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Abstract 

 

Scaffold attachment factor B1 (SAFB1) and SAFB2 are oestrogen receptor (ER) 

corepressors that bind and modulate ER activity through chromatin remodelling or 

interaction with the basal transcription machinery. However, little is known about the 

fundamental characteristics and function of SAFB1 and SAFB2 proteins in breast 

cancer. 

In this study, an investigation of the characteristics and function(s) of SAFB1 and 

SAFB2 was undertaken; their expression profile was first assessed in ER-positive 

(MCF-7) and ER-negative (MDA-MB-231) breast cancer cell lines. Results show that 

SAFB1 and SAFB2 are themselves regulated by an active metabolite of oestrogen,  

17β-oestradiol, in both ER positive and ER negative breast cancer cells.  

Using a combined approach of RNA interference and gene expression profile studies, 

12 novel targets closely linked to tumour progression were identified for SAFB1 and 

SAFB2. Expression levels of the following genes, CDKN2A, CLU, ESR1, IGFBP2, 

IL2RA, ITGB4, KIT, KLK5, MT3, NGFR and SPRR1B increased while IL-6 expression 

and secretion decreased when cells were depleted of SAFB proteins. This observation 

supports their primary role as transcriptional repressors with SAFB2 playing a 

prominent role in transcriptional regulation in MDA-MB-231 cells. This study has also 

established a novel link between SAFB proteins and ITGB4 and IL-6 expression. 

Both SAFB proteins have an internal RNA-recognition motif but little is known about 

the RNA-binding properties of SAFB1 or SAFB2. To investigate this, the concluding 

part of the project utilised crosslinking and immunoprecipitation (CLIP) coupled with 

high-throughput sequencing. This experimental approach enabled a transcriptome-wide 

mapping of SAFB1 protein-RNA interactions in breast cancer cells. SAFB1 crosslink 

sites are significantly enriched in ncRNAs, particularly within snRNAs. A putative 

RNA-binding motif for SAFB1 that contains adenine-rich sequences, highly similar to 

the RNA-binding motifs for SR proteins was also identified.  

In summary, this study has defined the characteristics of SAFB1 and SAFB2 in both ER 

positive and ER negative breast cancer cell lines. It has also identified transcriptional 

targets and the RNA-binding ability of SAFB1 and SAFB2 in human breast cancer cells.  
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Chapter 1 : Introduction 

1.1 The mammary gland 

1.1.1 Normal development of the mammary gland 

 

The human female mammary gland develops through key stages in life particularly 

during fetal growth, infancy, puberty, pregnancy, lactation and post-menopausal 

regression (Russo et al. 1987). The formation of the mammary crest and primitive 

mammary buds begins during embryonic life through a series of highly ordered events 

regulated by growth factors and hormones [reviewed in (Hassiotou et al. 2012)]. Paired 

ectodermal thickenings, known as mammary ridges, develop from the axilla to the groin 

on the anterior surface of the embryo by 6 weeks of gestation. These mammary ridges 

initially appear in multiple pairs along the milk line but most ridges regress during 

development except for one pair in the pectoral region, where the two mammary glands 

subsequently develop. The mammary parenchyma then invades the stroma to form the 

mammary crest at week 7 and 8 of gestation. Between 10 and 12 weeks of gestation, the 

mammary ridge begins to differentiate and proliferate into mammary epithelial buds. 

The mammary buds continue to proliferate during weeks 13 to 20 of gestation to form 

branches and secondary buds. These secondary buds gradually elongate into                

15 to 25 solid cords by 20 weeks gestation (Osborne 2004). At 32 weeks, placental 

hormones enter the fetal circulation to initiate canalisation of the solid cords and 

formation of the lactiferous ducts (Hovey et al. 2002). The ducts enlarge to form 

lactiferous sinuses and converge into the nipple area. The periductal stroma increases in 

density along with limited lobulo-alveolar development, while the areola acquires a 

slight pigmentation during the final 8 weeks of gestation (Naccarato et al. 2000). The 

infant’s mammary gland produces small amount of colostrum shortly after birth as a 

result of maternal lactogenic hormones present in the fetal circulation. The decrease in 

infant prolactin levels coincide with the spontaneous regression of the infant’s 

mammary gland within 4 weeks post-partum (Vorherr 1974). 

The neonatal breast consists of rudimentary ducts that remain quiescent until early 

childhood. Growth of the mammary epithelium and stroma continues at puberty, 

between the age of 8 to 12 years (Russo et al. 2004). Puberty induces rapid breast 

growth as a result of increasing levels of secreted steroid hormones, primarily oestrogen 

in the form of 17β-oestradiol, driven by ovulation and the establishment of menstrual 
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cycles (Vorherr 1974). The increased deposition of adipose tissue within the gland and 

vasculature enhancement causes an increase in breast size. Circulating oestrogen 

stimulates elongation of the existing ducts and branching into secondary ducts. The 

growing and dividing ducts form rounded terminal end buds, from which bi-layered 

epithelial buds appear and form lobules (Russo et al. 2004). The lobulo-alveolar 

development continues gradually during adolescence until approximately the age of    

35 years, resulting in three distinct types of lobules in the mature adult breast        

(Russo et al. 2004).  

Breast development culminates during pregnancy and lactation cycle when the 

mammary gland matures into a functional milk-secretory organ through complete 

remodelling of the breast. Increased levels of circulating lactogenic hormone complex 

(oestrogen, progesterone and prolactin) directly regulate this maturation stage by 

inducing ductal branching, alveolar morphogenesis and secretory differentiation     

(Pang et al. 2007). By the second trimester of pregnancy, mammary epithelial cells in 

the luminal layer of the alveolar differentiate into milk-producing lactocytes. Secretory 

activation and milk synthesis occurs after parturition, triggered by the decrease in 

circulating progesterone and further increase in prolactin. Cessation of milk removal 

causes the mammary gland to transition into a resting non-lactating state through      

post-lactational involution (Hurley 1989). Clearing of the mammary alveolar cells 

occurs during involution, allowing the breast to regress into a non-functional organ until 

the next pregnancy and lactation cycle. The breast undergoes a second phase of 

involution (post-menopausal involution) triggered by ovarian function decay during 

menopause, which is characterised by the decrease of glandular breast tissue and 

increase in the adipose surrounding tissue (Hutson et al. 1985). 

 

1.1.2 Anatomy of the breast 

 

The breast overlies the pectoralis major muscle positioned between the second and the 

sixth rib bone. The blood supply of the breast is derived from the internal mammary 

artery (60%) and the lateral thoracic artery (30%) (Vorherr 1974). Lymphatic drainage 

of the breast drains lymph from the breast to the axillary nodes and the internal 

mammary nodes (Hultborn et al. 1955, Turner-Warwick 1955). 
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The adult breast is composed of secretory and fatty tissue supported by loose fibrous 

connective tissue known as Cooper’s ligaments (Cooper 1840). The secretory tissue is 

made of 15-25 lobes that converge at the nipple in a radial arrangement and a ductal 

system that drains the alveoli to transport milk to the nipple (Figure 1.1). Each lobe 

comprises of lobules that contain 10-100 alveoli that produce and store milk. Numerous 

small ductules that drain the alveoli merge into one main duct, which dilates to form the 

lactiferous sinus, then narrows and opens onto the nipple surface (Venta et al. 1994). 

 

 

 

 

 

 

Figure 1.1  Anatomy of the human breast. 

The left panel shows the front view and the right panel shows the side view of the 

human breast. Image adapted from (urmc.rochester.edu). 

 

1.2 Breast cancer 

1.2.1 Epidemiology 

 

Breast cancer is the most common cancer in the UK since 1997 although its incidence is 

rare in men. In 2010, 49,564 women and 397 men in the UK were diagnosed with 

Legend: 

A. Pectoralis major muscle 

B.  Adipose tissue 

C. Lactiferous sinus 

D.  Ducts 

 

E. Lobules 

F.    Lymph nodes 

G.    Areola   
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invasive breast cancer, causing 11,633 deaths (Cancer Research UK 2010a). Breast 

cancer accounts for 31% of all female cancers and the lifetime risk for developing breast 

cancer is 1 in 8. Breast cancer is the second most common cause of cancer death among 

women in the UK after lung cancer; however, its survival rates have improved over 

these past 40 years. Five-year survival rate for breast cancer has increased from        

52% patients diagnosed in 1971-1975 to 85.1% patients diagnosed in 2005-2009 

(Cancer Research UK 2010b). Survival rate of this disease largely relies on the cancer 

stage at the point of diagnosis, where 90% of women diagnosed at stage I breast cancer 

survive beyond five years compared to only 10% when diagnosed at stage IV breast 

cancer (Cancer Research UK 2010a). 

 

1.2.2 Risk factors 

 

There is no single definitive factor that is responsible for the majority of breast cancer; 

however there are several established factors that strongly increase a woman’s risk of 

developing the disease. The strongest risk factor for breast cancer is age, where 

incidence and mortality increases as women get older. Based on the estimates for 2008, 

the risk of developing breast cancer increases 10 times in women from age 29 to age 39, 

4 times from age 39 to age 49, then doubles the next 10 years until menopause when the 

rate of increase slows dramatically (Cancer Research UK 2012, Sasieni et al. 2011). 

Environmental factors in the form of geographical variation presents as another 

important risk factor, as women in developed countries are five times more at risk of 

developing breast cancer compared to women from less developed countries. 

Interestingly, one study of migrants from eastern to western countries show that the risk 

of breast cancer in migrants assumes that of the host country within one or two 

generations, indicating that environmental factors outweigh genetic factors   

(McPherson et al. 2000). While genetic predisposition doubles the risk of breast cancer 

in a woman with an affected first degree relative, it only contributes up to 10% of breast 

cancer in western countries (Pharoah et al. 1997). Critical analysis of epidemiological 

studies for familial breast cancer has revealed that 8 out of 9 women who develop breast 

cancer do not have affected first degree relatives and although women with an affected 

close relative are at increased risk, most will never develop breast cancer   

(Collaborative Group on Hormonal Factors in Breast Cancer 2001). Hereditary factors 

only contribute to a quarter of an individual’s susceptibility to breast cancer while 
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environmental and lifestyle factors contribute to the remaining three-quarters 

(Lichtenstein et al. 2000).  

Genetic predisposition to breast cancer originally derived from evidence of cancer 

clustering in families and increased cancer risk in individuals with certain genetically 

linked diseases. Germline mutations in at least five genes have been identified to 

predispose an individual to breast cancer: breast cancer 1 (BRCA1), BRCA2, tumour 

protein 53 (TP53), phosphate and tensin homolog (PTEN) and ataxia telangiectasia 

mutated (ATM) (Malkin et al. 1990, Nelen et al. 1996, Peto et al. 1999, Swift et al. 

