe1e
T
1MA

}
E−1. (7.29)

The conditional mean of Q given R is calculated from the above conditional mean

and covariance matrix.

E(Q|V ) =
N∑
i=2

E(u2i |u1) =
N∑
i=2

Var(ui|u1) +
N∑
i=2

{E(ui|u1)}2

= tr(Γ ) + tr(µµT )

= (N − 1) + tr{(M 1/2E−1)
TB(M 1/2E−1)}.

From (7.28) and (7.29), B is expressed by

B = τ 2(M−1/2MAM
−1/2) + τ 4d(M−1/2MAe1e

T
1MAM

−1/2),

159



Chapter 7. Robust Confidence Interval with Missing Data in Meta Analysis

where d is given in (7.20). We note the fact that

tr{(M 1/2E−1)
TB(M 1/2E−1)} = tr{(M 1/2E)TB(M 1/2E)} − eT1M 1/2BM 1/2e1

= tr{(M 1/2E)(M 1/2E)TB} − eT1M 1/2BM 1/2e1

= tr(B)− eT1M 1/2BM 1/2e1. (7.30)

Note that the above equation is true for any matrix B. Thus,

tr(B) = τ 2tr(M−1/2MAM
−1/2) + dτ 4tr(M−1/2MAe

1eT1MAM
−1/2)

= τ 2tr{
∑
i

Ω
−1/2
i xix

T
i Ω

−1/2
i }+ dτ 4tr(eT1MAM

−1MAe1}

= τ 2tr{
∑
i

(xTi Ω
−1
i xi)}+ τ 4dW−1

1 tr(
∑
i

(xTi Ω
−1
i xix

T
i Ω

−1
i xix

T
i Ω

−1
i xi)}

= τ 2W1 + τ 4dW3

where W3 is given in (7.12). In addition, we have the following formula by using

(7.27).

eT1M
1/2BM 1/2e1 = τ 2eT1MAe1 + τ 4deT1MAe1e

T
1MAe1 = τ 2W2 + τ 4dW 2

2 .

Applying the above equations, we have obtained the conditional mean as

E(Q|V ) = (N − 1) + τ 2(W1 −W2) + τ 4d(W3 −W 2
2 ). (7.31)

The conditional variance of Q given V is calculated by

Var(Q|V ) =
N∑

i,j=2

Cov(u2i , u
2
j |u1) =

N∑
ij=2

E(u2iu
2
j |u1)−

(
N∑
i=2

E(u2i |u1)

)2

= 2tr{(µµT + Γ )2} − 2{tr(µµT )}2.

The proof of the last equation above can be referred to equations (A7) and (A9) in

Appendix A.1 in Henmi and Copas (2010). Define

F = IN +B and G = τ 4d1M
−1/2MAe1e

T
1MAM

−1/2
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where d1 is defined in (7.20), we have

Var(Q|V ) = 2tr{(E−1M 1/2)F (E−1M
1/2)T (E−1M

1/2)F (E−1M
1/2)T}

−2[tr{(E−1M 1/2)G(E−1M
1/2)T}]2

= 2tr(F 2)− 4eT1M
1/2F 2M 1/2e1 + 2{eT1M 1/2FM 1/2e1}2

−2[tr{(E−1M 1/2)G(E−1M
1/2)T}]2.

To get the equations above, we used (7.30) repeatedly. It is not difficult (although it

is tedious) to get the following results.

tr(F 2) = N + 2tr(B) + 2tr(B2) = N + 2(τ 2W1 + τ 4dW3) + 2tr(B2),

tr(B2) = τ 4W1W2 + 2τ 6dW4 + τ 8d2W 2
3 ,

where W4 is defined in (7.12). Similarly, we have

eT1M
1/2FM 1/2e1 = τ 2W2 + τ 4dW 2

2 + 1,

eT1M
1/2F 2M 1/2e1 = τ 4W3 + 2τ 6dW3W2 + τ 8d2W 2

2W3 + 2(τ 2W2 + τ 4dW 2
2 ) + 1,

tr(µµT ) = tr{(E−1M 1/2)G(E−1M
1/2)T = τ 4d1(W3 −W 2

2 ),

where d1 is defined in (7.20). Finally, we have the following result.

Var(Q|V ) = 2(N − 1) + 4τ 2(W1 −W2) + 2τ 4(W1W2 − 2W3 +W 2
2 )

+4τ 4d(W3 −W 2
2 ) + 4τ 6d(W4 − 2W2W3 +W 3

2 ) + 2τ 8(d2 − d21)(W3 −W 2
2 )2.
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Chapter 8

Conclusions and Future Work

In this chapter we summarize the statistical problems discussed in this thesis and

highlight the main findings and our contributions to the literature.

The first objective of the thesis was to assess model uncertainty, particularly with

the missing data problems. We discovered the limitations of conventional analysis

in exploring model uncertainty due to lack of knowledge based on observed data

only, and we evaluated and interpreted those uncertainties through local sensitivity

analysis. In our inference, we start from a working model we usually used for the

observed data and then use the bias analysis by measuring the departure from the

true model. In Chapters 2, 3, and 5, we applied the incomplete data bias analysis,

which was first introduced by Copas and Eguchi (2005), to missing covariate problems

for linear regression or GLM regression models. Analysis was carried out based on

new terms such as ‘bias models’, which index the models involved in bias analysis and

also sensitivity analysis, and ‘bias parameters’ that indicate those uncertainty factors

which dominate the incomplete data bias and are difficult to measure in practice, and

can be also described as ‘sensitivity parameters’ in the sensitivity analysis area.

