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General Abstract 

Neuroimaging studies have shown that natural language processes engage left 

hemisphere perisylvian brain regions. Artificial Grammars (AG), which are designed to 

emulate aspects of language syntactic structure, recruit comparable brain areas. Nonhuman 

animals have been shown to learn a range of different AGs. However, no data is currently 

available regarding the brain areas that support these processes. In this thesis, I combined 

behavioural artificial grammar learning (AGL) and fMRI experiments to generate insights 

regarding language evolution, and as a first step to developing animal model systems for 

aspects of language processing. These experiments provide novel evidence that nonhuman 

primates are able to learn a non-deterministic AG, designed to emulate some of the 

variability of the structure of sentences in natural language, and demonstrated notable 

correspondences between the brain regions involved in macaque and human AGL. I 

developed a quantitative method to compare AGL abilities across species and studies, and 

a novel eye-tracking technique with which to collect objective behavioural data. Using this 

technique, and a refined version of a traditional video-coding paradigm, I demonstrated 

that Rhesus macaques notice violations of the AG structure and that these results could 

not be explained by reliance on simple cues. Common marmosets also showed evidence of 

AGL however, these results may have been driven by simple learning strategies. 

Comparative fMRI experiments showed that, in humans, violations of the AG activated a 

number of perisylvian brain regions associated with language processing, including the 

ventral frontal cortex (vFC), temporal and temporo-parietal regions, although not Broca’s 

area (BA44/45). In Rhesus macaques, comparable patterns of activation were seen in the 

ventral frontal cortex and temporo-parietal regions. Additional activation in BA44/45 in 

macaques provides interesting insights into the evolution of this region. These experiments 

provide novel evidence regarding the AGL capabilities of nonhuman primates, and the 

brain areas that support them, suggesting that some language related functions may 

represent generic, rather than language specific processes. Therefore, some of the brain 

regions involved in AGL in both species might share a common evolutionary heritage, and 

therefore Rhesus macaques might represent a valuable animal model system for aspects of 

language processing.  
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Chapter 1: Introduction 

Language is a defining human trait. It is ubiquitous across all human cultures, but 

unique in both scale and complexity within the animal kingdom (Hauser et al., 2002; Fitch, 

2010). Semantic representations allow the communication of abstract concepts and 

combinatorial syntax allows the generation and transmission of an infinite number of ideas 

from a limited vocabulary (Pinker, 1994). Language is not only critical to human society, 

but may even have been a necessary requirement for the evolution of the higher brain 

functions which characterise our species (Hauser et al., 2002; Christiansen & Kirby, 2003b; 

Bickerton, 2009). As such, human language has received a vast amount of research from a 

wide range of scientific disciplines, from Linguistics (e.g., Chomsky, 1957) to Psychology 

(e.g., Pinker & Bloom, 1990) and more recently Neurobiology (e.g., Friederici, 2011). Such 

research has led to dramatic growth in our understanding the structure of natural languages 

and how they are learned and processed. However, despite the successes of this work, it 

has yet to elucidate how such incredible linguistic abilities may have evolved in humans, but 

not in other species.  

In 1866, frustrated by the speculative nature of discussions, the Linguistic Society 

of Paris banned all discussion of the subject of language evolution (Christiansen & Kirby, 

2003b; Newmeyer, 2003; Hauser et al., 2007). Despite a recent revival in interest in the 

topic (Christiansen & Kirby, 2003b; 2003a; Fitch, 2010; Hurford, 2012), the evolutionary 

origins of language are still unclear, and has even been described as ‘the hardest problem in 

science’ (Christiansen & Kirby, 2003b). While this contentious claim may be debated, there 

are certainly serious challenges to explaining how human language abilities may have 

evolved. Physical evidence for the existence of language may be derived from 

archaeological records of early writing, but the oldest of these date back to less than 10000 

years ago, a blink of the eye in evolutionary terms (Houston, 2008). Furthermore, while the 

production and perception of language relies to some extent on physiological adaptations 

(for example articulatory control, a descended larynx, good auditory discrimination, Fitch, 

2000), the ultimate origin of all linguistic ability is the brain. While the fossil record may 

provide interesting evidence about gross changes in brain size over evolutionary time 

(Dunbar, 1998; Fitch, 2000), this information is unable to address what linguistic or proto-

linguistic abilities may have been possessed by our now extinct ancestors.  
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An alternative approach to the study of language evolution is to consider the 

abilities of closely related species. If some of the cognitive abilities that are required for 

language arose from pre-existing, non-linguistic mechanisms in our ancestral past, it is 

possible that such abilities may still be present in our extant primate cousins (Hauser et al., 

2002; Petkov & Wilson, 2012). However, this approach has received significant scepticism. 

A number of notable scientists have argued that language developed so recently in our 

evolutionary history, that no traces would be present in even our closest evolutionary 

relatives (Pinker & Bloom, 1990). It is possible that all aspects of human language may 

postdate human-chimpanzee speciation (approximately 5 million years ago, Sun et al., 2012); 

in which case no traces of language related abilities may be present in any nonhuman 

species. If this hypothesis were to prove accurate, then no primates would possess even the 

rudimentary cognitive mechanisms on which humans rely for language learning and 

processing. Furthermore, if the animals were to show behavioural similarities to humans in 

language related tasks, it would be likely that the brains of these species would process 

these computations in fundamentally different ways. 

Alternatively, human language capabilities may have more distant evolutionary 

roots, building on brain networks and cognitive abilities (not necessarily related to language 

Hauser et al., 2002) shared by our common ancestors with extant primates. In this case, the 

study of nonhuman animals, particularly closely related primate species, could provide 

invaluable insights into the evolution of human language abilities (Fitch, 2000; Petkov & 

Wilson, 2012). Therefore, in order to even identify how useful a comparative approach to 

language evolution may be, it is necessary to explore what abilities may be shared between 

related primate species.  

In this chapter I will argue that taking a comparative approach may provide unique 

insights into how language may have evolved. I will discuss how the combination of both 

behavioural testing and neuroscientific techniques present not only the potential to inform 

us about language evolution, but also the opportunity to develop animal model systems in 

which aspects of language learning and processing may be tested at a cell and molecular 

level.  

 Studying language related abilities in nonhuman animals 1.1.

The genesis of our linguistic abilities is currently unclear. A great deal of debate 

surrounds the discussion of language evolution, but the majority of such work focuses on 

systems of communication (vocal or otherwise, e.g. Corballis, 2003), much more recent 
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than anything shared by our extant primate cousins. A number of notable linguists argue 

that language abilities may have evolved rapidly as a result of increasing brain size in the 

human lineage (e.g., Chomsky, 1972; Gould & Lewontin, 1979). Alternatively, many 

psychologists have suggested that linguistic ability may be a desirable trait, either increasing 

an individual’s survival or reproductive success, and therefore would spread and evolve as a 

result of natural or sexual selection (Pinker & Bloom, 1990; Deacon, 1997; Miller, 2001). 

While these hypotheses are appealing, they fail to explain the earliest origins of language; 

before language could be used to usefully communicate meaningful information, our 

ancestors must have learned to combine simple calls in meaningful ways.  

To investigate the initial origins of the abilities which led to language in humans, 

but not other primate species, it may be necessary to consider our more distant ancestors. 

It is important to note that the abilities of nonhuman animals that might have evolved into 

the human language system need not have formed part of the animals’ communication 

systems, as other brain networks and cognitive mechanisms may have been co-opted into a 

new function (Hauser et al., 2002; Fitch & Hauser, 2004). These abilities, which are required 

for language but are not specific to it, have been referred to as “the language faculty in the 

broad sense” (Hauser et al., 2002). To assess whether any extant species do possess such 

abilities, it is necessary to explore both the simple, fundamental cognitive mechanisms 

required for language in humans, and the abilities of nonhuman animals to perform similar 

tasks. Furthermore, to convincingly demonstrate that the traits observed in nonhuman 

animals are related to any sort of human linguistic ability, it would be valuable to 

demonstrate that both species recruit similar networks of brain regions to perform such 

tasks. Alternatively, we may be forced to conclude that while a nonhuman primate may be 

able to perform a task which may appear related to language in humans (and may even 

recruit the language network in the human brain) that they do so using very different 

mechanisms which are unlikely to have evolved into the system seen in humans.  

Do any extant nonhuman species possess any abilities which may share an 

evolutionary heritage with our own language abilities? Is there any value in taking a 

comparative approach to studying language evolution? In the following section I will 

discuss the evidence relating the abilities of nonhuman animals to language in humans.  

1.1.1. Animal communication abilities 

While human language is uniquely complex, many species rely on vocal 

communication for both survival and reproduction. Most species recognise conspecific 
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vocalisations compared to other sounds or the calls of other animals (Zoloth et al., 1979; 

Seyfarth et al., 1980) and easily identify specific individuals (Gentner & Hulse, 1998; Rendall 

et al., 1998; Fitch & Fritz, 2006; Ghazanfar et al., 2007). Beyond this apparently common 

ability to recognise the calls of familiar or related animals, many species utilise more 

complex calls in response to specific events, objects or individuals. For example, the males 

of a wide range of species produce mating calls, ranging from very simple vocalisations 

primarily advertising the location and availability of a male, (elephant seals, Bartholomew & 

Collias, 1962; deer, McComb, 1991; Rhesus macaques, Hauser, 1993), to highly elaborate 

songs in more vocally adept species (Okanoya, 2004a). Many animals also produce calls in 

response to the presence of food (Snowdon et al., 1997; Clay et al., 2012), in some cases 

including specific vocalisations upon encountering highly desirable foods (Rhesus 

macaques: Hauser & Marler, 1993a; chimpanzees: Slocombe & Zuberbuhler, 2005; 

Bonobos: Clay & Zuberbuhler, 2009). Similarly, alarm calls are common in social species to 

warn conspecifics of predation risks (Struhsaker, 1967; Seyfarth et al., 1980; Hauser & 

Marler, 1993b; 1993a; Zuberbuhler, 2000d; 2000a), in some cases with even specifying the 

type of predatory threat (Seyfarth et al., 1980; Arnold & Zuberbuhler, 2006; Ouattara et al., 

2009b; 2009a). Social interactions often rely upon vocal communication, for example many 

monkeys use specific calls while attempting to elicit group movement or to instigate 

affiliative, aggressive or sexual interaction (Seyfarth et al., 1980; Seyfarth & Cheney, 1984; 

Hauser & Marler, 1993b; 1993a; Harcourt & Stewart, 1996; Seyfarth & Cheney, 1999; for 

reviews, see Fitch, 2000; Hauser et al., 2002; Lemasson et al., 2004; Lemasson & Hausberger, 

2011). 

These vocalisations allow the communication of crucial information to conspecifics 

(and in some cases to members of other species, Zuberbuhler, 2000a; Seiler et al., 2013). 

However, these calls typically refer to a single specific object, individual or action. Human 

language is much more complex than this. It allows words or phrases to be combined in 

meaningful ways, allowing the communication of a limitless number of thoughts, ideas, 

statements and questions. One of the defining qualities of human language is the incredible 

generative capacity afforded by the syntax of natural languages, allowing a finite vocabulary 

to be combined into an infinite number of meaningful sentences (Pinker, 1994). While 

animals vary in the number and utility of vocalisations they can produce, without a 

combinatorial system like the syntax of natural language their communication abilities 

would remain an order of magnitude simpler and less effective. In the following section I 
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will discuss syntax in human language, and review the evidence for potentially ‘proto-

syntactic’ combinatorial communication systems in nonhuman species.  

 Syntax 1.2.

Syntax is fundamental to human language. Syntactic rules allow the generation of 

an infinite number of sentences from a finite number of words and rules, language “makes 

infinite use of finite means” (Humboldt, 1836). Therefore, syntactic abilities are minimally 

reliant upon the ability to evaluate grammatical relations between words in an utterance. 

The production and comprehension of language rely on both the speaker and listener 

applying the same syntactic rules to the sequence of words in a sentence, to arrive at a 

shared understanding. Based on this definition, syntax is unarguably unique in the animal 

word, occurring only as part of human languages. However, if we consider that the 

complexity of human language and linguistic ability may have evolved from simpler 

cognitive mechanisms in our evolutionary ancestors, it becomes valuable to consider the 

fundamental basis of such syntactic abilities. A key component of syntactic abilities is, 

therefore, the capacity to learn how expressions in a sequence are appropriately structured. 

It is therefore important to ask, to what extent do animals produce meaningful sequences 

of vocalisations?  

1.2.1. Combinatorial communication systems in nonhuman animals 

A huge variety of animals produce sequences of calls, however for these to 

constitute even the simplest form of ‘proto-syntactic’ communication it is necessary that 

the order of these vocalisations affects the response elicited in the listeners. It may be 

noteworthy that it is difficult to identify what the individual vocalisations may ‘mean’, 

either to the caller or recipient, but if different call combinations produce consistent, 

distinct behavioural responses it is likely that the information being communicated may be 

reliant on the order of the calls. For example, an excited dog may bark persistently, but 

altering the order in which these barks occur is unlikely to have any meaningful impact on 

any other dogs that happen to be listening. A number of species produce sequenced 

vocalisations in which the order of the vocalisations does appear to have an impact on the 

behaviour, and presumably mental state, of listening conspecifics (e.g., Okanoya, 2004b). 

Adept vocal communicators, for example many songbird species, learn to produce songs, 

specific sequences of motifs, learned from the parents and used through adulthood, 

primarily as part of mating displays (e.g., Okanoya, 2004b; Catchpole & Slater, 2008). The 

complexity and quality of these songs acts as an honest indicator of fitness (Zahavi, 1975) 



Chapter 1: Introduction 
 

  

6 
 

and corresponds strongly to the mating success of the males (Searcy & Anderson, 1986; 

MacDougall-Shackleton, 1997; Gil & Gahr, 2002; Catchpole & Slater, 2008). 

The communication systems of these species suggest that some animals do 

combine vocalisations in consistent ways and that the ability to do this successfully has an 

observable impact on their mating success. In these animals accurate reproduction of a 

song appears to act as an indicator of fitness; virtuosity is a desirable trait to females, so 

those males who produce the best songs enjoy the highest reproductive success. Therefore, 

by sexual selection the ability to learn complex songs evolves in the population. However, 

in these species songs are typically not used to communicate information, except in the 

sense that they communicate an individual’s ability to produce song of that quality. Such 

sequencing of sounds in specific orders is termed ‘phonological syntax’, and is distinct 

from the ‘semantically compositional syntax’ of language (Marler & Tenaza, 1977), whereby 

the order of words in a sentence affects the meaning of the sentence, for example the 

difference between ‘the boy kicked the girl’ and ‘the girl kicked the boy’, (Marler, 2000; 

Bickerton & Szathmary, 2009; Tallerman, 2011; Hurford, 2012).  

The lack of meaningful, referential song motifs in song birds highlight a 

fundamental difference between human language and the phonological syntax displayed by 

these species. However, this distinction does not immediately imply that the study of such 

systems may not be highly informative. It is difficult to imagine a creature capable of 

semantically compositional syntax but incapable of phonological syntax; to appreciate that 

the order of elements in a sequence affects the meaning of that sequence it is first necessary 

to be able to learn and recognise such ordering. It is therefore possible that the more 

complex syntactic abilities of humans may have evolved from simpler, relatively 

rudimentary phonological sequencing abilities.  

The sequencing abilities of songbirds and other vocal learning species therefore 

provide a valuable model to consider the evolution of phonological syntax. However, any 

abilities apparently shared by humans and distantly related species such as songbirds, 

whales, mice and other such species are likely the result of convergent evolution rather than 

common descent (Petkov & Jarvis, 2012). Furthermore, the vocal learning and sequencing 

abilities of songbirds rely on entirely different neurobiology to that of humans (Feenders et 

al., 2008; Petkov & Jarvis, 2012). Therefore, an important question becomes, do any more 

closely related nonhuman primates appear to sequences their vocalisations (even 

phonologically) in any meaningful way? 
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1.2.2. Meaningful call combinations in nonhuman primates 

Nonhuman primates appear to lack the complex vocal learning abilities that allow 

species such as songbirds to generate large numbers of song motifs from which to 

construct their songs (Janik & Slater, 1997; Boughman, 1998; Fitch, 2000; Noad et al., 2000; 

Jarvis, 2004; Snowdon, 2009; Bolhuis et al., 2010; Pepperberg, 2010; Petkov & Wilson, 

2012). Instead, most nonhuman primates possess species specific repertoires of calls and 

vocalisations, which appear predictably in all members of the species (e.g. Hauser & Marler, 

1993b; 1993a; Candiotti et al., 2012b). While there may be some flexibility in how these calls 

are produced (pygmy marmosets: Elowson & Snowdon, 1994; Snowdon & Elowson, 1999; 

Campbell’s monkeys: Lemasson & Hausberger, 2004; Japanese macaques: Koda et al., 2008; 

baboons: Ey et al., 2009; chimpanzees: Slocombe et al., 2010) they typically represent only 

acoustical variants of a small number of main call types (Candiotti et al., 2012b) and are 

vastly more limited than the level of flexibility afforded to true vocal learners (Petkov & 

Jarvis, 2012). Despite this, nonhuman primates’ phylogenetic proximity to humans may 

suggest that they are relevant to investigating language evolution (Lemasson & Hausberger, 

2011). 

A number of nonhuman primate species have been reported to attempt to 

overcome their sparse vocabularies by concatenating some of their calls in meaningful ways. 

Combining calls in such a manner is a more efficient, although more cognitively demanding 

method for increasing the size of a species communicative repertoire (Jackendoff, 1999). 

For example, a number of guenons, Old World monkeys which live in dense forests, emit 

social contact calls to maintain group cohesion where visibility is poor (Uster & 

Zuberbuhler, 2001), and specific alarm calls in the presence of aerial or terrestrial predators 

(Zuberbuhler, 2000c; 2000a; Zuberbuhler & Jenny, 2002). For example, putty-nosed 

monkeys, produce distinct ‘pyow’ calls to indicate the presence of leopards and ‘hack’ calls 

in response to crowned eagles (Arnold & Zuberbuhler, 2006; 2008), but also combine these 

calls into a ‘pyow-hack’ composite indicating the presence of both predators. Playback 

experiments have demonstrated that these ‘pyow-hack’ calls lead to significantly increased 

group movement while the calls in isolation trigger reduced movement and increased 

vigilance. The authors argue that the combination of two calls, which have associated 

behavioural responses when presented independently, to produce a third call which causes 

a new response in listeners demonstrates semantic combinatorial abilities (Arnold & 

Zuberbuhler, 2006; 2008).  
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Campbell’s monkeys similarly produce specific vocalisations in response to 

sightings of leopards and eagles (Zuberbuhler, 2002) and both concatenate these 

vocalisations in specific ways in particular social contexts (Ouattara et al., 2009b) and also 

modify the specificity of these calls through the addition of affixes (Ouattara et al., 2009a). 

Furthermore, Zuberbühler demonstrated that Diana monkeys, which live in overlapping 

territories and naturally attend to the alarm calls of the other species, respond differently to 

the vocalisations of the Campbell’s monkeys depending whether a modifying call was 

concatenated with their alarm calls (Zuberbuhler, 2000b). Further evidence of nonhuman 

primates combining calls have been observed in many species, including chimpanzees 

(Crockford & Boesch, 2005), bonobos (Clay & Zuberbuhler, 2009; 2011), gibbons (Clarke 

et al., 2006), Guereza colobus monkeys (Schel et al., 2010) and Diana monkeys (Candiotti et 

al., 2012a). 

While these studies present convincing evidence that some nonhuman primates 

produce sequences of calls, and that in some cases the meanings of such calls affect the 

information communicated, it is clear that these abilities are not comparable with human 

language (e.g., Hauser et al., 2002; Candiotti et al., 2012a). The number of different 

sequences of vocalisations that can be produced is inherently limited by the size of an 

animal’s ‘vocabulary’. As such, nonhuman primates, with their limited vocal learning 

abilities (Petkov & Jarvis, 2012) and limited number of available vocalisations (Hauser & 

Marler, 1993b; 1993a), would be unable to produce human-like levels of communicative 

complexity, even if they were to possess sufficient sequencing abilities. However, a lack of 

complexity in the vocalisations of a species does not necessarily imply that the species does 

not possess the ability to recognise how a sequence is structured. It is possible that they 

might possess the required cognitive abilities but may not use these as part of their vocal 

communication (Hauser et al., 2002; Petkov & Wilson, 2012). Furthermore, one might even 

predict animals to possess better perception than production abilities, not only due to the 

physiological requirements of producing complex vocalisations (Fitch, 2000), but also 

because the ability to mentally process combinations of calls is clearly a prerequisite to 

being able to produce any meaningful sequences of vocalisation (Moore, 2004; Petkov & 

Wilson, 2012). Therefore, the reported limitations of the vocal production abilities of 

nonhuman primates do not preclude the possibility that some aspects our syntactic abilities 

may have evolved from cognitive abilities shared with our last common ancestor with other 

primates. In the following section I will discuss how we may experimentally assess 

perception of syntax-related sequences.  
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 Artificial Grammar Learning 1.3.

Artificial Grammar Learning (AGL) paradigms aim to tap into the abilities that 

humans use to learn syntactically structured sequences, by testing participants’ abilities to 

learn and process simple ‘grammars’ designed to emulate specific aspects of language 

without requiring the full range of human syntactic abilities (Reber, 1967; Marcus et al., 

1999; Friederici, 2004; Petersson et al., 2012). Typically an Artificial Grammar (AG) is 

designed to model an interesting feature of language, and is then used to generate a number 

of ‘grammatical’ strings or sequences of elements, for example nonsense words or symbols, 

which follow this AG structure. Participants will initially be habituated to these sequences, 

before being tested with a combination of sequences generated by the AG and new 

‘ungrammatical’ sequences that violate the AG structure. A wide variety of response 

measures can then be used based on the hypotheses or the population being tested (e.g. 

implicit orienting responses, explicit forced choice responses, neuroimaging experiments, 

Reber, 1967; Friederici et al., 2006a; Saffran et al., 2008). It is therefore possible to 

determine whether the participants are able to distinguish between the ‘grammatical’ and 

‘ungrammatical’ sequences, and therefore whether they have learned the AG. These 

experiments require little or no instruction (depending on the method of response required 

from the participants) and importantly allow the assessment of participants’ sequencing 

capabilities without requiring any of the additional abilities that may be involved in human 

language (e.g. attaching semantic meanings to words). This approach has been highly 

successful in exploring how adult humans process different linguistic structures (Reber, 

1967; Bahlmann et al., 2008; Petersson et al., 2012) as well as testing pre-linguistic infants 

(Gomez & Gerken, 1999; Marcus et al., 1999; Saffran et al., 1999; Saffran et al., 2008) and 

even nonhuman animals (Hauser et al., 2001; Fitch & Hauser, 2004; Newport et al., 2004; 

Gentner et al., 2006; Murphy et al., 2008; Saffran et al., 2008; Hauser & Glynn, 2009; van 

Heijningen et al., 2009; Abe & Watanabe, 2011; Stobbe et al., 2012). AGL paradigms may 

offer a unique opportunity to investigate, in isolation from other potentially confounding 

factors, the extent to which nonhuman animals may be able to learn the structure of 

artificial grammars which can be related to human syntax. This approach allows us to 

determine what ‘proto-syntactic’ abilities nonhuman animals may possess, and provides the 

opportunity to investigate the extent to which human sequence processing capabilities may 

share common ancestry with extant primate species.  
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1.3.1. Artificial Grammar Learning in nonhuman animals 

All human languages are complex, and require speech to be processed at a number 

of levels, potentially employing a range of different cognitive mechanisms. Speech 

perception requires an incoming stream of complex auditory stimuli to be accurately parsed 

into syllables and words. Lexical information must then be attached to these words, before 

phrases can be interpreted based on the syntax of the language, and ultimately the whole 

sentence can be comprehended (Chomsky, 1965). This is a highly demanding task, and as 

such maybe it is of little surprise that nonhuman animals are unable to perform it. However, 

to understand what abilities other species may possess, it is beneficial to initially ask to what 

extent nonhuman animals may have some of these abilities, which seem to be prerequisites 

for human language, in isolation from the others. In this way it may be possible to highlight 

where human abilities are truly unique, but also where our language processing capacities 

may show some overlap with our primate cousins.  

A number of nonhuman species have been tested using a variety of AGL 

paradigms. In this section I will briefly review the evidence that animals can learn different 

AGs with reference to how these may be necessary for aspects of human syntax. In 

Chapter 2, I will consider how these disparate studies may be quantitatively compared to 

better understand what cognitive abilities may be shared by different species, with the goal 

of guiding further research to identify where human and nonhuman abilities may cumulate 

or ultimately diverge. 

An initial stage in language processing is the identification of words and word 

boundaries within a speech stream. While phonology and stress patterns are often used to 

identify words within a sentence (Cutler and Carter, 1987), these acoustic cues are not 

always present, and may be of limited use to new language learners in identifying word 

boundaries (Cole et al., 1980; Aslin et al., 1996; Saffran et al., 1996b), therefore, how do new 

language learners recognise word boundaries to identify words, the fundamental building 

blocks of language? One possibility is to consider the statistical regularities between pairs of 

phonemes within and across word boundaries. Phonemes within words co-occur more 

regularly than those between words, therefore present a valuable cue to identifying words 

within a speech stream. Human participants have been shown to use these transitional 

probabilities (TPs) to identify boundaries in continuous streams of meaningless syllables 

(Saffran et al., 1996a; Saffran et al., 1996b; Saffran et al., 1997; Aslin et al., 1998; Gomez & 

Gerken, 1999; Newport & Aslin, 2004; Newport et al., 2004) or tones (Saffran et al., 1999). 

To investigate whether this ability may be uniquely human, Hauser et al. (2001) were 
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motivated to investigate whether such statistical learning abilities may also be possessed by 

cotton-top tamarins (Saguinus oedipus). Like previous studies in humans, Hauser and 

colleagues found that after habituation to a stream of syllables arranged into tri-syllabic 

nonsense words, the tamarins were able to use the transitional probabilities between 

phonemes to discriminate between ‘words’ (which were presented in the habituation 

stream), ‘part words’ (which were present in the habituation stream, but crossed a word 

boundary) and ‘non-words’ (which were not present in the habituation stream). These 

results suggest that while tamarins naturally show very limited sequencing of their own 

vocalisations (Weiss et al., 2001) they appear to be implicitly sensitive to the structure of 

these artificial grammar sequences (Hauser et al., 2001). Furthermore, the same group has 

demonstrated similar effects when the tri-syllabic nonsense words in the speech stream 

contained regularities only between the first and third syllable, therefore requiring the 

animals to recognise long distance, non-adjacent relationships (Newport et al., 2004). These 

studies suggest that while such abilities are necessary for language acquisition (Saffran et al., 

1996b), they do not appear to be uniquely human, and are likely generic rather than 

language specific.  

Once word boundaries in a sentence can be identified, syntactic processing requires 

understanding of the relationships between sounds now established as “words”, and an 

ability to generalise these relationships to new sentences. A number of studies have asked 

whether pre-verbal infants or nonhuman animals may be able to learn simple relationships 

in patterns of stimuli, and whether they can generalise these to novel sequences. Marcus et 

al. (1999) generated 3 simple AG structures (AAB, ABA and ABB, where both A and B 

elements were represented by a different randomly selected CV syllable, therefore ABA 

sequences may include ‘le di le’ or ‘de je de’, etc.). They showed that following habituation, 

7-month old infants responded differently to AG structures different to that which they 

had been exposed to (e.g. following habituation to ABA, they responded more strongly to 

ABB or AAB), even when novel syllables were used. These results were initially viewed as 

evidence that infants developed ‘algebraic rule learning’ abilities earlier than traditionally 

believed (Marcus et al., 1999). However, similar experiments in nonhuman animals suggest 

that a more parsimonious explanation may be that these abilities are not language specific 

at all. Murphy et al., (2008) used Pavolvian conditioning to train rats (Rattus norvegicus) to 

respond only to certain sequences of stimuli (either patterns of illumination or tones of 

different pitches, following the structures AAB, ABB or ABA). They found that rats not 

only learned to respond only to the trained stimulus, demonstrating that they could 
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discriminate between different sequence structures, but that these results generalised to 

novel stimuli (sounds of different pitches, Murphy et al., 2008). Using similar sequences 

Hauser et al., (2009) demonstrated that free ranging Rhesus macaques (Macaca mulatta) also 

show similar abilities. A wild population of monkeys was tested with sequences of the form 

AAB or ABB, where the A and B elements represented randomly sampled macaque 

vocalisations (i.e., the AAB structure could be presented as ‘coo’, ‘coo’, ‘grunt’ or ‘bark’, 

‘bark’, ‘pant-threat’, etc.). Following habituation to one type of AG structure presented 

from a concealed audio speaker, Hauser and Glynn showed that the animals produced 

stronger dishabituation responses towards the other AG structure (i.e., those habituated to 

AAB responded more strongly to ABB, Hauser & Glynn, 2009). These studies suggest that 

human infants, rodents and nonhuman primates are able to learn these relatively simple, 

invariant patterns, and to generalise them to sequences of novel exemplars, suggesting 

some level of rule learning which could not be achieved through statistical learning alone.   

Recognising and generalising patterns in sequences of stimuli is necessary for 

human syntax. These abilities, required for language but not unique to language processing, 

have been referred to as the ‘language faculty in the broad sense’, (Hauser et al., 2002). One 

ability which has been claimed to be both necessary for, and unique to, human language, 

therefore falling into the ‘language faculty in the narrow sense’, is recursion (Hauser et al., 

2002; Fitch et al., 2005; however also see Jackendoff & Pinker, 2005; Pinker & Jackendoff, 

2005). A recursive structure is one in which a phrase can be embedded within another 

phrase, for example “the boy [the girl kicked] ran away”. More formally, a recursive 

structure is a computational device which calls itself (Corballis, 2007). Being able to 

understand such recursive, hierarchical structures is argued to be fundamental to language, 

but does any equivalent ability exist in nonhuman animals? A number of studies have 

attempted to address this question using AGL paradigms. Fitch and Hauser (2004) 

developed two AG structures consisting of nonsense words (consonant-vowel syllables) 

split into two categories (A and B) based on the gender of the speaker (i.e. the A category 

consisted of syllables spoken by a female speaker, B category syllables were produced by a 

male speaker). They designed both a simple ‘finite-state grammar’ (of the form (AB)n, 

which produces the sequence ABAB, where n = 2) and a more complex ‘phrase-structure 

grammar’, modelling simple recursion (AnBn, producing AABB sequences, in which they 

argue one AB phrase is embedded within another, A[AB]B). Fitch and Hauser showed that 

following exposure to the simpler FSG, cotton-top tamarin monkeys were able to 

discriminate between the two AG structures, responding more strongly to the novel AnBn 
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structure. However, following exposure to this more complex, ‘recursive’ AG structure, the 

monkeys showed no difference in responses when tested with the two AGs (Fitch & 

Hauser, 2004). These results led the authors to conclude that tamarins are capable of 

learning simpler structures, but since recursive abilities are not shared by nonhuman 

primates, the animals were unable to learn the more complex artificial grammar.  

A similar experiment was conducted in European starlings (Sturnus vulgaris), a type 

of vocal learning songbird (Gentner et al., 2006). Here an explicit learning task was used to 

train birds to discriminate between sequences constructed of starling song motifs generated 

by the (AB)n and AnBn structures. Gentner et al. demonstrated that starlings not only 

showed significant differences in responses to violations of both AG structures (up to n = 

4, i.e. ABABABAB and AAAABBBB), but also that they were capable of generalising these 

to sequences comprising of novel song motifs (2006). Visual versions of the same AG 

structures have been tested in both pigeons (which are not vocal learners or songbirds) and 

kea (a species of parrot which does produce complex song Stobbe et al., 2012). These 

experiments showed comparable results to those of Gentner et al. (2006), with both species 

recognising violations of both the (AB)n and AnBn structures (Stobbe et al., 2012). 

Furthermore, kea, to a relatively higher level than pigeons, were able to generalise the rules 

governing these structures, for example to extended sequences or novel colours of stimuli. 

However, both these studies and that of Fitch and Hauser (2004) have faced severe 

criticisms. While it is possible to linguistically or mentally represent the AnBn structure as 

two centre-embedded AB phrases, A[AB]B, it is equally possible to simply solve the AG by 

counting the number of A and B elements, or by recognising the adjacent repetition of 

elements in the AABB but not the ABAB sequences (Perruchet & Rey, 2005; Corballis, 

2007; van Heijningen et al., 2009). These results are therefore insufficient to conclude 

anything about “recursive” sequence processing. In order to liken these structures to 

recursive aspects of natural language it is necessary to appreciate the relationship between 

the different A and B elements. In the sentence “the boy [the girl kicked] ran away”, it is 

critical to understand the relationship between the different noun phrases and verbs 

presented. A listener needs to understand that the girl did the kicking and boy ran away, 

this is the very essence of syntax. The AG developed by Fitch and Hauser does not require 

this association between A and B elements. This issue has been addressed in more recent 

human studies, where specific A and B elements have been associated together based on 

acoustic or visual similarities, producing structures of the form A1A2A3B3B2B1 (Bahlmann et 

al., 2008; Bahlmann et al., 2009), but these more rigorous structures are yet to be tested in 
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nonhuman animals (Perruchet & Rey, 2005). Indeed, a more recent study in zebra finch 

(Taeniopygia guttata) demonstrated that while these songbirds respond differently to 

sequences generated by (AB)n and AnBn structures, these responses could be explained in 

simpler terms (van Heijningen et al., 2009). Specifically, the finches appeared to respond 

most strongly to individual pairs of elements (either the AA or BB bigrams, at either the 

beginning or end of the AABB sequences), regardless of whether these bigrams were part 

of AABB or AAAA sequences. Based on these results, van Heijningen et al., concluded that 

the results from this study (2009), as well as those in tamarins and other birds (Fitch & 

Hauser, 2004; Gentner et al., 2006; Stobbe et al., 2012) fail to provide evidence for learning 

recursive structures. 

All the studies discussed in this section require certain capabilities that are likely 

similar to abilities used in language (recognising word boundaries, identifying and 

generalising patterns of stimuli, categorising stimuli into A and B classes, etc.). However, 

once these processes have been performed, the sequences produced by the AGs are 

entirely invariant (i.e. the (AB)n structure will always produce the sequence ABAB, where n 

= 2). Human language is more complex than this, and even infants are not exposed to 

simple syntactic rules in isolation (Saffran, 2002), but must extract statistical regularities 

from sentences of varied length, composition and structure. A number of AG structures 

which aim to emulate this feature of language have been developed in human adults and 

infants (e.g., Reber, 1967; Saffran, 2002; Saffran et al., 2008), and two studies have 

attempted to test this in nonhuman animals.  