1991). Mutations in BRCA1 and BRCA2 are high penetrance genes that increase the risk 

of breast and ovarian cancer, and account for 2% of all breast cancer cases. Germline 

mutations in TP53 predispose to Li-Fraumeni cancer syndrome, a condition which 

encompasses childhood sarcoma, brain tumours and early onset breast cancer. 

Mutations in PTEN are responsible for Cowden syndrome, which is mainly 

characterised by breast cancer and heterozygous carriers of ATM have an increased risk 

of breast cancer. 

Many reproductive factors that influence breast cancer risk are closely linked to 

prolonged exposure to hormones. Early menarche and late menopause extends the 

relative exposure of the breasts to elevated levels of endogenous oestradiol, thus 

increasing the risk of breast cancer. High oestradiol concentrations and obesity in post-

menopausal women are also positively associated with breast cancer risk                  

(Key et al. 1999). On the other hand, increased childbearing and prolonged 

breastfeeding have a protective effect that reduces the risk of breast cancer 

(Collaborative Group on Hormonal Factors in Breast Cancer 2002). The intake of 

exogenous hormones through oral contraceptive slightly increase the relative risk of 

developing breast cancer in current users, however the excess risk falls after cessation of 

use and becomes insignificant after more than 10 years cessation (Collaborative Group 

on Hormonal Factors in Breast Cancer 1996). Hormone replacement therapy (HRT) 

substantially increases oestrogen concentration in the serum and incidentally increases 

the relative risk of breast cancer. Current oestrogen-progestagen therapies increase the 

risk of breast cancer that is enhanced by the duration of use but diminished after 

cessation (Collaborative Group on Hormonal Factors in Breast Cancer 1997). 

Clinical factors such as breast density and benign breast disease also contribute to the 

risk of developing breast cancer. Breast density is defined by its proportion of fatty 
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tissue, where low breast density correlates with high proportion of fatty tissue and vice 

versa. Women with high breast density are five times more likely to develop breast 

cancer than women with low breast density (McCormack et al. 2006). Benign breast 

diseases that stem from non-proliferative lesions are associated with little or no increase 

in breast cancer risk. Women with proliferative lesions without atypia have two-fold 

increased risk, while those with atypical hyperplasia have at least four-fold increased 

risk (Hartmann et al. 2005). 

Other modifiable lifestyle factors that increase the risk of breast cancer include high 

body mass index, lack of physical activity, high alcohol consumption, high fat diet and 

smoking before the age of 20 (Cancer Research UK 2012). 

 

1.2.3 Breast screening 

 

The prognosis of breast cancer heavily depends on the stage of the disease during 

diagnosis; hence routine breast screening is important to detect early cancer changes 

with the aim of increasing survival rates. In the UK, the National Health Service Breast 

Screening Programme (NHSBSP) was set up in 1988 as a response to the 

recommendation of ‘The Forrest Report’ to implement a population based screening 

programme (Forrest 1986). The programme uses mammogram to screen for breast 

cancer every three years, initially to all women aged 50 to 64. Since 2004, this service 

has been extended to include women aged 65 to 70 and presently, all women aged 47 to 

73 are eligible for breast screening. An assessment for the period 1990 to 1998 on the 

impact of NHSBSP revealed that the programme contributed to a substantial reduction 

on breast cancer mortality rate in women aged 55 to 69 (Blanks et al. 2000). 

Controversy about this programme has emerged in the recent years as questions were 

raised about the value of breast screening and possible harmful effects to some women. 

Mammographic screening is effective in detecting lesions in the breast but lacks the 

specificity to differentiate between low grade in situ carcinoma and high grade invasive 

cancer. This inevitably can lead to overdiagnosis and overtreatment of cancer in some 

women who would never have presented clinically. Mammography itself carries a small 

carcinogenic risk from radiation and has been estimated to cause 3 to 6 extra breast 

cancers for every 10,000 women enrolled in the screening programme (Cancer Research 

UK 2012). As a result, a group of independent experts were brought together to review 

the benefits and effectiveness of the programme. The review panel found that out         
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of 15,500 breast cancers diagnosed through screening, 4,000 cases were overdiagnosed 

while 1,300 breast cancer deaths are prevented each year (Cancer Research UK 2012). 

The panel concluded that the NHSBSP has significant benefit to the country as a whole 

and justifies the continuance of the screening programme. 

 

1.2.4 Pathology 

1.2.4.1 Types of breast cancer 

 

Most breast cancers arise from an epithelial origin in cells lining the ducts or the lobules 

of the breast. Common changes in the breast begin with a rapid increase in breast 

epithelial cells (hyperplasia) that leads to the emergence of abnormal cells (atypical 

hyperplasia), followed by carcinoma in situ (non-invasive breast cancer) and infiltrating 

carcinoma (invasive breast cancer) [Figure 1.2].  

Ductal carcinoma in situ (DCIS) is the most common type of non-invasive breast cancer, 

contributing to 20% of screen-detected cancers in the NHSBSP. DCIS is characterised 

by expanded breast ducts resulting from uncontrolled growth of ductal epithelial cells 

confined within the ducts. Several subtypes of DCIS have been described, ranging from 

low grade to high grade lesions which may give rise to invasive breast cancer. One third 

of patients with DCIS go on to develop invasive breast cancer in the same breast    

(Page et al. 1995). 

Lobular carcinoma in situ (LCIS) is a rare type of non-invasive breast cancer, 

comprising only 1% of cancers detected by screening, presumably because it is not 

easily seen on a mammogram. LCIS presents as an expansion of the breast lobules by 

abnormal proliferation of epithelial cells within the lobules. Patients with LCIS confer 

an increased risk of invasive breast cancer, where 15% to 20% develops invasive 

carcinoma in the same breast and 10% to 15% in the contralateral breast                  

(Page et al. 1995). 

Invasive breast cancer is characterised by the infiltration of cancer cells outside the 

basement membrane of ducts or lobules into surrounding breast tissues and possibly 

spreading into lymph nodes or other body parts. Invasive breast cancers are classified 

into several distinct types depending on the characterisation of the tumour mass. 

Invasive ductal carcinoma (IDC) is the most common type of breast cancer, accounting 

for about 50% to 75% of all breast cancers, while invasive lobular carcinoma (ILC) is 
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the next most common and accounts for about 10% to 15% of cases (Dillon et al. 2010). 

Other less common types of invasive breast cancer are IDC subtypes characterised by 

their distinct pattern of growth and cell morphology: medullary carcinoma, mucinous 

carcinoma, tubular carcinoma, papillary carcinoma and cribriform carcinoma. 

Inflammatory breast cancer is another form of rare but aggressive breast cancer 

associated with breast inflammation due to the blockage of lymph ducts in the breast by 

cancer cells. Paget’s disease is also associated with breast cancer, found only in          

1% to 2% of patients. Paget’s disease begins in the ducts of the nipple, spreads to the 

nipple surface and areola, and presents as an eczematoid change in the skin surrounding 

the nipple. 

 

            

Figure 1.2 Development of ductal carcinoma in situ and invasive breast 

cancer. 

The cross section of the breast is shown on the left panel. The right panel shows 

the organisation of epithelial cells in the mammary duct, progressing from 

hyperplasia, ductal carcinoma in situ to invasive breast carcinoma. Image adapted 

from (breastcancer.org). 
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1.2.4.2 Breast cancer grading and staging 

 

The grading and staging of breast cancer is important to assess patient prognosis and 

determine treatment plan. Breast tumours are graded based on the morphology and 

proliferation rate of the cancer cells, with increased grade indicating poorer prognosis. 

Grade 1 (low grade) are slow growing, well differentiated cells; grade 2 (intermediate 

grade) are slighty faster growing, moderately differentiated cells; and grade 3 (high 

grade) are fast growing poorly differentiated cells. Staging of breast cancer describes 

the size and extent of spread beyond the site of a primary breast tumour. Breast cancer 

stages are frequently assessed using the Nottingham Prognostic Index (NPI) which 

predicts disease prognosis based on tumour size, number of lymph nodes involved and 

tumour grade (Haybittle et al. 1982). The commonly used breast cancer staging method 

is the tumour, lymph nodes and metastasis (TNM) staging system. This system 

considers the size of the primary tumour, the presence of lymph node metastasis and the 

presence of distant metastases to give an overall stage of the disease (Bateman 2006). 

Patients with stage I breast cancer have the best prognosis while patients with stage IV 

breast cancer, classified by distant metastases, have the poorest prognosis (Figure 1.3). 
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Figure 1.3  Illustration of breast cancer stages. 

Stage I represents a tumour that is smaller than 2cm in diameter and has not 

spread outside the breast. Stage II represents a tumour that is larger than 2cm but 

not larger than 5cm and no cancer in the lymph nodes; or a tumour that is 2cm or 

smaller and found in 1 to 3 lymph nodes in the armpit or near the breast bone. 

Stage III represents a tumour that is larger than 5cm and small clusters of cancer 

cells in the lymph nodes; or a tumour that is smaller that 5cm but has spread to the 

lymph nodes above the collarbone. Stage IV represents a tumour of any size that 

has metastasised to other parts of the body such as lungs, liver, bones or brain. 

Image taken from (mayoclinic.com). 

 

1.2.4.3 Tumour characteristics 

 

The characteristics of breast cancer are also crucial prognostic factors that affect patient 

treatment and outcome. Specifically, hormone receptor and human epidermal growth 

factor receptor 2 (HER2) status are routinely assessed to assist in breast cancer 
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treatment strategies. Hormone receptor status refers to the significant presence or 

absence of oestrogen and progesterone receptors on the surface of tumour cells. 

Oestrogen receptor (ER) positive and progesterone receptor (PR) positive tumours 

generally have more favourable prognosis and lower chance of recurrence than ER 

negative and PR negative tumours because of their predicted response to hormone 

therapies. HER2 status indicates the presence or absence of cell surface receptor 

regulated by epidermal growth factor (EGF) to stimulate cell growth and proliferation. 

Although HER2-positive tumours are expected to respond to treatments that specifically 

target HER2, they are generally associated with an adverse prognosis                    

(Chang et al. 2010). 

 

1.2.5 Breast cancer treatment 

 

The ultimate goal of breast cancer treatment is to eradicate the cancerous cells and 

minimise the possibility of recurrence. Complexity in treatment strategy arises from the 

fact that there is no single factor for breast cancer. Hence, decision on the course of 

treatment takes many factors into consideration, including the type, size and location of 

the cancer; the grade and stage of the cancer; the characteristics of the cancer cells; and 

the patient’s menopausal status and overall health. The common approaches used in 

treating breast cancer are surgery, radiation therapy, chemotherapy, endocrine therapy 

and targeted therapy, in which patients could be given one or several treatments 

sequentially or in combination. 