The analysis for misspecified bias models can be different with different missing data

mechanisms and regression models. Under ignorable missing data assumption, as

discussed in Chapters 2, 3 and 4, the primary uncertainty comes from the misspec-

ification of covariate distributions. The incomplete data bias (termed covariate bias

according to the bias sources) towards the parameter of interest is mainly generated

by the correlations between observed covariate variables and missing confounders.

Examples under linear regression and GLMs are discussed separately, since for non-
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linear models or GLMs, the identifiable bias model is not the marginal model but

rather a misspecified conditional model based on observed variables. In this case, the

marginal bias adds on to the total incomplete data biases.

And we also recognized that the full missing data mechanism is required for both

ignorable and non-ignorable missing data, and model misspecification for the missing

data mechanism can result in a substantial bias. We handled these problems generally

through bias models identification and local bias analysis, with detailed discussion in

Chapter 3 for ignorable missing data and Chapter 5 for non-ignorable missing data.

The missing data mechanism bias is first introduced in Chapter 3, where the two types

biases (covariate bias and MDM bias) are investigated by simulation studies under

ignorable missing data. The MDM misspecification issue is a difficult problem but

would not cause too many worries for ignorable missing data since we may consider

proper model selection techniques, for example, we suggested nonparametrical models

in complex cases. However, it is a serious problem for non-ignorable missing data,

this is because of the non-identifiability problem of the missing data mechanism. The

general idea of dealing with this problem was given in Chapter 3 and the details

were provided in Chapter 5, where we identify an ignorable missing data mechanism

and measure the difference from non-ignorability through sensitivity analysis. The

covariate density misspecification and missing data mechanism misspecification can be

complex in practice and efficiency and robustness of inferences are questioned using

the usual working models. Thus we suggested a different method by transferring

the non-ignorable missing data problem to the equivalent ignorable missing data

counterpart. We are able to avoid the problem of identifying the non-ignorable missing

data mechanism specification in this case, and only its marginal density is required.

It is found that Bayes approach and nonparametric conditional model can fit the

marginal model well.

Another approach to handling non-ignorable missing data is through the selection

model frame, as discussed in Chapter 6, where a semiparametric model is assumed.

The uncertainty was identified from the nonparametric component in the missing

data mechanism.

The second objective of this thesis was to consider a proper sensitivity analysis and

make a valid selection of bias models. Monte Carlo sensitivity analysis and Bayesian

sensitivity analysis have been studied for many years (see e.g. Greenland, 2005; Mc-

Candless et al., 2007, 2008; Gustafson et al., 2010), and both methods average esti-

mation over all competing models. But these methods can be sensitive to the prior
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selection, so we proposed a novel method named bias model selection with a Monte

Carlo method. This approach actually contains two parts: 1) Monte Carlo sensitivity

analysis and 2) Bias model selection. The first step carries out inferences for any

given bias model and observed data; and the second step simulates an artificial set

of ‘observed data’ using the fitted model obtained in the first step. The distances

between the real observed data set and the simulated ‘observed’ data set are used to

select bias model. Model selection versus model averaging is compared by simulation

study. It shows that the former performs better than the latter in almost all the

cases.

A test is developed to check how close the ‘simulated’ data set and the real observed

data set; or check how close the selected bias model and the true bias model. This

can help to remove some unreasonable bias models or remove some implausible values

of bias parameters. We applied the idea to determine the range of bias model, and

combine the method with Bayesian and Monte Carlo sensitivity analysis. Simulations

given in Chapter 4 showed that the method improves the results obtained by using

conventional MCSA.

This MC-BMS technique requires a replicated sampling procedure, and it is usu-

ally useful when combined with multiple imputation and bootstrapping methods for

missing data problems. For example, we used it in Chapter 6 for the non-ignorable

missing data selecting a missing data mechanism model. The method can be applied

into a wide area. We found the K nearest neighbour distance works very well after

comparing with some other types of distances.

The third objective of this thesis was to build a robust confidence interval when there

is an uncertainty or bias. In Chapter 7, we considered robust confidence intervals

for meta-regression models and found the confidence interval proposed by Henmi and

Copas (2010) gives the most robust results when there is publication bias and missing

covariates.

Missing data and model misspecification are difficult problems. Local sensitivity anal-

ysis provides a tool to assess the uncertainty and bias. We will carry on the research

along this direction, particularly on studying the difference between ignorable and

non-ignorable MDM model. This can be considered in a selection model framework

as given in Chapter 6. The existence of nonparametric part to the first and second

order terms is to be tested.
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We will further apply the local sensitivity analysis to other regression models, such

as survival analysis, longitudinal data analysis. The problems of non-response or

missing multivariate variables may not be difficult to solve, although non-monotone

missing data may be more challenging, and high dimensions of bias parameters will

be involved.

MC-BMS method is a very flexible method, and it can be used combining with other

techniques, such as prior selection, Bayesian model average, and the Expectation-

Maximization algorithm. Furthermore, its efficiency depends on the choice of distance

measure, and can surely be improved in the future. The related theory is yet to

develop.
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