Saffran et al. (2008) presented both human infants and cotton-top tamarins with 

sequences generated by a forward-branching, nondeterministic AG structure. This AG 

contained 5 different nonsense word elements, which could occur in a range of constrained 

sequences, allowing the generation of a large amount of variation in sequence composition 

(see Chapter 2 and Chapter 3). Saffran et al. found that while human infants easily learned a 

number of variants of this structure, the tamarins only showed dishabituation responses to 

relatively simple versions of the experiment (Saffran et al., 2008). Furthermore, in this 

experiment (but not those in human participants) the ‘grammatical’ test sequences, which 

were consistent with the AG structure, were the same as those used in the habituation 

phase, while the ‘ungrammatical’ violation sequences were obviously completely novel to 

the animals. Therefore it is not possible to determine whether novelty or a deeper 

understanding of the AG structure best explain the results. Bengalese finches have been 

tested using motifs from finch song following the same AG structure (Abe & Watanabe, 
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2011). Abe et al. reported that the finches were able to discriminate between sequences 

which follow the AG structure and those which violated it. Furthermore, using a modified 

version of the AG, they argued that the birds were able to learn a recursive, centre-

embedded AG (Abe & Watanabe, 2011). However, these results have been challenged on 

the basis of serious acoustical confounds (the ‘consistent’ test sequences contained only 

minor variations relative to the habituation sequences, and were therefore acoustically very 

similar, while the ‘violation’ sequences had markedly different structures and were highly 

acoustically distinct, suggesting that the responses need not be attributed to any sort of 

recursive processing, Beckers et al., 2011; Berwick et al., 2012). These non-deterministic, 

branching artificial grammars have the potential to provide important insights into how 

nonhuman animals may process statistical regularities, and how these may relate to some of 

the abilities required to learn or process human syntax. However, potentially due to the 

difficulty of the task, it has proved challenging to rigorously demonstrate such AGL in 

nonhuman primates, and even vocal learning songbirds’ responses may be based on 

relatively simple learning strategies or acoustical differences between conditions.  

Artificial grammar learning paradigms provide a valuable opportunity to better 

understand the language related capabilities of non-linguistic species. The lack of reliance 

on other associated abilities, such as the association of semantic meanings to auditory or 

visual stimuli, allows the study of these abilities in a rigorous and controlled manner. 

Furthermore, shifting the emphasis of such experiments onto the perception rather than 

production abilities of the animals (Hurford, 2012; Petkov & Wilson, 2012) and the 

underlying computational mechanisms these rely upon (Hauser et al., 2007) is necessary if 

we are to pursue such questions in species like nonhuman primates with very limited vocal 

repertoires (Petkov & Jarvis, 2012). However, a number of these studies have faced 

difficulties or challenges (Berwick et al., 2011; Berwick et al., 2012), leaving the abilities of 

nonhuman animals to learn artificial grammars unclear (Pena et al., 2002; van Heijningen et 

al., 2009). In Chapter 2, I will present an approach to quantify the complexity of these AG 

structures and to highlight the cognitive mechanisms or abilities minimally needed to 

identify consistent and violation sequences.  

 Neurobiology of language 1.4.

Ever since Paul Broca’s seminal work describing a region of the frontal cortex 

critical for speech comprehension a century and a half ago (Broca, 1861a), the 

neurobiological underpinnings of human linguistic abilities have been a subject of great 
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interest. Broca believed that he had identified the seat of language in the brain, presenting 

evidence that individuals who had suffered lesions in the left inferior frontal gyrus 

(including, but not limited to, Brodmann Areas (BA) 44 and 45, Brodmann, 1909) showed 

dramatic language production deficits (Broca, 1861a; 1861b; 1861c; 1865; Dronkers et al., 

2007). He reported that these patients understood speech, and that their language abilities 

were still intact, however the vocabulary which they could produce was drastically reduced. 

This disorder became known as Broca’s aphasia, and the region which he described as 

Broca’s area (Dronkers et al., 2007).  

A decade later, Carl Wernicke described two patients with severe word 

comprehension disorders who produced paraphasic speech (they produced fluent speech 

which contained many unintended syllables, words or phrases, Wernicke, 1874; Eggert, 

1977). Wernicke argued that these deficits were due to impaired auditory images of words; 

the patients were unable to associate the appropriate words with their internal 

representations. Autopsies revealed that these patients had suffered lesions in posterior 

parts of the left superior temporal gyrus, leading to the claim that this region may represent 

a lexicon for spoken words. This region and the disorder associated with damage to it are 

typically referred to as Wernicke’s area and Wernicke’s aphasia. This research highlighted 

an interesting dissociation with the discoveries of Broca. Broca’s aphasia represents an 

inability to produce speech, while speech comprehension is relatively maintained, 

Wernicke’s aphasia however is characterised by relatively normal speech, with dramatic 

impairments to vocal perception.  

These 19th century lesion studies provided the initial foundations for our 

understanding of how language is processed in the brain and the idea that specific regions 

of the brain are linked to particular cognitive mechanisms and language related abilities 

(Broca, 1861a; Wernicke, 1874). While such studies may provide valuable insights into the 

neurobiology of the language network, lesions are rarely focal enough to provide a high 

degree of specificity about the involvement of precise regions, and plasticity and recovery 

make identifying normal brain function more difficult (Friederici, 2011). More than a 

century of research and technical developments (e.g. MRI, EEG, MEG) have drastically 

improved our understanding of language processing and the neurobiological network 

which supports it.  
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1.4.1. The language network 

Human language is a uniquely complicated communication system, and the brain 

network supporting it is similarly complex. However, while many details remain uncertain, 

there is a high level of agreement about some aspects of the network (e.g., Damasio & 

Geschwind, 1984; Friederici, 2002; Vigneau et al., 2006; Hickok & Poeppel, 2007; Friederici, 

2011). Language production and processing primarily activate significant areas of the left 

perisylvian area, comprising of the IFG (including Broca’s area), anterior, middle and 

posterior temporal lobe and temporo-parietal areas and a number of subcortical regions 

including the basal ganglia (Friederici, 2002; Vigneau et al., 2006; Hickok & Poeppel, 2007; 

Tyler & Marslen-Wilson, 2008; Friederici, 2011). These regions are connected by at least 

two distinct pathways: a dorsal pathway between the posterior temporal lobe and 

Brodmann Area 44 in the IFG; and a ventral pathway between the anterior temporal lobe 

and BA45 and other ventral IFG regions (Hickok & Poeppel, 2004; Friederici et al., 2006a; 

Hickok & Poeppel, 2007; Catani & Thiebaut de Schotten, 2008; Saur et al., 2008; Friederici, 

2009; Rauschecker & Scott, 2009; Saur et al., 2010), which may in turn be comprised of 

additional separate pathways (e.g., see: Catani et al., 2005; Friederici, 2009; Friederici, 2011; 

Petkov & Wilson, 2012). The network of brain areas that support language processing has 

been the subject of much debate (for reviews see Friederici, 2002; Vigneau et al., 2006; 

Hickok & Poeppel, 2007). Rather than repeating these discussions, this section will 

summarise the key brain regions that appear to be involved in the processing of different 

aspects of language and the pathways and connections between them. I will then discuss 

evidence for potentially language related abilities in nonhuman animals, and how these two 

fields could be integrated.  

Auditory cortex 

Initial cortical processing of all auditory stimuli occurs in the auditory cortex (AC), 

located bilaterally on the superior temporal gyrus. Primary regions of the AC, located in 

Heschl’s Gyrus are involved in processing simple acoustic properties of sounds (e.g. pitch, 

Patterson et al., 2002), while outlying secondary and tertiary regions respond to more 

spectrally and temporally complex stimuli (Hall et al., 2002). While this initial auditory 

processing is critical to language perception, AC appears to be involved in the processing 

of all acoustic stimuli, including speech sounds and pitch, with little specialisation for 

language above other auditory stimuli (Zatorre et al., 1992), although there is evidence for 

some speech specialisation in the left hemisphere (Zatorre et al., 2002). Nevertheless, more 

complex, language specific processing also recruits additional cortical regions.  
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Anterior temporal lobe  

A number of studies have reported language-relate activation in the anterior 

temporal lobe (Friederici, 2002; Vigneau et al., 2006; Hickok & Poeppel, 2007; Tyler & 

Marslen-Wilson, 2008; Friederici, 2011). This region appears to be particularly involved in 

syntactic processing at the phrase level, recognising the relationships between individual 

words or small phrases, rather than whole sentences (Mazoyer et al., 1993; Friederici et al., 

2000; Humphries et al., 2005; Humphries et al., 2006). Studies in a variety of languages have 

shown that when fMRI activation is contrasted between lists of pseudowords (with no 

syntactic structure or semantic meaning) and pseudoword sentences (which also have no 

semantic meaning, but syntactic structure is preserved), activation is observed in the 

anterior temporal lobe (as well as posterior areas, temporo-parietal regions and the IFG, 

Mazoyer et al., 1993; Vandenberghe et al., 2002; Humphries et al., 2005; Humphries et al., 

2006). Furthermore, when real words or sentences were compared to pseudowords or 

pseudoword sentences respectively, an increase in activation was observed in temporo-

parietal regions and some areas of the temporal lobes, but not in anterior temporal regions, 

suggesting this area is not involved in semantic processing (Friederici et al., 2000; 

Humphries et al., 2006). Further evidence suggesting specialisation for syntactic, rather than 

semantic processing comes from observations that the anterior temporal lobe is activated 

when participants were presented with sentences containing syntactic violations but not 

semantic ones (Friederici et al., 2003). Finally, a meta-analysis of 120 fMRI studies of 

semantic processing of individual words, highlighted a broad left lateralised network of 

brain regions, but showed no consistent activation in anterior temporal regions (Binder et 

al., 2009).  

While at the level of phrases or individual words, anterior temporal regions appear 

to be primarily involved in the processing of syntax, evidence suggests that they may play a 

role in processing semantics in other circumstances. Vandenberghe and colleagues 

presented participants with a variety of sentence stimuli (Vandenberghe et al., 2002). They 

found that the anterior temporal lobe responded more strongly to sentences than 

scrambled sentences, reiterating the area’s involvement with syntactic processing. However, 

they also found that when scrambled sentences were compared to similarly scrambled 

sentences in which some of the words were replaced with random words (therefore 

containing both syntactic and semantic violations) increased anterior temporal lobe activity 

was observed (Vandenberghe et al., 2002). Furthermore, Rogalsky and Hickok investigated 

syntactic and semantic processing by asking participants to judge whether sentences 
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contained either semantic or syntactic errors (Rogalsky & Hickok, 2009). In their analysis, 

only sentences containing no violations were considered, so any differences in activation 

could be explained only by attention on a particular aspect of the sequence. They found 

that significant regions of the anterior temporal lobe were involved in both tasks, but also 

identified a small sub-region of the anterior temporal lobe that was preferentially activated 

in the semantic condition. These results led the authors to conclude that the anterior 

temporal lobe is involved in the processing of both semantic and syntactic information at 

the sentence level (Rogalsky & Hickok, 2009). These studies suggest that at the phrase level 

the anterior temporal lobe seems to be involved in syntactic but not semantic processing, 

however, at the sentence level it may also have some semantic functions.  

Posterior temporal lobe 

The posterior parts of the temporal lobe were, after Broca’s area, some of the first 

to be functionally linked to language comprehension and production (Wernicke, 1874). The 

posterior temporal lobe, as well as temporo-parietal regions and the angular gyrus, has since 

been implicated in a wide range of language related processes, including both syntactic and 

semantic processing (e.g., Friederici et al., 2003; Kinno et al., 2008; Friederici et al., 2010). 

For example, Friederici et al. (2003) reported that sentences containing semantic violations 

activate a network of areas including the posterior and anterior temporal lobe, while 

syntactic violations produce activity in the left posterior temporal lobe, as well as the 

anterior temporal lobe, frontal opercular regions, and basal ganglia. The overlap in 

recruitment of the posterior temporal lobe in responses to both syntactic and semantic 

violations suggests that this area is not only involved in processing both aspects of language, 

but may also be involved in syntactic and semantic integration (Friederici et al., 2003). 

When presented with a range of sentences varying in terms of both syntactic 

complexity and memory demands, Cooke et al. (2002) report that the left posterior 

temporal lobe is the only region consistently recruited in the processing of all sentences, 

highlighting its central role in sentence comprehension. Furthermore, the posterior 

temporal lobe has been suggested to be activated by increasing sentences ambiguity (e.g. 

‘she weighs the flour’ compared to ‘she sifts the flour’, Obleser & Kotz, 2010). Higher 

levels of ambiguity make predicting later words in the sentence more difficult, requiring 

more information to be held in memory to allow the syntactic and semantic integration 

(Rodd et al., 2005; Snijders et al., 2009; Obleser & Kotz, 2010). When participants were 

presented with relatively complex sentences with hierarchical structures, in contrast to 
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simpler, more linear sentences, posterior temporal lobe activation is also observed 

(Bornkessel et al., 2005; Friederici et al., 2009).  

These studies suggest that the posterior temporal lobe is involved in the processing 

of both syntactic and semantic features of language, but seems particularly involved in the 

integration of these two key aspects of language (Grodzinsky & Friederici, 2006; Friederici 

et al., 2009; Friederici, 2011). However, while these imaging studies, and earlier lesion 

studies, clearly highlight the involvement of the posterior temporal lobe in language 

perception, other areas of the brain are typically recruited by similar tasks (Tyler & 

Marslen-Wilson, 2008; anterior temporal lobe, Obleser & Kotz, 2010; Snijders et al., 2010; 

e.g., IFG, Friederici, 2011). Furthermore, this region’s role in integration of features may 

not be limited to syntactic and semantic elements of language (Friederici, 2011), as the area 

has also been implicated in other forms of integration (e.g., audio-visual integration, Calvert, 

2001; Amedi et al., 2005). 

Inferior frontal gyrus 

The Inferior Frontal Gyrus (IFG), including Broca’s area in the left hemisphere, is 

critical to language processing (Broca, 1861a). While there is general agreement that this 

region is involved in processing sentences of increasing linguistic and syntactic complexity 

(e.g., Friederici et al., 2006b; Friederici, 2011), the specific function and even anatomical 

boundaries of Broca’s areas, and sub-regions thereof, are debated (Hagoort, 2005; 

Grodzinsky & Santi, 2008; Rogalsky & Hickok, 2009; Amunts & Zilles, 2012). In this 

section I will outline attempts to delineate the anatomical and functional correlates of 

Broca’s area and the inferior frontal gyrus more broadly, and discuss their involvement in 

language processing.  

Broca’s area (or territory) is typically anatomically defined as Brodmann areas BA44 

and BA45 in the left inferior frontal gyrus (Brodmann, 1909; Friederici, 2011). However, 

when Broca’s area is considered in functional, rather than anatomical terms (i.e., as the 

region of the IFG involved in language processing), its anatomical boundaries are more 

difficult to define (Amunts & Zilles, 2012). Beyond BA44 and BA45, the IFG consists of a 

number of anatomical areas which are thought to be involved in language processing (e.g. 

BA46, BA47, frontal operculum, insula, Friederici, 2004; Friederici et al., 2006a). Even these 

anatomical areas may contain further subdivisions, for example into anterior and posterior 

parts of BA45 (BA45a and BA45p), or dorsal and ventral subdivisions of BA44 (44d and 

44v, Friederici, 2011). Furthermore, anatomical boundaries vary between individuals, 
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making precise correspondences between anatomical regions and brain functions difficult 

to map (Anwander et al., 2007). Therefore, in this section, I will discuss the involvement of 

the IFG generally as well as evidence for the localisation of specific linguistic functions 

(aspects of language, such as syntactic movement) to individual regions, including Broca’s 

area.   

The IFG is involved in processing language at a number of levels. It is implicated in 

relatively low level processes, such as action observation and execution, (Pulvermuller & 

Fadiga, 2010), maybe homologous to the mirror neuron system observed in nonhuman 

primates (Rizzolatti & Arbib, 1998). However, while these functions may be critical to 

language acquisition, production or comprehension, these alone are clearly insufficient to 

explain the processing of the complex syntactic and semantic information contained in 

human language (Chomsky, 1957). At a higher level, the IFG is reported to be responsible 

for verbal Working Memory (WM) (Caplan & Waters, 1999; Wager & Smith, 2003; 

Rogalsky et al., 2008). Verbal WM is critical to the processing of human language. 

Understanding the meaning of a sentence involves tracking the temporal positions of many 

words and phrases which must be syntactically combined to comprehend the intended 

meaning of a sentence (Just & Carpenter, 1992; Gibson & Pearlmutter, 1998; Cooke et al., 

2002; Lewis et al., 2006). Furthermore, sentences of increasing complexity are likely to 

correspond with greater working memory demands, as longer sentences require more 

complex syntactic understanding (e.g., Santi & Grodzinsky, 2007). There is debate 

regarding whether the working memory system used in language processing is specific to 

syntax (Caplan & Waters, 1999; Fedorenko et al., 2006; Santi & Grodzinsky, 2007) or 

reflects more general WM capacity (Waters & Caplan, 1996; Lewis et al., 2006). However, 

there is a general consensus that language requires verbal WM, and that it is seated in the 

IFG. Some authors have suggested that the sole function of the IFG in language relates to 

working memory (Rogalsky & Hickok, 2009; 2011). However, a far greater number of 

imaging and patient studies suggest that, while the IFG is involved in WM, its function in 

language processing is more general (Caplan & Waters, 1999; Friederici, 2002; Opitz & 

Friederici, 2003; 2004; Friederici et al., 2006a; Bahlmann et al., 2008; Bahlmann et al., 2009). 

Furthermore, it has been proposed that WM and the processing of syntactic complexity 

may even have different anatomical correlates in the IFG, with more dorsal regions 

supporting memory and more ventral areas syntactic processing (Fiebach et al., 2004; 

Makuuchi et al., 2009). While there may be debate regarding whether the WM system in the 

IFG is unique to syntax or more general; and how this system interacts with complex 
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syntactic processing, it is clear that both processes recruit IFG regions and both are 

required for language processing (Friederici, 2011). 

There is a large amount of evidence that activation in this area increases with 

syntactic complexity. Syntactic complexity can be manipulated in a number of ways. For 

example, in languages which employ case-markings it is possible to create grammatically 

correct, non-canonical sentences that are more syntactically complex than their semantically 

equivalent, canonical counterparts. Linguistically, this is called scrambling, and has shown 

to increase activation in the IFG, including both BA44 and BA45 (Bornkessel et al., 2005; 

Friederici et al., 2006b; Kinno et al., 2008). Alternatively, in languages that typically employ 

subject-first structure (e.g. in English, “the boy [subject] kicked [verb] the ball [object]”) 

increased syntactical complexity is observed in non-canonical, object-first sentences, such 

as “the ball [object] was kicked [verb] by the boy [subject]”. This operation is known as 

movement. A number of studies have shown increased IFG activation (BA44 and 45; as 

well as commonly showing temporal lobe activation) in responses to these non-canonical 

sentences relative to canonical ones (e.g., Ben-Shachar et al., 2003; Ben-Shachar et al., 2004; 

Constable et al., 2004; Santi & Grodzinsky, 2007). Activation in the IFG has also been 

shown to correlate to the amount of movement in a sentence (i.e. more activation is 

observed in response to a longer antecedent–gap relation, Cooke et al., 2002; Fiebach et al., 

2005). Higher levels of syntactic complexity are also observed in sentences containing 

centre-embedded phrases compared to those with typical, right-branching structures 

(Hauser et al., 2002; Fitch & Hauser, 2004). For example “the boy [the girl kicked] ran away” 

is syntactically more complex than “[the girl kicked] [the boy who ran away]” (parentheses 

denote phrases). This is the same type of sentence structure that artificial grammars 

modelling ‘recursive’ sequences attempted to emulate (Fitch & Hauser, 2004; Gentner et al., 

2006; see Section 1.3 and below). A number of studies have shown that when the 

syntactically more complex, centre-embedded sentences are compared to their simpler 

counterparts, focal IFG clusters are observed, particularly in BA44 and BA45 (Just et al., 

1996; Stromswold et al., 1996; Makuuchi et al., 2009; Santi & Grodzinsky, 2010) 

Artificial Grammar Learning in the IFG 

Artificial grammar learning paradigms, similar to those discussed in nonhuman 

animals in Section 1.3.1, have also been used to assess the brain areas involved in 

processing sequences designed to emulate features of language (Petersson et al., 2004; 

Forkstam et al., 2006; Friederici et al., 2006a). These studies have consistently demonstrated 

that violations of both auditory and visual artificial grammars produce activation in areas of 
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the brain associated with language processing, particularly the IFG, suggesting that similar 

neural substrates might be involved in processing both natural language and these simpler 

structures (Gomez & Gerken, 2000; Friederici, 2002; 2004; Petersson et al., 2004; Petersson 

et al., 2012). Violations of artificial grammars that emulate more complex, non-adjacent or 

hierarchical relationships between words (Petersson et al., 2004; Forkstam et al., 2006; 

Friederici et al., 2006a; Bahlmann et al., 2008; Bahlmann et al., 2009; de Vries et al., 2011) 

have been shown to recruit Broca’s area (BA44 and BA45) during both explicit decision 

making (e.g. Petersson et al., 2004; Forkstam et al., 2006; Friederici et al., 2006a) and implicit 

tasks (Folia et al., 2011).  

Beyond showing similar patterns of activation to features of natural language, the 

relatively simple nature of AG structures mean that participants are able to learn them 

quickly, presenting the opportunity to assess language learning in a way that is not possible 

with natural language. For example, Opitz and Friederici (2003; 2004) presented 

participants with a previously unfamiliar AG designed to emulate some key elements of 

natural language (Friederici et al., 2002) during fMRI scanning. They demonstrated a 

dynamic pattern of brain activation, where initial acquisition of the AG structure appeared 

to strongly recruit hippocampal areas, while increased proficiency with the language, later in 

the scanning session, was associated with reduced hippocampal and increased IFG 

activation (Opitz & Friederici, 2003; 2004). These studies highlight the value of AGL 

paradigms to evaluate how the brain processes complex language related tasks in individual 

participants, demonstrating the difference between initial similarity-based strategies and 

ultimately more complex rule based learning. 

The ease with which participants are able to learn artificial grammars relative to 

natural language has also been exploited by combining AGL paradigms with non-invasive 

brain stimulation techniques. Repetitive Transcranial Magnetic Stimulation (rTMS) and 

transcranial Direct Current Stimulation (tDCS) were used to stimulate BA44/45 during 

either artificial grammar learning (de Vries et al., 2010) or testing (Udden et al., 2008). In 

both experiments this stimulation produced enhanced abilities and faster reaction times in 

identifying artificial grammar violations, providing further evidence that Broca’s area is 

causally involved in AGL.   

A number of studies, motivated in part by some of the previously discussed work 

in nonhuman animals (e.g. Hauser et al., 2002; Fitch & Hauser, 2004; see Section 1.3.1), 

have used AGL paradigms to explore how the brain processes AG structures that aimed to 
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emulate the centre-embedding and recursion seen in natural language (Friederici et al., 

2006a; Bahlmann et al., 2008; Bahlmann et al., 2009). Friederici and colleagues used AGs 

similar to that of Fitch and Hauser (see Section 1.3, Fitch & Hauser, 2004). Participants 

were habituated to either a simple, relatively linear structure of the form (AB)n, which 

produces sequences such as A1B1A2B2, or a more complex, hierarchical structure, AnBn, 

which produces sequences of the form A1A2B2B1, to assess how the brain may process 

these more complex AGs. It is important to note that the majority of these studies ensured 

the relationship between pairs of A and B elements were maintained (i.e., A1 is associated 

with B1) by testing participants with (violation) sequences including A1A2B1B2 (Bahlmann et 

al., 2008; Bahlmann et al., 2009), therefore the same criticisms directed towards some of the 

previously discussed animal work (e.g. Perruchet & Rey, 2005; van Heijningen et al., 2009) 

are not applicable here. All of these studies showed that violations of both the relatively 

linear (AB)n structure and the more complex AnBn structure produced activation in ventral, 

frontal opercular regions of the IFG. However, only violations of the AnBn structure 

activated BA44 and BA45 (Friederici et al., 2006a; Bahlmann et al., 2008; Bahlmann et al., 

2009). These results are comparable to studies using natural language sentences with similar 

structures (Just et al., 1996; Stromswold et al., 1996; Makuuchi et al., 2009; Santi & 

Grodzinsky, 2010), which showed that in contrast to more linear structures that activated 

ventral IFG regions, centre-embedded sentences produced activation in Broca’s area. 

Furthermore, when sentences were orthogonally varied to contain different levels of centre 

embedding or linguistic movement while maintaining working memory demands, 

dissociations between the two features were observed (Makuuchi et al., 2009; Santi & 

Grodzinsky, 2010). FMRI activity associated with movement appeared primarily in BA45 

while centre-embedding appears to recruit BA44. 

These results demonstrate the involvement of ventral portions of the IFG in all 

AG tasks and also highlight the important role of Broca’s area in processing complex AG 

structures. This has led to important hypotheses regarding the evolution of the language 

faculty in humans. AGL paradigms do not require linguistic stimuli, and comparable results 

have been observed with both words and visual symbols, unrelated to language (Bahlmann 

et al., 2008; Bahlmann et al., 2009). Therefore, it has been argued that some of the sequence 

processing abilities based in the IFG may not be specific to language (Friederici, 2002; 2004; 

Friederici et al., 2006a; Petersson & Hagoort, 2012). These studies have highlighted that 

while ventral frontal cortex regions are involved in most AGL tasks, Broca’s area is 

critically involved in processing of more complex AG structures, either involving centre-
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embedding and recursion or more complex and varied finite-state grammars. These results, 

in conjunction with natural language neuroimaging and lesion studies, suggest that Broca’s 

area may be a critical region for processing more complex aspects of syntax. Furthermore, 

nonhuman primate AGL results have suggested that monkeys are able to learn simpler AG 

structures (Fitch & Hauser, 2004), but not more complex AGs that would activate Broca’s 

area in humans (Friederici et al., 2006a). This has led to the hypothesis that some of the 

human unique aspects of language may be supported by Broca’s area, while simpler abilities 

require more ancestral ventral IFG regions, homologues of which are more likely to exist in 

nonhuman primates (Sanides, 1962; Friederici, 2004; Friederici et al., 2006a; Friederici, 

2011). However, evidence regarding the abilities of nonhuman animals to learn complex or 

centre-embedded AG structures is currently lacking (see Section 1.3.1, van Heijningen et al., 

2009; Berwick et al., 2011; Beckers et al., 2012; Hurford, 2012). Furthermore, no 

neuroimaging studies investigating the AGL capabilities of nonhuman primates have been 

conducted. Therefore, whether AGL in these animals might recruit presumed homologues 

of Broca’s area (BA44/45), more ventral IFG regions, or some other neural substrates 

remains an empirical question.  

1.4.2. Language pathways in the brain  

As this chapter has discussed, language processing is highly complex and is 

supported by a number of interacting brain areas, the roles of which may be linked to 

specific features of language. The key regions in these processes are the inferior frontal 

gyrus (including both Broca’s area in BA44 and BA45 and more ventral IFG regions), the 

anterior temporal lobe and posterior temporal and temporo-parietal regions (Wernicke’s 

area). The first structural connection identified between Broca’s area in the IFG and 

Wernicke’s region in the posterior temporal lobe was the pathway known as the arcuate 

fasciculus (AF) in 1895 (Dejerine, 1895). Since the discovery of this dorsal pathway, 

neuroimaging techniques have also revealed ventral connections, via the Extreme Fibre 

Capsule System (EFCS), between the anterior IFG, including BA45 and BA47, and the 

anterior temporal lobe (e.g., Catani & Thiebaut de Schotten, 2008).  

A number of studies have reported that the ventral stream, between anterior parts 

of the temporal lobe and ventral IFG regions, is involved in processing sound-to-meaning 

mapping; connecting auditory input with appropriate semantic labels (Hickok & Poeppel, 

2004; 2007; Saur et al., 2008; Rauschecker & Scott, 2009; Saur et al., 2010). However, using 

probabilistic fibre-tracking approaches (Diffusion Tensor Imaging, DTI) Friederici and 

colleagues identified a potentially discrete ventral pathway, the Uncinate Fasciculus (UF), 
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connecting the frontal operculum to the anterior temporal lobe (Friederici et al., 2006a). 

The seed region for this analysis was based on a brain area that showed preferential 

activation to simple (adjacent) AG violations, therefore the authors concluded that this 

pathway may be required for processing local relationships between neighbouring elements 

in a sequence. Therefore, it appears that the anterior temporal lobe may be connected to 

different ventral inferior frontal regions by two different pathways, potentially with 

different functional roles (Friederici, 2011). 

The dorsal pathway connects the posterior temporal lobe to the premotor cortex 

and inferior frontal gyrus via the arcuate fasciculus. This pathway has been implicated in 

the auditory motor integration, and the sensory-motor mapping of sound articulation 

(Hickok & Poeppel, 2004; 2007; Saur et al., 2008; Rauschecker & Scott, 2009; Saur et al., 

2010). However, the same DTI approach that revealed the ventral, UF pathway in response 

to simple syntactic violations, highlighted a second dorsal stream, connecting BA44 in the 

IFG to posterior temporal regions, in response to more complex, non-adjacent AG 

violations (Friederici et al., 2006a). This dorsal pathway (the superior longitudinal fasciculus, 

SLF) appears to originate (or terminate, DTI approaches are insufficient to determine 

directionality) in BA44, anterior to the premotor areas identified in previous studies, 

suggesting that the dorsal stream may also involve two distinct pathways (Friederici, 2011). 

These results are supported by the evidence that the first dorsal pathway (AF), between the 

posterior temporal lobe and premotor cortex, is present in infants (Dubois et al., 2006), 

while the second dorsal pathway (SLF), involving BA44, develops much later (Brauer et al., 

2011). Strong connections between sensory information and motor output, which would 

likely require the AF, are necessary for initial language learning, so are unsurprisingly 

present in young infants. However, more complex syntactic abilities, which may be 

supported by the second dorsal stream (SLF), develop more slowly (Hickok & Poeppel, 

2007; Dittmar et al., 2008; Friederici, 2011).  

The brain areas and connections between them, which are responsible for 

supporting language processing in the brain, are complex and currently imperfectly 

understood. However, it is clear that language relies upon the connected processing of a 

distributed perisylvian network, centred around the IFG connected by two sets of 

pathways to the anterior and posterior temporal lobe. 
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 Language related neurobiology in nonhuman animals 1.5.

The network of human brain areas involved in the processing language has been 

the subject of more than a century of research. While questions remain regarding the fine 

detail of the roles of these different regions, and how they interact to process different 

features of language, a broad consensus has emerged. However, far less research has 

considered how communication or language related abilities might be represented in the 

brains of nonhuman animals.  

Songbirds have become a valuable model species in researching certain language 

related abilities. Due to their impressive vocal learning and song production capabilities 

(Jarvis, 2004; Petkov & Jarvis, 2012), both their natural song production and their AGL 

abilities have been the subject of investigation (Okanoya, 2004b; Abe & Watanabe, 2011). 

However, songbirds are very distantly related to humans, and their neurobiology is 

markedly different to that of primates, therefore any ‘language-like’ abilities observed in 

songbirds are likely the result of convergent evolution rather than common descent 

(Petkov & Jarvis, 2012 ). Therefore, while songbirds might show interesting behavioural 

similarities to humans, it is doubtful whether they have the potential to inform us regarding 

either the evolution of human language or its neuronal underpinnings.  

Relative to humans and even other vocal learning species such as songbirds, 

nonhuman primates show very limited vocal ability. As has previously been discussed, 

nonhuman primates are at best limited vocal learners and do not show the same level of 

production abilities as is observed in some avian species (see Section 1.2.1). However, 

many monkey species do engage in vocal communication. Recent developments in 

neuroimaging technology (Ogawa et al., 1992; Logothetis et al., 1999; Van Meir et al., 2005; 

Logothetis, 2008; Poirier et al., 2009) have allowed several groups to reveal how vocal 

communication signals are processed in the brains of nonhuman primates (Poremba et al., 

2004; Gil-da-Costa et al., 2006; Petkov et al., 2008b; Taglialatela et al., 2008; 2009). While 

natural language undoubtedly communicates more information in more complex ways than 

do the communication calls of nonhuman animals, a recent shift in focus has highlighted 

that some of the information communicated may be comparable across species. For 

example, a number of studies have investigated how properties of vocalisations (speech in 

humans or different calls in nonhuman primates) are processed in the brains of different 

species, with particular reference to the acoustical properties of the sounds (Dehaene-

Lambertz et al., 2005; Liebenthal et al., 2005; Rimol et al., 2005; Obleser et al., 2006; Obleser 
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et al., 2007; Taglialatela et al., 2009). Studies in humans, chimpanzees and Rhesus macaques, 

have demonstrated that hearing the vocalisations of conspecifics causes activation in 

comparable areas of the superior temporal lobes in both hemispheres (Wilson & Petkov, 

2011). Furthermore, conspecific vocalisations relative to those of other species, or of 

known individuals compared to unknown conspecifics, both recruit an anterior temporal 

lobe ‘voice’ region in both humans (Belin et al., 2000; Belin & Zatorre, 2003; von Kriegstein 

et al., 2003) and macaques (Petkov et al., 2008b) (unfortunately no data is currently available 

in chimpanzees). While certain features of human language might be unique, studies such 

as these have shown that some of the information that can be extracted from vocalisations 

appears to be comparable across different primate species.  

Focussing comparative neuroimaging efforts on those basic, underlying properties 

of language, rather than the traditional perspective of concentrating on the unique features 

of language, allows direct comparisons to be drawn between species. This has a number of 

potentially important implications. These experiments provide novel insights into how the 

brains of nonhuman animals’ process information contained within the vocalisations of 

conspecifics. Furthermore, comparative data of this type can inform us about the evolution 

of such abilities. If we observe that the same abilities caused activation in comparable areas 

of the brain, those results would suggest that such capabilities likely evolved by common 

descent, before the last common ancestor shared by the species. Cases in which both 

behavioural and neuronal correspondences exist between species represent the opportunity 

to study these abilities, in the nonhuman species, at a cell or molecular level that is not 

possible in human participants. For example, the identification of a voice sensitive area in a 

comparable region of the anterior temporal lobe in both humans (Belin et al., 2000; Belin & 

Zatorre, 2003) and macaques (Petkov et al., 2008b), has facilitated electrophysiological 

investigation of these areas in the macaque. Perrodin and colleagues, were able to target 

this region, which had previously been localised with fMRI, and discovered individual 

neurons that were specifically sensitive to voice information in monkey vocalisations 

(Perrodin et al., 2011). This research represents a level of enquiry that is not possible in 

human participants, and highlights the exciting potential of taking a comparative approach 

to studying brain function.  

 Hypotheses and predictions regarding AGL in the nonhuman primate brain 1.6.

Taking a comparative approach to neuroscience represents a genuine opportunity 

to investigate the evolutionary origins of a trait or ability, as well as the neurophysiological 
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mechanisms that support it. The efficacy of this approach has been demonstrated by 

investigating how information represented in the vocalisations of different species is 

represented in the brain (see Petkov et al., 2008b; Perrodin et al., 2011). A similar approach, 

in combination with artificial grammar learning paradigms, may be able to inform us about 

the sequence-structure learning abilities of nonhuman animals, and how they relate to 

syntactic abilities in humans.  

A large amount of research has demonstrated that AGL tasks recruit areas in the 

human IFG, consistent with some of those involved in processing natural language (e.g. 

Petersson et al., 2004; Friederici et al., 2006a; Petersson et al., 2012). More complex artificial 

grammars, and increasing complexity in sentences, produce additional activation in Broca’s 

area (BA44/45), while simpler structures appear to primarily recruit more ventral IFG areas 

including the Frontal Operculum (FOP). Artificial grammar learning experiments in 

nonhuman animals have consistently demonstrated that nonhuman primates, among other 

animals, are able to learn relatively simple AG structures (Fitch & Hauser, 2004; Newport et 

al., 2004). More complex AGs, such as those reported to activate Broca’s area in humans, 

have been insufficiently tested in nonhuman animals, but there is no conclusive evidence 

that nonhuman primates are able to learn such AG structures (van Heijningen et al., 2009; 

Berwick et al., 2012; Hurford, 2012). Based on this information, a number of predictions 

could be made regarding how the nonhuman primate brain may process artificial grammars.  

