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Abstract

The logistic regression model has become a standard model for binary out-

comes in many areas of application and is widely used in medical statistics.

Much work has been carried out to examine the asymptotic behaviour of

the distribution of Maximum Likelihood Estimates (MLE) for the logistic

regression model, although the most widely known properties apply only if

the assumed model is correct. There has been much work on goodness-of-

fit tests to address the last point. The first part of this thesis investigates

the behaviour of the asymptotic distribution of the (MLE) under a form

of model mis-specification, namely when covariates from the true model

are omitted from the fitted model. When the incorrect model is fitted the

maximum likelihood estimates converge to the least false values. In this

work, key integrals cannot be evaluated explicitly but we use properties

of the skew-Normal distribution and the approximation of the Logit by

a suitable Probit function to obtain a good approximation for the least

false values. The second part of the thesis investigates the assessment of

a particular goodness-of-fit test namely the information matrix test (IM)

test as applied to binary data models. Kuss (2002), claimed that the IM

test has reasonable power compared with other statistics. In this part

of the thesis we investigate this claim, consider the distribution of the

moments of the IM statistic and the asymptotic distribution of the IM

test (IMT) statistic. We had difficulty in reproducing the results claimed

by Kuss (2002) and considered that this was probably due to the near

singularity of the variance of IMT . We define a new form of the IMT

statistic, IMTR, which addresses this issue.
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Chapter 1

Review of Literature and
Background

1.1 Introduction

The idea of regression analysis is to explain the dependence of a response variable on

one or more covariates (sometimes known as predictor variables). In most statistical

analyses, the goal of regression is to summarize observed data as simply, usefully

and elegantly as possible. In some problems a theory may be available that specifies

how the response varies as the values of the covariates change. So, the first step in

regression analysis is to draw appropriate graphs to illustrate the data. In much work

to analyse the data we wish to investigate how the changes in one or more variables

affect other variables. We often assume that the mean response is a linear function of

the covariates. This is the important instance of regression methodology called the

linear regression: this method is most commonly used in regression when the outcome

is continuous. So, in this case the changed in response variable which is effected by

changes in covariates can be explained by fitting a linear regression model. For more

details for applied linear regression, see Draper and Smith (1996) and Weisberg (2005).

In fact, in several fields, especially in medical statistics, we need to analysis di-

chotomous outcome variables. In this case the binary outcome takes only one of the

two values, 0 or 1, to denote the absent and present variable respectively. Many

examples of binary data are discussed by Cox and Snell (1989) and McCullagh and

Nelder (1989). If we used the linear regression model for a binary outcome it would vi-

olate the fundamental assumption upon which both the linear model is based. These

violations make the linear regression model inappropriate model for the dichotomous

outcome. The logistic regression model has been become commonly used to study the
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association between a binary response variable Cox and Snell (1989). Its widespread

application rests on its easy application and interpretation. A widely used reference

for logistic regression is the book by Hosmer and Lemeshow now in its third edition,

( with a third author, R.X. Sturdivant). It has been cited 31563 (Google Scholar 10

Sept. 2013).

The logistic regression model plays a major and important role in biostatistics

analysis and that is why we are interested to examine this model. The general method

of estimation the logistic regression parameter is maximum likelihood (ML). In a very

general sense the ML method yields values for the unknown parameters that maxi-

mize the probability of the observed set of data.

After fitting a logistic regression model, one of the next essential steps is to investi-

gate how well the proposed model fits the observed data; this is called as its goodness-

of-fit test. There are many statistics used as goodness-of-fit test for logistic regression

model. Hosmer et al. (1997), reported comparison between some of goodness-of-fit

tests for logistic regression model. Kuss (2002), discusses the global goodness-of-fit

tests for logistic regression model like the standard tests Pearson statistic χ2, Residual

Deviance (D), Residual Sum of Squares Test (RSS), Hosmer and Lemeshow Test and

Information Matrix Test IMT .

The subject of the assessment the behaviour of Maximum likelihood estimates

(MLE) and goodness-of-fit tests for logistic regression model is important, as the lo-

gistic model is widely used in medical statistics. Much work discusses the behaviour

of the distribution of MLE for the logistic regression model under the correct model.

In the first part of this thesis, our work considers this behaviour and investigates the

MLE method under a mis-specified logistic regression model. Claeskens and Hjort

(2008), discussed MLE method under the wrong model to find estimation of param-

eters in terms of the true parameters of the model, called the least false values.

In the second part of this thesis we have investigated the information matrix

test (IMT ), a goodness-of-fit test to the binary data model which is based on

White (1982). Kuss (2002), claimed that the IMT has reasonable power compared

with other statistics. Much work in the biostatistical literature has considered the

goodness-of-fit tests for logistic regression model, but not work to examine the be-

haviour the distribution of this statistic. To study and investigate the IMT we need

2



the least false values, which are considered in the first part of this thesis. In the end,

under special circumstances sometimes we need other tests to confirm the results, we

considered the bootstrap test which was discussed by Efron (1979).

In the rest of this introductory chapter, the expression of the binary data and the

form of logistic regression model will be introduced, and then a brief literature review

of goodness-of-fit statistic for logistic regression model will be provided.

1.2 Binary Data

Binary data are assumed to be distributed according to a Bernoulli distribution.

Suppose that for each individual or experimental unit, the response variable Yi takes

only one of two possible values, 0 or 1. Observations of this nature arise, for instance,

in medical trials where, at the end of trial period, the patient has either recovered,

denote by (Y = 1) or not (Y = 0). Corresponding to this definition we may write

Pr(Yi = 1) = πi, Pr(Yi = 0) = 1− πi

where Pr(Yi = 1) denotes the probability of success ( present ) and Pr(Yi = 0)

denote the probability of failure (absent). We assume that such binary observations

are available on n individuals, assumed to be independent.

1.2.1 Covariates and Link function

The principal objective of statistical analysis is to examine the relationship between

the response variable and available covariates. So, it is important be able, to construct

a formal model capable of describing the effect on πi of changes in covariates. Let’s

suppose that we have response probability π and the covariates x1, x2, . . . , xp, then

the dependence can be described by the linear combination for unknown parameters

βi as

η =

p∑
i=1

xiβi.

To investigate the relationship between the response probability π and the covariates,

the main problem is that the probability π has to be between 0 and 1. However, the

linear combination can take any real value in (−∞,∞). A simple solution to solve

this problem is to transform π to remove the range restrictions, and use a linear

function of the covariates. There is a wide choice of link function g(π) g : (0, 1)→ R

is available for this purpose. Four functions commonly used in practice are

3



• The logit link function

g1(π) = log

(
π

1− π

)
•The probit link function

g2(π) = Φ−1(π)

• The complementary log-log link function

g3(π) = log[− log(1− π)]

• The log-log link function

g4(π) = log[− log(π)].

One of the most used link functions is the logit function

g1(π) = η = logit(π) = log

(
π

1− π

)
and so

π =
exp(η)

1 + exp(η)
,

which we also denote by

π = expit(η).

We can see, when the probability goes to 0, then the logit approaches −∞, and

at the other extreme, when the probability approaches 1 the logit approaches +∞.

Then, the logit link function maps the probabilities from the range (0, 1) to the whole

real line (−∞,+∞). The behaviour of these link functions shows in the Figures

as g1, g2, g3 and g4 respectively. Figure 1.1, shows compares the four functions, and

Figure 1.2, shows comparison which g2(π), g3(π) and g4(π) ploted against g1(π) for

values of π in the range (0.01, 0.99). We can see the probit and the logit link function

are almost linearly. The link function g3(π) is close to the g1(π) , both being close to

log(π) when π is small. g3(π) approaches ∞ much more slowly than g1(π) or g2(π)

link function when π approaches 1, see Cartinhour (1990). In many cases especially

in medical statistic we need to focus on regression model for dichotomous data, the

logistic regression model is appropriate. For more information about binary data see

McCullagh and Nelder (1989) and Cox and Snell (1989). For the logistic model, we

model the effect of covariates by g1(πi) = xTi β. As will see in the following section,

the use of g1 has some theoretical advantages.
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Figure 1.1: Plot of four link functions g1(π), g2(π), g3(π), and g4(π).
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Figure 1.2: Plot of comparison of three link functions g2(π), g3(π), and g4(π) against
the link function g1(π).
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1.2.2 Binomial Distribution

The binomial distribution concerning to the binary data, let consider we have the

response variable yi is binary. The distribution of Yi is Bernoulli distribution with

parameter πi. For yi ∈ {0, 1}

Pr(Yi = yi) = πyii (1− πi)1−yi ,

then the mean and variance are

E(Yi) = µi = πi

and

var(Yi) = σ2 = πi(1− πi).

An extension is when Yi is the number of successes in mi independent trials. This

might be useful when all mi cases shows the same covariates vector. In this case the

data are Yi ∈ {0, 1, . . . ,mi} where, mi denotes the number of observations in group

i, and yi is the number of successes in group i. Then Yi is distributed as Binomial

distribution with parameters πi and mi, and the probability distribution function of

Yi is

Pr(Yi = yi) =

(
mi

yi

)
πyii (1− πi)ni−yi ,

Then, the mean and the variance of Y are

E(Yi) = µi = miπi

and

var(Yi) = σ2 = miπi(1− πi).

Note that the Bernoulli distribution is the special case of the Binomial distribution

when mi = 1. In this thesis we only consider the case mi = 1.

1.3 The Logistic Regression Model

The logistic regression model has become the standard analysis tool for binary re-

sponses. At present it is used in many fields, particularly in medical research, it

is easy for calculation and analysis and interpretation of parameters. It is widely

available in software. The goal of a logistic regression analyses is to find the best

fitting model to describe the relationship between an outcome and covariates where

the outcome is dichotomous. Nelder and Wedderburn (1972), considered the logistic
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regression model is a member of the class of the generalized linear models. For more

details of logistic model see Dobson (1990) and Kleinbaum (1994), also Hosmer and

Lemeshow (2000): see also Hosmer et al. (2013).

1.3.1 The Model

Although the general approach models Yi ∼ binomial(mi, πi), in this thesis we con-

sider the case mi = 1. So, Yi ∼ binomial(1, πi) where πi is the probability of success

for each i, i = 1, 2, . . . , n. Thus E(Yi) = πi and var(Yi) = πi(1 − πi). The logistic

regression model can be expressed as

πi = expit(α +XT
i β),

where Xi is a p-dimensional vector of covariates. In fitting the logistic regression

model to a given set of data, the unknown parameters α and β are estimated by the

maximum likelihood method (ML). In this case there are (p+ 1) likelihood equations

which are obtained by differentiating the log likelihood function by each of the (p+1)

parameters. The likelihood function is given by

L(α, β) =
n∏
i=1

πyii [1− πi]1−yi .

So, the estimation of parameters require the maximization of the likelihood function

or equivalently the maximization of the log likelihood function which denoted by

`(α, β) = log(L(α, β)) =
n∑
i=1

[yi log πi + (1− yi) log(1− πi)]

By differentiation of log likelihood functions with respect to parameters we get the

following:
n∑
i=1

[yi − πi] = 0,

and
n∑
i=1

xij[yi − πi] = 0

where, j = 1, 2, . . . , p. These result in a solution for parameters α and β, denoted by

α̂ and β̂, and the fitted values for the logistic regression model are

π̂i = expit(α̂ + xTi β̂).

7



1.3.2 Example of Analysis of Binary Data By Logistic model

To illustrate analysis by a logistic regression model, let us consider an example shown

by Hosmer and Lemeshow (2000). Table 1.1 lists age in year AGE, and presence

or absence of evidence of significant coronary heart disease CHD for 100 subjects.

Also ID denoted to an identifier variable ID and an age group variable AGRP. The

outcome variable is CHD, which is consider a value of 1 to indicate CHD is present,

or 0 to indicate that it is absent in the individual. So, it is interesting to explore the

relationship between age and CHD. As we can see the outcome variable is binary, so

the absence of CHD is (y=0) and the presence of CHD is (y=1). Table 1.2 shows

the data by using the age group variable, AGRP, for each age group, the frequency

of occurrence of each outcome and the proportion with CHD present is shown.

The logistic model

E(Y | x) = π(x) = expit(α + β1AGE),

is used to fit the AGE variable, rather than the grouped version. Now we need to

fit the logistic regression model to estimate the parameters α and β1 by maximum

likelihood method. The output of analysis the logistic regression model, shows in

Table 1.3. Figure 1.3 shows the comparison between the fitted logistic model AGE

with AGRP.

The maximum likelihood estimates of α and β1 are α̂=-5.309 and β̂ = 0.111, and

the fitted values are given by

π̂(x) = expit(−5.309 + 0.111× AGE)

The Table 1.3, also contains estimates of the standard errors of the estimated coeffi-

cients (Std.Err), and the last column displays a p-value. For more applications of the

logistic regression model, see Hilbe (2009) and Dobson and Barnett (2008).
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ID AGE AGRP CHD ID AGE AGRP CHD

1 20 1 0 51 44 4 1
2 23 1 0 52 44 4 1
3 24 1 0 53 45 5 1
4 25 1 0 54 45 5 1
5 25 1 1 55 46 5 0
6 26 1 0 56 46 5 1
7 26 1 0 57 47 5 0
8 28 1 0 58 47 5 0
9 28 1 0 59 47 5 1
10 29 1 0 60 48 5 0
11 30 2 0 61 48 5 1
12 30 2 0 62 48 5 1
13 30 2 0 63 49 5 0
14 30 2 0 64 49 5 0
15 30 2 0 65 49 5 1
16 30 2 1 66 50 6 0
17 32 2 0 67 50 6 1
18 32 2 0 68 51 6 0
19 33 2 0 69 52 6 0
20 33 2 0 70 52 6 1
21 34 2 0 71 53 6 1
22 34 2 0 72 53 6 1
23 34 2 1 73 54 6 1
24 34 2 0 74 55 7 0
25 34 2 0 75 55 7 1
26 35 3 0 76 55 7 1
27 35 3 0 77 56 7 1
28 36 3 0 78 56 7 1
29 36 3 1 79 56 7 1
30 36 3 0 80 57 7 0
31 37 3 0 81 57 7 0
32 37 3 1 82 57 7 1
33 37 3 0 83 57 7 1
34 38 3 0 84 57 7 1
35 38 3 0 85 57 7 1
36 39 3 0 86 58 7 0
37 39 3 1 87 58 7 1
38 40 4 0 88 58 7 1
39 40 4 1 89 59 7 1
40 41 4 0 90 59 7 1
41 41 4 0 91 60 8 0
42 42 4 0 92 60 8 1
43 42 4 0 93 61 8 1
44 42 4 0 94 62 8 1
45 42 4 1 95 62 8 1
46 43 4 0 96 63 8 1
47 43 4 0 97 64 8 0
48 43 4 1 98 64 8 1
49 44 4 0 99 65 8 1
50 44 4 0 100 69 8 1

Table 1.1: Age and Coronary Heart Disease(CHD) Status of 100 Subjects (from
Hosmer and Lemeshow (2000))

9



CHD
Age Group n Absent Present Proportion

20-29 10 9 1 0.10
30-34 15 13 2 0.13
35-39 12 9 3 0.25
40-44 15 10 5 0.33
45-49 13 7 6 0.46
50-54 8 3 5 0.63
55-59 17 4 13 0.76
60-69 10 2 8 0.80
Total 100 57 43 0.43

Table 1.2: Frequency Table of Age Group by CHD

Variable Coeff Std.Err z P > |z|
AGE 0.111 0.0241 4.61 < 0.001

Constant -5.309 1.1337 -4.68 < 0.001
Log Likelihood=-53.67656

Table 1.3: Results of Fitting the Logistic Regression Model to the Data in 1.1

AGE

20 30 40 50 60 70

0.2
0.4

0.6
0.8

Fitt
ed 
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ues

Figure 1.3: Plot of fitted model by AGE (blue) and plot the data of AGRP (black
points) and CHD (red points) for (Hosmer and Lemeshow (2000) data).
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1.4 Goodness-of-fit Tests

If we look to the Figure 1.3, there are two models fitted to explain the relationship

between π and x. The fitted model with AGE covariates denoted by blue line which

estimated by two coefficients α and β. However, we have another model with AGRP

denoted by black points which makes no assumptions of the form of the relationship

between π and age but requires 8 parameters. The goodness-of-fit is very important

to decide if the more succinct model is adequate.

The subject of assessment of goodness-of-fit in logistic regression model has at-

tracted the attention of many researchers. It plays an important role in judging the

fitted model. After fitting the logistic regression model, the next step is to examine

how well the proposed model fits the observed data: this is called as its goodness-of-

fit. Goodness-of-fit tests are methods to determine the suitability of the fitted model,

and many approaches have been proposed as goodness-of-fit tests for the logistic

regression model.

Goodness-of-fit tests for the logistic regression can be split into three types: i)

Those based an examination of residuals; ii) Those based an test which group the

observation; iii) Those which do not group observation. Methods in i) are more

general and subjective assessments of a model and are not considered in this thesis.

This is not to undervalue then they are often the most valuable approach to model

assessment. The observed values for Bernoulli regression are just 0s and 1s and this

makes graphical approaches less easy to handle. The focus of this work is the test

statistics. In 1.4.1, tests using grouping are considered, with those that do not need

to group the data being discussed in 1.4.2.

1.4.1 Goodness-of-fit Tests with Grouping

Hosmer et al. (1980), proposed and developed approaches involving grouping based

on the values of the estimated probabilities obtained from the fitted logistic model.

Two grouping methods were proposed. The first approach is based on grouping

the data according to percentiles of the estimated probabilities, and the second ap-

proach is based on grouping the data according to fixed cutoff values of the estimated

probabilities. Tests with grouping based on estimated probabilities were proposed

and developed by Hosmer et al. (1980), Lemeshow and Hosmer (1982), Hosmer and

Lemeshow (1989) and Hosmer et al. (1997). Brown (1980), developed a score test

statistic which essentially compares two fitted model.
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Hosmer and Lemeshow Test Ĉ

The calculation of this test dependent upon grouping of estimated probabilities

π̂(xi) which use g groups. The first group contains the n1 = n/g observations which

have the smallest estimated probabilities, the second group contains n2 = n/g values

have the next smallest estimated probabilities and the last group contains the ng =

n/g observation with the largest π̂(xi): here n is the size of the sample and g the total

number of groups. Before defining a formulae to calculate Ĉ we will consider some

notions. The statistic test Ĉ is obtained by calculating Pearson chi-square statistic

from the 2×g table with two rows and g columns of observed and expected frequencies.

In the row with y = 1 summing of the all estimated probabilities in a group give the

estimated expected value. In the row with y = 0 estimated expected value is obtained

by summing one minus the estimated probabilities over all subjects in the group. We

can denotes the observed number of subjects have had the event present (y = 1) and

absent (y = 0) respectively in each group columns g (s = 1, 2, 3, . . . , g) :

O1s =
ns∑
i=1

yi , O0s =
ns∑
i=1

(1− yi)

where ns is the number of the observation in group g. The expected number of

subjects of present and absent respectively is denoted by:

E1s =
ns∑
i=1

π̂i , E0s =
ns∑
i=1

(1− π̂i)

Then Ĉ is simply obtained by calculation the Pearson χ2 statistic for the observed

and expected frequencies from the 2× g table as:

Ĉ =

g∑
s=1

1∑
j=0

(Ojs − Ejs)2

Ejs
.

from which it following

Ĉ =

g∑
s=1

(Os − nsπ̄s)2

nsπ̄s(1− π̄s)
,

where, ns is the total number of values in sth group, Os is the number of responses

for the number of covariates in the sth group, defining as

Os =
ns∑
i=1

yi
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where, Os = O1s +O0s, and π̄s is the average of the estimated probabilities which are

defined as:

π̄s =
ns∑
i=1

miπ̂i
ns

Use of an extensive set of simulations proved that when mi = 1, where mi is the

individual binomial denominator and the fitted logistic model is the correct model,

then the distribution of Ĉ is approximated by the χ2 distribution with (g−2) degrees

of freedom Hosmer et al. (1980).

Hosmer and Lemeshow Test Ĥ

The second grouping strategy was proposed from Hosmer and Lemeshow denoted

by Ĥ, this method depends upon grouping the estimated probabilities in groups based

on fixed cutpoint, so each group contains all subjects with fitted probability located

in specific intervals. For example, the cutpoint of the first group is 0.0 ≤ π̂(xi) < 0.1,

then this group contains all subjects with estimated probabilities located in this

interval; the second group contains all subjects with estimated probabilities located

between cutpoint 0.1 ≤ π̂(xi) < 0.2 and the last group has interval 0.9 ≤ π̂(xi) < 1.0.

The calculation of Ĥ uses exactly the same formulae used to calculate Ĉ: the only

difference between the two approaches is in the construction of the groups. The dis-

tribution of Ĥ is approximated by the χ2 distribution with (g−2) degrees of freedom.

Although Hosmer and Lemeshow tests are good, it requires grouping, and choice

of g is

- g is arbitrary but almost everywhere in the literature and in software a value of 10,

or very similar is chosen.

- Smaller values of g might be chosen for smaller n.

- Sparse data causes a problem for H and lead to uneven group widths for C.

1.4.2 Goodness-of-fit Tests Without Grouping

Deviance and Pearson Chi-Square Tests

Two of the most commonly used goodness-of-fit measures, are the Pearson’s chi-

squared χ2 and the deviance D goodness-of-fit test statistics but the behaviour of

these tests are unstable with bernoulli data; see McCullagh (1986). The general idea

of the deviance is make comparison between two models the first model is full model
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with p parameters and the second model is a model with q parameters, where (q < p).

The deviance can write as

D = −2 log

(
L̂s

L̂r

)
= −2(`s − `r),

Where L̂r , L̂s are the likelihoods for the full and small model and `r, `s denoted

to the log-likelihood: Asymptotically this is χ2 in p − q df. The residual deviance

is the case when the large model is saturated and has n parameters. In case of the

logistic regression model McCullagh (1986), introduced specific form when mi = 1;

the residual deviance can then be found as

D = −2
n∑
i=1

{π̂i log π̂i + (1− π̂i) log(1− π̂i)},

In this case the deviance is invalid as a goodness-of-fit test, because it is a function

of π̂i, which does not compare the observed values with fitted values.

Also, Pearson chi-square goodness of fit statistic can be written:

X2 =
n∑
i=1

(yi − π̂i)2

π̂i(1− π̂i)
= n

which is equal to the sample size: this is not a useful goodness-of-fit test.

Residual Sum of Squares Test

Copas (1989), proposed a method, which used the unweighted residual sum of

squares a goodness-of-fit test to assess the model adequacy. The idea of this approach

is to keep all the individual values of mi but to give less weight in cases of mi are

small. The unweighted residual sum of squares statistic considers only the numerator

of the Pearson chi-squares statistic, which is the summation again over the individual

observations,the statistic can be written:

RSS =
n∑
i=1

(yi − π̂i)2.

Of course, the relative weighting for varying mi is not relevant for our case where

mi = 1. Hosmer et al. (1997), discussed how to compute the moments and asymptotic

distribution of the RSS statistic. They give useful expressions for the mean and

variance which are easier to compute than the expressions given by Copas (1989). The

proposed asymptotic mean and variance of RSS are respectively, E[RSS−S(W )] ∼= 0
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and var[RSS − S(W )] ∼= dT (I −M)Wd, where M = WX(XTWX)−1XT , W = diag

[πi(1−πi)], S(W ) =
∑n

i=1[diag(πi(1−πi))] and d is vector with elements di = (1−2πi).

Used the standardized statistic to assess significance by referring the following to the

standard normal
[RSS − S(W )]√
var[RSS − S(W )]

.

R2 Test

Several R2 type statistics have been used for goodness-of-fit in logistic regression,

such as that proposed by Cox and Snell (1989)

R2
g = 1−

(
L̂c

L̂0

)n/2

where, L̂c represents the log-likelihood evaluated at the ML estimation parame-

ters and L0 represents the log-likelihood of the model containing only an intercept.

Another version due to Nagelkerke (1991) is

R̄2
g =

R2
g

max(R2
g)

where, max(R2
g) = 1− (L̂0)2/n.

1.5 Information Matrix tests: IMT and IMTDIAG

The Information Matrix test (IMT ) is a test for general misspecification, proposed by

White (1982). The two well-known expressions for the information matrix coincide

only if the correct model has been specified and the IMT takes advantage of this

fact. The IMT avoids the grouping necessary for tests like the Hosmer-Lemeshow

test. Many researchers, (Lancaster (1984), Newey (1984), Davidson and Mackinnon

(1984) and Orme (1988)) pointed out the behaviour of the asymptotic distribution

of IMT statistic and dispersion matrix. Chesher (1984) discussed the information

matrix test and showed that it is useful with binary data models. Kuss (2002),

made comparisons between some goodness-of-fit tests in logistic regression models

with sparse data. The results of his simulation showed that the IMT has reasonable

power compared with other tests. However, Kuss did not give information about the

asymptotic distribution of the IMT statistic. Also he did not focus exclusive in the
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case mi = 1. Although the IMT is extensively discussed in the econometrics litera-

ture, it is less well known in the biostatistics literature.

There are several forms of the IMT , some of which give rather unstable behaviour.

The reason for this will be explored, and potential corrections suggested in the later

part of this thesis. A complication in this analysis is that the test statistic is parameter

dependent and must be evaluated at the MLE of the parameters of the fitted model.

As such we need to the limiting values of these parameters under what may well be

a wrong model.

1.6 Model Mis-specification

It is well known in linear regression that if an outcome is dependent on several co-

variates but if only a subset of these is fitted, then the parameters estimates obtained

will, in general, be inconsistent. The exception is if the fitted and omitted covariates

are orthogonal. The situation for logistic regression is less well-known and analytical

progress is limited. The topic is of interest in its own right, given the widespread use

of logistic regression in biostatistical applications, as well as being necessary for the

proper investigation of the use of the IMT for logistic regression. The first part of

this thesis will examine this issue in detail for a variety of models.

1.7 Thesis Outline

Part 1: Chapter 2-4

In order to investigate the behaviour of the logistic regression under a mis-specified

model, we propose to find expressions for the least false values for some specific forms

of covariates. Different distributions of covariates have been considered and compared

by simulation. The second chapter poses the main idea of the first part of this thesis:

we use the skew normal distribution and the probit function as an approximation to

the expit to find the least false values under a logistic model with missing covari-

ates. We present the idea and behaviour of MLE under wrong model as discussed

in Claeskens and Hjort (2008). We describe the skew normal distribution and the

relationship between the probit function and expit function. We use these to obtain

explicit forms for the least false values when the covariates have a multivariate Normal

distribution. Chapter 3 introduces the least false value when the covariates assump-

tions are violated: we consider when the covariates are drawn from three different
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distributions: multivariate t, multivariate Uniform and bivariate Log-normal distri-

butions. In all cases the least false values are evaluated by simulation. and compared

to the values that would be found from the formulae derived for normal covariates.

Chapter 4 introduces the behaviour of the MLE when one of the covariates is binary.

The form of the least false values for logistic model with one binary covariate and

some multivariate normal covariates, some of which are omitted, are also evaluated

by simulation. This result is then applied to randomized trials and illustrated by a

real example.

Part 2: Chapters 5-8

In chapter 5 consider the basic idea of the IMT statistic and its theory is in-

troduced. The IMT and IMTDIAG are defined for a logistic regression. Chapter 6

considers the moments of the IMT statistic. We calculate the covariance matrix of

the IMT statistic under missing covariates and using the least false values. Formu-

lae for the variance of IMT and IMTDIAG are derived and evaluated by simulation.

Chapter 7 investigates the asymptotic distribution of the IMT statistic and proposes

a new form for the IMT , namely the reduced IMT , IMTR. Chapter 8 considers

bootstrapping the IMT . In the chapter 9 concluding remarks are made.
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Chapter 2

Least false values under missing
covariates logistic model

2.1 Introduction

The subject of the behaviour of maximum likelihood estimation (MLE) method in lo-

gistic regression model has attracted the attention of many scientists and researchers.

Cox (1970) developed the analysis of the binary data and application of the maximum

likelihood: see also Cox and Snell (1989). Nelder and Wedderburn (1972) introduced

the generalized linear model and used special techniques to obtain the maximum like-

lihood estimates of the parameters, with observations distributed according to some

exponential family. McCullagh and Nelder (1989) discussed the generalized linear

model and behaviour of the maximum liklihood (ML) method for binary outcome.

The ML method under the wrong logistic model has been discussed extensively by

Claeskens and Hjort (2008, p.23). In this chapter we will examine the behaviour of

MLE method when the wrong logistic model has been fitted. The idea is to try to find

in terms of the true parameters of the model the least false values which are obtained

by maximising the incorrect likelihood function. We will use the relationship between

expit(u) = eu/(1 + eu) function and probit function Φ(·), and use the properties of

the multivariate skew-Normal distribution to compute a good approximation to the

least false values under wrong logistic model.

Firstly, we will give an example for a linear regression model. Secondly, we will define

and discuss the properties of the skew-normal distribution and the approximation

of expit(·) in terms of Φ(·), before we discuss the behaviour of the least false values

under the wrong logistic model.
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2.2 Least False Value for Linear Regression Model

Before we discuss the behaviour of MLE in case of logistic model, it is instructive to

consider the example of the linear regression model. In this section, we explain the

behaviour of MLE and compute least false values, in the case of missing covariates

from a linear regression model. Let consider we have true linear model

E(Y ) = α +Xβ,

where X can be partitioned as (Xf |Xa), so we can write the model as

α +Xfβf +Xaβa,

where, βf and βa are vectors with p × 1 and q × 1 dimensions respectively. But we

fit the model when E(Y ) is taken to be

E(Y ) = α +Xfβf .

Then, the important question in this case is what is EY |X

[
α̂

β̂f

]
? We know that the

expectation of the estimators of the parameters for linear regression model is

EY |X

[
α̂

β̂f

]
= (XT

FXF )−1XT
FE(Y )

where, XF =
[

1n Xf

]
has dimension n× (p+ 1) and 1n is an n-dimensional vector

of ones. So, we can write

EY |X

[
α̂

β̂f

]
= (XT

FXF )−1XT
F

[
XF Xa

]  α
βf
βa


where, Xa has dimension n× q, then

EY |X

[
α̂

β̂f

]
=
[
Ip+1 (XT

FXF )−1(XT
FXa)

]  α
βf
βa


so, we get

EY |X

[
α̂

β̂f

]
=

[
α
βf

]
+ (XT

FXF )−1(XT
FXa)βa

The above is a standard result when we take the X to be fixed. This could be because

the X are fixed or because we have conditioned on them. However, for comparison

with later results we wish the unconditioned E((α̂, β̂f )
T ). We consider X having a
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normal distribution X ∼ N(0, Ω). So, corresponding to the partition of Xf and Xa

we can write the partition of Ω as

Ω =

[
Ωff Ωfa

Ωaf Ωaa

]
Then, the least false values α∗ and β∗ compute by E(α̂, β̂f )

T → (α∗, β∗f )
T , when

E(α̂, β̂f )
T is over joint distribution of (Y,X) i.e, EXEY |X(α̂, β̂f )

T . Then,

EXEY |X

[
α̂

β̂f

]
=

[
α∗

β∗f

]
=

[
α
βf

]
+ E

[
(XT

FXF )−1(XT
FXa)

]
βa (2.1)

We can see that, the second part of (2.1) contained the expectation with XF , Xa which

is not independent and we cannot compute it directly, we will use the properties of

Wishart distribution to solve the equation (2.1). See Mardia et al. (1979, p.66), the

Wishart distribution is discussed where this distribution defined as: If M(p× p) can

be written as M = XTX where X(m × p) is a data matrix from Np(0, Ω), then M

is said to have a Wishart distribution with scale matrix Ω and degrees of freedom

parameter m and write M ∼ Wp(Ω,m), M−1 ∼ invWp(Ω
−1,m) and

E(M−1) =
Ω−1

m− p− 1
.

Now,we may consider XF =
[

1n HXf

]
, where, the centring matrix H = In −

1
n
1n1Tn , then

XT
FXF =

[
n 0
0 XT

f HXf

]
and, replacing Xa with HXa

XT
FHXa =

[
0

XT
f HXa

]
Then,we can write

β∗f = βf + E
[
(XT

FHXF )−1(XT
FHXa)

]
βa (2.2)

We need to use the properties of the Wishart distribution,to evaluate this expec-

tation. Consider M and its sub-matrices, as

M =

[
XT
f HXf XT

f HXa

XT
a HXf XT

a HXa

]
=

[
Mff Mfa

Maf Maa

]
.

In this case Mff ∼ Wp(Ωff , n − 1), a p-dimensional wishart distribution, and

Maa − MafM−1
ff Maf ∼ Wq(Ωaa − ΩafΩ

−1
ff Ωfa, n − 1 − p) and this is independent
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of Mff ,Mfa. Now, we will back to work out the calculation of the expectation on

equation (2.1), so will starting to compute

EX((XT
FXF )−1XT

FXa).

Now, M ∼ Wp+q(Ω, n − 1) and M−1 ∼ invWp+q(Ω, n − 1) where IW denotes the

inverse wishart distribution. From this it follows Mardia et al. (1979, p.67).

E(M−1) =
Ω−1

n− p− q − 2
,

Also

M−1 =

[
(Mff −MfaM

−1
aa Maf )

−1 −M−1
ff Mfa(Maa −MafM

−1
ff Mfa)

−1

−M−1
ff Mfa(Maa −MafM

−1
ff Mfa)

−1 (Maa −MafM
−1
ff Mfa)

−1

]
.

Then, considering the off-diagonal block

−E(M−1
ff Mfa(Maa−MafM

−1
ff Mfa)

−1) = −(n−p−q−2)−1Ω−1
ff Ωfa(Ωaa−ΩafΩ

−1
aa Ωfa)

−1.

But, Maa −MafM
−1
ff Mfa ∼ Wq(Ωaa −ΩafΩ

−1
ff Ωfa, n− 1− p), and is independent of

Mff and Mfa. So,

E((Maa −MafM
−1
ff Mfa)

−1) =
(Ωaa −ΩafΩ

−1
ff Ωfa)

−1

n− p− q − 2
.

Now, by independence

E(M−1
ff Mfa(Maa −MafM

−1
ff Mfa)

−1) = E(M−1
ff Mfa)E((Maa −MafM

−1
ff Mfa)

−1)

and so,

E(M−1
ff Mfa) = Ω−1

ff Ωfa.

Finally, we can write the least false values in equation (2.1), in terms of covariance

matrix and the parameters of the true model as

EXEY |X

[
α̂

β̂f

]
→
[
α∗

β∗f

]
=

[
α

βf +Ω−1
ff Ωfaβa

]
. (2.3)

So, in particular, β∗f = βf +Ω−1
ff Ωfaβa. Note that β∗f = βf if βa = 0 or if Ωfa = 0.
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2.3 MLE Under the True Logistic Model

The behaviour of MLE for binary outcome has been discussed more extensively by

McCullagh and Nelder (1989). The logistic model when Yi ∼ binomial(mi, πi) with

mi = 1 can be fitted using the method of maximum likelihood to estimate the pa-

rameters. The first step is to construct the likelihood function which is a function of

the unknown parameters and data, then choose those values of the parameters that

maximize this function. The log-likelihood function is:

l(π;Y ) =
n∑
i=1

[yilog(πi) + (1− yi) log(1− πi)]

Where, in this case we have

g(πi) = ηi = log(πi/1− πi) = (α +

p∑
j=1

xijβj).

where β is a p-dimensional vector, xi are a vector of covariates for ith individual and

i = 1, · · · , n. The yi are the realisations of n independent random variables Yi ∈ {0, 1}
and Pr(Yi = 1|xi) = πi. Thus we have

l(β) =
n∑
i=1

yi(α + xTi β)−
n∑
i=1

log
[
1 + exp(α + xTi β)

]
To estimate the parameters α and βj we differentiate the log-likelihood function with

respect to α and βj, giving :

∂l

∂α
=

n∑
i=1

{yi − expit(α + xTi β)} =
n∑
i=1

(yi − πi).