 

1.2.5.1 Surgery  

 

Some patients begin their treatment with surgery to remove as much tumour as possible 

from the breast, while some others undergo chemotherapy to reduce the size or extent of 

the cancer prior to surgery. Surgery involves the removal of the tumour and surrounding 

normal tissue while leaving the breast intact (lumpectomy) or the removal of the entire 

breast (mastectomy). Lumpectomy is normally recommended to patients with early 

breast cancer in a single location, a tumour that is less than 5cm in diameter and patients 

who are willing to undergo follow up radiation therapy (Breast Cancer Review 2010). 

Mastectomy is usually recommended for women with more advanced breast cancer and 

involves removing the breast, nipple, areola and the skin of the breast but maintains the 
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function of the pectoralis major muscle. Patients with invasive breast cancer can also 

undergo a procedure known as axillary lymph node dissection, usually performed 

together with a lumpectomy or mastectomy, to determine the spread of the cancer from 

the breast and guide follow up treatment approach. 

 

1.2.5.2 Radiation therapy  

 

Radiation therapy is commonly administered as post-operative adjuvant treatment, 

utilising high energy x-rays to destroy any remaining cancer cells in the breast, chest 

wall or axilla. Clinical trials indicate that post-operative radiation therapy significantly 

reduces both 5-year recurrence and 15-year mortality rates (Darby et al. 2011). 

Radiation therapy is also used as pre-operative neo-adjuvant treatment in certain breast 

cancer patients to shrink large tumours to an operable size. The two main types of 

radiation method used today are external radiation therapy and internal radiation therapy. 

External radiation relies upon an external source to deliver high energy x-rays that 

targets a focused beam to the tumour affected area, while causing minimal damage on 

adjacent healthy tissues. Internal radiation, also known as brachytherapy, places a 

radioactive source inside the tumour site. Implanted radioisotopes deliver radiation 

directly into the site of surgical removal or into the tumour mass. Short term clinical 

analysis suggests that the efficacy of brachytherapy is comparable with whole breast 

irradiation and causes negligible late side effects (Strnad et al. 2011). However, 

brachytherapy is not yet considered a standard treatment method for breast cancer as its 

long term effects are still not known. 

 

1.2.5.3 Chemotherapy  

 

Chemotherapy uses pharmacologic or natural agents to inhibit the development of 

invasive breast cancer. Chemotherapy is used as adjuvant, neo-adjuvant or palliative 

treatment that reverses, suppresses or prevents carcinogenic progression of premalignant 

cells (Sporn 1976). It is also used as the primary treatment in the management of 

metastatic or recurrent breast cancer. Unlike radiation therapy and surgery which are 

localised treatments, chemotherapy utilises a systemic approach that affects all tissues 

and organs throughout the entire body. Types of chemotherapy drugs are divided into 

alkylating agents, anthracyclines, antimetabolites and taxanes; categorised according to 
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their effect on cell division or DNA synthesis and function. These drugs are usually 

given as a specific combination tailored to each patient individually and administered 

intravenously, intramuscularly, subcutaneously or orally. 

 

1.2.5.4 Endocrine therapy  

 

Steroid hormones such as oestrogen and progesterone have been implicated in the 

progression of breast cancer due to their effect in stimulating cell growth, differentiation 

and function in the breast. Understanding their mechanism of action has enabled the 

development of endocrine therapies for breast cancer that either reduce hormone 

production or block their action. Endocrine therapy is only effective in treating cancer 

cells that depend on these hormones to grow, commonly classified as ER and/or         

PR-positive tumours. Endocrine therapy can be used in addition to surgery, radiation 

therapy and chemotherapy; or as chemoprevention of breast cancer in high risk patients. 

The types of endocrine therapy used today are known as selective oestrogen receptor 

modulator (SERM), selective oestrogen receptor downregulator (SERD), aromatase 

inhibitors and ovarian ablation. 

SERMs are drugs that act as receptor binding competitors of oestrogen and antagonise 

their downstream effects. Tamoxifen is a non-steroidal anti-oestrogen SERM most 

commonly used in both pre- and post-menopausal women as prevention and treatment 

of breast cancer (Cole et al. 1971). However, the partial agonist action of tamoxifen is 

associated with some serious side effects including endometrial cancer, thrombo-

embolism and bone loss (Singh et al. 2005). 

SERDs are anti-oestrogen drugs that antagonise ER by downregulating and degrading 

the receptor. Fulvestrant is a widely used steroidal anti-oestrogen SERD that has a 

higher affinity to ER with no agonist effect in the endometrium (Wakeling et al. 1992). 

It is administered to post-menopausal breast cancer patients who no longer respond to 

tamoxifen as fulvestrant is better tolerated and has less life-threatening side effects. 

Aromatase inhibitors are drugs that block the synthesis of oestrogen from androgens by 

inhibiting the action of aromatase enzyme, which is the main source of oestrogen 

production in post-menopausal women. Aromatase inhibitors are used either as initial 

treatment or after tamoxifen and are associated with mild side effects. 
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Ovarian ablation or ovarian suppression is a form of therapy that stops the ovaries from 

producing oestrogen in pre-menopausal women. Oestrogen production could be 

temporarily suppressed by drugs that inhibit luteinising hormone-releasing hormone 

(LHRH) signalling or permanently suppressed by radiation and surgical removal of the 

ovaries (oophrectomy). This treatment shuts down the main source of the body’s 

oestrogen, consequently depriving ER and/or PR-positive tumours of oestrogen that 

supplements its growth. 

 

1.2.5.5 Targeted therapy  

 

Greater understanding of the biology of breast cancer has led to the identification of 

molecular targets and the development of targeted therapies in treating the disease. 

Targeted therapy is directed to specific molecules or pathways in certain breast cancer 

cells while leaving the healthy cells unharmed. Most of the targeted therapies are not yet 

approved for clinical practice but some agents have been used as standard care in 

HER2-positive breast cancer patients. Two therapeutic agents targeting HER2-positive 

patients in standard breast cancer practice are trastuzumab and lapatinib. Trastuzumab is 

a monoclonal antibody that targets cancer cells overexpressing HER2 on their cell 

surface and is effectively used as first treatment for HER2-positive metastatic breast 

cancer in combination with chemotherapy. Lapatinib is a dual tyrosine kinase inhibitor 

that targets both epidermal growth factor receptor (EGFR) and HER2, currently 

approved for use in HER2-positive metastatic breast cancer in combination with 

trastuzumab or other chemotherapeutic drugs. However, the effectiveness of 

trastuzumab in metastatic breast cancer cases was only observed in one third of    

HER2-positive patients and resistance to this drug may be acquired by patients over a 

period of treatment [reviewed in (Barros et al. 2010)]. 

 

1.3 Oestrogen and breast cancer  

 

Oestrogen is a potent steroid hormone with 17β-oestradiol being the most prominent 

metabolite in the human body, although lower levels of oestrone and oestriol are also 

present. Overwhelming epidemiological and experimental evidence implicates a crucial 

role of oestrogen in the progression of breast cancer. Levels of endogenous oestrogen 

are strongly associated with increased breast cancer risk in post-menopausal women 
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(Key et al. 2002), while anti-oestrogenic drugs reduce the risk of ER positive breast 

cancer (Cuzick et al. 2003).  

 

1.3.1 Oestrogen receptors (ER) 

 

ER belongs to the nuclear receptor superfamily of ligand-inducible transcription factors. 

Two major forms of ER have been identified to date, namely ER-alpha (ER-α) and   

ER-beta (ER-β), encoded by oestrogen receptor 1 (ESR1) and oestrogen receptor 2 

(ESR2) respectively. Although they both share a high degree of overall homology, the 

two receptors have distinct physiological functions. ER-α knockout mice were reported 

to possess under-developed mammary glands and in contrast, ER-β knockout mice 

appear to undergo normal mammary development (Bocchinfuso et al. 1997, Krege et al. 

1998). ER-α is essential for proliferation while ER-β has anti-proliferative role; and 

these two receptors regulate different target genes in response to oestrogen or           

anti-oestrogens (Monroe et al. 2003, Tee et al. 2004). Such evidence led ER-α to be the 

main form of receptor that determines ER status in breast tumours and the primary 

target for endocrine therapies in breast cancer. 

The gene encoding ER-α consists of 8 exons spanning 140kb on human chromosome 

6q25.1 and produces a 596 amino acid protein that consists of a six functional 

multidomain structure, as illustrated in Figure 1.4 (Green et al. 1986, Greene et al. 1986, 

Menasce et al. 1993). The variable N-terminal A/B domain contains the ligand-

independent transactivation function (AF-1) which interacts with components of the 

core transcriptional machinery or other transactivators to activate target genes. The       

C domain contains a DNA-binding domain (DBD) composed of two zinc finger motifs, 

an essential component of ER that interacts specifically with DNA sequences in the 

oestrogen response element (ERE). Downstream of the DBD region is a hinge region  

(D domain) that acts as a linker peptide and contains the nuclear localisation signal. The 

E domain is a relatively large region that harbours the ligand-binding domain (LBD) 

and the ligand-dependent transactivation function (AF-2). The LBD is a globular 

domain that contains the ligand-binding site, a dimerisation interface and a coregulator 

interaction function. The LBD acts as a molecular switch that shifts the receptor to a 

transcriptionally active state upon hormone recognition and binding. The C-terminal 

end contains the F domain where its specific function has not been identified, as the 

deletion of F domain did not affect known ER function (Kumar et al. 1987).  
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Numerous mRNA splice variants of ER-α have been characterised, arising from 

alternative splicing or alternative promoter. The ER-α gene is transcribed from at least 

seven upstream promoters into multiple transcripts varying in their five prime 

untranslated region (5’-UTR) (Kos et al. 2001). Most ER-α splice variants in breast 

cancer cells are products of exon skipping (Poola et al. 2000). The classical full-length 

ER-α has a molecular weight of 66 kiloDalton (kDa), therefore alternatively referred to 

as ER-α66. Splice variant ER-α46 is a 46kDa protein, identified in MCF-7 breast cancer 

cell line, that lacks the first coding exon (exon 1A), therefore lacking the N-terminal 

AF-1 domain (Flouriot et al. 2000). ER-α46 appears to inhibit the AF-1 transactivating 

function of ER-α66 either through direct competition for ER-α DNA-binding site or in a 

dominant-negative manner involving heterodimerisation of the two isoforms         

(Fuqua et al. 1992). The expression ratio of ER-α46 and ER-α66 changes with cell 

growth status in MCF-7 breast cancer cells, suggesting a role of ER-α46 in cell 

proliferation (Flouriot et al. 2000).  

More recently, Wang et al. have identified and cloned another variant of ER-α, in  

MCF-7 breast cancer cell line, that has a molecular weight of 36kDa and termed it     

ER-α36 (Wang et al. 2005). This ER-α36 transcript is a product of previously 

unidentified promoter within the first intron of ESR1 gene that encodes a protein lacking 

both AF-1 and AF2 domains but retaining the DBD, LBD and partial dimerisation 

domains. The last 138 amino acids encoded by exons 7 and 8 of ESR1 are replaced by a 

unique 27 amino acid domain (Wang et al. 2005). ER-α36 is primarily expressed in the 

cytoplasm and on the plasma membrane, where it transduces membrane-initiated effects 

of non-genomic oestrogen-mediated signalling. Further studies by Wang et al. have 

shown this in the oestrogen-dependent activation of the mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway (Wang et al. 2006). 