The first possibility is that in response to violations of relatively simple AGs, 

nonhuman primates, like humans, would show increased activation in ventral IFG regions, 

homologous to the FOP in humans. It is possible that artificial grammars of sufficient 

complexity to activate Broca’s area in humans are simply too complex to be learned by 

nonhuman primates. This might suggest that nonhuman primates do not possess a 

functional homologue of Broca’s area, and therefore this region, and the capabilities that it 

supports, may be uniquely specialised for language in humans. Potential evidence for this 

hypothesis could be drawn from DTI data demonstrating less evidence for a dorsal 

pathway in chimpanzees and macaques than humans (Rilling et al., 2008), however the 

existence of functional homologues of Broca’s area in nonhuman animals currently remains 

an empirical question.  

An alternative hypothesis is that AGs that would activate the FOP in humans 

might also activate homologues of Broca’s area in nonhuman primates. Increasing syntactic 

complexity in both natural language (Makuuchi et al., 2009; Santi & Grodzinsky, 2010) and 
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artificial grammar structures (Friederici et al., 2006a) is associated with increased activation 

in Broca’s area in humans. It is possible that nonhuman primates may possess functionally 

comparable brain areas, but the threshold beyond which homologues of Broca’s area may 

be recruited may be very different to that observed in humans. Quantifying the level of 

complexity of different artificial grammars represents a continuing challenge (Hurford, 

2012; Jaeger & Rogers, 2012; Petkov & Wilson, 2012; and see Chapter 2), and comparisons 

across species are currently very limited. Therefore it is difficult to predict how different 

species, and their brains, might respond to different AG structures.  

Finally, it is possible that completely different brain regions might be involved in 

AGL tasks in humans and monkeys. If the network of brain areas involved in language 

processing in humans represents a specific and unique evolution for language, then the 

behavioural AGL results observed in nonhuman primates might be supported by entirely 

different brain areas. This need not apply only to different regions of the IFG, but to all of 

the areas involved in language processing in humans including, particularly the anterior and 

posterior temporal lobes.  

Comparative neuroimaging has the potential to reveal which of these hypotheses, if 

any, best reflect the brain areas involved in AGL in nonhuman primates. Empirical data is 

required to clarify whether brain regions homologous to those involved in human language 

are present in nonhuman species, the implications of these results on the evolution of the 

language faculty, and the potential for developing animal model systems in which the 

cellular mechanisms supporting these abilities can be explored.  

 Conclusions 1.7.

In this chapter I have discussed the existing research and literature regarding how 

the AGL capabilities of nonhuman animals might inform us about language related abilities 

in humans. I have reviewed how language and artificial grammars are processed in the 

human brain. Finally I have discussed how these two fields could be integrated to 

investigate AGL in the nonhuman primate brain, and how this might ultimately inform us 

about the evolution of language and the neuronal mechanisms that support it. The aim of 

this thesis is to investigate the extent of the AGL capabilities of nonhuman primate species, 

and to comparatively assess how these are represented in the brains of both human and 

nonhuman primates. Better understanding of these areas may be critical to our 

understanding of the evolutionary origins of the language faculty, and in developing 

potential animal model systems in which such abilities can be investigated at a neuronal 
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level. In Chapter 2, I will discuss some of the challenges involved with the comparative 

assessment of AGL abilities in a wide range of species, and present a novel, quantitative 

framework in which different AGs can be objectively compared. In Chapter 3, I will 

describe two experiments that show at both the group and individual level, that Rhesus 

macaques are able to learn a moderately complex, forward-branching, non-deterministic 

artificial grammar, and that these results cannot be easily explained by reliance of simple 

strategies. Chapter 4 compares the abilities of Rhesus macaques to more distantly related 

common marmosets and to human participants, suggesting a potential evolutionary 

gradient of syntactic complexity. Finally, in Chapter 5, I will describe fMRI experiments, in 

both Rhesus macaques and humans, demonstrating patterns of brain activation that are 

comparable, both between the species and to those observed during natural language 

processing in humans. I will conclude the thesis in Chapter 6, by discussing the 

implications of this research in terms of our understanding of the sequence-structure 

learning abilities of nonhuman primates, how this can inform us about the evolution of 

language, and the exciting implications of such research for developing animal models to 

study aspects of language at a cell and molecular level.  
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Understanding the evolution of language presents a very difficult challenge 

(Christiansen & Kirby, 2003b). However, as discussed in Chapter 1, a comparative 

approach, including neuroimaging and AGL paradigms, may present an opportunity to 

clarify how the cognitive abilities of nonhuman primates might relate to the language 

network observed in the human brain. Previous research on this topic has been limited by a 

focus on the unique nature of human language and the obvious inabilities of nonhuman 

animals to process syntactic or semantic relationships in comparable ways to humans. 

However, recent developments in linguistics and modern language theory have led to 

advances in our understanding of language related processes (Bickerton & Szathmary, 2009; 

Tallerman, 2011; Fitch & Friederici, 2012; Hurford, 2012; Jaeger & Rogers, 2012), 

providing the opportunity to explore the features of language that nonhuman animals may 

be able to process.  

In this chapter, I will discuss some of the conceptual challenges that have been 

faced in pursuing evolutionary precursors to human syntax in nonhuman animals. I will 

present a theoretically motivated approach to objectively compare different artificial 

grammars with relation to linguistic theory, so that the abilities of nonhuman animals can 

better be evaluated.  

 An evolutionary gradient of syntactic complexity 2.1.

The Formal Language Hierarchy (FLH, Chomsky, 1957) or extended Chomsky 

hierarchy (Berwick et al., 2011; Jaeger & Rogers, 2012) contains several categories of 

grammar, each describing an increasingly powerful computational language (Figure 2.1). 

The lower ranked grammars generate sets of languages that are subsets of those generated 

by higher ranked grammars. Therefore, the Finite State Grammars (FSGs) comprising 

finite and regular languages (1 and 2 in Figure 2.1) form a subset of the more complex 

Context Free Grammars (CFG; 3 in Figure 2.1) which in turn comprise a subset of the 

higher grammars. The most complex aspects of human language can be described context-

sensitive or mildly context-sensitive grammars (4 and 5 in Figure 2.1, Berwick et al., 2011; 

Hurford, 2012). Recursively enumerable languages represent a level of complexity only 

observed by computers or Turing machines (Chomsky, 1957). Nonhuman animals have 

been shown to learn simple FSGs (e.g. (AB)n, Fitch & Hauser, 2004; Gentner et al., 2006; 

van Heijningen et al., 2009; Stobbe et al., 2012). However, while numerous studies have 

claimed that various species are able to learn more complex CFGs (e.g. AnBn, tamarin 

monkeys: Fitch & Hauser, 2004; starlings: Gentner et al., 2006; Bengalese Finches: Abe & 
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Watanabe, 2011) these results have been widely criticised for insufficiently demonstrating 

that the animals did not use simple learning strategies, (see Section 1.3.1, Perruchet & Rey, 

2005; van Heijningen et al., 2009; Berwick et al., 2011; Beckers et al., 2012; ten Cate & 

Okanoya, 2012). This focus on the ability of nonhuman animals to breach the potentially 

‘human unique’ realms of CFGs (Hauser et al., 2002), may have detracted focus from the 

range and variety of FSGs that nonhuman species may more easily be able to learn 

(Hurford, 2012). It is possible that a convincing demonstration of nonhuman CFG learning 

may arise (Jaeger & Rogers, 2012). However, it remains important to understand how the 

human capabilities to learn and produce CFGs and beyond may have evolved from abilities 

represented lower in the hierarchy, which may be present in extant nonhuman animals 

(Hurford, 2012; Jaeger & Rogers, 2012; Petkov & Wilson, 2012).  
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Figure 2.1 Chomsky hierarchy of grammars. Schematic of the Formal Language Hierarchy 
with examples of two key structures, (based on, Berwick et al., 2011; Petkov & Wilson, 
2012). All animal species currently tested have been found to learn AGs equivalent in 
complexity to Regular Languages (2), while there is currently no strong evidence that any 
species other than humans can learn structures which can be modelled as Context Free 
Languages (3). Humans are able to process Mildly Context Sensitive (4) or possibly 
Context-Sensitive Languages (5) while Recursively Enumerable Languages (6) appear to be 
beyond the abilities even of humans and are only processed by computers or Turing 
machines.  
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2.1.1. Classifying vocal production abilities in nonhuman animals 

How might the ability to generate context-free languages, or beyond, have evolved? 

One possibility is that when the ancestors to living humans began to organise vocalisations, 

and then words, into sentences of increasing complexity, this built upon the evolutionarily 

conserved ability to process sets of serially ordered strings. Then, at some point, selective 

pressures to reduce memory demands may have expanded syntactic capabilities by the 

adoption of rule-based learning strategies that avoid having to memorise all the elements 

and transitions in the sequences from more complex grammars (Teal & Taylor, 2000).  

One of the simplest possible capacities is the ability to recognise and/or generate 

single elements. Such is the case for animals with call-based systems that can produce and 

recognise single vocalisations from a limited set of vocalisations (Figure 2.2). The next level 

of sequencing complexity is introduced when two calls are combined. In this case it 

becomes important to evaluate the relationships between adjacent elements. A subsequent 

level of complexity occurs when several elements are serially sequenced in a purely linear 

fashion. For example, zebra finches produce a linear combination of song motifs (Okanoya, 

2004b). In such cases the pairwise transitions can be modelled by first-order Markov 

processes; any element can be predicted by the element immediately preceding it (Hurford, 

2012) (Figure 2.2). Adding more elements or transitions to such a structure does not 

change the computational complexity of the pairwise sequencing process, but requires a 

larger indexical memory store.  

At a higher level of complexity, some animals, such as Bengalese finches, 

nightingales and chaffinches, and humpback whales, produce songs that show sequencing 

elaborations such as forward- or backward-branching relationships and repeating elements 

(Hurford, 2012). These structures show more variation between species and songs than 

simpler structures, thus deviating from strictly linear processes (Honda & Okanoya, 1999). 

Rather than following an entirely predictable sequence, these structures allow variations 

where certain elements may be followed by two or more different elements. While 

representing a higher level of complexity, such structures still only require first-order 

Markov processes to model them (Figure 2.2). However, certain branching transitions, can 

be modelled either as a number of adjacent relationships, or could include more complex 

‘non-adjacent relationships’ where an optional element can occur between two other 

elements. For example, in the forward-branching system in Figure 2.2, rather than learning 

all possible transitions between the A, B and C elements it may be simpler to learn that A 

will always be followed by C, but sometimes they will be separated by B. The recognition 
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of non-adjacent relationships can reduce the need to memorise many pairwise transitions if 

the non-adjacency ‘rule’ can be learned. For adult humans, non-adjacent relationships can 

include even greater levels of complexity (e.g. nested or crossed relationships, Folia et al., 

2011; Udden et al., 2011). Moreover, the ability to deal with non-adjacent relationships is 

not present at birth but seems to occur during infant development (Friederici et al., 2011; 

Perani et al., 2011). A final example of FSG complexity is the special case known as a state 

chain system (Hurford, 2012), in which the same element can occur at multiple positions 

within a sequence. Therefore, predicting the next element in the sequence requires 

knowledge of the preceding two elements (i.e., to identify which element will follow A in 

the state chain system in Figure 2.2, it is necessary to also consider the element that 

preceded A). Such transitions require higher order Markov processes, although much of 

the rest of the sequence could remain a first-order Markov process. 

These examples help to illustrate the great variety seen in the song production of 

different animals’ and the variations in complexity of different ‘grammatical’ structures. 

However, an objective method to quantify the structural complexity of different artificial 

grammars would facilitate clearer comparisons between the abilities of nonhuman animals 

on different AGL tasks. If the learning abilities of different animals could be evaluated 

along quantitative dimensions of ‘syntactic complexity’, our understanding of the 

evolutionary bases for human syntactic abilities might be improved. In the following 

section, I will extend these ideas and propose a method by which the complexity of 

artificial grammars that have been used to test nonhuman animals could be quantified, and 

therefore how the abilities of nonhuman animals could be objectively compared.  
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Figure 2.2 A conceptual framework for exploring the complexity of different structures. 
Adapted from Petkov and Wilson (2012). Schematised for quantifying the different 
dimensions of syntactic complexity, on the vertical axis, a measure of linearity can be used 
as a function of increasing memory demands on the horizontal axis. At the lowest level are 
single element structures. These are followed by strictly linear structures, with multiple 
elements. A higher level of complexity includes forward branching structures with non-
adjacent relationships, with or without element repetitions. These are followed by ‘state 
chains’ that cannot be fully learned with only first-order Markov processes; here the 
transition following each ‘A’ element depends on the preceding element.  
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 A parameter space for comparing artificial finite state grammars 2.2.

Like the vocal communication systems of different species, artificial grammars vary 

widely in complexity. To better understand and compare data collected from different 

AGL experiments, it would be beneficial to have a method to objectively compare these 

structures. In this section I will consider the dimensions on which artificial grammars vary 

and describe a quantitative parameter space in which different finite state AGs can be 

objectively compared.  

One important variation in complexity between AGs is the number of different 

stimuli which contribute to the structure; this could be considered to be the size of the 

vocabulary of the artificial grammar. An AG consisting of only two different stimuli (for 

example a light being either on or off, Murphy et al., 2008) is, at least on this dimension, 

less complex than a structure containing 5 different stimuli (e.g. different nonsense words, 

Reber, 1967; Saffran et al., 1996b; Saffran et al., 2008). Accordingly, the first dimension of 

the artificial grammar parameter space (Figure 2.3) is the number of different elements 

which contribute to the AG structure.  

It is important to note that some artificial grammars are based on a number of 

classes of stimulus, where the AG structure consists of only, for example ‘A’s and ‘B’s, but 

where ‘A’ and ‘B’ are themselves classes with several members. Therefore, learning the 

grammar initially requires the stimuli to be categorised into these two stimulus classes, 

before the structure of the AG (e.g. AnBn or (AB)n, Fitch & Hauser, 2004) can be learned. 

This requirement for categorisation adds an additional level of complexity to learning an 

artificial grammar, and therefore must be considered in a complete model of the 

complexity of artificial grammars. Therefore, AGs requiring categorisation are represented 

as filled circles in Figure 2.3, while structures without categorisation are shown as open 

circles. Note that it could be argued that rather than being a binary distinction between 

whether an AG requires categorisation or not, it may be more appropriate to consider the 

number of stimuli which contribute to each stimulus class as an additional dimension for 

the parameter space. However, studies testing nonhuman animals have typically defined 

stimulus classes based on acoustic differences, for example the gender of the speaker 

producing nonsense words (Fitch & Hauser, 2004), or different song motifs in studies of 

songbirds (Gentner et al., 2006). Therefore, the animals (unlike participants in some human 

artificial grammar learning experiments, Saffran et al., 2008) are not required to individually 

learn which class a stimulus may belong to, only the rules governing stimulus class 
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membership. Therefore, adding additional stimuli would be unlikely to increase the 

difficulty of the task, suggesting a binary classification is more appropriate. 

A further key source of variation between AGs is the degree of predictability or 

determinism of the structure, reflecting the extent to which each element can be predicted 

by the preceding element(s). The sequence of elements (words or phrases) in human 

language is generally non-deterministic, making it important to understand how far 

nonhuman animals are sensitive to similar properties in the sequences generated by a given 

AG. As highlighted in the previous section, the songs of some songbird species can range 

from stereotyped and deterministic to much more variable, and this can be quantified by 

calculating their structural linearity (Honda & Okanoya, 1999). The same approach can be 

applied to artificial grammar structures. Linearity can be calculated as: 

          
                                                    

                                                       
 

Linearity of 1.0 describes an entirely predictable, deterministic AG, where each 

category can be preceded and followed by only one legal transition. Lower values of 

linearity represent increased variability or unpredictability within a grammar, typical of 

more complex branching structures. The equation above includes transitions between 

stimulus classes and also to and from the start or end of the sequence. The number of 

stimulus classes considered in this equation contains an additional token representing the 

transitions from/to the Start or End of the sequence, so that a manifestly linear AG, e.g. 

Start → A → B → End, has 2 stimulus classes (A and B) and three transitions (→), where 

linearity is: (2+1)/3 = 1.0. The original Reber study in humans (Reber, 1967) contains 5 

unique elements and 17 legal transitions, resulting in a linearity index of 0.35 (i.e., 

(5+1)/17), compared to 0.75 for (AB)n structures (i.e., (2+1)/4) (Fitch & Hauser, 2004). 

Therefore, the second dimension of the parameter space is the linearity of the artificial 

grammar (Figure 2.3).  

The positions of artificial grammar structures which have been used to test 

nonhuman animals (Fitch & Hauser, 2004; Gentner et al., 2006; Murphy et al., 2008; Saffran 

et al., 2008; Hauser & Glynn, 2009; van Heijningen et al., 2009; Abe & Watanabe, 2011; 

Stobbe et al., 2012), as well as, for reference, the original AGL study in humans (Reber, 

1967), were mapped onto this parameter space. The abilities of animals to learn the 

different AGs are highlighted by checkmarks. In the following section I will discuss the 

abilities of different nonhuman species to learn different AGs, and how this can inform us 
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about the cognitive mechanisms which underpin AGL and may represent some proto-

syntactic abilities in nonhuman primates.  
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Figure 2.3 A parameter space mapping AG abilities in nonhuman animals. Mapping of 
AGs previously used to test nonhuman animals, including the original AG designed by 
Reber (Reber, 1967). These are plotted as the number of unique stimulus classes that 
contribute to the structure as a function of the linearity of the structure. The black line 
subdividing the shaded regions denotes the maximum possible structural non-linearity (i.e., 
random patterns devoid of structure). The checkmarks highlight AG structures which 
nonhuman species have been shown to learn. Crosses or question marks highlight 
uncertainty regarding whether the labelled species can learn those aspects. Figure 
references: 1: Abe & Watanabe, 2011; 2: Fitch & Hauser, 2004; 3: Gentner et al., 2006; 4: 
Hauser & Glynn, 2009; 5: Murphy et al., 2008; 6: Reber, 1967; 7: Saffran et al., 2008; 8: van 
Heijningen et al., 2009; 9: Stobbe et al., 2012. 
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2.2.1. Mapping artificial grammars with two stimulus classes 

Initially, AG structures containing just two stimulus classes, which have previously 

been used to test nonhuman animals, were mapped onto this parameter space. The AG 

structures (AB)n and AnBn, which produce the sequences, ABAB and AABB respectively 

(where n = 2, Fitch & Hauser, 2004; Gentner et al., 2006; van Heijningen et al., 2009; 

Stobbe et al., 2012) and three-element long structures based on A/B classes of stimuli, (i.e., 

ABA, AAB and ABB, Murphy et al., 2008; Hauser & Glynn, 2009), all contain only two 

stimulus classes, and therefore occupy the left side of Figure 2.3. The (AB)n and A/B 

structures are relatively linear, with only one transition which is not entirely predictable 

based on the prior element (e.g. (AB)n must begin with A, A is then always followed by B, 

and B can be followed by either A or ‘End’), placing them towards the bottom left of the 

parameter space. As discussed in Section 1.3.1, there is evidence that many animals are able 

to implicitly or explicitly learn the (AB)n and the A/B type structures and may even 

generalise this learning to novel stimuli. However, in most of these studies it is possible 

that rather than learn the full extent of these AG structures, the animals were able to 

discriminate between consistent and violation sequences based on simpler learning 

strategies (e.g. Perruchet & Rey, 2005; van Heijningen et al., 2009). Specifically, the A/B 

style AGL paradigms all involved testing individual animals with only two types of testing 

sequences at a time, (i.e., the structure they were exposed to or trained with, e.g. ABB, and 

one of the other two possible structures, ABA or AAB, Murphy et al., 2008; Hauser & 

Glynn, 2009). If testing involves the ABA structure, it can always be differentiated from the 

other sequence by the absence of a repeated element. Even when tested with AAB and 

ABB sequences, a participant could simply identify whether the first two elements were the 

same and ignore the final element completely. Similarly, the tamarins were always tested 

with sequences of the form ABAB and AABB (Fitch & Hauser, 2004). Like the previous 

AGs, these can be solved by attending to only the first two elements in each sequence. It is 

important to note that more recent studies in birds used a wider array of test sequences and 

therefore overcame this problem (Gentner et al., 2006; van Heijningen et al., 2009; Stobbe et 

al., 2012). However, even while taking a conservative view of the abilities of each species, it 

seems clear that all the animals tested are capable of categorising specific stimuli into A and 

B classes based on their acoustic properties (denoted by filled circles in Figure 2.3). 

Furthermore, while the mammalian species may have used relatively simple learning 

strategies, they are all at least able to detect whether pairs of elements follow a previously 

learned pattern. Therefore, the AGL capabilities mapped in the lower left of the parameter 
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space appear to be common to all animals tested, and unsurprisingly are unlikely to be 

unique to human language.  

The AnBn structure is less linear than (AB)n, because while the sequence must always 

begin with A, A can be followed by either A or B, and B can precede either B or End, 

therefore it occupies a higher position in the parameter space (see  Figure 2.3). (It is 

important to note that no AGL study in nonhuman animals has been sufficient to 

demonstrate more complex, context free grammar learning, Perruchet & Rey, 2005; van 

Heijningen et al., 2009; see Section 1.3.1. Furthermore, as discussed below, this parameter 

space is designed to model only the adjacent relationships typically observed in finite state 

grammars, so is not necessarily appropriate to represent some of the more complex abilities 

demonstrated in humans, e.g. Bahlmann et al., 2008) Experiments using this AG have 

produced more variable results in nonhuman animals, likely as a result of the accompanying 

increases in sequence learning demands. A number of avian species are able to recognise 

violations of these more non-linear structures through explicit training (Gentner et al., 2006; 

van Heijningen et al., 2009; Stobbe et al., 2012), but cotton-top tamarin monkeys appear to 

be unable to implicitly learn the AnBn structure (Fitch & Hauser, 2004). These results 

suggest that tamarin monkeys find processing the AnBn structure difficult relative to the 

(AB)n structure, possibly as a result of increased nonlinearity. However, it is unclear 

whether differences observed between monkeys and songbirds in their abilities to learn this 

AG structure may result from the difference between learning by training compared to 

habituation (i.e., explicit vs. implicit forms of learning) or reflect a genuine cross-species 

difference. Studies that train animals to learn AG structures aim to tap into the reward-

dependent learning system. Those using habituation/dishabituation paradigms and natural 

behavioural measurements aim to evaluate more implicit learning capabilities that  need not 

engage perceptual awareness for learning to have occurred (Jarvis, 2004; Hurford, 2012; 

Petkov & Wilson, 2012). While these differences make comparisons between species more 

difficult, different methods of testing may be more appropriate than other in certain 

species. Explicit training of primates, particularly on auditory tasks, is a very difficult 

process, while measuring dishabituation responses is impractical in many small animals 

such as rodents and songbirds. It is therefore necessary to either compare results across 

different testing methods, or to attempt to test a species with a methodology to which it 

may not be well suited (even though other species are). Therefore, while it is possible to 

objectively compare the complexity of artificial grammar structures, it is also necessary to 
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consider that inter-species differences observed may, at least in part, represent differences 

in testing procedures.  

2.2.2. Mapping forward-branching, non-deterministic artificial grammars 

The other AG structures, mapped in the right half of Figure 2.3, involve several 

elements or stimulus classes that contribute to the structure of the AG, offering 

considerable variation in the sequences that can be generated. As the number of elements 

or stimulus classes which contributes to an AG increases, so does the number of potential 

sequences which can be created. For example, the two stimulus class AnBn structure always 

generates the fixed sequence AABB (where n = 2). AG structures comprising of more 

elements can produce a variety of sequences and sequence lengths, e.g., ‘TPTXVS’ or 

‘VXVPXXVS’ (Reber, 1967).  

While AGs such as those inhabiting the upper right quadrant in Fig. 1A are learned 

with relative ease by human participants (Reber, 1967; Friederici et al., 2002; Petersson et al., 

2012), they have not been tested with nonhuman animals, and their complexity may make 

them too difficult for them to learn. However, both cotton-top tamarins (Saffran et al., 

2008) and Bengalese finches (Abe & Watanabe, 2011) have been tested using simpler 

artificial grammars with multiple elements and a forward-branching structure. This AG 

shares many properties with the more complex structures used to test humans, but 

contains slightly fewer branches and is slightly more constrained, producing a more linear 

structure (although still less linear than the two stimulus class structures, Figure 2.3). The 

artificial grammar can be represented as:  

           ( )    ( )    (  ( )) 

Where A, C, D, F and G represent different nonsense-word elements, and 

parentheses denote optional elements (see Figure 3.1). In the first study, tamarin monkeys 

were habituated to sequences generated by the AG structure. They were then tested with 

consistent, legal sequences, and violation sequences that the grammar could not have 

generated. However, the only evidence for significant dishabituation responses to 

violations of the AG structure was obtained when the animals were tested with the same 

‘consistent’ sequences to which they had been habituated (Saffran et al., 2008). Thus the 

dishabituation responses of these New World monkeys may be based primarily on the 

unfamiliarity of the violation sequences.  



Chapter 2: Conceptual Challenges Relating to Comparative AGL 
 

  

46 
 

Bengalese finches were tested using this AG as well as a slightly modified version 

of the structure (Abe & Watanabe, 2011). While the birds appeared to recognise violations 

of these AGs, several authors have noted that the testing sequences differed significantly in 

their acoustic properties between conditions. All consistent sequences were acoustically 

very similar to each other but the violation sequences differed considerably (Beckers et al., 

2012; Berwick et al., 2012). Thus, the animals could have responded differentially to the test 

sequences based solely on acoustic differences. Based on these results it is difficult to assess 

the capabilities of nonhuman animals to learn such AG structures.  

These experimental design issues make it very difficult to draw firm conclusions 

about the abilities of nonhuman animals to learn these more variable, non-linear AG 

structures. It is possible that both primates and songbirds are able to learn such grammars. 

However, more rigorous testing is required to support such conclusions and to inform us 

about how the abilities of different nonhuman animals might compare. 

2.2.3. Mapping triplet segmentation studies 

AGL experiments that investigate the abilities of human or nonhuman participants 

to identify word boundaries based on statistical relationships between syllables (e.g. Saffran 

et al., 1996b; Aslin et al., 1998; Hauser et al., 2001) represent an important challenge to this 

model of AG complexity. As discussed in the previous chapter (see Section 1.3.1), these 

studies involve initially presenting participants with a stream of tri-syllabic nonsense words 

in which prosodic cues to word boundaries are minimised. Therefore successful 

identification of word boundaries relies on recognising that the statistical relationships 

between syllables within a “word” are stronger than those across word boundaries. 

Specifically, both human (Saffran et al., 1996b; Aslin et al., 1998) and primate (Hauser et al., 

2001) participants were presented with a continuous stream of synthesised consonant-

vowel (CV) syllables arranged into tri-syllabic ‘triplet words’ (e.g. tupiro, golabu, bidaku, padoti). 

Each syllable only occurred in one word and only in one position, so ‘tu’ would always be 

followed by ‘pi’ while ‘ro’ could be followed by the initial syllable of any word. Hauser et al., 

(2001) showed that following habituation to the stream of triplet words, cotton-top 

tamarins responded differently to ‘words’ that occurred in the stream compared to ‘part 

words’, which crossed word boundaries (e.g. pirogo) or ‘non-words’, which never appeared 

in the stream (e.g. pikudo). These results suggest that tamarins are not only sensitive to the 

order of the syllables in a synthesised speech stream, but that they are also able to derive 

statistical information from which they are able to detect ‘word’ boundaries. However, in 

order to plot the position of this AGL paradigm on a parameter space such as Figure 2.3, it 
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is necessary to consider the animals’ mental representations of the AG. The speech stream 

used by Hauser et al., contained 12 unique syllables (Hauser et al., 2001). One possibility is 

that the animals might have memorised 12 unique stimuli and the pairwise relationships 

between each of these, effectively processing an AG with 12 unique elements and a highly 

non-linear structure (Figure 2.4). However, evidence from songbirds suggests that rather 

than perceive each song motif independently, Bengalese finches produce and perceive their 

songs in larger perceptual ‘chunks’ (Suge & Okanoya, 2010). Memory demands can be 

reduced if, rather than processing transitions between every song note, those notes which 

always co-occur are instead treated as a single element or chunk. Therefore, memory load 

can be greatly reduced if the animals learn that the syllables within a ‘word’ always co-occur 

and therefore the ‘word’ could be treated as a single entity (giving four higher-level 

elements or ‘chunks’). This would change the position of the AG structure in the parameter 

space, both reducing the number of elements and increasing the linearity, making it much 

simpler to learn (Figure 2.4). Furthermore, it could be argued that the animals could 

simplify the task further if they could discern that any ‘word’ can be followed by any other. 

Here, the structure is completely random and the animals need not monitor the transitions 

between ‘words’ as they could simply consider all stimuli as a single stream of words. This 

would form a single, higher-level entity/chunk consisting of many ‘words’, each comprised 

of three syllables. Different responses to any stimulus other than a ‘word’ could equally 

support any of these potential strategies. This would change the position an AG takes 

within the parameter space, and consequently must affect our interpretation of a species’ 

(or individual’s, van Heijningen et al., 2009) AGL abilities (Figure 2.4).  

A detailed follow up of this triplet segmentation study by the same group (Newport 

et al., 2004) extended this research to show that these abilities were not limited to 

recognising statistical relationships between adjacent pairs of CV syllables, but that they 

also extend to more long distance, non-adjacent syllables. These experiments used similar 

stimuli to Hauser et al. (2001), however the first syllable of a triplet word only predicted the 

final syllable, and the second syllables varied randomly between words. In 6 different 

experiments, Newport et al., showed that tamarins appeared to be sensitive to at least some 

of these long distance statistical relationships, and were able to detect non-words based 

only on these nonadjacent associations (2004). While presenting a fascinating insight into 

abilities of nonhuman primates, this result presents further challenges in mapping a 

parameter space for AGL.  
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The parameter spaces defined in Figure 2.3 and Figure 2.4 are based on the 

assumption that animals would learn AG structures based on adjacent relationships 

between the elements. These relationships are 1st order Markov processes in which only 

one preceding element is used to predict the next element (Hurford, 2012). However, if the 

animals can process non-adjacent relationships (higher order Markov processes in which 

several preceding elements may be used to inform predictions about the next element), 

such ‘rule learning’ could simplify having to learn a larger number of pairwise transitions. 

For example, the AnBn structure, which generates the sequence AABB where n = 2, appears 

to be at least partially non-linear when only adjacent elements are considered (e.g. A can be 

followed by either A or B). However, if an animal is capable of recognising non-adjacent 

relationships then predictions about the next possible element in a sequence can be made 

based not only on one preceding element, but on several. It would therefore be possible to 

form chunk ‘AB’ if ‘A’ is always followed by ‘B’. In this case, the AnBn structure becomes 

entirely linear (Start → A; if A → AA; if AA → B; if AB → B, if BB → End) and would 

therefore occupy a different position within the parameter space (Figure 2.4). These 

examples illustrate that robust empirical data is often required to describe not only which 

AG structures different animals are able to learn within any given parameter space, but also 

the strategies they might use to process these structures, which might change where the 

particular AGL capabilities of a given species are mapped. It may be prudent to take a 

conservative approach and assume that both human and nonhuman participants would 

adopt the least cognitively demanding strategy wherever possible. However, empirical 

testing, possibly with more detailed methods, is required to identify how different species 

process these AG structures.  
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Figure 2.4 Mapping additional AG structures. Shown is a more extensive version of Figure 
2.3, where additional AG structures and species’ abilities are mapped. Also illustrated is that 
the mapping of an AG structure is often not fixed because the structure of an AG could be 
learned in different ways, as follows. Triplet segmentation studies: In ‘triplet segmentation’ 
studies such as Hauser et al.  (2001), participants may represent the 12 unique syllables as 
independent elements, and learn the relationships between each pair (Triplet segmentation 
1). Alternatively, memory load may be reduced by combining the syllables in each word 
into 4, higher level ‘chunks’ (Triplet segmentation 2). Furthermore, the words in this 
experiment could be presented in any order; therefore they could be represented as a still 
higher category of ‘words’ with no structure, simply a repetition of different words (Triplet 
segmentation 3). Adjacent vs. non-adjacent relationships: If the animals can process non-
adjacent relationships between distant elements, such ‘rule learning’ would simplify having 
to learn a number of pairwise transitions. Based on first order, adjacent relationships, the 
AnBn structure, which generates AABB sequences, appears to be non-linear (A can be 
followed by either A or B, AnBn (1) in the figure). However, if non-adjacent relationships 
can be learned then the previous one to two elements can be used to predict the following 
element and the structure would therefore occupy a different position within the parameter 
space (see AnBn (2) in figure). Figure references: 1: Abe & Watanabe, 2011; 2: Fitch & 
Hauser, 2004; 3: Gentner et al., 2006; 4: Hauser & Glynn, 2009; 5: Murphy et al., 2008; 6: 
Reber, 1967; 7: Saffran et al., 2008; 8: van Heijningen et al., 2009; 9: Stobbe et al., 2012; 10: 
Hauser et al., 2001. 
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 Summary of nonhuman animal AGL capabilities 2.3.

The parameter space described in Figure 2.3 and Figure 2.4 suggests an objective 

method to quantitatively compare and evaluate the results from previous AGL studies. 

While a number of nonhuman AGL experiments have been performed in recent years, 

large areas of the parameter space remain unexplored, and the strategies supporting 

different forms of AGL are currently inadequately addressed. Large amounts of evidence 

have suggested that all species tested are capable of learning relatively linear AG grammars 

consisting of two stimulus classes (Fitch & Hauser, 2004; Gentner et al., 2006; Murphy et al., 

2008; Hauser & Glynn, 2009; van Heijningen et al., 2009; Stobbe et al., 2012). This suggests 

that all animals are at least sensitive to violations of such invariant AGs structures based on 

the relationships between adjacent elements, and that they are capable of categorising 

stimuli based on acoustic properties. There is also convincing evidence that a number of 

birds are capable of learning less linear AGs of the form AnBn (Gentner et al., 2006; van 

Heijningen et al., 2009; Stobbe et al., 2012). Cotton-top tamarins however proved unable to 

recognise violations of this grammar, possibly due to an increase in the complexity or non-

linearity of the artificial grammar (Fitch & Hauser, 2004). Furthermore, there is evidence 

that nonhuman primates are also capable of using statistical regularities (Hauser et al., 2001; 

Newport et al., 2004), to identify word boundaries, although evidence describing how they 

may process such sequences is currently lacking. Finally, relatively little research has 

focussed on the more non-linear, non-adjacent AGs with larger numbers of elements 

which occupy the right half of Figure 2.3. Both songbirds and monkeys have been tested 

with this type of grammar (Saffran et al., 2008; Abe & Watanabe, 2011), but in both cases 

experimental issues have made the interpretation of the results difficult (Berwick et al., 2011; 

Beckers et al., 2012).  