And
∂l

∂βj
=

n∑
i=1

yi − πi
πi(1− πi)

∂πi
∂βj

.

=
n∑
i=1

{xijyi − xijexpit(α + xTi β)}

∂l

∂βj
=

n∑
i=1

(yi − πi)xij. (2.4)

The MLE for α and βj can be found by setting ∂l
∂α

= 0 and ∂l
∂βj

= 0 in equation (2.4)

in each of the p equations.

If the fitted model is the true model then, the asymptotic distribution of β̂j is β̂ ∼
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N(β, I(β)−1) where I(β) is the (p×p) Fisher’s information matrix, its (r, s)th element

is defined as

Irs =

[
−E

{
∂2l

∂βr∂βs

}]
.

If is evaluated at MLE β̂.

2.4 MLE Under the Wrong Model

Claeskens and Hjort (2008) discussed how the maximum likelihood method used to

estimate the parameters of a given regression model is affected when the assumed

model is incorrect. If the data are independent and identically distributed, the log

likelihood function in case of the density f(yi, θ) for an individual observation, we

can write as:

`n(θ) =
n∑
i=1

log f(yi, θ).

The important question here is, if we fit a model for Y as f(y | θ) when true model

is g(y), what value do we estimate for θ ? We have for each value of θ, by the weak

large numbers, in probability, as n→∞

n−1`n(θ)→ E (log f(Y | θ)) ,

As Y is actually distributed according to the density g(y) the right hand side is

A =

∫
g(y) log f(y | θ)dy.

We know the ML estimator θ̂ maximises `n(θ) and so maximises the above. The

Kullback-Leibler (KL) divergence is

KL(g(y), f(y, θ)) =

∫
g(y) log

g(y)

f(y, θ)
dy =

∫
g(y) log g(y)− A. (2.5)

If the value θ∗ minimises the KL(g(y), f(y, θ)) then θ̂ → θ∗. The value θ∗ is called

the least false (LF) value.

When there are covariates in the model the Yi will no longer be identically distri-

bution (although we still assume independence). As such the above argument needs

modificated to accommodate covariates. Introduce covariates X, which have distri-

bution function F (x), then the above is adapted as follows.

For model f(y | x, θ), consider KL conditional on X:

KLX(g(Y | X), f(Y | X, θ)) =

∫
g(y | X) log

g(y | X)

f(y | X, θ)
dy.
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Overall we get

KL(g, fθ) = EX(KLX) =

∫ ∫
g(y | X) log

g(y | X)

f(y | X, θ)
dydF (x),

and then

KL(g, fθ) =

∫ ∫
g(y | X) log g(y | X)dydF (x)−

∫ ∫
g(y | X) log f(y(X, θ))dydF (x)

Now to solve likelihood function and find the least false parameter θ∗ which minimises

KL(g, fθ), then

EX

(
Eg

(
∂ log f(Y | X, θ)

∂θ

))
|θ∗ = 0. (2.6)

2.4.1 Application to Logistic Regression

Now, we will apply the MLE method under wrong model on logistic regression model.

The idea is to use this method to obtain equations which determine the least false

value θ∗ for a logistic regression. To explain the behaviour of the MLE in this case

we will partition of the vector covariates X, as previous (Xf , Xa). The model is

f(Y | θ) = p(Y = y | θ)

where, θ = (α, β), so, we can write the logistic model as

f(Y | θ) = (1− π)1−Y πY ,

where,

π = expit(α + βfXf )

is the fitted model. However, this model is mis-specified because the true model is.

π = expit(α + βfXf + βaXa)

Then the ML equations follow,

log f(Y | θ) = (1− Y ) log(1− π) + Y log π

= log(1− π) + Y log
π

1− π
= Y (α + βfXf )− log(1 + eα+βfXf ),

therefore
∂ log f(Y | θ)

∂α
= Y − expit(α + βfXf ),
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and
∂ log f(Y | θ)

∂β
= Y Xf −Xfexpit(α + βfXf ).

So, expectation of these equations are zero when θ = θ∗ = (α∗, β∗). From the above

equations where Y is binary, the expectation in this case becomes

EX(EY |X(Y )) = EX(expit(α∗ + β∗fXf )),

and

EX(XfE(Y | X)) = EX(Xfexpit(α∗ + β∗fXf )).

The E(Y | X) is Pr(Y = 1 | X) and this is given by the true model

Pr(Y = 1 | X) = expit(α + βTf Xf + βTaXa).

But we fit the model without Xa. The least false values, α∗ and β∗f , can be found in

terms of α, βf and βa and the parameters of the distribution of the covariates as from

E
[
expit(α∗ + β∗Tf Xf )

]
= E

[
expit(α + βTX)

]
(2.7)

E
[
Xfjexpit(α∗ + β∗Tf Xf )

]
= E

[
Xfjexpit(α + βTX)

]
. (2.8)

where, Xfj is the jth element of Xf (j = 1, . . . , p).

These equations can be solved approximately if X follows a multivariate normal

distribution, by approximating expit(·) and using the skew-normal distribution. So,

before solving the above equations to find the least false values, we will briefly review

the required properties of the skew-normal distribution and the approximation of

expit(·).

2.4.2 Previous Work on mis-specification in Logistic Regres-
sion

The behaviour of the Mis-specified logistic regression model has been discussed by

several researchers, including Lee (1982), Gail et al. (1984), Robinson and Jewell

(1991), Neuhaus et al. (1991), Neuhaus and Jewell (1993) and Drake and McQuarrie

(1995). Gail et al. (1984), derive conditions on the components of generalized linear

model such that omitting covariates related to outcome will not result in asymptotic

biases. These conditions are not met for some models, in particular the logistic re-

gression. Gail et al. (1984), derive formulae for estimating bias both for the method

of moments and maximum likelihood estimators.
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Gail et al. (1984) worked on randomized trials and omitted all covariates except

treatment effect. Subsequent contributions, Neuhaus et al. (1991), Neuhaus and

Jewell (1993) and Drake and McQuarrie (1995), all of focused on behaviour of bias

more by epidemiological applications than trials. Lee (1982), worked on general mis-

specified for the multinomial logistic probability model. He tried to find conditions

on the random variables response variable Y , X and Z such that, if the true model is

Pr(Y | X,Z) = expit(α0 + α1X + βZ)

and the fitted model is

Pr(Y | X) = expit(α∗0 + α∗1X)

then the results of analysis given α∗1 → α1, i.e. estimate of α1 is unaffected by omis-

sion of Z. In fact if, conditional on the Y , the variable Z is independent of X, then

the coefficient of X in the mis-specified model is unaffected by omission of Z.

Gail et al. (1984), Robinson and Jewell (1991), Neuhaus et al. (1991), Neuhaus

and Jewell (1993) and Drake and McQuarrie (1995) attempt to find solution to the

mis-specified likelihood functions equations, by using Taylor series approximations to

produce expressions for bias. In fact Taylor series approximation is useful, but limited

to small parameter values and can be difficult technically. For example, Drake and

McQuarrie (1995) could obtain only a first-order of Taylor series for the model with

some covariates omitted, which was also restricted to two scalar covariates X1 and

X2. Their result is useful for epidemiological studies; but it provides less insight when

applied to randomized trials. Consider the true model is

E(Y | X1, X2, T ) = expit(α + β1X1 + β2X2 + γT ),

while the fitted model is

E(Y | X1, T ) = expit(α∗ + β∗1X1 + γ∗T ),

then the first order solution for the bias γ∗ − γ is

1

2
β2 [E(X2 | T = 1)− E(X2 | T = 0)− [E(X1 | T = 1)− E(X1 | T = 0)]×B]

where B depends on the variances and covariances of the covariates. We can see

clearly for randomized control trials the bias vanishes, because in this case

E(Xj | T = 1)− E(Xj | T = 0) = 0 , j = 1, 2
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Our proposed work in the first part of this thesis, using properties of the extended

skew-Normal distribution, we derive closed-form approximations for the least-false

values from a logistic regression with missing covariates, which are not restricted to

small parameter values, to avoid the weaknesses of Taylor series. We consider all

parameter values and assume the covariates have normal distributions, with some of

them omitted.

2.5 Skew-Normal Distribution

The skew-Normal distribution has been discussed and extended by many researchers,

the earlier work developed a systematic treatment of this distribution has been given

by Azzalini (1985) and Azzalini (1986). More discussion and numerical evidence of

the presence of skewness in real data by Hill and Dixon (1982). Cartinhour (1990),

have introduced a multivariate extension skew-Normal distribution, also, discussed

by Azzalini and Dalla Valle (1996). Some have developed theorems for skew-normal

distribution and related multivariate families: see Henze (1986), Chiogna (1998),

Azzalini and Capitanio (1999) and Azzalini (2005). Other discussion for quadratic

forms and flexible class of skew-symmetric distribution discussed by Loperfido (2001)

and Ma and Genton (2004).

2.5.1 Definition

A random variable U is called skew normal with parameter λ, so U ∼ SN(λ), if its

density function is :

f(u;λ) = 2φ(u)Φ(λu) (2.9)

where u ∈ R, φ(·) and Φ(·) are the density and distribution function of standard nor-

mal distribution respectively, that defined by Azzalini (1985). To more demonstrate

the impact of λ on shape of density function in equation (2.9), we consider simple

example for (λ = 0, 2, 4, 8) and set of suitable variables u, is exhibited graphically in

Figure 2.1. Location and scale parameters can be introduced if the random variable

has density

f(u;λ) = 2φ

(
u− ζ
η

)
Φ

(
λ(u− ζ)

η

)
.

More general case proposed by Arnold et al. (1993) and Arnold and Beaver (2002).
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Figure 2.1: plot of pdf of expression (2.9) for different λ.

2.5.2 Extended Multivariate Skew-Normal Distribution

In general case, Arnold and Beaver (2000), discussed extends the skew normal distri-

bution and properties of this family. We can defined the extend multivariate skew-

normal distribution as; a p-dimensional random variable U has extended skew-normal

distribution, ESN(ϑ,Ω, λ, ν), if it has density:

φp(u;ϑ,Ω)Φ(λT (u− ϑ) + ν)

Φ(ν/
√

1 + λTΩλ)

where ν is a scalar, Ω is dispersion matrix has p × p dimensional and parameters ϑ

and λ are p-dimensional. The φp(.;ϑ,Ω) is the density of a p-dimensional normal vari-

able with mean ϑ and dispersion matrix Ω where Φ(.) is the cumulative distribution

function of a univariate standard normal variable. It follows that,

E(U) = ϑ+
Ωλ√

1 + λTΩλ

φ(ν̄)

Φ(ν̄)
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where ν̄ = ν√
1+λTΩλ

and φ(.) here, is the density of a univariate standard normal

distribution. The moment-generating function of the distribution ESN(ϑ,Ω, λ, ν) is

M(t) = E(exp(tTU)) =

exp
(

1
2
tTΩt

)
Φ

(
ν+λTΩt√
1+λTΩλ

)
Φ

(
ν√

(1+λTΩλ)

) .

2.6 Relationship Between Probit Function and ex-

pit Function

In this section, we are going to consider the approximation of expit(·) by Φ(·), the

distribution function of a standard normal variable. Gumbel (1961) reported that,

the logistic distribution closely resembles the normal distribution which discussed

the shape of distribution both are symmetrical and noted some properties. Johnson

and Kotz (1970, p.5), point out the comparison of logistic and normal cumulative

distribution function. The approximation form defined as:

expit(u) ≈ Φ(ku)

where k = (16
√

3)/(15π). The approximation between expit(u) and Φ(ku), is

shown in Figure (2.2). Moreover, Figure (2.3) appeared the ratio between expit(u)

and Φ(ku). We can see that, the ratio is poor when the value of u is negative, but

only for values smaller than we are likely to estimate. That is because Φ(·) tends to

zero much quicker than expit(·) as u −→ −∞.

The logistic distribution has a shape similar to the normal distribution, which

makes it useful to replace the normal distribution by the logistic distribution to sim-

plify the analysis. The idea is, suppose that if the cumulative function of the standard

normal is

Q1(x) =
1√
2π

∫ x

−∞
exp−(

1

2
v2)dv,

and the cumulative distribution function of the standard logistic is

Q2(x) =

{
1 + exp

(
− πx√

3

)}−1

.

I.e both have mean 0 and variance 1. So we expect

expit(x) = Q2

(
x

π
√

3

)
≈ Φ

(
x

π
√

3

)
.
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Figure 2.2: Comparison between shape of expit(u) and Φ(ku) function.

Now working to make comparison between Q1(x) and Q2(x) to explain the simi-

larity of the distribution shape. The differences [Q1(x)−Q2(x)] has shown in Figure

(2.4), which appeared the maximum value of the differences approximately is about

0.023, when x = 0.7. Consideration of the difference only required positive x because

Qi(−x) = 1 − Qi(x), i = 1, 2. By changing the scale of x in cumulative function

of standard normal distribution, we plot Q2(x) − Q1(kx) against x for a range of

values of k = n
n−1

. The change has been shown in Figure (2.4) as well. It shows

that, the best quotient is k = 16
15

satisfy reduced the maximum value of differences

[Q2(x)−Q1(16x/15)] to less than 1%. Further discussion that, although the shape of

the logistic and normal distribution is a close to similar, there is some differences in

some cases of parameters value, which may be because, the logistic distribution has

long tails. Moreover, may also note that the curve of the standard normal has points of

inflection at x = ±1, whereas the logistic curve are x = ±(
√

3/π) log(2+
√

3) = ±0.53.

The above results have been discussed by Johnson and Kotz (1970).
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Figure 2.3: Plot of the Ratio between the expit(u) and Φ(ku) function.

2.7 Least False Values Under Missing Covariates

Logistic Model

This section presents the main result of this chapter, namely the least false values

for the logistic regression model with missing covariates. The main point is, suppose

that we model a binary outcome, Y , using a logistic regression, i.e.

Pr(Y = 1|Xf ) = expit(α + βTf Xf ),

but that the true model includes more covariates, i.e.

Pr(Y = 1|X) = expit(α + βTf Xf + βTaXa).

Now,to find the least false values in terms of parameters of the true logistic model,

we have three things to do. First, use the approximation form expit(·) ≈ Φ(k·) which

discussed in section 2.6. Second, use the properties of the skew-normal distribution

which have been shown in section 2.5. Finally, we use the two equations which
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Figure 2.4: Comparision of Logistic and Normal Cumulative Distribution.

determine the MLEs, as we have discussed in section 2.4 about MLE under the wrong

model to find the least false values. Let us assume that X has (p + q)-dimensional

multivariate Normal distribution, where p and q denote the dimensions of Xf and Xa

respectively. The presence of an intercept in the above models means that we may

assume, wlog, that E(X) = 0. If var(X) = Ω, then also suppose that the partition

of this matrix corresponding to Xf and Xa is:

Ω =

(
Ωff Ωfa

Ωaf Ωaa

)
,

then we can apply the approximation to (2.7) and (2.8) using expit(u) ≈ Φ(ku), which

this leads to

EX
(
Φ
(
k[α∗ + β∗Tf Xf ]

))
= EX

(
Φ
(
k[α + βTX]

))
(2.10)

Now we use the properties of skew-normal distribution, which discussed more expan-

sively in section 2.5, in this case the density function of skew-normal distribution

where E(X) = 0 is
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f(X,α, β) =
Φ(k(α + βTX))φ(X)

Φ

(
kα√

1+k2βTΩβ

) .

Then we can write the right hand of (2.10) as

EX
(
Φ
(
k[α + βTX]

))
= Φ

(
kα√

1 + k2βTΩβ

)∫
Φ(k(α + βTX))φ(X)

Φ

(
kα√

1+k2βTΩβ

) dX.

Note that, the integration of the second part of the above equation, equal one corre-

sponding to the density function of the skew-normal distribution. So,

EX
(
Φ
(
k[α + βTX]

))
= Φ

(
kα√

1 + k2βTΩβ

)

and then, applying an analogous result to the left hand side of (2.10), we obtain

Φ

 kα∗√
1 + k2β∗Tf Ωffβ∗f

 = Φ

(
kα√

1 + k2βTΩβ

)
,

which is
α∗√

1 + k2β∗Tf Ωffβ∗f

=
α√

1 + k2βTΩβ
. (2.11)

Turning our attention to (2.8) and using the results for the expectation of a SN

distribution, we obtain

Ωffβ
∗
f√

1 + k2β∗Tf Ωffβ∗f

φ

 α∗√
1 + k2β∗Tf Ωffβ∗f

 =
(Ωβ)1√

1 + k2βTΩβ
φ

(
α√

1 + k2βTΩβ

)
,

(2.12)

where φ(·) is the standard Normal density, and (Ωβ)1 denotes the first p elements of

Ωβ, which is Ωffβf +Ωfaβa. Using the result in (2.11), we can simplify (2.12) to

β∗f = R(βf +Ω−1
ff Ωfaβa) (2.13)

where

R2 = (1 + k2β∗Tf Ωffβ
∗
f )/(1 + k2βTΩβ)

Now,using (2.13) we obtain

β∗Tf Ωffβ
∗
f = R2[(βTf Ωff + βTa ΩafΩ

−1
ff Ωff )(βf +Ω−1

ff Ωfaβa)]
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= R2(βTf Ωffβf + 2βTa Ωafβf + βTa ΩafΩ
−1
ff Ωfaβa)

Now, let A = β∗Tf Ωffβ
∗
f , therefore the above amounts to

A =
1 + k2A

1 + k2βTΩβ
(βTΩβ − βTa Ω̃βa),

where Ω̃ = Ωaa −ΩafΩ
−1
ff Ωfa. From this we get

A[1 + k2βTΩβ − k2(βTΩβ − βTa Ω̃βa)] = (βTΩβ − βTa Ω̃βa).

Therefore

A =
βTΩβ − βTa Ω̃βa

1 + k2βTa Ω̃βa

and hence R2 can be written

1 + k2A

1 + k2βTΩβ
=

1 + k2 β
TΩβ−βT

a Ω̃βa

1+k2βT
a Ω̃βa

1 + k2βTΩβ

=
1

1 + k2βTa Ω̃βa

It follows that

β∗f =
1√

1 + k2βTa Ω̃βa

(βf +Ω−1
ff Ωfaβa) (2.14)

and

α∗ =
α√

1 + k2βTa Ω̃βa

. (2.15)

If we make comparison between equations (2.14) with (2.3) the least false value in

case of linear regression model. Note that (2.14) includes a denominator, such that

β∗f 6= βf even when Ωfa = 0, although, of course, β∗f = βf if βa = 0. However, (2.3)

had β∗f = βf if Ωfa = 0 without restrictions on βa.

2.8 Example When the True Logistic Model has

Two Covariates

Let us consider simple example of the computing of least false estimates. Suppose

that we have true logistic regression model with two scalar covariates, i.e.

πi = expit(α + βX),
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where X here is two scalar covariates X1, X2, then we can write the true model as

πi = expit(α + β1X1 + β2X2),

and we fit standard logistic regression model with one covariate, i.e.

πi = expit(α + β1X1).

We know that, as the same idea which has been discussed in general case, to find the

last false values it will be using in this example to find the two least false parameters

α∗ and β∗1 . So the least false values in this case satisfy

E [expit(α∗ + β∗1X1)] = E [expit(α + β1X1 + β2X2)]

E [X1expit(α∗ + β∗1X1)] = E [X1expit(α + β1X1 + β2X2)]

We discussed in the previous section when the covariates has zero mean. Here it is

convenient, for later use, to record the result when the covariates have means not

equal to zero. Now, consider in this case X ∼ N(µ,Ω) and we can define Z = X−µ,

where µT = (µ1, µ2), XT = (X1, X2), ZT = (Z1, Z2) and

Ω =

(
σ2 ρσ2

ρσ2 σ2

)
,

assuming var(X1) = var(X2) = σ2. Then, we can write the true model as

Pr(Y |X) = expit(α + β1X1 + β2X2)

Pr(Y |X) = expit(α + β1µ1 + β2µ2 + β1Z1 + β2Z2)

and the fitted model as

Pr(Y |X1) = expit(α∗1 + β∗1X1)

Pr(Y |X1) = expit(α∗1 + β∗1µ1 + β∗1Z1).

Then, the least false equations are written as

E [expit(α∗ + β∗1µ1 + β∗1Z1)] = E [expit(α + β1µ1 + β2µ2 + β1Z1 + β2Z2)]

E [Z1expit(α∗ + β∗1µ1 + β∗1Z1)] = E [Z1expit(α + β1µ1 + β2µ2 + β1Z1 + β2Z2)]

As we found in general case we can write

α∗ + β∗1µ1 =
α + β1µ1 + β2µ2√
1 + k2β2

2σ
2(1− ρ2)
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where in this case, Ω̃ = σ2(1− ρ2). Also, the least false value β∗1 is

β∗1 =
β1 + ρβ2√

1 + k2β2
2σ

2(1− ρ2)
.

Similar to the general case the least false value α∗ in this case is

α∗ =
α + β2(µ2 − ρµ1)√
1 + k2β2

2σ
2(1− ρ2)

.

2.8.1 The Least False Value when σ21 6= σ22

The previous discussion considered the covariance matrix Ω with equal variance. Now

if we change this assumption on X to make it drawn from a normal distribution with

different variances σ2
1 6= σ2

2. Then, in this case the matrix of Ω is

Ω =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

and Ω̃ = σ2
2(1− ρ2). Then, the final expression of the least false value β∗1 in this case

is

β∗1 =
β1 + ρσ2

σ1
β2√

1 + k2β2
2σ

2
2(1− ρ2)

,

and α∗ is

α∗ =
α + β2(µ2 − ρσ2σ1µ1)√

1 + k2β2
2σ

2
2(1− ρ2)

.

We can see clearly, when ρ = 0 or µ1 = µ2 = 0 the expression of least false values are

still affected by value of denominator. Only when β2 = 0, i.e the fitted model is, in

fact, correct, do we obtain β∗1 = β1 and α∗ = α.

2.9 Use Logit Link Function Instead of Probit Link

Function

In this section we will discuss the point of why use the logit function as link function

for logistic regression model instead use probit function directly without the need to

use the approximation form expit(u) ≈ Φ(ku). We know that we use a transformation

as link function for logistic model which maps the unit interval onto the whole real

line. The commonly used in practice are, the logit function

g(π) = log(π/(1− π))
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and the probit function

g(π) = Φ−1(π)

So, the question here is why does not use the probit function directly as link

function without use the approximation of logit to find the least false value? Mc-

Cullagh and Nelder (1989), discussed mostly the logit function because of its simple

interpretation as the logarithm of the odds ratio. In general, logit is the canonical

link function for binomial distribution, which makes it mathematically convenient

and provides sufficient statistics. Aldrich and Nelson (1984), discussed the compari-

son between logit and probit function, the logistic regression model with probit link

function is given by:

Pr(Y = 1 | X) = Φ(βTX)

and the logit model as we discussed befor is

Pr(Y = 1 | X) = expit(βTX).

As we have discussed, the likelihood equation for logistic regression model is

n∑
i=1

[Yi − expit(βTxi)]xij = 0, j = 1, · · · , p

and that the least false equation come from

EXEY |X
[
(Y − expit(βTX))Xj

]
= 0.

However, when we set πi = Φ(βTxi), the likelihood is

L =
n∏
i=1

(Φ(βTxi))
yi(1− Φ(βTxi))

1−yi

and the log-liklihood function is

l =
n∑
i=1

yilogΦ(βTxi) + (1− yi)log(1− Φ(βTxi))

then,
∂l

∂βj
=

n∑
i=1

[
yi
φ(βTxi)

Φ(βTxi)
− (1− yi)

φ(βTxi)

Φ(−βTxi)

]
xij

and,
n∑
i=1

[yi − Φ(βTxi)]Wixij = 0, j = 1, · · · , p
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where

Wi =
φ(βTxi)

Φ(βTxi)Φ(−βTxi)
.

Therefore, the least false equations become

EXEY |X((Y − Φ(βTX))XjW ) = 0,

where

W =
φ(βTX)

Φ(βTX)Φ(−βTX)
.

The weight value W in the ML function in case of probit model complicates the

function and we cannot use the properties of the skew-normal distribution to find

the least false values when the wrong logistic model has been fitted. While in the

case of logit model the weight W = 1 which makes it easier to use the properties of

the skew-normal distribution, as discussed in previous section and find the least false

values under missing covariates logistic model.

2.10 Simulation Study of Multivariate Normal Dis-

tribution

The goal of this simulation, is to assess the approximation computed for the least

false values for logistic regression model. We are interested to application on case of

the covariates generated by multivariate Normal distribution. Applied on different

cases with different variance and different correlation to check on the behaviour of

the formulae of the least false values under missing covariate.

2.10.1 Design of Simulation Study

We looking in this simulation for check the approximation of the last false values for

a true logistic regression model has five covariates p = 5 is

πi = expit(α + βTX)

where, βT = (β1, β2, . . . , β5) , X = (xi1, . . . , xi5) and in the fitted model there are two

covariates. We designed the simulation as follows:

• We choose X as a draw from the multivariate normal distribution X ∼ N5(0, Ω).

38



• We consider the 5×5 covariance matrix Ω is

Ω = σ2

[
Ω11 Ω12

Ω21 Ω22

]
,

where,

Ω11 =

[
1 ρ12

ρ21 1

]
, Ω21 =

 ρ31 ρ32

ρ41 ρ42

ρ51 ρ52

 , Ω22 =

 1 ρ34 ρ35

ρ43 1 ρ45

ρ53 ρ54 1

 , ΩT
21 = Ω12.

• Use three different variance σ2 = 0.1, 0.5, 1.5.

• We consider 6 different cases of correlation which is each case of Ωij has same ρij

designed as:(0.1,0.1,0.2), (0.2,0.2,0.4), (0.7,0.8,0.7), (0.8,0.7,0.9), (0.1,-0.2,0.4),

(0.2,-0.2,-0.2). Values are chosen to assume Ω is positive definite.

• We choose the parameters β1, . . . , β5 and α to give us two cases Pr(Y = 1) '
10% and Pr(Y = 1) ' 60%. As we can calculate the unconditional Pr(Y = 1),

Pr(Y = 1) =

∫
Pr(Y = 1)f(X)dX,

Pr(Y = 1) =

∫
expit(α + βTX)φ(X)dX,

Pr(Y = 1) ≈
∫
Φ(k(α + βTX))φ(X)dX,

and as we computed by properties skew-normal distribution we get

Pr(Y = 1) ≈ Φ

(
kα√

1 + k2βTΩβ

)
.

Choose β1 = 0.25, β2 = 0.35, β3 = 0.40, β4 = 0.3, β5 = 0.2 and adjust α, so

that over the covariates Pr(Y = 1) ' 10% (α = −2.2) and Pr(Y = 1) ' 60%

(α = 0.4).

• Large sample size has been used n = 500, n = 10000 and N = 1000 number of

simulation.
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σ2 = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 0.3919 0.3974 0.99 0.3520 0.3296 1.06 0.47194 0.4290 1.10
0.2 0.2 0.4 0.4048 0.3969 1.01 0.4212 0.3969 1.06 0.4999 0.4962 1.01
0.7 0.8 0.7 0.4030 0.3996 1.01 0.6791 0.6730 1.01 0.7473 0.7729 0.97
0.8 0.7 0.9 0.4025 0.3978 1.01 0.6908 0.5967 1.15 0.6381 0.6961 0.92
0.1 -0.2 0.4 0.3932 0.3969 0.99 0.1027 0.0857 1.19 0.2092 0.1849 1.13
0.2 -0.2 -0.2 0.4068 0.3955 1.01 0.0756 0.0998 0.75 0.2481 0.1995 1.24

σ2 = 0.5
0.1 0.1 0.2 0.3989 0.3874 1.02 0.2975 0.3214 0.93 0.4308 0.4183 1.02
0.2 0.2 0.4 0.3950 0.3854 1.02 0.4182 0.3854 1.08 0.4794 0.4818 0.99
0.7 0.8 0.7 0.4205 0.3992 1.05 0.6594 0.6712 0.98 0.7762 0.7705 1.01
0.8 0.7 0.9 0.3968 0.3894 1.01 0.5566 0.5842 0.95 0.6408 0.6815 0.94
0.1 -0.2 0.4 0.3838 0.3856 0.99 0.0927 0.0832 1.11 0.2109 0.1796 1.17
0.2 -0.2 -0.2 0.4024 0.3955 1.01 0.1165 0.0998 1.17 0.1722 0.1995 0.87

σ2 = 1.5
0.1 0.1 0.2 0.3337 0.3656 0.91 0.3268 0.3033 1.07 0.4046 0.3947 1.02
0.2 0.2 0.4 0.3993 0.3606 1.10 0.3693 0.3606 1.02 0.4298 0.4507 0.95
0.7 0.8 0.7 0.3925 0.3954 0.99 0.6775 0.6659 1.01 0.7781 0.7648 1.01
0.8 0.7 0.9 0.3689 0.3706 0.99 0.5579 0.5560 1.00 0.6239 0.6486 0.96
0.1 -0.2 0.4 0.3675 0.3609 1.01 0.0863 0.0779 1.10 0.1661 0.1681 0.99
0.2 -0.2 -0.2 0.3495 0.3869 0.90 0.0996 0.0967 1.03 0.1995 0.1934 1.03

Table 2.1: Simulation results of last false values using different values of ρij and
variance by generated variables from multivariate Normal distribution in case Pr(Y =
1) ' 60%, n = 500 and Ri denote to the Ratio

2.10.2 Results and Discussion

In this part we will show the results and discuss the simulation studies. We report

the accuracy of the estimation parameters of the logistic regression model has two

covariates when the true model has five covariates. Tables shows comparison between

the least false values which is computed by approximation of expit(u) ≈ Φ(ku) and

skew-Normal distribution properties and values of estimated parameters by fitted

logistic regression model. R1, R2, R3 denote the ratios of the mean of the simulated

fits to the computed least false value.

Table 2.1 and Table 2.2, shows the results of simulation of data generated by

multivariate Normal distribution in cases of Pr(Y = 1) ' 60% and Pr(Y = 1) ' 10%

respectively with sample size n = 500. Table 2.3 and Table 2.4, shows the results

of simulation with sample size n = 10000. We can see clearly the results show

ratios close to one. The same behaviour results found in both cases of Pr(Y = 60%)

and Pr(Y = 10%), where is the ratio found close to one. That is meaning the

approximation form of the least false values works well, although the probability of

outcome Y is very low about 10%, but a good results and reasonable behaviour have

been found. Some issues of low ratio a raised in case of sample size n = 500, that

there are some estimated values were very small close to zero which affect on ratio.
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σ2 = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 -2.218 -2.185 1.01 0.3108 0.3296 0.94 0.4344 0.4290 1.01
0.2 0.2 0.4 -2.208 -2.183 1.01 0.4305 0.3969 1.08 0.4841 0.4962 0.98
0.7 0.8 0.7 -2.221 -2.198 1.01 0.6800 0.6730 1.01 0.7959 0.7729 1.02
0.8 0.7 0.9 -2.226 -2.188 1.01 0.6183 0.5967 1.03 0.6868 0.6961 0.98
0.1 -0.2 0.4 -2.2132 -2.183 1.01 0.106 0.0857 1.23 0.1990 0.184 0.97
0.2 -0.2 -0.2 -2.193 -2.194 0.99 0.1043 0.0997 1.04 0.1989 0.1995 1.07

σ2 = 0.5
0.1 0.1 0.2 -2.148 -2.131 1.01 0.3364 0.3214 1.04 0.4414 0.4183 1.05
0.2 0.2 0.4 -2.148 -2.120 1.01 0.4200 0.3854 1.08 0.4830 0.4818 1.00
0.7 0.8 0.7 -2.2031 -2.191 1.01 0.7068 0.6709 1.05 0.7607 0.7705 0.99
0.8 0.7 0.9 -2.161 -2.142 1.01 0.6046 0.5842 1.03 0.6729 0.6815 0.99
0.1 -0.2 0.4 -2.126 -2.120 1.00 0.0939 0.0832 1.12 0.2012 0.1796 1.12
0.2 -0.2 -0.2 -2.217 -2.175 1.01 0.1202 0.0988 1.21 0.1965 0.1977 0.99

σ2 = 1.5
0.1 0.1 0.2 -2.062 -2.011 1.02 0.3380 0.3033 1.11 0.4325 0.3947 1.09
0.2 0.2 0.4 -2.014 -1.983 1.01 0.4165 0.3610 1.15 0.4410 0.4507 0.98
0.7 0.8 0.7 -2.233 -2.175 1.02 0.6910 0.6659 1.03 0.8057 0.7648 1.05
0.8 0.7 0.9 -2.043 -2.039 1.00 0.5435 0.5560 0.98 0.6473 0.6486 0.99
0.1 -0.2 0.4 -1.973 -1.9854 0.99 0.0454 0.0779 0.58 0.1877 0.1681 1.11
0.2 -0.2 -0.2 -2.123 -2.128 0.99 0.0664 0.0967 0.68 0.1953 0.1934 1.01

Table 2.2: Simulation results of last false values using different values of ρij and
variance by generated variables from multivariate Normal distribution in case Pr(Y =
1) ' 10%, n = 500 and Ri denote to the Ratio

σ2 = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 0.3973 0.3974 0.99 0.3261 0.3296 0.99 0.4246 0.4290 0.99
0.2 0.2 0.4 0.3966 0.3969 0.99 0.4062 0.3969 1.02 0.4963 0.4962 1.00
0.7 0.8 0.7 0.4009 0.4000 1.00 0.6705 0.6730 0.99 0.7774 0.7729 1.01
0.8 0.7 0.9 0.3985 0.3981 1.00 0.5951 0.5967 0.99 0.6950 0.6961 0.99
0.1 -0.2 0.4 0.3944 0.3969 0.99 0.0946 0.0857 1.10 0.1827 0.1849 0.99
0.2 -0.2 -0.2 0.3981 0.3990 0.99 0.1025 0.0997 1.02 0.2014 0.1995 1.01

σ2 = 0.5
0.1 0.1 0.2 0.3809 0.3874 0.98 0.3341 0.3214 1.04 0.4154 0.4183 0.99
0.2 0.2 0.4 0.3787 0.3854 0.98 0.3777 0.3854 0.98 0.4764 0.4818 0.99
0.7 0.8 0.7 0.3997 0.3992 1.00 0.6728 0.6712 1.00 0.7652 0.7705 0.99
0.8 0.7 0.9 0.3872 0.3894 0.99 0.5794 0.5842 0.99 0.6696 0.6815 0.98
0.1 -0.2 0.4 0.3824 0.3856 0.99 0.0820 0.0832 0.99 0.1857 0.1796 1.03
0.2 -0.2 -0.2 0.3950 0.3955 0.99 0.0990 0.0998 1.00 0.1956 0.1977 0.99

σ2 = 1.5
0.1 0.1 0.2 0.3589 0.3656 0.98 0.2952 0.3033 0.97 0.3915 0.3947 0.99
0.2 0.2 0.4 0.3341 0.3606 0.93 0.3517 0.3606 0.98 0.4481 0.4507 0.99
0.7 0.8 0.7 0.3977 0.3954 1.01 0.6678 0.6661 1.00 0.7617 0.7648 0.99
0.8 0.7 0.9 0.3631 0.3706 0.98 0.5592 0.5560 1.01 0.6517 0.6486 1.01
0.1 -0.2 0.4 0.3589 0.3609 0.99 0.0854 0.0779 1.09 0.1629 0.1681 0.97
0.2 -0.2 -0.2 0.3669 0.3869 0.95 0.0903 0.0967 0.93 0.1963 0.1934 1.01

Table 2.3: Simulation results of last false values using different values of ρij and
variance by generated variables from multivariate Normal distribution in case Pr(Y =
1) ' 60%, n = 10000 and Ri denote to the Ratio
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σ2 = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 -2.188 -2.185 1.00 0.3251 0.3296 0.99 0.4340 0.4290 1.01
0.2 0.2 0.4 -2.183 -2.183 1.00 0.3981 0.3971 1.00 0.5058 0.4962 1.02
0.7 0.8 0.7 -2.198 -2.198 1.00 0.6730 0.6730 1.00 0.7725 0.7729 0.99
0.8 0.7 0.9 -2.191 -2.190 1.00 0.6094 0.5967 1.02 0.6885 0.6961 0.99
0.1 -0.2 0.4 -2.182 -2.183 0.99 0.0820 0.0857 0.96 0.1802 0.1849 0.97
0.2 -0.2 -0.2 -2.193 -2.194 0.99 0.1043 0.0997 1.04 0.1989 0.1995 0.99

σ2 = 0.5
0.1 0.1 0.2 -2.131 -2.131 1.00 0.3292 0.3214 1.02 0.4261 0.4183 1.02
0.2 0.2 0.4 -2.112 -2.120 0.99 0.3953 0.3854 1.03 0.4842 0.4820 1.00
0.7 0.8 0.7 -2.191 -2.191 1.00 0.6812 0.6709 1.01 0.7664 0.7705 0.99
0.8 0.7 0.9 -2.141 -2.142 0.99 0.5848 0.5842 1.00 0.6851 0.6815 1.01
0.1 -0.2 0.4 -2.116 -2.120 0.99 0.0875 0.0832 1.05 0.1834 0.1796 1.02
0.2 -0.2 -0.2 -2.175 -2.175 1.00 0.1003 0.0988 1.01 0.1968 0.1977 0.99

σ2 = 1.5
0.1 0.1 0.2 -2.002 -2.011 0.99 0.3031 0.3033 0.99 0.4117 0.3947 1.04
0.2 0.2 0.4 -1.967 -1.983 0.99 0.3610 0.3610 1.00 0.4600 0.4507 1.02
0.7 0.8 0.7 -2.174 -2.175 0.99 0.6603 0.6659 0.99 0.7700 0.7648 1.01
0.8 0.7 0.9 -2.031 -2.038 0.99 0.5518 0.5560 0.99 0.6607 0.6486 1.02
0.1 -0.2 0.4 1.963 -1.985 0.99 0.0798 0.0779 1.02 0.1781 0.1681 1.06
0.2 -0.2 -0.2 -2.129 -2.128 1.00 0.0982 0.0967 1.02 0.2011 0.1934 1.04

Table 2.4: Simulation results of last false values using different values of ρij and
variance by generated variables from multivariate Normal distribution in case Pr(Y =
1) ' 10%, n = 10000 and Ri denote to the Ratio

The parameter selection and correlation selection may have a slight effect in a few

cases.