Tamoxifen treatment in ER-α36 overexpressing cells failed to block the ER-α36 

mediated activation of MAPK/ERK pathway; instead it promoted cell growth       

(Wang et al. 2006). High levels of ER-α36 in ER positive breast cancer patients may 

contribute to tamoxifen resistance, while this promotes malignant growth in                

ER negative breast cancer cell lines (Shi et al. 2009, Zhang et al. 2011). 
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Figure 1.4  Structure of ER-α and its isoforms. 

Similar to other members of the nuclear receptor family, ER-α display six 

conserved functional multidomain structure: A/B domain containing the AF-1,    

C domain containing the DBD, D domain (hinge region) containing the nuclear 

localisation signal, E domain containing the LBD and AF-2. ER-α46 is a truncated 

form of ER-α lacking the AF-1 function. ER-α36 isoform lacks both AF-1 and 

AF-2 functions. Image adapted from (Le Romancer et al. 2011). 

 

1.3.2 Genomic action of oestrogen  

 

The classical model of oestrogen action involves the activation of genomic signalling 

through high-affinity binding to ER and recognition of ERE. The non-active ER exists 

as a heterocomplex molecule associated with heat shock proteins and immunophilin 

chaperones, particularly heat shock protein 90 (Hsp90) and immunophilin-FK-binding 

protein 52 (FKBP52) (Gougelet et al. 2005, Pratt et al. 1997). These chaperones help to 

maintain ER in the appropriate conformation for rapid response to hormonal signals. 

Nuclear localisation and nuclear export signals enable the inactive ER complex to 

shuttle between the nucleus and cytoplasm.  

Oestrogen diffuses through the plasma membrane and cytoplasm into the nucleus where 

it binds the ER LBD. Upon oestrogen binding, a ligand-specific conformational change 

of ER occurs, Hsp90 and FKBP52 dissociate and ER is transformed into its active form 

(Pratt et al. 1997). These modifications trigger homo- or hetero-dimerisation of ER and 

binding to specific ERE in target genes. The ERE-bound ER dimer complex facilitates 

the association of coactivators that stimulate gene transcription, including nucleosome 

remodelling, histone acetyltransferase (HAT) or methyltransferase (Figure 1.5,   
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pathway A). In contrast, the binding of ER to oestrogen antagonists induces a distinct 

conformational change that switches off gene transcription through the association of 

corepressors such as nuclear receptor corepressor (NCoR) and silencing mediator of 

retinoic acid and thyroid hormone receptor (SMRT) [reviewed in (Lonard et al. 2006, 

Perissi et al. 2010)].  

Oestrogen-activated ER can also indirectly regulate gene promoters through protein-

protein interactions with other DNA-bound transcription factors. In this non-classical 

genomic pathway, nuclear ER interacts with activator protein-1 (AP-1), specificity 

protein 1 (Sp1) or nuclear factor kappa B (NF-κB) through transcription factor crosstalk 

(Kushner et al. 2000, Quaedackers et al. 2007, Saville et al. 2000). This interaction 

stabilises the DNA-binding of the tethered transcription factor and alters the rate of gene 

transcription without direct ER DNA-binding (Figure 1.5, pathway B). Interestingly, 

increased AP-1 and NF-κB transcriptional activities in ER positive breast cancer are 

involved in endocrine resistance (Schiff et al. 2000, Zhou et al. 2007). 

ER activities are also regulated by ligand-independent pathways which involve the 

modulation of ER gene transcription through the MAPK signalling pathway activated 

by growth factors such as EGF, insulin-like growth factor 1 (IGF-1) and transforming 

growth factor-β (TGF-β) (Figure 1.5, pathway C) (Edwards 2005, Kato et al. 1995). 

MAPK signalling cascade phosphorylates a serine residue within ER at position        

118 and fully activates the AF-1 domain of ER without ligand-activation, triggering 

gene transcription (Kato et al. 1995). Recently, this ligand-independent ER activation 

pathway has been associated with acquired tamoxifen resistance in breast cancer 

(Rhodes et al. 2011). 

 

1.3.3 Non-genomic action of oestrogen  

 

Increasing evidence shows that oestrogen can elicit a rapid signalling response through 

a non-genomic action mediated by membrane-associated ER. Endogenous ER are 

localised in the nucleus and extra-nuclear compartments including the plasma 

membrane, mitochondria and endoplasmic reticulum. Approximately 5% to 10% of 

cellular ER is present at the plasma membrane and exhibits the same high-affinity for 

oestrogen as nuclear ER. Breast cancer cells express more ER-α than ER-β at the 

plasma membrane, consistent with the ER-α mediated rapid oestrogen signalling in 
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these cells (Marquez et al. 2006). Isolation of membrane-bound ER by affinity 

chromatography identified ER-α66 as the predominant protein at the plasma membrane 

(Pedram et al. 2006). Other truncated forms of ER-α, ER-α46 and ER-α36 have been 

reported to be present at the plasma membrane and these receptors also contribute to the 

rapid response of oestrogen (Marquez et al. 2006, Wang et al. 2006).  

Caveolin-1 functions to facilitate transport of ER to the caveolae rafts in the plasma 

membrane and is then displaced from ER for productive signalling. In the absence of 

oestrogen, endogenous ER-α at the plasma membrane exists as a monomer, however it 

rapidly dimerises upon the presence of oestrogen (Razandi et al. 2004). Dimerised 

membrane ER-α interacts with various signalling proteins, including G proteins, 

tyrosine kinases (Src and Ras), growth factor receptors (EGFR, IGF-1), 

phosphatidylinositol 3-kinase (PI3K) and other adaptor proteins, to activate multiple 

signal transduction cascades (Bjornstrom et al. 2005, Migliaccio et al. 1996, Simoncini 

et al. 2000). The activation of signal transduction pathways triggers biological 

responses that are either dependent or independent of transcription (Figure 1.5,   

pathway D). 

Signal transduction pathways connect this non-genomic action of oestrogen to genomic 

responses through the regulation of protein kinase-mediated phosphorylation of many 

transcription factors. This non-genomic-to-genomic signalling by oestrogen enables ER 

to regulate transcription at alternative response elements [reviewed in (Bjornstrom et al. 

2005)]. In breast cancer cells, membrane ER can indirectly influence nuclear ER gene 

expression through MAPK signalling pathway activated by membrane ER interaction 

with growth factor receptors such as HER2, EGFR and IGF-1 (Kahlert et al. 2000, 

Keshamouni et al. 2002). Activation of MAPK signalling pathway also results in 

phosphorylation of AP-1 that enhances AP-1 DNA binding activity and transcriptional 

activation (Bjornstrom et al. 2004). The activation of Src kinase by membrane            

ER phosphorylates and recruits coactivators to the nuclear ER transcriptional complex, 

augmenting its transcriptional function (Zheng et al. 2005). PI3K activation by 

oestrogen targets NF-κB phosphorylation that leads to enhanced gene expression of  

NF-κB targets (Kawagoe et al. 2003). 

Membrane ER mediated signal transduction pathways also trigger rapid oestrogen 

responses through post-translational modifications that affect cell distribution and 

function of the substrate protein. Oestrogen-mediated activation of PI3K leads to the 
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phosphorylation of B-cell lymphoma-2 (Bcl-2) associated death (BAD) protein; 

phosphorylation of BAD inactivates its pro-apoptotic function and favours cell survival, 

therefore abrogating apoptosis in breast cancer cells (Fernando et al. 2004).    

Oestrogen-activated PI3K/Akt signalling also restraints the ataxia telangiectasia-

mutated and Rad-3 related (ATR) kinase cascade, inhibiting DNA damage repair and 

cell cycle checkpoints in breast cancer (Pedram et al. 2009). The interaction of histone 

deacetylase (HDAC) 6 with oestrogen-activated membrane ER causes rapid 

deacetylation of tubulin, which potentially contributes to cell migration and the 

aggressiveness of ER positive breast cancer cells (Azuma et al. 2009). Another role of 

non-genomic oestrogen signalling is observed in the rapid enhancement of aromatase 

enzymatic activity by oestrogen-stimulated Src that increases phosphorylation of 

aromatase protein in breast cancer cells (Catalano et al. 2009). This evidence revealed a 

short non-genomic autocrine loop between oestrogen and aromatase involved in breast 

tumourigenesis. 

In addition to ER, a novel transmembrane protein known as G protein-coupled receptor 

30 (GPR30) also mediates a rapid response to oestrogen (Filardo et al. 2002).      

GPR30 was initially known as an orphan receptor since no ligand was identified. 

Filardo et al. was the first to demonstrate a possible activation of the rapid non-genomic 

signalling through MAPK pathway by GPR30 in response to oestrogen and anti-

oestrogens such as fulvestrant and tamoxifen (Filardo et al. 2000). This study reported 

that 17β-oestradiol rapidly activates ERK-1 and ERK-2 in ER negative SKBR breast 

cancer cells (Filardo et al. 2000). The association between rapid oestrogen response 

with the presence of GPR30 was confirmed when MDA-MB-231 breast cancer cells, 

which are GPR30 deficient and insensitive to oestrogen activation of ERK-1/2, display 

an oestrogen-responsive phenotype after GPR30 was transfected into the cells     

(Filardo et al. 2000). Subsequent reports support this notion and show that fulvestrant is 

able to bind GPR30 and mimic oestrogen effects, thus acting as an agonist to GPR30 

(Filardo et al. 2002, Lucas et al. 2010, Thomas et al. 2005). Other studies suggest that 

GPR30 is strongly associated with cancer cell proliferation, migration, invasion, 

metastasis and drug resistance (Filardo et al. 2006, Filardo et al. 2002, He et al. 2009, 

Lapensee et al. 2009, Maggiolini et al. 2004). However, a recent study by Kang et al. 

showed that the reported activities of GPR30 were actually mediated through its ability 

to induce ER-α36 expression and non-genomic oestrogen signalling was mediated by 

ER-α36, not GPR30 (Kang et al. 2010) 
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Figure 1.5  Genomic and non-genomic ER signalling pathways. 

Illustration shows four distinct oestrogen signalling pathways through ER. 

Pathway A is ligand dependent, classical genomic pathway; where oestrogen-

bound ER dimerises, enters the nucleus and binds directly to ERE to activate gene 

transcription. Pathway B is ligand dependent, non-classical genomic pathway; 

where ER interacts and tethers to other transcription factors to activate target 

genes. Pathway C is ligand independent, non-classical genomic pathway; where 

ER is activated through phosphorylation induced by growth factors. Pathway D is 

ligand dependent, non-genomic pathway; where extra-nuclear ER dimerises upon 

ligand binding and activates multiple signal transduction cascades through 

interactions with various proteins. Image taken from (Le Romancer et al. 2011). 