Relative to many commonly used AGs, these non-deterministic, forward-branching 

AG structures depart from the requirement that stimuli are categorised into only two 

stimulus classes. Rather, several elements, both obligatory and optional, contribute to the 

structure. Furthermore, while the two stimulus class AGs, after categorisation has occurred, 

only produce fixed sequences, (e.g. AABB), branching grammars produce a much wider 

range of sequences from which statistical regularities or rules must be extracted. A number 

of AGs used to test humans have a forward-branching structure similar to these (e.g. Reber, 

1967; Friederici et al., 2002; Udden et al., 2008), and branching structures with varying levels 

of predictability or linearity can also be observed in the natural song production of several 

species (Honda & Okanoya, 1999; Okanoya, 2004b; Bolhuis et al., 2010; Berwick et al., 2011; 
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Hurford, 2012). Furthermore, word transitions in sentences of natural languages are 

characterised by non-determinism: sentences are not fixed, predetermined sequences, but 

vary considerably in composition, word transitions and length. Well-formed sentences 

contain obligatory components (e.g. a subject and a finite verb in English declaratives), as 

well as varying numbers of optional categories (adjectives, adverbs, etc.), the positions of 

which depend on the other words in the sentence.  Language learners must deal with 

unpredictable variation (Hudson Kam & Newport, 2009) and appear to have a general bias 

to reduce such variation during learning (Smith & Wonnacott, 2010). Thus, the ability to 

process and learn from such unpredictable variation may also be central to human language 

processing. Therefore rigorous, comparative assessment of these abilities in nonhuman 

primates represents an important opportunity to investigate the extent to which these 

abilities might be unique to humans or may be more generic and common to other 

nonhuman primates. In the next section, I will propose hypotheses regarding how 

nonhuman primates may learn these forward-branching, non-deterministic AG structures, 

and how this might inform us about aspects of language processing in humans.  

 Plans and hypotheses 2.4.

Forward-branching, non-deterministic artificial grammars present the opportunity 

to explore how nonhuman primates might learn AG structures that can generate a wide 

variety of different sequences, and how they use this information to identify sequences that 

violate these structures. These abilities, to extract rules or statistical relationships from a 

varied and complex input, are crucial to the learning and processing of natural language 

(Saffran, 2002; Saffran et al., 2008). However, to provide meaningful insights into the 

abilities of nonhuman animals, the evolution of these abilities, or to develop animal models 

to investigate the neurological mechanisms that support them, a number of empirical 

questions must be answered. Are nonhuman primates able to learn AGs of this form and 

complexity, and if so, might this ability be based purely on the use of simple cues (such as 

the familiarity of the sequences in the experiment performed by Saffran et al., 2008)? How 

might these abilities vary between different species, and how can this inform us about the 

evolution of such capabilities? If nonhuman animals are able to learn these AG structures, 

do the cognitive mechanisms and brain areas recruited reflect those used in humans in the 

processing of natural languages or artificial grammar learning? It is possible that 

comparable behavioural results in different species might be supported be distinct 

strategies and different networks of brain areas, therefore it is critical to explore whether 

any abilities seen in monkeys might represent comparable processes in humans.  



Chapter 2: Conceptual Challenges Relating to Comparative AGL 
 

  

52 
 

In this thesis I will present a series of experiments that aim to address these 

questions. In Chapter 3, I will describe two experiments in Rhesus macaques investigating, 

both at the group level and more objectively in individual animals, whether these Old 

World monkeys are able to learn the structure of these AGs and how they may recognise 

sequences that violate the AG structure. In Chapter 3, I will extend these experiments to 

assess the abilities of human participants and common marmosets, a species of New World 

monkey more closely related to the tamarins tested in previous AGL experiments. These 

experiments may be used to test the hypothesis that the abilities observed in macaques 

might be, to some extent, conserved in other more distantly related primate species. Finally, 

in Chapter 5, I will discuss fMRI experiments in both Rhesus macaques and human 

participants, to assess the brain areas involved in AGL. This evidence could either support 

or refute the hypothesis that comparable abilities observed between species would be 

supported by a broadly similar network of brain areas and that these areas that may be 

involved in language in humans. The goal of this thesis is to provide empirical evidence 

assessing whether nonhuman primates may be able to perform AGL tasks of sufficient 

complexity to inform us about aspects of language in humans, and how they might process 

them. This research has the potential to both inform us about how the capacity for 

language may have evolved in humans and to identify potential candidate animal model 

systems in which the mechanisms supporting these abilities can be explored at a neuronal 

level which is not possible in human participants.  
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Chapter 3: Behavioural Evidence for AGL in Rhesus Macaques 
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 Abstract 3.1.

Artificial Grammars (AG) can be designed to emulate aspects of human language, 

and AG Learning (AGL) paradigms used to study the extent of nonhuman animals’ 

structure-learning capabilities. These approaches could provide insights on the evolution of 

human syntactic abilities. Previous quantitative comparisons of different AG structures (see 

Chapter 2) highlighted a gap in our understanding of nonhuman primate AGL abilities. To 

address this, I tested whether Rhesus macaques (Macaca mulatta) could learn an AG with a 

prominent forward-branching structure, designed to emulate certain aspects of the non-

deterministic nature of word transitions in sentences or elaborations in animal songs. 

Initially, 13 macaques were habituated to sequences of nonsense words generated by the 

AG structure. The animals were then presented with sequences that either followed the 

AG (‘consistent’) or that violated the structure (‘violation’) from a concealed audio speaker. 

The macaques showed greater dishabituation responses to the violation sequences. 

Furthermore, these responses could not be attributed to either very simple learning 

strategies or rote memorisation of the habituation sequences. A second experiment used a 

novel eye-tracking approach to objectively explore AGL in three individual macaques. This 

method provided higher levels of temporal precision and confirmed the results of the first 

experiment in individual animals, and further ruled out simple learning strategies. These 

experiments provide evidence for a previously unknown level of complexity in the AGL 

capabilities of an Old World monkey, suggesting that some sequencing abilities critical for 

human syntax may be evolutionarily conserved and thus not uniquely human or language 

specific.  
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 Introduction 3.2.

Language is a uniquely human trait with poorly understood evolutionary origins 

(Bickerton & Szathmary, 2009; Hurford, 2012). Owing to its complexity in meaning 

(‘semantics’) and structure (‘syntax’), natural language cannot be directly studied in 

nonhuman animals. However, theoretical work has identified distinct computations related 

to language that could be comparatively studied (Fitch, 2000; Hauser et al., 2002; Bickerton 

& Szathmary, 2009; Hurford, 2012). Initial approaches studied referential communication 

in animals (Seyfarth et al., 1980; Fitch, 2000), which has inspired work on how neurons 

process communication signals (Ghazanfar & Hauser, 2001; Tian et al., 2001; Gifford et al., 

2005). Recently, songbirds have been viewed as promising neurobiological model systems 

because, like humans and a few other animal species, they are vocal learners and can 

produce songs with certain ‘syntax-like’ qualities (Jarvis, 2004; Berwick et al., 2011; Petkov 

& Wilson, 2012). Yet, vocal learning appears to have occurred by convergent evolution 

rather than by common descent, since nonhuman primates and most other species have 

more limited vocal production capabilities (Jarvis, 2004; Petkov & Wilson, 2012). This has 

raised questions regarding whether nonhuman primates might be able to learn structures or 

patterns with sufficient levels of complexity to provide novel insights into possible 

language precursors in extant species. The discovery of such abilities has the potential to 

inform us about the evolution of language related abilities in humans, and represents the 

necessary first step in developing a nonhuman primate model system to study syntactic 

precursors at the neuronal level (Hauser et al., 2002; Fitch & Friederici, 2012).  

Artificial Grammars (AG) can be created to emulate certain aspects of the structure 

of natural language or simpler “rule-based” structures that some animals might be able to 

learn. These can be comparatively studied using AG Learning (AGL) paradigms (e.g. Fitch 

& Hauser, 2004). For example, many studies have used AGL to investigate how nonhuman 

animals, human infants or adults acquire the statistical relationships between sensory 

stimuli in sequences generated by an AG, referred to as ‘statistical learning’ (Saffran et al., 

1996b; Saffran et al., 1999). In such studies the participant has no a priori knowledge about 

the structure of the AG. Yet, by being habituated to or trained with exemplary sequences 

generated from the AG, the relationship between the elements in the sequence could be 

acquired. Differential responses to novel well-formed (consistent) sequences compared to 

those that violate the AG structure suggest that some aspect of the AG structure was 

learned. Although several nonhuman animal AGL studies have been conducted (e.g. Fitch 

& Hauser, 2004; Gentner et al., 2006; Saffran et al., 2008), the AGL capabilities of Old 
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World monkeys, which are more closely related to humans than any other species in which 

AGL experiments are conducted, have rarely been tested. The only study in Old World 

monkeys habituated free ranging Rhesus macaques to sequences of macaque vocalisations 

of the form AAB (e.g. ‘coo’, ‘coo’, ‘grunt’), and found stronger dishabituation responses to 

ABB sequences (e.g., ‘coo’, ‘grunt’, ‘grunt’, Hauser & Glynn, 2009). While it is possible that 

the animals’ learning was based on whether the first element of the sequence was repeated, 

these results at least suggest that Rhesus macaques naturally show some sensitivity to the 

temporal order of elements in a sequence and thus demonstrate some AGL abilities. 

Furthermore, even beyond the Old World monkeys, there is currently limited evidence that 

any nonhuman animal can learn the structure of non-deterministic, branching AGs that 

produce more varied sequences (see Chapter 2, Saffran et al., 2008; Abe & Watanabe, 2011; 

Berwick et al., 2011; Beckers et al., 2012). 

In two experiments, I aimed to investigate the abilities of Rhesus macaques (Macaca 

mulatta) to learn a forward-branching AG. Learning this non-deterministic structure, 

requires the animals to recognise statistical relationships between a number of different 

nonsense word elements which can occur in a wide variety of positions and arrangements 

within sequences of varying composition and length. While there is strong evidence that 

human adults and infants (Saffran, 2002; Saffran et al., 2008) can learn such grammars, as 

discussed previously (see Chapter 2), the abilities of nonhuman animals appear to be less 

clear (Berwick et al., 2011; Beckers et al., 2012; Hurford, 2012). After cotton-top tamarins 

(Saguinus oedipus) were habituated to the AG structure, the only evidence for significant 

dishabituation responses to violations of the AG structure was obtained when the animals 

were tested with the same ‘consistent’ sequences to which they had been habituated 

(Saffran et al., 2008). Thus the animals’ dishabituation responses may have been based 

primarily on the monkeys being unfamiliar with the violation test sequences. The 

experimental design of the current experiments aimed to assess the abilities of Rhesus 

macaques while avoiding these potential experimental confounds by testing the monkeys 

with both ‘familiar’ and ‘novel’ consistent (well-formed) testing sequences to determine 

whether macaques would primarily distinguish between sequences on the basis of 

familiarity (Figure 3.1 and Methods). Secondly, in a study testing Bengalese finches on a 

similar AG structure (Abe & Watanabe, 2011), several authors have noted that the testing 

sequences differed significantly in their acoustic properties between conditions (Beckers et 

al., 2012; Berwick et al., 2012). All consistent sequences were acoustically very similar to 

each other but the violation sequences differed considerably, thus, the animals could have 
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responded differentially to the test sequences based solely on acoustic differences. 

Therefore, to explore the extent to which the animals learned the sequences, the testing 

sequences in the current experiment included violation sequences that violate the AG 

structure at multiple positions, and allowed control for acoustic differences between 

consistent and violation sequences (Figure 3.1). Finally, it has been noted that many 

nonhuman animal AGL studies fail to clarify what parts of the sequence animals monitor 

for violations (van Heijningen et al., 2009; ten Cate & Okanoya, 2012). For example, in 

experiments which present animals with test sequences of the form AABB and ABAB 

(Fitch & Hauser, 2004; Gentner et al., 2006), the animals need only detect violations in the 

first two elements of the sequences. Thus, this study incorporated two different types of 

violation sequences containing very early violations (at the first element) and those with 

only later violations (Figure 3.1). Furthermore, additional analyses, using a novel eye-

tracking paradigm provided the temporal precision needed to determine how the animals 

evaluated specific elements throughout the test sequences. Different patterns of responses 

to these stimuli have the potential to inform us about the various learning strategies the 

animals may use. For example, stronger responses to ‘novel’ compared to ‘familiar’ 

sequences may suggest that, like the tamarins, macaques are sensitive to sequences of 

sounds with which they are not familiar. Similarly, larger responses to sequences that ‘do 

not begin with A’ compared to the violation sequences that ‘begin with A’ show that 

animals recognise violations in the first element of the sequence and use this to cue their 

responses. Finally, the key contrast is between ‘novel’ consistent sequences and violation 

sequences that ‘begin with A’, because differences in responses to these sequences cannot 

be attributed to either the novelty or familiarity of the sequence, or containing an obvious, 

initial violation, therefore reflect strong evidence of artificial grammar learning.  

Two experiments were designed to assess macaques’ abilities to learn this AG. The 

first used a modified version of the traditional video-coding method. The natural responses 

of animals to test sequences presented from a concealed speaker were video-recorded for 

later offline analysis by multiple raters. This approach provides population level data to 

investigate AGL abilities within a group of animals. Although every effort was made to 

standardise the video-coding procedure and ensure high levels of objectivity and 

consistency between raters, this approach carries an inherent level of subjectivity. 

Therefore, I developed a novel eye-tracking paradigm to objectively measure the looking 

responses of individual macaques. This approach provided far greater temporal precision 

and statistical power than the traditional video-coding approach, allowing fine-grained 
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analyses of responses to specific test sequences in individual animals, as is required for 

neuroscientific experiments (e.g. fMRI, EEG, electrophysiological recordings). The video-

coding experiment aimed to provide population level data on macaque AGL and to 

validate the use of the eye-tracking method, which in turn is capable of providing more 

detailed behavioural data than any previous nonhuman primate AGL task.  

 General methods 3.3.

3.3.1. Stimuli 

The video-coding and eye-tracking experiments both used identical stimuli. The 

artificial grammar used in this experiment was based on that of Saffran (2002; 2008) and is 

described in Figure 3.1. Five different elements (nonsense words) can be combined in a 

variety of orders to form ‘consistent’ legal sequences by following the path of arrows 

through the AG. In this way both ‘familiar’ test sequences (which also appear in the 

habituation phase) and ‘novel’ sequences which had not previously been presented were 

generated. ‘Violation’ sequences were created by designing sequences that could not be 

made by following the arrows from Start to End. Half of the violation sequences, like the 

consistent sequences, began with the A element, while the other half did not begin with A, 

thus violation the AG structure from the earliest possible element.   

The nonsense words were produced by a female native-English speaker and 

recorded with an Edirol R-09HR (Roland Corp.) sound recorder. The amplitude of the 

recorded sounds was root-mean-square (RMS) balanced and the nonsense word stimuli 

were combined into sequences (100ms inter-stimulus intervals, ISI) using customised 

Matlab scripts. The sounds were presented to the animals using Cortex software (Salk 

Institute) at ~75 dB SPL (calibrated with an XL2 sound level meter, NTI Audio). 

The duration of the naturally spoken nonsense word stimuli within the sequences 

varied (Klor = 0.64 sec; Jux = 0.62 sec; Cav = 0.56 sec; Biff = 0.40 sec; Dupp = 0.39 sec). 

Learning of any artificial grammar requires the ability to discriminate between the elements 

in a sequence to learn the relationships between them, and duration differences between 

the nonsense word stimuli provide one additional cue. However, to demonstrate that the 

AG has occurred, it is necessary to show that simple duration cues could not be used to 

identify consistent or violation sequences. I confirmed that the duration of the sequences 

could not be used as a cue to sequence condition, as follows. The consistent and violation 

sequence sets were balanced in the number of elements in the sequences (Figure 3.1) and 
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the mean length (and SD) of the sequences were comparable: consistent sequences, 3.14 

(0.42) sec; violation sequences, 3.25 (0.28) sec. Furthermore, I confirmed that there was no 

significant difference in sequence duration between consistent and violation sequences 

(independent samples t-test, t6 = 0.435, p = 0.68), or in the duration of the individual 

elements present in consistent vs. violation sequences (t42 = 0.609, p = 0.55).  

Further steps were taken in designing the sequence sets to balance for acoustical 

differences, by either balancing for the presence of the different elements (A, C, D, F, G), 

as much as possible, or analytically confirming that acoustical differences could not explain 

the reported results. The A, F and G elements were balanced so that they occurred equally 

often in each of the consistent and violation sequences (Figure 3.1). Half of the violation 

and consistent sequences were also balanced for the presence of the C and D elements, but 

it was difficult to achieve this balance in the other half of the sequences without 

introducing other potential confounds. Nonetheless, acoustical differences cannot explain 

the results for the following reasons. First, eye-tracking results by acoustical element 

(Figure 3.7) showed that a comparable pattern of stronger responses to elements in 

violation vs. consistent sequences were made in response to all of the elements. Therefore 

the monkeys did not simply respond strongly to certain elements, but their responses 

varied based on the context in which the element occurred (consistent or violation). 

Second, an analysis of the average eye position in response to the C and D elements 

(ANOVA factors: element (C or D), condition (consistent or violation) and monkey) 

showed the expected main effect of condition (p = 0.001) and monkey (p = 0.008), but no 

effect was observed for the element factor (p = 0.13) and no interactions were seen 

between the elements and condition or monkey (all p > 0.1). Therefore, the responses 

cannot be explained by a preference for any acoustical element, but only by the context in 

which the element occurs.  
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Figure 3.1. Artificial Grammar structure. The AG structure contains five unique elements 
and multiple forward-branching relationships. Consistent sequences (strings of nonsense 
words) are generated by following any path of arrows from START to END. Violation 
sequences do not follow the arrows. The AG was used to create nine habituation 
sequences, which included all possible legal transitions between elements. All experiments 
began with habituating the animals to the habituation sequences, presented in a randomised 
order. In the following testing phase, animals were presented with the 8 testing sequences 
(including ‘familiar’ and ‘novel’ consistent sequences, and violation sequences which ‘begin 
with A’ or ‘do not begin with A’) in a randomised order.  



Chapter 3: Behavioural Evidence for AGL in Rhesus Macaques 
 

  

61 
 

 
The statistical relationships between pairs of elements in an AG can be quantified 

by calculating the transitional probability of the relationship, i.e. the probability that two 

specific elements will co-occur. Transitional probability of element x immediately 

preceding element y is given by: 

       ( | )  
 (  )

 ( )
 

Where a TP of 1.0 means x will always be followed by y and a TP of 0 means x will 

never be followed by y. Using this approach, the transitional probabilities between all pairs 

of elements in the habituation sequences were calculated (Table 3.1). This highlights the 

variability with the AG, with some elements able to occur in more legal positions than 

others and different transitions being more or less predictable. For example, ‘C’ can be 

followed by either ‘F’, ‘G’ or ‘End’, while ‘D’ can only ever be followed by ‘C’. To learn the 

AG the animals must extract this statistical information from the habituation sequences, 

and cannot simply rely on learning a fixed pattern, such as the stimuli will always alternate, 

as in the (AB)n structure. The average TP for each test sequence was also calculated (the 

mean of the TPs between each pair of elements in the sequence). This demonstrates that 

the consistent sequences, which contain only legal transitions, have relatively high TPs. The 

violation sequences however, which contain illegal transitions that, by definition, have a TP 

of 0, have much lower average TPs. Therefore, if the animals are sensitive to these 

statistical relationships, it is possible to discriminate between the consistent and violation 

sequences.  
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Table 3.1 Transitional probabilities between pairs of elements and in test sequences. The 
transitional probability (TP) of every legal transition between elements was calculated based 
on the frequency of their occurrence within the habituation sequences. Higher TPs 
represent more common transitions. The average TP of each test sequence is also shown, 
highlighting the higher average TPs in the consistent than the violation sequences. 
 

Transition 
Transitional 

Probability (TP) 
 Test Sequences Average TP 

Start – A 1.00  Consistent 

A – C 0.56  ACGFC 0.57 
A – D 0.44  ADCFCG 0.59 
D – C 1.00  ACFCG 0.54 
C – F 0.36  ADCGFC 0.62 
C – G 0.43    

C – End 0.21  Violation 

F – C 0.56  AFGCD 0.17 
F – End 0.44  AFCDGC 0.25 
G – F 0.67  FADGC 0.11 
G – End 0.33  DCAFGC 0.17 
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 Video-coding experiment 3.4.

3.4.1. Methods 

Participants 

Thirteen male Rhesus macaques (Macaca mulatta) participated in this experiment. 

The macaques were housed in two separate group-housed colonies and were tested on two 

separate days. The animals were individually housed for testing, wherever possible.  

Ethics statement 

All animal work and procedures were approved by the U.K. Home Office and 

abide by the Animal Scientific Procedures Act (1986) on the care and use of animals in 

research, which promotes the principles of the 3Rs: replacement, reduction and refinement 

of research work with animals. This research study in nonhuman primates abides by the 

recommendations of the Weatherall report on "The use of nonhuman primates in 

research". Moreover, the laboratory work has been peer reviewed by anonymous referees, 

and the National Centre for 3Rs before being funded by the Wellcome Trust to conduct 

this research. Lastly, this project is a part of an effort to underpin behavioural capabilities 

in nonhuman primates that could be studied at the neuronal level, which is difficult to do 

in humans. The most appropriate species for this project have also been considered and 

selected prior to the start of the project. 

Habituation phase 

During the habituation phase, the animals were presented with the habituation 

sequences in a randomised order (Figure 3.1). The sequences were presented from an audio 

speaker concealed within the colony (rate of 9 sequences/min; inter-sequence interval = 4 

sec). Habituation occurred for two hours on the afternoon prior to the experiment, when 

the animals were quiet and relaxed, but a few hours before the lights would be turned off 

for them to sleep. The following morning the animals were re-habituated to the sequences 

presented in a randomised order for 10 minutes, immediately prior to the start of the 

experiment. 

Testing phase 

Video cameras were set up early in the morning to allow the animals to become 

habituated to their presence. During testing, a randomly selected test sequence of the 8 

(consistent or violation) sequences (Fig. 1B) was individually presented (4 times each, for a 

total of 32 testing trials; at an average rate of 1/min; inter-sequence intervals ranged 
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between 45 and 75 sec). Each animal’s orienting responses were video recorded for offline 

analysis (JVC and Sony digital video cameras; 720 x 576 resolution; 25 frames/s). 

Video-coding Procedure 

The traditional video-coding procedure (e.g. Hauser et al., 2001; Fitch & Hauser, 

2004; Newport et al., 2004; Saffran et al., 2008) was refined to minimise subjectivity in 

video-coding analysis. First, the audio track for each video was digitally scrambled so that it 

was not possible to identify the sequence condition. Three independent raters blind coded 

all of the videos from each animal. Each rater coded orienting responses and response 

durations based on eye, head and/or body movements in the direction of the concealed 

audio speaker that presented the stimulus sequences. The strength of the orienting 

responses were recorded on a five point Likert scale, 1 = no orienting response; 2 = 

probably no response; 3 = ambiguous response; 4 = probable orienting response; 5 = 

definite orienting response.  

Data analysis 

For all analyses only the trials on which the majority of the raters (2 out of 3) 

agreed that an unambiguous response was made were used (strength of response ≥ 4, on 

the scale of 1-5). The proportion of trials on which the animals unambiguously responded, 

the strength and the duration of these responses were analysed. Analyses based on the 

duration or strength of responses included only those trials on which a response was 

recorded to ensure that these results were not biased by a higher number of responses in 

one experimental condition.  

Inter-rater reliability 

Three raters coded all of the videos. Inter-rater reliability was calculated pairwise 

between the raters. In the macaque experiment, the raters, on average, had exact agreement 

on the strength of the response (on the five point scale) on 75.4% of the trials and were 

within one response point from each other on 85.1% of the trials. Cohen’s Kappa revealed 

“substantial” average agreement between raters, K = 0.67 (Landis & Koch, 1977). The 

macaques were rated as unambiguously responding to 14.7% of all recorded trials by a 

majority of raters resulting in 16 grammatical and 45 ungrammatical response trials (total of 

61) used for analysis. 

3.4.2. Results 

The 13 macaques showed a significantly higher proportion of orienting responses 

to the violation than the consistent sequences (paired samples t-test, t12 = 7.898, p < 0.001; 
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Figure 3.2A). The two different types of consistent and violation sequences were analysed 

to clarify whether the observed effect depends on either familiarisation or the animals only 

noticing violations in the first sequence element (i.e., sequences which, unlike the 

consistent sequences, ‘do not begin with A’; Figure 3.2B). A repeated measures analysis of 

variance (RM-ANOVA) with four levels of the factor: sequence condition (‘familiar’, 

‘novel’, ‘begins with A’ and ‘does not begin with A’) revealed a strong main effect of 

sequence condition (F3,36 = 9.146, p < 0.001; Figure 3.2B). Bonferroni post-hoc tests 

showed significant differences between several key contrasts. Most notably, the macaques 

responded significantly more frequently to the violation sequences that ‘begin with A’ than 

the ‘novel’ consistent (p < 0.05; Figure 3.2B), suggesting the macaques’ AGL cannot be 

interpreted based on familiarity or only attending to the first element in the sequence. 

Further significant differences were observed between ‘familiar’ sequences and both 

violation sequences which ‘begin with A’ and ‘do not begin with A’ (Bonferroni corrected, 

p < 0.05 Figure 3.2B). No differences were observed between ‘familiar’ and ‘novel’ 

consistent sequences or violation sequences which ‘begin with A’ and ‘do not begin with A’, 

even when more liberal LSD corrections were applied (p > 0.49 in both cases). These 

results suggest that not only did the macaques respond to violations of the AG more 

frequently, but also that their responses cannot be attributed only to superficial differences 

between the sequences, such as familiarity or monitoring only the initial parts of the 

sequences. 

A similar, albeit weaker, pattern of effects was observed in analyse of the duration 

of responses (consistent and violation sequences: t12 = 2.330, p = 0.038; RM-ANOVA 

‘condition’ factor with 4 levels: F3,36 = 5.276, p = 0.004; Figure 3.2C-D).  No post-hoc tests 

between sub-categories survived Bonferroni corrections (p > 0.05). As in the analyses of 

proportion of responsive trials, LSD corrections reveal significant differences between 

conditions (i.e. ‘familiar’ and ‘begins with A’; ‘familiar’ and ‘does not begin with A’; ‘novel’ 

and ‘begins with A’; ‘novel’ and ‘does not begin with A’; p < 0.05) but not within 

conditions (i.e. ‘familiar’ and ‘novel’; ‘begins with A’ and ‘does not begin with A’; p > 0.46). 

Therefore, like the proportion of responses, the duration for which the animals respond 

cannot be attributed to familiarity or attending only to the initial element in the sequence.  

Finally, analysis of the strength of responses (based on the video-coders’ ratings 

from 1-5, see Methods), showed that the macaques also responded more strongly to the 

violation sequences (t12 = 3.129, p = 0.009; RM-ANOVA with the factor: ‘condition’ with 4 

levels: F3,36 = 5.685, p = 0.003; Figure 3.2E-F). Bonferroni post-hoc tests revealed a 
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significant difference between ‘novel’ consistent sequences and violation sequences which 

‘begin with A’, but no other contrasts. Again, even LSD corrected post-hoc tests revealed 

significant differences between all conditions (p < 0.05) except ‘familiar’ and ‘novel’ (p = 

0.98) and ‘begins with A’ and ‘does not begin with A’ (p = 0.39). 

These results, based on three different measures, suggest that Rhesus macaques are 

sensitive to violations of an implicitly learned AG structure. No differences in responses 

were observed between ‘familiar’ and ‘novel’ test sequences in any analysis, even when 

using liberal methods of multiple comparison correction. Therefore these responses cannot 

be attributed to familiarity with the test sequences relative to the violation sequences. 

Furthermore, the animals do not appear to base their responses on violations in the initial 

sequences positions (based on no differences between sequences which ‘begin with A’ and 

those which ‘do not begin with A’), despite the potential salience of this cue. Rather, the 

animals appear to respond to more subtle cues to grammaticality indicating considerable 

learning of the AG structure. To explore these effects in more detail, and in individual 

animals, a novel eye-tracking paradigm was developed.   
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Figure 3.2. Video-coding experiment results in Rhesus macaques. (A-B) Mean proportion 
(±SEM) of trials on which macaques made unambiguous looking-responses as evaluated by 
a majority of raters (see Methods). The left panels indicate responses to consistent and 
violation sequences, right panels display results to specific subsets of stimulus sequences. 
(C-D) Mean response duration of responses (±SEM) to consistent and violation sequences 
(C) and subsets of sequences (D). (E-F) Mean responses strengths based on coding from 
three raters (±SEM) to consistent and violation sequences (E) and subsets of sequences (F). 
Significance levels are shown for all main effects (paired sample t-tests; left panels) and 
Bonferroni post-hoc tests (right panels); * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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 Eye-tracking experiment 3.5.

The video-coding experiment used three different response measures to 

demonstrate, at the group level, that Rhesus macaques appear sensitive to violations of this 

non-deterministic artificial grammar. However, despite significant effort to improve and 

control the traditional video-coding procedure, an inherent element of subjectivity remains. 

Furthermore, although more response measures were reported than are typical in 

nonhuman AGL studies, they all lack the temporal sensitivity to investigate animals’ 

responses at different points throughout the sequences, for example to specific elements or 

rule violations. Finally, while demonstrating AGL in Rhesus macaques at the group level is 

an important and novel result, neuroimaging experiments require confirmation of such 

abilities in individual animals. Therefore, I developed a novel, objective eye-tracking 

paradigm to investigate the AGL capabilities of Rhesus macaques with greater sensitivity 

than has been possible with existing techniques.  

3.5.1. Methods 

Participants 

Three adult male Rhesus macaques (Maccaca mulatta) participated in this experiment. 

All animal work and procedures were approved by the U.K. Home Office and follow the 

Animal Scientific Procedures Act 1986 on the care and use of animals in research. Animals 

were selected for this experiment based on training to participate in a visual fixation task to 

obtain a reward. All three monkeys had participated in the previous video-coding 

experiment.  

Stimuli 

The stimuli sequences were identical to those used in the video-coding experiment 

(Figure 3.1) 

Procedure 

Animals were seated, with their heads immobilised, in a primate chair 60 cm in 

front of a computer monitor, and two audio speakers (Creative Inspire T10) horizontally 

positioned at ±30o visual angle. Following 25% of successful fixation trials a stimulus 

sequence was presented from either the left or the right audio speaker, and eye-tracking 

data was recorded (Figure 3.3A). 
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Figure 3.3 Schematic of macaque eye-tracking experiment. (A) Macaques were seated in 
front of a computer monitor. After fixating on a central fixation spot, on 25% of trials a 
randomly selected test sequence was presented from one of two audio speakers and eye-
tracking responses were recorded. (B) Average eye trace from one monkey (±standard 
error; SEM). Positive values on the horizontal axis indicate eye movements toward the 
audio speaker (left or right) that presented a given test sequence. The dotted line denotes 3 
SDs of the variance in eye position during fixation, which was used for analysis of 
significant looking-responses (shaded area is the individually defined response period). 
Abbreviation: a.u., arbitrary units. 
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Habituation phase 

Each session began with a habituation phase, during which the animal listened to 

the habituation sequences (Figure 3.1) presented in a random order from both left and 

right audio speakers for 30 minutes (rate of presentation: 9 sequences/min; inter-sequence 

interval = 4 sec). 

Testing phase 

Following the habituation phase was a testing run consisting of multiple trials. Each 

trial began when the animal engaged a red fixation circle in the centre of the screen to 

centre the eyes. If the animal continuously fixated for two seconds it was given a juice 

reward, and 25% of the successful fixation trials were followed by a testing trial in which a 

randomly selected testing sequence (of the 8 possible, Figure 3.1) was randomly presented 

from either the right or the left audio speaker. The trials on which a testing sequence was 

presented were separated by on average 4 trials where no test sequence was presented and 

the animal only fixated. Experimental data were collected in 1-5 separate testing runs per 

day. Each testing run included at least eight trials (one presentation of a randomised order 

of every test sequence, Figure 3.1). The duration of a testing run was dictated by the 

animal’s motivation to continue engaging in the fixation task for a juice reward. However, 

data analysis was only conducted on the first 8 trials (1 presentation of each of the testing 

sequences), because all animals completed these, thus, each animal was presented with each 

of the 8 testing sequences either in each testing run (25 or 26 runs per animal). 

Furthermore, while monkeys showed consistent levels of looking responses throughout 

these testing runs (Figure 3.4A), they only appeared to discriminate between the consistent 

and violation sequences for the first 8 sequences of any testing run (Figure 3.4B). The 

animal was given a short break between each testing run, during which the animal listened 

to a new randomised set of habituation sequences for five minutes in order to re-habituate 

him to the AG structure. After this, another testing run began, if the animal remained 

motivated to fixate to start each trial. 
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Figure 3.4 Eye-tracking responses across testing runs. (A) Duration of responses 
throughout the testing run (% time looking at speaker with average individual animal 
identified by symbols). Each testing run was divided into bins containing 8 stimulus trials. 
Plotting the average response duration of these trials, regardless of stimulus condition, 
shows that the animals continued to look in the direction of the presenting speaker 
throughout the testing run and did not appear to lose interest in looking at the test 
sequences (when they were motivated to participate and data could be obtained). (B) 
Shown are the differences in response durations between the violation and consistent 
sequences for each bin of eight stimulus trials (% time looking at speaker, with symbols 
identifying average values for individual animals). Looking durations were significantly 
higher in response to violation sequences compared to consistent sequences in the first 
eight trials (t63 = 4.429, p < 0.001). After the first bin no difference was observed between 
the violation and consistent sequences (in all cases, p > 0.1). These results suggest that the 
effects of habituation (which occurred before the start of each testing run in the form of 
either a habituation or re-familiarisation period) do not persist indefinitely and that to 
maintain the effect shorter runs and more frequent periods of re-familiarisation are needed. 
It is important to note that the increase in individual variability observed in later testing 
runs is due to reduced statistical power, since (although all animals completed at least the 
first eight testing trials) not all animals managed to complete all of the subsequent testing 
trials in each run. 
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Data analysis 

The three macaques participated in 25, 25 and 26 testing runs respectively. Only the 

first eight trials of each testing run were used for further analysis since all of the animals 

completed these (see Figure 3.4). The eye-tracking data for each trial contained both the 2 

second baseline period during which the animal fixated on the central fixation spot and the 

subsequent period during which the test sequence was presented randomly from one of the 

two audio speakers Figure 3.3B. Looking-responses to the test sequences were defined 

individually for each animal as looks towards the presenting audio speaker (left or right) 

exceeding 3 SDs of the variability in the baseline eye fixation period. The analysis included 

the time from stimulus onset up to the point when the animal looked in the opposite 

direction for more than 200ms. This identified when the animal seemed to lose interest in 

the test sequence and looked above 3 SDs of baseline variability towards the opposite, 

silent audio speaker (Figure 3.3B). The length of the response window for the three 

monkeys (M) was: M1 = 2128ms, M2 = 2984ms, M3 = 4180ms. The data were also 

analysed using a fixed 3000ms window and the pattern of results was comparable to those 

with the individually defined analysis windows. Within the response period, response 

durations were defined as the proportion of time in the analysis window that the animal 

spent looking towards the presenting audio speaker beyond 3SD of the baseline fixation 

period (Figure 3.3B). For analysis of the average looking-response to individual elements, 

the window was the time during which the element was presented with an adjustment for 

how long, on average, it took the animal to breach the 3SD criterion to look towards the 

start of the test sequence. The average horizontal eye deflections during the stimulus 

presentation were also analysed.  

3.5.2. Results 

Eye-tracking responses were analysed using an RM-ANOVA with two factors: 

‘monkey’ (3 levels) and ‘sequence condition’ (‘consistent’ and ‘violation’). The results 

confirmed those seen in the video-coding experiment. The animals made significantly 

longer looking-responses to the violation sequences than the consistent sequences 

(significant main effect of sequence condition: F2,73 = 20.297, p < 0.001; Figure 3.5A). 