2.11 Simulation Study of Bivariate Normal Distri-

bution

The previous simulation discussed the case of multivariate normal distribution, which

found reasonable results in different cases with different correlation and variance.

In this section we are going to apply simulation in case of the least false values

with covariates from a bivariate normal distribution with a single fitted covariate,

and assess the formulae which was computed and discussed in section 2.6. So, this

simulation designed to examine the approximation form of the least false values and

check on the behaviour of the MLE in this case.

2.11.1 Design of Simulation

To achieve the target of this simulation we will use the same assumption which used

in previous simulation, but we consider some adjusted. As consider we have true

logistic regression model has two covariates draw from bivariate normal distribution
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with mean zero and variance Σ

πi = expit(α + β1x1 + β2x2)

and we fitted the standard logistic regression model

πi = expit(α + β1x1).

• Use different cases of variance (σ2
1, σ

2
2) : (0.1, 0.1), (0.1, 0.3), (0.6, 0.4) and differ-

ent cases of correlation ρ : (−0.6,−0.2, 0.1, 0.3, 0.8).

• We choose the parameters α, β1 and β2 to give two cases: choose β1 = 0.25,

β2 = 0.35 and adjust α = −2.8,−0.3 which make over the covariates Pr(Y =

1) ' 10% and Pr(Y = 1) ' 60%.

• Sample size n = 10000 and N = 1000 number of simulation.

2.11.2 Results and Discussion

This simulation designed to examine the behaviour of MLE and compute the least

false values with bivariate normal covariates. The results showed the comparison

between the parameters estimated values α̂, β̂1 and the least false values α∗, β∗1 also

showed the ratio which denoted by R1 and R2. All cases of results with different

variances and correlation reported in tables. Table 2.5, reported the simulation results

of last false values using different values of ρij and variance where x1, x2 have normal

distribution and fit model with x1 in case Pr(Y = 1) ' 10%. Table 2.6, reported

the results of case Pr(Y = 1) ' 60%. We can see clearly that, the results appeared

the same behaviour which found in the case of multivariate normal covariates. Some

slightly differences which appeared when the correlation is negative ρ = −0.2 , σ2
1 =

0.1 and σ2
2 = 0.3 in case of Pr(Y = 1) ' 10%. So, that is meaning the expression of the

least false value which computed in case of the bivariate normal covariates works well

at most cases of variance and correlation. However, the least false values appeared

slightly sensitive in some cases by negative correlation when Pr(Y = 1) ' 10%.
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σ2
1 = σ2

2 = 0.1 Parameters estemated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 -2.796 -2.796 1.00 0.039 0.039 0.99
-0.2 -2.795 -2.794 1.00 0.185 0.179 1.03
0.1 -2.796 -2.794 1.00 0.281 0.284 0.99
0.3 -2.797 -2.795 1.00 0.355 0.354 1.00
0.8 -2.799 -2.797 1.00 0.535 0.529 1.01

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 -2.790 -2.789 1.00 -0.112 -0.113 0.99
-0.2 -2.787 -2.783 1.00 0.135 0.127 1.05
0.1 -2.784 -2.782 1.00 0.307 0.308 0.99
0.3 -2.785 -2.784 1.00 0.428 0.429 0.99
0.8 -2.795 -2.794 1.00 0.733 0.733 1.00

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 -2.787 -2.785 1.00 0.077 0.078 0.99
-0.2 -2.780 -2.780 1.00 0.191 0.191 1.00
0.1 -2.780 -2.780 1.00 0.278 0.276 1.01
0.3 -2.780 -2.779 1.00 0.334 0.333 1.00
0.8 -2.794 -2.791 1.00 0.478 0.477 1.00

Table 2.5: Simulation results of last false values using different values of ρij and
variance where x1, x2 have normal distribution and fit model with x1 in case Pr(Y =
1) ' 10%

σ2
1 = σ2

2 = 0.1 Parameters estemated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 -0.299 -0.299 1.00 0.041 0.039 1.03
-0.2 -0.298 -0.299 0.99 0.176 0.179 0.98
0.1 -0.299 -0.299 1.00 0.285 0.284 1.00
0.3 -0.299 -0.299 0.99 0.353 0.354 0.99
0.8 -0.300 -0.300 1.00 0.532 0.530 1.00

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 -0.298 -0.298 1.00 -0.114 -0.113 1.01
-0.2 -0.297 -0.298 0.99 0.129 0.127 1.01
0.1 -0.296 -0.298 0.99 0.308 0.309 0.99
0.3 -0.298 -0.298 1.00 0.429 0.429 1.00
0.8 -0.298 -0.299 0.99 0.732 0.733 0.99

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 -0.298 -0.298 1.00 0.077 0.078 0.99
-0.2 -0.296 -0.297 0.99 0.191 0.191 1.00
0.1 -0.296 -0.297 0.99 0.275 0.276 0.99
0.3 -0.297 -0.298 0.99 0.330 0.333 0.99
0.8 -0.298 -0.299 0.99 0.476 0.477 0.99

Table 2.6: Simulation results of last false values using different values of ρij and
variance where x1, x2 have normal distribution and fit model with x1 in case Pr(Y =
1) ' 60%
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2.12 Conclusion

Corresponding to the simulation analysis, we found a good result in all cases when

the covariates are draw from the multivariate and bivariate normal distributions.

The results appeared the MLE has reasonable behaviour with the least false values

in case of missing covariates, which computed in terms of the true parameters. As we

know, the normal distribution is symmetric distribution; also we made asymptotic

normality distribution on covariates when compute the least false values. To examine

the behaviour of the MLE and the formulae for least false values given in (2.14)

and (2.15), we should apply and consider another symmetric distribution, such as

t-multivariate distribution and uniform multivariate distribution. Moreover, we are

interested to examine the behaviour of the least false values with covariates draw

from distribution more skewed, say, log normal distribution. We will consider all this

assumption and discuss it in the next chapter.
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Chapter 3

Least false values for logistic
regression model when covariate
assumptions are violated

3.1 Introduction

The previous chapter discussed the least false values with multivariate covariates and

bivariate covariates, the simulation providing us reasonable results. That was applied

to covariates draw from multivariate and bivariate normal distribution. In this chap-

ter we are interested to consider the model with symmetric distribution different from

multivariate normal distribution. As we know, the behaviour of the MLE maybe af-

fected by the assumption of normality on the covariates. So we will discuss in this

chapter two of symmetric multivariate distribution, say, t-distribution and multivari-

ate uniform distribution. Moreover, we are interested to examine the behaviour of the

least false values when the covariates are skewed and we use lognormal distribution

for this study.

3.2 Simulation of Multivariate t and Multivariate

Uniform Distribution

The goal of this simulation is to use the same computed formulae of the last false

value which used in the previous chapter, to assess the approximation computed for

the least false values for logistic regression model and with multivariate t and uniform

distribution.
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3.2.1 Design of simulation

We use the same assumption which used in simulation in previous chapter. Let

consider we have a true logistic regression model which has five covariates p = 5 is

πi = expit(α + βTX)

where, βT = (β1, β2, . . . , β5) , X = (xi1, . . . , xi5) and the logistic regression model has

two covariates has been fitted. We designed the simulation as follows:

• We choose X as a draw from one of two multivariate distribution; either

- Multivariate Uniform distribution, or

- Multivariate t-distribution.

• We are generating multivariate Uniform covariates by related with standard

Normal distribution as:

- Z ∼MVN(0, R) where R is the correlation matrix.

- U = Φ(Z) → [0, 1], (element wise).

- XU ∼ 5σ(U − 1
2
) → [−21

2
σ, 21

2
σ].

• We consider the 5×5 covariance matrix Ω is

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

As we know, the mean of the uniform distribution is U = 1/2 and the variance is

var(U) = 1/12. So, in this case we have var(XU) = 25/12 and cov(XUi, XUj) =25

cov(Ui, Uj), where the covariance is

cov(Ui, Uj) =
arcsin(

ρij
2

)

2π
.

Then, the components of covariance matrix Ω are

Ω11 = 25

[
1
12

cov(U1, U2)
cov(U2, U1) 1

12

]
,

Ω22 = 25

 1
12

cov(U3, U4) cov(U3, U5)
cov(U4, U3) 1

12
cov(U5, U4)

cov(U5, U3) cov(U5, U4) 1
12

 ,
Ω21 = 25

 cov(U3, U1) cov(U3, U2)
cov(U4, U1) cov(U4, U2)
cov(U5, U1) cov(U5, U2)

 , ΩT
21 = Ω12.
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• We consider 6 different cases of correlation which is each case of Ωij has same ρij

designed as:(0.1,0.1,0.2), (0.2,0.2,0.4), (0.7,0.8,0.7), (0.8,0.7,0.9), (0.1,-0.2,0.4),

(0.2,-0.2,-0.2). Values are chosen to assume Ω is positive definite.

• We generating multivariate t-distribution with various value of degrees of free-

dom df , which changes the shape of the distribution, we choose three cases

df = (5, 10, 200) and use variance σ2 = 0.5 in each case.

• Use the same assumption on different cases of correlation and variance, also

use the same assumption on chose the true parameters as Pr(Y = 1) ' 10%

and Pr(Y = 1) ' 60% which used in the simulation of multivariate normal

distribution in the previous chapter.

• Large sample size has been used n = 500, n = 10000 and N = 1000 number of

simulation.

3.2.2 Results and Discussion

The results concerning two simulation data generated by multivariate Uniform distri-

bution and multivariate t-distribution. The results of this simulation with Uniform

distribution, showed in Table 3.1 and Table 3.2, in cases of Pr(Y = 1) ' 60% and

Pr(Y = 1) ' 10% respectively with two sample size n = 500, n = 10000. The same

results appeared, the ratio found nearly close to one in almost cases. A few cases

appeared low ratio in case of sample size n = 500, which there are some estimated

value were very small (i.e , when Ω11 = 0.1, Ω12 = −0.2, Ω22 = 0.4 the parameter

estimated was β1 = 0.0809, β∗1 = 0.0639 and the ratio was R2 = 0.79). In general we

found the least false values in this case have the same behaviour of the multivariate

normal covariates.

The results of the second part of this simulation, concerning for results of data

generated by multivariate t-distribution which showed in Table 3.3 and Table 3.4 in

cases of Pr(Y = 1) ' 60% and Pr(Y = 1) ' 10% respectively with sample size

n = 500. Table 3.5 and Table 3.6 shows the results in case of sample size n = 10000.

The results of four cases with different degree of freedom df = 200, 10, 5 and one

case of variance has been used σ2 = 0.5. Comparing these results with case of

Normal distribution, more clearly when the degree of freedom larger enough we can

reported that the results have the same behaviour. Moreover, we can say that the

ratio appeared nearly close to one in all cases of correlation and degree of freedom,

some slightly differences with low ratio appeared in few cases when degree of freedom
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n = 500 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 0.3831 0.3548 1.07 0.2831 0.2913 0.97 0.3932 0.3800 1.03
0.2 0.2 0.4 0.3275 0.3485 0.94 0.3433 0.3437 1.00 0.4454 0.4308 1.03
0.7 0.8 0.7 0.4161 0.3929 1.05 0.6727 0.6584 1.02 0.7491 0.7566 0.99
0.8 0.7 0.9 0.3294 0.3594 0.92 0.5420 0.5339 1.01 0.5640 0.6238 0.90
0.1 -0.2 0.4 0.3557 0.3489 0.98 0.0639 0.0809 0.79 0.1556 0.1682 0.93
0.2 -0.2 -0.2 0.3971 0.3811 0.93 0.1142 0.1005 1.13 0.1825 0.3811 0.93

n = 10000
0.1 0.1 0.2 0.3344 0.3548 0.94 0.2779 0.2913 0.95 0.3648 0.3800 0.96
0.2 0.2 0.4 0.3309 0.3485 0.95 0.3299 0.3437 0.96 0.4129 0.4308 0.96
0.7 0.8 0.7 0.3921 0.3929 1.00 0.6562 0.6584 0.99 0.7563 0.7566 0.99
0.8 0.7 0.9 0.3350 0.3594 0.93 0.5262 0.5339 0.99 0.6194 0.6238 0.99
0.1 -0.2 0.4 0.3186 0.3489 0.91 0.0766 0.0809 0.95 0.1463 0.1682 0.87
0.2 -0.2 -0.2 0.3830 0.3811 1.00 0.0971 0.1005 0.97 0.1935 0.1957 0.99

Table 3.1: Simulation results of last false values using different values of ρij by gen-
erated variables from multivariate Uniform distribution in case Pr(Y = 1) ' 60%,
n = 500, n = 10000 and Ri denote to the Ratio

n = 500 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 -2.015 -1.951 1.03 0.2864 0.2913 0.98 0.3977 0.3800 1.04
0.2 0.2 0.4 -1.901 -1.916 0.99 0.6911 0.3437 1.04 0.7496 0.4308 1.03
0.7 0.8 0.7 -2.182 -2.161 1.01 0.6911 0.6584 1.04 0.7496 0.7566 0.99
0.8 0.7 0.9 -2.009 -1.977 1.01 0.5728 0.5339 1.07 0.5876 0.6238 0.94
0.1 -0.2 0.4 -2.109 -2.096 1.01 0.1333 0.1005 1.32 0.1925 0.1957 0.98
0.2 -0.2 -0.2 -1.927 -1.919 1.00 0.0892 0.0809 1.10 0.1871 0.1682 1.11

n = 10000
0.1 0.1 0.2 -1.942 -1.951 0.99 0.2986 0.2913 1.02 0.3861 0.3800 1.01
0.2 0.2 0.4 -1.900 -1.916 0.99 0.3551 0.3437 1.03 0.4483 0.4308 1.04
0.7 0.8 0.7 -2.168 -2.161 1.00 0.6586 0.6584 1.00 0.7649 0.7566 1.01
0.8 0.7 0.9 -1.963 -1.977 0.99 0.5217 0.5339 0.98 0.6557 0.6238 1.05
0.1 -0.2 0.4 -1.883 -1.919 0.98 0.0794 0.0809 0.98 0.1885 0.1682 1.12
0.2 -0.2 -0.2 -2.089 -2.096 0.99 0.1022 0.1005 1.01 0.1938 0.1957 0.99

Table 3.2: Simulation results of last false values using different values of ρij by gen-
erated variables from multivariate Uniform distribution in case Pr(Y = 1) ' 10%,
n = 500,n = 10000 and Ri denote to the Ratio

is df = 5 and n = 500, which have the same behaviour found in case of the normal

multivariate covariates when the estimated value was very small.

Overall, if we assume normality on covariates, but the covariates are drawn from

a multivariate t-distribution with variety of degree of freedom and multivariate Uni-

form distribution, which use large sample size n = 10000. We found that, for different

combination of correlations and variances, are appeared the results from (2.14) and

(2.15) still appear to hold.
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df = 200 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 0.380 0.387 0.98 0.382 0.321 1.19 0.437 0.418 1.04
0.2 0.2 0.4 0.389 0.385 1.01 0.409 0.385 1.06 0.422 0.481 0.88
0.7 0.8 0.7 0.390 0.398 0.98 0.676 0.670 1.01 0.801 0.770 1.03
0.8 0.7 0.9 0.393 0.389 1.01 0.549 0.584 0.94 0.682 0.681 1.00
0.1 -0.2 0.4 0.382 0.385 0.99 0.107 0.083 1.29 0.165 0.179 0.92
0.2 -0.2 -0.2 0.395 0.395 1.00 0.098 0.099 0.99 0.174 0.197 0.88

df = 10
0.1 0.1 0.2 0.376 0.387 0.97 0.325 0.321 1.01 0.426 0.418 1.01
0.2 0.2 0.4 0.393 0.385 1.02 0.352 0.385 0.91 0.514 0.481 1.06
0.7 0.8 0.7 0.392 0.398 0.99 0.676 0.670 1.01 0.783 0.770 1.01
0.8 0.7 0.9 0.375 0.389 0.96 0.604 0.584 1.03 0.606 0.681 0.89
0.1 -0.2 0.4 0.399 0.385 1.03 0.072 0.083 0.87 0.194 0.179 1.08
0.2 -0.2 -0.2 0.376 0.395 0.95 0.141 0.098 1.43 0.175 0.197 0.89

df = 5
0.1 0.1 0.2 0.364 0.387 0.94 0.390 0.321 1.21 0.359 0.418 0.86
0.2 0.2 0.4 0.402 0.385 1.04 0.332 0.385 0.86 0.466 0.481 0.97
0.7 0.8 0.7 0.400 0.398 1.00 0.635 0.670 0.95 0.806 0.770 1.04
0.8 0.7 0.9 0.375 0.389 0.96 0.564 0.584 0.97 0.722 0.681 1.06
0.1 -0.2 0.4 0.352 0.385 0.91 0.086 0.083 1.03 0.147 0.179 0.82
0.2 -0.2 -0.2 0.379 0.395 0.96 0.086 0.098 0.88 0.186 0.198 0.94

Table 3.3: Simulation results of last false values using different values of ρij and σ2 =
0.5 by generated variables from multivariate t-distribution in case Pr(Y = 1) ' 60%,
n = 500 and Ri denote to the Ratio

df = 200 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 -2.160 -2.131 1.01 0.313 0.321 0.98 0.425 0.418 1.01
0.2 0.2 0.4 -2.100 -2.120 0.99 0.369 0.385 0.96 0.529 0.482 1.09
0.7 0.8 0.7 -2.224 -2.191 1.01 0.692 0.670 1.03 0.789 0.770 1.02
0.8 0.7 0.9 -2.165 -2.142 1.01 0.575 0.584 0.99 0.738 0.681 1.08
0.1 -0.2 0.4 -2.140 -2.120 1.01 0.061 0.083 0.74 0.239 0.179 1.33
0.2 -0.2 -0.2 -2.212 -2.175 1.01 0.110 0.098 1.11 0.200 0.197 1.01

df = 10
0.1 0.1 0.2 -2.129 -2.131 0.99 0.338 0.321 1.05 0.472 0.418 1.13
0.2 0.2 0.4 -2.118 -2.120 0.99 0.376 0.385 0.98 0.485 0.482 1.01
0.7 0.8 0.7 -2.227 -2.191 1.01 0.660 0.670 0.98 0.799 0.770 1.03
0.8 0.7 0.9 -2.176 -2.142 1.01 0.618 0.584 1.05 0.589 0.681 0.86
0.1 -0.2 0.4 -2.105 -2.120 0.99 0.089 0.083 1.06 0.171 0.179 0.96
0.2 -0.2 -0.2 -2.160 -2.175 0.99 0.073 0.098 0.74 0.258 0.197 1.30

df = 5
0.1 0.1 0.2 -2.097 -2.131 0.98 0.299 0.321 0.93 0.429 0.418 1.02
0.2 0.2 0.4 -2.118 -2.120 0.99 0.430 0.385 1.11 0.498 0.482 1.03
0.7 0.8 0.7 -2.225 -2.191 1.01 0.669 0.671 0.99 0.779 0.771 1.01
0.8 0.7 0.9 -2.114 -2.142 0.99 0.709 0.584 1.21 0.550 0.682 0.81
0.1 -0.2 0.4 -2.021 -2.12 0.95 0.068 0.083 0.83 0.200 0.179 1.11
0.2 -0.2 -0.2 -2.180 -2.175 1.00 0.096 0.098 0.97 0.234 0.197 1.18

Table 3.4: Simulation results of last false values using different values of ρij and σ2 =
0.5 by generated variables from multivariate t-distribution in case Pr(Y = 1) ' 10%,
n = 500 and Ri denote to the Ratio

50



df = 200 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 0.381 0.387 0.99 0.325 0.321 1.01 0.425 0.418 1.02
0.2 0.2 0.4 0.381 0.385 0.99 0.394 0.385 1.02 0.478 0.481 0.99
0.7 0.8 0.7 0.399 0.398 1.00 0.667 0.670 0.99 0.775 0.770 1.01
0.8 0.7 0.9 0.390 0.389 1.00 0.570 0.584 0.98 0.688 0.681 1.01
0.1 -0.2 0.4 0.375 0.385 0.97 0.075 0.083 0.91 0.160 0.179 0.90
0.2 -0.2 -0.2 0.394 0.395 0.99 0.103 0.098 1.05 0.187 0.197 0.95

df = 10
0.1 0.1 0.2 0.373 0.387 0.96 0.317 0.321 0.99 0.413 0.418 0.99
0.2 0.2 0.4 0.376 0.385 0.98 0.368 0.385 0.96 0.463 0.481 0.96
0.7 0.8 0.7 0.394 0.398 0.99 0.664 0.670 0.99 0.773 0.770 1.00
0.8 0.7 0.9 0.385 0.389 0.99 0.553 0.584 0.95 0.676 0.681 0.99
0.1 -0.2 0.4 0.371 0.385 0.96 0.077 0.083 0.92 0.175 0.179 0.98
0.2 -0.2 -0.2 0.395 0.395 1.00 0.097 0.098 0.99 0.195 0.197 0.99

df = 5
0.1 0.1 0.2 0.379 0.387 0.98 0.299 0.321 0.93 0.386 0.418 0.92
0.2 0.2 0.4 0.380 0.385 0.99 0.357 0.385 0.93 0.458 0.481 0.95
0.7 0.8 0.7 0.398 0.398 1.00 0.666 0.671 0.99 0.771 0.771 1.00
0.8 0.7 0.9 0.380 0.389 0.98 0.557 0.584 0.96 0.670 0.681 0.98
0.1 -0.2 0.4 0.371 0.385 0.96 0.068 0.083 0.82 0.167 0.179 0.93
0.2 -0.2 -0.2 0.391 0.395 0.99 0.093 0.098 0.94 0.185 0.198 0.94

Table 3.5: Simulation results of last false values using different values of ρij and σ2 =
0.5 by generated variables from multivariate t-distribution in case Pr(Y = 1) ' 60%,
n = 10000 and Ri denote to the Ratio

df = 200 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.1 0.2 -2.124 -2.131 0.99 0.330 0.321 1.03 0.419 0.418 1.00
0.2 0.2 0.4 -2.119 -2.121 0.99 0.395 0.385 1.03 0.504 0.482 1.05
0.7 0.8 0.7 -2.196 -2.191 1.00 0.672 0.670 1.00 0.770 0.770 1.00
0.8 0.7 0.9 -2.141 -2.142 0.99 0.589 0.584 1.01 0.676 0.681 0.99
0.1 -0.2 0.4 -2.121 -2.120 1.00 0.082 0.083 0.99 0.172 0.179 0.96
0.2 -0.2 -0.2 -2.181 -2.180 1.00 0.099 0.0988 1.01 0.205 0.197 1.03

df = 10
0.1 0.1 0.2 -2.116 -2.131 0.99 0.328 0.321 1.02 0.414 0.418 0.99
0.2 0.2 0.4 -2.095 -2.120 0.99 0.393 0.385 1.02 0.484 0.482 1.01
0.7 0.8 0.7 -2.191 -2.191 1.00 0.672 0.670 1.00 0.771 0.770 1.00
0.8 0.7 0.9 -2.132 -2.142 0.99 0.571 0.584 0.98 0.686 0.682 1.01
0.1 -0.2 0.4 -2.096 -2.120 0.99 0.093 0.083 1.10 0.196 0.179 1.10
0.2 -0.2 -0.2 -2.160 -2.175 0.99 0.098 0.098 1.00 0.198 0.197 1.01

df = 5
0.1 0.1 0.2 -2.104 -2.131 0.99 0.322 0.321 1.00 0.418 0.418 1.00
0.2 0.2 0.4 -2.079 -2.120 0.98 0.379 0.385 0.98 0.466 0.482 0.97
0.7 0.8 0.7 -2.188 -2.191 0.99 0.674 0.671 1.00 0.766 0.771 0.99
0.8 0.7 0.9 -2.119 -2.142 0.99 0.552 0.584 0.95 0.688 0.682 1.01
0.1 -0.2 0.4 -2.07 -2.12 0.98 0.082 0.083 0.99 0.176 0.179 0.98
0.2 -0.2 -0.2 -2.150 -2.175 0.99 0.109 0.098 1.10 0.186 0.198 0.94

Table 3.6: Simulation results of last false values using different values of ρij and σ2 =
0.5 by generated variables from multivariate t-distribution in case Pr(Y = 1) ' 10%,
n = 10000 and Ri denote to the Ratio
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3.3 Least False Values With Log Normal Covari-

ates

3.3.1 Introduction

The previous section discussed the least false values for logistic regression model

with multivariate covariates draw from t-distribution and Uniform distribution. As

we know that, the Normal, t and Uniform distributions have symmetric shape. In

this section, we are interested to investigate the behaviour of the least false value

under missing covariates when the covariates have more skewed distribution, say, log

normal. To examine this target, let us consider we have two covariates X1, X2 draw

from bivariate normal distribution X ∼ (µ,Σ), where µT = (µ1, µ2) and

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

We will consider three cases, as follows: (X1, exp(X2)), (exp(X1), X2) and (exp(X1), exp(X2)).

These cases contain one of covariates or both of them are log normal. We know that,

the expression of the least false value in this case dependent upon correlation between

of the two covariates need to compute, and we need to use the variance and mean

corresponding to log normal covariates. So, in each case compute the least false val-

ues using the appropriate dispersion matrix for the covariates. The calculations, are

shown in the following section.

3.3.2 Least False Value in case of covariates (X1, exp(X2))

In this case the first covariate is normal distribution with mean µ1 and variance

var(X1) = σ2
1. The second covariate distributed lognormal distribution with mean

exp(µ2 + 1
2
σ2

2) and variance (exp(σ2
2)− 1) exp(2µ2 + σ2

2). Now work to find the corre-

lation between the two covariates (X1, exp(X2)), we consider the correlation is

ρX1,exp(X2) = cor(X1, exp(X2) =
cov(X1, exp(X2))

σ1

√
var(exp(X2))

=
E(X1 exp(X2))− E(X1)E(exp(X2))

σ1

√
var(exp(X2))

.

It seems clear to compute ρX1,exp(X2), just we need work out to find E(X1 exp(X2)).

We have the moment generating function of the bivariate normal distribution, Which

written as
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M(t1, t2) = E(exp(t1X1 + t2X2)) = exp(t1µ1 + t2µ2 + 1
2
tTΣt)

= exp(t1µ1 + t2µ2 + 1
2
σ2

1t
2
1 + 1

2
σ2

2t
2
2 + ρσ1σ2t1t2).

Now, differentiate M(t1, t2) with respect for t1, D(t1, t2), say, we get

D(t1, t2) =
∂M(t1, t2)

∂t1
= E(X1 exp(t1X1 + t2X2))

and if put t1 = 0 and t2 = 1, we get D(0, 1) = E(X1 exp(X2), which we need compute,

then

D(t1, t2) = (µ1 + σ2
1t1 + ρσ1σ2t2)M(t1, t2)

and we get

E(X1 | exp(x2)) = D(0, 1) = (µ1 + ρσ1σ2) exp(µ2 + 1
2
σ2

2)

and then,

cov(X1, exp(X2) = (µ1+ρσ1σ2) exp(µ2+ 1
2
σ2

2)−µ1 exp(µ2+ 1
2
σ2

2) = ρσ1σ2 exp(µ2+ 1
2
σ2

2),

Finally, the correlation is

cor(X1, exp(X2)) =
ρσ2 exp(µ2 + 1

2
σ2

2)√
exp(2µ2 + σ2

2)(exp(σ2
2)− 1)

ρX1,exp(X2) = cor(X1, exp(X2)) =
ρσ2√

exp(σ2
2)− 1

.

So, the least false values in this case are

α∗ =
α + β2(µ2 − ρX1,exp(X2)

var(exp(X2))
σ1

µ1)√
1 + k2β2

2var(exp(X2))(1− ρ2
X1,exp(X2))

,

and

β∗1 =
β1 + ρX1,exp(X2)

var(exp(X2))
σ1

β2√
1 + k2β2

2var(exp(X2))(1− ρ2
X1,exp(X2))

.
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3.3.3 Least False Value in case of covariates (exp(X1), X2)

In this case the first covariate is distributed lognormal distribution and the second

covariate is normal, we will using the same steps which have used in previous section,

to find the correlation cor(exp(X1), X2), and compute the least false values. so, we

have differentiate M(t1, t2) in terms of t2 and we get, by analogy with the previous

case,

ρexp(X1),X2 = cor(exp(X1), X2) =
ρσ1√

exp(σ2
1)− 1

.

Then, the least false values are

α∗ =
α + β2(µ2 − ρexp(X1),X2

σ2
var(exp(X1))

µ1)√
1 + k2β2

2σ
2
2(1− ρ2

exp(X1),X2
)

,

and

β∗1 =
β1 + ρexp(X1),X2

σ2
var(exp(X1))

β2√
1 + k2β2

2σ
2
2(1− ρ2

exp(X1),X2
)
.

3.3.4 Least False Value in case of covariates (exp(X1), exp(X1))

The final case, we have two covariates that are log normal, as the same steps which

used before, in this case we need to compute E(exp(X1) exp(X2)) which can find it

by put t1 = 1, t2 = 1 in the moment generating function M(t1, t2). So,

E(exp(X1) exp(X2)) = M(1, 1) = exp(µ1 + µ2 + 1
2
σ2

1 + 1
2
σ2

2 + ρσ1σ2)

and the covariance is

cov(exp(X1) exp(X2)) = exp(µ1 + µ2 + 1
2
σ2

1 + 1
2
σ2

2)(exp(ρσ1σ2)− 1),

finally the correlation is

ρexp(X1),exp(X2) = cor(exp(X1), exp(X2)) =
exp(ρσ1σ2)− 1√

(exp(σ2
1)− 1)(exp(σ2

2)− 1)
.

The least false values in this case are

α∗ =
α + β2(µ2 − ρexp(X1),exp(X1)

var(exp(X2))
var(exp(X1))

µ1)√
1 + k2β2

2var(exp(X2))(1− ρ2
exp(X1),exp(X2))

,

and

β∗1 =
β1 + ρ(exp(X1),exp(X2))

var(exp(X2))
var(exp(X1))

β2√
1 + k2β2

2var(exp(X2))(1− ρ2
exp(X1),exp(X2))

.

Finally, we have different correlation which need to use in the expression of the least

false values α∗ and β∗ related in each case, we need to examine it by simulation.
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3.4 Simulation Study of Log-Normal Distribution

This part of simulation is to assess the least false values form when the covariates have

two covariates draw from bivariate normal distribution and log normal distribution.

This example to application on three cases of covariates (X1, exp(X2)), (exp(X1), X2)

and (exp(X1), exp(X2)), check the behaviour of the approximation least false values

in different cases of covariates, correlation and variance.

3.4.1 Design of Simulation

To get to the goal, let us consider we have true logistic regression model has two

covariates p = 2 is

πi = expit(α + β1X1 + β2X2)

and the standard logistic regression model has been fitted

πi = expit(α + β1X1)

• Choose X as a draw from bivariate Normal distribution X ∼ (0, Σ).

• Apply on three cases of covariates:

- Mixed covariates (X1, exp(X2)).

- Mixed covariates (exp(X1), X2).

- Log normal covariates (exp(X1), exp(X2)).

• Use four cases of combinations of variance (σ2
1, σ

2
2) :(0.1,0.1), (0.1,0.3), (0.5, 0.2)

and (0.6,0.4).

• Use five cases of correlation ρ in each case of variance (-0.6, -0.2, 0.1, 0.3, 0.8).

• We choose the parameters α, β1 and β2 to give two cases: choose β1 = 0.25,

β2 = 0.35 and adjust α = −2.8,−0.3 which make over the covariates Pr(Y =

1) ' 10% and Pr(Y = 1) ' 60%.

• Sample size n = 10000 and N = 1000 number of simulation.
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3.4.2 Results and Discussion

The goal of the simulation is to compute the least false values and compare the

results with computed formulae. The results of the three cases reported on tables,

which shows the comparison between the estimated parameters by fitted standard

logistic model and the computed least false values. The same notation which used

in simulation of bivariate normal distribution in previous chapter, α, β1 denoted to

parameters estimated, α∗, β∗1 denoted to computed least false values and R1, R2 are

the ratios.

Histogram of data with var(x)=0.1

exp(x)

F
re

q
u

e
n

c
y

0.5 1.0 1.5 2.0 2.5 3.0

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Histogram of data with var(x)=0.2

exp(x)

F
re

q
u

e
n

c
y

0 1 2 3 4 5

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

Histogram of data with var(x)=0.3

exp(x)

F
re

q
u

e
n

c
y

0 2 4 6 8

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

Histogram of data with var(x)=0.4

exp(x)

F
re

q
u

e
n

c
y

0 2 4 6 8 10

0
1

0
0

0
2

0
0

0
3

0
0

0

Figure 3.1: Plot of the histogram of a log normal covariate with different variance.

Figure (3.1), shows the histogram of the log normal data with different value

of variance, which explains the skew shape affected by the value of variance. So,

in case of σ2
2=(0.1, 0.2, 0.3 and 0.4) the skewness equal (1.01, 1.52, 2.45 and 2.98)

respectively.
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3.4.3 Results of Case (X1, exp(X2))

In this part we will show the result of case when the true model has two covariates,

in this case the true model is

πi = expit(α + β1X1 + β2 exp(X2))

and the standard model has been fitted

πi = expit(α + β1X1).