 

1.3.4 Anti-oestrogen action in breast cancer  

 

Approximately 70% of all breast cancer cases are ER-α positive and these breast 

tumours utilise oestrogen and functional ER-α for growth. These patients usually 

receive hormone reduction or anti-oestrogens such as SERMs or SERDs as part of their 

treatment plan (Cole et al. 1971, Wakeling et al. 1991). The anti-tumour effects of these 

anti-oestrogen drugs are mediated by the inhibition or alteration of ER activity that 
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subsequently affects gene transcription. SERMs such as tamoxifen are commonly 

thought to inactivate ER by competitive binding of the LBD, blocking the 

transactivation function of AF-2 while inducing an inactive conformational change 

which is unfavourable for coactivator interaction (MacGregor et al. 1998). Recent 

evidence suggests that tamoxifen also induces ligand-specific conformational change in 

ER that allows the exposure of unique surfaces for corepressor interaction to modulate 

the tamoxifen antagonist activity of ER (Huang et al. 2002, Oesterreich et al. 2000, 

Shang et al. 2002). Expression profiles of ER coregulators in specific cell types also 

determine the cellular response to tamoxifen-bound ER (Katzenellenbogen et al. 1996, 

Shang et al. 2002). These findings extend the common view of tamoxifen as an          

ER antagonist with an active anti-oestrogen signalling function.  

The pure anti-oestrogen SERD, fulvestrant, is a pure ER antagonist that has a stronger 

affinity for ER than tamoxifen (Wakeling et al. 1991). Fulvestrant binds to newly 

synthesised ER in the cytoplasm and induces a ligand-specific conformational change 

that disrupts ER shuttling to the nucleus (Dauvois et al. 1993). The accumulated ER in 

the cytoplasm undergoes increased receptor turnover and the ligand-receptor complex is 

targeted for rapid destruction, thus reducing the cellular levels ER. In addition, 

fulvestrant blocks both AF-1 and AF-2 function of ER, thus completely abrogating the 

transcription of ER-regulated genes through the inhibition of receptor dimerisation and 

restriction of ER-binding to target DNA (Parker 1993, Wakeling et al. 1991). 

Consequently, any fulvestrant-bound ER that enters the nucleus is transcriptionally 

inactive and unable to exert its classical genomic action. This is a favourable 

characteristic of fulvestrant from the partial ER antagonist tamoxifen, where receptor 

activation could be achieved through the unrestricted AF-1 domain. 

 

1.3.5 Anti-oestrogen resistance in breast cancer  

 

Resistance to anti-oestrogen therapy in breast cancer patients can result from intrinsic or 

acquired mechanisms. Intrinsic resistance occurs when the patient lacks ER-α 

expression before any treatment is given and carries inactive alleles of cytochrome P450 

2D6 (CYP2D6) that inhibits tamoxifen conversion to its active metabolite (Hoskins et 

al. 2009, Stewart et al. 1982). In contrast, a wide range of mechanisms have been 

postulated for acquired resistance of anti-oestrogen therapy. Deregulation of various 

components of the oestrogen signalling pathway, alterations in cell cycle signalling 
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molecules and activation of alternative survival pathways are among the mechanisms 

that confer anti-oestrogen resistance in breast cancer [reviewed in                       

(Osborne et al. 2011)]. 

The deregulation of ER and its coregulators modulate the response to anti-oestrogen 

therapy. The loss of ER expression in ER positive breast cancer patients during tumour 

progression contributes to anti-oestrogen resistance (Encarnacion et al. 1993, Gutierrez 

et al. 2005). The presence of the ER splice variant, ER-α36, has been implicated in 

reduced responsiveness to anti-oestrogen drugs (Shi et al. 2009). To further investigate 

this claim, Wang et al. found that tamoxifen functions as an agonist of ER-α36 in       

ER positive breast cancer cells and activates the non-genomic ER-α36 mediated MAPK 

signalling pathway, hence conferring resistance to the drug (Rao et al. 2011).          

Post-translational modifications of ER and its coregulators also regulate ER function 

and may contribute to anti-oestrogen resistance. Specific phosphorylation of at least 

four serine residues within the A/B domain of ER induced by oestrogen, anti-oestrogens, 

growth factor receptors and protein kinases influences ER sensitivity to anti-oestrogen 

therapy (Ali et al. 1993, Arnold et al. 1994, Cho et al. 1993, Riggins et al. 2007). 

Changes in the expression pattern of ER coregulators may influence the balance of 

agonistic versus antagonistic effect of anti-oestrogens and contribute to a resistant 

phenotype. The ER coactivator, steroid receptor coactivator-3 (SRC-3) or commonly 

known as amplified in breast cancer 1 (AIB1), is overexpressed in 64% of breast 

tumours and is associated with worst disease outcome in tamoxifen treated patients 

(Anzick et al. 1997, Osborne et al. 2003). In vitro studies have shown that high levels of 

AIB1 enhances the agonist activity of tamoxifen and results in drug resistance      

(Smith et al. 1997, Su et al. 2008, Webb et al. 1998). The recruitment of corepressors to 

the ER usually results in a repression of anti-oestrogen mediated agonist activity. 

Lavinsky et al. have shown that the decreased levels of NCoR correlated with acquired 

tamoxifen resistance in breast cancer (Lavinsky et al. 1998). Increased levels of AP-1 

and NF-κB transcription factors, that mediate ER tethering to specific genes, have also 

been associated with anti-oestrogen resistance (Zhou et al. 2007). Interestingly, 

Jameson et al. observed a potent agonist effect of fulvestrant in non-classical genomic 

pathways by mediating ER interaction with AP-1 transcription factor (Jakacka et al. 

2001). The activation of AP-1 by this “pure” ER antagonist is independent of its AF-1 

and AF-2 function and suggests a possible mechanism of anti-oestrogen resistance.  
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Growth factor receptor and other cellular kinase pathways have been implicated in   

anti-oestrogen resistance by providing alternative proliferation and survival stimuli to 

breast tumours. Multiple regulatory interactions between ER, growth factors and protein 

kinases may stimulate ER-independent growth and regulate resistance through their 

signalling crosstalk. Overexpression of EGFR and HER2 has been reported in cells 

stimulated by anti-oestrogen drugs. Continuous supplementation of tamoxifen or 

fulvestrant in cultured ER positive breast cancer cells revealed a parallel increase in 

EGFR and HER2 protein that contributes to tolerance toward these anti-oestrogens 

(Knowlden et al. 2003, McClelland et al. 2001). In addition, rapid activation of EGFR 

and HER2 has been observed in tamoxifen-treated breast cancer cells (Shou et al. 2004). 

Activated EGFR and HER2 receptors trigger the MAPK signalling pathway that result 

in ER-independent stimulation of proliferation and facilitates acquired resistance to anti-

oestrogens (Gutierrez et al. 2005). Such crosstalk between ER and growth factor 

signalling pathways establishes a self-propagating autocrine growth regulatory loop that 

drives cell growth in anti-oestrogen resistant cells. 

Understanding the ER and growth factor signalling crosstalk in developing anti-

oestrogen resistance has prompted a combinatorial approach in breast cancer treatment, 

targeting both ER and growth factor signalling pathways. Pre-clinical study has shown 

that gefitinib, an EGFR tyrosine kinase inhibitor, in combination with tamoxifen or 

fulvestrant synergistically inhibits in vitro cancer cell growth and the development of 

anti-oestrogen resistance (Gee et al. 2003). Current clinical trials are ongoing to 

investigate the benefit of using fulvestrant in combination with trastuzumab to 

overcome, delay or prevent the onset of anti-oestrogen resistance in breast cancer 

patients. 

 

1.3.6 ER coregulators and breast cancer 

 

The ligand-bound ER is modulated by the recruitment and interaction with coregulatory 

proteins that either enhance (coactivators) or repress (corepressors) its transactivation 

functions. More than 350 coregulators have been identified to date; however most of 

these coregulators are not specific to only the ER but also other nuclear receptors 

(Lonard et al. 2007, McKenna et al. 2002). The association of ER with coactivators and 

corepressors is regulated by ligand-specific conformational changes; where agonistic 

ligands recruit coactivators while antagonistic ligands recruit corepressors.  
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Several classes of ER coactivators have been well described, especially the SRC family 

of coactivators. This family consists of SRC-1, SRC-2 and SRC-3 (also known as AIB1) 

(Leo et al. 2000). The binding of SRC family members to ligand-bound ER is mediated 

by the interaction of AF-2 region in the LBD of the ER and the nuclear receptor (NR) 

box within coactivators, which consists of a conserved leucine-rich motif, LXXLL 

(where L is leucine, X is any amino acid) (Ding et al. 1998). Coactivators from the SRC 

family possess histone acetyltransferase (HAT) activity that acetylates histone proteins 

in the chromatin and weakens the association of histones with DNA. This alters 

nucleosomal conformation and stability, enhancing the formation of a stable 

preinitiation complex, and facilitating RNA polymerase II transcriptional activation 

(Korzus et al. 1998, Sternglanz 1996). Steroid receptor RNA activator (SRA) is another 

class of unique coactivator that interacts with the SRC-1 complex and activates 

transcription through the AF-1 domain as an RNA molecule instead of a protein      

(Lanz et al. 1999).  

Altered expression of coactivators has been correlated with breast cancer progression. 

Low levels of SRC-1 were observed in breast tumours compared to its relatively high 

levels in normal breast tissues (Berns et al. 1998). Although there was no correlation 

between SRC-1 levels with ER status, patients with low SRC-1 levels did not respond to 

tamoxifen treatment. In contrast, SRC-3 or AIB1 mRNA is overamplified in               

ER positive breast cancer cell lines and 64% primary breast tumours                    

(Anzick et al. 1997). A larger case study on breast and ovarian cancer correlated SRC-3 

expression with tumour size and ER-α positivity (Bautista et al. 1998). Overexpression 

of SRA has also been described in breast tumours compared to normal breast tissues 

(Murphy et al. 2000). 