Although individual animals differed in their looking times towards the presenting audio 

speaker (significant main effect of monkey, F2,73 = 4.055, p < 0.05), there was no 

interaction between sequence condition and monkey factors (p = 1.0), suggesting that while 

there may have been differences in responsiveness, all monkeys showed a preference for 

the violation sequences.  
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Figure 3.5 Group eye-tracking results. (A) Mean proportion (%) of looking-responses to 
the consistent and violation conditions. (B) Results for different subsets of the consistent 
and violation sequences. Shown are the results for the ‘familiar’ and ‘novel’ consistent test 
sequences and violation sequences that (like the consistent sequences) ‘begin with A’ or 
those that ‘do not begin with A’. * = p < 0.05, *** = p < 0.001.  
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An ANOVA with four levels of the factor: ‘sequence condition’ (‘familiar’, ‘novel’, 

‘begin with A’ and ‘do not begin with A’; Figure 3.1) showed a significant main effect for 

sequence condition (F3,219 = 10.057, p < 0.001; Figure 3.5B). Bonferroni comparisons 

showed significant differences were seen between: (1) ‘novel’ and ‘begin with A’ (p < 0.001); 

(2) ‘novel’ and ‘do not begin with A’ (p = 0.01); (3) ‘familiar’ and ‘begin with A’ (p < 0.001); 

and, (4) ‘familiar’ and ‘do not begin with A’ (p = 0.01; Figure 3.5). There was no significant 

difference between responses to ‘familiar’ and ‘novel’ consistent sequences (p = 1.0), nor 

any difference between responses to the violation sequences which ‘begin with A’ or ‘do 

not begin with A’ (p = 1.0). Again, there was no interaction between ‘sequence condition’ 

and ‘monkey’ factors (p = 1.0). These results replicate those of the video-coding 

experiment with increased statistical power, showing that macaques are able to discriminate 

consistent from violation sequences. Furthermore, these results suggest that the animals’ 

AGL abilities do not depend on sequence familiarity or only noticing violation sequences 

that do not begin with A.  

As well as analysing the duration of the looking responses I calculated the mean 

horizontal eye position of each animal throughout the stimulus period in the direction of 

the speaker presenting the test sequence. An RM-ANOVA with two main factors: ‘monkey’ 

(3 levels) and ‘sequence condition’ (‘consistent’ and ‘violation’) supported the previous 

analyses showing a main effect of sequence condition (F1,73 = 10.759, p = 0.002). Although 

individual animals differed in the degree to which they looked towards the presenting audio 

speaker (significant main effect of monkey, F2,73 = 3.666, p = 0.03), there was no 

interaction between sequence condition and monkey factors (p = 0.388). This suggests that 

the animals showed a similar pattern of responses, although the magnitude of the effect 

may vary. A second RM-ANOVA with four levels of the factor: sequence condition 

(‘familiar’, ‘novel’, ‘begins with A’ and ‘does not begin with A’) again showed a significant 

main effect for sequence condition (F3,219 = 3.60, p = 0.014) and of monkey (F2,73 = 3.666, p 

= 0.03) and no significant interaction (F6,219 = 1.958, p = 0.07). Bonferroni comparisons 

showed significant differences only between: ‘novel’ consistent sequences and violation 

sequences which ‘do not begin with A’ (p = 0.017), all other contrasts were non-significant. 

While these effects are less robust than the previous analyses based on looking duration, 

which are not so easily biased by strong looking deflections in individual trials, the results 

are complementary. Both analyses suggest that the monkeys respond more strongly to 

sequences that violate the AG structure compared to those that are consistent with it, that 
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this cannot be attributed to only familiarity or noticing initial violations, and that these 

results appear relatively consistent across animals.  

To investigate this in more detail the more robust looking durations were analysed 

in individual animals (Figure 3.6). Significantly longer responses to violation compared to 

consistent sequences were observed in two monkeys (t24 = 3.137, p = 0.004; t24 = 3.129, p = 

0.005) and the third was at the significance threshold (t25 = 2.023, p = 0.05). When all 4 

sequence conditions were compared in three separate RM-ANOVAs all three monkeys 

showed a significant main effect of condition (F3,72 = 3.715, p = 0.015; F3,72 = 4.745, p = 

0.004; F3,75 = 5.08, p = 0.003). Bonferroni corrected post-hoc tests are highlighted in Figure 

3.6. No monkeys showed different responses to novel vs. familiar test sequences. Against 

predictions, monkey 3 shows stronger responses to violation sequences which ‘begin with 

A’ (i.e., are from this first element very much like the consistent sequences) compared to 

those which ‘do not begin with A’. Thus, none of the monkeys preferentially responded 

only to sequences that violate the initial ‘A’ element. Due to reduced statistical power in 

individual animals,  only one monkey showed significant, Bonferroni corrected, response 

differences between ‘novel’ sequences and violation sequences that ‘begin with A’ (Figure 

3.6B). However, in combination these results suggest that all the macaques were sensitive 

to violations of the AG structure, and that none of the main effects can be attributed to 

either a familiarity effect or animals only responding to violations of the first element.  
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Figure 3.6 Eye-tracking results in individual monkeys. Eye-tracking effects for each 
monkey showing the proportion (% ±SEM) of looking responses to consistent and 
violation conditions (left panels) and to the four different stimulus conditions (‘familiar’ 
and ‘novel’ consistent sequences and violation sequences which ‘begin with A’ or ‘do not 
begin with A’; right panels). * = p < 0.05; ** = p < 0.01; *** = p < 0.001.   



Chapter 3: Behavioural Evidence for AGL in Rhesus Macaques 
 

  

77 
 

These results recapitulate the video-coding results and suggest that the macaques’ 

abilities to discriminate consistent from violation responses do not depend on sequence 

familiarity or on rote memorisation during the habituation phase. Given that the monkeys 

seem to monitor the sequences for violations after the first element (they do not respond 

more strongly or for longer durations to violation sequences that ‘do not begin with A’), 

does this mean that they can monitor for possible violations throughout the rest of the 

sequence? In particular, do they respond to violations beyond the 2nd position in the 

violation sequences, at which point the branching structure of the AG becomes more 

evident (Figure 3.1)?  

To answer these questions and to better determine the extent of macaque AG 

learning abilities, eye movements in response to identical acoustical elements in either 

consistent or violation sequences were compared (Figure 3.7) with an RM-ANOVA with 

the factors of ‘sequence condition’ (‘consistent’ or ‘violation’), ‘element’ (‘A’, ‘C’, ‘D’, ‘F’ or 

‘G’) and ‘monkey’ (3 levels). Critically, the main effect of sequence condition (F1,73 = 11.978, 

p = 0.001; Fig. 4) did not interact with element (p = 0.1), nor was there a main effect of 

element itself (p = 0.6). Thus the stronger looks to violation sequences cannot be explained 

by the animals’ responses to any individual element but only by the context in which the 

element occurred.  
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Figure 3.7 Contextual effects by AG element. Group (and individual) mean difference plot 
of responses to ‘violation’ – ‘consistent’ sequences towards the presenting speaker in 
response to each of the five stimulus elements (A, C, D, F and G). Positive differences 
reflect stronger looks to violation sequences than to consistent sequences. 
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To assess whether the macaques were sensitive to subtle, additional violations in 

later parts of the testing sequences, I analysed whether the macaques responded differently 

to two specific test sequences (i and ii in Figure 3.8A). These sequences begin identically, 

have their initial violation in the transition between the first and second positions, and 

contain the same elements in positions 3-5. However the elements in positions 3-5 have a 

different order, which generates an additional violation in sequence ii between the second 

and third element. Mean difference plots between sequence i and ii were generated for each 

monkey (Figure 3.8B-D). 95% confidence intervals were generated using a bootstrapping 

procedure as follows. Within the early part of the sequence, during the presentation of the 

first two elements, which is identical between the sequences, a data matrix of the eye-

position throughout this period by the number of repeats of the two sequences was created. 

The sequence labels were then shuffled 1000 times to generate the null distribution of 

differences. By calculating the mean eye trace of these shuffled datasets, 5% and 95% 

confidence intervals (CIs) were calculated (Figure 3.8). Deviations of the difference eye 

trace below the 5% CI reflect responses is in favour of sequence i, with fewer violations, 

differences above the 95% CI would show a preferences for sequence ii. Lastly, for any 

significant deflection below the 5% or above the 95% CI, the area (representing both the 

time and magnitude of the deviation across the CI) that breached this significance 

threshold was calculated.   

The results demonstrated that two of the macaques showed strong significant 

responses in favour of sequence ii, containing the additional violation, which resulted in an 

area above the significance threshold at least a factor of 3 greater than any such preference 

seen either for sequence i or during sequence positions 1-2 where the two sequences are 

identical. No difference could be observed between the sequences in macaque 3 (Figure 

3.8D). These results suggest that a significant sensitivity to a subtle violation later in the 

sequences can be measured in a majority of the three animals studied. 
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Figure 3.8 Eye-tracking sensitivity to violations at specific positions in the sequence. (A) 
Schematic plot of two of the violation sequences, identifying legal transitions (black arrows) 
and violations (red arrows). Violation sequence ii (green) contains one extra violation than 
sequence i (purple) between the second and third elements in the sequence. (B-D) Eye-
tracking difference plots of preferences for sequence ii (positive numbers) or sequence i 
(negative numbers) including bootstrap determined confidence intervals (CI, dashed 
horizontal lines) based on the bootstrapped difference (1000 permutations) during element 
positions 1-2 which are identical between the two sequences. Also shown is the area above 
95% or below 5% CI (bar plots on the right) where each animal made statistically 
significant looks in favour of either sequence. None of the 3 macaques showed a 
considerable preference for either sequence in the early part of the analysis (element 
positions 1-2). However, two of the macaques (B-C) showed at least a 3 factor increase in 
the area above the 95% CI in favour of sequence ii after the extra violation had occurred 
(later positions 3-5). (D) Macaque 3 does not show such a sensitivity. 
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A further analysis of the average look magnitude toward the presenting speaker 

during element positions 3-5 showed a significant preference for sequence ii in this period 

(z = 1.994, p = 0.046; Figure 3.9), or in analysis of the later positions 4-5 (z = 2.173, p = 

0.03), for the data from macaques 1 and 2. An analysis of the data from all three animals 

(including macaque 3 that showed no sensitivity) recapitulates those reported in Figure 3.9, 

showing a trend for the analysis of positions 3-5 (z = 1.677; p = 0.09) and an effect for the 

later element positions 4-5 (z = 1.943; p = 0.049). Together these results suggest that the 

majority of macaques (2 out of 3) noticed violations throughout the AG sequences rather 

than just at the beginning. Taken together, these results suggest that Rhesus macaques 

recognise violations throughout the course of the sequences, and that this novel eye-

tracking approach is sufficiently sensitive to measure these responses. 



Chapter 3: Behavioural Evidence for AGL in Rhesus Macaques 
 

  

82 
 

  

 

Figure 3.9  Eye-tracking responses to early and late parts of violation sequence ‘i’ and ‘ii’. In 
two animals (Monkey 1 and 2), significantly stronger eye-tracking responses to the 
sequence with additional violations are observed in the late, but not the early part of the 
sequence.  
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 Discussion 3.6.

The results reported here show that Rhesus macaques are sensitive to violations of 

a forward branching, non-deterministic AG, which has been insufficiently demonstrated in 

previous studies (see Chapters 1 & 2, Berwick et al., 2011; Beckers et al., 2012). The video-

coding results demonstrate that, at the group level, macaques respond more frequently, 

more strongly and for longer durations to sequences which violate the artificial grammar. 

Furthermore, these results cannot be explained by trivial explanations such as rote 

memorisation or responding to novel stimuli, or by only responding to potentially highly 

salient violations (in the first position of the sequence). A complementary eye-tracking 

experiment recapitulated these results, including analyses in individual animals. Moreover, 

the additional accuracy and temporal specificity of the eye-tracking paradigm provides 

insights into responses to AG violations which would be impossible with more traditional 

methods. The results help to demonstrate that simple learning strategies appear to be 

insufficient to explain the macaques’ responses, and that responses cannot be attributed to 

simple preferences for certain acoustical stimuli. Furthermore, analysis of two specific 

violation sequences demonstrate that at least two out of the three monkeys tested show 

preferences for the sequence with additional violations, late in the sequence. In summary, 

these results demonstrate that Rhesus macaques showed previously unreported sequence-

structure learning capabilities. These findings support the hypothesis that the ability to 

evaluate non-deterministic, sequential structures may be subserved in certain primates, by 

generic, rather than language specific, processes. 

3.6.1. Technical advances  

One of the important implications of this work is the development of an objective 

method of measuring natural response behaviour in nonhuman primate AGL experiments. 

All previous research in nonhuman primates has relied upon video recording the animals’ 

responses to test sequences for later offline analysis (Hauser et al., 2001; Fitch & Hauser, 

2004; Newport et al., 2004; Saffran et al., 2008; Hauser & Glynn, 2009). These methods 

contain an unavoidable level of subjectivity, which can only be overcome with an 

automated technique such as the one described here. The video-coding results reported 

here support the more objective eye-tracking results, both providing validation to this 

method and supporting the validity of the video-coding approach. Nevertheless, the eye-

tracking technique provides not only valuable objectivity but also greater accuracy and 

temporal precision, presenting an improvement to traditional experimental designs.  
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3.6.2. Origins of primate AGL abilities 

Human AGL abilities are thought to be supported by some of the same cognitive 

mechanisms and brain areas as natural language processing (Petersson et al., 2004; Friederici 

et al., 2006a). However, nonhuman primates clearly do not possess such linguistic abilities. 

Furthermore, unlike some other Old World monkeys (e.g. putty-nosed monkeys, Arnold & 

Zuberbuhler, 2006), there is no evidence macaques meaningfully combine their calls or that 

their vocalisations contain any discernible structure. Therefore, it may be necessary to 

distinguish between vocal production and auditory learning processes since these capacities 

seem to be subserved by different neurobiological pathways and mechanisms (Jarvis, 2004; 

Petkov & Jarvis, 2012). Rather than vocal communication, the sequence-structure learning 

abilities that support this AGL task may relate to other capabilities. The natural function of 

these abilities in nonhuman primates is remains an empirical question. It is possible that 

nonhuman primates’ capabilities to learn aspects of AG structures may arise from their 

abilities to evaluate patterns in sensory input (or the structure of social interactions: 

Bergman et al., 2003; like the movement patterns of others: Schmitt, 2010). However, 

behavioural experiments in a single nonhuman species are likely to be insufficient to 

address this question. Comparative, cross species analyses may allow AGL capabilities in a 

number of species to be analytically compared to other cognitive or behavioural abilities to 

attempt to assess the likely natural functions of these abilities. Alternatively, neuroimaging 

experiments might reveal that AGL tasks produce activity in specific brain areas with well-

understood functions, (e.g. motor areas), suggesting that it is these abilities that are 

recruited for artificial grammar learning. While the ultimate roots of the sequence-structure 

learning abilities required for AGL tasks are currently unclear, experiments such as this one 

at least provide a rigorous way to investigate the abilities the animals possess, and therefore 

may represent the basis for further research into these questions.  

3.6.3. Remaining questions and future directions 

The results of this experiment provide the first robust evidence that nonhuman 

primates are able to learn an AG structure of this level of complexity. However, 

understanding the abilities of a single species to learn one type of AG structure has limited 

benefits in understanding the evolution of how the abilities supporting this learning may 

have evolved. Would other nonhuman animals be able to learn this AG under similar 

conditions? Would New World monkeys, which are more distantly related to humans but 

tend to be more vocal than Old World monkeys (DeVore, 1963; Fooden, 2000), perform 

better, worse, or comparably to Rhesus macaques? In Chapter 4, I will present data from 
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both common marmosets, a species of New World monkey, and human participants, 

assessing their abilities to learn the same AG structure. The results of these experiments 

will facilitate better mapping of the evolutionary origins of these sequence-structure 

learning capabilities and how they relate to the language faculty in humans.  

A second question raised by these results is, how do Rhesus macaques process 

these sequences, and does it relate in any way to how the human brain processes language? 

It is possible that the relatively simple (compared to human language) sequencing abilities 

required for these tasks are subserved by generic processes, shared between humans and 

other extant primate species. This would allow humans and macaques to process the AG 

sequences, and detect violations of the AG structure, in comparable ways. However, it is 

also possible that while humans possess a specialised network of brain areas, evolved to 

process language, which makes such AGL relatively trivial, nonhuman primates may 

employ completely different cognitive mechanisms supported by different brain areas to 

produce comparable results. In Chapter 5 I will present comparative fMRI data from 

Rhesus macaques and human participants, investigating the brain regions involved in 

processing this AG structure to explore similarities and differences between how AGL in 

the human and nonhuman primate brain.  

 Conclusion 3.7.

These two experiments revealed a previously unknown level of complexity in 

Rhesus macaque AGL capabilities. Such behavioural results provide an important initial 

foundation required to begin asking both how the human language faculty may have 

evolved and how useful these nonhuman primates may be as an animal model system. 

However, to address either of these questions, it is necessary to consider how other species 

AGL may relate to those of the Rhesus macaque, and how AGL may be processed in the 

brains of these animals. In the following chapters I will attempt to address these questions, 

with the ultimate goal of furthering our understanding of how the human language faculty 

may have evolved, and whether nonhuman primates may one day help to reveal the 

neuronal mechanisms underlying aspects of human language. 
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 Abstract 4.1.

Artificial Grammar Learning (AGL) paradigms present an opportunity to 

comparatively study how non-linguistic species may learn structures that emulate specific 

features of natural language. While a number of studies, including those reported in the 

previous chapter, have demonstrated AGL in nonhuman animals, no study has yet directly 

compared the abilities of different species to learn the same AG structure. Such 

comparisons are necessary to place these AGL capabilities within a comparative framework, 

to potentially provide insights into how language may have evolved in humans and to aid in 

the development of animal model systems for the investigation of language related 

capabilities. Following previous experiments in Old World monkeys; common marmosets 

(a species of New World Monkey) and human participants were tested using the same AG 

structure. In a two-alternative, forced-choice experiment, human participants quickly 

learned to differentiate between sequences of nonsense words that were consistent with the 

AG and those that violated the AG structure. In an experiment identical to the previous 

video-coding experiment in macaques (see Chapter 3), common marmosets also showed 

response preferences for sequences that violated the AG structure. However, unlike the 

macaques, these responses appeared to be driven by a reliance on simpler strategies, 

including primarily noticing violations in the first sequence position or the novelty of the 

test sequences. These results provide some support for the hypothesis that species more 

closely related to humans may possess more complex AGL capabilities, suggesting a 

potential evolutionary gradient for sequence-structure learning complexity. These results 

are discussed with respect to how comparative analyses might inform us on the topic of 

language evolution, and the potential suitability of each species as an animal model system 

for aspects of language processing.  
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 Introduction 4.2.

The experiments in the previous chapter demonstrated that Rhesus macaques are 

able to learn the structure of a forward-branching, non-deterministic artificial grammar, and 

that these results cannot be easily attributed to simple cues. Evidence for this complexity of 

AGL capabilities in macaques demonstrates that these abilities are not uniquely human, and 

therefore are unlikely to be specific to language. Furthermore, behavioural evidence that an 

animal possesses comparable abilities to humans suggests that it might make a valuable 

animal model system to explore such abilities at a level impossible in humans. However, 

experimentation in a single species is limited in the extent to which it can inform us about 

issues regarding language evolution. While the presence of this ability in a single nonhuman 

primate suggests that the capacity may be evolutionarily conserved from a common 

ancestor, it is possible that both species may have independently developed such a 

capability. Many abilities and traits have evolved independently in different lineages by 

convergent evolution. For example, vocal learning in songbirds (and other, distantly related 

species) is known to have evolved independently multiple times (Jarvis, 2004; Feenders et 

al., 2008; Petkov & Jarvis, 2012). Therefore, the co-occurrence of an ability in both humans 

and a single nonhuman primate may not be sufficient to generalise the capacity to other 

nonhuman animals. Alternatively, it is possible that such sequence-structure learning 

abilities may be very common in nonhuman animals. If this were to prove to be the case, 

evidence in Rhesus macaques alone might tell us relatively little about when the ability may 

have evolved. Testing in additional species presents the opportunity to better understand 

the prevalence of these abilities in nonhuman primates and therefore to inform us about 

language evolution. Furthermore, the study of a wider range of species might provide 

additional candidates to act as animal models for aspects of language processing. While a 

single species might represent an adequate animal model, additional factors, such as 

similarities in neurobiology, ease of housing and breeding or ethical issues, might make 

other species more appropriate.   

The sequence-structure learning capabilities required in AGL paradigms require 

relatively complex abilities. Therefore, it is likely that rather than a binary distinction 

between being either present or absent in any given species, these abilities might exist to 

varying extents in a wide range of animals. For example, previous AGL experiments have 

shown that cotton-top tamarins (a New World monkey) are able to learn simple AG 

structures but not more complex ones (Fitch & Hauser, 2004), and that their abilities might 

be based on relatively simple learning strategies (e.g. familiarity of the test sequences, 
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Saffran et al., 2008). In contrast, the AG used here is more complex than those used by 

Fitch and Hauser (2004, see Chapter 2), and, unlike the tamarins tested with a similar 

grammar (Saffran et al., 2008), the responses of the Rhesus macaques could not be 

attributed only to simple strategies (see Chapter 3). Therefore, might the study of additional 

species demonstrate that more closely related animals have more complex AGL abilities? 

While the parameter space proposed in Chapter 2 presents an objective way to compare 

AGL abilities across different AG structures, direct comparisons between species require 

the same animals to be tested using the same AG structure and methods. 

Artificial grammar learning experiments were initially designed to investigate how 

human participants learned simple structures emulating features of natural language (Reber, 

1967). Indeed, neuroimaging evidence suggests that some of the same areas involved in 

processing language are also involved in artificial grammar learning (Petersson et al., 2004; 

Friederici et al., 2006a). However, language in humans is undoubtedly a unique evolutionary 

specialisation, absent in nonhuman animals. Therefore, what natural abilities in nonhuman 

animals are these AGL tasks tapping into? As has previously been discussed (see Chapter 

3), behavioural evidence in a single species is unlikely to identify the natural abilities which 

underpin these sequence-structure learning abilities. However, the study of additional 

species might help to clarify this. For example, if AGL abilities were based on a species' 

vocal production capabilities, we might expect those species which produce more complex 

or frequent vocalisations to also perform better on AGL tasks, possibly independent of the 

species’ phylogenetic relationship to humans. To rigorously conduct such analyses it would 

be necessary to collect comparative data on the AGL capabilities, as well as other 

potentially related behavioural or physiological data, from a wide range of species. While a 

research project of this magnitude falls outside the scope of this thesis, the study of two 

nonhuman primates provides a number of important benefits compared to experiments in 

a single species.  

Data in a second species is the initial step in building up a large enough dataset to 

perform the type of phylogenetic analyses required to answer complex questions about the 

evolution of language. In the shorter term, evidence of AGL in a second primate species 

could help to clarify whether, or to what extent, these sequence-structure learning abilities 

might be common to other nonhuman primate species. Such data also facilitates more 

accurate estimations of when these abilities may have evolved. Finally, evidence of AGL in 

a second species presents us with another possible animal model system in which aspects 

of human language learning abilities might be investigated.  
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In this chapter, I tested how the forward-branching, non-deterministic AG 

structure might be learned by common marmosets. Marmosets are a New World monkey 

that shared a last common ancestor (LCA) with humans approximately 45 million years ago 

(MYA). Rhesus macaques are an Old World monkey, and are more closely related to 

humans, (LCA approximately 30 MYA,  Steiper & Young, 2006). Common marmosets are 

relatively closely related to cotton-top tamarins, another species of New World monkey, 

which have been the subject of many of the previous nonhuman primate AGL studies 

(Hauser et al., 2001; Fitch & Hauser, 2004; Newport et al., 2004; Saffran et al., 2008). 

However, the current experiment represents the first attempt to directly compare Old and 

New World monkeys using the same AGL paradigm. Furthermore, marmosets are a 

commonly used animal model system in neuroscience (Okano et al., 2012). Therefore, the 

assessment of their AGL abilities presents the possibility to consider these animals, as well 

as Rhesus macaques, as animal models in which some language related abilities might be 

studied at the cell or molecular level. Eye-tracking experiments, as described in macaques in 

Chapter 3, were not feasible in the marmosets due to their small size. However, the results 

of the macaque eye-tracking and video-coding experiments were complementary; therefore, 

the video-coding experiments appear to provide a valid measure of AGL in nonhuman 

primates (also, see Discussion).  

In this chapter, I will also present data on the abilities of human participants to 

learn the same AG structure. Previous evidence suggests that human adults, and even 

infants, are able to learn non-deterministic AG structures (Reber, 1967; Saffran, 2002; 

Petersson et al., 2004; Saffran et al., 2008). While the evidence that humans can learn AGs 

of this type is uncontroversial, testing participants using identical stimuli presents a number 

of advantages. Beyond providing behavioural confirmation of these AGL abilities in 

humans, the data from this experiment can be directly compared to those collected in other 

species, including analyses based on the familiarity of sequences or the extent to which 

responses can be attributed to simple cues. Furthermore, neuroimaging experiments 

require behavioural confirmation of AGL in individual participants (see Chapter 5). The 

human experiment used identical stimuli sequences to the nonhuman primate experiments 

and similar habituation and testing phases. However, natural response experiments, such as 

those performed in nonhuman primates, are difficult to conduct in human participants. 

Therefore, the testing phase of this experiment required participants to make explicit 

responses (see Methods and Discussion). While the testing measures differed between 
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species, this approach was necessary to gather comparable data across species as different 

as humans and monkeys.  

 Rhesus macaque summary 4.3.

To facilitate comparisons across species this section will briefly review the key 

results of the Rhesus macaque video-coding experiment. Following habituation to 

sequences of nonsense words consistent with the AG structure, the macaques were tested 

with consistent sequences (including ‘familiar’ and ‘novel’) and sequences that violated the 

AG structure (which either ‘begin with A’ or ‘do not begin with A’). The animals’ 

responses were videotaped and coded by three independent raters for the proportion of 

trials on which the animals responded and the duration and strength of these responses. 

Significant differences between consistent and violation sequences were identified for all 

response measures (Figure 3.2, reproduced as Figure 4.1). Furthermore, Bonferroni 

corrected post-hoc tests revealed significant differences between the key contrast of ‘novel’ 

consistent sequences and violation sequences which ‘begin with A’ (which cannot be solved 

by either familiarity of recognising the violations in the first element) for both the 

proportion of responsive trials and the strength of responses (Figure 4.1B and F). More 

liberal post-hoc comparisons revealed, for every response measure, significant differences 

between consistent and violation conditions (i.e. ‘familiar’ vs. ‘begins with A’; ‘familiar’ vs. 

‘does not being with A’; ‘novel vs. ‘begins with A’; ‘novel vs. ‘does not being with A’) but 

never within a condition (i.e. ‘familiar’ vs. ‘novel’; ‘begins with A’ vs. ‘does not begin with 

A’). These results suggest that the macaques learned the AG structure, and that their 

responses cannot be attributed to either the familiarity of the sequences or responding only 

to simple rule violations, such as noticing violations in the first sequence position. For 

more details, see Section 3.4, and Figure 4.1. 
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Figure 4.1 Reproduction of Figure 3.2: Video-coding results in Rhesus macaques. (A-B) 
Mean proportion (±SEM) of trials on which macaques made unambiguous looking-
responses as evaluated by a majority of raters (see Methods). The left panels indicate 
responses to consistent and violation sequences, right panels display results to specific 
subsets of stimulus sequences. (C-D) Mean response duration of responses (±SEM) to 
consistent and violation sequences (C) and subsets of sequences (D). (E-F) Mean responses 
strengths based on coding from three raters (±SEM) to consistent and violation sequences 
(E) and subsets of sequences (F). Significance levels are shown for all main effects (paired 
sample t-tests; left panels) and Bonferroni post-hoc tests (right panels); * = p < 0.05; ** = p 
< 0.01; *** = p < 0.001. 



Chapter 4: Comparative AGL in Macaques, Marmosets and Humans 
 

  

93 
 

 Common marmosets experiment 4.4.

4.4.1. Methods 

To facilitate cross species comparisons the methods for this experiment were kept 

as similar as possible to those of the Rhesus macaque experiment. However, only 4 

marmosets were available for testing, therefore each monkey was tested on 4 different 

occasions separated by at least one week (see below). 

Participants 

Four common marmosets (Callithrix jacchus) participated in this experiment. The 

marmosets were housed in two pairs within a single colony, and were individually housed 

for testing. All animal work and procedures were approved by the U.K. Home Office and 

abide by the Animal Scientific Procedures Act 1986 on the care and use of animals in 

research. 

To assess whether any potential differences observed between the species could be 

attributed to different levels of auditory perception the power spectrums of the nonsense 

word stimuli were compared to human, macaque and marmoset audiograms (Figure 4.2). I 

confirmed that the power spectrum density of the nonsense word stimuli was well within 

the audible range of all of the species (i.e., at least 30dB above their hearing threshold in 

the range of ~100-5000Hz). Therefore, any differences between the species are unlikely to 

result from differences in auditory perception.  

Stimuli and procedure 

The stimuli, habituation and testing procedures and video-coding analysis used in 

this experiment were identical to those used in the macaque video-coding experiment (see 

Section 3.4.1). To obtain sufficient results with the 4 marmosets that were available for 

testing, the animals were tested on 4 separate occasions, with at least 1 week between the 

testing sessions. Additional analyses confirmed that the results could not be explained by 

individual differences or any cumulative learning effects (see Results). 
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Figure 4.2 Nonsense word power spectra and primate audiograms. Mean (± SEM) acoustic 
power spectrum of the five nonsense word stimuli (in dB re 20 μN/m2, blue line) . The 
black lines indicate the auditory threshold above which sounds at that frequency and 
intensity are audible for humans (dotted line), macaques (solid line) and marmosets (dashed 
line). The nonsense word stimuli fall well within the audible range of all three species, and 
there are no gross differences in frequency sensitivity between the species. Human 
audiogram data from: (Jackson et al., 1999); macaque audiogram data summarised from: 
(Pfingst et al., 1975; Pfingst et al., 1978; Lonsbury-Martin & Martin, 1981; Bennett et al., 
1983); marmoset audiogram data from: (Seiden, 1958) 
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Data analysis 

As with the macaque data, for all analyses only trials on which the majority of the 

raters (2 out of 3) agreed that an unambiguous response was made (strength of response 

≥4, on the scale of 1-5) were used. The proportions of trials on which the marmosets 

responded, as well as the duration and reported strength of these responses were analysed. 

Due to limited availability of animals, each of the 4 available marmosets was tested on four 

separate occasions. In order to ensure that differences in responses, on any of the measures 

collected, could only be attributed to the animals detecting violations of the AG, rather 

than to differences between animals or between sessions, the data were analysed using 

linear mixed-effects models (Bates, et al., 2012) using the R software package, as follows. 

Linear mixed effects models were constructed to test the extent to which each response 

measure (response duration, response strength, or response proportion) was predicted by 

‘sequence condition’ (‘consistent’ or ‘violation’, fixed effect), controlling for the random 

factors: ‘marmoset’ (4 levels) and ‘session’ (4 levels). All analyses used random slope 

models (Field, 2009; Winter, 2013) because it is possible that beyond producing different 

levels of responses in general (as would be modelled by a random intercept model, Field, 

2009; Winter, 2013), different marmosets or testing sessions might be associated with more 

or less responses in one particular condition (i.e. consistent or violation). To test the 

significance of the effects produced by each of these models, it was necessary to test an 

equivalent null model for each, which measured the extent to which the each response 

measure (response duration, response strength, or response proportion) could be predicted 

only by ‘marmoset’ and ‘session’ (both random factors). These two models were then 

compared using a likelihood ratio test (Winter, 2013), which tests the null hypothesis that 

the effect size obtained by the full model could also have been produced by the null model. 

Therefore, this analysis assesses the contribution ‘sequence condition’, which was the only 

difference between the models (see Results).  

Inter-rater reliability 

Three raters coded all 32 trials of all of the videos. Inter-rater reliability was 

calculated pairwise between the three raters. The raters had exact agreement on the 

strength of the response (on the five point scale) on 49.8% of the trials and were within 

one response point from each other on 80% of the trials. Cohen’s Kappa (Landis & Koch, 

1977) revealed “fair” to “moderate” mean agreement between raters, K = 0.39. Of all of 

the available trials the marmosets were rated as unambiguously responding on 22.8% of all 

of the recorded trials by a majority of raters resulting in 60 grammatical and 57 
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ungrammatical response trials (total of 117) used for analysis. These numbers, in 

comparison to those of macaques (see Section 3.4), indicate that the marmoset data were 

not statistically underpowered in relation to those that were available for analysis from the 

macaques.  

4.4.2. Results 

The frequency of marmosets’ responses (response proportions) were analysed with 

linear mixed-effects models with the factors ‘sequence condition’ (‘consistent’ or ‘violation’, 

fixed effect), ‘marmoset’ (4 levels, random factor) and ‘session’ (4 levels, random factor), to 

assess the extent to which the animals’ responses could be attributed to the grammaticality 

of the sequences, rather than individual differences between marmosets or differences 

between sessions. While the Rhesus macaques responded significantly more frequently to 

violation compared to consistent sequences, no such effect was observed in the marmosets 

(likelihood ratio test between experimental model, containing the ‘sequence condition’, 

‘marmoset’ and ‘session’ factors, and the null model, containing only the ‘marmoset’ and 

‘session’ factors: χ2
1 = 0.0764, p = 0.782, Methods, and Figure 4.3A). Similarly, additional 

analyses including 4 levels for the factor: ‘sequence condition’ (levels: ‘familiar’, ‘novel’, 

‘begins with A’ and ‘does not begin with A’) revealed no differences between the 

experimental model and the null model (χ2
1 = 0.02, p = 0.887, Figure 4.3B). Post-hoc 

analyses were performed by testing models comparing individual pairs of sequence 

conditions (e.g., ‘familiar’ vs. ‘novel’) and using Bonferroni corrections for multiple 

comparisons. These analyses revealed no differences between any of the sub-conditions p > 

0.8 in all cases). Interestingly, comparisons of the proportion of trials on which the two 

species responded suggested that the marmosets responded more frequently than the 

macaques, suggesting that while the marmosets might be more responsive than the 

macaques, these responses may be relatively indiscriminate with regards to the condition of 

the sequences (consistent or violation). Furthermore, because the marmosets were the 

more responsive species, more data contributed to the final analyses, therefore any results 

showing stronger effects in the macaques cannot be attributed to greater statistical power.  

Although the marmosets appeared to respond equally frequently to the different 

sequences, responses to violation sequences had significantly longer durations than to the 

consistent sequences (responses to violation sequences were 0.7 seconds ± 0.34 (standard 

errors) longer than to consistent sequences, likelihood ratio test between linear mixed-

effects models: χ2
1 = 4.01, p = 0.045, Figure 4.3C). Further analyses considering the four 

different conditions also showed a main effect of response duration (χ2
1 = 5.08, p = 0.024, 
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Figure 4.3D). Post-hoc analyses, with Bonferroni corrections, as above, revealed no 

significant differences between any sequence conditions (p > 0.27 in all cases). Furthermore, 

less conservative LSD multiple comparisons corrections only revealed a significant 

difference between ‘familiar’ sequences and violation sequences that ‘do not begin with A’ 

(p = 0.045), but no other contrasts reached even this very liberal significance threshold. 