Table 3.7 and Table 3.8, reported the results in case of Pr(Y = 1) ' 10% and Pr(Y =

1) ' 60% respectively. We can see clearly that, the results broadly show the same be-

haviour which was found in the case of multivariate normal covariates. Some slightly

different which appeared in some cases by low ratio R2 = (1.25, 0.86, 0.40, 0.93) when

the correlation is negative in case of Pr(Y = 1) ' 10%. These results corresponding

to the values of coefficients which is appeared very small and close to zero which

affect on the value of ratios. However, the ratio R1 corresponding to the estimate of

parameter α show close to one in all cases of different combination of variances and

correlations. The results in case of Pr(Y = 1) ' 60% show regular ratios, in all cases

the ratio close to one.

3.4.4 Results of Case (exp(X1), X2)

This discussion for the results of case when the true model is

πi = expit(α + β1 exp(X1) + β2X2)

and the standard model has been fitted

πi = expit(α + β1 exp(X1)).

Table 3.9 and Table 3.10, shows the result of the second case of covariates (exp(X1), X2),

in case Pr(Y = 1) ' 10% and Pr(Y = 1) ' 60% respectively. We fitted the logistic

regression model has log normal covariate exp(X1). We can see, the approximation

form of the least false value works well in all cases of combinations with difference

variance and correlation. Moreover, the same behaviour results appeared in both

cases of Pr(Y = 1) ' 10% and Pr(Y = 1) ' 60%. Reasonable ratio found in all

cases, one case seems slightly low ratio R2 = 0.92 in case of negative correlation, be-

cause may be the least false value and estimated parameters appeared a small value

close to zero (0.055, 0.059), which maybe affect on the ratio value.
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3.4.5 Results of Case (exp(X1), exp(X1))

The final part of results for the case when the true model is

πi = expit(α + β1 exp(X1) + β2 exp(X2))

and the standard model has been fitted

πi = expit(α + β1 exp(X1)).

Table 3.11 and Table 3.12, shows the results of the case of (exp(X1), exp(X2)), in case

Pr(Y = 1) ' 10% and Pr(Y = 1) ' 60% respectively. The results appeared a good

response in all cases and the ratio as well, which appeared close to one in all cases.

Same behaviour results found in the two case of Pr(Y = 1) ' 10% and Pr(Y = 1) '
60%. However, some low ratio in case of negative correlation R2 = (0.85, 1.36, 0.91)

this results maybe related to the same reason which discussed before, a small values

of coefficient estimated.

σ2
1 = σ2

2 = 0.1 Parameters estimated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 -2.428 -2.428 1.00 0.027 0.029 0.96
-0.2 -2.426 -2.426 1.00 0.177 0.176 1.01
0.1 -2.428 -2.427 1.00 0.289 0.286 1.01
0.3 -2.427 -2.427 1.00 0.365 0.360 1.01
0.8 -2.430 -2.430 1.00 0.566 0.543 1.04

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 -2.377 -2.377 1.00 -0.215 -0.171 1.25
-0.2 -2.369 -2.370 0.99 0.093 0.108 0.86
0.1 -2.367 -2.369 0.99 0.325 0.317 1.02
0.3 -2.369 -2.371 0.99 0.492 0.457 1.07
0.8 -2.388 -2.382 1.00 0.902 0.809 1.11

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 -2.347 -2.347 1.00 0.016 0.040 0.40
-0.2 -2.332 -2.337 0.99 0.165 0.177 0.93
0.1 -2.333 -2.336 0.99 0.285 0.280 1.01
0.3 -2.336 -2.339 0.99 0.372 0.349 1.06
0.8 -2.368 -2.360 1.01 0.597 0.525 1.13

Table 3.7: Simulation results of last false values using different values of ρij and
variance when the model has (X1, exp(X2)) covariates in case Pr(Y = 1) ' 10%

Overall, the simulation designed to investigate the behaviour of the least false value

for logistic regression model with binary normal covariates and one of two covariates

or both are skew distribution. Although we used different value of variance which

is significant in determining the skewness of distribution, we have got reasonable

results. However, there is slightly effect which appeared in low ratio in a few cases

with negative correlation and Pr(Y = 1) ' 10%.
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σ2
1 = σ2

2 = 0.1 Parameters estimated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 0.068 0.067 1.01 0.030 0.029 1.03
-0.2 0.067 0.068 0.99 0.288 0.286 1.01
0.1 0.067 0.068 0.99 0.542 0.543 0.99
0.3 0.067 0.068 0.99 0.362 0.359 1.01
0.8 0.067 0.068 0.99 0.542 0.543 0.99

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 0.104 0.105 0.99 -0.163 -0.171 0.95
-0.2 0.103 0.106 0.98 0.111 0.108 1.03
0.1 0.104 0.106 0.98 0.314 0.317 0.99
0.3 0.103 0.106 0.98 0.451 0.457 0.99
0.8 0.103 0.106 0.97 0.794 0.809 0.98

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 0.123 0.126 0.98 0.043 0.040 1.08
-0.2 0.121 0.125 0.97 0.179 0.177 1.01
0.1 0.121 0.125 0.96 0.277 0.280 0.99
0.3 0.122 0.126 0.97 0.343 0.349 0.98
0.8 0.119 0.126 0.94 0.511 0.525 0.97

Table 3.8: Simulation results of last false values using different values of ρij and
variance when the model has (X1, exp(X2)) covariates in case Pr(Y = 1) ' 60%

σ2
1 = σ2

2 = 0.1 Parameters estimated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 -2.601 -2.601 1.00 0.061 0.059 1.03
-0.2 - -2.728 -2.728 1.00 0.186 0.187 0.99
0.1 -2.827 -2.827 1.00 0.280 0.281 0.99
0.3 -2.892 -2.894 0.99 0.342 0.344 0.99
0.8 -3.056 -3.063 0.99 0.493 0.502 0.98

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 -2.445 -2.444 1.00 -0.080 -0.078 1.02
-0.2 -2.670 -2.670 1.00 0.139 0.139 1.00
0.1 -2.839 -2.840 0.99 0.300 0.302 0.99
0.3 -2.948 -2.955 0.98 0.403 0.412 0.98
0.8 -3.230 -3.253 0.99 0.665 0.686 0.97

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 -2.682 -2.658 1.01 0.171 0.156 1.09
-0.2 -2.746 -2.741 1.01 0.223 0.217 1.02
0.1 -2.793 -2.797 0.99 0.261 0.263 0.99
0.3 -2.826 -2.840 0.99 0.286 0.294 0.97
0.8 -2.916 -2.953 0.99 0.350 0.371 0.94

Table 3.9: Simulation results of last false values using different values of ρij and
variance when the model has (exp(X1), X2) covariates in case Pr(Y = 1) ' 10%
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σ2
1 = σ2

2 = 0.1 Parameters estimated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 -0.095 -0.100 0.95 0.055 0.059 0.92
-0.2 -0.236 -0.232 1.02 0.188 0.186 1.01
0.1 -0.331 -0.332 0.99 0.280 0.281 0.99
0.3 -0.400 -0.400 1.00 0.346 0.344 1.01
0.8 -0.567 -0.566 1.00 0.503 0.503 1.00

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 0.044 0.045 0.97 -0.076 -0.078 0.98
-0.2 -0.179 -0.183 0.98 0.135 0.139 0.97
0.1 -0.353 -0.355 0.99 0.301 0.302 0.99
0.3 -0.466 -0.470 0.99 0.410 0.412 0.99
0.8 -0.759 -0.759 1.00 0.686 0.687 0.99

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 -0.162 -0.173 0.94 0.146 0.156 0.94
-0.2 -0.251 -0.256 0.98 0.213 0.217 0.98
0.1 -0.321 -0.318 1.02 0.265 0.263 1.01
0.3 -0.369 -0.359 1.03 0.302 0.294 1.02
0.8 -0.496 -0.464 1.07 0.401 0.371 1.08

Table 3.10: Simulation results of last false values using different values of ρij and
variance when the model has (exp(X1), X2) covariates in case Pr(Y = 1) ' 60%

σ2
1 = σ2

2 = 0.1 Parameters estimated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 -2.216 -2.224 0.99 0.047 0.056 0.85
-0.2 -2.357 -2.357 1.00 0.184 0.183 1.01
0.1 -2.461 -2.461 1.00 0.284 0.283 1.01
0.3 -2.532 -2.533 0.99 0.350 0.351 0.99
0.8 -2.727 -2.721 1.01 0.532 0.527 1.01

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 -1.954 -1.997 0.98 -0.152 -0.112 1.36
-0.2 -2.228 -2.240 0.99 0.112 0.123 0.91
0.1 -2.436 -2.436 0.99 0.313 0.311 1.01
0.3 -2.592 -2.575 1.01 0.458 0.442 1.04
0.8 -2.996 -2.956 1.01 0.830 0.793 1.05

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 -2.222 -2.211 1.01 0.159 0.149 1.06
-0.2 -2.290 -2.289 1.00 0.212 0.210 1.01
0.1 -2.354 -2.362 0.99 0.263 0.265 0.99
0.3 -2.409 -2.419 0.99 0.303 0.306 0.99
0.8 -2.598 -2.604 0.99 0.430 0.431 0.99

Table 3.11: Simulation results of last false values using different values of ρij and
variance when the model has (exp(X1), exp(X2)) covariates in case Pr(Y = 1) ' 10%
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σ2
1 = σ2

2 = 0.1 Parameters estimated, Least false values and Ratio

ρ α̂ α∗ R1 β̂1 β∗1 R2

-0.6 0.274 0.271 1.01 0.052 0.056 0.94
-0.2 0.135 0.136 0.99 0.184 0.183 1.01
0.1 0.035 0.032 1.08 0.280 0.282 0.99
0.3 -0.037 -0.038 0.96 0.347 0.350 0.99
0.8 -0.223 -0.223 1.00 0.525 0.526 0.99

σ2
1 = 0.1, σ2

2 = 0.3
-0.6 0.470 0.484 0.97 -0.101 -0.112 0.91
-0.2 0.225 0.236 0.95 0.130 0.123 1.05
0.1 0.037 0.038 0.96 0.310 0.311 0.99
0.3 -0.095 -0.098 0.97 0.436 0.442 0.99
0.8 -0.451 -0.466 0.97 0.777 0.793 0.98

σ2
1 = 0.6, σ2

2 = 0.4
-0.6 0.267 0.256 1.04 0.138 0.149 0.92
-0.2 0.173 0.173 0.99 0.207 0.210 0.98
0.1 0.091 0.099 0.91 0.268 0.265 1.01
0.3 0.033 0.044 0.74 0.311 0.306 1.02
0.8 -0.142 -0.121 1.17 0.448 0.4317 1.03

Table 3.12: Simulation results of last false values using different values of ρij and
variance when the model has (exp(X1), exp(X2)) covariates in case Pr(Y = 1) ' 60%

3.5 Conclusion

We have applied the results defined in (2.14) and (2.15), which assumed covariates

were multivariate normal, when the covariates do not follow this distribution. We

consider five dimensional multivariate uniform and t-variables when only two covari-

ates were fitted. The results showed that for these symmetric non-normal variables,

the violation of the assumption of normality made little difference. We considered

various two dimensional ways skewness could affect on results. Again the results de-

rived in chapter 2 gave accurate answers. Some discrepancies were noticed when the

value of coefficients were close to zero.

The effect of categorical variables has not been considered so far and we now

continue with this case and we will discuss it in the next chapter.
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Chapter 4

Least false values for logistic
regression with one binary
covariate and some multivariate
normal covariates, some of which
are omitted

4.1 Introduction

As we have discussed in the chapter 2, the properties of the skew-normal distribution

can be used to find the least false values under a logistic regression model with

missing covariates. The assumption on the covariates was that they come from a

multivariate normal distribution. In this chapter we are interested to extend the

work and examine the behaviour of MLE method and compute the least false values

when one of covariates is binary. Suppose that the model we fit is

E(Y ) = expit(α + γC + βTf Xf ), (4.1)

where C ∈ {0, 1} is the binary covariate. Then Xf is a multivariate normal, p

dimension variable. Suppose that

P (Xf |C = 0) ∼ N(µ0, Ω0),

and

P (Xf |C = 1) ∼ N(µ1, Ω1).

Let us consider

P (C = 0) = 1− P (C = 1) = 1− π1 = π0.
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However, the correct model is

E(Y ) = expit(α + γC + βTf Xf + βTaXa)

= expit(α + γC + βTX),

say, where X = (Xf | Xa), and Xa is a q-dimension multivariate normal variable of

additional covariates that have not been included in the fitted model. Also, suppose

that the partition of the Ωj matrices corresponding to Xf and Xa is:

Ωj =

[
Ωjff Ωjfa

Ωjaf Ωjaa

]
, j = 0, 1.

4.2 Computation of the Least False Values

As we have discussed in the chapter 2 about the MLE in case of the logistic model

with missing covariates, we produced the ML equation which are used to find the

least false values. In this chapter we consider the logistic regression model has some

multivariate normal covariates and one binary covariate, so, if the model (4.1) has

been fitted then the least false values, α∗, γ∗ and β∗f obey

E(Y − expit(α∗ + γ∗C + β∗Tf Xf )) = 0 (4.2)

E(C(Y − expit(α∗ + γ∗ + β∗Tf Xf ))) = 0 (4.3)

and

E(Xf`(Y − expit(α∗ + γ∗C + β∗Tf Xf ))) = 0 (4.4)

for ` = 1, · · · , p. Now, we will work to analysis the (4.2), (4.3) and (4.4) to find the

least false values, and we will compute it in the following subsections.

4.2.1 Calculation for Equation (4.2)

To analysis this equation we take the expectation of Y , given C and X gives,

EX,C(expit(α + γC + βTX)) = EX,C(expit(α∗ + γ∗C + β∗Tf Xf )).

Now, suppose that the density of X | C = j is gj, (j = 0, 1) and let us consider

Zj = X − µj. Where Zj is the centred version of X | C = j, µjf is the part of µj

corresponding to Xf in X = (Xf |Xa) when C = j. So,

π0Eg0(expit(α + βTµ0 + βTZ0)) + π1Eg1(expit(α + γ + βTµ1 + βTZ1)) =

π0Eg0(expit(α∗+β∗Tf µ0f +β∗Tf Z0f ))+π1Eg1(expit(α∗+γ∗+β∗Tf µ1f +β∗Tf Z1f )) (4.5)
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4.2.2 Calculation for Equation (4.3)

The form (4.3) include the variable C which is C ∈ {0, 1}, so, in case of C = 0 (4.3)

will be zero, and when take the expectation of Y , given C = 1 and X, we obtain

EX,C=1(expit(α + γ + βTX)) = EX,C=1(expit(α∗ + γ∗ + β∗Tf Xf )).

We use the same assumption which used before, considering Zj and µjf , so, we can

write the previous equation as

π1Eg1(expit(α+γ+βTµ1 +βTZ1)) = π1Eg1(expit(α∗+β∗Tf µ1f +γ∗+β∗Tf Z1f )) (4.6)

we can see clearly, if we use (4.5) in (4.6), we obtain

Eg0(expit(α + βTµ0 + βTZ0)) = Eg0(expit(α∗ + β∗Tf µ0f + β∗Tf Z0f )) (4.7)

and

Eg1(expit(α + γ + βTµ1 + βTZ1)) = Eg1(expit(α∗ + γ∗ + β∗Tf µ1f + β∗Tf Z0f )). (4.8)

4.2.3 Calculation for Equation (4.4)

As we worked on the two previous subsections, now we have

E(Xf`(Y − expit(α∗ + γ∗C + β∗Tf Xf ))) = 0,

where, l = 1, · · · , p, and take the expectation of Y given C and X, gives

E(Xf`expit(α + γC + βTX)) = E(Xf`(expit(α∗ + γ∗C + β∗Tf Xf )).

Now, we use the assumption on Zj and µj where j = 0, 1 as before, then we can write

the previous equation as

π0Eg0(Zf`expit(α + βTµ0 + βTZ0)) + π1Eg1(Zf`expit(α + βTµ1 + βTZ1)) =

π0Eg0(Zf`expit(α∗+β∗Tf µ0f +β∗Tf Z0f )) +π1Eg1(Zf`expit(α∗+γ∗+β∗Tf µ1f +β∗Tf Z1f ))

(4.9)
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4.2.4 Solve Equations by Use the Approximation Form and
Properties of the Skew-Normal Distribution

As we apply the assumption on (4.2), (4.3) and (4.4), we found results (4.5), (4.7),

(4.8) and (4.9). Now, we need using approximation form expit(u) ≈ Φ(ku), where

k = 16
√

3
15π

and the properties of the skew-normal distribution to solve these equations.

If we approximate expit(u) by Φ(ku) then we can use the results which discussed in

chapter 2, i.e,

E(expit(ν + βTZ)) ≈ E(Φ(k(ν + βTZ))) = Φ

(
kν√

1 + k2βTΩβ

)
,

Then, if we apply this to (4.7) and (4.8) respectively we obtain

α + βTµ0√
1 + k2βTΩ0β

=
α∗ + β∗Tf µ0f√

1 + k2β∗Tf Ω0ffβ∗f

(4.10)

and
α + γ + βTµ1√

1 + k2βTΩ1β
=

α∗ + γ∗ + β∗Tf µ1f√
1 + k2β∗Tf Ω1ffβ∗f

. (4.11)

Here, we assume gj is a multivariate normal with mean µj and variance Ωj. Subscript

f ′s denote the part of the vector or matrix corresponding to the Xf part of X. Now,

the left hand side of (4.9) can be approximated by

π0k(Ω0β)l√
1 + k2βTΩ0β

φ

(
k(α + βTµ0)√
1 + k2βTΩ0β

)
+

π1k(Ω1β)l√
1 + k2βTΩ1β

φ

(
k(α + γ + βTµ1)√

1 + k2βTΩ1β

)

and this must be equal to

π0k(Ω0ffβ
∗
f )l√

1 + k2β∗Tf Ω0ffβ∗f

φ

 k(α∗ + β∗Tf µ0f )√
1 + k2β∗Tf Ω0ffβ∗f

+
π1k(Ω1ffβ

∗
f )l√

1 + k2β∗Tf Ω1ffβ∗f

φ

k(α∗ + γ∗ + β∗Tf µ1f )√
1 + k2β∗Tf Ω1ffβ∗f

 .

Equations (4.10) and (4.11) mean that the above equations can be written

π0w0

A∗0
(Ω0ffβ

∗
f ) +

π1w1

A∗1
(Ω1ffβ

∗
f ) =

π0w0

A0

(Ω0β)f +
π1w1

A1

(Ω1β)f

where,

A∗j =
√

1 + k2β∗Tf Ωjffβ∗f ,

Aj =
√

1 + k2βTΩjβ
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and

w0 = φ

(
k(α + βTµ0)

A0

)
w1 = φ

(
k(α + γ + βTµ1)

A1

)
4.2.5 The Least false values in case Ω0 = Ω1

To find the least false values, we consider the case is Ω0 = Ω1: the case Ω0 6= Ω1,

appears to be more challenging. In this case A∗0 = A∗1 = A∗ and A0 = A1 = A, say.

Therefore

A∗−1(π0w0 + π1w1)Ωffβ
∗
f = A−1(π0w0 + π1w1)(Ωβ)f

then

β∗f =
A∗

A
Ω−1
ff (Ωβ)f

=
A∗

A
Ω−1
ff (Ωffβf +Ωfaβa)

As in the case of no binary variable, we proceed to eliminate β∗f from the right hand

side.

β∗Tf Ωffβ
∗
f =

A∗2

A2
(Ωffβf +Ωfaβa)

TΩ−1
ff (Ωffβf +Ωfaβa)

=
A∗2

A2

[
βTa ΩafΩ

−1
ff Ωfaβa + βTf Ωffβf + βTa Ωafβf + βTf Ωfaβa

]
=
A∗2

A2

[
βTΩβ − βTa Ω̃βa

]
where Ω̃ = Ωaa −ΩafΩ

−1
ff Ωfa. So

β∗Tf Ωffβ
∗
f =

(1 + k2β∗Tf Ωffβ
∗
f )

1 + k2βTΩβ
(βTΩβ − βTa Ω̃βa)

and so, A∗2

A2 can be found to be (1 + k2βTa Ω̃βa)
−1 and hence the least false values are

β∗f =
1√

1 + k2βTa Ω̃βa

(βf +Ω−1
ff Ωfaβa). (4.12)

Also:

α∗ + β∗Tf µ0f =
1√

1 + k2βTa Ω̃βa

(α + βTµ0)

and

α∗ + γ∗ + β∗Tf µ1f =
1√

1 + k2βTa Ω̃βa

(α + γ + βTµ1).
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From the first of these and (4.12) we get

α∗ =
1√

1 + k2βTa Ω̃βa

(α + βTµ0 − βTf µ0f − βTa ΩafΩ
−1
ff µ0f )

So, finally we can write the least false value α∗ as

α∗ =
1√

1 + k2βTa Ω̃βa

(α + βTa (µ0a −ΩafΩ
−1
ff µ0f )) (4.13)

Also we can find γ∗ as

γ∗ =
1√

1 + k2βTa Ω̃βa

[
α + γ + βTµ1 − (α + βTa (µ0a −ΩafΩ

−1
ff µ0f ))− (βTf µ1f + βTa ΩafΩ

−1
ff µ1f )

]

=
1√

1 + k2βTa Ω̃βa

[
γ + βTa (µ1a −ΩafΩ

−1
ff µ1f )− βTa (µ0a −ΩafΩ

−1
ff µ0f )

]
finally the least false value γ∗ is

γ∗ =
1√

1 + k2βTa Ω̃βa

[
γ + βTa ((µ1a − µ0a)−ΩafΩ

−1
ff (µ1f − µ0f ))

]
(4.14)

If we comparing (4.12) and (4.13) with (2.14) and (2.15), we can see clearly, (4.12)

and (2.14) have same expression. However, the expression (4.13) has been affected

which is dependent upon µ0a and µ0f . Note that, (4.13) include µ0a, such that α∗ 6= α

even when Ωaf = 0. Also (4.14) includes µ0a and µ1a and γ∗ 6= γ even when Ωaf = 0.

However, only when βa = 0 we obtain α∗ = α, β∗f = βf and γ∗ = γ, i.e. the fitted

model is correct.

4.3 The Least False Values When the Fitted Model

has Only One Binary Covariate

4.3.1 Introduction

The previous section discussed the behaviour of the MLE method and finds the least

false values when some of the multivariate normal covariates are omitted from the

fitted model. In this section we are interested to find the least false values when all

the covariates of the multivariate normal are omitted and the fit model contain only

one binary covariate. Suppose that we have correct model is

E(Y ) = expit(α + γC + βX)
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use the same steps applied in previous section, X distributed multivariate normal, β

is vector has dimension p× 1 and the model we fit is

E(Y ) = expit(α̂ + γ̂C), (4.15)

and we want to find the least false values α∗ and γ∗ in terms of the parameters of the

true model.

4.3.2 The Least False Values of α∗ and γ∗

As the same steps which used in the previous section, in this case the least false

values, α∗ and γ∗ obey

E(Y − expit(α∗ + γ∗C)) = 0 (4.16)

E(C(Y − expit(α∗ + γ∗C))) = 0 (4.17)

E(Xj(Y − expit(α∗ + γ∗C))) = 0 (4.18)

We transform X to multivariate normal distribution with zero mean as used before,

then equation (4.16) becomes

π0Eg0(expit(α∗)) + π1Eg1(expit(α∗ + γ∗))

= π0Eg0(expit(α + βTµ0 + βTZ0)) + π1Eg1(expit(α + γ + βTµ1 + βTZ1)),

and we can write the previous equation as

π0expit(α∗) +π1expit(α∗+ γ∗) = π0Φ

(
k(α + βTµ0)√
1 + k2βTΩβ

)
+π1Φ

(
k(α + γ + βTµ1)√

1 + k2βTΩβ

)
.

(4.19)

We can rewrite the equation (4.17) as

π1expit(α∗ + γ∗) = π1Φ

(
k(α + γ + βTµ1)√

1 + k2βTΩβ

)
,

so as approximation of Φ(ku) ≈ expit(u) this equation can be written

expit(α∗ + γ∗) = expit

(
(α + γ + βTµ1)√

1 + k2βTΩβ

)
,

then

α∗ + γ∗ =
(α + γ + βµ1)√

1 + k2βTΩβT
. (4.20)
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Use this result, then (4.19) becomes

expit(α∗) = Φ

(
k(α + βTµ0)√
1 + k2βTΩβT

)
,

and we can write it as

expit(α∗) = expit

(
α + βTµ0√
1 + k2βTΩβ

)
,

then the least false value α∗ is

α∗ =
α + βTµ0√

1 + k2βTΩβT
. (4.21)

To find the least false value γ∗, using the result of (4.21) in (4.20) we get,

α + βTµ0√
1 + k2βTΩβ

+ γ∗ =
(α + γ + βTµ1)√

1 + k2βTΩβ

then the least false value γ∗ is

γ∗ =
(α + γ + βTµ1)√

1 + k2βTΩβ
− α + βTµ0√

1 + k2βTΩβ

γ∗ =
γ + βT (µ1 − µ0)√

1 + k2βTΩβ
(4.22)

Finally, we can note that α∗ 6= α and γ∗ 6= γ even when Ω = 0 or when µ0 = µ1 = 0,

the expression still dependent on β. But does not matter when β = 0 which is because

we have fitted the true model, so, in this case the least false values are α∗ = α and

γ∗ = γ.

4.4 Simulation Study

In this part we are interested to examine the expression of least false values which is

computed by use the properties of skew-normal distribution in previous sections.

4.4.1 Design of Studies

This simulation designed to examine the behaviour of the expression for the least

false values when the true logistic model contains six covariates c, x where, cε{0, 1}
is binary covariate and the rest of the covariates x = (x1, x2, x3, x4, x5)T have normal

distribution N(µ,Ω)

Pr(Y = 1|c, xi) = expit(α + γc+ βTxi),
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where, xi is the value of x on the ith individual, j = 1, · · · , 5, i = 1, · · · , n and the

logistic regression model has only three covariates one of them is binary has been

fitted. We designed the simulation as follows:

• xi|c has normal distribution with µ0, Ω and µ1, Ω when c = 0 and c = 1 respec-

tively.

• Two cases of means have been chosen (µ0 > µ1, µ0 < µ1), so, that the effect of

the opposite direction of bias that apply to γ are considered.

• We choose the parameters as follows γ = 0.25, β1 = 0.35, β2 = 0.40, β3 =

0.30, β4 = 0.2, β5 = 0.30 and adjust α = −2.2,−5.2, to give us two cases

Pr(Y = 1) ' 60% and Pr(Y = 1) ' 10% respectively.

• We consider 5 × 5 covariance matrix Ω, which used in design of simulation in

previous chapter, and use the same cases of correlation and variance.

• Large sample size has been used n = 500, n = 10000 and N = 1000 number of

simulation.

4.5 Results and Discussion

The results of simulation have been reported in tables. It is shows comparison be-

tween the least false values which computed by expression form denoted by α∗, γ∗,

β∗1 , β∗2 and parameters estimated by fitted model. The ratio between of them denoted

by R1, R2 R3 and R4 respectively. Two cases of comparison have been considered, the

first case consider (µ0 = 2 > µ1 = 1) and the second case, consider (µ0 = 1 < µ1 = 2).

Moreover, these two cases are applied with six combinations of different correlation

and three cases of variance (0.1, 0.5 and 1.5) which are the same as used in the sim-

ulation in previous chapter. Table 4.1 and Table 4.2, shows the results in case of

Pr(Y = 1) ' 60% with sample size n = 500 with µ0 = 1, µ1 = 2 and µ0 = 2, µ1 = 1

respectively .Table 4.3 and Tabel 4.4, shows the results in case of Pr(Y = 1) ' 10%.

The same steps considered in case of sample size n = 10000, Table 4.5 and Table

4.6, shows the results in case of Pr(Y = 1) ' 60%. Table 4.7 and Table 4.8, shows

the results in case of Pr(Y = 1) ' 10% with µ0 = 1, µ1 = 2 and µ0 = 2, µ1 = 1

respectively.

We can see clearly, that the results in all tables for all combination of means and

variances shows a moderate ratio which is close to one. That is mean the computed
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σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.00 1.02 1.01 0.98
0.2 0.2 0.4 1.01 0.98 0.98 1.03
0.7 0.8 0.7 1.00 0.99 1.03 0.98
0.8 0.7 0.9 1.01 1.00 1.01 1.01
0.1 -0.2 0.4 1.01 1.00 1.01 1.03
0.2 -0.2 -0.2 1.01 0.99 1.00 1.04

σ2 = 0.5
0.1 0.1 0.2 1.00 0.99 1.01 1.00
0.2 0.2 0.4 0.99 1.00 0.99 1.01
0.7 0.8 0.7 1.01 1.01 1.03 0.99
0.8 0.7 0.9 1.01 0.96 1.03 0.99
0.1 -0.2 0.4 1.00 1.00 1.00 1.00
0.2 -0.2 -0.2 0.99 1.01 0.98 0.97

σ2 = 1.5
0.1 0.1 0.2 0.99 0.99 1.00 0.99
0.2 0.2 0.4 0.99 0.98 0.99 0.99
0.7 0.8 0.7 1.01 0.99 1.02 1.01
0.8 0.7 0.9 1.00 1.01 1.01 1.01
0.1 -0.2 0.4 0.99 0.99 1.00 0.98
0.2 -0.2 -0.2 1.00 0.99 1.01 1.01

Table 4.1: Simulation results of last false values using different cases of σ2 and µ0 =
1, µ1 = 2 in case Pr(Y = 1) ' 60%, n = 500, Ri denote to the ratio of the least false
values α∗, γ∗, β∗1 , β

∗
2 respectively

form of the least false values works well, although the low percentage of probability

Pr(Y = 1) ' 10%. On the other hand, the large values of variance have slightly

affected. The effect of omitting some of the normal covariates on the estimate of βf

is the same attenuation as in Chapter 2. While the same attenuation is applied to γ,

this is not the sole effect, because the difference in the means of the normal covariates

between the populations with C = 0 and C = 1 has an effect.
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σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.02 0.99 1.04 0.99
0.2 0.2 0.4 1.05 0.92 1.03 1.03
0.7 0.8 0.7 1.01 0.99 1.02 1.00
0.8 0.7 0.9 1.01 1.05 0.99 1.02
0.1 -0.2 0.4 0.99 1.01 1.07 0.99
0.2 -0.2 -0.2 1.09 1.02 0.96 1.01

σ2 = 0.5
0.1 0.1 0.2 1.02 0.98 1.01 1.01
0.2 0.2 0.4 1.01 0.98 1.01 1.01
0.7 0.8 0.7 1.02 1.04 1.02 1.02
0.8 0.7 0.9 1.01 1.16 0.99 1.01
0.1 -0.2 0.4 0.98 1.00 1.02 0.97
0.2 -0.2 -0.2 0.98 1.01 1.01 1.02

σ2 = 1.5
0.1 0.1 0.2 1.01 0.96 0.99 1.01
0.2 0.2 0.4 1.01 0.95 1.00 0.99
0.7 0.8 0.7 1.01 1.02 1.01 1.01
0.8 0.7 0.9 1.01 1.17 1.01 0.99
0.1 -0.2 0.4 1.06 0.98 0.97 0.99
0.2 -0.2 -0.2 0.93 0.99 1.02 1.01

Table 4.2: Simulation results of last false values using different cases of σ2 and µ0 =
2, µ1 = 1 in case Pr(Y = 1) ' 60%, n = 500, Ri denote to the ratio of the least false
values α∗, γ∗, β∗1 , β

∗
2 respectively

σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.03 1.11 1.03 1.01
0.2 0.2 0.4 1.03 1.16 1.01 0.98
0.7 0.8 0.7 1.02 1.23 0.98 1.04
0.8 0.7 0.9 1.03 1.20 1.01 1.01
0.1 -0.2 0.4 1.05 1.13 1.04 1.03
0.2 -0.2 -0.2 1.03 1.08 1.06 0.95

σ2 = 0.5
0.1 0.1 0.2 1.03 1.06 1.03 1.03
0.2 0.2 0.4 1.02 1.11 1.00 1.00
0.7 0.8 0.7 1.02 1.05 1.02 1.01
0.8 0.7 0.9 1.02 1.11 1.01 1.01
0.1 -0.2 0.4 1.04 1.11 0.97 1.05
0.2 -0.2 -0.2 1.04 1.09 1.01 1.01

σ2 = 1.5
0.1 0.1 0.2 1.03 1.06 1.03 1.03
0.2 0.2 0.4 1.03 1.08 1.04 1.04
0.7 0.8 0.7 1.02 1.05 1.01 1.03
0.8 0.7 0.9 1.02 1.04 1.02 1.02
0.1 -0.2 0.4 1.03 1.08 1.03 1.03
0.2 -0.2 -0.2 1.03 1.07 0.03 1.01

Table 4.3: Simulation results of last false values using different cases of σ2 and µ0 =
1, µ1 = 2 in case Pr(Y = 1) ' 10%, n = 500, Ri denote to the ratio of the least false
values α∗, γ∗, β∗1 , β

∗
2 respectively
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σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.01 1.15 0.98 1.04
0.2 0.2 0.4 1.01 1.20 0.93 1.04
0.7 0.8 0.7 1.03 1.11 1.05 1.04
0.8 0.7 0.9 1.01 0.46 1.07 0.95
0.1 -0.2 0.4 0.99 1.10 0.81 1.03
0.2 -0.2 -0.2 0.99 1.09 0.88 0.91

σ2 = 0.5
0.1 0.1 0.2 1.02 1.15 1.01 1.05
0.2 0.2 0.4 1.02 1.16 1.03 1.01
0.7 0.8 0.7 1.02 0.95 1.05 1.01
0.8 0.7 0.9 1.02 0.47 1.02 1.02
0.1 -0.2 0.4 1.02 1.09 1.01 1.03
0.2 -0.2 -0.2 1.03 1.06 1.11 1.04

σ2 = 1.5
0.1 0.1 0.2 1.02 1.17 1.03 1.04
0.2 0.2 0.4 1.02 1.10 1.04 1.03
0.7 0.8 0.7 1.02 0.99 1.03 1.01
0.8 0.7 0.9 1.02 0.84 1.01 1.04
0.1 -0.2 0.4 1.02 1.05 1.07 1.05
0.2 -0.2 -0.2 1.01 1.06 1.05 1.01

Table 4.4: Simulation results of last false values using different cases of σ2 and µ0 =
2, µ1 = 1 in case Pr(Y = 1) ' 10%, n = 500, Ri denote to the ratio of the least false
values α∗, γ∗, β∗1 , β

∗
2 respectively

σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.00 1.02 1.01 1.00
0.2 0.2 0.4 1.00 1.02 1.00 1.01
0.7 0.8 0.7 1.00 1.01 0.99 1.01
0.8 0.7 0.9 1.00 0.98 1.00 1.01
0.1 -0.2 0.4 1.00 1.01 0.99 1.01
0.2 -0.2 -0.2 1.00 1.00 1.02 1.01

σ2 = 0.5
0.1 0.1 0.2 1.01 1.02 1.00 1.01
0.2 0.2 0.4 1.00 1.02 1.01 1.01
0.7 0.8 0.7 1.00 1.00 1.00 1.00
0.8 0.7 0.9 1.00 1.03 0.99 1.01
0.1 -0.2 0.4 1.01 1.02 1.01 1.02
0.2 -0.2 -0.2 1.00 1.00 1.02 1.01

σ2 = 1.5
0.1 0.1 0.2 1.01 1.03 1.01 1.01
0.2 0.2 0.4 1.01 1.04 1.01 1.01
0.7 0.8 0.7 1.00 1.01 1.00 1.00
0.8 0.7 0.9 1.01 1.01 1.01 1.01
0.1 -0.2 0.4 1.01 1.04 1.02 1.02
0.2 -0.2 -0.2 1.01 1.01 1.02 1.01

Table 4.5: Simulation results of last false values using different cases of σ2 and µ0 =
1, µ1 = 2 in case Pr(Y = 1) ' 60%, n = 10000, α∗, γ∗, β∗1 , β

∗
2 respectively
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σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.00 1.01 0.98 1.02
0.2 0.2 0.4 1.00 0.99 1.02 1.00
0.7 0.8 0.7 1.00 0.99 1.00 0.99
0.8 0.7 0.9 1.00 1.08 1.03 0.99
0.1 -0.2 0.4 1.00 1.01 1.01 1.00
0.2 -0.2 -0.2 0.99 1.01 0.98 1.00

σ2 = 0.5
0.1 0.1 0.2 1.00 1.04 1.01 1.01
0.2 0.2 0.4 1.01 1.03 1.01 1.01
0.7 0.8 0.7 1.00 0.99 0.99 1.00
0.8 0.7 0.9 1.00 0.91 1.01 1.00
0.1 -0.2 0.4 1.00 1.02 1.02 1.01
0.2 -0.2 -0.2 1.00 1.00 0.99 1.02

σ2 = 1.5
0.1 0.1 0.2 1.01 1.04 1.02 1.02
0.2 0.2 0.4 1.01 1.05 1.01 1.02
0.7 0.8 0.7 1.00 0.98 1.00 1.00
0.8 0.7 0.9 1.01 0.95 1.00 1.01
0.1 -0.2 0.4 1.00 1.04 1.03 1.03
0.2 -0.2 -0.2 1.00 1.02 1.00 1.01

Table 4.6: Simulation results of last false values using different cases of σ2 and µ0 =
2, µ1 = 1 in case Pr(Y = 1) ' 60%, n = 10000, α∗, γ∗, β∗1 , β

∗
2 respectively

σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 0.99 1.00 0.99 0.99
0.2 0.2 0.4 0.99 1.00 0.99 0.99
0.7 0.8 0.7 0.98 0.99 1.00 1.00
0.8 0.7 0.9 0.99 1.00 1.00 0.99
0.1 -0.2 0.4 0.99 0.99 1.01 0.99
0.2 -0.2 -0.2 0.99 1.00 0.99 0.99

σ2 = 0.5
0.1 0.1 0.2 0.99 0.99 0.99 0.99
0.2 0.2 0.4 0.99 0.99 0.99 0.99
0.7 0.8 0.7 0.99 0.99 1.00 0.99
0.8 0.7 0.9 0.99 0.99 0.99 0.99
0.1 -0.2 0.4 0.99 0.99 1.00 0.99
0.2 -0.2 -0.2 1.00 0.99 1.01 1.00

σ2 = 1.5
0.1 0.1 0.2 0.99 0.98 0.99 0.99
0.2 0.2 0.4 0.99 0.98 0.99 0.99
0.7 0.8 0.7 0.99 0.99 0.99 1.00
0.8 0.7 0.9 0.99 0.99 0.99 0.99
0.1 -0.2 0.4 0.98 0.98 0.99 0.99
0.2 -0.2 -0.2 0.99 0.99 1.00 0.99

Table 4.7: Simulation results of last false values using different cases of σ2 and µ0 =
1, µ1 = 2 in case Pr(Y = 1) ' 10%, n = 10000, α∗, γ∗, β∗1 , β

∗
2 respectively
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σ2 = 0.1 Least false values and Ratio
Ω11 Ω12 Ω22 R1 R2 R3 R4

0.1 0.1 0.2 1.00 0.99 1.00 1.00
0.2 0.2 0.4 0.99 0.99 0.99 0.99
0.7 0.8 0.7 1.00 1.00 0.99 1.00
0.8 0.7 0.9 0.99 0.97 0.99 0.99
0.1 -0.2 0.4 1.10 0.99 0.99 1.01
0.2 -0.2 -0.2 1.02 1.00 1.00 0.99

σ2 = 0.5
0.1 0.1 0.2 0.99 0.99 0.99 0.99
0.2 0.2 0.4 0.99 0.98 0.99 0.99
0.7 0.8 0.7 0.99 1.00 0.99 1.00
0.8 0.7 0.9 0.99 1.00 1.00 0.99
0.1 -0.2 0.4 0.98 0.99 0.99 0.99
0.2 -0.2 -0.2 0.98 0.99 1.00 1.00

σ2 = 1.5
0.1 0.1 0.2 0.99 0.98 0.99 0.99
0.2 0.2 0.4 0.99 0.98 0.98 0.98
0.7 0.8 0.7 0.99 1.00 1.00 0.99
0.8 0.7 0.9 0.99 1.00 0.99 0.99
0.1 -0.2 0.4 1.02 0.98 0.98 0.98
0.2 -0.2 -0.2 0.99 0.99 0.99 0.99

Table 4.8: Simulation results of last false values using different cases of σ2 and µ0 =
2, µ1 = 1 in case Pr(Y = 1) ' 10%, n = 10000, α∗, γ∗, β∗1 , β

∗
2 respectively

4.6 Application to Randomized Trials

In a randomized trial where the outcome is binary, the treatment effect is often

summarised by a log-odds ratio. The analysis will often carry out treatment groups

while adjusting for covariates and this will usually be done using logistic regression.