The number of corepressors identified over the years has been growing steadily. In 

contrast to ER coactivators, ER corepressors do not seem to share a common interaction 

domain or mechanism for ER repression. While corepressors appear to prominently act 

through chromatin modification, they may also function through more than one 

mechanism and regulate transcription at additional levels. The best characterised        

ER corepressors are NCoR and SMRT, originally identified as binding factors to 

thyroid and retinoic acid receptors (Chen et al. 1995, Horlein et al. 1995). Both NCoR 

and SMRT contain a conserved bipartite NR interaction domain (NRID) which consists 

of the L/IXXI/VI motif (where L is leucine, I is isoleucine, V is valine, X is any amino 

acid) termed the CoRNR box (Hu et al. 1999, Li et al. 1997). Although this motif is 
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similar to the NR box within coactivators, the CoRNR box is predicted to form an 

extended helical structure that differs from the coactivator NR box and facilitates its 

molecular mechanism of recruitment and ER repression in the presence of anti-

oestrogens (Perissi et al. 1999). These corepressors interact with different components 

of the HDAC protein complexes to facilitate chromatin condensation and inhibition of 

gene transcription (McKenna et al. 1999). Unlike most corepressors that do not 

exclusively interact with ER, the repressor of ER-α activity (REA) function is             

ER specific and acts by competing for ER binding sites with coactivators          

(Montano et al. 1999). REA competes directly with SRC-1 for ER binding sites and has 

been shown to reverse enhanced ER activity mediated by coactivators                 

(Delage-Mourroux et al. 2000). Scaffold attachment factor B1 (SAFB1) and SAFB2 are 

corepressors that also bind and modulate ER activity through chromatin remodelling or 

their interaction with the basal transcription machinery, RNA polymerase II         

(Nayler et al. 1998, Oesterreich et al. 2000, Townson et al. 2003).  

The possible significance of these corepressors in breast cancer development and 

progression has been suggested. Overexpression of NCoR and SMRT have been 

reported in intraductal carcinomas compared to normal mammary glands, but both 

NCoR and SMRT levels were subsequently downregulated during progression from 

intraductal to invasive ductal carcinomas (Kurebayashi et al. 2000). NCoR and SMRT 

bind strongly to ER-α in the presence of tamoxifen and levels of NCoR are substantially 

decreased in breast cancer cells resistant to prolonged tamoxifen treatment       

(Lavinsky et al. 1998). In this same study, overexpression of NCoR and SMRT has 

been shown to reverse the agonistic activity of tamoxifen. Similar pattern of expression 

was observed for REA corepressor, where levels were lower in high-grade tumours 

compared with low-grade tumours (Simon et al. 2000). REA also binds strongly to    

ER-α in the presence of tamoxifen and its overexpression increased antagonist activity 

of anti-oestrogens (Montano et al. 1999). Analysis of SAFB1 expression in invasive 

breast cancers revealed a significant correlation between low SAFB1 levels with shorter 

overall patient survival (Oesterreich S 2002). Overexpression of SAFB1 resulted in 

increased antagonistic activity and reversed agonistic activity of tamoxifen    

(Oesterreich et al. 2000). A subsequent study revealed that SAFB1 overexpression was 

able to block cell cycle progression and inhibit anchorage-dependent and -independent 

growth of breast cancer cells (Townson et al. 2000). 
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1.4 Scaffold attachment factor B1 (SAFB1) and SAFB2 

1.4.1 SAFB family, gene and protein 

 

The SAFB protein family comprise of three protein members: SAFB1, SAFB2 and 

SAFB-like transcription modulator (SLTM). SAFB1, originally known as SAFB, was 

first identified by Renz and Fackelmayer as a protein that binds scaffold/matrix 

attachment regions (S/MARs) (Renz et al. 1996). At the same time, Oesterreich et al. 

reported the same protein binding to the promoter of heat shock protein 27 (Hsp27) and 

termed it Hsp27 ERE TATA-binding (HET) protein (Oesterreich et al. 1997). 

Meanwhile, Weighardt et al. discovered this identical protein in a yeast two-hybrid 

screen using heterogenous nuclear ribonucleoprotein (hnRNP) A1 as a bait and named it 

hnRNP A1 associated protein (HAP) (Weighardt et al. 1999). SAFB, HET and HAP are 

identical proteins encoded by the same gene but given different names based on their 

observed function from three independent studies. Since the identification of a second 

family member, SAFB2, SAFB1 has been used as the approved nomenclature to replace 

the original SAFB/HET/HAP protein. A third member of the SAFB family, SLTM, was 

recently characterised for its inhibitory effect on gene transcription associated with the 

induction of apoptosis (Chan et al. 2007). 

Both SAFB1 and SAFB2 are encoded by two separate genes that map to the same locus 

on 19p13.3 of the human chromosome (DuPont et al. 1997). SAFB1 gene lies adjacent 

to the SAFB2 gene, separated by a 490bp bidirectional promoter and positioned in a 

head-to-head arrangement (Figure 1.6) (Townson et al. 2003). The SLTM gene is 

located on the human chromosome 15q22.1. 

The SAFB family are large proteins (>100kDa) that consist of multi-functional domains 

highly conserved among its members (Figure 1.6) [reviewed in (Garee et al. 2010, 

Oesterreich 2003)]. The N-terminus contains a scaffold attachment factor-box (SAF-box) 

that interacts with S/MARs, often found in proteins involved in chromatin organisation 

and regulating gene expression (Aravind et al. 2000). The central domain consists of an 

RNA-recognition motif (RRM) and nuclear localisation signal (NLS). The C-terminus 

comprise of glutamic acid/arginine-rich and glycine-rich regions that act as a potent 

transcriptional repression domain (Townson et al. 2004). SAFB2 shares 74% similarity 

with SAFB1 at the amino acid level, while SLTM shares 34% overall identity with 

SAFB1 and 36% with SAFB2 (Chan et al. 2007, Townson et al. 2003). 
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The SAFB family members are ubiquitously expressed in most tissues, with very high 

expression in the brain (Townson et al. 2003). Interestingly, in silico studies have 

suggested unique functions of each family member in cancerous and normal tissues. For 

example, SAFB1 is only expressed in cancerous bone marrow tissue while SAFB2 is 

only expressed in normal tissue and SLTM is expressed in both (Garee et al. 2010). 

Both SAFB1 and SLTM have punctated nuclear distribution that excludes from the 

nucleoli, whereas SAFB2 is also found in the cytoplasm (Chan et al. 2007, Nayler et al. 

1998, Townson et al. 2003, Weighardt et al. 1999). 

 

Figure 1.6  Schematic diagram of SAFB1 and SAFB2 protein structure. 

SAFB1 and SAFB2 map to the same locus on 19p13.3, separated by a 

bidirectional promoter and oriented in a head-to-head arrangement. Each mRNA 

transcript contains 21 exons which translate to large multidomain proteins. 

SAFB1 and SAFB2 have homologous putative functional domains such as the 

scaffold attachment factor-box (SAF-box), RNA-recognition motif (RRM) and 

nuclear localisation signal (NLS), and Glu/Arg- and Gly-rich transcriptional 

repression domain. Image adapted from (Townson et al. 2003). 
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1.4.2 SAFB function 

 

The presence of shared domains between SAFB family members suggests some 

common functions among SAFB1, SAFB2 and SLTM; however, limited information is 

available on SAFB2 and SLTM function. The major roles of the SAFB protein family 

will mainly be discussed based on the best characterised family member, SAFB1. 

 

1.4.2.1 Chromatin organisation  

 

The potential role of SAFB proteins in chromatin organisation has been speculated 

since its copurification with chromatin and nuclear matrix protein fractions, although 

ultimate proof has yet to be provided (Oesterreich et al. 1997, Renz et al. 1996).  

SAFB1 has been reported to bind AT-rich S/MARs that are important in the regulation 

of gene expression and disease progression including cancer (Gluch et al. 2008, Nayler 

et al. 1998). SAFB1 also binds to base unpairing regions (BURs), DNA regions similar 

to S/MARs that are critically important in higher order chromatin structure   

(Oesterreich, unpublished data). It was therefore proposed that SAFB1 may regulate 

gene expression through its effects on chromatin organisation via interaction with 

S/MARs and BURs (Figure 1.7, pathway A). Chromatin immunoprecipitation (ChIP) 

experiment showed significant SAFB1/SAFB2 enrichment on histone gene clusters of 

chromosome 1 and 6 (Hammerich-Hille et al. 2010). Further evidence has shown an 

interaction between SAFB1 and chromodomain/helicase/DNA-binding domain (CHD1) 

protein that binds AT-rich DNA motifs and involved in chromatin remodelling         

(Tai et al. 2003). Given that both CHD1 and SAFB1 associate with NCoR respectively, 

it is possible that a CHD1-SAFB1-NCoR repressive complex regulates the chromatin 

structure of SAFB1 target genes (Jiang et al. 2006). 

 

1.4.2.2 Transcriptional regulation  

 

The best described role for SAFB proteins is in transcriptional regulation of gene 

expression mediated by direct recruitment to the promoter region or indirect interaction 

with transcription factors [reviewed in (Hong et al. 2012)]. 

Oesterreich et al. was the first to observe SAFB1’s ability to bind directly to regions of 

Hsp27 active promoter and significantly decrease its activity in several breast cancer 
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cell lines (Oesterreich et al. 1997). Affinity purification of the Enhancer-box (E-box) 

and Ku86 sites of the xanthine oxidoreductase (XOR) gene yielded SAFB1 as one of 

the binding protein (Lin et al. 2008). SAFB1 negatively regulates XOR gene expression 

through its binding to the E-box at the promoter and interaction with Ku86 sites.  

Omura et al. reported that SAFB1 binding to the promoter of sterol regulatory element 

binding protein-1c (SREBP-1c) positively regulate its expression when RNA-binding 

motif, X-linked (RBMX) is equally present in the cell (Omura et al. 2009).       

Although SAFB proteins may influence gene expression through direct binding to their 

target genes, Hammerich-Hille et al. observed a lack of significant similarities between 

SAFB1 and SAFB2 target genes identified through ChIP and genome-wide expression 

array (Hammerich-Hille et al. 2010). Therefore, they speculated that SAFB1 and 

SAFB2 recruitment to promoter regions alone may not completely mediate 

transcriptional regulation, but interaction with other transcription factors essentially 

contributes to their function (Figure 1.7, pathway B). 

The protein-protein interaction between SAFB proteins with various transcription 

factors is facilitated by an intrinsic C-terminal repression domain (Townson et al. 2004). 

An investigation on the association of SAFB1 and ER-α action revealed a ligand-

independent SAFB1 interaction with ER-α, notably strong at the DNA-binding/hinge 

regions of ER-α (Oesterreich et al. 2000). SAFB1 represses ER-α transcriptional 

activity through interaction with the ER-α DBD, although this doesn’t appear to 

interfere with ER-α’s ability to bind DNA. Similar observations were reported for 

SAFB2; hence SAFB1 and SAFB2 were categorised as ER-α corepressors       

(Townson et al. 2003). Interestingly, my previous findings show that SAFB1 and 

SAFB2 expression itself changes in response to 17β-oestradiol treatment in different 

breast cancer cell lines (Hong et al. 2010). A recent study reported that SAFB1 and 

SAFB2 interacts with ER-α in the presence of 17β-oestradiol and inhibit ER-α function 

by decreasing its intranuclear mobility (Hashimoto et al. 2012). Apart from ER-α, 

SAFB1 interacts promiscuously with several other nuclear receptors including 

peroxisome proliferator-activated receptor gamma (PPARγ), Farnesoid X receptor alpha 

(FXRα), RAR-related orphan receptor alpha 1 (RORα1), vitamin D receptor (VDR), 

liver receptor homolog-1 (LRH-1) and c-Jun (Debril et al. 2005). Interactions between 

the C-terminal region of SAFB1 and the multifunctional tumour suppressor p53 have 

also been reported (Peidis et al. 2011). This latter study showed that SAFB1 colocalised 
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with p53 under the treatment of 5-fluorouracil (5-FU) and repressed p53-dependent 

transcriptional activity. 