Therefore, even using these very liberal corrections for multiple comparisons, no 

significant difference between the ‘novel’ sequences and those that ‘begin with A’ was 

identified. Thus it is difficult to conclude that the differences in marmosets’ responses 

between consistent and violation sequences can be attributed to anything more than simple 

strategies, such as noticing only violations in the initial element or responding to novel, 

previously unheard sequences.  

Finally, no differences in the ratings of the strength of the responses were observed 

between the consistent and violation sequences (χ2
1 = 0.637, p = 0.43, Figure 4.3E) or 

between the four levels of sequence condition (χ2
1 = 0.583, p = 0.45, Figure 4.3F) and post-

hoc analyses, using either Bonferroni or LSD corrections, revealed no significant 

differences between conditions.  
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Figure 4.3 Video-coding experiment results in common marmosets. (A) Mean proportion 
(±SEM) of trials on which marmosets made unambiguous looking-responses as evaluated 
by a majority of raters in responses to consistent and violation sequences and (B) responses 
to ‘familiar’ and ‘novel’ consistent sequences and violation sequences that ‘begin with A’ 
and ‘do not begin with A’. (C-D) Mean response duration (±SEM) of responses. (E-F) 
Mean responses strengths (±SEM) based on coding from three raters. Significance levels 
are shown for all main effects (left panels) and post-hoc analyses (right panels); * = p < 
0.05. 
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4.4.3. Marmoset conclusion 

These results suggest that in terms of frequency of responses, the common 

marmosets were relatively indiscriminate to consistent and violation sequences. Unlike 

Rhesus macaques, which responded significantly more frequently to violation sequences 

than consistent ones, no such differences were observed in the marmosets. Similarly, no 

differences between the consistent and violation sequences were seen in the strengths of 

the marmoset responses. However, the marmosets’ orienting responses persisted for 

significantly longer durations following the presentation of violation than consistent 

sequences. This suggests that marmosets may initially attend to the presentation of any 

auditory stimulus, regardless of the sequence presented, but that they more quickly lose 

interest in the consistent sequences, while the violation sequences maintain their attention 

for longer. These increased looking durations, which were also evident in the macaques, 

suggest that marmosets are sensitive to some features of the AG structure.  

The macaques responded similarly, in terms of both response frequency and 

duration, to the ‘familiar’ and ‘novel’ consistent test sequences, and to the violation 

sequences that ‘begin with A’ and that ‘do not begin with A’, however significant 

differences were apparent between the ‘novel’ consistent sequences and the violation 

sequences that, like the consistent sequences, ‘begin with A’. Therefore the macaques’ 

responses cannot easily be attributed to simple cues such as novelty or only detecting 

violations early in the sequences. By contrast, the common marmosets showed no such 

discrimination between these two key stimulus conditions, making it impossible to 

conclude that they did not rely primarily on these simpler strategies, or that they 

demonstrated meaningful learning of the AG structure. While discriminating between 

sequences based on such simple cues represents an early step in sequence-structure 

learning capabilities, they clearly do not represent a full understanding of the AG structure, 

or the level of AGL observed in Rhesus macaques.  
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 Human experiment 4.5.

4.5.1. Methods 

The AG structure and stimuli sequences used to test humans were identical to 

those used in previous experiments. Human participants are difficult to test with implicit 

natural response paradigms such as those used in nonhuman primates. Adult humans, 

familiar with technology like audio speakers, do not typically produce strong dishabituation 

responses to repeated presentations of auditory stimuli. Therefore, it is very difficult to 

detect any differences between conditions that would demonstrate artificial grammar 

learning. In this experiment, humans, like the nonhuman primates, first took part in the 

implicit habituation phase (although humans required a shorter period of exposure to learn 

the AG structure, e.g. Saffran, 2002; Fitch & Hauser, 2004). However, in the testing phase 

the participants were asked to make explicit responses in a two-alternative, forced-choice 

experiment (see Discussion). Although participants were informed that there was a pattern 

to the sequences of nonsense words, they were given no information about the structure of 

the AG, and were given no feedback during the experiment. While this procedure 

represents a notable deviation from the methods of the primate experiments, this 

experiment provided a valuable data about human participants’ abilities to learn the same 

AG structure the monkeys were tested with, allowing some comparison between the 

species.  

Participants 

Twelve adult participants (age range 19 to 34 years, mean age 23; 5 male, 7 female) 

were recruited through the Newcastle University Institute of Neuroscience participation 

scheme and provided informed consent to participate. All participants were native English 

speakers, had normal hearing and normal or corrected vision. No participants had any 

language or comprehension disorders. The ethics of this experiment were approved by the 

local ethics committee at Newcastle University. 

Stimuli 

The stimuli were identical to those used in previous experiments (see Section 3.4.1). 

Procedure 

Participants were seated one meter in front of a computer monitor and two audio 

speakers. All stimuli throughout the experiment were presented from both speakers. The 

experiment was run using custom Matlab scripts through Psychophysics toolbox. To 

generate sufficient data, and to assess ensure that the participants remained familiarised to 
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the AG structure, testing phases were interspersed with additional habituation (re-

familiarisation) phases. In total each participant took part in three testing phases, each 

preceded by a habituation or re-familiarisation phase.   

Habituation phase 

During the initial habituation phase, the participants were asked to listen to the 

habituation sequences (see Section 3.4.1) for 5 minutes, as a number of studies have 

demonstrated that adult and infant human participants require less habituation in order to 

learn an AG structure than nonhuman primates do, (Fitch & Hauser, 2004; Newport & 

Aslin, 2004; Newport et al., 2004; Saffran et al., 2008). Subsequent re-familiarisation phases 

presented the same habituation sequences, in a randomised order, for 3 minutes. The 

stimuli sequences were presented in an identical manner to previous, nonhuman primate 

experiments (rate of 9 sequences/min; inter-sequence interval = 4 sec). There was no task 

during this phase of the experiment, participants were only asked to sit quietly and listen to 

the sequences.  

Testing phase 

In the testing phase participants were presented with each of the test sequences 4 

times in a pseudorandom order, for a total of 32 trials. During the stimulus sequence 

presentation a blue fixation spot was displayed on the screen. Following the presentation of 

each sequence, the fixation spot changed from blue to yellow, indicating that the 

participant should respond either that the sequence “followed the pattern” (‘consistent’) or 

“did not follow the pattern” (‘violation’). The responses and response times were recorded. 

The participants were asked to respond as quickly and accurately as possible, but there was 

no time limit on responses. Following the participant’s response, the next trial began after 

an inter-trial interval of 2 seconds.  

Data analysis 

To allow easier comparison to the nonhuman primate results, rather than plotting 

the mean percentage of correct responses, data are plotted as the proportion of trials to 

which the participants made the ‘violation’ response. Therefore for consistent conditions 

responses below the 50% chance level indicate good performance, and for violation 

conditions responses above the chance level indicate good performance. This allows clearer 

comparisons between the human and nonhuman primate data, as it facilitates not only 

comparisons of responses to the chance level, but also, as in the monkeys, between 

consistent and violation test conditions.  
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4.5.2. Results 

The participants accurately identified consistent and violation sequences 

significantly better than chance levels (one-sample t-tests, consistent: t11 = 8.193, p < 0.001; 

violation: t11 = 5.177, p < 0.001; Figure 4.4A) and a significant difference was observed 

between conditions (paired sample t-test, t11 = 7.681, p < 0.001). However, when responses 

were analysed based on the four experimental conditions performance better than chance 

was observed in only three of the conditions (one sample t-tests, ‘familiar’: t11 = 7.731, p < 

0.001; ‘novel’: t11 = 8.164, p < 0.001; ‘does not begin with A’: t11 = 7.330, p < 0.001; Figure 

4.4B) while violation sequences that ‘begin with A’ were not identified above chance levels 

(‘begins with A’: t11 = 1.499, p = 0.162). An RM-ANOVA revealed a main effect of 

‘sequence condition’ (F3,33 = 41.852, p < 0.001). Bonferroni corrected post-hoc tests 

identified significant difference between all consistent and violation conditions (i.e., 

‘familiar’ vs. ‘begins with A’, p = 0.003; ‘familiar’ vs. ‘does not begin with A’, p < 0.001; 

‘novel vs. ‘begins with A’, p = 0.001; ‘novel vs. ‘does not begin with A’, p < 0.001; Figure 

4.4B). No significant differences were observed between the two consistent conditions 

(‘familiar’ vs. ‘novel’, p = 1.0), suggesting the novelty of the test sequences played very little 

role in the participants decisions. However, participants correctly classified sequences that 

‘do not begin with A’ as violation sequences significantly more accurately than sequences 

that ‘begin with A’ (p = 0.025), suggesting that participants more easily recognised 

sequences that contained violations in the first sequence position.  

To investigate how participants’ performance might improve over multiple testing 

runs additional analyses were conducted. Responses to consistent and violation sequences 

were separated by testing run (1-3). Responses to all testing runs were significantly better 

than chance (one-sample t-tests, p < 0.01 in all cases; Figure 4.4C). An RM-ANOVA with 

the factors ‘sequence condition’: (2 levels) and ‘run’ (3 levels) was performed, showed a 

main effect of sequence condition (F1,22 = 59.002, p < 0.001) but no main effect of run 

(F2,22 = 0.823, p < 0.452) and a non-significant trend towards an interaction between 

condition and run (F2,22 = 2.858, p = 0.079). These results show that participants’ 

performance was high throughout the experiment, but the lack of a significant interaction 

suggests that performance did not significantly improve over testing runs. When the four 

different conditions were considered, the same pattern of results was observed. The 

consistent ‘familiar’ and ‘novel’ sequences and the violation sequences that ‘do not begin 

with A’ were classified better than chance on every run (p < 0.001 in all cases, Figure 4.4D). 

However the violation sequences that ‘begin with A’ were never classified significantly 
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above chance (Run 1: t11 = 0.194, p = 0.849; Run 2: t11 = 1.643, p = 0.129; Run 3: t11 = 

19.58, p = 0.076). An RM-ANOVA with the factors: ‘sequence condition’ (4 levels) and run 

(3 levels) revealed a main effect of sequence condition (F3,33 = 8.917, p < 0.001) but no 

main effect of run (F2,22 = 2.858, p = 0.079) and no interaction (F6,66 = 1.982, p = 0.081). 

These results suggest that participants were able to identify three out of four of the test 

conditions correctly from the beginning of the experiment, and that their performance did 

not appear to significantly improve as the experiment progressed.  

Participants’ response times revealed no differences between the consistent and 

violation conditions (t11 = 1.311, p = 0.217, Figure 4.4E). However, a RM-ANOVA with 

the factor ‘sequence condition’ (with levels ‘familiar’, ‘novel’, ‘begins with A’ and ‘does not 

begin with A’) revealed a significant main effect of sequence condition (F3,33 = 3.425, p = 

0.023, Figure 4.4F). Bonferroni post-hoc tests do not show any differences between 

conditions, (p > 0.1 in all cases), however, Figure 4.4F suggests that this effect is driven by 

faster responses to violation sequences that ‘do not begin with A’ compared to all other 

conditions. Therefore, it appears that reaction time data only highlights that participants 

respond more quickly to those sequences with very early violations, while in other 

conditions responses were consistently slower.  
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Figure 4.4 AGL results in human participants. (A-B) Mean proportion of trials on which 
participants responded ‘violation’ to test sequences (%, ±SEM). (C-D) Mean ‘violation’ 
responses split by testing run. (E-F) Mean response times separated by conditions. 
Significance levels are shown for conditions that are significantly different to chance (one 
sample t-tests), main effects (paired sample t-tests; left panels) and Bonferroni post-hoc 
tests (right panels); * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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4.5.3. Human conclusions 

These results demonstrate that human participants are easily able to distinguish 

between consistent and violation sequences. Furthermore, most of the sequences were 

correctly classified at better than chance levels. However, participants did not classify 

violation sequences that begin with the A element significantly better than chance, 

suggesting that these sequences were harder to identify as violations. Furthermore, better 

performance on violation sequences that ‘do not begin with A’ compared to those that 

‘begin with A’ show that violations in the initial sequence position were used as a 

significant cue in the identification of violation sequences. However, significant differences 

were observed between the violation sequences that ‘begin with A’ and both ‘familiar’ and 

‘novel’ consistent sequences, demonstrating that participants did recognise differences 

between the consistent and violation conditions, even when they began with the same 

initial element. Conversely, no significant difference was observed between ‘familiar’ and 

‘novel’ consistent sequences, suggesting that the familiarity of the test sequences did not 

influence participants’ responses.  
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 Discussion 4.6.

The experiments in Chapter 3 demonstrated that Rhesus macaques (a species of 

Old World monkey) were able to implicitly learn a non-deterministic, forward branching 

artificial grammar. They produced more frequent, stronger and longer duration responses 

to sequences that violated the AG structure than those that were consistent with it. 

Furthermore, differences were observed between ‘novel’ consistent sequences and 

violations sequences that ‘begin with A’, but not between ‘familiar’ and ‘novel’ consistent 

sequences, or violation sequences that ‘begin with A’ and those that ‘do not begin with A’. 

These results demonstrate that the artificial grammar learning observed in macaques cannot 

be attributed to simple strategies such as responding to previously unheard, novel 

sequences or only to violations in the initial parts of the test sequences.  

By contrast, common marmosets (New World monkeys) showed no differences in 

the frequency or strength of responses to consistent and violation test sequences. However, 

their responses did persist longer (as evidenced by increased looking durations) following 

violation sequences. This result demonstrates that some level of AGL occurred in 

marmosets; the animals noticed the difference between consistent and violation sequences. 

However, unlike the macaques, no differences were observed between the ‘novel’ 

consistent sequences and the violation sequences that ‘begin with A’, which cannot be 

solved by simple strategies. Furthermore, while the data were insufficiently statistically 

robust to observe many differences between individual conditions, the pattern of marmoset 

responses appears to be different to that observed in macaques. The Rhesus macaques’ 

responses showed a stepwise pattern of results, with no differences between the consistent 

(‘familiar’ and ‘novel’) or the violation conditions (‘begins with A’ and ‘does not begin with 

A’), but a large difference between the consistent and violation conditions. By contrast, the 

common marmoset results appear to show a linear increase in response durations across 

the conditions from ‘familiar’ to ‘does not begin with A’. Although the differences between 

individual conditions were not significant, this pattern of responses suggests that rather 

than the deeper learning evident in macaques, the marmosets’ responses may well be based 

not only on the ‘grammaticality’ of a sequence, but also on the familiarity or novelty, or 

particularly on early violations in the test sequences.  

Due to the small size and rapid movements of marmosets relative to macaques, the 

inter-rater reliability in this experiment was lower than that in the macaque video-coding 

experiment. However, more responses were recorded, and therefore included in later 
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analyses, in the marmosets than the macaques; therefore differences between the species 

cannot be attributed to insufficient statistical power. It is possible that the marmosets’ 

responses were more difficult to measure, thus this dataset contains more noise than the 

macaque data. However, even if additional data were to be collected in an effort to increase 

statistical power, while the variance of the data might decrease it is possible that the pattern 

of results would remain relatively consistent. Specifically, while reduced variance or 

increased statistical power in these analyses might reveal differences between the ‘novel’ 

consistent sequences and the violation sequences that ‘begin with A’, the results suggest 

that similarly large differences might be observed between ‘familiar’ and ‘novel’ sequences 

or violation sequences that ‘begin with A’ and ‘do not begin with A’. Therefore, it is 

unlikely that the differences in results observed between species can be attributed to 

insufficient data in one species; these results suggest that marmosets appear use simpler 

cues than macaques. Furthermore, the macaque video-coding and eye-tracking experiments 

produced highly comparable results, therefore it is unlikely that the pattern of results would 

differ dramatically if an effective eye-tracking method were to be developed in common 

marmosets.  

These conclusions share some similarities with previous nonhuman primate AGL 

studies. Saffran and colleagues, showed that cotton-top tamarins (a species of New World 

monkey) were able to discriminate between consistent and violation AG sequences, but 

only when the consistent test sequences were the same as those used in the habituation 

phase(Saffran et al., 2008). Based on these results it is impossible to determine to what 

extent the tamarins’ responses were driven by the novelty of the violation test sequences, 

rather than their knowledge of the structure of the AG. Furthermore, Fitch and Hauser 

(2004) showed that tamarins were able to learn the relatively simple (AB)n structure but not 

the more complex AnBn artificial grammar. In combination, these results might suggest that 

New World monkeys, including tamarins and marmosets, possess some AGL capabilities 

but these might be limited to simpler AG structures or relatively simple learning strategies.  

 Human participants, tested using an explicit version of this AGL paradigm, quickly 

learned to discriminate between consistent and violation sequences. Participants’ response 

accuracies were also above chance for most test conditions. However, violation sequences 

that ‘begin with A’ were not correctly identified above chance levels, suggesting that these 

sequences were more difficult to accurately classify. It is important to note that while the 

humans’ responses could be compared to chance levels, this was not possible in the 

nonhuman primates. With access only to the frequency, duration or strength of monkeys’ 
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responses, it is impossible to determine whether, for example, differences between 

conditions were caused by lower responsiveness to consistent sequences or increased 

responses to violation sequences, or how these would relate to chance performance in 

humans. While human participants failed to classify violation sequences that ‘begin with A’ 

above chance levels, significant differences between these and the ‘novel’ consistent 

sequences represent the same effect that is observed in macaques, but not in marmosets. 

Therefore, it is not possible to conclude that human participants were worse than 

macaques at recognising violation sequences that ‘begin with A’. However, unlike the 

macaques, human participants responded differently to the violation sequences that ‘begin 

with A’ relative to those that ‘do not begin with A’. Therefore, while we cannot conclude 

that humans were worse at recognising these violation sequences than macaques were, 

there is evidence that they at least use violations in the first element position when making 

their decisions. No difference was observed between the ‘familiar’ and ‘novel’ sequences. 

Therefore it appears that the participants did not assess the test sequences based on 

familiarity or novelty.  

Like previous comparative studies in humans and nonhuman primates (Fitch & 

Hauser, 2004; Saffran et al., 2008), it was not possible to test all the species using the same 

methods. Therefore, it may be difficult to establish whether any differences in results 

between humans and nonhuman primates could be attributed to the methods used rather 

than genuine cross-species differences. For example, humans, but not Rhesus macaques, 

showed different responses to the violation sequences based on the initial element. It is 

possible that this effect might be a result of human participants, after receiving explicit 

instructions, actively looking for rules or patterns governing the sequences. It is likely that 

participants may have recognised that all the habituation sequences began with the A 

element and that some of the test sequences did not. Some participants might then have 

failed to recognise more complex features of the AG structure, or assumed that they had 

worked out the rule and ‘solved’ the experiment. By contrast, the nonhuman primates 

could not be explicitly instructed, therefore likely based their responses, unconsciously, on 

some combination of the statistical regularities of the AG or on a broader combination of 

‘rules’. These experiments are insufficient to conclude that none of the differences 

observed between species might be attributable, at some level, to methodological 

differences. However, these results in humans, like many previous studies (e.g. Reber, 1967; 

Saffran, 2002; Folia et al., 2010), demonstrated that human participants were quickly and 

accurately able to learn the AG structure. The results from Chapter 3 demonstrate that 
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macaques were also able to learn this structure. It therefore seems reasonable to conclude 

that both testing methods present the different species sufficient opportunities to learn the 

AG. Therefore, it may be reasonable to compare the results gathered in humans with those 

from Rhesus macaques and common marmosets.  

In combination, these results suggest an interesting pattern of AGL capabilities 

across primate species. Humans appear to learn the AG structure quickly, and easily 

discriminate between consistent and violation sequences. Macaques, following a longer 

habituation period, implicitly learn the structure to a high level, and their responses cannot 

be explained by simple strategies. Marmosets, under identical conditions to the macaques, 

show AGL effects only in the duration of their responses, and even these may be best 

explained by relatively simple strategies. These results may suggest that Rhesus macaques 

(Old World monkeys, which are more closely related to humans), may have better AGL 

capabilities than common marmosets, which are more distantly related New World 

monkeys. While data from two species is insufficient to draw broad conclusions about the 

abilities of New and Old World monkeys in general, they are at least suggestive of a 

potential evolutionary gradient of AGL abilities, with more closely related species 

possessing more complex sequence-structure learning abilities. Further research with more 

species would help to support or refute this hypothesis. 

Human AGL abilities may be subserved by the same cognitive mechanisms and 

neuronal substrates that evolved for language processing (Friederici, 2004; Petersson et al., 

2004; Friederici, 2011; Petersson et al., 2012). However, these evolutionary specialisations 

appear to have occurred much more recently than humans last shared common ancestor 

with either macaques or marmosets (e.g. Pinker & Bloom, 1990; Jackendoff, 2002). It is 

therefore difficult to determine what abilities or capacities such AGL experiments might be 

tapping into in a non-linguistic species like nonhuman primates. The comparative testing of 

different species may be able to shed light on this question (Hauser et al., 2002; Petkov & 

Wilson, 2012). If a number of species were tested comparably on the same AG then it 

would be possible to analyse how AGL capabilities in these species might correspond to 

other, potentially related, differences between the species. For example, it is possible 

(although by no means necessary, Hauser et al., 2002) that the same cognitive mechanisms 

that support AGL in nonhuman primates might also support their own vocal 

communication abilities. If this were the case, we might expect to observe more complex 

AGL abilities in those species with more complex communication systems, wider 

vocabularies of vocalisations, or those that vocalise more frequently. With only two species 
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of nonhuman animal available for study, such analyses are difficult to perform. Both 

Rhesus macaques and common marmosets have relatively simple communication systems, 

largely relying on a relatively small number of vocalisations, produced either in isolation or 

series, but not in meaningful combination (Pola & Snowdon, 1975; Hauser & Marler, 

1993b; 1993a). Marmosets however are an arboreal species, and as such produce frequent 

contact calls to maintain group cohesion in the forest canopy were vision is limited 

(DeVore, 1963). Rhesus macaques occupy a wide range of relatively open, savannah 

habitats where vocal communication is less important in maintaining group contact (e.g. 

Fooden, 2000). As more complex AGL capacities were observed in macaques, which 

possess either equal or possibly more limited vocal communication abilities, relative to 

marmosets, it seems unlikely that these AGL capabilities are subserved by the same abilities 

as the animals’ vocal communication systems.  

A wide range of systems or abilities might support the AGL abilities observed in 

primates. It is possible that the associations and relationships between nonsense words 

might recruit a truly generic system. This may, for example, naturally be involved in 

processing the social relationships between group members. Rhesus macaques live in 

relatively large troops with complex social structures and dominance hierarchies, while 

marmosets live in small groups or pairs (Hubrecht, 1984; Fooden, 2000). Therefore it is 

possible that these AGL abilities might correspond to the requirement to process and 

understand larger numbers of associations or relationships between individuals in more 

complex social groups. Alternatively, AGL abilities might relate to more general learning 

abilities. While data directly comparing macaque and marmoset abilities are uncommon, 

studies have shown that on a discrimination learning task macaques learn faster, and 

ultimately reach a higher level of performance, than marmosets do (Miles & Meyer, 1956; 

Miles, 1957). Therefore, it is possible that more complex AGL capabilities may be a 

correlate of these more efficient learning abilities in Rhesus macaques. These possibilities 

represent only two of a huge number of potential capacities that might be responsible for 

differences in AGL abilities across primate species. Data from a wider range of species, on 

both AGL capabilities and other, potentially related abilities, could help identify what 

cognitive mechanisms might support sequence-structure learning abilities in nonhuman 

primates. It may be particularly valuable to study, for example, species such as putty nosed 

monkeys, which have been shown combine their vocalisations in meaningful ways (Arnold 

& Zuberbuhler, 2006; 2008), to better clarify the relationship between AGL abilities and 

the complexity of an animals’ vocal communication system. Data from two species are 
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insufficient to draw firm conclusions, however, these results minimally allow us to suggest 

that macaques, which are both more closely related to humans and possess larger brains 

than their New World cousins, common marmosets, appear to have more complex AGL 

capabilities.  

 Conclusion 4.7.

The results of these experiments demonstrate that the AGL capabilities previously 

observed in Rhesus macaques are also present in humans, and to some extent, in at least 

one other nonhuman primate species, and are therefore likely to be present, in some form 

or other, in a range of primate species. Furthermore, although the mechanisms supporting 

these abilities are not clearly understood, these results seem to suggest that more closely 

related species might perform better at these tasks than more distantly related ones. 

Whether or not this result generalises more broadly to other Old and New World monkeys, 

it may be possible to conclude that while common marmosets do show some limited AGL 

abilities, Rhesus macaques might represent the stronger candidate for an animal model 

system in which to study language related processes in the brain.  

These results are able to inform us about the relative sequence-structure learning 

capabilities of two nonhuman primate species, and may, by inference, begin to provide 

some information about the abilities of nonhuman primates more generally. However, 

these, and any behavioural experiments, are likely to be insufficient to address whether the 

mechanisms involved in AGL in nonhuman primates represent homologues of some 

aspects of the language processing system in humans, which would suggest a generic basis 

for this system, or some other, more distantly related process. Therefore, in the next 

chapter, I will present results from comparative fMRI experiments in Rhesus macaques and 

human participants, which aimed to assess the similarities and differences between the 

brain areas involved in AGL in the two species, and how this might relate to the language 

network in the human brain. 
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Chapter 5:  Artificial Grammar Learning in the Primate Brain 

 Abstract 5.1.

Human neuroimaging studies have shown that natural language processing engages 

left hemisphere perisylvian brain regions. Artificial Grammars (AGs) can be designed to 

emulate aspects of the syntactic structure of language, and have been shown to produce 

activity in comparable brain areas. Nonhuman primates have been shown to learn some 

AGs. Data regarding the brain regions that support these processes in nonhuman animals 

have the potential to provide important insights into the evolution of language related 

abilities. However, such data was not previously available. Functional magnetic-resonance 

imaging (fMRI) experiments were performed in Rhesus macaques and human participants, 

which showed that several perisylvian regions are comparably engaged in AG learning in 

both species. Corresponding sensitivity to violations of the AG were observed in the 

inferior frontal gyrus, ventral to presumed homologues of Broca’s area (BA44/45), as well 

as temporal and temporo-parietal regions. BA44/45 was statistically involved in the 

macaques, but not in humans, suggesting interesting implications about the evolution of 

Broca’s territory in humans. Furthermore, rather than being left lateralised, the effects were 

bilaterally distributed in both species. The observed correspondences show that humans 

process this AG using an evolutionarily conserved set of perisylvian brain regions whose 

function involves evaluating learned sequencing relationships. Such processes reflect 

domain-general rather than language-specific functions, the latter of which in humans 

might depend more on left lateralised processes and on Broca’s territory. These 

corresponding brain areas can now be studied in animal models at a neuronal level. 

  



Chapter 5:  Artificial Grammar Learning in the Primate Brain 
 

  

113 
 

 Introduction 5.2.

Language related processes recruit frontal, temporal and parietal brain regions that 

surround and reside in the lateral sulcus or Sylvian fissure (‘perisylvian’ regions, Broca, 

1861a; Damasio & Geschwind, 1984; Binder et al., 1997; Catani et al., 2005; Hickok & 

Poeppel, 2007). Neuroimaging studies have been used in combination with Artificial 

Grammar (AG) learning paradigms to evaluate the brain regions involved in syntax-related 

processes, independently of semantic processes (Petersson et al., 2004; Friederici et al., 

2006a; Friederici, 2011; Petersson et al., 2012). These studies have highlighted the 

involvement of the left inferior frontal gyrus, including Broca’s area and more ventral 

regions, as well as parts of the temporal lobes and temporo-parietal regions. Previous 

experiments, including those reported here, have demonstrated that nonhuman animals are 

able to learn AGs of various levels of complexity (Chapters 3 and 4 and, e.g. Fitch & 

Hauser, 2004; Gentner et al., 2006; Murphy et al., 2008; van Heijningen et al., 2009). 

However, which brain regions support such processes, and how these compare to human 

brain regions involved in similar processes, was previously unknown. 

Identifying the nonhuman primate brain regions involved in AGL is an important 

goal. A number of scenarios regarding which areas are recruited are possible. Firstly, it is 

possible that behavioural similarities observed between humans and nonhuman animals 

might be supported by different cognitive mechanisms and brain areas, because humans 

have access to a specific language processing system which is not present in nonhuman 

animals. Alternatively, AGL paradigms might activate comparable, homologous regions in 

both humans and nonhuman primates. This would suggest that the brain areas that support 

language in humans might share a common evolutionary heritage with regions observed in 

extant nonhuman primates, suggesting a more generic evolutionary basis for aspects of 

language processing. Furthermore, the identification of functionally homologous brain 

regions in macaques would represent a critical step forward in the development of an 

animal model system in which language related abilities could be tested at a neuronal level.  

Conversely, evidence that AGs are processed by discrete sets of brain regions in humans 

and monkeys would suggest that the value of comparative AGL paradigms as a method for 

investigating language evolution might be more limited. It is also possible that both 

correspondences and differences might exist between the species. For example, some 

functional homologies might be observed, but other features, such as the lateralisation of 

these areas observed in the human language network, might not be present in non-

linguistic species such as nonhuman primates.   
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If comparable perisylvian brain areas were activated by the same AG in both 

species, the specific patterns of activity observed could provide valuable insights into the 

evolution of specific, brain regions involved in language processing in humans (Friederici, 

2002; 2004; Petkov & Wilson, 2012). Human AGL neuroimaging experiments suggest that 

simple syntax-building functions, such as those involved in evaluating adjacent 

relationships in finite-state Artificial Grammars (Chomsky, 1957), engage ventral frontal 

cortex (vFC) regions, including frontal-opercular areas (Friederici et al., 2006a; Bahlmann et 

al., 2008; Bahlmann et al., 2009; Friederici, 2011). However, Broca’s territory (left 

Brodmann areas 44 and 45) does not appear to be strongly involved in these initial 

processes, unless more complex, non-adjacent AG relationships or syntactic and semantic 

features of natural language are involved (Friederici et al., 2006a; Tyler et al., 2011; Petersson 

et al., 2012). Primate AGL studies have shown that nonhuman primates (cotton-top 

tamarins) were able to learn a simple AG, i.e. (AB)n, which produces activation in vFC 

regions in humans. However, they were unable to learn a more complex AnBn structure, 

reported to recruit Broca’s area in humans (Fitch & Hauser, 2004; Friederici et al., 2006a). 

Furthermore, this simpler syntactic processing relies upon a ventral pathway between the 

anterior temporal lobe and vFC, while more complex AGs recruited a dorsal pathway 

between BA44/45 and posterior temporal regions (Friederici et al., 2006a; Bahlmann et al., 

2009). DTI experiments have identified evidence of the ventral pathway in Rhesus 

macaques and chimpanzees, however evidence for the existence of a dorsal pathways is 

much weaker in these species (Rilling et al., 2008). Therefore, whether AGL paradigms 

might activate structural homologues of Broca’s area (BA44/45) in nonhuman primates, or 

any structures implicated in the dorsal pathway in humans, remains an important question. 

It is possible that the inability of cotton-top tamarins to learn the more complex AnBn AG 

(Fitch & Hauser, 2004) may be due to Broca’s area representing a unique specialisation for 

language, which is not present in nonhuman species. Alternatively, since the processing of 

complex, finite-state AGs has been shown to activate BA44/45 in humans (Petersson et al., 

2004; Petersson et al., 2012), the present AG structure might represent a sufficient level of 

complexity to cause activation in this area in nonhuman primates, but not necessarily in 

humans.  

This functional magnetic-resonance imaging (fMRI) study evaluated which brain 

regions in humans and Rhesus macaques are sensitive to a non-deterministic, forward 

branching AG. Insights on anatomically and functionally corresponding regions across the 

species, which are sensitive to the AG, could provide evidence to clarify conserved and 
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specialised human function and support future neuronal-level studies of the conserved 

regions in animal models. 

 Rhesus macaque fMRI experiment 5.3.

Behavioural experiments in both Rhesus macaques and common marmosets 

showed that these species were sensitive to AG violations (see Chapters 3 and 4). However, 

these effects were much more robust in macaques than marmosets, and could not be 

explained by simple strategies. Furthermore, macaques are an Old World monkey, more 

closely related to humans than marmosets, and therefore might represent the more 

appropriate animal model system. Finally, macaques are larger animals that are easier to test 

in neuroscientific experiments, including both fMRI experiments and potential future 

neurophysiological recordings. Therefore, in this experiment, three Rhesus macaques 

participated in an implicit AGL task during fMRI scanning.   

5.3.1. Methods 

Stimuli 

The stimuli used were identical to those used in the previous experiments (see 

Section 3.4.1 and Figure 3.1). 

Ethics Statement 

All animal work and procedures were approved by the U.K. Home Office and 

abide by the Animal Scientific Procedures Act (1986) on the care and use of animals in 

research.   

Participants 

Two of the Rhesus macaques (Macaca mulatta) who participated in both the eye-

tracking experiment and the video-coding experiment, and one who only participated in the 

video-coding experiment (see Chapter 3) were tested using a sparse scanning fMRI 

paradigm. Due to practical and ethical considerations it is typically not possible to scan 

large numbers of macaques in the same way human fMRI experiments are conducted. 

Therefore, analyses were performed individually in each animal and the results are 

discussed with specific focus on areas of activation that were consistent across the majority 

of animals (2 out of 3). All the animals were male, weighing 6-12kg, and lived in a colony of 

pair housed macaques. They were trained to complete trials of a sparse-imaging sequence 

with visual fixation and minimal body movement during stimulation (Petkov et al., 2006; 

Petkov et al., 2008a).  
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FMRI experiments require the heads of nonhuman primates to be immobilised to 

acquire high quality data and to prevent movement artefacts. This is achieved by means of 

a surgically implanted MR-compatible plastic head-post, secured to the skull with ceramic 

screws and dental acrylic. This procedure is common in nonhuman primate neuroscientific 

research; however, like any surgical procedure, problems sometimes occur. Throughout the 

course of this research, two of the animals scanned began to reject, and ultimately lost their 

head-posts (Monkeys 1 and 3). This made fMRI scanning impossible in these animals until 

the animals have sufficiently recovered to be re-implanted. Due to these medical issues, it 

was impossible to collect identical amounts of data in each animal. The animals participated 

in 1, 8 and 5 scanning sessions respectively. Scanning sessions consisted of an average of 5 

testing runs including 30 testing trials each. Despite the differences in the amount of data 

recorded in each animal, analyses were performed identically in each case (see Rhesus 

macaque fMRI data analysis, below). All data were cluster corrected (p < 0.05 level), and all 

three animals showed significant cluster corrected activity responses, including several 

clusters for Monkey 1 who had the fewest trials (Table 5.1). Furthermore, the pattern of 

effects observed between the animals did not appear to be closely related to the amount of 

data available for analysis.  

Auditory cortex (AC) maps were individually defined for each animal based on 

methods described in Petkov et al., (Petkov et al., 2006). For each animal, the average 

BOLD activation to stimulus sequences (regardless of whether they were consistent or 

violation sequences) relative to silent trials was calculated, across both ACs. These data 

were then compared to the volume of scanning data obtained. Monkeys 1 and 2, in which 1 

and 8 scanning sessions were recorded respectively, showed comparable, high activation in 

AC (mean z-score of 0.83 and 1.01, averaged across the entire left and right auditory 

cortices). Monkey 3, in which an intermediate number of sessions (five) were recorded 

showed much lower AC activation (mean z-score of 0.18). No correlation was apparent 

between number of sessions and AC activity (r = 0.11). Furthermore, a similar analysis was 

performed to asses any possible relationship between number of scanning sessions and 

activation to violation relative to consistent sequences in the ventral frontal cortex (vFC, 

see Rhesus macaque region of interest analyses, below). Again higher activation was 

observed in Monkeys 1 and 2, while Monkey 3 showed lower activation (r = -0.30). These 

analyses suggest that the number of scanning sessions recorded do not correspond strongly 

with either levels of activation in general (as measured by the sound-silence contrast in the 

AC) or with activation to the violation-consistent sequences in key brain areas. While 
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collecting more balanced datasets would have been desirable, medical and logistical issues 

made this impossible. Nevertheless, these analyses suggest that the results of this 

experiment cannot easily be attributed to these differences.  