Suppose that the true model for the binary outcome Y in clinical trial is

Pr(Y = 1 | T,Xf , Xa) = expit(α + τT + βTf Xf + βTaXa)

where T ∈ {0, 1} denotes the treatment allocation, with Pr(T = j) = πj. If the model

used for the analysis is

Pr(Y = 1 | T,Xf ) = expit(α + τT + βTf Xf ) (4.23)

then the effect of this mis-specification can be studied using the results obtained in

Section 4.2.5. Note that the treatment effect is now measured by the log-odds ratio,

τ . In Section 4.2.5 the distribution of X | C = j was taken to have mean µj and Ωj,

with mathematical tractability leading us to the assume Ω0 = Ω1. However, if we

take C = T and γ = τ and if treatments are allocated using randomization and Xf

and Xa are baseline values, then the assumption Ω0 = Ω1 follows automatically, as

does the equality of means µ0 = µ1. From (4.14) it follows that the least false value
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for τ obtained from fitting (4.23) is

τ ∗ ≈ τ√
1 + k2βTa Ω̃βa

. (4.24)

There are two features of this expression which should be noted.

1 As distinct from a general binary covariate, the fact that the distribution of the

other covariates is independent of treatment allocation means that the effect of

mis-specification is to appear to shrink the log odds ratio towards zero.

2 The attenuation depends on βTa Ω̃βa. The size of the attenuation is governed not

only by βa but also by Ωaa. However, the presence of Ω̃ in the factor means

that the effect is reduced if there is a non-zero covariance Ωaf between the

omitted and fitted covariates. In the extreme case, where the variation in Xa

is wholly accounted by variation in Xf then Ω̃ = 0 and, as would be expected,

the attenuation vanishes.

If βTa Ω̃βa is small then (4.24) implies τ ∗ − τ ≈ 1
2
k2τβTa Ω̃βa. Gail et al. (1984), give

an expression for the approximate asymptotic bias which is, using our notation,

1

2
βTa Ω̃βa

[
exp

(
−1

2
τ

)
− exp

(
1

2
τ

)]
eα+ 1

2
τ

(1 + expα)(1 + expα+τ )
(4.25)

as mentioned in chapter 2. The apparent differences in dispersion matrix is because

Gail and Colleagues fit a model which omits all covariates (which they do not assume

to be multivariate Normal), so X = Xa and in this case Ω̃ = Ωaa. For small τ the

factor in [] in (4.25) is approximately −τ . The final factor in (4.25) is, if we neglect τ ,

of the form p(1− p) so cannot exceed 1
4

and as k2 = 0.346 the two forms are broadly

in agreement when the probability of response is not too extreme.

4.6.1 An Example: The Mayo Clinic Primary Biliary Cir-
rhosis Trial

No direct evaluation of the above results is possible as they are all expressed in

terms of parameters values. However, some indication of size of the asymptotic bias,

and how this changes with the included covariates, would be helpful. Purely by

way of illustration, and so that realistic parameter values are chosen, we consider

data from a trial of patients with primary biliary cirrhosis (PBC) conducted at the
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Mayo Clinic over ten years from 1974. The trial randomized patients to placebo or

penicillamine and is reported by Dickson et al. (1985), and the data are given in the

book by Fleming and Harrington (2005). The data considered 312 patients in the trial

with two groups, 158 patients takes D-penicillamine, 93 alive and 65 dead and 154

patients the placebo, 94 alive and 60 dead. We consider outcome as mortality and fit a

model with a treatment indicator and five continuous baseline covariates, namely the

serum values of bilirubin (mg/dl), cholesterol (mg/dl), and albumin (gm/dl), urinary

copper (µg/day) and alkaline phosphatase (U/litre). All variables but albumin were

log-transformed (base 10) to achieve Normality.

log bilirubin log cholesterol albumin log copper

log bilirubin 1
log cholesterol 0.488 1

albumin -0.360 -0.038 1
log copper 0.598 0.217 -0.278 1

log alkaline phosphatase 0.295 0.351 -0.146 0.277

Table 4.9: The correlations obtained from the dispersion matrix for the five continuous
covariates chosen from the PBC trial

Included variables q̃

Non 1.311
+ log bilirubin 1.072
+log cholesterol 1.068

+albumin 1.056
+log copper 1.039

Table 4.10: The values of q̃ =
√

1 + k2βTa Ω̃βa for a cumulative series of models

The dispersion matrix of the five baseline covariates, based on the 312 patients in

the trial, was used as Ω and β was taken to be the estimated regression coefficients

from the logistic regression. The values of q̃ =

√
1 + k2βTa Ω̃βa were then computed

for a sequence of models in which the first model includes only the treatment indi-

cator, the second also includes log bilirubin, and then, successively, log cholesterol,

albumin and log copper are added. The correlations are shown in Table 4.9 and the

q̃ values are in Table 4.10.

If we assume that the model with treatment indicator and all five variables is the

correct model, then τ̂ from this model will be asymptotically unbiased. However, if
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a model with no covariates is fitted, τ̂ will tend to τ/q̃ ≈ τ/1.3, i.e. a value about

75% of the correct value. Including log bilirubin reduced the bias and τ̂ will tend

to τ/1.07, a value in error by approximately 7%. As Table 4.10 shows, this can be

reduced further by including more covariates, although the change is never as marked

as when the first variable was introduced. Of course, different results would be ob-

tained if terms were added in a different order.

τ ∗, as given by (4.22), is the asymptotically biassed version of τ , i.e. it is the

limiting value of E(τ̂) as the sample size increases without limit, when relevant co-

variates are omitted. While we see that |τ ∗| < |τ |, it does not follow that τ̂ will be

similarly shrunk relative to τ in any particular study.
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Chapter 5

Information Matrix Test (IMT )

5.1 Introduction

The previous chapters discussed the behaviour of MLE and find the least false values

for the logistic regression model under missing covariates. We considered multivariate

normal, lognormal and binary covariates. We know that after fitting the logistic

regression model, the next step is to examine how well the proposed model fits the

observation data, this is called a goodness-of-fit test. Now we are interested to focus on

one of the important global goodness-of-fit test, Information Matrix Tests (IMT ). As

we discussed in chapter 1, IMT appeared to give a reasonable results in a simulation

which was discussed by Kuss (2002), who found it had good power for the logistic

regression model. In this chapter we will give introduction to the IMT and a variant

used by Kuss, the Diagonal Information Matrix Test IMTDIAG. The IMT is a test

for general mis-specification, produced by White (1982) who pointed out that the

properties of the Maximum likelihood estimator and the information matrix can be

exploited to yield a family of useful tests for model mis-specification. The idea of the

IMT is to compare two different estimators of the information matrix to assess model

fit. The IMT provides a unified framework for specification goodness of fit tests for

a wide variety of distribution, multivariate or univariate, discrete or continuous.

5.2 Definition of IMT

The IMT is based on the information matrix equality that obtains when the model

specification is correct. This equality implies the asymptotic equivalence of the Hes-

sian and the score forms of Fisher’s information matrix. As White (1982), points

out, the IMT is designed to detect the failure of this equality and the failure implies

the model mis-specification. The idea of the information matrix test is to compare
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E
(
−∂2`
∂θ∂θT

)
and E

(
∂`
∂θ

∂`
∂θT

)
, as these differ when the model is mis-specified but not

when the model is correct.

5.3 Fisher Information Matrix

Fisher information matrix essentially describes the amount of information data about

an unknown parameter. Consider X = (x1, x2, x3, . . . , xn)T , a random sample, and

consider the density function is f(X | θ) for some model of the data, where θ =

(θ1, . . . , θp)
T is parameter vector and `(θ) is the log-likelihood function. So, the Fisher

information matrix of sample size n, In(θ), is given by a p×p symmetric matrix whose

rsth element is given by the negative expected values of the second derivatives of the

log-likelihood function `(θ):

In(θ)r,s = −E
(

∂2`

∂θr∂θs

)
this definition corresponds to the expected Fisher information.

5.4 Basic Idea of the IMT

We are going in this section to simplify the general idea of the information matrix

test as introduced by White (1982). Let us consider the density function f(xi, θ) for

individual observation and the data are independent, identically distribution so we

have ∫
f(x | θ)dx = 1

and we consider `(θ) = log f(x, θ) to be the logarithm of a density function of x

dependent upon p parameters θ, so the log-likelihood function in this case is

`n(θ) =
n∑
i=1

log f(xi, θ)

Now, as we defined the idea of the IMT to compare two different matrix of expected

the first and second partial derivatives of the `n(θ), we have

∂`

∂θ
=

∫
∂f(x | θ)

∂θ
dx

=

∫
∂ log f(x | θ)

∂θ
f(x | θ)dx

= E

(
∂ log(f(x | θ))

∂θ

)
= 0 (5.1)
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So, according to the ML method, we have

E

(
∂`

∂θ

)
= 0.

Differentiating (5.1) again we get

0 =

∫
∂2 log f(x | θ)

∂θ∂θT
f(x | θ)dx+

∫
∂ log f(x | θ)

∂θ

∂ log f(x | θ)
∂θT

f(x | θ)dx

So

E

(
∂2`

∂θ∂θT

)
+ E

(
∂`

∂θ

∂`

∂θT

)
= 0.

When the model is mis-specified, the above quantity will be not necessarily equal

zero.

5.4.1 Asymptotic Distribution of θ̂

To more explain the idea of IMT we should looking for asymptotic distribution of

estimated parameters. As we discussed the behaviour of the MLE under the wrong

model in chapter 2, which Claeskens and Hjort (2008), pointed out the estimation the

parameters of a given regression model. In the limit for each value of the parameter

vector θ,

n−1`n(θ)→
∫
g(Y ) log f(Y | θ)dY = E(log f(Y | θ))

where g(Y ) denoted to the true model and f(Y | θ) is the fitted model. Also,

consider the Kullback-Leibler divergence (KL) from the true to the approximating

model conditional on X, as (2.5). In this case θ̂ → θ∗, where θ∗ is the least false

value (LF). Note that the least false value θ∗ minimises the KL divergence (2.6), so,

because the derivative of the KL is

E

(
∂ log f(Y, θ)

∂θ

)
=

∫
g(Y )

∂ log f(Y, θ)

∂θ
dY = 0.

Also, if we need define

J = −E
(

∂2`

∂θ∂θT

)
and

K = var

(
∂ log f(Y, θ)

∂θ

)
= E

(
∂`

∂θ

∂`

∂θT

)
these matrixes are identical when g(Y ) = ∂ log f(Y,θ)

∂θ
for all Y. As explained in Claeskens

and Hjort (2008), the distribution of the θ̂, in this case from the central limit theorem

there is convergence in distribution

√
nŪn → U

′ ∼ Np(0, K)
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where, Ū = n−1
∑n

i=1 u(Yi, θ
∗) and u(Yi, θ

∗) = ∂ log f(Y,θ)
∂θ

|θ∗ , which is leads to

√
n(θ̂ − θ∗)→ J−1U

′ ∼ Np(0, J
−1KJ−1).

So, we can say, the asymptotic MLE distribution under the null hypotheses H0, in

this case
√
nθ̂ ∼ N(θ0, J

−1)

where, θ0 is the true value. And the asymptotic distribution of θ̂ under alternative

hypotheses H1 is
√
nθ̂ ∼ N(θ∗, J−1KJ−1)

So, that is meaning (J = K) if and only if when fitted the correct model (i.e. under

H0). This is the basis of the IMT which is looking for J = −K if the model is

correctly specified.

5.5 Fisher Information Matrix for Logistic Regres-

sion Model

We consider binary regression, where the outcome for individual i, i = 1, . . . , n, is a

random variable Yi = 1 ∈ {0, 1}. Also Pr(Yi | xi) = πi = π(βTxi) where xi is a p× 1

dimensional vector of covariates and β is a p-dimensional vector of parameters. It will

be convenient to write ai = βTxi and `i to be the contribution to the log-likelihood `

from unit i.

We have

`(β) =
n∑
i=1

`i(β) =
n∑
i=1

Yi log πi + (1− Yi) log(1− πi)

The p-dimensional likelihood equations ∂`/∂β = 0 can be written:

∂`

∂β
=

n∑
i=1

[
(Yi − πi)
πi(1− πi)

]
∂πi
∂ai

xi = 0 (5.2)

We can also derive the p× p matrix ∂2`/∂β∂βT as:

n∑
i=1

[
(Y1 − πi)
πi(1− πi)

∂2πi
∂a2

i

− (Y1 − πi)2

π2
i (1− πi)2

(
∂πi
∂ai

)2
]
xix

T
i (5.3)

In case of logistic regression model, let us consider the standard logistic regression

model and for simplicity consider the case

πi = expit(ai), i = (1, 2, . . . , n)
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where ai = α + β1x1i. To some writing in the following we write x1i as xi as the

dimension of xi is clear from the context. The first derivatives of the log likelihood

are
∂`

∂α
=

n∑
i=1

(yi − πi),

and
∂`

∂β1

=
n∑
i=1

xi(yi − πi)

So, we then have

∂2`

∂α2
=

∂

∂α

[
∂`

∂α

]
= −

n∑
i=1

(
∂

∂α

[
exp(α + β1xi)

1 + exp(α + β1xi)

])

= −
n∑
i=1

(
∂

∂i
(expit(ai))

∂i

∂α

)

= −
n∑
i=1

πi(1− πi).

Similarly, the second derivative with β1 is

∂2`

∂β2
1

= −
n∑
i=1

x2
iπi(1− πi)

and also, we have

∂2`

∂α∂β1

= −
n∑
i=1

xiπi(1− πi).

Then, the Fisher’s information matrix in this case is

In = −E

[
∂2`
∂α2

∂2`
∂α∂β1

∂2`
∂α∂β1

∂2`
∂β2

1

]

=

[ ∑n
i=1 πi(1− πi)

∑n
i=1 xiπi(1− πi)∑n

i=1 xiπi(1− πi)
∑n

i=1 x
2
iπi(1− πi)

]
,

it is evaluated at the MLE β̂.
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5.6 Information Matrix Test (IMT) for Logistic

Regression Model

5.6.1 The IM Test Procedure

The idea behind the information matrix test is that if the model is correctly specified

then the quantity:

IM =
n∑
i=1

(
∂`i
∂β

∂`i
∂βT

∣∣∣β̂ +
∂2`i
∂β∂βT

∣∣∣β̂)
has zero mean. By using individual elements of the sums in (5.2) and (5.3) we can

compute this quantity, for a general value of β, as the sum of:

∂`i
∂β

∂`i
∂βT

+
∂2`i
∂β∂βT

=
(Yi − πi)
πi(1− πi)

∂2πi
∂a2

i

xix
T
i (5.4)

where xi is a p×1 dimensional vector and ai = βTxi. We can test the null hypothesis

that IM has zero mean by computing the variance of IM and then constructing a

standard χ2 statistic. The first step is to compute the variance of n−
1
2

∑
di where we

write di for essentially the right hand side of (5.4):

(Yi − πi)
πi(1− πi)

∂2πi
∂a2

i

zi

we will consider the logistic regression model, so π = expit(α + βTxi), and we have

changed the p× p symmetric matrix xix
T
i into a vector zi in order to be able to use

standard methods. As xix
T
i is symmetric we do not wish to duplicate entries, so zi

is the q-dimensional vector of independent elements of xix
T
i . Usually this will be the

1
2
p(p+ 1)-dimensional vector

zTi = ([x11, x21, . . . , xp1], [x22, x32, . . . , xp2], . . . , [x(p−1),(p−1), xp,(p−1)], [xpp])

where xst is the (s, t)th element of xix
T
i , and we have supposed the subscript i for

clarity.

In this case we have ∂πi/∂ai = πi(1− πi) and ∂2πi/∂a
2
i = πi(1− πi)(1− 2πi), and if

we write:

d = n−
1
2

∑
di = n−

1
2

n∑
i=1

(Yi − πi)
πi(1− πi)

∂2πi
∂a2

i

zi

= n−
1
2

n∑
i=1

(Yi − πi)(1− 2π)zi
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then because the different terms are independent we obtain:

Ψ = var(d) =
1

n

n∑
i=1

1

πi(1− πi)

(
∂2πi
∂a2

i

)2

ziz
T
i .

=
1

n

n∑
i=1

πi(1− πi)(1− 2π)2ziz
T
i

which is a q × q dimensional matrix where q = 1
2
p(p+ 1).

We should also note that if ∇D is defined as essentially the score, i.e.

∇D = n−
1
2

n∑
i=1

(Yi − πi)
πi(1− πi)

∂πi
∂ai

xi

= n−
1
2

n∑
i=1

(Yi − πi)xi

then the variance of ∇D is the p× p matrix Ω:

Ω =
1

n

n∑
i=1

1

πi(1− πi)

(
∂πi
∂ai

)2

xix
T
i

=
1

n

n∑
i=1

πi(1− πi)xixTi

and the covariance of d and ∇D is the q × p matrix

∆ =
1

n

n∑
i=1

1

πi(1− πi)

(
∂πi
∂ai

)(
∂2πi
∂a2

i

)
zix

T
i

=
1

n

n∑
i=1

πi(1− πi)(1− 2π)zix
T
i

Central limit arguments suggest that asymptotically (dT , (∇D)T ) is a q + p dimen-

sional normal variable. However, the IM test requires d to be evaluated at β̂, d̂,

say, and at this value we know that ∇D = 0. Consequently the variance of d̂ is the

variance of d conditional on ∇D = 0 which is Ψ −∆Ω−1∆T .
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5.7 Information Matrix test (IMTDIAG)

The idea of the IMDIAG test and IM test are the same,the only difference is that for

the former the elements of zi are just the diagonal elements of xixi
T , so zi is the p

dimensional vector:

zTi = (x2
i1, x

2
i2, . . . , x

2
ip).

To explain the difference in size of vector zi in the two cases of IM test and IMDIAG

test, let us consider a simple example. Suppose we have a symmetric matrix with

elements xix
T
i and 3× 3 dimension as: x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,
where, xrs = xrixsi. Then in the case of the IM test, the dimension of vector zTi is

1× 6 and elements are :

zTi = [x11, x12, x13, x22, x23, x33],

whereas in the case of IMDIAG test, zi is the 3× 1 dimensional vector:

zTi = [x11, x22, x33].

5.8 Dimensional Matrix of IMT

As we discussed in previous section about the basic idea of the information matrix

test, the main point is examine if (J−K) is possibly 0. White (1982), discussed that,

one of the procedures is change the dimensional of symmetric matrix xix
T
i in (5.4)

from p × p symmetric matrix to q = 1
2
p(1 + p) vector. The idea is we do not wish

to duplicate the elements of the matrix which allowed using the standard method.

So, the q vector is vec(xix
T
i ). To more explain the behaviour of the dimensional of

xix
T
i , let us consider simple example, we have X = (1, x1, x2, x3) as a covariates of

the logistic regression model. Then the 4× 4 symmetric matrix (XXT )

XXT =


1 x1 x2 x3

x1 x2
1 x1x2 x1x3

x2 x2x1 x2
2 x2x3

x3 x3x1 x3x2 x2
3

 ,
changed to 10 dimensional vector,

q = vec(XXT ) = (1, x1, x2, x3, x
2
1, x2x1, x3x1, x

2
2, x3x2, x

2
3)T .
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The issues of the dimension of XXT has been the attention of many researchers: the

elements of this matrix may have an effect on the covariance matrix of the IMT and

may be some components are linear combinations of others leading to singularity of

the estimated covariance matrix, this pointed out by White (1982) and Lin and Wel

(1991).

The idea is to remove the duplicate elements in XXT , and this require more

elements to be removed. As we found above we must reduce the p × p symmetric

matrix XXT at least to a q = 1
2
p(p+1) dimensional vector. However, in some models

we need to do more giving q < 1
2
p(p+1). For example, in case of polynomial regression

if consider we have the function,

E(Y | X = x) = α + β1x+ β2x
2 + β3x

3

In this case we have X = (1, x, x2, x3), and the matrix XXT is

XXT =


1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

 ,
and

vec(XXT ) = (1, x, x2, x3, x2, x3, x4, x4, x5, x6)T .

Clearly, we can see there are more than one covariates are replicated, i.e. (x2, x3, x4).

Then, we need to reduce vec(XXT ) in case of polynomial regression (i.e q < 1
2
p(p+1)),

so, in this case the dimension is (5×1). Kuss (2002), discussed a new approach which

reduced the elements of vec(XXT ) to a vector, which contained only the diagonal

elements of (XXT ) matrix and the comparison between IMT and IMTDIAG has

been appeared IMTDIAG has reasonable behaviour. There adjustments are to allow

for exact redundancy in the vectorised form of XXT . Issues related to approximate

redundancy also arise and will be addressed in the following chapters.
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Chapter 6

Distribution of Moments of the
IMT Statistic

6.1 The IMT Under missing covariates

We are interested in the distribution of IMT and hence the moments of this statistic.

White (1982) introduced the test statistic as

dg(y, θ) =
∂`(y)

∂θr

∂`(y)

∂θs
+
∂2`(y)

∂θr∂θs

where g ranges over appropriately chosen elements of the matrix and y will stand in

place of the data: g = 1, . . . , q ≤ 1
2
p(p + 1), where p = dim(θ) and r, s = 1, . . . , p.

The IMT statistic is based on the q-vector

Dg(θ̂n) =
1√
n

n∑
i=1

dg(yi, θ̂n); 1 ≤ g ≤ q

where θ̂n is the MLE under `(·), where y1, y2, . . . , yn are the data. We assume that

the yi are independent and identically distribution.

6.2 The IMT Under missing covariates for Logis-

tic Regression Model

In this part we will apply the procedure of the IMT statistic under missing covariates

for a logistic regression model. If Xi is a p-dimensional vector of covariates drawn

from normal distribution and Yi is binary with

P (Yi = 1 | Xi) = expit(α + βTXi).

In the following we treat the simple case where the fitted model is
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P (Yi = 1 | Xi) = expit(α + β1X1i)

for a scalar X1 and that the true model has

P (Yi = 1 | Xi) = expit(α + β1X1i + β2X2i),

where X2 is also a scalar. We have the log-likelihood function contribution for the ith

element (Yi, Xi) is

`(Yi, Xi) = Yi(α + βTXi)− log(1 + exp(α + βTXi))

and so,

∂`i
∂α

= Yi − πi;
∂`i
∂β1

= (Yi − πi)X1i

and note that we only consider fitting the model with X1, even if the true model

also includes X2 (i.e.β2 6= 0). From this we get:

∂2`i
∂θ∂θT

=

[
−πi(1− πi) −πi(1− πi)Xi

−πi(1− πi)Xi −πi(1− πi)X2
i

]
Also,

∂`i
∂θ

∂`i
∂θT

=

[
(Yi − πi)2 (Yi − πi)2Xi

(Yi − πi)2Xi (Yi − πi)2X2
i

]
using,

(Yi − πi)2 − πi(1− πi) = (Yi − πi)(1− 2πi),

as Y 2
i is Yi, and so we get that

dg(yi, θ) = (Yi − πi)(1− 2πi)

 1
Xi

X2
i

 .
6.3 An Alternative Formulae of Variance

In this section we work out the variance of d. In this part we are interested to find

a formulae of the variance of d statistic, even when the model is mis-specified. To

perform the IMT we need to find the mean and variance of

T =
1√
n

n∑
i=1

dgi
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Under H0 E(dgi) = 0, and so the IMT could be written as

T T var(T )−1T

which will have a χ2-distribution on rank(var(T )) d.f. as T is asymptotically Normal.

However, the test statistic has to be evaluated at the MLE θ̂ and this introduces a

complication.

The MLE θ̂ is the solution to

S =
1√
n
∇` =

1√
n

n∑
i=1

∇`i =
1√
n

n∑
i=1

(yi − πi)
[

1
Xi

]
= 0.

The expression for T is

T =
1√
n

n∑
i=1

(yi − πi)(1− 2πi)

 1
xi
x2
i


and this is clearly going to be highly correlated with S. Therefore, the appropriate

variance for the IMT is var(T | S = 0). As T and S are sums of independent

elements, the Central limit Theorem implies that (T, S)T is asymptotically Normal

and so we can use

var(T | S = 0) = var(T )− cov(T, S)var(S)−1cov(T, S)T . (6.1)

To work out var(T | S = 0), so, in this case we can write

var(T ) = var([dg1 + dg2 + · · ·+ dgn]/
√
n) = var(dg1),

and similarly

var(S) = var(∇`1),

and

cov(T, S) = cov(dg1,∇`1).

6.3.1 The Variance of IMT Under Missing Covariates for Lo-
gistic Regression Model

We now need to find expressions for var(dg1), var(∇`1) and cov(dg1,∇`1)

We already have that

dg = (yi − πi)(1− 2πi)

 1
xi
x2
i
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and

∇`i = (yi − πi)
[

1
xi

]
so, the variance is

var(dg) = E(dgd
T
g )− E(dg)E(dTg )

and we have

dgd
T
g = (y − π)2(1− 2π)2

 1 xi x2
i

xi x2
i x3

i

x2
i x3

i x4
i


taking expectation EY |X we obtain

E(dg1) = EX

(πt − π)(1− 2π)

 1
xi
x2
i

 (6.2)

and,

E(dg1d
T
g1) = EX

(πt(1− 2π) + π2)(1− 2π)2

 1 X X2

X X2 X3

X2 X3 X4

 . (6.3)

Now we need to compute cov(dg,∇`). In fact E(∇`) = 0, not only if the model is

correct but also when evaluated at the least false value θ∗, so in this case

cov(dg1,∇`1) = E(dg∇`)T .

and we have

dg1∇`T1 = (y − π)(1− 2π)

 1
xi
x2
i

 (y − π)
[

1 xi
]

= (y − π)2(1− 2π)

 1 xi
xi x2

i

x2
i x3

i


then,

E(dg1∇`T1 ) = EX

(πt(1− 2π) + π2)(1− 2π)

 1 X
X X2

X2 X3

 . (6.4)

Now we will work out var(∇`), as before, since E(∇`) = 0, so

var(∇`1) = E(∇`∇`T )

= EXEY |X

[
(Y − π)2 (Y − π)2X

(Y − π)2X (Y − π)2X2

]
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and note that

EY |X(Y − π)2 = EY |X(Y (1− 2π) + π2) = πt(1− 2π) + π2,

where, πt is E(Y ) under the true model. So,

E(∇`∇`T ) = EX

[
πt(1− 2π) + π2 (πt(1− 2π) + π2)X

(πt(1− 2π) + π2)X (πt(1− 2π) + π2)X2

]
. (6.5)

Hence, the required variance (6.1)

E(dgd
T
g )− E(dg)E(dTg )− E(dg∇`T )E(∇`∇`T )−1E((∇`)dTg ) (6.6)

and we have expressions for each component from (6.2), (6.3), (6.4) and (6.5) We

need to evaluate these components by simulation.

6.3.2 The Dispersion Matrix Under Wrong Model

We are interested to compute the var(T | S = 0), even when the wrong model has

been fitted. We will compute each of the components of this variance separately. We

see from section 6.3.1 that we need to evaluate, e.g

E(d) = EX

(πt − π)(1− 2π)

 1
X
X2


and also,

E(ddT ) = EX

[πt(1− 2π) + π2](1− 2π)2

 1 X X2

X X2 X3

X2 X3 X4

 .

This cannot be done analytically so we simulate 5000 values of X and replace the

E(d) by the mean of these 5000 values. In evaluating πt we use the values of the

parameters αt, β1t and β2t. What do we use for π? We need to evaluate π(α, β1) at

the least false values α∗ and β∗1 for α and β1. So, e.g, the first element of E(d) is

found by simulation from

EX [(expit(αt + βt1X1 + βt2X2)− expit(α∗ + β∗1X1))(1− 2expit(α∗ + β∗1X1))]

where,

α∗ =
αt + βt2(µ2 − ρµ1)√
1 + k2β2

t2σ
2(1− ρ2)

,
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β∗1 =
βt1 + ρβt2√

1 + k2β2
t2σ

2(1− ρ2)

and X draw from bivariate normal distribution with µ = (µ1, µ2), and σ2
1 = σ2

2.

The formulae of the least false values α∗ and β∗1 have calculated in chapter 2.

6.4 Empirical Variance of IMT

The expression in (6.6) is the variance V of d at θ̂ but we need an estimate, V̂ . If

we have a sample {(yi, xi1) | i = 1, . . . , n} how can we estimate V consistently? One

candidate would be to compute

di = (yi − π̂i)(1− 2π̂i)

 1
xi
x2
i

 i = 1, . . . , n

and

∇`i = (yi − π̂i)
[

1
xi

]
i = 1, . . . , n

where, π̂i is the fitted value from the model with just x1. Now compute

Ŵn =
1

n

n∑
i=1

did
T
i −

(
1

n

n∑
i=1

di

)(
1

n

n∑
i=1

dTi

)

and

B̂n =
1

n

n∑
i=1

(yi − π̂)2

[
1 xi
xi x2

i

]
,

Ĉn =
1

n

n∑
i=1

(yi − π̂)2(1− 2π̂i)

 1 xi
xi x2

i

x2
i x3

i


Then use

V̂ = Ŵd − ĈnB̂−1
n Ĉn

T
(6.7)

as an estimate of V , we will assess this by simulation.

6.5 Simulation Study

This simulation examines the correctness of the form of the dispersion matrix V in

(6.6) and (6.7).
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6.5.1 Design of Simulation

To achieve the aim of this simulation, we will consider a logistic regression model

which has two covariates draw from bivariate normal distribution with mean zero

and covariance matrix Σ as:

πt = expit(αt + βt1x1 + βt2x2)

and the fitted model is

π = expit(α + β1x1)

• Apply in two cases of logistic model,

- The fitted is the true logistic model (i.e βt2 = 0)

- The fitted model is mis-specified (i.e βt2 6= 0).

• Use two cases of variance (σ2
1 = σ2

2 = 0.2), (σ2
1 = σ2

2 = 2) and correlation

ρ = 0.1.

• We choose some different components of parameters αt, βt1 and βt2 to calculate

πt.

• We compute the least false values α∗ and β∗1 by formulae to calculate π.

• We compute the true variance by simulateing di and take the variance to be

var(
√
nd̄) = Vtr.

• We compute the theoretical variance var(d) = VT at the least false value and

calculate E(d1) and E(d1d
T
1 ) as described in section 6.3.2.

• Finally, for each simulation we compute the empirical variance VE and take the

mean over the simulations.

• We make comparison between the diagonal elements of dispersion matrix VE, VT

vs. Vtr respectively.

• Apply on different sample size n = 500, 1000, 5000 and N = 5000 number of

simulations.
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6.5.2 Results and Discussion

Results are reported in tables, which shows the diagonal elements of the variance

matrix: VE denotes the empirical variance, VT denotes the theoretical variance and

Vtr denotes the true variance. The true parameters appear as αt, βt1, and βt2; RnE and

RnT denote to the rank of the covariance matrix empirical and theoretical respectively.

The Ratio RE and RT are
√

VE
Vtr

,
√

VT
Vtr

respectively. S.D(πt) denotes the standard

deviation over a sample where πt is the true model. In our simulation we consider two

covariates, so in this case the dispersion matrix of d is a 3× 3 dimensional matrix.