 

1.4.2.3 RNA metabolism  

 

Another role for SAFB proteins is found in RNA splicing and metabolism, speculated 

by their interaction with various RNA processing proteins (Figure 1.7, pathway C). 

Nayler et al. first discovered the interaction between SAFB1 with RNA polymerase II 

and a subset of serine/arginine-rich RNA processing factors (SR proteins); hence 

suggesting that SAFB1 serves as a molecular base for the assembly of a transcriptome 

complex that couples chromatin organising S/MARs elements with transcription and 

pre-mRNA processing (Nayler et al. 1998). SAFB1 has been classified as a novel 

member of the hnRNP protein family based on the presence of its RNA-binding domain 

(RBD) that is similar to the conserved residues in other hnRNP proteins         

(Weighardt et al. 1999). Protein-protein interactions between SAFB1 and a range of 

RNA-binding proteins including hnRNP A1, hnRNP D, hnRNP G, SR splicing 

regulatory protein 86 (SRrp86), SR protein kinase 1 (SRPK1) and Src-associated 

substrate in mitosis of 68kDa (Sam68) provide reasonable evidence to implicate a role 

in alternative splicing (Arao et al. 2000, Li et al. 2003, Nikolakaki et al. 2001, Sergeant 

et al. 2007, Weighardt et al. 1999). Indeed, SAFB1 was able to antagonise the exon 

inclusion of cell surface glycoprotein, CD44 when co-transfected with SRrp86            

(Li et al. 2003). Sergeant et al. has also shown that SAFB1 and SAFB2 are able to act 

as negative regulator of transformer 2 protein homolog beta (TRA2B) alternative 

splicing (Sergeant et al. 2007). SAFB1 also inhibits SRPK1 enzymatic activity, thus 

affecting the downstream RNA splicing (Tsianou et al. 2009). It is still not known 

whether these SAFB proteins exert their effects on pre-mRNA splicing through direct 

RNA interaction or by tethering to other splicing factors. 
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Figure 1.7  SAFB1 and SAFB2 cellular functions. 

Illustration shows three known pathways by which SAFB1 and SAFB2 functions 

at the cellular level. Pathway A represents their function in chromatin organisation 

by binding to S/MARs that eventually effect target gene expression. Pathway B 

represents their function in gene regulation mediated by direct recruitment to the 

promoter region or indirect interaction with other transcription factors. Pathway C 

represents their interaction with various RNA processing proteins that 

consequently regulates RNA splicing and metabolism. The illustration was 

created using Servier Medical Art (servier.co.uk/medical-art-gallery). 

 

1.4.3 SAFB mechanism of transcriptional regulation 

 

Knowledge on the mechanism of transcriptional regulation by SAFB proteins has been 

established but remains limited (Hong et al. 2012). SAFB1 transcriptional repression 

executed by its intrinsic repression domain may be mediated by HDAC activity, as 

suggested by Oesterreich et al. (Oesterreich et al. 2000, Townson et al. 2004).  

Although SAFB1 has not been shown to directly interact with any known HDAC 

members, its transcriptional repression activity could partially be relieved by the HDAC 

inhibitor, trichostatin A (TSA) (Oesterreich et al. 2000). An indirect interaction between 

SAFB1 with HDAC complexes has been speculated and further investigation revealed 

NCoR as an interacting mediator between SAFB1 and HDAC3 (Jiang et al. 2006).  
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Jiang et al. reported that NCoR interacts directly with the C-terminal repression domain 

of SAFB1 and its absence diminishes SAFB1 repressive effect. This observation 

proposed that the repression ability of SAFB1 is partly a HDAC-dependent action 

mediated through NCoR (Jiang et al. 2006). 

A more recent study by Garee et al. presented evidence for an alternative mechanism 

that could regulate SAFB action, i.e. through the post-translational modification by 

small ubiquitin-like modifiers (SUMO) known as SUMOylation (Garee et al. 2011). 

Similar to ubiquitination, SUMOylation is an enzymatic process that occurs at a unique 

four amino motif that includes a lysine residue for modification [reviewed in     

(Johnson 2004)]. SUMOylation of transcription factors and coregulators has been 

commonly shown to negatively regulate transcriptional activity. Potential lysine 

modification sites were identified at amino acid 231 and 294 within SAFB1 and these 

sites were 100% conserved in SAFB2 (Garee et al. 2011). SUMOylation of SAFB1 

occurs predominantly at amino acid 294, a common effect that is not cell line specific. 

SUMOylation of SAFB1 did not indicate a change in subcellular localisation, protein 

half-life or alter interaction with NCoR; however SAFB1 SUMOylation did 

significantly decrease its interaction with HDAC3. Interestingly, SAFB1 transcriptional 

activity was abolished when SUMOylation sites were mutated, thus linking SAFB1 

SUMOylation and its transcriptional repressive activity (Garee et al. 2011).  

Song et al. has revealed another post-translational modification for SAFB2 in an 

attempt to identify BRCA1 ubiquitination substrates (Song et al. 2011).               

BRCA1 interacts with BRCA1-associated RING domain protein 1 (BARD1) to form a 

stable heterodimer complex that displays ubiquitin E3 ligase activity [reviewed in  

(Baer et al. 2002)]. Unlike most ubiquitin ligases, BRCA1/BARD1 catalyses an 

unconventional formation of lysine-6-linked chains which do not result in protein 

degradation (Wu-Baer et al. 2003). BRCA1 has been shown to induce ubiquitination of 

SAFB2 and result in increased SAFB2 protein expression. The overexpression of 

SAFB2 then significantly reduced the levels of BARD1 via its C-terminal repression 

domain, but did not affect BRCA1 expression. Taken together, these results showing the 

upregulation of SAFB2 through BRCA1/BARD1 mediated ubiquitination and 

consequent downregulation of BARD1 by SAFB2 overexpression suggest a possible 

feedback loop that regulates SAFB2 and BARD1 protein levels (Song et al. 2011). This 

finding also suggests a possible role for SAFB proteins as the missing link between 

BRCA1 and its function in repressing ER-α transcriptional activity. 
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1.4.4 SAFB and breast cancer 

 

The strong correlation between SAFB proteins and breast cancer stems from their 

prominent role as ER-α transcriptional repressors and their interaction with key players 

in tumourigenesis. Functional and clinical studies have provided robust evidence that 

implicate the relevance of SAFB proteins in breast cancer.  

SAFB1 expression were detected at varying levels in eight different breast cancer cell 

lines and SAFB1 levels in the cell inversely correlates with cell proliferation   

(Townson et al. 2000). SAFB1 protein expression assessed in 61 primary breast tumour 

tissues revealed widely varying levels, with 16% of the tumours lacking any detectable 

SAFB expression. High SAFB1 expression in these tumours was associated to low      

S-phase fraction and aneuploidy, a common phenotype of tumour cells             

(Townson et al. 2000). On the other hand, low levels of SAFB1 in invasive breast 

tumours were significantly associated to worse overall survival in patients  

(Hammerich-Hille et al. 2009, Oesterreich S 2002). Moreover, mouse embryonic 

fibroblasts with a genetic deletion of SAFB1 exhibit important characteristics of 

carcinogenesis, including cellular immortalisation, increased cell transformation, ability 

to proliferate in growth-restricting conditions and increased anchorage-independent 

growth (Dobrzycka et al. 2006). These observations suggest that a critical balance of 

SAFB proteins is important in breast tumourigenesis.  

Low SAFB proteins expression could result from high rates of loss of heterozygosity 

(LOH) at the chromosomal locus 19p13, nearby both SAFB1 and SAFB2 genes 

(Oesterreich et al. 2001). The rate of LOH at this locus has been described as one of the 

highest LOH regions in the breast cancer genome, suggesting that SAFB proteins may 

also act as tumour suppressor proteins (Miller et al. 2003). However, SAFB1 germline 

mutation or inactivation was not observed in hereditary breast cancer                

(Bergman et al. 2008). These observations indicate that SAFB1 is not involved in 

hereditary breast cancer but may be important in sporadic breast cancer.  

SAFB proteins have also been shown to be involved in apoptosis, a cellular response 

central to the development of cancer. Upon apoptosis induction by staurosporine, 

SAFB1 protein that normally displayed nuclear localisation excluding the nucleolus 

translocates into the nucleolus and thereafter, localised to peri-nucleolar ring structures 

(Lee et al. 2007). SAFB1 localisation, mediated by C-terminal protein-protein 
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interaction domain, may be associated with maturation of RNA at the initial stages and 

preparation of DNA cleavage at the later stages of apoptosis [reviewed in              

(Garee et al. 2010)]. Another study confirmed the participation of SAFB1 and SAFB2 

in apoptosis when these proteins were shown to regulate transcription of apoptosis-

related genes in breast cancer (Hammerich-Hille et al. 2010). 

These clinical and in vitro observations provide convincing evidence that SAFB1 and 

SAFB2 are involved in breast cancer development, although to what extent is not 

understood. Further elucidation of their role in metastatic breast cancer and               

anti-oestrogen resistance is needed. Many other questions remain, such as: in what ways 

are SAFB1 and SAFB2 regulated? Do they function additively, synergistically or 

antagonistically? What are the consequences of inactivated SAFB1 and SAFB2 to 

breast tumourigenesis? What are the functions of their highly homologous RRM? In 

summary, further detailed study of SAFB1 and SAFB2 is needed to fully reveal their 

functions and involvement in breast cancer development. 
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1.5 Hypotheses and aims 

1.5.1 Hypotheses 

 

Despite increasing interest on the role of SAFB1 and SAFB2 in breast cancer, 

fundamental questions about the regulation and function of these proteins in breast 

cancer remain unanswered. The effect of SAFB proteins on ER function is well 

described but the effects of ER-ligands on SAFB proteins have yet to be explored. 

Recent work by Hammerich-Hille et al. has investigated the functional consequence of 

the loss of SAFB proteins in breast cancer cells containing ER, however their role in 

breast cancer cells lacking ER might contribute to the oestrogen-resistant phenotype of 

these cells. The role of SAFB proteins in RNA metabolism and processes has been 

speculated but the function of their highly homologous internal RRM has not yet been 

examined. Therefore, the overall hypotheses of this project are: 

 SAFB1 and SAFB2 expression is regulated by ER-ligands in breast cancer cells. 