Habituation phase 

Each scanning session began with a 30 minute habituation phase during which the 

habituation sequences were presented binaurally in a randomised order (rate of 9 

sequences/min; inter-sequence interval = 4 sec; Figure 3.1).  

Test phase 

In the scanner, the monkey was encouraged to fixate on centrally located fixation 

spot for a juice reward (delivered after the scanning trial completed). Following each 

fixation period the animal was presented with a randomly selected consistent or violation 

test sequence (40% each of trials) or a silent trial (20% of trials). Stimuli were presented 

binaurally through MR-compatible headphones (Nordic Neurolabs) using Cortex software 

(Salk Institute) at ~75 dB SPL (calibrated with an XL2 sound level meter, NTI Audio). 

Each scanning run consisted of 30 trials (24 stimulus trials, 3 repeats of each sequence, 

Figure 3.1), following which the monkey was re-exposed to the habituation sequences for 5 

minutes. Up to six scanning runs were performed each day, based on the animal’s 

willingness to engage the fixation spot for a juice reward.  

Rhesus macaque magnetic resonance imaging 

Measurements of the fMRI blood oxygen level dependant (BOLD) signal were 

made with a nonhuman primate dedicated, vertical bore 4.7 tesla scanner (Bruker BioSpin) 

at Newcastle University. The monkeys sat in a primate chair in the scanner. Signals were 

acquired using a birdcage RF coil. Functional data were acquired using a single-shot 

gradient-recalled echo planar imaging (GE-EPI) sequence. The use of a sparse scanning 

paradigm allowed the stimulus sequences to be presented in relative silence (Petkov et al., 

2009). Each trial involved the acquisition of a baseline volume (volume acquisition time 2s), 

followed 9 seconds later by a stimulus volume (echo spacing = 9s; flip angle: 90o; TE = 

22ms; 16 slices, 2mm; in-plane field of view: 12.8 x 9.6cm2, on a grid of 128 x 96 voxels, 

with voxel resolution of 1 x 1 x 2mm3; inter-trial-interval = 9s; Figure 5.1). On stimulus 

trials (80% of trials) a randomly selected stimulus sequence was presented aligned so that 

the stimulus ended 2 seconds before the stimulus volume began (stimulus onset occurred 

on average 3.8 seconds after the start of the initial volume, stimulus offset occurred at 7 

seconds, Figure 5.1). These timings were developed to measure the peak BOLD response 
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produced by the stimulus relative to the initial baseline volume. The BOLD response to 

auditory stimuli peaks approximately 4 seconds following stimulus presentation (Baumann 

et al., 2010), therefore this scanning paradigm was designed to maximise response to the 

stimuli while minimising activation caused by the preceding volume (Figure 5.1). 

Anatomical images were acquired in register with functional scans in each scanning session 

using a 3D T1-weighted MDEFT sequence with parameters TE: 6ms; echo spacing: 750ms; 

inversion delay: 700ms; 22 slices; in-plane field of view: 12.8 x 9.6cm2, on a grid of 256 x 

192 voxels, with voxel resolution of 0.5 x 0.5 x 2mm3, number of segments: 8. 

Rhesus macaque fMRI data analysis 

For each animal, first-level general linear model (GLM) analyses with fixed effects 

(FEAT, FSL) were performed, contrasting BOLD responses to violation-consistent 

sequences. Functional data for each animal was registered to a template functional image 

rather than a high resolution anatomical or standard image. This approach allowed the 

functional data for each animal to be compared in a common reference space, ensuring that 

areas of activation could be accurately compared between scanning runs. Only significant 

clusters (p < 0.05, cluster corrected) that occurred in corresponding voxels or anatomical 

regions (Saleem & Logothetis, 2007) in at least the majority of the three animals were 

discussed (Table 5.1 and Figure 5.2). The data were then registered to a standard reference 

space for comparison (Saleem & Logothetis, 2007), and projected to surface-rendered 

standard template brain using FreeSurfer for clearer display purposes (McLaren et al., 2009). 

Consistent-violation contrasts were also performed. However, these analyses produced no 

significantly active clusters in one of the animals, and no correspondences between the 

clusters observed in the other two. Furthermore, the previous literature has generated no 

strong a priori hypotheses about the regions that might be expected in this contrast. 

Therefore, these contrasts were not considered further.  
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Figure 5.1 Scanning paradigm and predicted BOLD responses. Initial stimulus volume 
begins at trial time = 0s. Stimuli were individually aligned to end 2 seconds before the 
second, stimulus volume, which began at 9s. Schematics of predicted BOLD responses to 
the first volume (blue) and the stimulus sequence (red) are also shown (based on the time-
course of BOLD signal to auditory stimuli Baumann et al., 2010). Timings were designed to 
maximise activation in response to the stimulus relative to the initial volume during the 
second, stimulus volume. Vertical heights are arbitrary and only meant for illustrative 
purposes. 
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Rhesus macaque region of interest analyses 

A BA44/45 Region of Interest (ROI), representing a potential structural 

homologue of Broca’s area in humans was anatomically defined, consisting of Brodmann 

areas 44 and 45 (Saleem & Logothetis, 2007). Following imaging studies in human 

participants and previous hypotheses (see Chapter 1, Friederici et al., 2006a; Bahlmann et al., 

2008; Bahlmann et al., 2009; Petkov & Wilson, 2012) a ventral Frontal Cortex (vFC) ROI 

was anatomically defined, including precentral opercular areas (PrCO), ventral BA6 and the 

dysgranular insula (Figure 5.3G). Somatosensory areas 1, 2 and 3, the gustatory cortex, and 

BA12 were excluded from this ROI based on a priori hypotheses, despite their anatomical 

proximity to these vFC areas (see Introduction, Friederici et al., 2006a; Petkov & Wilson, 

2012 Figure 5.3G). These ROIs were mapped in a standard reference space individually in 

both hemispheres. The average BOLD signal in response to violation–consistent contrasts 

was calculated for each voxel in each ROI. These values were normalised based on the 

maximum activation for each animal, to ensure that analyses revealed relative differences 

between violation and consistent sequences, rather than overall stronger activation in any 

individual animal. RM-ANOVAs and Bonferroni corrected one-sample t-tests assessed 

whether the ROI was significantly activated by violation sequences relative to consistent 

sequences. RM-ANOVAs and two-sample t-tests were used to investigate lateralisation by 

comparing activation across hemispheres. RM-ANOVAs were used to compare the 

macaque data to those results obtained in humans.   

5.3.2. Results 

After habituation to exemplary AG sequences (Figure 3.1), the three macaques 

were scanned with functional magnetic-resonance imaging (fMRI) as they listened to 

consistent or violation testing sequences (Figure 3.1, Methods). Brain regions sensitive to 

violations of the AG for each animal (contrast: ‘violation’ vs. ‘consistent’) were mapped 

onto a surface-rendered standard template brain (Figure 5.2A-C, McLaren et al., 2009). An 

overlap map showing the average BOLD response of the voxels were activated in at least 2 

out of 3 of the monkeys is also shown (Figure 5.2D; also Table 5.1).  

These GLM analyses showed activation in a number of perisylvian brain regions, 

including some broad consistencies across different animals. In particular, ventral portions 

of the frontal cortex were involved in all three animals. In the first monkey the activation 

includes a large portion of the IFG (including BA6), extending from the dysgranular insula 

dorsally through the ventral frontal cortex up to BA44 and BA45. The second animal 
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shows a comparable pattern, although BA44 and BA45 appear to be relatively less involved, 

while this cluster of activation extends ventrally into the anterior temporal lobe (including 

area TS2). The third animal shows strong activation in the dysgranular insula and anterior 

temporal lobe, although some more dorsally located IFG regions did not reach cluster 

corrected significance levels. These GLM results suggest that ventral portions of the IFG 

and temporo-frontal regions including the dysgranular insula, are critically involved in AGL 

in the primate brain. Posterior temporal and temporo-parietal regions (Area 7) were also 

observed in a majority of the monkeys. This area represents a similar anatomical region to 

the angular gyrus (BA39) in humans, which is also known to be involved in language 

processing (see Discussion, Friederici et al., 2003; Friederici et al., 2010). Finally, 

corresponding activation was seen in the caudate nucleus in two of the animals, but was 

not obvious in the majority consensus map because the significantly active voxels were not 

in identical locations, but were in comparable anatomical areas.  

These GLM analyses appear to suggest that greater activation in response to the 

violation sequences relative to the consistent sequences occurred in the right hemisphere, 

at least in some of the animals. However, these analyses used a relatively conservative, 

cluster-corrected significance threshold (see Methods). Activation in each voxel was 

assessed relative to an initial significance threshold, and only clusters of significant voxels 

above a certain size appear in the final analyses (Fig. 5.2D, Table 5.1). Therefore, it is 

possible that these analyses might under-represent left hemisphere activation, which may 

be present, but below the significance level observed in the right hemisphere. To conclude 

that the effects seen here are statistically right lateralised, beyond identifying supra-

threshold activation in one hemisphere and sub-threshold activation in the other, it is 

necessary to demonstrate that there was significantly greater activation in the right than the 

left hemisphere. To directly compare the BOLD signal across hemispheres and between 

specific regions within the IFG, Region of Interest (ROI) analyses were performed. ROIs 

for BA44/45 and more ventral Frontal Cortex (vFC) regions were anatomically defined, 

and activation in these regions was quantitatively assessed.  
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Figure 5.2. Macaque brain regions sensitive to AG violations. Statistical parametric maps of 
sensitivity to AG violations (contrast: violation vs. consistent) displayed in each of the three 
macaques (A-C) and in a majority consensus voxel-overlap map (D), all p < 0.05 cluster 
corrected. Results are displayed on rendered medial and lateral surface representations 
transformed to a standard monkey brain (McLaren et al., 2009) that is in register with an 
accepted atlas of the identified anatomical regions in macaques (Saleem & Logothetis, 
2007). Abbreviations: D = Dorsal; V = Ventral; A = Anterior; P = Posterior. 
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Table 5.1 Anatomical locations of significant clusters in macaques. Coordinates (in 
stereotactic space) and maximum z-scores for significantly activated clusters, in each of 
three Rhesus macaques, including locations where activation co-occurs in at least two out 
of three monkeys.  

Anatomical Location 

Stereotactic 
coordinates 

Cluster 
corrected 

max. z-score 
Hemisphere 

x y z 

Monkey 1      
Ventral Frontal Cortex  25 26 20.5 3.55 Right 

BA45, BA44, dysgranular insula, BA6, putamen      
Temporo-parietal regions 14.5 8 17.5 4.16 Right 

BA7, Caudate nucleus (posterior), posterior auditory 
cortex (areas Pro, CM) 

     

Cingulate cortex   8 14.5 25 3.08 Right 
Anterior/posterior cingulate cortex, caudate nucleus      

Caudate nucleus  1.5 24 18 3.08 Bilateral 
      

Monkey 2      
Ventral frontal cortex & anterior temporal lobe  27 21.5 11.5 4.89 Right 

BA6v, BA44, BA45, dysgranular insula, anterior 
auditory cortex (area TS2) 

     

Frontal pole (BA46) -4 44.5 20 3.93 Left 
Anterior intraparietal area  -19.5 12.5 29.5 3.88 Left 

Anterior and ventral intraparietal areas      
Caudate nucleus & putamen 5 32.5 20.5 3.87 Right 
Temporo-parietal regions 16 1.5 25 3.52 Right 

BA7, posterior auditory cortex (area TPT)      
Nucleus accumbens  2.5 20.5 7 3.49 Bilateral 
Auditory cortex and insula  22 16 10.5 3.10 Right 

Auditory cortex (areas R, RM), dysgranular insula, 
putamen 

     

      

Monkey 3      
Temporal cortex & insula 26 19 7.5 3.60 Right 

Anterior auditory cortex (areas TS1, TS2), 
dysgranular insula 

     

      

Majority consensus (voxels activated in ≥2 monkeys)      
Anterior auditory cortex (area TS2) 26.5 20.5 11.5  Right 
Dysgranular insula 20.5 17 17  Right 
BA6v 24.5 27 19.5  Right 
BA7 12 0.5 23  Right 
Caudate nucleus & putamen 14.5 24 17  Right 
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ROI Results 

To evaluate the involvement of BA44/45 and adjacent ventral frontal cortex (vFC) 

regions in response to AG violations, the following planned ROI analyses were conducted. 

Separate ROIs were anatomically defined bilaterally for, Brodmann areas 44 and 45 

(BA44/45, blue in Figure 5.2G); and adjacent ventral regions including ventral frontal-

temporal opercular regions, (vFC, green in Figure 5.2G, see Methods).  

For each monkey, a voxel-based Repeated-Measures (RM) ANOVA was used to 

evaluate effects in the ROIs, with the factors ‘condition’ (consistent, violation), 

‘hemisphere’ (left, right) and ‘ROI’ (FOP, BA44/45). All three animals showed a main 

effect of ‘condition’ (M1, F1,1143 = 62.7; p < 0.001; M2: F1,1918 = 41.5; p < 0.001; M3: F1,1825 = 

5.219; p = 0.02) demonstrating that across both ROIs, all three monkeys showed increased 

activation to violation sequences relative to consistent ones, suggesting that these regions 

are critically involved in processing this AG. One monkey showed a significant interaction 

between ‘condition’ and ‘ROI’ (M2: F1,1918 = 17.191; p < 0.001) demonstrating increased 

activation in the vFC relative to BA44/45, however in the other two animals, this failed to 

reach statistical significance (M1: F1,1143 = 2.469; p = 0.116; M3: F1,1825 = 3.838; p = 0.051). 

Finally, lateralisation was assessed by means of an interaction between ‘condition’ and 

‘ROI’. Monkeys 1 and 3 showed no lateralisation effects (M1: F1,1143 = 0.860; p = 0.860; M3: 

F1,1825 = 0.235; p = 0.628), suggesting that these ROIs are equivalently engaged in both 

hemispheres, however, in Monkey 2 significant right-lateralisation was observed (F1,1918 = 

19.521; p < 0.001). To assess the effects in the vFC and BA44/45 ROIs independently, 

additional analyses in each monkey were performed.  

All animals showed significant vFC activation in response to violation sequences 

relative to consistent sequences in the right hemisphere, and this difference was also 

present in the left hemisphere in two out of the three animals (Bonferroni corrected one-

sample t-tests, M1, left: t404 = 4.155, p < 0.001; right:  t366 = 3.827, p < 0.001; M2, left: t702 = 

12.052, p < 0.001; right: t658 = 2.401, p = 0.034; M3, left: t658 = 3.818, p < 0.001; right: t632 = 

1.523, p = 0.256; Figure 5.2A-C). No lateralisation effect was observed in two of the three 

animals (two-sample t-tests: M1: t770 = 1.279, p = 0.201; M3: t1290 = 1.839, p = 0.066; Figure 

5.2A&C) but the effect was stronger in the right hemisphere of Monkey 2 (two-sample t-

test: t1360 = 5.771, p < 0.001; Figure 5.2B). 

In the BA44/45 ROI, significant activation was revealed in two out of the three 

monkeys (M1 left: t192 = 8.000, p < 0.001; right:  t181 = 2.438, p = 0.032; M2: left: t276 = 0.05, 
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p = 1.0; right:  t282 = 2.372, p = 0.036; Figure 5.2D&E). Monkey 3 showed no activation in 

BA44/45 (left: t265 = 0.583, p = 1.0; right:  t270 = 0.331, p = 1.0, Figure 5.2F). None of the 

monkeys showed any lateralisation effect between the BA44/45 ROIs (M1: t373 = 0.977, p 

= 0.329; M2: t558 = 1.556, p = 0.120; M3: t535 = 0.635, p = 0.514; Figure 5.2D-F).  

These results demonstrate that the ventral frontal cortex is highly sensitive to 

violations of the AG, showing significant activation relative to consistent sequences in all 

animals tested. Although the pattern is less consistent, Brodmann Areas 44 and 45, which 

are putative structural homologues of human Broca’s area, also appear to be involved in at 

least two of the animals. Interestingly, despite the appearance of the GLM analyses, no 

lateralisation was observed in two out of three macaques, although one monkey did show 

increased activation in the right hemisphere, particularly in the ventral frontal cortex.  
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Figure 5.3. Macaque ROI results. (A) Anatomically defined bilateral ROIs used for analyses: 
blue comprises Brodmann areas 44 and 45 (BA44/45); green comprises adjacent ventral 
frontal (vFC) regions, including anatomical areas PrCO, dysgranular insula and ventral BA6. 
Somatosensory and gustatory regions and Area 12 were excluded from analysis (see 
Methods). (B-G) Normalised mean BOLD response differences by voxel (violation vs. 
consistent) for BA44/45 and vFC in the left and right hemisphere of the three macaques. 
Abbreviations: A = Anterior; P = Posterior; L = Left; R = Right; Bonferroni corrected t-
tests: * = p < 0.05; *** = p < 0.001. 
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5.3.3. Rhesus Macaque conclusion 

The results of this fMRI experiment demonstrate that a number of perisylvian areas 

in the macaque brain are sensitive to violations of this non-deterministic AG. Ventral 

frontal cortex and temporo-frontal regions including the dysgranular insula showed 

significantly stronger activation in response to violation than consistent sequences in all 

three animals. Additional regions including the anterior temporal lobe and temporo-parietal 

Brodmann area 7 were also strongly activated. These regions correspond with a number of 

structurally homologous regions involved in the processing of language and AGs in the 

human brain (e.g., Friederici, 2011). Furthermore, ROI analyses showed that ventral frontal 

cortex regions were strongly sensitive to violations of the AG in all animals, while 

BA44/45, which is a presumed structural homologue of the human Broca’s area, was 

activated less consistently across animals. Interestingly, two of the macaques showed no 

significant lateralisation effect, although one animal did show significant right hemisphere 

lateralisation in the vFC. However, such results, in a minority of the animals, are 

insufficient to conclude that processing finite state artificial grammars, such as the one used 

here, primarily recruits the right hemisphere. These results have interesting implications 

regarding how areas of the human brain may have specialised for language, and which 

regions may be functionally conserved from a common ancestor. However, to draw firm 

conclusions regarding these results, and to assess the appropriateness of the Rhesus 

macaque as an animal model in which aspects of language might be studied, it is necessary 

to directly compare these results to those of human participants tested with an identical 

AG.  
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 Human fMRI experiment 5.4.

Neuroimaging experiments can provide valuable insights into the brain areas that 

support AGL in a nonhuman primate, and therefore potentially into the evolution of these 

brain areas and the abilities that they support. However, to fully understand the 

implications of these results, it is necessary to compare them directly to data from human 

participants, tested with the same AG structure. While a large number of human fMRI 

AGL experiments have been conducted (e.g. Petersson et al., 2004; Friederici et al., 2006a; 

Bahlmann et al., 2008; Bahlmann et al., 2009; Petersson & Hagoort, 2012), no previous 

study has used this specific artificial grammar. While AGL paradigms using different AG 

structures show some consistent results between experiments, there is evidence that 

different brain areas are activated as a function of the complexity of an AG structure 

(Friederici et al., 2006a; Bahlmann et al., 2008; Bahlmann et al., 2009), including finite-state 

grammars similar to the one used here (Petersson et al., 2004; Petersson & Hagoort, 2012). 

Therefore, to ensure that the results obtained in humans and macaques are as comparable 

as possible, it was necessary to test humans using the same AG structure.  

While the Rhesus macaques could not be informed about the nature of the 

experiment, and were tested using entirely implicit measures, a different approach was 

required in the human experiment. The aim of the behavioural experiment in Chapter 4 

was to confirm that human participants were able to learn the AG structure, and to inform 

us about the strategies they might use. The goal of this fMRI experiment was to investigate 

which brain areas might be involved in the detection of violations of the AG structure. 

Therefore participants were selected based on their performance on the prior behavioural 

experiment. This ensured that the participants (like the macaques who had all participated 

in at least one previous behavioural experiment, see Chapter 3), were able to learn the AG. 

In addition to being provided with instructions about the nature of the experiment 

(although not about the rules or structure of the AG), as in the behavioural experiment, 

participants were asked to respond after each stimulus presentation (see Chapter 4) in order 

to maintain attention throughout the fMRI experiment.  

Finally, it was not possible to collect a sufficient amount of data in individual 

human participants to perform identical analyses to those used in the macaques. Therefore, 

9 participants were each scanned once. Statistical analyses were conducted in as similar a 

manner as possible (see Methods), however insufficient data was available to compare 

between individual human participants.  
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5.4.1. Methods 

Stimuli 

The stimuli used were identical to those used in the previous experiments (see 

Section 3.4.1 and Figure 3.1). 

Participants 

Nine adult humans (age range 19 to 29 years, mean age 22; 3 male, 6 female) who 

had previously participated in the behavioural AGL experiment (see Chapter 4) participated 

in this fMRI experiment. Participants were recruited through the Newcastle University 

Institute of Neuroscience participation scheme and provided informed consent to 

participate. All participants were native English speakers, had normal hearing and normal 

or corrected vision. No participants had any language or comprehension disorders. The 

ethics of this experiment were approved by the local ethics committee at Newcastle 

University. 

 Habituation phase 

Participants were exposed to the habituation sequences in a random order for 10 

minutes, prior to the start of scanning (rate of 9 sequences/min; inter-sequence interval = 4 

sec; Figure 3.1).  

Test phase 

Each scanning trial began with the presentation of a blue fixation spot. A randomly 

selected consistent or violation stimulus sequence (40% each of trials, Figure 3.1) or a silent 

trial (20% of trials) was then presented binaurally through MR compatible headphones 

using custom Matlab scripts and Psychophysics toolbox. Following the stimulus offset the 

fixation spot changed to yellow and, as in the behavioural experiment, the participants were 

asked to use a response box to respond whether the sequence followed the ‘same’ or 

‘different’ pattern or rules to the habituation sequence. During fMRI scanning, participants 

performed at a high level, accurately classifying 87.2% of the testing sequences. Each 

scanning run consisted of 50 trials (40 stimulus trials, 5 repeats of each sequence, Figure 

3.1), following which the participants were re-familiarised with the habituation sequences 

for 3 minutes. All participants took part in 4 scanning runs within the scanning session.  

Human magnetic resonance imaging 

Measurements of the fMRI BOLD signal were made on a horizontal-bore Phillips 

3 tesla scanner at Newcastle Magnetic Resonance Centre. Functional data were acquired 

using a single-shot gradient-recalled echo planar imaging sequence similar to that used to 
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test the Rhesus macaques (volume acquisition time 2s; echo spacing = 9s; flip angle = 90o; 

TE = 30ms; 28 slices, 4.6mm; in-plane field of view: 192 x 192mm2, on a grid of 64 x 64 

voxels, with voxel resolution of 3 x 3 x 4.6mm3; inter-trial-interval = 9s; Figure 5.1). T1-

weighted anatomical images were acquired in register with each functional scanning 

experiment using an MDEFT sequence with parameters TE: 4.6ms; echo spacing: 1300ms; 

288 x 288 voxels; 150 slices with resolution 1.15 x 1.15 x 1.15mm3.  

Human fMRI data analysis  

First level GLM analyses with fixed effects (FEAT, FSL) were performed at the 

individual level. Unlike the Rhesus macaque experiment, it was unnecessary to combine 

several different imaging sessions in the same subject, therefore all data was registered to a 

standard template brain to allow comparisons between participants. These data were then 

combined using a cluster corrected (p < 0.05) higher-level analysis and projected to a 

surface-rendered standard template brain (FreeSurfer, McLaren et al., 2009) for display 

purposes.  

Human ROI analyses 

Regions of interest for BA44/45 in both hemispheres were defined based on 

probabilistic maps (Harvard-Oxford Cortical Structural Atlas and the Juelich Histological 

Atlas, Eickhoff et al., 2005; Desikan et al., 2006). A vFC ROI was defined encompassing 

more ventral and medial parts of the inferior frontal gyrus, including the frontal operculum 

(Friederici et al., 2006a; Bahlmann et al., 2008), and excluding areas BA44 and 45 (Figure 

5.4). To ensure the results were comparable to the macaque data, the average BOLD 

activation in each voxel, across each participant was calculated. These data were normalised 

and analysed identically to the macaque data.   

5.4.2. Results 

Following habituation to exemplary consistent AG sequences, nine humans were 

scanned with fMRI while being presented with the consistent and violation testing 

sequences (Figure 3.1). FMRI BOLD signal to violation sequences relative to consistent 

test sequences revealed a number of highly significant clusters of activation (cluster 

corrected, p < 0.05; Figure 5.4A-D and Table 5.2). A large cluster of activation was 

observed, including the ventral portion of the inferior frontal gyrus, frontal opercular 

cortex and posterior regions of the frontal pole, in both hemispheres (Figure 5.4). These 

regions appeared to be ventral to Broca’s area and its right hemisphere homologue 

(BA44/45). Strong clusters of activation were also observed in temporo-parietal areas, 
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including the angular gyrus (BA39). This activation extended along the temporal lobe to 

include large parts of the posterior temporal lobe and middle temporal gyrus. Additional 

activation was also observed in the frontal pole and dorsal frontal cortex, excluding BA44 

and BA45. Finally, subcortical activation was observed in the cingulate cortex. All of these 

clusters of activity appeared to be activated broadly bilaterally, and no strong left 

hemisphere bias was observed. To further investigate the role of BA44/45 and more 

ventral regions within the IFG, and to quantify any potential lateralisation effects in these 

regions, ROI analyses comparable to those used in macaques were performed.  

ROI results 

The human ROI analyses showed that, as seen in all of the macaques (Figure 5.3), 

the vFC region was significantly sensitive to violations of the AG (Bonferroni corrected 

one-sample t-tests: left: t953 = 12.063, p < 0.001; right:  t945 = 13.292, p < 0.001; Figure 5.4E). 

As with the monkeys, this effect was not significantly lateralised (two-sample t-test between 

hemispheres: t1898 = 0.930, p = 0.352; Figure 5.4E). However, unlike the monkeys, BA44/45 

in humans showed no significant sensitivity to violations of this AG (left: t717 = 0.412, p = 

1.0; right:  t621 = 1.169, p = 1.0; Figure 5.4F), and no differences were observed between 

hemispheres (t1337 = 0.771, p = 0.441). These results support previously reported human 

AGL fMRI results, suggesting that the processing of relatively simple FSGs strongly 

activate vFC regions, but that Broca’s area (BA44/45) remains uninvolved (Friederici et al., 

2006a; Bahlmann et al., 2008; Bahlmann et al., 2009).  

Rhesus macaque and human comparisons 

A direct comparison of the human and monkey ROI results was made using a 

repeated measures ANOVA with the factors: condition (consistent, violation), species 

(human, monkey), ROI (BA44/45, vFC) and hemisphere (left, right). This showed a 

significant overall sensitivity to violation vs. consistent AG sequences (main effect of 

condition: F1,8129 = 206.1, p < 0.001), with no significant interaction between condition and 

species (F1,8129 = 3.54, p = 0.06). A significant condition by ROI interaction was observed 

(F1,8129 = 38.0, p < 0.001) recapitulating that the vFC is more involved than BA44/45. 

Finally, there was an interaction between condition, ROI and species (F1,8129 = 21.9, p < 

0.001) showing that BA44/45 is relatively more involved in the monkeys than in humans. 
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Figure 5.4 Human brain regions sensitive to AG violations and ROI analyses. A. Group 
statistical parametric map of sensitivity to AG violations (contrast: violation vs. consistent), 
all p < 0.05 cluster corrected. Results are displayed on rendered medial and lateral surface 
representations transformed to the MNI standard brain and using the Harvard-Oxford 
Cortical Structural Atlas and the Juelich Histological Atlas (Eickhoff et al., 2005; Desikan et 
al., 2006) human atlas to define anatomical regions (B). C. Normalised mean ROI voxel 
response differences (violation vs. consistent) in the fMRI signal for BA44/45 and vFC 
(see text) in the left and right hemisphere of the human brain. Abbreviations: D=Dorsal; 
V=Ventral; A=Anterior; P=Posterior; *** = p < 0.001. 
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Table 5.2 Anatomical locations of significant clusters in humans. MNI Coordinates and 
maximum z-scores for significantly activated clusters across 9 human participants. 
 

Anatomical Location 
MNI coordinates Cluster 

corrected 
max. z-score 

Hemisphere 
x y z 

Ventral Frontal Cortex  48 26 18 4.94 Right 
Frontal Opercular Cortex, Frontal Orbital Cortex, Frontal 
Pole 

     

Ventral Inferior Frontal Cortex  -52 38 -6 4.77 Left 
Frontal Opercular Cortex, Frontal Orbital Cortex, Frontal 
Pole 

     

Frontal Pole 28 28 44 6.49 Right 
Angular Gyrus and Middle Temporal Gyrus 46 -66 28 9.11 Right 
Angular Gyrus -56 -52 42 7.37 Left 
Middle Temporal Gyrus 62 -56 -18 4.79 Right 
Cingulate Gyrus -4 -50 32 5.96 Bilateral 
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5.4.3. Human conclusion 

A number of perisylvian brain regions showed sensitivity to violations of this AG 

structure, including a number of areas comparable to those involved in natural language 

processing and those activated in Rhesus macaques. Ventral portions of the IFG, as well as 

temporal and temporo-parietal regions were sensitive to violations of the AG. Furthermore, 

significant increases in BOLD response were observed in the frontal pole and dorsal 

frontal regions, as well as in the cingulate cortex. However, both the GLM and ROI 

analyses suggest that BA44 and 45 were not involved in the processing of this AG in 

humans, raising interesting implications regarding the evolution of this region, and the 

functions of its structural homologues in nonhuman primates.  
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 Discussion 5.5.

These comparative fMRI experiments have shown that several perisylvian brain 

regions (including anatomically corresponding ventral frontal, temporal and parietal regions) 

in both humans and monkeys were sensitive to violations of the AG. These results 

demonstrate some similarities in how this AG structure is processed in the macaque and 

human brain, suggesting the functions supported by these regions may share a common 

evolutionary heritage. Furthermore, these correspondences suggest that Rhesus macaques 

may represent an appropriate animal model system in which to study aspects of language 

processing at a neuronal level. Finally, the patterns of activation observed in specific areas 

of the IFG suggest and constrain potential hypotheses regarding the evolutionary 

specialisation of these areas for language in humans.  

Ventral portions of the IFG, including frontal opercular and insula areas (but not 

necessarily Broca’s area or its presumed homologues, BA44 and BA45), were strongly 

activated in both species. The role of the IFG in language processing has been well 

documented (see Chapter 1, and e.g. Friederici, 2011). Activation in this region is seen to 

increase with the syntactic complexity of sentences (e.g. Constable et al., 2004; Bornkessel et 

al., 2005). Furthermore, both auditory and visual AGL paradigms have consistently 

reported activation in this region suggesting that ventral parts of the frontal cortex might 

be critically engaged in evaluating the structure of sequences, both in natural language 

sentences and in artificial grammars (Petersson et al., 2004; Friederici et al., 2006a; 

Bahlmann et al., 2008; Udden et al., 2008; Bahlmann et al., 2009; de Vries et al., 2010; 

Petersson et al., 2012). Therefore, results showing that this area is activated, by the same 

AG structure, in both human participants and nonhuman primates, provide valuable 

evidence the processes supported by this region may be generic and evolutionarily 

conserved, rather than language specific and uniquely human.  

Correspondence between the species was also observed in temporo-parietal regions, 

Brodmann area 7 in macaques and the angular gyrus (BA39) in humans, both of which lie 

below the intra-parietal sulcus. There has been considerable uncertainty regarding whether 

these regions might be functionally homologous (Karnath et al., 2001), given that human 

BA7 lies above the intra-parietal sulcus. These results suggest that BA7 in macaques and 

BA39 in humans share a functional correspondence that involves evaluating the structural 

relationships between elements in a sequence. In humans, the posterior temporal lobes and 

the angular gyrus are involved in both semantic and syntactic processing (Kinno et al., 2008; 
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Friederici et al., 2010), and appear to be particularly strongly activated by the integration of 

these two types of information (Friederici et al., 2003; Friederici, 2011). However, AGL 

paradigms have also produced activation in these regions (Friederici et al., 2006a; Bahlmann 

et al., 2009), suggesting that this area is involved in processing the structure of sequences of 

elements, even in the absence of semantic content. It is interesting to note that the angular 

gyrus in humans forms part of the dorsal pathway (e.g., Friederici et al., 2006a; Hickok & 

Poeppel, 2007; Saur et al., 2008), normally associated with evaluating nonadjacent 

relationships or relatively complex AG or syntactic processing. In nonhuman primates this 

pathway is less evident than the ventral pathway (Rilling et al., 2008), and no nonhuman 

primates have demonstrated the ability to learn AG structures that would activate this 

pathway in humans (see Chapter 1, and e.g., Fitch & Hauser, 2004). Therefore, these results 

present the interesting possibility that not only the ventral but possibly also aspects of the 

dorsal pathways may be engaged in the processing of simpler AGs in nonhuman primates. 

While DTI tractography was not possible in this experiment, detailed investigation into the 

connectivity between temporo-parietal regions and the IFG in nonhuman primates might 

provide additional insights into the connectivity of the network involved in AGL, and how 

this relates to the language or AGL network in humans.  

While the correspondences observed between the species are notable, some 

differences in the areas activated between the species were in evidence. For example, 

humans showed sensitivity to violations of the AG in the frontal pole and dorsal frontal 

cortex, which were not significantly involved in the macaques. These regions have been 

shown to be involved in decision making in humans (e.g. Bechara et al., 2000; Bechara & 

Van der Linden, 2005). While, efforts were taken to minimise the differences in how the 

humans and monkeys were studied, the differences between human participants and 

nonhuman primates necessitated some experimental differences (e.g., AG learning 

evaluated with implicit measures in monkeys and with explicit responses in humans). The 

main objective of these experiments was to use the same stimuli and AG paradigm with the 

humans and monkeys, however, some of these task differences could have contributed to 

the lack of clear cross species correspondence in the dorsal frontal, frontal pole or 

subcortical regions. Differences were also observed in the anterior temporal lobe, which is 

part of the ventral pathway, and is known to be involved in language processing in humans, 

particularly at the phrase level (e.g. Friederici et al., 2000; Hickok & Poeppel, 2007; 

Friederici, 2011). While this area was recruited in the macaques, no significant increase in 

activation was observed in this area in the human participants. Conversely, the human 
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results demonstrated significant activation in middle temporal lobe, including the middle 

temporal gyrus. This region has been implicated in speech processes bilaterally in humans 

(Hickok & Poeppel, 2007) but is a gyrus that is not present in macaques. The results of 

these fMRI experiments demonstrate some interesting inter-species differences. However, 

this might be expected, given that humans and Rhesus macaques last shared a common 

ancestor approximately 30 million years ago (Steiper & Young, 2006). Human language has 

clearly evolved enormously in complexity and scale relative to the communication systems 

of all other primates, and it is unsurprising that this might lead to differences in how AG 

structures, designed to emulate aspects of language, might be processed. Nevertheless, 

correspondences in some key brain areas, known to be involved in language processing in 

humans, suggest that this AGL task recruits some comparable areas, which might support 

more generic, conserved functions in the human brain.  