6.5.3 Results Under True Model

Table 6.1 and table 6.2, shows the results of simulation, which appeared the diagonal

elements of matrix V , the empirical version and theoretical form comparing with true

variance, which use ρ = 0.1 in case of σ2
1 = σ2

2 = 0.2 and σ2
1 = σ2

2 = 2 respectively

by sample size n = 500. Table 6.3 and Table 6.4, reported the results by sample size

n = 1000, with equal variance σ2
1 = σ2

2, 0.2 and 2 respectively. Table 6.5 and Table

6.6, shows the results in case of sample size n = 5000 and with variance 0.2 and 2.

We can see clearly, that all diagonal elements appeared small in value in all different

cases of sample size and variance. The first element was much closer to zero than

of the rest. In almost cases the results appeared reasonable ratio which is meaning

the theoretical variance and empirical variance are close to the true value. There are

some slightly strange ratio almost in case of sample size n = 500, the reason may

be affected by small value of standard deviation of πt S.D(πt), otherwise the ratio is

close to one. In case of sample size n = 1000 and n = 5000, the behaviour of results

shows almost the same pattern, with the ratio close to one and that is meaning the

formulae of the variance works well. In a few cases with small values of S.D(πt) which

affected on the ratio where the first two elements were more sensitive. Overall, we

have reasonable results to say that, the alternative formulae of variance works well

and the two first elements still more sensitive which appeared tend to zero.
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Diagonal component of variance IMT and Ratio
αt βt1 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.61 0.02 3 2 6.8095e−07 1.0641e−09 7.0710e−07 0.98 0.39
- - - - - - 4.3965e−04 2.9824e−04 4.6150e−04 0.97 0.80
- - - - - - 6.5530e−04 6.0731e−04 6.9025e−04 0.97 0.94

0.80 0.50 0.69 0.04 3 3 1.1742e−05 6.4247−06 1.1641e−05 1.01 0.74
- - - - - - 8.2395e−04 7.6936e−04 8.1842e−04 1.01 0.97
- - - - - - 2.1784e−03 2.3987e−03 2.2081e−03 0.99 1.04

1.20 2.20 0.73 0.16 3 3 6.0873e−04 6.5146e−04 6.5197e−04 0.97 0.99
- - - - - - 4.5568e−03 4.9824e−03 4.8376e−03 0.97 1.01
- - - - - - 1.7132e−03 1.7935e−03 1.8288e−03 0.97 0.99

2.30 0.20 0.90 0.007 3 2 2.2587e−06 4.6206e−08 2.5916e−06 0.93 0.13
- - - - - - 3.4470e−05 7.0526e−06 3.8482e−05 0.95 0.42
- - - - - - 3.6847e−03 4.0920e−03 4.0201e−03 0.96 1.01

0.20 2.30 0.53 0.22 3 3 3.1828e−04 3.3163e−04 3.2639e−04 0.99 1.01
- - - - - - 5.7410e−03 6.1171e−03 6.0210e−03 0.98 1.01
- - - - - - 1.7934e−03 1.9713e−03 1.8774e−03 0.98 1.02

Table 6.1: Simulation results of the variance (Vtr) comparing with empirical (VE) and
theoretical variance (VT ) in case of fitted true model, using different values of true
parameters by generated variables from bivariate normal distribution with sample
size n = 500 and σ2

1 = σ2
2=0.2

Diagonal component of variance IMT and Ratio
αt βt1 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.57 0.08 3 3 1.2933e−05 9.2752e−06 1.3667e−05 0.97 0.82
- - - - - - 2.2703e−02 2.3813e−02 2.3300e−02 0.99 1.01
- - - - - - 1.3504e−01 1.4015e−01 1.3681e−01 0.99 1.01

0.80 0.50 0.68 0.14 3 3 2.4323e−04 2.4817e−04 2.4979e−04 0.99 0.99
- - - - - - 4.2714e−02 4.6277e−02 4.3906e−02 0.99 1.02
- - - - - - 1.9446e−01 2.1171e−01 2.0659e−01 0.97 1.01

1.20 2.20 0.63 0.36 3 3 1.4666e−03 1.6904e−03 1.6126e−03 0.95 1.02
- - - - - - 1.8138e−02 2.0199e−02 1.9872e−02 0.96 1.01
- - - - - - 2.5199e−02 2.9136e−02 2.8595e−02 0.94 1.01

2.30 0.20 0.90 0.02 3 3 1.4526e−05 4.5251e−06 1.5026e−05 0.98 0.55
- - - - - - 1.3613e−03 7.8328e−04 1.4260e−03 0.98 0.74
- - - - - - 3.2184e−01 3.4163e−01 3.5742e−01 0.95 0.98

0.20 2.30 0.52 0.38 3 3 1.4890e−03 1.6581e−03 1.5810e−03 0.97 1.02
- - - - - - 1.6339e−02 1.7567e−02 1.7492e−02 0.97 1.01
- - - - - - 1.5041e−02 1.6676e−02 1.5721e−02 0.98 1.02

Table 6.2: Simulation results of the variance (Vtr) comparing with empirical (VE) and
theoretical variance (VT ) in case of fitted true model, using different values of true
parameters by generated variables from bivariate normal distribution with sample
size n = 500 and σ2

1=σ2
2=2
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Diagonal component of variance IMT and Ratio
αt βt1 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.57 0.02 3 2 3.4865e−07 9.4241e−08 3.7802−07 0.96 0.50
- - - - - - 3.6625e−04 2.5895e−04 3.6895e−04 0.99 0.84
- - - - - - 6.0920e−04 5.6444e−04 6.2892e−04 0.98 0.95

0.80 0.50 0.69 0.05 3 3 9.1613e−06 5.6977−06 8.9828−06 1.01 0.80
- - - - - - 7.9258e−04 6.9865e−04 8.0062e−04 0.99 0.93
- - - - - - 2.2189e−03 2.0362e−03 2.2954e−03 0.98 0.94

1.20 2.20 0.73 0.17 3 3 6.2529e−04 6.4373e−04 6.2290e−04 1.01 1.02
- - - - - - 4.7051e−03 4.9757e−03 4.5926e−03 1.01 1.04
- - - - - - 1.7770e−03 1.8703e−03 1.8523e−03 0.98 1.01

2.30 0.20 0.90 0.007 3 2 8.5391e−07 5.1853e−08 7.9321e−07 1.03 0.26
- - - - - - 2.1094e−05 7.9454e−06 2.0874e−05 1.01 0.62
- - - - - - 4.0230e−03 4.5576e−03 4.2742e−03 0.97 1.03

0.20 2.30 0.53 0.21 3 3 3.2437e−04 3.4145e−04 3.1786e−04 1.01 1.03
- - - - - - 5.9352e−03 6.3223e−03 6.1501e−03 0.98 1.01
- - - - - - 1.9006e−03 2.0843e−03 1.9091e−03 0.99 1.04

Table 6.3: Simulation results of the variance (Vtr) comparing with empirical (VE) and
theoretical variance (VT ) in case of fitted true model, using different values of true
parameters by generated variables from bivariate normal distribution with sample
size n = 1000 and σ2

1=σ2
2=0.2

Diagonal component of variance IMT and Ratio
αt βt1 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.57 0.08 3 3 1.1287e−05 8.7035e−06 1.1311e−05 0.99 0.88
- - - - - - 2.2973e−02 2.3067e−02 2.2678e−02 1.01 1.01
- - - - - - 1.3841e−01 1.4018e−01 1.3834e−01 1.00 1.01

0.80 0.50 0.67 0.14 3 3 2.4038e−04 2.4441e−04 2.4915e−04 0.98 0.99
- - - - - - 4.3783e−02 4.4257e−02 4.4706e−02 0.99 0.99
- - - - - - 1.9858e−01 1.9486e−01 1.0478e−01 0.98 0.98

1.20 2.20 0.64 0.35 3 3 1.5709−03 1.6876e−03 1.6469e−03 0/98 1.01
- - - - - - 1.9049e−02 2.0225e−02 2.0199e−02 0.97 1.00
- - - - - - 2.6726e−02 2.9664e−02 2.7877e−02 0.98 1.03

2.30 0.20 0.90 0.02 3 3 9.5367e−06 4.8114e−06 9.9900e−06 0.98 0.69
- - - - - - 1.1285e−03 8.4254e−04 1.1651e−04 0.98 0.85
- - - - - - 3.4869e−01 3.5731e−01 3.5686e−01 0.99 1.00

0.20 2.30 0.51 0.37 3 3 1.5825e−03 1.6740e−03 1.6475e−03 0.98 1.01
- - - - - - 1.7080e−02 1.7845e−02 1.7148e−02 0.98 1.02
- - - - - - 1.6076e−02 1.7015e−02 1.6955e−02 0.97 1.01

Table 6.4: Simulation results of the variance (Vtr) comparing with empirical (VE) and
theoretical variance (VT ) in case of fitted true model, using different values of true
parameters by generated variables from bivariate normal distribution with sample
size n = 1000 and σ2

1=σ2
2=2
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Diagonal component of variance IMT and Ratio
αt βt1 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.57 0.02 3 2 1.4467e−07 1.0852e−07 1.4564e−07 0.99 0.86
- - - - - - 3.0244e−04 2.0783−04 3.0551−04 0.99 1.00
- - - - - - 6.2497e−04 5.7726e−04 5.9654e−04 0.99 1.02

0.80 0.50 0.68 0.04 3 3 6.6964e−06 6.4494−06 6.7141−06 0.99 0.98
- - - - - - 7.5095e−04 7.4655e−04 7.5835−04 0.99 0.99
- - - - - - 2.2465e−03 2.5739e−03 2.2774e−03 0.99 1.06

1.20 2.20 0.73 0.16 3 3 6.4308e−04 6.3806e−04 6.4243e−04 0.99 1.00
- - - - - - 4.8294e−03 4.8693e−03 4.8611e−03 0.99 1.00
- - - - - - 1.8397e−03 1.8400e−03 1.8755e−03 0.99 0.99

2.30 0.20 0.91 0.007 3 2 1.4528e−07 4.7059e−08 4.7059e−08 0.99 0.56
- - - - - - 9.7290e−06 7.2109e−06 7.2109e−06 0.99 0.85
- - - - - - 4.3046e−03 4.1416e−03 4.1416e−03 1.00 0.98

0.20 2.30 0.53 0.21 3 3 3.2313e−04 3.0604e−04 3.1606e−04 1.01 0.98
- - - - - - 6.0494e−03 5.9242e−03 5.9321e−03 1.01 0.99
- - - - - - 1.9320e−03 1.7989e−03 1.9265e−03 1.00 0.97

Table 6.5: Simulation results of the variance (Vtr) comparing with empirical (VE) and
theoretical variance (VT ) in case of fitted true model, using different values of true
parameters by generated variables from bivariate normal distribution with sample
size n = 5000 and σ2

1=σ2
2=0.2

Diagonal component of variance IMT and Ratio
αt βt1 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.57 0.08 3 3 9.6733e−06 8.8645e−06 9.4912−06 1.01 0.97
- - - - - - 2.3043e−02 2.2925e−02 2.2485e−02 1.01 1.01
- - - - - - 1.4050e−01 1.3758e−01 1.3916e−01 1.00 0.99

0.80 0.50 0.67 0.14 3 3 2.3936e−04 2.4375e−04 2.4375e−04 0.99 0.99
- - - - - - 4.4519e−02 4.5007e−02 4.4951e−02 0.99 1.00
- - - - - - 2.0393e−01 2.0124e−01 2.0554e−01 0.99 0.99

1.20 2.20 0.63 0.36 3 3 1.6684−03 1.6768e−03 1.7178e−03 0.99 0.99
- - - - - - 1.9874e−02 2.0214e−02 2.0423e−02 0.99 0.99
- - - - - - 2.8469e−02 2.7480e−02 2.8812e−02 0.99 0.98

2.30 0.20 0.91 0.02 3 3 6.0942e−06 5.0654e−06 6.2226e−06 0.99 0.90
- - - - - - 9.7134e−04 8.7521e−04 9.8237e−04 0.99 0.94
- - - - - - 3.7084e−01 3.8834e−01 3.7508e−01 0.99 1.01

0.20 2.30 0.53 0.37 3 3 1.6593e−03 1.6640e−03 1.6922e−03 0.99 0.99
- - - - - - 1.7670e−02 1.7645e−02 1.8321e−02 0.98 0.98
- - - - - - 1.6895e−02 1.6909e−02 1.7285e−02 0.99 0.99

Table 6.6: Simulation results of the variance (Vtr) comparing with empirical (VE) and
theoretical variance (VT ) in case of fitted true model, using different values of true
parameters by generated variables from bivariate normal distribution with sample
size n = 5000 and σ2

1=σ2
2=2

98



Diagonal component of variance IMT and Ratio
αt βt1 βt2 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.2 0.57 0.03 3 3 7.5599e−07 1.3361e−07 7.8920e−07 0.98 0.41
- - - - - - - 4.7254e−04 3.3482e−04 4.9968e−04 0.97 0.82
- - - - - - - 6.6070e−04 5.5405e−04 6.8594e−04 0.98 0.90

0.80 0.50 0.4 0.68 0.06 3 3 1.4161e−05 8.2973e−06 1.3967e−05 1.01 0.77
- - - - - - - 9.3914e−04 9.2617e−04 9.2278e−04 1.01 1.00
- - - - - - - 2.1530e−03 2.2723e−03 2.1456e−03 1.00 1.03

1.20 2.20 0.8 0.73 0.18 3 3 6.0838e−04 6.4471e−04 6.2340e−04 0.99 1.02
- - - - - - - 4.6345e−03 4.9022e−03 4.6574e−03 0.99 1.02
- - - - - - - 1.7018e−03 1.8214e−03 1.79524e−03 0.97 1.01

2.30 0.20 1 0.90 0.04 3 2 3.4057e−06 2.4924e−07 3.4776e−07 0.99 0.27
- - - - - - - 5.0822e−05 1.9222e−05 5.2125e−05 0.99 0.61
- - - - - - - 3.7366e−03 4.3500e−03 3.9682e−03 0.97 1.04

0.20 2.30 1.2 0.53 0.24 3 3 3.1353e−04 3.1952e−04 3.1275e−04 1.00 1.01
- - - - - - - 5.7344e−03 6.1732e−03 5.8063e−03 0.99 1.03
- - - - - - - 1.7897e−03 1.9324e−03 1.7948e−03 0.99 1.03

Table 6.7: Simulation results of the variance (Vtr) comparing with empirical variance
(VE) and theoretical variance (VT ) in case of fitted missing covariates model, using dif-
ferent values of parameters by generated variables from bivariate normal distribution
with sample size n = 500 and σ2

1=σ2
2=0.2

6.5.4 Results Under Missing Covariate Model

In this part we consider the results when the missing covariate logistic model has been

fitted. That is meaning when the variance of IMT computed under H1 and uses the

least false values. The results of different case of sample size and variance showed in

several tables. Table (6.7) and Table (6.8) shows the results of sample size n = 500.

Table (6.9) and Table (6.10), shows the results of sample size n = 1000. Lastly,

Table (6.11) and Table (6.12), shows the results of sample size 5000. In general, the

behaviour of ratio appeared the same behaviour which found in case of β2t = 0, all

cases of different variance and sample size appeared reasonable ratio which is close

to one. A few cases shows low ratio, the reason is as discussed before concerning to

the small value of S.D(πt).
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Diagonal component of variance IMT and Ratio
αt βt1 βt2 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.2 0.57 0.1 3 3 1.5955e−05 1.0720e−05 1.6529e−05 0.98 0.81
- - - - - - - 2.4823e−02 2.4484e−02 2.5906e−02 0.98 0.97
- - - - - - - 1.4327e−01 1.3571e−01 1.4843e−01 0.98 0.96

0.80 0.50 0.4 0.66 0.18 3 3 2.3400e−04 2.5316e−04 2.3730e−04 0.99 1.03
- - - - - - - 4.3984e−02 5.1198e−02 4.5628e−02 0.98 1.05
- - - - - - - 1.9280e−01 2.3559e−01 2.0038e−01 0.98 1.08

1.20 2.20 0.8 0.62 0.36 3 3 1.2620e−03 1.4252e−03 1.3850e−03 0.95 1.01
- - - - - - - 2.1819e−02 2.3741e−02 2.3411e−02 0.97 1.01
- - - - - - - 3.2250e−02 3.5432e−02 3.6766e−02 0.94 0.98

2.30 0.20 1 0.83 0.17 3 2 3.8371e−05 1.3283e−05 4.5381e−05 0.92 0.54
- - - - - - - 4.9410e−03 3.7476e−03 5.6578e−03 0.93 0.81
- - - - - - - 3.2318e−01 3.2733e−01 3.4807e−01 0.96 0.97

0.20 2.30 1.2 0.50 0.39 3 3 1.1036e−03 1.2138e−03 1.1557e−03 0.98 1.02
- - - - - - - 2.5064e−02 2.6421e−02 2.6421e−02 0.97 0.99
- - - - - - - 2.9204e−02 3.2711e−02 3.1094e−02 0.97 1.02

Table 6.8: Simulation results of the variance (Vtr) comparing with empirical variance
(VE) and theoretical variance (VT ) in case of fitted missing covariates model, using dif-
ferent values of parameters by generated variables from bivariate normal distribution
with sample size n = 500 and σ2

1=σ2
2=2

Diagonal component of variance IMT and Ratio
αt βt1 βt2 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.2 0.56 0.03 3 3 4.1405e−07 1.1487e−07 1.1487e−07 0.97 0.51
- - - - - - - 4.0648e−04 2.8918e−04 4.1885e−04 0.99 0.83
- - - - - - - 6.340e−04 5.0622e−04 6.4030e−04 0.99 0.90

0.80 0.50 0.4 0.69 0.05 3 3 1.1003e−05 7.8269e−06 1.1677e−05 0.97 0.82
- - - - - - - 8.9669e−04 8.1291e−04 9.1548e−04 0.99 0.94
- - - - - - - 2.1692e−03 2.3403e−03 2.2328e−03 0.99 1.02

1.20 2.20 0.8 0.74 0.16 3 3 6.2763e−04 6.4955e−04 6.5224e−04 0.98 0.99
- - - - - - - 4.7946e−03 4.9422e−03 4.9252e−03 0.99 1.00
- - - - - - - 1.7828e−03 1.8524e−03 1.6958e−03 1.02 1.04

2.30 0.20 1 0.90 0.04 3 3 3.4057e−06 2.4924e−07 3.4776e−06 0.99 0.27
- - - - - - - 5.0822e−05 1.9222e−05 5.2125e−05 0.99 0.61
- - - - - - - 3.7366e−03 4.3500e−03 3.9682e−03 0.99 1.04

0.20 2.30 1.2 0.53 0.23 3 3 3.0911e−04 3.0836e−04 3.1398e−04 0.99 0.99
- - - - - - - 5.8800e−03 5.9649e−03 5.9842e−03 0.99 0.99
- - - - - - - 1.8528e−03 1.8680e−03 1.8859e−03 0.99 0.99

Table 6.9: Simulation results of the variance (Vtr) comparing with empirical variance
(VE) and theoretical variance (VT ) in case of fitted missing covariates model, using dif-
ferent values of parameters by generated variables from bivariate normal distribution
with sample size n = 1000 and σ2

1=σ2
2=0.2
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Diagonal component of variance IMT and Ratio
αt βt1 βt2 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.2 0.57 0.11 3 3 1.3585e−05 1.1718e−05 1.3273e−05 1.01 0.93
- - - - - - - 2.4996e−02 2.5316e−02 2.5229e−02 0.99 1.00
- - - - - - - 1.4486e−01 1.6289e−01 1.4526e−01 0.99 1.05

0.80 0.50 0.4 0.66 0.18 3 3 2.3253e−04 2.6095e−04 2.2984e−04 1.01 1.06
- - - - - - - 4.5129e−02 4.8176e−02 4.4637e−02 1.01 1,03
- - - - - - - 1.9837e−01 2.3374e−01 2.0511e−01 0.98 1.06

1.20 2.20 0.8 0.59 0.36 3 3 1.3404e−03 1.4576e−03 1.4116e−03 0.97 1.01
- - - - - - - 2.2914e−02 2.4611e−02 2.3911e−02 0.98 1.01
- - - - - - - 3.3481e−02 3.7438e−02 3.4621e−02 0.98 1.03

2.30 0.20 1 0.84 0.16 3 3 3.1898e−05 2.0825e−05 3.0775e−05 1.01 0.82
- - - - - - - 4.7158e−03 3.8265e−03 4.6557e−03 1.01 0.91
- - - - - - - 3.3975e−01 3.7696e−01 3.4582e−01 0.99 1.04

0.20 2.30 1.2 0.49 0.34 3 3 1.1553e−03 1.2469e−03 1.2100e−03 0.98 1.01
- - - - - - - 2.6105e−02 2.7428e−02 2.7580e−02 0.97 0.99
- - - - - - - 3.0897e−02 3.4167e−02 3.3522e−02 0.96 1.01

Table 6.10: Simulation results of the variance (Vtr) comparing with empirical variance
(VE) and theoretical variance (VT ) in case of fitted missing covariates model, using dif-
ferent values of parameters by generated variables from bivariate normal distribution
with sample size n = 1000 and σ2

1=σ2
2=2

Diagonal component of variance IMT and Ratio
αt βt1 βt2 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.2 0.57 0.03 3 3 1.8198e−07 1.3264e−07 1.8121e−07 1.00 10.85
- - - - - - - 3.4533e−04 3.1822e−04 3.4883e−04 0.99 0.96
- - - - - - - 5.9300e−04 5.8219e−04 5.8529e−04 1.01 0.99

0.80 0.50 0.4 0.68 0.06 3 3 8.4613e−06 7.9628e−06 8.4471e−06 1.00 0.97
- - - - - - - 8.5793e−04 8.8372e−04 8.5238e−04 1.00 1.01
- - - - - - - 2.2046e−03 2.2535e−03 2.1730e−03 1.01 1.02

1.20 2.20 0.8 0.72 0.18 3 3 6.3600e−04 6.4124e−04 6.2714e−04 1.01 1.01
- - - - - - - 4.8989e−03 5.0763e−03 4.8235e−03 1.01 1.02
- - - - - - - 1.8277e−03 2.0614e−03 2.8117e−03 1.00 1.06

2.30 0.20 1 0.90 0.04 3 3 5.0523e−07 2.4625e−07 5.2674e−07 0.98 0.68
- - - - - - - 2.3393e−05 1.9714e−05 2.4428e−05 0.98 0.90
- - - - - - - 4.3268e−03 4.5158e−03 4.5136e−03 0.98 1.00

0.20 2.30 1.2 0.54 0.23 3 3 3.1146e−04 3.1615e−04 3.1427e−04 0.99 1.00
- - - - - - - 5.9995e−03 6.0021e−03 6.1376e−03 0.99 0.99
- - - - - - - 1.9081e−03 1.9165e−03 1.9210e−03 0.99 0.99

Table 6.11: Simulation results of the variance (Vtr) comparing with empirical variance
(VE) and theoretical variance (VT ) in case of fitted missing covariates model, using dif-
ferent values of parameters by generated variables from bivariate normal distribution
with sample size n = 5000 and σ2

1=σ2
2=0.2
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Diagonal component of variance IMT and Ratio
αt βt1 βt2 πt S.D (πt) RnE RnT VE VT Vtr R1 R2

0.30 0.25 0.2 0.57 0.10 3 3 1.1739e−05 1.1750e−05 1.1168e−05 1.02 1.02
- - - - - - - 2.5148e−02 2.5546e−02 2.4530e−02 1.01 1.02
- - - - - - - 1.4799e−01 1.4767e−01 1.4309e−01 1.00 1.01

0.80 0.50 0.4 0.66 0.18 3 3 2.3311e−04 2.4578e−04 2.3088e−04 1.00 1.03
- - - - - - - 4.6057e−02 4.7721e−02 4.5607e−02 1.00 1.03
- - - - - - - 2.0328e−01 2.2383e−01 2.0399e−01 0.99 1.04

1.20 2.20 0.8 0.62 0.36 3 3 1.4003e−03 1.4503e−03 1.4825e−03 0.97 0.99
- - - - - - - 2.3669e−02 2.4580e−02 2.3994e−02 0.99 1.01
- - - - - - - 3.5334e−02 3.8109e−02 3.3710e−02 0.98 1.01

2.30 0.20 1 0.84 0.10 3 3 2.5661e−05 1.8176e−05 2.5049e−05 1.01 0.85
- - - - - - - 4.4638e−03 4.0200e−03 4.3535e−03 1.01 0.96
- - - - - - - 3.4891e−01 3.8443e−01 3.3750e−01 1.01 1.06

0.20 2.30 1.2 0.51 0.39 3 3 1.1970e−03 1.1607e−03 1.2109e−03 0.99 0.98
- - - - - - - 2.6962e−02 2.5974e−02 2.6619e−02 1.01 0.99
- - - - - - - 3.2469e−02 3.0895e−02 3.3152e−02 0.99 0.97

Table 6.12: Simulation results of the variance (Vtr) comparing with empirical variance
(VE) and theoretical variance (VT ) in case of fitted missing covariates model, using dif-
ferent values of parameters by generated variables from bivariate normal distribution
with sample size n = 5000 and σ2

1=σ2
2=2

6.6 The IMTDIAG Under missing covariates

As we considered the behaviour of the IMT under missing covariates logistic model

in previous sections, now we will consider the calculation of IMTDIAG. We know

that the IMDIAG approach has the same idea as the Information matrix test, but

compares just the diagonal elements of the two form of the information matrix. So,

zi is (p+ 1)× 1 -dimensional vector of the diagonal elements xix
T
i matrix. Therefore,

the IMTDIAG has the same argument which discussed in previous case IMT statistic,

but the vector zi has different dimension and different elements. As we used in case

of IMT , consider we have true model with two covariates X1 and X2 and fitting the

model with X1 then,

dg(yi, θ) = (Yi − πi)(1− 2πi)

[
1
X2
i

]

6.6.1 An Alternative Formulae of Variance IMTDIAG

As we consider in case of IMT , we wish to compute var(T | S = 0), so

var(T ) = E(dgd
T
g )− E(dg)E(dTg ).

As before

E(dgd
T
g ) = Ex

(
[πt(1− 2π) + π2](1− 2π)2

[
1 x2

i

x2
i x4

i

])
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and,

E(dg) = EX

(
(πt − π)(1− 2π)

[
1
x2
i

])
.

Also,

cov(dg,∇`) = E(dg∇`)− E(dg)E(∇`)

= Ex

(
(πt(1− 2π) + π2)(1− 2π)

[
1 X
X2 X3

])
.

This is as before [E(dg∇`)] become at the least false values, E(∇`) = 0, so the second

term is zero. As the same

var(∇`) = E(∇`∇`T ) = EX

(
(πt(1− 2π) + π2)

[
1 X
X X2

])
As we discussed for IMT , we use the least false values for the parameters in π, so

πt = expit(αt + βt1X1 + βt2X2),

and

π = expit(α∗ + β∗1X1).

6.6.2 The Variance of IMTDIAG for Logistic Regression Model

We need to use the same assumption which used in case of IMT , but, in this case we

have

dg = (yi − πi)(1− 2πi)

[
1
x2
i

]
So to calculate the variance V , we need to calculate var(dg) and cov(dg,∇`), we can

see var(∇`) has the same expression which used in case of IMT . Firstly, we will work

out var(dg), we have

ddT = (y − π)2(1− 2π)2

[
1 x2

i

x2
i x4

i

]
taking expectation EY |X we obtain

E(ddT ) = EX

[
(πt(1− 2π) + π2)(1− 2π)2

[
1 X2

X2 X4

]]
.

Secondly,we need to calculate cov(dg,∇`), as we discussed in case of IMT E(∇`) =

0 at the least false value, and we have

dg∇`T = (y − π)(1− 2π)

[
1
x2
i

]
(y − π)

[
1 xi

]
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= (y − π)2(1− 2π)

[
1 xi
x2
i x3

i

]
So,

cov(dg,∇`) = E(d∇`T ) = EX

[
(πt(1− 2π) + π2)(1− 2π)

[
1 X
X2 X3

]]
.

Then, we use (6.6) to find V .

6.6.3 Empirical Variance of IMTDIAG

As before one candidate would be to compute

di = (yi − π̂i)(1− 2π̂i)

[
1
x2
i

]
i = 1, . . . , n

and

∇`i = (yi − π̂i)
[

1
xi

]
i = 1, . . . , n

where, π̂i is the fitted value from the model with just x1. Now compute

Ŵn =
1

n

n∑
i=1

did
T
i −

(
1

n

n∑
i=1

di

)(
1

n

n∑
i=1

dTi

)

and

B̂n =
1

n

n∑
i=1

(yi − π̂)2

[
1 xi
xi x2

i

]
,

Ĉn =
1

n

n∑
i=1

(yi − π̂)2(1− 2π̂i)

[
1 xi
x2
i x3

i

]
Then use (6.7) as an estimate of V .
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Chapter 7

Asymptotic Distribution of IMT
statistic and Power Calculation

7.1 Introduction

The behaviour of the asymptotic distribution of goodness-of-fit tests is an important

statistical problem. In this chapter we are interested to investigate the behaviour

of the distribution of IMT statistic. Kuss (2002), discussed methods to examine

goodness-of-fit tests, where he shows the IMTDIAG statistic has reasonable power

even for a logistic model with very sparse data. We know that the parameters es-

timators, under the null hypotheses H0 where there is no mis-specification, will be

consistent, asymptotically normal and asymptotically efficient estimators. Under the

alternative hypothesis H1 when the model is mis-specified, however, this estimator

will be biased and inconsistent. The constructing of the IMT is based on d̂, so, to de-

velop the test the probability limit of d required, and the mean and the variance of the

asymptotic distribution of nd̂T V̂ −1d̂, should also be examined. For more information

about asymptotic distribution of statistics see Hausman (1978).

7.2 Behaviour of the IMT Statistic Distribution

As we discussed in the previous chapters the IMT statistic is distributed asymptoti-

cally as central χ2 distribution under H0 when the model is correctly specified, and is

non-central χ2 under H1 when the model mis-specificed. However, the behaviour of

the IMT statistic in practice seems affected the near singularity of covariance matrix

V related to the first two elements was much close to zero as shown in results in

previous chapter. This problem means that in some circumstances properties of the

distribution of the IMT (e.g mean and variance) are far away from the properties
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of χ2 distribution. Even the use of a generalised inverse V̂ − instead V̂ −1 does not

improve matters of V .

7.3 The Behaviour of the Covariance Matrix of the

IMT Statistic

As we discussed in the previous chapter the computed formulae of the variance V as

V̂ works well especially if the S.D of πt not small and when the sample size is large.

However, because, the statistic IMT is ndTV −1d, which depends upon V −1 not V ,the

near singularity of V −1 affects the behaviour of the properties of the statistic. Indeed,

the issue which may be causes the singularity problem is the zero elements of V . As

n∑
i=1

∇`i = 0 (7.1)

and some elements of
∑n

i=1 di are close to elements of (7.1), then the dispersion matrix

V is close to singular. In fact, the dispersion matrix depends upon E(d), and in this

case

E(d) = EX(πt − π)(1− 2π)

 1
X
X2

 .
We can see the first two elements will be zero if the factor (1 − 2π) is constant,

corresponding to the log-likelihood functions

E(Y − π) = 0 , E((Y − π)X) = 0,

and close to 0 if (1 − 2π) varies little between cases. To illustrate this problem we

should focus on the elements of the eigenvalues and the eigenvectors of the covariance

matrix V by simulation example.

7.3.1 Simulation Example for Eigenvector of the Covariance
Matrix V

We consider this simulation example to illustrate the behaviour of the covariance

matrix of d by investigating it is eigenvectors and eigenvalues. If we have a true

logistic regression model has been fitted

π = expit(α + β1X1)
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where X is drawn from a normal distribution with zero mean and σ2 = 2 and using

different cases of parameters α and β1, with sample size n = 500 and N = 5000 simu-

lations. Our example designed for computing the eigenvalues and eigenvectors of the

empirical covariance matrix V = v̂ar(d̂). Three cases used different parameters under

H0, (α, β1) are (0,1), (0.3,0.25), (0.8,0.5) respectively. The result of simulation shows

the average of the empirical covariance matrix and the eigenvalues and eigenvectors

for three cases of parameters are, respectively;

In case α = 0, β1 = 1 the empirical covariance is

Vemp =

 6.535 0.044 −87.78
0.044 522.5 −3.418
−87.78 −3.418 1247

× 10−4,

and the eigenvalues of Vemp are

Evalues =
[

1254.01 522.519 0.35722
]
× 10−4

and the eigenvalues are the columns of

Evectors =

 −0.070198948 −0.0007014321 0.9975327642
−0.004665729 0.9999890452 0.0003748199
0.997522099 0.0046279054 0.0702014515

 .
In case α = 0.3, β1 = 0.25 the empirical covariance is

Vemp =

 0.1345 −3.964 −10.52
−3.964 230.2 167.8
−10.52 167.8 1369

× 10−4,

and the eigenvalues,eigenvectors are

Evalues =
[

1393.85 206.087 0.01958
]
× 10−4

Evactors =

 0.007878297 0.01175401 0.999899883
−0.142772221 −0.98967333 0.012758707
−0.989724217 0.14285844 0.006118794

 .
In case α = 0.8, β1 = 0.5 the empirical covariance is

Vemp =

 2.368 −26.55 −39.02
−26.55 423.7 92.72
−39.02 92.72 1908

× 10−4,

and the eigenvalues,eigenvectors are

Evalues =
[

1914.75 419.326 0.11908
]
× 10−4
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Evectors =

 0.02123125 0.05749870 0.99811980
−0.06243347 −0.99632006 0.05872306
−0.99782328 0.06356285 0.01756328

 .
Covariance matrix appeared small variance more close to zero in all cases of different

parameters. The first element of eigenvalues concerns to the first element of rows

in eigenvector and the second elements concerning to the second element of rows in

eigenvector and the same of the third element. Also, we can see clearly, that the

third elements of the eigenvalues appeared very close to zero comparing with the two

first elements in all cases of simulation. So, we can see that the smallest eigenvalue

is very small, demonstrating the near singularity of V . To more illustrate this point

Figure 7.1, shows the first element of the third columns of the eigenvector of the

empirical covariance matrix. We can see that nearly all the elements which are the

third element in the first row related to the third element of the eigenvalues in all

cases of different parameters appeared close to one. This suggest that there is little

variation in d1. Similarly there is much less variation in d2 compared with d3.

Generally, as we discussed the behaviour of IMT distribution, we focus on the

results which are shown by Kuss (2002). These results show the comparison be-

tween various goodness-of-fit statistics with sparse data, which appeared IMT and

IMTDIAG have reasonable power. Kuss’s does not mention the behaviour of the

asymptotic distribution of IMT . Firstly, we are interested to re-simulate of Kuss’s

example to show how the behaviour of the distribution of IMT is affected, before

going to present our idea to solve this problem. So, we will consider the example

given by Kuss (2002) in the last section.
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Figure 7.1: Plot of the third element in the first row of the eigenvector of empirical
covariance matrix V , under H0 for three different cases of parameters (α, β1), (0, 1),
(0.30, 0.25) and (0.80, 0.50) respectively, with σ2

1 = σ2
2 = 2 and ρ = 0.1 , sample size

n = 500 and N = 5000 number of simulation.
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7.4 Information Matrix Test Reduced (IMTR)

In this section, our purpose is to develop the form of IMT statistic which is asymp-

totically distributed χ2
R distribution under H0, when the model is correctly specified,

and non-central χ2
R(λ) distribution under H1, when the model is mis-specified, in this

case d ∼ N(µ, V ), then dTV −1d ∼ χ2 and

E(dTV −1d) = E(V −1ddT )

= E(V −1(d− µ)(d− µ)T ) + µTV −1µ

= rank(V ) + µTV −1µ

Note that in this case χ2 has mean R + λ and variance 2(R + 2λ), where R is the

rank of V and λ = µTV −1µ. So, the main point is avoid the singularity problem

that discussed in previous sections, which is related with the log likelihood function.

The basic idea is to consider a version of the IMT based on a reduced set of the

elements of d. Therefore, we removed the elements which are related to the log

likelihood function. To illustrate our idea let us consider an example as we discussed

in previous if we have fitted the model with one covariate then, we have

E(d) = EX

 d1

d2

d3

 = EX

 (πt − π)(1− 2π)
(πt − π)(1− 2π)xi
(πt − π)(1− 2π)x2

i


So, as we discussed we need to remove the elements d1 and d2 from d, and then we

will use only just d3 to compute the statistic. in this case d = d3 and the statistic is

nd2
3V
−1. This approach we calle the IMTR, and we will evaluate the IMTR statistic

by simulation to examine the behaviour of its asymptotic distribution.

7.5 Simulation Study

In this part of simulation, we are interested to examine the asymptotic distribution

of IMT statistic in case when all the elements of (d) are used, and also we need to

investigate the properties of the IMTR and how the reduced elements improve and

the asymptotic distribution of the IMTR as chi-square distribution with mean [rank

(V )] and variance [2 rank (V )], if the fitted model is correct. Also, we investigate the

asymptotic distribution of IMT under mis-specified model to focus on the behaviour

of the asymptotic distribution of IMT , which is in this case is distributed non central

chi-square distribution with mean is [rank (V ) + λ] and variance [2 rank (V )+4 λ]

where λ = E(d)TV −1E(d). Moreover, examine the effect of elements of variance

matrix by likelihood function.
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7.5.1 Design of Simulation

This simulation designed to examine the asymptotic distribution of IMT and IMTR,

we will consider two cases of simulation under true model and under mis-specified

model. If we have true logistic regression model with two covariates

πi = expit(α + β1xi1 + β2xi2).

Firstly, we will focus on asymptotic distribution of IMT when the true model is

fitted. Secondly, investigate the asymptotic distribution of IMT when the missing

covariate logistic model has been fitted:

πi = expit(α + β1xi1).

• we consider xi1 and xi2 as a draw from bivariate normal distribution X ∼
N2(0, Ω).

• We consider the 2× 2 covariance matrix is.

Ω = σ2

[
1 ρ
ρ 1

]
- Use two cases of variance σ2 = 0.2, 2 and ρ = 0.1.

- We choose different component of parameters under fitted true model as (αt, βt):

(0,1), (0.3,0.25), (0.8, 0.5), (1.2,2.2), (3.5,2.3).

- Under fitted missing covariates model,we choose different component of param-

eters αt=(0,0.8,0.9,1.2,0.7), βt1=(1,0.7,1.3,2.2,1.5) and βt2=(0.6,0.4,1.2,1.8,2).

- Three cases of sample size uses n = 500, 1000, 5000 and N = 50000 number of

simulation.

7.5.2 Results and Discussion in Case of Correctly Specified
Model

In this simulation we consider to compute the IMT with two cases of dispersion ma-

trix V and VE as we discussed in the previous chapter. To investigate the behavior of

IMT and IMTR under effects of theoretical variance which computed by alternative

formulae and empirical variance, and comparing the results. The results of simulation

reported in several tables. These tables show the mean and the variance of IMT and

IMTR by each found the theoretical and empirical variance. That is The IMTE
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denote to the statistic computed by empirical variance and IMTV denote to use

theoretical variance,

IMTE = d̄T v̂ar(d̄)−1d̄

and

IMTV = d̄T var(d̄)−1d̄

where, d̂ = (d̂1, d̂2, d̂3)T and d = (d1, d2, d3)T i.e. full matrix. Also, IMTE1 and

IMTV 1 denote to the statistic when, d̂ = (d̂2, d̂3)T and d = (d2, d3)T , i.e reduced the

first element. Finally, IMTE2 and IMTV 2 denoted to the statistic when,d̂ = (d̂3)T ,

and d = (d3)T , i.e. reduced the two first elements. Also, αt and βt1 denote to the true

parameters of πt and S.D(πt) is the standard deviation of πt over the distribution

of the covariates. Table 7.1 and Table 7.2 shows the results in case of sample size

n = 500 and σ2
1 = σ2

2 = 0.2, 2 respectively. Table 7.3 and Table 7.4 shows the results

in case of sample size n = 1000, Table 7.5 and Table 7.6 shows the results in case of

sample size n = 5000.

If we maintain the IMT is asymptotically distributed as χ2
R distribution, with

df = R where, R is the rank of V , so, the statistics IMTE or IMTV should have

mean R = 3 and variance 2R = 6, the statistics IMTE1 or IMTV 1 has mean R = 2

and variance 2R = 4 and the last statistics, IMTE2 or IMTV 2 have mean R = 1

and variance 2R = 2. Generally, we can see clearly, that the properties of χ2 distribu-

tion do not apply for both IMTE and IMTV for most sets of parameters, different

σ2 and different sample sizes. The variance shows by far the more erratic behaviour.

If we look at the second proposed statistic IMTE1 or IMEV 1, the properties of χ2

still do not apply, but, the departures are less than problem for IMTE, IMTV and

it is looks better. The final proposed statistic, which is our proposed IMTR, the new

form of the IMT denoted in this simulation by IMTE2 and IMTV 2, shows reason-

able properties, the mean and the variance appeared very close to the properties of

χ2 distribution across all cases.

If we consider the results by the sample size, we can see that, when the sample

size is larger, the results appear much better. In case of sample size n = 500, IMTR

in some cases appeared slightly affected, especially when using the empirical variance,

and for small values of the S.D of πt. If we make a comparison between the IMT ,

computed by empirical variance and theoretical variance, the results reported that,

in large sample size n = 5000 have the same behaviour. Finally, we can say although
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Mean and variance of the IMT
αt βt1 πt S.Dπt - IMTE IMTE1 IMTE2 IMTV IMTV 1 IMTV 2
0 1 0.48 0.07 Mean 3.575 2.292 1.150 1874.6 1.991 1.008

var 8.966 5.913 2.965 39629687 4.813 2.422

0.3 0.25 0.57 0.01 Mean 2.191 2.080 1.055 4.887 4.887 1.180
var 4.472 4.145 2.186 98.414 98.381 3.935

0.8 0.5 0.48 0.07 Mean 2.955 2.188 1.122 18028.2 3.228 0.992
var 7.693 5.069 2.856 6196039094 32.236 2.115

1.2 2.2 0.72 0.21 Mean 5.448 2.614 1.269 13.705 1.974 1.002
var 47.064 10.114 4.313 917.927 4.496 2.307

3.5 2.3 0.95 0.02 Mean 12.056 4.044 2.053 20.455 2.206 1.168
var 613.99 50.889 23.290 2581.01 10.060 4.145

Table 7.1: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is correctly specified and df = 3, 2, 1 related to the
three cases of IMT respectively, variables generated from bivariate Normal distribu-
tion with sample size n = 500, σ2

1=σ2
2=0.2, ρ = 0.1 and µ1 = µ2 = 0

Mean and variance of the IMT
αt βt1 πt S.Dπt - IMTE IMTE1 IMTE2 IMTV IMTV 1 IMTV 2
0 1 0.49 0.25 Mean 7.151 2.823 1.386 11.951 1.960 0.98

var 82.956 13.393 6.156 539.85 4.365 2.213

0.3 0.25 0.48 0.07 Mean 2.483 2.204 1.122 2.030 2.030 0.999
var 6.343 5.178 2.782 5.829 5.829 2.468

0.8 0.5 0.66 0.14 Mean 4.560 2.458 1.249 47.621 1.975 0.998
var 22.865 8.007 4.115 15031.2 4.592 2.318

1.2 2.2 0.63 0.35 Mean 15.856 3.666 1.618 4.287 1.973 0.993
var 854.47 28.515 9.430 51.095 5.128 2.594

3.5 2.3 0.83 0.24 Mean 22.847 4.240 1.388 3.885 1.957 0.976
var 2217.8 39.473 5.355 48.626 5.127 2.087

Table 7.2: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is correctly specified and df = 3, 2, 1 related to the
three cases of IMT respectively, variables generated from bivariate Normal distribu-
tion with sample size n = 500, σ2

1=σ2
2=2, ρ = 0.1 and µ1 = µ2 = 0

there are slight effects in some cases related to the small value of S.D(πt), the new

form of statistic IMTR works well and has reasonable behaviour in most of the cases

investigated. Moreover, we can say that the IMTR statistic appeared to have an

asymptotic χ2 distribution without strange behaviour, at least with request to the

mean and variance.
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Mean and variance of the IMT
αt βt1 πt S.Dπt - IMTE IMTE1 IMTE2 IMTV IMTV 1 IMTV 2
0 1 0.50 0.12 Mean 3.524 2.168 1.087 489.7 1.905 0.922

var 8.859 5.194 2.636 1930003 4.017 1.859

0.30 0.25 0.56 0.03 Mean 2.087 2.039 1.030 3.448 3.447 1.044
var 4.155 4.013 2.099 36.880 36.866 2.564

0.8 0.5 0.67 0.03 Mean 2.879 2.105 1.058 8890.9 2.564 1.019
var 7.124 4.596 2.437 1126068493 12.820 2.153

1.2 2.2 0.72 0.18 Mean 4.570 2.353 1.168 8.285 2.015 1.028
var 31.828 7.353 3.400 235.13 4.324 2.238

3.5 2.3 0.94 0.06 Mean 6.738 2.875 1.507 11.146 2.102 1.071
var 145.32 14.751 7.699 612.50 7.120 2.971

Table 7.3: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is correctly specified and df = 3, 2, 1 related to the
three cases of IMT respectively, variables generated from bivariate Normal distribu-
tion with sample size n = 1000, σ2

1=σ2
2=0.2, ρ = 0.1 and µ1 = µ2 = 0

Mean and variance of the IMT
αt βt1 πt S.Dπt - IMTE IMTE1 IMTE2 IMTV IMTV 1 IMTV 2
0 1 0.49 0.26 Mean 5.728 2.451 1.217 7.099 1.990 0.995

var 59.68 8.599 4.041 137.50 4.225 2.122

0.3 0.25 0.56 0.09 Mean 2.327 2.132 1.074 2.008 2.008 0.967
var 5.734 4.867 2.541 4.929 4.929 2.125

0.8 0.5 0.65 0.13 Mean 4.092 2.272 1.152 26.793 1.979 0.984
var 18.246 6.292 3.254 4349.58 4.270 2.079

1.2 2.2 0.63 0.35 Mean 9.610 2.831 1.324 3.637 1.981 0.997
var 359.52 14.428 5.681 26.351 4.490 2.182

3.5 2.3 0.83 0.26 Mean 12.485 3.107 1.203 3.471 1.983 0.995
var 804.510 18.161 3.771 28.060 4.883 2.093

Table 7.4: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is correctly specified and df = 3, 2, 1 related to the
three cases of IMT respectively, variables generated from bivariate Normal distribu-
tion with sample size n = 1000, σ2

1=σ2
2=2, ρ = 0.1 and µ1 = µ2 = 0
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Mean and variance of the IMT
αt βt1 πt S.Dπt - IMTE IMTE1 IMTE2 IMTV IMTV 1 IMTV 2
0 1 0.50 0.10 Mean 3.324 2.055 1.028 127.34 1.989 0.992

var 8.555 4.482 2.268 104530 4.079 2.051

0.3 0.25 0.57 0.02 Mean 2.018 2.018 1.010 2.247 2.247 0.972
var 4.080 4.079 2.094 8.201 8.199 2.027

0.8 0.5 0.70 0.04 Mean 2.906 2.020 1.016 1626.3 2.165 1.037
var 6.462 4.121 2.124 25053397 5.819 2.177

1.2 2.2 0.73 0.17 Mean 3.458 2.077 1.035 4.117 1.995 0.994
var 11.521 4.788 2.371 24.312 4.112 2.050

3.5 2.3 0.95 0.05 Mean 3.577 2.164 1.109 5.073 2.106 1.041
var 13.550 5.298 2.909 56.482 5.102 2.277

Table 7.5: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is correctly specified and df = 3, 2, 1 related to the
three cases of IMT respectively, variables generated from bivariate Normal distribu-
tion with sample size n = 5000, σ2

1=σ2
2=0.2, ρ = 0.1 and µ1 = µ2 = 0

Mean and variance of the IMT
αt βt1 πt S.Dπt - IMTE IMTE1 IMTE2 IMTV IMTV 1 IMTV 2
0 1 0.49 0.26 Mean 3.802 2.106 1.053 3.872 1.995 0.994

var 17.762 4.961 2.493 18.494 4.025 1.989

0.3 0.25 0.58 0.07 Mean 2.075 2.026 1.010 1.946 1.946 0.955
var 4.353 4.227 2.132 3.940 3.940 1.879

0.8 0.5 0.68 0.14 Mean 3.368 2.061 1.033 7.923 2.033 1.026
var 9.912 4.566 2.326 228.722 4.214 2.146

1.2 2.2 0.63 0.35 Mean 4.351 2.178 1.067 3.127 2.001 0.990
var 33.614 5.723 2.661 9.642 4.135 2.053

3.5 2.3 0.48 0.07 Mean 4.630 2.237 1.042 3.098 1.998 0.997
var 43.533 6.198 2.372 9.118 4.117 2.019

Table 7.6: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 5000, σ2

1=σ2
2=2, ρ = 0.1 and µ1 = µ2 = 0
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Mean and variance of the IMT by Theoretical and Empirical Variance
αt βt1 βt2 πt S.Dπt - IMTV IMTV 1 IMTV 2 IMTE IMTE1 IMTE2
0 1 0.6 0.80 0.07 Mean 84.71 2.010 0.973 4.721 2.492 1.172

var 52231 5.634 1.960 29.73 8.554 3.373

0.8 0.7 0.4 0.86 0.06 Mean 752.8 2.510 0.973 4.806 2.593 1.237
var 68376 14.04 1.988 30.94 9.676 4.078

0.9 1.3 1.2 0.94 0.05 Mean 35.70 2.168 0.958 10.94 3.820 1.791
var 11022 11.31 2.001 424.1 39.46 12.66

1.2 2.2 1.8 0.98 0.02 Mean 14.09 1.802 0.897 76.01 17.21 6.215
var 1104 9.907 2.505 3664 4742 61.25

0.7 1.5 2 0.97 0.05 Mean 23.96 2.557 0.983 18.85 5.178 2.362
var 3322 18.85 2.297 1906 115.0 26.32

Table 7.7: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is mis-specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 500, σ2

1=σ2
2=0.2, ρ = 0.6 and µ1 = µ2 = 0

7.5.3 Results and Discussion in Case of Mis-specified Model

In this part we will discuss the results under H1, when the model is mis-specified. We

used the same assumptions which we discussed in previous section, but in this case

βt2 6= 0, and we choose different cases of parameters (βt2 = 0.4, 0.6, 1.2, 1.8, 2). Table

7.7 and Table 7.8 shows the results in two case of σ2
1 = σ2

2 = 0.2, 2 respectively and

sample size n = 500, Table 7.9 and Table 7.10, shows the results in case of sample

size n = 1000 and Table 7.11 and Table 7.12, shows the results in case of sample size

n = 5000.

We see from the tables that IMTV and IMTE generally do not have means and

variance that are close to those expected from a χ2 distribution. This is due to the

instability resulting from the close relation between the expressions for IMTV and

IMTE and the corresponding log-likelihood. As was the case under H0, our alterna-

tive IMTR gave more stable results.

However, the assumption that its distribution closely follows a non-central χ2 is

not well supported. IfX is χ2
ν(λ), for non-central parameter λ, then < = var(X)−2ν

E(X)−ν = 4.

The sample version of this quantity, for n = 5000, are shown in Table 7.13. Although

not highly discrepant, the agreement is disappointing.
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Mean and variance of the IMT by Theoretical and Empirical Variance
αt βt1 βt2 πt S.Dπt - IMTV IMTV 1 IMTV 2 IMTE IMTE1 IMTE2
0 1 0.6 0.53 0.31 Mean 7.525 1.987 1.006 9.327 3.177 1.600

var 169.5 4.286 2.226 173.8 18.40 9.035

0.8 0.7 0.4 0.64 0.25 Mean 9.930 1.948 0.969 7.086 2.850 1.372
var 367.1 4.140 2.085 87.51 13.28 5.704

0.9 1.3 1.2 0.59 0.32 Mean 6.616 2.203 1.111 14.89 4.126 1.977
var 108.2 4.645 2.352 507.3 33.14 13.63

1.2 2.2 1.8 0.56 0.36 Mean 7.411 2.623 1.358 24.89 5.447 2.561
var 105.8 6.117 3.262 1402 55.45 22.45

0.7 1.5 2 0.55 0.34 Mean 7.374 2.368 1.311 17.31 4.666 2.498
var 113.0 4.865 2.852 599.4 38.57 19.44

Table 7.8: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is mis-specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 500, σ2

1=σ2
2=2, ρ = 0.6 and µ1 = µ2 = 0

Mean and variance of the IMT by Theoretical and Empirical Variance
αt βt1 βt2 πt S.Dπt - IMTV IMTV 1 IMTV 2 IMTE IMTE1 IMTE2
0 1 0.6 0.79 0.08 Mean 46.89 2.114 1.003 4.040 2.271 1.088

var 15058 5.413 2.045 19.88 6.349 2.659

0.8 0.7 0.4 0.86 0.06 Mean 325.2 2.224 0.979 4.247 2.339 1.121
var 11002 8.191 1.976 22.45 6.972 3.063

0.9 1.3 1.2 0.96 0.04 Mean 21.55 2.216 0.972 6.619 2.858 1.372
var 3211 8.860 1.974 120.4 14.34 5.935

1.2 2.2 1.8 0.97 0.06 Mean 11.53 2.229 0.960 18.85 4.997 2.478
var 665.2 12.41 2.314 3090 116.3 32.06

0.7 1.5 2 0.96 0.04 Mean 12.32 2.045 0.983 8.718 3.294 1.645
var 789.5 6.986 2.001 324.6 23.95 9.512

Table 7.9: Simulation results of mean and variance of IMT by theoretical and em-
pirical variance, when the model is mis-specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 1000, σ2

1=σ2
2=0.2, ρ = 0.6 and µ1 = µ2 = 0
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Mean and variance of the IMT by Theoretical and Empirical Variance
αt βt1 βt2 πt S.Dπt - IMTV IMTV 1 IMTV 2 IMTE IMTE1 IMTE2
0 1 0.6 0.52 0.29 Mean 5.339 2.031 1.039 7.250 2.742 1.407

var 56.47 4.064 2.107 115.7 11.46 5.809

0.8 0.7 0.4 0.66 0.21 Mean 6.745 2.018 1.011 5.771 2.511 1.232
var 124.5 4.249 2.147 62.82 8.980 4.099

0.9 1.3 1.2 0.62 0.33 Mean 5.228 2.391 1.225 11.40 3.645 1.808
var 42.32 5.033 2.614 339.7 21.56 9.677

1.2 2.2 1.8 0.62 0.34 Mean 6.431 3.076 1.642 19.72 5.109 2.502
var 51.73 7.455 4.154 1020 39.09 16.72

0.7 1.5 2 0.56 0.33 Mean 6.570 2.809 1.664 14.47 4.458 2.554
var 64.10 6.395 4.069 472.7 29.57 16.06

Table 7.10: Simulation results of mean and variance of IMT by theoretical and
empirical variance, when the model is mis-specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 1000, σ2

1=σ2
2=2, ρ = 0.6 and µ1 = µ2 = 0

Mean and variance of the IMT by Theoretical and Empirical Variance
αt βt1 βt2 πt S.Dπt - IMTV IMTV 1 IMTV 2 IMTE IMTE1 IMTE2
0 1 0.6 0.81 0.08 Mean 11.57 2.052 1.013 3.299 2.068 1.020

var 618.9 4.353 2.024 8.901 4.452 2.124

0.8 0.7 0.4 0.86 0.05 Mean 73.43 2.057 0.993 3.361 2.071 1.019
var 44634 4.802 1.997 9.779 4.609 2.210

0.9 1.3 1.2 0.95 0.04 Mean 6.138 1.828 0.988 3.673 2.208 1.116
var 131.4 3.744 1.926 14.37 5.515 2.879

1.2 2.2 1.8 0.98 0.03 Mean 5.646 2.250 1.048 4.551 2.528 1.332
var 72.80 6.869 2.217 36.79 8.885 4.982

0.7 1.5 2 0.96 0.05 Mean 6.091 2.194 1.067 3.981 2.338 1.223
var 98.12 5.684 2.179 20.08 6.687 3.646

Table 7.11: Simulation results of mean and variance of IMT by theoretical and
empirical variance, when the model is mis-specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 5000, σ2

1=σ2
2=0.2, ρ = 0.6 and µ1 = µ2 = 0
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Mean and variance of the IMT by Theoretical Variance
αt βt1 βt2 πt S.Dπt - IMTV IMTV 1 IMTV 2 IMTE IMTE1 IMTE2
0 1 0.6 0.49 0.29 Mean 3.742 2.182 1.191 4.641 2.470 1.361

var 13.25 4.457 2.577 31.30 7.381 4.365

0.8 0.7 0.4 0.63 0.24 Mean 3.796 2.037 1.011 3.847 2.180 1.085
var 16.21 4.099 2.001 17.33 5.459 2.680

0.9 1.3 1.2 0.60 0.32 Mean 5.332 3.718 1.992 5.573 4.537 2.375
var 18.56 10.05 5.573 108.3 20.68 10.44

1.2 2.2 1.8 0.60 0.36 Mean 9.211 6.771 3.693 17.05 8.265 4.322
var 39.29 22.35 12.40 398.1 48.54 23.00

0.7 1.5 2 0.56 0.33 Mean 8.539 5.970 4.231 13.45 7.029 4.845
var 38.76 19.31 14.72 226.4 37.38 25.91

Table 7.12: Simulation results of mean and variance of IMT by theoretical and
empirical variance, when the model is mis-specified and df = 3, 2, 1 related to the three
cases of IMT respectively, variables generated from bivariate Normal distribution
with sample size n = 5000, σ2

1=σ2
2=2, ρ = 0.6 and µ1 = µ2 = 0

σ2
1 = σ2

2 = 0.2 Values of <
αt βt1 βt2 πt S.Dπt <-Theoretical <-Empirical
0 1 0.6 0.81 0.08 1.85 6.20

0.8 0.7 0.4 0.86 0.05 0.43 11.05

0.9 1.3 1.2 0.95 0.04 6.17 7.58

1.2 2.2 1.8 0.98 0.03 4.52 8.98

0.7 1.5 2 0.96 0.05 1.76 7.38

σ2
1 = σ2

2 = 2
0 1 0.6 0.49 0.29 3.02 6.55

0.8 0.7 0.4 0.63 0.24 0.09 8.00

0.9 1.3 1.2 0.60 0.32 3.60 6.14

1.2 2.2 1.8 0.60 0.36 3.86 6.32

0.7 1.5 2 0.56 0.33 3.94 6.22

Table 7.13: Compute the value < = var(X)− 2ν/E(X)− ν of IMTR by theoretical
and empirical variance, with sample size n = 5000, σ2

1=σ2
2=0.2 and 2, ρ = 0.6 and

µ1 = µ2 = 0
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7.6 Conclusion

We have investigated the new form of the information matrix test IMTR by sim-

ulation which reduced the elements of d to remove overlap with elements of the

log-likelihood function. In fact, although there is slightly different results when us-

ing the empirical covariance matrix with sample size n = 500, the IMTR appeared

reasonable asymptotic distribution behaviour and the properties very close to the χ2-

distribution under H0. However, the form of the distribution under H1 is less clear.

According to these results, it would be helpful to try an alternative approach. In the

next chapter we will investigate the application of the bootstrap to this problem.

7.7 Simulation Study of Kuss (2002)

Kuss (2002), discussed and compared various goodness-of-fit tests in logistic regression

with sparse data. The idea of the comparison is to evaluate goodness-of-fit tests and

also examine the behaviour of the tests. We will focus on four goodness-of-fit tests

(Ĉg, RSS, IM, IMDIAG). The simulation has been designed to examine the behaviour

of various goodness-of-fit tests under the alternative hypotheses of a missing covariate,

or wrong function a form of the covariate. In our work, we focus on behaviour of

goodness-of-fit tests under alternative hypotheses in case of missing covariate model

and the behaviour of the asymptotic distribution of goodness-of-fit statistics, because

in these cases we could not reproduce Kuss’s results. Therefore, we will examine

in more depth the behaviour of the tests and determine more information about

asymptotic MLE distribution in case of the missing covariate model

πi = expit(0.405xi + 0.223ui),

where X,U ∼ U(−6, 6), X and U independent.

7.7.1 Design of studies

We designed the simulation study as Kuss’s example follows:

The sample sizes are n=100 and n=500;

the number of simulations is 1000;

distribution of the predictor variables X,U is U(−6, 6), X and U independent,

chosen to conform with Kuss’s work.
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Use four of goodness-of-fit tests from the simulation study under two different

alternative hypotheses:

- True covariates fitted.

- Missing covariate.

• Fitted model in all cases is a standard logistic model with an intercept and one

covariate X.

7.7.2 Results and discussion of Tests Under Correct Model

In Table 7.15, we report some results, the mean ,variance and the empirical power of

four goodness-of-fit tests from simulation study under correct model, namely

πi = expit(0.693xi).

The distribution of value of πi given X ∼ U(−6, 6) are shown in the histogram in

Figure 7.2.

Figure 7.2: Histogram plots of the value of πi given X ∼ U(−6, 6) with two samples
size n=100 and n=500 respectively.

Statistics used in the simulation as goodness-of fit tests are: Hosmer - Lemeshow

(Ĉg), Information matrix (IM), Information matrix Diagonal (IMDIAG) and residual

sum of squares (RSS). The asymptotic distribution of statistics is χ2
df distribution,

where the mean and variance equal df and 2df respectively. In case of (Ĉg) statistic

we have chosen the number of group is g = 10 so, degree of freedom is df = g − 2.

we can see the results shown in Table 7.14, the mean and variance of all statistics
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n = 100 n = 500
− df Mean Var %Rej Mean Var %Rej

Ĉg 8 8.06 20.47 4.6 7.96 17.12 5.70
IM 3 3.06 7.23 5.10 3.00 6.33 4.70

IMDIAG 2 2.04 3.97 5.50 1.94 3.63 4.20
RSS 1 0.98 1.81 4.60 0.99 1.83 4.10

Table 7.14: Results of N=1000 simulation with sample size n=100 and n=500 under
correct model

appeared close to df and 2df . Moreover, we found the results are better when fit the

model with sample size n = 500. However, there is slightly large variance of (Ĉg) in

case of sample size n = 100. Overall, the empirical power and type I error looks good

.

7.7.3 Results and Discussion of Tests Under Missing Covari-
ate Model

In this part we will report the results of power to detect a misspecified model for

same goodness-of-fit tests under missing covariate model, when the model is:

logit(πi) = expit(0.405xi + 0.223ui)

and fit standard logistic regression model with xi.

n=100 n=500
− df Mean Var %Rej Mean Var %Rej

Ĉg 8 7.44 11.13 1.50 7.35 12.62 3.20
IM 3 3.01 6.05 5.50 2.38 4.15 1.90

IMDIAG 2 1.82 3.06 3.3 2.05 3.46 4.80
RSS 1 0.92 1.51 4.10 0.99 1.73 4.50

Table 7.15: Results of N=1000 simulation with sample size n=100 and n=500 under
missing covariate model

Table 7.15, shows results from simulation study under alternative hypotheses miss-

ing covariate model.We can see that the mean and variance of all statistics close to

df and 2df , but we have slightly smaller variance in case of Ĉg. However, we have low

power in all cases when used IM statistics in case of sample size n = 500 , IMDIAG

statistic and RSS in case of sample size n = 100 and Ĉg statistic in both cases of

sample size.
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Chapter 8

Bootstrap Version and Power

8.1 Introduction

In the previous chapter we have produced a new form test IMTR statistic, to remove

the strange behaviour in the distribution of the full version of the statistic, but, it is

based on large samples and may be inaccurate and misleading in small samples. In

this chapter we will investigate the results for the new form of statistic IMTR, as

introduced in previous chapter, using the bootstrap. We consider strategy to compute

and investigate the p-value of the bootstrap. Inferences and accurate standard errors

for parameters and mean functions require distribution assumptions and, often, large

sample size. In small samples standard statistical method can be misleading, in this

case a bootstrap can be used for test. Bootstrap methods discussed by Efron (1979),

which shows in principle, bootstrap methods are more widely applicable and require

few assumptions. As such, the bootstrap should provide a valid test of the null

hypotheses that the model is correctly specified.

8.2 The Basic Idea of the Bootstrap Method

Suppose we have a sample x1, x2, . . . , xn draw from any distribution , say, such as

Normal distribution. The sample values are thought of as the outcomes of indepen-

dent and identically distributed random variables X1, X2, . . . , Xn. The sample is to

be used to make inferences about a population characteristic, the equation here is,

what is confidence interval for the population median? We can find an approximate

answer to this by compute the median of the random sample x∗1, x
∗
2, . . . , x

∗
n, which

is simulated from the known distribution say G, and repeat this simulation B times

to find confidence interval for the median. In most cases, G will not be actually

known , and so, this simulation is not available. Efron (1979), pointed out bootstrap
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method, that the observed data can be used to estimate G, and can sample from the

estimate Ĝ. Obtaining a random sample x∗1, x
∗
2, . . . , x

∗
n, from amounts to sampling

with replacement from the x1, . . . , xn observed values and then, repeat this B times,

see Efron and Tibshirani (1993), Davison and Hinkley (1997) and as applied example

see Weisberg (2005, p.244).

8.3 Hypothesis Testing with the Bootstrap

The bootstrap methods are most naturally used to compute confidence intervals but

can be adapted for hypothesis testing. It is important, when using the bootstrap

for perform hypothesis tests, that at same stage of the calculation, the assumption

incorporated in to the arithmetic. We will consider, as an example the one sample

problem, where the single unknown probability distribution G produces the data set

X by random sampling X = (x1, . . . , xn). We have calculate a statistic of interest

from X say the mean E(X) = µ.

In this situation we wish to test the null hypothesis

H0 : E(X) = µ0,

where, E(X) = µx is unknown. Now we need to investigate this hypotheses and we

could use a t-statistic i.e.

tobs =
x̄− µ0

s/
√
n
,

where s is the standard deviation of the set of observations x. Instead, we will work

to evaluate the significance of tobs by bootstrapping the data set, so, in each bootstrap

sample compute the statistic

t∗b =
x̃∗ − µ0

s∗/
√
n
,

where, b = 1, . . . , B. Note that the empirical distribution Ĝ is not an appropriate

estimate for G, because it does not obey H0. Consequently, some care is needed in

the definition of x̃∗ and s∗. We translate the empirical distribution Ĝ, so, that it has

the desired mean: we use as our estimated null distribution the empirical distribution

of the values:

x̃i = xi − x̄+ µ0 (8.1)

for each bootstrap sample, as this is guaranteed to have a mean µ0. x̃∗ is the mean

of (8.1) for the bth bootstrap sample and s∗ in the corresponding SD.
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Finally, we have observed statistic tobs, the achieved significance level of the test

in this case is defined to be the probability of observing at least that large a value

when the H0 is true, ProbH0{|t∗| ≥ |tobs|}, and the probability of the bootstrap is

PBoot =
#(|t∗b | ≥ |tobs|)

B
.

8.4 Bootstrap the IMT Statistic

In this part we are interested to use the idea of the bootstrap test on the IMT

statistic, to confirm the behaviour distribution of the IMT statistic. As we found in

the previous chapter that there was poor asymptotic behaviour for the distribution

of some forms of IMT and we proposed a new form to avoid this problem. In fact,

we have applied this in large sample sizes, which appeared to give reasonable results

for use of the new form of statistic. To confirm of these results we use the bootstrap

test to investigate the behaviour of IMT distribution.

8.4.1 Design the Test

So, as we discussed in the previos chapter we have a sample D = (d1, d2, . . . , dn ∈ Rq),

of differences between the two vectorized forms of the information matrix and we wish

to test the null hypotheses:

H0 : E(di) = 0

Let consider the IMTobs statistic for the observed sample, i.e.

IMTobs = nd̄TV −1
E d̄,

where, VE is the empirical variance of the statistic. So, to evaluate the significance

of the IMTobs by bootstrapping the data set D, we obtain bootstrap samples D∗ =

(d∗1, d
∗
2, . . . , d

∗
n), and in each bootstrap sample we calculate,

IMT ∗b = n(d̄∗ − d̄)TV ∗−1
E (d̄∗ − d̄),

where, b = 1, 2, . . . , B and V ∗E is the empirical variance of the bootstrap sample. We

must subtract d̄ from each d̄∗ in order to ensure that we are sampling under H0. Now,

the probability of the test under H0 is true, ProbH0{IMT ∗ ≥ IMTobs}, and then the

p-value of bootstrap in this case is

PBoot =
IMT ∗b ≥ IMTobs

B
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8.5 Simulation study of Bootstrap

Our central goal of this simulation is to assess the power of the two version of the

statistic, namely IMT and IMTR by the bootstrap test, under using the empirical

covariance matrix. To confirm the results previously found on the behaviour of the

distribution of IMT , the strategy of this simulation is first to compute the IMT

and IMTR when the model is correctly specified and find PBoot. If we repeat this

procedure in N simulation then the PBoot values obtained should come from a U [0, 1]

distribution.

8.5.1 Design of Simulation

We design this simulation to investigate the statistic IMT and IMTR and the boot-

strap test, PBoot. To achieve the goal of this simulation we will consider two cases,

when we fitted the true logistic regression model and when missing covariates model

has been fitted. So, we designed this simulation in two partes

In the first part we consider the simulatuion under H0 when the model is correctly

specified:

• We consider three cases of true model with different chosen parameters:

πi = expit(0.5 + 0.8xi1 + 0.6xi2 + 1.2xi3),

πi = expit(0.9 + 1.3xi1 + 1.1xi2),

πi = expit(0.2 + 0.3xi1).

and fitted the model under H0 in each cases.

• We choose covariates x as draw from normal distribution X ∼ N3(0, Σ).

• We consider the covariance matrix Σ with σ2
1 = σ2

3 = 4, σ2
2 = 9 and the corre-

lation is ρ = 0.5.

• We compute di and calculate observed statistic IMTobs.

• Calculate bootstrap statistic IMT ∗ in each bootstrap sample.

• Calculate p-value PBoot, and investigate its distribution using a histogram.

• The sample size and bootstrap sample are n = B = 500 and N=1000 is the

number of simulations.
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In the second part of this simulation we consider to investigate the behaviour distri-

bution of the IMTR under under H1 when the model is mis-specified.

• We have consider three cases of the true logistic model with two covariates:

πi = expit(0.4 + 0.8xi1 + 2xi2)

πi = expit(0.4 + 0.8xi1 + 1.5xi2)

πi = expit(0.4 + 0.8xi1 + 0.5xi2)

and we fit the model when omitted the last covariates xi2.

• Calculate the PBoot in case of IMTR.

• The sample size and bootstrap sample are n = B = 500 and N = 5000 is the

number of simulations.

8.5.2 Results and Discussion Under True Model

The first part of this simulation designed to compute the PBoot for fitted the logistic

model under H0, as shown in Figure 8.1. In this case the true logistic model is

πi = expit(0.4 + 0.8xi1 + 1.5xi2 + 2.5xi3).