Beyond the results of the GLM analyses, the ROI analyses provide further insights 

into the specific function of different IFG regions. Humans have been shown to rely on 

evolutionarily older parts of the ventral frontal-opercular cortex (Sanides, 1962; Friederici et 

al., 2006a), not including Broca’s area (BA44/45), to evaluate adjacent relationships or 

simple AG structures (Friederici et al., 2006a; Bahlmann et al., 2008; Bahlmann et al., 2009), 

as part of an initial syntax-building function in the brain network for language (Friederici, 

2011). In the human participants and all three macaques tested, vFC regions, ventral to 

BA44 and BA45, were significantly activated by violations of the AG. These results support 

the hypothesis that the vFC underpins evolutionarily conserved, generic functions for 

assessing the relationships between elements in this relatively simple AG structure.  

By contrast, Broca’s area represents a more recent evolutionary specialisation 

involved only in more complex aspects of sequence processing (e.g. Petersson et al., 2004; 

Friederici et al., 2006a; Friederici, 2011). In the human participants, this region showed no 

activation to AG violations in either hemisphere, suggesting that the AG structure used 

here was insufficiently complex to recruit Broca’s area. By contrast, significant activation in 

BA44 and BA45 was observed in two of the Rhesus macaques. A number of hypotheses 

have been proposed regarding the potential existence of a functional homologue of Broca’s 

area in nonhuman primates, and the implications this might have on nonhuman AGL (see 

Introduction and, Friederici, 2004; Friederici et al., 2006a; Petkov & Wilson, 2012). 

However, the results of these experiments suggest that while BA44/45 might represent a 

structural homologue of Broca’s area based on cytoarchitectonic similarities (Brodmann, 

1909), these regions appear to have functionally differentiated in humans. Broca’s area in 
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humans represents a unique evolutionary specialisation for processing complex linguistic 

relationships (Petersson et al., 2004; Friederici et al., 2006a; Friederici, 2011). However, 

these results suggest that the comparable area in Rhesus macaques is, to some extent, 

activated by simpler AG structures. Nonhuman primates have previously been reported to 

learn simple, but not more complex AG structures that produce activation in Broca’s area 

in humans (Fitch & Hauser, 2004). Therefore, these results raise interesting questions, 

regarding whether the upper limits of nonhuman animal AGL capabilities might be 

imposed by this apparent inter-species difference. Alternatively, if nonhuman primates 

were to be shown to be able to learn AGs that produce activation in Broca’s area in 

humans (possibly by explicit training rather than implicit habituation), what patterns of 

activation might we observe in BA44/45 and elsewhere? The results of these fMRI 

experiments are insufficient to delineate the evolutionary history of the IFG, and the 

language related abilities that it supports, but they do suggest that while the function of the 

vFC appears to be relatively conserved in both species, BA44/BA45 might have shown 

more divergence between species.  

The human language network is known to be left lateralised (e.g., Friederici & Alter, 

2004; Hickok & Poeppel, 2007; Tyler & Marslen-Wilson, 2008; Friederici, 2011). Although 

activation is reported to some extent in both hemispheres in language related tasks, these 

effects are typically much stronger in the left hemisphere. The fMRI results presented here 

show no such lateralisation effect, in either the GLM or ROI analyses, in either species. 

The human fMRI results reveal a clear bilateral distribution of activation. In the macaques, 

two animals showed bilateral fronto-temporal activation, based on statistical comparisons 

between the hemispheres, and one monkey showed increased activation in the right 

hemisphere, at least in the vFC. These data are insufficient to conclude that finite state 

AGs are primarily supported by a right lateralised network of brain areas in Rhesus 

macaques. Instead, these results, along with the data from human participants, suggest that 

rather than recruiting left hemisphere brain regions, this artificial grammar appears to be 

broadly bilaterally processed.  

This result might not be unexpected in nonhuman primates. If the lateralisation 

effects observed in the language network represent an adaptation to specific linguistic 

demands (Friederici & Alter, 2004), then it is unlikely that such lateralisation would also be 

present in non-linguistic primates (Wilson & Petkov, 2011). In the human participants this 

result is more surprising. Previous AGL studies have reported activation only in the left 

IFG, even using only simple AGL paradigms (Friederici et al., 2006a; Bahlmann et al., 2008). 
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However, in these studies, unlike those presented here, quantitative analyses of 

lateralisation effects were typically not reported, therefore it is possible that activation may 

have occurred bilaterally, but only reached the significance threshold in the left hemisphere. 

Alternatively, if the lateralisation of the language network represents a specialisation for 

certain features of language, it is possible that the AG structure used in these experiments 

is simple enough to be processed bilaterally, and does not require more specialised 

processing in one particular hemisphere.  

Indeed, the results of these experiments may provide the first direct comparative 

evidence in support of a ‘dual neurobiological language systems’ hypothesis (Bozic, et al, 

2010; Wright et al., 2012; Bozic, et al, 2013; Marslen-Wilson, et al., in press), and may also 

extend it in important ways. This hypothesis proposes that in modern humans, 

specialisations for core syntactic language functions depend on a left-lateralised fronto-

temporal system, and that this left-lateralised system is functionally integrated with a more 

ancestral, bilaterally distributed system. The bilateral system is suggested to support sound 

to meaning mapping, as well as aspects of semantic and pragmatic interpretation (Bozic, et 

al, 2010; Marslen-Wilson, in press). Given that the current results are based on finite-state 

AG learning, these findings suggest that the bi-hemispheric system also supports relatively 

simple sequence learning in both humans and monkeys. These results raise the possibility 

that language processes in modern humans are functionally integrated with an ancestral 

system that may have evolved from domain-general, non-linguistic cognitive processes seen 

in our extant primate relatives. 

 

 Conclusion 5.6.

The results of these experiments provide important, novel evidence suggesting that 

AG structures appear to be processed by a broadly comparable perisylvian network of 

frontal, temporal and parietal brain regions in both human participants and Rhesus 

macaques. This suggests that while human language is undoubtedly unique, some of the 

brain areas that support the processing of some features of language appear to be 

evolutionarily conserved and therefore likely generic in function, suggesting that the Rhesus 

macaque might represent a valuable animal model system. However, while a number of 

regions showed similarities across the species, differences were observed, particularly 

between Broca’s area (BA44/45) and its structural homologue in nonhuman primates. 

These results suggests that some uniquely human language abilities, absent in nonhuman 

primates, might be supported by BA44/45 in the IFG and potentially also by the left 
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lateralisation of the human language network, which appear to be absent in nonhuman 

primates. These experiments provide valuable insights into the evolution of the brain 

regions that support language in humans. Furthermore, they provide the first 

neuroscientific evidence that Rhesus macaques may be a valuable model species in which 

to study these sequence structure learning abilities at a neuronal level, and have dramatic 

implications for the further study of language related abilities in nonhuman primates.  
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Chapter 6: General Discussion 

Neuroimaging research is clarifying the roles of the human brain areas that support 

the processing of language and of artificial grammars. Concurrently, behavioural AGL 

paradigms have demonstrated that some abilities, which are potentially related to aspects of 

human language, appear to be present in a range of nonhuman animals. The experiments 

described here sought to combine these research strands to investigate the AGL 

capabilities of nonhuman primates, and the brain areas that support them. In this thesis, I 

have presented novel methods for comparing AGL capabilities across species and studies, 

and for more precisely and objectively assessing these abilities in nonhuman primates. I 

have demonstrated that both Rhesus macaques and common marmosets are able to learn 

an artificial grammar that emulates some important features of language syntax, but that 

only macaques show learning that cannot be explained by simple strategies. Finally, 

comparative fMRI experiments have shown that AGL produces activation in a range of 

comparable of perisylvian brain areas in both macaques and humans, suggesting that some 

of the mechanisms and brain areas that support aspects of language in humans are 

supported by generic rather than human- or language-specific systems.  

Beyond these results, this research had two long term goals. Firstly, to provide 

insights into how certain aspects of language may have evolved, and secondly to begin the 

development of potential animal model systems in which any abilities shared between 

species could be investigated at a neuronal level. Our understanding of the cognitive 

mechanisms and network of brain areas underpinning language learning and processing are 

increasingly well understood (e.g. Friederici, 2002; Vigneau et al., 2006; Hickok & Poeppel, 

2007; Tyler & Marslen-Wilson, 2008; Friederici, 2011). However, the evolutionary origins 

of language, which is not only a uniquely human trait but may also be a defining 

characteristic of our species and a key factor in our evolution, remain unclear (Christiansen 

& Kirby, 2003b; Fitch, 2010; Hurford, 2012). As a result of this lack of clarity regarding the 

origins of human language abilities, it has previously been difficult to imagine how any 

non-linguistic species might inform us about the neural mechanisms supporting language in 

the human brain. However, if such an animal model system were to be developed, it would 

have the potential to provide invaluable insights into how certain features of language may 

be processed at a neuronal level. In this chapter, I will discuss a number of key obstacles 

faced while attempting to reach these goals, how the research presented in this thesis has 
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attempted to overcome these challenges to clarify the path ahead, and what questions and 

additional research remain if these goals are to be achieved. 

 Comparing different AGL capabilities 6.1.

Artificial grammars are designed to emulate specific features of language, which can 

be studied independently of other features that nonhuman animals may be unable to learn 

(Reber, 1967). Therefore, by design, no AG structure aims to represent the complexity of 

natural language. Nonhuman animals have been tested with a wide variety of different 

AGL paradigms designed to investigate different language related abilities (Fitch & Hauser, 

2004; Gentner et al., 2006; Murphy et al., 2008; Saffran et al., 2008; Hauser & Glynn, 2009; 

van Heijningen et al., 2009; Abe & Watanabe, 2011; Stobbe et al., 2012). However, AGL is a 

not a single capability, the abilities required to recognise violations of a specific AG vary 

with the structure of that AG.  Therefore, the ability to learn one structure need not 

necessarily generalise to others. For example, an animal may be able to categorise stimuli 

into A and B classes, and learn that the (AB)n structure produces the invariant ABAB 

sequence (Fitch & Hauser, 2004). However, based on this result, it might be unreasonable 

to conclude that this species would also be able to learn a more varied, AG such as the one 

used in these experiments, or more complex variants such as that of Reber (1967). Of 

course, the best way to assess a species’ ability to learn or process a feature of language 

would be to test the animals using an AG emulating that specific feature. However, 

language is very complex, and a huge variety of different AGL paradigms could be 

developed before all potentially language related abilities have been assessed. AGL 

experiments in nonhuman animals are time consuming endeavours. Therefore, it is not 

possible to test nonhuman animals on a range of AGs wide enough to model all the 

different abilities that might be required for human language. A method to compare 

different AG structures, and the abilities that support them, may present a more efficient 

way of exploring the AGL abilities in nonhuman animals and identifying shared abilities 

between species.  

The Chomsky Hierarchy (Chomsky, 1957) and more recent variants (Berwick et al., 

2011; Jaeger & Rogers, 2012) provide mathematical descriptions of grammars of different 

levels of generative power. However, as discussed in Chapter 2, distinctions between 

relatively simple, finite-state grammars and more complex, context-free grammars might be 

insufficient to inform us about the extent of nonhuman animals’ abilities (Hurford, 2012; 

Jaeger & Rogers, 2012; Petkov & Wilson, 2012), since there is currently no evidence that 
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animals can learn anything more complex than a finite-state grammar (Perruchet & Rey, 

2005; van Heijningen et al., 2009; Beckers et al., 2012; Berwick et al., 2012; ten Cate & 

Okanoya, 2012). This has prompted several authors to highlight the need for alternative 

methods of quantifying the complexity of simpler AG structures (de Vries et al., 2011; 

Hurford, 2012; Jaeger & Rogers, 2012; Petkov & Wilson, 2012), to allow the abilities of 

nonhuman animals to be more meaningfully compared across AGL paradigms. The 

quantitative parameter space proposed in Chapter 2 represents one such method (Figure 

2.3 and Figure 2.4).  

Different AG structures aim to model different features of language. However, the 

core of all AGL paradigms involves learning the structure governing sequences of stimuli. 

Two key dimensions on which all AGs can be compared are the number of elements or 

stimulus classes which contribute to the structure, and the predictability or linearity of the 

structure based on the number of different legal transitions between elements. These two 

dimensions allow us to plot a measure of the complexity of different AG structures onto a 

common parameter space where they can be objectively compared (see Chapter 2 and 

Figure 2.3 and Figure 2.4). This allows not only the direct comparison of a species’ abilities 

to learn different AG structures, but also facilitates predictions regarding an animal’s ability 

to learn previously untested structures. For example, if an animal were able to learn a 

number of AG structures of a certain level of complexity, it is likely that if all other factors 

and additional demands are kept consistent, they would also be able to learn any simpler 

AGs. To objectively draw such comparisons between AG structures, a quantitative 

measure of complexity is required. Furthermore, data regarding a species’ ability to learn a 

number of different AGs allow us to map out an area of the parameter space representing 

the structures that species is able to learn. This could be used to guide hypotheses regarding 

future AGL experiments in that species, and to draw comparisons between species. Finally, 

plotting the abilities of different species on a parameter space such as the one presented in 

Chapter 2, helps to clarify gaps in our understanding about the AGL capabilities of 

nonhuman animals. This prompted the selection of an AG that has received relatively little 

investigation and represented the opportunity to provide valuable insights into language 

related abilities in nonhuman primates.  

The non-deterministic, AG structure used in these experiments was developed 

from Saffran, et al (2008). Unlike many of the AG structures previously used to test 

nonhuman animals (Fitch & Hauser, 2004; Gentner et al., 2006; Murphy et al., 2008; Hauser 

& Glynn, 2009; van Heijningen et al., 2009; Stobbe et al., 2012), this AG departs from the 
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requirement that participants initially categorise stimuli into one of two classes, and then 

learn a simple, invariant structure (e.g. ABAB generated from (AB)n; Fitch & Hauser, 2004; 

see Section 1.3.1). All species tested have been shown to learn at least the simpler AGs of 

this type, e.g. (AB)n. Furthermore, despite the intent of some studies (Fitch & Hauser, 2004; 

Gentner et al., 2006), even the more complex structures (i.e. AnBn) tested fail to model the 

hierarchical, centre-embedding that represents context-free grammars (Perruchet & Rey, 

2005; van Heijningen et al., 2009). Therefore, it is possible that the failure of nonhuman 

primates to learn the more complex AnBn structure (Fitch & Hauser, 2004), might be due to 

its increased nonlinearity relative to the (AB)n structure. Therefore, the AG structure used 

in this thesis presents an opportunity to test whether nonhuman primates are able to learn 

a more nonlinear AG structure.  

The AG used in these experiments does not require categorisation of the stimuli; 

instead participants are required to extract statistical regularities or rules regarding the 

relationships between 5 different nonsense word elements from a much wider variety of 

different habituation sequences. Two previous studies have attempted to test similar AGL 

paradigms in nonhuman animals (Saffran et al., 2008; Abe & Watanabe, 2011). However, 

experimental difficulties have made the interpretation of these results challenging (see 

Chapter 2 and the following section, Beckers et al., 2012; Berwick et al., 2012). While this 

structure, like all AGs, is insufficient to inform us about all of the different processes 

required for human language learning, it does present a valuable opportunity to assess 

whether nonhuman primates are able to learn a relatively complex, non-linear AG (see 

Chapter 2 and Figure 2.3), and whether they can extract statistical rules from a varied input 

rather than simply noticing sequences which vary from a fixed pattern (e.g. Fitch & Hauser, 

2004).    

An objective method by which to quantify the complexity of different artificial 

grammars is an important tool. The parameter space presented in Figure 2.3 represents one 

such tool, however, as discussed in Chapter 2, additional factors may need to be included. 

For example, the calculations of linearity used in this model assume that only local 

relationships between adjacent elements (represented by 1st order Markov processes, 

Hurford, 2012) are employed in learning the structures. Furthermore, this parameter space 

plots the position an AG would occupy if it was learned in its entirety, and participants did 

not base their responses on simpler strategies. However, if rather than learning that the 

AnBn structure produces the sequence AABB, animals simply responded to the repetition of 

the A or B element (van Heijningen et al., 2009; and see Chapter 2) then the animal cannot 
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be said to have learned the complete structure, only a small part of it, and therefore its 

position in the parameter space may be inaccurate. Therefore, in order to accurately 

interpret or compare the AGL capabilities of nonhuman animals both their abilities to 

learn the AG structure, as well as the strategies used, must first be rigorously and accurately 

assessed. In the next section I will discuss how the methodological developments presented 

here begin to overcome some of these problems.  

 Assessing AGL abilities in nonhuman primates 6.2.

If any nonhuman animal is to inform us about language evolution, or to act as an 

animal model system, it is necessary to rigorously confirm that the animal is able to learn a 

given artificial grammar. While the production of larger dishabituation responses to 

sequences which violate an AG, relative to those that are consistent with the structure does 

suggest some level of learning, these results may be insufficient to determine the strategies 

upon which their learning may be based. For example, if an animal were to be habituated to 

sequences of the form AABB, generated by the AnBn structure, and then be tested with 

both AABB and ABAB sequences (from the (AB)n structure, Fitch & Hauser, 2004) 

dishabituation responses could be interpreted in a number of ways. The animal may have 

learned that the sequences must be made up of a number of centrally embedded ‘AB’ 

phrases (i.e. A[AB]B). However it is also possible, and likely more parsimonious, to 

attribute these responses to, for example, the absence of the repeated ‘AA’ or ‘BB’ 

elements, or the alternating structure of the ABAB sequences (Perruchet & Rey, 2005; 

Gentner et al., 2006; Corballis, 2007; van Heijningen et al., 2009). Even with more complex 

testing sequences, such as AABB vs. ABBB (Gentner et al., 2006), simpler strategies, such 

as recognising an imbalance of A and B elements, are still possible (van Heijningen et al., 

2009). Similarly, when Saffran and colleagues presented cotton-top tamarins with an AG 

similar to the one used here, they tested the animals with the same consistent, grammatical 

sequences to which the animals were habituated (Saffran et al., 2008). Therefore, it is 

impossible to rule out the possibility that the tamarins simply responded more strongly to 

novel sequences than familiar ones. Bengalese finches have also been tested with a similar 

AG (Abe & Watanabe, 2011), however in these experiments acoustical differences between 

consistent and violation sequences made it difficult to attribute responses to genuine AGL 

(Berwick et al., 2011; Beckers et al., 2012). These experimental design problems make it 

difficult to determine the extent to which different animals (including humans) may have 

learned an artificial grammar, and therefore represent a critical challenge in designing 

appropriate AGL experiments.   
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The accurate assessment of nonhuman animals’ AGL capabilities requires 

appropriately designed experiments. In the experiments described in this thesis, care was 

taken to include test sequences that might help to identify the learning strategies animals 

used (see Chapter 3), which might identify potential differences between species. The 

inclusion of ‘familiar’ and ‘novel’ consistent sequences and violation sequences that either 

‘begin with A’ or ‘do not begin with A’ provide considerably more information than 

experiments with only two test conditions (e.g. Fitch & Hauser, 2004; Saffran et al., 2008). 

The inclusion of these conditions allow experiments that not only aim to demonstrate that 

animals are able to recognise AG violations, but also to determine what strategies their 

responses might be based on. Erroneous conclusions, based on the over-interpretation of 

results, have the potential to limit rather than further our search for precursors to aspects 

of language in nonhuman animals and the development of animal model systems.  

While the inclusion of additional conditions to these experiments provides an 

added level of rigour relative to a number of previous studies, these do not overcome all 

the potential problems associated with traditional AGL experiments. Firstly, all previous 

nonhuman primate (although not songbird) AGL experiments have been carried out by the 

same laboratory and all relied on a video-coding paradigm similar to the one described in 

Chapters 3 and 4 (Hauser et al., 2001; Fitch & Hauser, 2004; Newport et al., 2004; Saffran et 

al., 2008; Hauser & Glynn, 2009). In the experiments in Chapters 3 and 4, every effort was 

made to refine this approach to make it as objective as possible. However, any analysis 

based on the ratings of human observers carries with it an inherent level of subjectivity. 

Furthermore, the experiments presented here collected data not only on whether or not the 

animals responded to a stimulus (frequency of responses), but also the duration and 

strength of these responses (see Chapters 3 and 4). This additional information provides 

some interesting insights; however, these measures still have insufficient temporal detail to 

measure effects within individual testing sequences. The eye-tracking paradigm presented 

in Chapters 3 provides both an objective measure of responses and sufficient temporal 

precision, which helps to overcome both of these problems.  

While care was taken to design the testing sequences of this experiment to provide 

as much insight as possible into the AGL capabilities of nonhuman primates, certain simple 

strategies could still produce a pattern of responses similar to more complex AGL. No 

differences in the macaques’ responses were observed between violation sequences based 

on whether or not they contained a violation in the first sequences position (whether they 

began with A or not). Therefore, the animals could not have relied solely on the initial 
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element to guide their responses. However, in an attempt to balance the test sequences on 

a number of other dimensions, both of the violation test sequences that ‘begin with A’ 

contained the (violation) transition from A to F in their second position (Figure 3.1). 

Therefore, it is possible that the animals responded to this relatively simple transition. 

Traditional AGL paradigms would be unable to rule out this possibility, however the 

temporal precision of the eye-tracking approach permitted analyses of response to specific 

elements in the test sequence, showing that (in at least two out of the three animals tested), 

that the responses could not be attributed only to this relatively simple rule (Figure 3.8). 

The developments presented in these experiments present potential methods to more 

objectively assess not only whether nonhuman animals are able to recognise violations of 

an AG, but also to explore the strategies or cues that might underpin their AGL capabilities.  

 Insights into nonhuman primate AGL capabilities 6.3.

The methods and techniques presented in this thesis represent an important 

increase in the level of specificity that can be attained in AGL experiments, and therefore 

provide valuable tools in assessing the sequence-structure learning capabilities of 

nonhuman animals. The results obtained in these experiments provide novel insights into 

the AGL capabilities of nonhuman primates. Both Rhesus macaques and common 

marmosets were more responsive to violation sequences than consistent sequences. 

Furthermore, both the video-coding and eye-tracking experiments in macaques revealed no 

differences in responses between ‘familiar’ and ‘novel’ sequences or those that ‘begin with 

A’ and ‘do not begin with A’. The macaques also responded significantly more frequently 

and for longer durations to violation sequences that ‘begin with A’ than ‘novel’ consistent 

sequences (see Chapter 3). These results provide important evidence, which could not be 

obtained from previous nonhuman primate AGL studies (e.g., Fitch & Hauser, 2004; 

Saffran et al., 2008), that Rhesus macaques do not appear to respond based on the 

familiarity of test sequences or violations in the initial sequence position. By contrast, the 

video-coding experiment in common marmosets showed no differences in the frequency 

or strengths of responses to violation sequences relative to consistent ones. Furthermore, 

even though a significant difference was observed in the marmosets’ response durations, 

these results could be explained by simple strategies, suggesting that marmosets’ AGL may 

have been relatively shallow compared to that of macaques. These results demonstrate a 

previously unreported level of AGL in nonhuman primates, and suggest a potential 

evolutionary gradient, with more closely related Old World monkeys possessing more 

complex AGL capabilities than New World monkeys. 
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Evidence that any nonhuman primate can learn this AG suggests that the abilities 

which underpin the detection of violations of the AG structure are not unique to humans 

or specific to language. Furthermore, confirmation of AGL in a second species, albeit to a 

simpler level than macaques, reduces the likelihood that such abilities may have arisen in 

humans and nonhuman primates by convergent evolution rather than common descent, 

and provides evidence for the hypothesis that they might be supported by similar 

mechanisms across species. Data demonstrating that more closely related Old World 

monkeys appear to learn more about the AG structure provide interesting insights 

regarding how and when these abilities might have evolved, and suggests that Rhesus 

macaques might represent a more suitable candidate model system. However, these 

behavioural data in two species are insufficient either to identify what natural nonhuman 

primate abilities might support AGL in non-linguistic species, or to determine whether a 

species might function as a useful neurobiological animal model system. Behavioural 

correspondences need not represent the same cognitive mechanisms or produce activation 

in homologous brain regions across species. Comparative neuroimaging has the potential 

to identify whether the abilities observed in two species are supported by the 

corresponding areas of the brain.  

 Exploring the brain areas supporting AGL in primates 6.4.

Behavioural correspondences alone represent insufficient information to confirm 

that the cognitive mechanisms and brain areas that support an ability are consistent across 

species. Without evidence demonstrating functional homologies in the brains of human 

and nonhuman primates, it is possible that the language network in humans represents an 

entirely unique evolutionary adaptation, and that primate AGL is supported by wholly 

different mechanisms. While this is true of any behavioural correspondence between two 

species, it might be particularly relevant when discussing capabilities relating to natural 

language, which is not shared by any other species. In order to conclude that the 

behavioural similarities observed in humans and nonhuman primates (see Chapter 3 and 4) 

might be supported by homologous brain regions, and therefore potentially comparable 

cognitive mechanisms, comparative neuroimaging was required. Furthermore, activation in 

response to AG violations in regions known to be involved in human language processing, 

might additionally suggest that AGs are processed similarly to aspects of language in 

humans, and therefore do not simply represent a generic pattern recognition ability 

independent of language.  
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Language processing in the human brain is supported by a number of perisylvian 

brain areas in the left hemisphere, including the inferior frontal gyrus, temporal lobe and 

temporo-parietal regions (Broca, 1861a; Damasio & Geschwind, 1984; Binder et al., 1997; 

Catani et al., 2005; Hickok & Poeppel, 2007). Both natural language and AGL fMRI 

experiments have particularly emphasised the involvement of IFG in processing the syntax 

of language or the structure of AG sequences (Petersson et al., 2004; Friederici et al., 2006a; 

Hickok & Poeppel, 2007; Tyler & Marslen-Wilson, 2008; Bahlmann et al., 2009; Makuuchi 

et al., 2009; Petersson et al., 2012). Specifically, these studies found that ventral frontal 

cortex regions (vFC) are recruited in the processing of all syntax-related tasks and AGL 

paradigms, regardless of complexity (Friederici et al., 2006a; Bahlmann et al., 2009). 

However, Broca’s area (BA44/45, located dorsal to the vFC) is only activated by more 

complex structures (Petersson et al., 2004; Friederici et al., 2006a; Bahlmann et al., 2009; 

Makuuchi et al., 2009; Petersson et al., 2012). Therefore, if the AGL capabilities observed in 

Chapters 3 and 4 were supported by similar cognitive mechanisms in humans and monkeys, 

it is likely that we would see some correspondences in these areas. Conversely, if human 

language were to represent a truly unique specialisation, absent in all nonhuman species, 

then the behavioural AGL results observed would be supported by different cognitive 

processes which we might expect to be supported by different neural substrates.   

The fMRI experiments in humans and Rhesus macaques presented in Chapter 5 

showed that in both species violations of the AG produced activation in ventral portions of 

the inferior frontal gyrus (particularly vFC), temporal and temporo-parietal regions. Some 

inter-species differences were observed in the temporal lobe, dorsal-frontal and frontal pole 

regions; however, the general pattern of activation suggested that a number of comparable 

brain areas were activated in both species. These broad correspondences suggest that AGL 

capabilities and the brain areas that support them likely share a common evolutionary 

history, having evolved from the same regions in a shared ancestor. Furthermore, evidence 

that activation is observed in comparable regions in both species, and that in humans these 

regions are involved in the processing of natural language, is the necessary first step to 

developing an animal model system in which to study aspects of language with techniques 

which are not typically possible in humans. 

In addition to these findings, region of interest analyses were performed to 

investigate patterns of activation in the IFG in more detail. In both species strong 

activation was observed in ventral parts of the frontal cortex (vFC), suggesting that this is a 

key, conserved region in the processing of type of adjacent relationships present in this AG 
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structure. However, differences were observed in BA44/45, dorsal to these vFC regions. 

Humans showed no activation to this AG in Broca’s area, or its right hemisphere 

homologue (BA44/45). This result supports a number of previous studies implicating 

Broca’s area only in the processing of more complex, non-adjacent or hierarchical features 

of syntax or AGL (Petersson et al., 2004; Friederici et al., 2006a). However, Rhesus 

macaques did appear to show some activation in this area. These results suggest that while 

BA44/45 in the macaques might be a structural homologue of Broca’s area in humans, 

there has been some functional differentiation. It appears that Broca’s area in humans may 

represent an evolved specialisation for complex language processing, while in the Rhesus 

macaques tested here, and potentially other nonhuman primates, BA44/45 is involved in 

processing simpler structures. These results might support those of previous behavioural 

work which has suggested that nonhuman primates (cotton-top tamarins) were unable to 

learn AGs of the level of complexity that produces activation in BA44/45 in humans (Fitch 

& Hauser, 2004; Friederici et al., 2006a). It is therefore possible that evolutionary 

specialisation of Broca’s area (in combination with other language adaptations) might be 

required for processing more complex features of language, or those associated with certain 

artificial grammars. However, activation in Broca’s area has been reported in humans 

following habituation to the AnBn AG structure (Friederici et al., 2006a), in this case, with 

no requirement that the participants learned specific associations between A and B 

elements (as in Bahlmann et al., 2008; Bahlmann et al., 2009). This experiment only required 

participants to discriminate between AABB and ABAB sequences, and yet still produced 

activation in Broca’s area (Friederici et al., 2006a). Rhesus macaques were able to learn the 

current AG structure implicitly, only through passive exposure. Therefore, whether they 

might be able to learn AGs such as the AnBn structure, perhaps with explicit training, 

remains an empirical question. If this were the case, fMRI data regarding the brain areas 

used to process this structure could be highly informative. The extent to which different 

brain areas involved in the processing of human language might have specialised to support 

language since our last common ancestor with macaques remains an open question. 

However, the results of these comparative fMRI experiments demonstrate that important 

similarities can be observed in the brains of both species in response to a relatively simple 

AG, designed to emulate some of the variability of the structure of sentences in natural 

language. 

The results of these experiments have important implications not only for our 

understanding of the evolution of language, but also for the development of nonhuman 
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primates as animal model systems in which to investigate aspects of language processing at 

a neuronal level. Correspondences observed between the brain regions activated by the 

same AG structure in humans and macaques suggest that the language network in humans 

likely evolved from brain regions shared with our last common ancestor. Therefore the 

same neuronal mechanisms might support comparable cognitive mechanisms across 

species, suggesting that the Rhesus macaque, and potentially other nonhuman primate 

species, may function as a valuable animal model. Electrophysiological recordings, either 

from single or multiple neurons or via local field potentials (e.g. Perrodin et al., 2011) can 

be used to target areas localised by fMRI experiments (Petkov et al., 2008b) such as those 

presented here. These techniques have the potential to investigate the mechanisms 

supporting these capabilities at a level of detail and temporal precision that is impossible 

using non-invasive imaging in humans, and in locations inaccessible to depth electrodes 

involved in the treatment of neurological problems, including epilepsy (e.g. Kumar, et al., 

2011). Furthermore, cortical manipulations including micro-stimulation (Petkov et al., 

2008c) or reversible inactivation of specific brain areas (Bartolo et al., 2009) present 

additional possibilities to investigate how these regions contribute to AGL, and how they 

interact with other, associated regions.  

Strong general correspondences were observed between macaques and humans, 

suggesting some areas, including ventral portions of the frontal cortex, are critically 

involved in processing this non-deterministic AG structure. However, there were also some 

differences between how the brains of macaques and humans responded to the AG. These 

results suggest that while some functions might be supported by comparable brain areas, 

other regions, including Broca’s area, may have specialised and now support different, 

potentially unique, functions in humans. Beyond providing interesting insights into the 

evolution of these areas, and of language processing in humans, such results might 

constrain the range of language related abilities for which nonhuman primates might be an 

appropriate animal model.  

Human language is unique and an order of magnitude more complex than any 

abilities possessed by nonhuman primates. Therefore, while these experiments have 

demonstrated key correspondences in AGL capabilities and the brain areas that support 

them, some aspects of language are likely to be too complex for any nonhuman primate to 

learn. Therefore, it is not only important to consider the areas of correspondence, which 

can provide valuable insights into the evolution of these abilities and potentially about the 

neuronal mechanisms that support them, but also where human language might be unique, 
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and the human brain might have specialised beyond the maximum capabilities of 

nonhuman animals. However, the testing of additional AG structures might help clarify the 

abilities shared between humans and nonhuman animals, and highlight both the features of 

language, and the brain areas supporting them, for which the human brain is particularly 

specialised and which might be conserved in nonhuman primates. Experiments in other 

nonhuman species might provide further insights into the language evolution, and the 

potential to develop additional animal model systems. Finally, additional techniques, 

including the neurophysiological approaches that are not possible in humans, in 

conjunction with this and future imaging work, have the potential to inform us about 

language related processes in a level of detail that has previously been impossible.  

 Conclusion 6.5.

The goals of this research were to move toward a better understanding of the 

evolution of language and the development of animal model systems, which might allow us 

to explore the neuronal mechanisms supporting language related processes. The 

experiments reported in this thesis demonstrate that nonhuman primates are able to learn a 

non-deterministic AG, which emulates aspects of the variability present in the syntactic 

structure of natural language. Furthermore, at least in macaques, these abilities cannot be 

attributed to simple strategies. Finally, in both macaques and humans comparable 

perisylvian brain regions were sensitive to violations of this AG structure. These results 

suggest that while the brains of humans might be uniquely specialised for language, some 

of the processes underlying language processing might represent generic mechanisms 

supported by brain areas that share a common evolutionary heritage with those observed in 

extant nonhuman primates. These results allow the development of nonhuman animal 

model systems, which offer the potential to inform us about language processing at a 

neuronal level, which is not possible in humans.  
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Appendix: Other work, published or in preparation, by the author 

 Journal articles 7.1.

Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Griffiths, T., 

Marslen-Wilson, W. D., Petkov, C. I. (submitted). Artificial-grammar learning engages 

evolutionarily conserved regions of frontal cortex in humans and macaques. 

Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K. 

& Petkov, C. I. (2013), Auditory artificial grammar learning in macaque and marmoset 

monkeys. Journal of Neuroscience, 33, 48, 18825-18835.  

Petkov, C. I. & Wilson, B. (2012). On the pursuit of the brain network for proto-

syntactic learning in nonhuman primates: Conceptual issues and neurobiological 

hypotheses. Philosophical Transactions of the Royal Society B, 367, 2077-2088. 

Wilson, B. & Petkov, C. I. (2011). Communication and the primate brain: Insights 

from neuroimaging studies in humans, chimpanzees and macaques. Human Biology, 82, 2, 

153-173.  

Petkov, C. I. & Wilson, B. (2011). Functional imaging of brain regions sensitive to 

communication sounds in primates. Interspeech 2010, 2494-2497.  

 Poster presentations 7.2.

Wilson, B., Collison, M. G., Slater, H., Hunter, D. M., Smith, K., Marslen-Wilson, 

W. & Petkov, C. I. (2011). Behavioural and functional imaging analysis of “artificial-

grammar” sequence learning in Rhesus macaques. Society for Neuroscience, 2011, Washington, 
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Wilson, B. & Petkov, C. I. (2010). Functional imaging of brain regions sensitive to 

communication sounds in primates. Interspeech 2010, Makuhari, Japan. 

Kikuchi, Y., Barrett, J., Attaheri, A., Milne, A., Wilson, B. & Petkov, C. I. (2012). 

Neuroimaging and neurophysiology of Artificial Grammar Learning in the Primate Brain: 

Relationship between fMRI-BOLD and Neuronal Activity. The Tucker-Davis Symposium on 

Advances and Perspectives in Auditory Neurophysiology (APAN), New Orleans, LA, USA 
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