The above histogram is the histogram of PBoot of IMT statistic computed by full

elements of empirical variance. The below histogram is the histogram of PBoot of

new form statistic IMTR. It is clear that the histogram of PBoot for IMT are not

uniformly distribution on the interval [0, 1], indicating that the χ2 properties to the

H0 is very poor. However, the results are shown in the below histogram, the value

of PBoot for the new form of statistic IMTR is uniformly distribution on the interval

[0, 1], which is indicating that the behaviour distribution of the IMTR statistic is χ2

distributed. The second proposed fitted the logistic model under H0 and we considers

the true model is

πi = expit(0.9 + 1.3xi1 + 1.1xi2).

The results of fitted the above model shown in Figure 8.2, the above histogram

concerning to the values of the PBoot for IMT statistic and the below histogram

concerning to the values of the PBoot for IMTR statistic. We can see clearly that

the values of PBoot for IMT are not uniformly distribution and PBoot for IMTR are
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uniformly distribution. The final proposed fitted the logistic model, when the true

model is

πi = expit(0.4 + 0.8xi1).

The results shown in Figure 8.3, the above histogram reported the PBoot for IMT

which appeared are not uniformly distribution and the second histogram reported

PBoot for IMTR which is appeared are uniformly distribution.

Over all, we can say in all cases of different parameters for fitted true logistic model,

the values of the PBoot for the statistic IMTR has a distribution much clear to uni-

form than that for IMT . These results confirm the results of previous chapter and

consider the statistic IMTR works well as approaches to avoid the singular problem.

To more illustrate the behaviour of p-value, we have in the results N of p-values

where N is the number of simulations, and those are supposedly from a uniform [0, 1]

distribution. The test of this can be found from

DU =
10∑
g=1

(pg − 1
10
N)2

1
10
N

where pg is the number of p-value in the gth group, i.e. [0, 0.1), [0.1, 0.2), . . . , (0.9, 1].

So this should be χ2
9 if the p-values are uniform. We calculateDU in all cases of models

in simulation and the results are shown in Table 8.1. In this case the E(DU) = 9,

and we can see clearly the results gave reasonable values of DU in case of IMTR.

However, in case of IMT statistic the values of DU appeared far away from the

normal behaviour for a uniform distribution.

DU
The true model IMT IMTR

πi = expit(0.4 + 0.8xi1 + 1.5xi2 + 2.5xi3) 323.4 6.04
πi = expit(0.9 + 1.3xi1 + 1.1xi2) 354 .21 13.33

πi = expit(0.4 + 0.8xi1) 7020.48 20.96

Table 8.1: Results of the calculation of DU values in three cases of models.
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Figure 8.1: Histogram bootstrap of the PBoot of IMT and IMTR respectively, under
true model given by α = 0.5, β1 = 0.8, β2 = 0.6, β3 = 1.2, sample size and bootstrap
sample is n=B=500 and N=1000 number of simulation.
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Figure 8.2: Histogram bootstrap of thePBoot of IMT and IMTR respectively, under
true model given by α = 0.9, β1 = 1.3, β2 = 1.1, sample size and bootstrap sample is
n=B=500 and N=1000 number of simulation.
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Figure 8.3: Histogram bootstrap of the PBoot of IMT and IMTR respectively, under
true model given by α = 0.2, β1 = 0.3, sample size and bootstrap sample is n=B=500
and N=1000 number of simulation.
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8.5.3 Results and Discussion Under Mis-spesification

The second part of simulation concerning to computed the PBoot for IMTR only

under fitting missing covariates logistic model. To more investigate the behaviour of

IMTR, we made comparison the histogram of PBoot for IMTR between true model

and missing covariates model. We considered three cases of the true logistic model

with two covariates and we fitted the logistic model when xi2 omitted. The results

shown in Figure 8.4, 8.5 and 8.6 the above histogram denoted to the PBoot for IMTR

under H0 as before we can see PBoot are uniformly distribution in all cases. However,

the histogram below concerning to the PBoot for IMTR under H1 mis-specified model,

it is clear that the value of PBoot tend quick to zero which meaning we reject the null

hypotheses.

Moreover, if we calculate the value of DU in each case, the results shows in Tabel

8.2.

In fact, we support the behaviour distribution of PBoot under mis-specification

which the value is very small related to reject H0. Finally, from these results it seems

clearly to say the IMTR has reasonable behaviour.

DU of the IMTR
The true model Under H0 Under H1

πi = expit(0.4 + 0.8xi1 + 2xi2) 50.9 239.12
πi = expit(0.4 + 0.8xi1 + 1.5xi2) 15.10 404.57
πi = expit(0.4 + 0.8xi1 + 0.5xi2) 8.52 135.88

Table 8.2: Results of the calculation of DU values in three cases of models under H0

and H1.
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Figure 8.4: Histogram bootstrap of the PBoot of IMTR, for fitted true logistic model
with two covariates with α = 0.4, β1 = 0.8, β2 = 1.5, and missing one covariate model
respectively, sample size and bootstrap smple is n=B=500 and N=5000 number of
simulation.
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Figure 8.5: Histogram bootstrap of the PBoot of IMTR, for fitted true logistic model
with two covariates with α = 0.4, β1 = 0.8, β2 = 0.5, and missing one covariate model
respectively, sample size and bootstrap smple is n=B=500 and N=5000 number of
simulation.
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Figure 8.6: Histogram bootstrap of the PBoot of IMTR, for fitted true logistic model
with two covariates with α = 0.4, β1 = 0.8, β2 = 2, and missing one covariate model
respectively, sample size and bootstrap smple is n=B=500 and N=5000 number of
simulation.
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8.6 Power of Tests Consideration

In the early part of this chapter we examined the proposed new test statistic IMTR

by bootstrap test. In Figure 8.4, there appeared to be large numbers of small p-values

less than 0.1. We need to the power of the bootstrap test by calculation the power

under a mis-specified model with using asymptotic distribution for IMTR. We also

attempt to calculate the power theoretically and compare with the empirical values.

8.6.1 Definition

When the null hypothesis H0 is true and all assumptions are met, the chance of

incorrectly declaring H0 to be false at level α, is only α. If α = 0.1, then in 10%, of

tests we will get a p − values ≤ 0.1. When H0 is false, we will expect to see small

p-values more often. The power of a test is defined to be the probability of rejecting

H0 under a given alternative. This definition pointed out by Weisberg (2005, p.31).

8.6.2 Simulation of Power Calculation

In this part we are interested to show the design of the simulations and calculation of

the bootstrap, empirical and theoretical power. We consider the mis-specified model

which we fitted in the previous simulation 8.5.

Bootstrap Power

The result of the previous simulation gives 5000 values of IMTR, so, we used these

values to calculate the power of the bootstrap test. In this case we will calculate the

bootstrap power as

PowerB =
#(PBoot < 0.1)

N

where N the number of simulation.

Empirical Power

To calculate the empirical power, we know that the statistic IMTR is asymp-

totically central χ2 on 1 df when H0 is true. So we need to calculate the power

as

PowerE = p(IMTR > criticalregionH0)

where critical region point under α = 0.1 is IMTR > 2.71.
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Theoretical Power

To calculate the theoretical power we assume that under H1, IMTR is a non-

central χ2 on ν df, with non-centrality parameters λ. Thus

E(IMTR) = ν + λ

and the statistic is

IMTR = ndTV −1
E d.

The mean and variance of d are

E(d) = µ , var(d) =
V

n

and

E(ddT ) = var(d) + µµT .

Then, we can write

E(IMTR) = Etr(ndTV −1
E d) ' tr(nV −1V

n
) + nµTV −1µ = rank(V ) + nµTV −1µ

so, the non-centrality parameter is

λ = nµTV −1µ.

Recall that to evaluated µ, V for specified values of the parameters under H1, we use

the simulation method from chapter 6.

The theoretical power is found as

PowerT = Pr(χ2
ν(λ) > criticalregionH0)

which is in our case

PowerT = Pr(χ2
1(λ) > 2.71)
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8.6.3 Results and Discussion

As we consider the simulation designed to investigate the power by compare the

bootstrap power with empirical and theoretical power. The simulation consider α =

0.1, and the results shows in Table 8.3.

If we compare between the values of power, we can say in general the values are

comparable for the empirical powers. The theoretical power agrees less well. The

reason are almost certainly do with the difficulty of computing λ. This is a matter

for further research.

The true model PowerE PowerB PowerT

πi = expit(0.4 + 0.8xi1 + 2xi2) 0.207 0.163 0.103
πi = expit(0.4 + 0.8xi1 + 1.5xi2) 0.218 0.174 0.106
πi = expit(0.4 + 0.8xi1 + 5xi2) 0.197 0.146 0.102

Table 8.3: Results of the power calculation under α = 0.1 for three cases of models.
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Chapter 9

Conclusions and Further Work

The work considered in this thesis was centred on the behaviour of maximum like-

lihood method estimators for a logistic regression under a mis-specified model. We

also considered the information matrix test for logistic regression model. The early

part of this thesis outlined the maximum likelihood method under missing covariates

logistic model. The behaviour of ML method when the assumed model is incorrect is

important to find the estimation of the unknown parameters in terms of parameters

of the true logistic model, as pointed out by Claeskens and Hjort (2008).

In Chapter 2 we addressed this problem to find a new closed form for the least false

values of the parameters obtained by maximising the incorrect likelihood function. In

this situation the approximation of the logit by the probit and the properties of the

skew-normal distribution were used to compute a good approximation to the least

false values under wrong model. Corresponding simulations investigated this form of

the least false values, when the covariates are drawn from the multivariate normal

distribution: we have found a good agreement in all cases of different variance and

correlation. The estimated parameters values and the least false values gave a ratio

very close to one between calculated and simulated values. There were slightly dif-

ferent results when Pr(Y = 1) ' 10%, where the formulae appeared slightly sensitive

to negative correlation. Notice that if βa = 0, i.e. the fitted model is correct, then

the least false values are the true parameter values. However, if βa 6= 0, then, unlike

in this case of a normal linear model where omitting covariates that are uncorrelated

with the fitted covariates has no effect on the expectation of β̂f , β
∗
f will be shrunk

towards zero compared with βf , even if Ωaf = 0. Indeed, for given Ωaa the bias will

be maximised when Ωaf = 0, because the fitted covariates will, in this case, be unable

to act as a proxy for the omitted variables.
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Chapter 3, considered different assumptions on covariates. First we considered

symmetric distributions different from multivariate normal distribution. We consid-

ered multivariate t-distribution and multivariate uniform distribution. In fact, with

uniform covariates we have found the same behaviour results as found when the co-

variates draw from normal distribution. If we consider the model with covariates draw

from multivariate t-distribution, when the degree of freedom large enough the results

almost have the same behaviour in case of normal distribution covariates. However,

when the degree of freedom small the ratios appeared slightly affected in case of the

sample size n = 500. The case of skewed covariates was investigated by using a bivari-

ate distribution including variables from the log-normal distribution. We considered

three cases: (exp(X1), X2), (X1, exp(X2)) and (exp(X1), exp(X2)), where (X1, X2) is

bivariate normal. We have found the value of the parameters estimated are close to

the least false value which computed by our proposed formulae, where the value of

the ratio between them was found close to one in almost cases considered. However,

slightly different found by low ratio when the value of correlation was negative and

Pr(Y = 1) ' 10%. Some discrepancy was in the ratios noticed when the value of

estimated coefficients were very close to zero.

In Chapter 4, a categorical variable is introduced and the least false values com-

puted when one of the covariates is binary and some of the normal covariates are

omitted. New formulae were found for the least false values, simulations confirmed

our results. Moreover, an application to randomized trials is considered, with an

example real data produced by Fleming and Harrington (2005). We computed accu-

rate closed-form approximations for the asymptotic bias, when the important normal

distribution covariates are omitted from a model. Our work is a reminder that, even

when treatments are allocated at random, the adjusted log odd-ratio is asymptotically

biased unless the correct covariates are included in the model. In most circumstances

this model will be unknown and in most of the circumstances we describe the mis-

specification gives rise to a least false value that is shrunk towards zero compared

with the true value. The degree of shrinkage depends on the conditional variance of

the omitted variables given the fitted variables.

The second part of this thesis considered the information matrix test IMT statis-

tic proposed by White (1982) and investigated by Kuss (2002), who found it had

good power for the logistic regression model. The idea and procedure of IMT was
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discussed in great detail in Chapter 5.

In Chapter 6, we have investigated the distribution of the first two moments of the

statistic, and we computed the form of the mean and variance of the statistic and pro-

duced a formulae for variance. We were able to use our results as least false values to

compute the dispersion matrix, under the wrong model, for IMT and IMTDIAG. We

also computed the empirical dispersion matrix. The simulation designed to compare

between the diagonal elements of dispersion matrix of empirical VE, theoretical VT vs.

true dispersion matrix Vtr. We found in almost all cases of different parameters and

variance, the theoretical variance and empirical variance are close to the true value of

variance under true model and also under missing covariate model. The first element

was much closer to zero than of the rest. Some slightly strange ratios arose in case

of sample size n = 500 and with small values of S.D(π).

In Chapter 7, we considered investigated the asymptotic distribution of IMT

statistic under H0 specified model and under H1 mis-specified model. We produced

a new form statistic IMTR to avoid the near singularity problem which affected the

behaviour of the statistic, by removing overlap with elements of the log-likelihood

function. Our proposed form investigated by simulation, was found to have reason-

able asymptotic behaviour, with the mean and the variance appearing to be very

close to the properties of the χ2 distribution.

In Chapter 8, we considered Bootstrap test proposed by Efron (1979) as to con-

firm the results in Chapter 7, which found support results for IMTR statistic. The

histogram of the values of PBoot appeared uniformly distribution for IMTR, but dis-

agree for IMT under H0. Moreover, the values of DU were more reasonable in case

of PBoot values for IMTR and close to the uniform distribution if compared with the

PBoot for IMT . However, the bootstrap test under H1, the histogram shows there are

large number of PBoot have small values. This result investigated by calculation the

power of the IMTR statistic, empirical and theoretical power considered. The theo-

retical power appeared to show strange behavior, the reason related to the difficulty

of calculation the non-central parameter of χν(λ) distribution.
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9.1 Further Research Directions

The application of the logistic regression model has been increasingly used in biostatis-

tics; it is important and needed for analysis the medical data. So the development of

the model needs more work carefully for some important points under mis-specified

model might be needed to investigate. We consider the effect of omitted the covari-

ates on the logistic model, and proposed a new form for the least false values. Our

results provide useful insights and extensions to other forms of covariates should be

investigated. The assumption on the model and the covariates with small sample size

and sparse data might be more sensitive and need more investigate.

The IMT is not widely used in biostatistics and its properties do not seem wholly

stable. Our contribution of the reduced version IMTR, is helpful in this respect but,

further work on its properties under H1 is needed, before it can be routinely recom-

mended. The statistic form IMTR should be extended with the general multivariate

logistic model has p covariates.
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Appendix

Appendix I: Additional Table for the Least False

Valus

var = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.2 0.3 0.3931 0.3973 0.99 0.4197 0.4109 1.02 0.5002 0.5102 0.98
0.2 0.1 0.1 0.3995 0.3977 1.00 0.3251 0.3231 1.01 0.4212 0.4226 1.00
0.3 0.1 0.1 0.3954 0.3977 0.99 0.3310 0.3174 1.04 0.4083 0.4168 0.98
0.3 0.4 0.1 0.3992 0.3990 1.00 0.5265 0.5256 1.00 0.6213 0.6253 0.99
0.9 0.9 0.9 0.3992 0.3995 1.00 0.6753 0.6755 1.00 0.7683 0.7754 0.99
0.5 0.7 0.5 0.4009 0.3998 1.00 0.6724 0.6697 1.00 0.7635 0.7697 0.99
0.1 -0.5 0.4 0.3972 0.3991 0.99 -0.1630 -0.1580 1.03 -0.0580 -0.0581 1.00
0.8 -0.6 0.7 0.3977 0.3977 1.00 -0.0630 -0.0490 1.20 0.0692 0.0497 1.30

var = 0.5
0.1 0.2 0.3 0.3856 0.3872 1.00 0.3968 0.5004 0.99 0.4972 0.3872 1.01
0.2 0.1 0.1 0.3915 0.3891 1.01 0.3137 0.3161 0.99 0.4089 0.4134 0.99
0.3 0.1 0.1 0.3773 0.3890 0.97 0.3066 0.3105 0.99 0.4029 0.4077 0.99
0.3 0.4 0.1 0.3940 0.3951 1.00 0.5192 0.5205 1.00 0.6106 0.6193 0.99
0.9 0.9 0.9 0.3961 0.3976 1.00 0.6798 0.6724 1.01 0.7683 0.7718 0.99
0.5 0.7 0.5 0.3995 0.3992 1.00 0.6689 0.6687 1.00 0.7702 0.7686 1.00
0.1 -0.5 0.4 0.3875 0.3955 0.98 -0.1590 -0.1570 1.01 -0.0570 -0.0580 0.98
0.8 -0.6 0.7 0.3817 0.3890 0.98 -0.0630 -0.0480 1.30 0.0656 0.0486 1.30

var = 1.5
0.1 0.2 0.3 0.3640 0.3650 1.00 0.3722 0.3774 0.99 0.4460 0.4687 0.95
0.2 0.1 0.1 0.3660 0.3697 0.99 0.3123 0.3004 1.03 0.3820 0.3928 0.97
0.3 0.1 0.1 0.3629 0.3696 0.98 0.2840 0.3874 0.96 0.3760 0.2950 0.97
0.3 0.4 0.1 0.3755 0.3859 0.97 0.5038 0.5084 0.99 0.5986 0.6049 0.99
0.9 0.9 0.9 0.3906 0.3931 0.99 0.6580 0.6647 0.99 0.7604 0.7630 1.00
0.5 0.7 0.5 0.3979 0.3978 1.00 0.6645 0.6664 1.00 0.7638 0.7658 1.00
0.1 -0.5 0.4 0.3855 0.3871 0.99 -0.1470 -0.1530 0.96 -0.0560 -0.0570 0.99
0.8 -0.6 0.7 0.3646 0.3696 0.99 -0.0550 -0.0460 1.10 0.0567 0.0460 1.20

Table 1: Simulation results of last false values using different values of ρij and variance
by generated variables from multivariate Normal distribution in case Pr(Y = 1) '
60%
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var = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.2 0.3 -2.187 -2.185 1.00 0.4149 0.4108 1.01 0.4987 0.5102 0.98
0.2 0.1 0.1 -2.185 -2.187 1.00 0.3140 0.3231 0.97 0.4254 0.4226 1.01
0.3 0.1 0.1 -2.187 -2.187 1.00 0.3144 0.3174 0.99 0.4337 0.4168 1.04
0.3 0.4 0.1 -2.196 2.194 1.00 0.5336 0.5256 1.02 0.6188 0.6253 0.99
0.9 0.9 0.9 -2.19 -2.197 1.00 0.6800 0.6755 1.01 0.7709 0.7754 0.99
0.5 0.7 0.5 -2.19 -2.199 1.00 0.6656 0.6697 0.99 0.7702 0.7697 1.00
0.1 -0.5 0.4 -2.190 2.195 1.00 -0.1540 -0.1580 0.97 -0.0630 -0.0580 1.06
0.8 -0.6 0.7 -2.180 -2.187 1.00 -0.0550 -0.0490 1.10 0.0521 0.0497 1.05

var = 0.5
0.1 0.2 0.3 -2.125 -2.129 1.00 0.4118 0.4004 1.03 0.51167 0.4972 1.03
0.2 0.1 0.1 -2.130 -2.140 1.00 0.3050 0.3161 0.97 0.4216 0.4134 1.02
0.3 0.1 0.1 -2.134 -2.139 1.00 0.3132 0.3105 1.01 0.4041 0.4077 0.99
0.3 0.4 0.1 -2.176 -2.173 1.00 0.5259 0.5205 1.01 0.6251 0.6193 1.01
0.9 0.9 0.9 -2.188 -2.187 1.00 0.6626 0.6724 0.99 0.7831 0.7718 1.01
0.5 0.7 0.5 -2.197 -2.196 1.00 0.6738 0.6687 1.01 0.7662 0.7686 1.00
0.1 -0.5 0.4 -2.177 -2.175 1.00 -0.1520 -0.1570 0.97 -0.0590 -0.0580 1.01
0.8 -0.6 0.7 -2.133 -2.139 1.00 -0.0610 -0.0480 1.20 0.0589 0.0486 1.20

var = 1.5
0.1 0.2 0.3 -2.001 -2.007 1.00 0.3774 0.3774 1.00 0.4684 0.4687 1.00
0.2 0.1 0.1 -2.037 -2.033 1.00 0.3163 0.3004 1.05 0.3888 0.3928 0.99
0.3 0.1 0.1 -2.021 -2.033 0.99 0.2894 0.2950 0.98 0.3921 0.3874 1.01
0.3 0.4 0.1 -2.120 -2.122 1.00 0.5099 0.5084 1.00 0.6093 0.6049 1.01
0.9 0.9 0.9 -2.164 -2.162 1.00 0.6497 0.6647 0.98 0.7782 0.7630 1.02
0.5 0.7 0.5 -2.192 -2.188 1.00 0.668 0.6664 1.00 0.7672 0.7658 1.00
0.1 -0.5 0.4 -2.115 -2.129 0.99 -0.1510 -0.1530 0.98 -0.0660 -0.0570 1.10
0.8 -0.6 0.7 -2.007 -2.032 0.99 -0.0490 -0.0460 1.08 0.0473 0.0462 1.02

Table 2: Simulation results of last false values using different values of ρij and variance
by generated variables from multivariate Normal distribution in case Pr(Y = 1) '
10%
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var = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.2 0.3 0.3876 0.3756 1.03 0.4080 0.3884 1.05 0.4970 0.4823 1.03
0.2 0.1 0.1 0.3914 0.3790 1.03 0.3239 0.3079 1.05 0.4167 0.4027 1.03
0.3 0.1 0.1 0.3962 0.3789 1.05 0.3085 0.3024 1.02 0.4172 0.3972 1.05
0.3 0.4 0.1 0.3970 0.3904 1.02 0.5157 0.5143 1.003 0.6092 0.6120 0.99
0.9 0.9 0.9 0.3984 0.3954 1.01 0.6825 0.6685 1.02 0.7633 0.7674 0.99
0.5 0.7 0.5 0.4004 0.3985 1.01 0.6601 0.6676 0.99 0.7670 0.7672 1.00
0.1 -0.5 0.4 0.3958 0.3913 1.01 -0.1390 -0.1550 0.90 -0.0490 -0.0570 0.86
0.8 -0.6 0.7 0.3970 0.3789 1.05 -0.0360 -0.0470 0.77 0.0444 0.0470 0.94

var = 0.5
0.1 0.2 0.3 0.3755 0.3756 1.00 0.3705 0.3884 0.95 0.4621 0.4823 0.96
0.2 0.1 0.1 0.3614 0.3790 0.95 0.2993 0.3079 0.97 0.3800 0.4027 0.94
0.3 0.1 0.1 0.3647 0.3789 0.96 0.2940 0.3024 0.97 0.3841 0.3972 0.97
0.3 0.4 0.1 0.3843 0.3904 0.98 0.5043 0.5143 0.98 0.6006 0.6120 0.98
0.9 0.9 0.9 0.3878 0.3954 0.98 0.6585 0.6685 0.98 0.7655 0.7674 1.00
0.5 0.7 0.5 0.3985 0.3985 1.00 0.6663 0.6676 1.00 0.7576 0.7672 0.99
0.1 -0.5 0.4 0.386 0.391 0.99 -0.147 -0.155 0.94 -0.046 -0.057 0.80
0.8 -0.6 0.7 0.3690 0.3780 0.97 -0.052 -0.0470 1.09 0.0560 0.0470 1.19

var = 1.5
0.1 0.2 0.3 0.3275 0.3756 0.87 0.3369 0.3884 0.87 0.4125 0.4823 0.86
0.2 0.1 0.1 0.3200 0.3790 0.84 0.2727 0.3079 0.88 0.3530 0.4027 0.88
0.3 0.1 0.1 0.3392 0.3789 0.90 0.2664 0.3024 0.88 0.3495 0.3972 0.88
0.3 0.4 0.1 0.3653 0.3904 0.94 0.4699 0.5143 0.91 0.5661 0.6120 0.93
0.9 0.9 0.9 0.3803 0.3954 0.96 0.6534 0.6685 0.98 0.7310 0.7674 0.95
0.5 0.7 0.5 0.3962 0.3985 0.99 0.6536 0.6676 0.98 0.7522 0.7672 0.98
0.1 -0.5 0.4 0.356 0.3913 0.91 -0.1330 -0.1550 0.86 -0.0520 -0.0570 0.91
0.8 -0.6 0.7 0.3244 0.3789 0.86 -0.0340 -0.0470 0.73 0.0424 0.0473 0.90

Table 3: Simulation results of last false values using different values of ρij and variance
by generated variables from multivariate Uniform distribution in case Pr(Y = 1) '
60%
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var = 0.1 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.2 0.3 -2.166 -2.066 1.05 0.4058 0.3884 1.04 0.5038 0.4823 1.04
0.2 0.1 0.1 -2.173 -2.084 1.04 0.3114 0.3079 1.01 0.4154 0.4027 1.03
0.3 0.1 0.1 -2.175 -2.084 1.04 0.3182 0.3024 1.05 0.4136 0.3972 1.04
0.3 0.4 0.1 -2.191 -2.147 1.02 0.5119 0.5143 1.00 0.6208 0.6120 1.01
0.9 0.9 0.9 -2.190 -2.170 1.01 0.6787 0.6685 1.02 0.7711 0.7674 1.01
0.5 0.7 0.5 -2.190 -2.192 1.00 0.6634 0.6676 0.99 0.7621 0.7672 0.99
0.1 -0.5 0.4 -2.190 -2.152 1.01 -0.1440 -0.1550 0.93 -0.0490 -0.0570 0.85
0.8 -0.6 0.7 -2.170 -2.084 1.04 -0.0340 -0.0470 0.73 0.0461 0.0470 0.98

var = 0.5
0.1 0.2 0.3 -2.037 -2.066 0.99 0.3757 0.3884 0.97 0.4846 0.4823 1.00
0.2 0.1 0.1 -2.069 -2.084 0.99 0.3070 0.3079 1.00 0.3990 0.4027 0.99
0.3 0.1 0.1 -2.071 -2.084 0.99 0.3036 0.3024 1.00 0.4067 0.3972 1.02
0.3 0.4 0.1 -2.138 -2.147 0.99 0.5126 0.5143 1.00 0.6014 0.6120 0.98
0.9 0.9 0.9 -2.170 -2.174 0.99 0.6872 0.6685 1.03 0.7458 0.7674 0.97
0.5 0.7 0.5 -2.180 -2.192 0.99 0.6615 0.6676 0.99 0.7603 0.7672 0.99
0.1 -0.5 0.4 -2.134 -2.152 0.99 -0.1410 -0.1550 0.91 -0.0380 -0.0570 0.66
0.8 -0.6 0.7 -2.070 -2.084 0.99 -0.0400 -0.0470 0.85 0.0634 0.0473 1.30

var = 1.5
0.1 0.2 0.3 -1.816 -2.066 0.88 0.3444 0.3884 0.89 0.4387 0.4823 0.91
0.2 0.1 0.1 -1.866 -2.084 0.90 0.2869 0.3079 0.93 0.3647 0.4027 0.91
0.3 0.1 0.1 -1.889 -2.084 0.91 0.2741 0.3024 0.91 0.3650 0.3972 0.92
0.3 0.4 0.1 -2.051 -2.147 0.96 0.4955 0.5143 0.96 0.5781 0.6120 0.94
0.9 0.9 0.9 -2.123 -2.174 0.98 0.6441 0.6685 0.96 0.7553 0.7674 0.98
0.5 0.7 0.5 -2.160 -2.192 0.99 0.6554 0.6676 0.98 0.7504 0.7672 0.98
0.1 -0.5 0.4 -2.026 -2.152 0.94 -0.1420 -0.1550 0.91 -0.0370 0.0570 0.65
0.8 -0.6 0.7 -1.850 -2.084 0.89 -0.0330 -0.0470 0.71 0.0565 0.0473 1.20

Table 4: Simulation results of last false values using different values of ρij and variance
by generated variables from multivariate Uniform distribution in case Pr(Y = 1) '
10%
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df = 200 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.2 0.3 0.381 0.387 0.99 0.386 0.400 0.97 0.492 0.497 0.99
0.2 0.1 0.1 0.381 0.389 0.98 0.316 0.316 1.00 0.403 0.413 0.98
0.3 0.1 0.1 0.385 0.389 0.99 0.297 0.310 0.96 0.406 0.407 1.00
0.3 0.4 0.1 0.391 0.395 0.99 0.526 0.520 1.01 0.607 0.619 0.98
0.9 0.9 0.9 0.397 0.397 1.00 0.672 0.672 1.00 0.775 0.772 1.00
0.5 0.7 0.5 0.397 0.399 1.00 0.665 0.668 1.00 0.773 0.768 1.01
0.8 -0.6 0.7 0.376 0.389 0.97 -0.041 -0.048 0.85 0.037 0.048 0.76

df = 20
0.1 0.2 0.3 0.389 0.387 1.01 0.393 0.400 0.98 0.494 0.4972 0.99
0.2 0.1 0.1 0.379 0.389 0.97 0.322 0.316 1.02 0.4059 0.413 0.98
0.3 0.1 0.1 0.383 0.389 0.99 0.295 0.310 0.95 0.404 0.407 0.99
0.3 0.4 0.1 0.387 0.395 0.98 0.518 0.521 0.99 0.6174 0.6193 1.00
0.9 0.9 0.9 0.395 0.397 0.99 0.683 0.672 1.01 0.761 0.771 0.99
0.5 0.7 0.5 0.396 0.399 0.99 0.672 0.668 1.01 0.7651 0.768 1.00
0.8 -0.6 0.7 0.378 0.389 0.97 -0.039 -0.048 0.81 0.037 0.048 0.76

df = 10
0.1 0.2 0.3 0.377 0.387 0.97 0.398 0.400 0.99 0.473 0.497 0.95
0.2 0.1 0.1 0.390 0.389 1.00 0.307 0.316 0.97 0.400 0.413 0.97
0.3 0.1 0.1 0.392 0.389 1.01 0.306 0.311 0.99 0.401 0.408 0.98
0.3 0.4 0.1 0.392 0.395 0.99 0.516 0.521 0.99 0.612 0.619 0.99
0.9 0.9 0.9 0.394 0.397 0.99 0.670 0.672 1.00 0.769 0.771 1.00
0.5 0.7 0.5 0.398 0.399 1.00 0.668 0.669 1.00 0.767 0.769 1.00
0.8 -0.6 0.7 0.390 0.389 1.00 -0.035 -0.048 0.72 0.033 0.048 0.69

df = 5
0.1 0.2 0.3 0.375 0.387 0.97 0.360 0.4004 0.90 0.464 0.497 0.93
0.2 0.1 0.1 0.373 0.389 0.96 0.283 0.316 0.89 0.386 0.413 0.93
0.3 0.1 0.1 0.376 0.389 0.97 0.304 0.311 0.98 0.390 0.408 0.96
0.3 0.4 0.1 0.387 0.512 0.98 0.512 0.521 0.98 0.609 0.619 0.98
0.9 0.9 0.9 0.395 0.397 1.00 0.660 0.672 0.98 0.768 0.771 1.00
0.5 0.7 0.5 0.399 0.399 1.00 0.660 0.668 0.99 0.771 0.768 1.00
0.8 -0.6 0.7 0.376 0.389 0.97 -0.030 -0.048 0.63 0.029 0.048 0.60

Table 5: Simulation results of last false values using different values of ρij and variance
is 0.5 by generated variables from multivariate t-distribution in case Pr(Y = 1) ' 60%
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df = 200 Parameters estimated, Least false values and Ratio

Ω11 Ω12 Ω22 α̂ α∗ R1 β̂1 β∗1 R2 β̂2 β∗2 R3

0.1 0.2 0.3 -2.127 -2.129 1.00 0.404 0.400 1.01 0.511 0.497 1.03
0.2 0.1 0.1 -2.135 -2.140 1.00 0.325 0.316 1.03 0.415 0.413 1.00
0.3 0.1 0.1 -2.137 -2.139 1.00 0.332 0.310 1.07 0.415 0.408 1.02
0.3 0.4 0.1 -2.173 -2.173 1.00 0.518 0.520 1.00 0.628 0.619 1.01
0.9 0.9 0.9 -2.193 -2.187 1.00 0.662 0.672 0.99 0.788 0.771 1.02
0.5 0.7 0.5 -2.199 -2.196 1.00 0.667 0.668 1.00 0.771 0.768 1.00
0.8 -0.6 0.7 -2.131 -2.139 1.00 -0.059 -0.048 1.20 0.058 0.049 1.20

df = 20
0.1 0.2 0.3 -2.120 -2.129 1.00 0.418 0.400 1.04 0.500 0.497 1.01
0.2 0.1 0.1 -2.131 -2.140 1.00 0.322 0.316 1.02 0.430 0.413 1.04
0.3 0.1 0.1 -2.132 -2.139 1.00 0.316 0.311 1.02 0.414 0.408 1.02
0.3 0.4 0.1 -2.174 -2.173 1.00 0.521 0.520 1.01 0.621 0.619 1.00
0.9 0.9 0.9 -2.189 -2.187 1.00 0.685 0.672 1.01 0.757 0.772 0.98
0.5 0.7 0.5 -2.198 -2.196 1.00 0.667 0.668 1.00 0.775 0.769 1.01
0.8 -0.6 0.7 -2.131 -2.139 0.99 -0.031 -0.048 0.65 0.049 0.048 1.02

df = 10
0.1 0.2 0.3 -2.113 -2.129 0.99 0.392 0.400 0.98 0.489 0.497 0.98
0.2 0.1 0.1 -2.124 -2.140 0.99 0.316 0.316 1.00 0.425 0.413 1.03
0.3 0.1 0.1 -2.117 -2.139 0.99 0.316 0.311 1.02 0.411 0.408 1.01
0.3 0.4 0.1 -2.161 -2.173 0.99 0.518 0.521 0.99 0.616 0.619 0.99
0.9 0.9 0.9 -2.187 -2.187 1.00 0.673 0.672 1.00 0.773 0.771 1.00
0.5 0.7 0.5 -2.196 -2.196 1.00 0.667 0.668 1.00 0.769 0.768 1.00
0.8 -0.6 0.7 -2.12 -2.139 0.99 -0.049 -0.048 1.01 0.054 0.049 1.10

df = 5
0.1 0.2 0.3 -2.100 -2.129 0.99 0.394 0.400 0.98 0.4849 0.4972 0.98
0.2 0.1 0.1 -2.106 -2.140 0.98 0.319 0.316 1.01 0.4158 0.4134 1.01
0.3 0.1 0.1 -2.103 -2.139 0.98 0.298 0.310 0.96 0.401 0.4077 0.98
0.3 0.4 0.1 -2.159 -2.173 0.99 0.508 0.521 0.98 0.6274 0.6193 1.01
0.9 0.9 0.9 -2.181 -2.187 1.00 0.660 0.672 0.98 0.7754 0.7718 1.01
0.5 0.7 0.5 -2.194 -2.196 1.00 0.668 0.669 1.00 0.7726 0.7686 1.01
0.8 -0.6 0.7 -2.097 -2.139 0.98 -0.071 -0.048 1.40 0.075 0.048 1.50

Table 6: Simulation results of last false values using different values of ρij and variance
is 0.5 by generated variables from multivariate t-distribution in case Pr(Y = 1) ' 10%
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Appendix II: additional Plot of p-value Bootstrap
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Figure 1: Histogram bootstrap of the p-value of IMT and IMTR respectively, under
true model given by α = 0.2, β1 = 0.3, β2 = 0.5, β3 = 1.4, sample size and bootstrap
sampleis n = B = 500 and N=1000 number of simulation.
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Figure 2: Histogram bootstrap of the p-value of IMT and IMTR respectively, under
true model given by α = 0.9, β1 = 1.3, β2 = 1.1, β3 = 1.5, sample size and bootstrap
sampleis n = B = 500 and N=1000 number of simulation.
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