 Loss of SAFB1 and SAFB2 alters expression of target genes that contribute to 

the invasive and metastatic characteristics of breast cancer cells. 

 The homologous RRM within SAFB proteins is functional: SAFB proteins can 

bind RNA and regulate gene expression. 

 

1.5.2 Aims 

 

The specific aims of this project were to: 

 Determine the effects of oestrogen, 17β-oestradiol, on the regulation and cellular 

localisation of SAFB1 and SAFB2 in ER positive (MCF-7) and ER negative 

(MDA-MB-231) breast cancer cells. 

 Investigate whether loss of SAFB1 and SAFB2 by RNAi affects expression of 

breast cancer associated genes in MDA-MB-231 cells. 

 Investigate the RNA-binding properties of SAFB1 using iCLIP technology to 

identify novel SAFB-target genes and a potential consensus RNA-binding motif. 
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Chapter 2 : Materials and methods 

2.1 General laboratory practice 

 

All experimental procedures were conducted in accordance to university standards for 

safe working with chemical substances in laboratories, which comply with the Control 

of Substances Hazardous to Health (COSHH) regulations. Tissue culture was carried 

out in compliance with regulations for containment of class II pathogens. 

 

2.2 Source of tissue 

 

Frozen breast tumour tissue was obtained from the Breast Cancer Campaign Tissue 

Bank (reference number: BCCTB13). Samples were taken from consenting patients and 

snap frozen in liquid nitrogen before storing at -80°C. 

 

2.3 Cell culture  

2.3.1 Cell lines 

 

The breast cancer cell lines used in this study are MCF-7 (catalogue number:       

ATCC-HTB-22) and MDA-MB-231 cells (catalogue number: ATCC-HTB-26), both 

purchased from American Type Culture Collection (ATCC) and LGC Standards, 

Europe.  

 

2.3.1.1 MCF-7  

 

MCF-7 is a tumourigenic breast epithelial cell line originally derived from pleural 

effusion of a 69 year old female patient with breast adenocarcinoma. The phenotypic 

characteristics of this cell line is early-stage, non-invasive, ER and PR positive breast 

cancer (Soule et al. 1973). 
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2.3.1.2 MDA-MB-231 

 

MDA-MB-231 is a tumourigenic breast epithelial cell line originally derived from 

pleural effusion of a 51 year old female patient with breast adenocarcinoma. The 

phenotypic characteristics of this cell line is invasive, ER and PR negative breast cancer 

(Cailleau et al. 1978). 

 

2.3.2 Routine cell passage 

 

Cell culture was performed under aseptic conditions in Class II laminar flow 

microbiological safety cabinet. MCF-7 and MDA-MB-231 were routinely cultured in 

75cm
2
 and 25cm

2
 tissue culture flasks (Greiner) at 37°C in a humidified atmosphere 

containing 5% CO2. Cell lines were cultured in Dulbecco’s Modified Eagles medium 

(DMEM) without phenol-red (Sigma-Aldrich), supplemented with 10% foetal bovine 

serum (FBS) (Sigma-Aldrich), 2mM L-Glutamine (Sigma-Aldrich) and 1% penicillin-

streptomycin (Sigma-Aldrich). All media was stored at 4°C and warmed in the water 

bath to 37°C prior to use.  

 

2.3.3 Cell line maintenance 

 

Cells were passaged every 3 to 5 days at 70-80% confluency. Cell passage was 

performed by removing growth media, rinsing the cell monolayer with sterile              

1× phosphate buffered saline (PBS) (Sigma-Aldrich) and incubating with 2mM trypsin-

EDTA (Sigma-Aldrich) for 5 minutes at 37°C. Complete growth media was added to 

neutralise the effect of trypsin-EDTA and detached cells were collected by 

centrifugation at 200×g for 5 minutes. The supernatant was discarded before the 

pelleted cells were resuspended in complete growth media and passaged at a ratio of 1:4. 

 

2.3.4 Cryopreservation of cells  

 

Cells were routinely cryopreserved at early passage numbers to generate a continuous 

stock of frozen cells. Cryopreservation was performed in 1ml aliquots of cryoprotective 

media and stored in cryovials (Nunc). Cryoprotective media consisted of FBS and       
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5% dimethyl sulphoxide (DMSO) (Sigma-Aldrich). Cells were stored in -80°C and 

liquid nitrogen for long term storage. When needed, frozen stocks were rapidly thawed 

in a 37°C water bath and DMSO removed by centrifugation at 200×g for 5 minutes. 

Cells were then resuspended in complete medium and plated in tissue culture flasks. 

 

2.3.5 Cell counting  

 

Cells were counted prior to experiments using an improved Neubauer chamber 

haemocytometer (Hawksley). Cell pellets were resuspended in complete growth media 

and the haemocytometer was filled with 10µl of single cell suspension. The number of 

cells overlying the ruled grid was counted using low power magnification (×10) on an 

inverted microscope (Leica). The number of cells per mililiter was calculated (cells in 

25 squares of the grid multiplied by 10
4
) and the cell suspension was diluted 

appropriately to seed the correct number of cells for each experiment. 

 

2.3.6 Stimulation of cultured cells  

2.3.6.1 Oestrogen treatment  

 

MCF-7 and MDA-MB-231 cells were seeded at a density of 5×10
4
 cells per well in     

12-well culture plates (Greiner) and cultured in complete growth media until 

approximately 60% confluent. Cells were incubated in serum free media for 24 hours 

then replaced with phenol-free DMEM supplemented with 10% charcoal stripped FBS 

(Gibco) and 2mM L-Glutamine (Sigma-Aldrich). 17β-oestradiol (Sigma-Aldrich) was 

dissolved in absolute ethanol and added to the media at a range of final concentrations 

from 0.01µM to 10.0µM for a further 24 hours. Experimental control conditions such as 

untreated and ethanol only (vehicle) were included in each experiment.            

Oestrogen treatment experiments were performed at least three times with cells at 

different passage number. 

 

2.3.6.2 Oestrogen and proteasome inhibitor treatment  

 

MCF-7 and MDA-MB-231 cells were seeded at a density of 5×10
4
 cells per well in    

12-well culture plates and cultured in complete growth media until approximately    
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60% confluent. Cells were incubated in serum free media for 24 hours then replaced 

with phenol-free DMEM supplemented with 10% charcoal stripped FBS (Gibco) and 

2mM L-Glutamine (Sigma-Aldrich). MG132 (Calbiochem) was dissolved in DMSO 

and added to the media to make a final concentration of 0.25µM. The previously used 

range of 17β-oestradiol dose was added together to the media for a further 24 hours. 

Experimental control conditions such as untreated and ethanol only (vehicle) were 

included in each experiment. Experiments were performed at least three times with cells 

at different passage number. 

 

2.3.6.3 Anti-oestrogen treatment  

 

MCF-7 and MDA-MB-231 cells were seeded at a density of 5×10
4
 cells per well in        

12-well culture plates and cultured in complete growth media until approximately     

60% confluent. Cells were incubated in serum free media for 24 hours then replaced 

with phenol-free DMEM supplemented with 10% charcoal stripped FBS (Gibco) and 

2mM L-Glutamine (Sigma-Aldrich). Fulvestrant (also known as ICI 182,780)     

(Sigma-Aldrich) was dissolved in absolute ethanol and added to the media at a range of 

final concentrations from 0.001µM to 1.0µM for a further 24 hours. Experimental 

control conditions such as untreated and ethanol only (vehicle) were included in each 

experiment. Anti-oestrogen treatment experiments were performed at least three times 

with cells at different passage number. 

 

2.3.7 Transient transfection of siRNA in cultured cells  

 

Gene knockdown by RNA interference (RNAi) was performed in MCF-7 and          

MDA-MB-231 cells using validated small interfering RNA (siRNA). Pre-designed 

siRNAs were purchased from Ambion (Life Technologies), targeting exon 12 of the 

SAFB1 transcript (RefSeq: NM_002967.2) and exon 14 of the SAFB2 transcript 

(RefSeq: NM_014649.2) (Figure 2.1). SAFB1 and SAFB2 siRNA were used to 

knockdown their respective expression to validate antibody specificity by Western 

immunoblotting. Cells were also transfected with GAPDH siRNA as a positive control 

or a negative control siRNA in each experiment. Untreated and transfection agent only 

controls were also included in parallel for comparison. Details of the siRNAs used in 

this thesis are listed in Table 2.1. Conditions for efficient siRNA transfection were 
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optimised by varying cell density and concentrations of siRNA or transfection reagent 

within the manufacturer’s recommended guidelines. Reverse transfection method, 

where cells were transfected while still in suspension, was applied to improve 

transfection efficiency. For each siRNA, 8µl siPORT NeoFX Transfection Agent 

(Ambion) was diluted in 400µl DMEM lacking FBS and penicillin-streptomycin. In a 

separate 1.5ml microcentrifuge tube (Greiner), 24µl of 2µM siRNA was diluted in 

400µl DMEM lacking FBS and penicillin-streptomycin to make up a final siRNA 

concentration of 12nM. For the double gene knockdown of SAFB1 and SAFB2, 24µl of 

each 2µM siRNA was diluted in 400µl DMEM lacking FBS and penicillin-

streptomycin. The diluted transfection agent and siRNA were mixed together and 

incubated for 30 minutes to allow the formation of transfection complexes. Transfection 

complexes were dispensed into 25cm
2
 tissue culture flasks along with MDA-MB-231 

cells at the density of 50×10
4
 cells per flask and supplemented with 4ml of DMEM 

lacking penicillin-streptomycin. Media containing transfection complexes was removed 

after 24 hours and replaced with fresh growth media to culture for a further 48 hours 

prior to harvesting. For the gene expression profile study (Section 2.8), transfected cells 

were cultured for 48 hours then followed by stimulation with 0.01µM 17β-oestradiol for 

24 hours prior to harvesting.  

 

 

Figure 2.1 Mapping of the selected siRNAs to SAFB1 and SAFB2 transcripts. 

Pre-designed Silencer
®
 Select siRNAs were mapped to SAFB1 and SAFB2 

transcripts to distinguish specific target sites. The selected siRNAs used in this 

study are highlighted in blue. Image taken from (lifetechnologies.com). 
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SiRNA target Sense (5’-3’) Antisense (3’-5’) 

SAFB1 CCUUAAGAGGGAUGAUAAAtt UUUAUCAUCCCUCUUAAGGtt 

SAFB2 GAGUCAGGAUCGCAAGUCAtt UGACUUGCGAUCCUGACUCtt 

GAPDH Sequence not provided 

Negative control Sequence not provided 

 

Table 2.1  Targets and RNA sequences of siRNA used in this study. 

 

2.4 Preparation of protein samples  

2.4.1 Preparation of whole cell lysate 

 

Whole cell lysates from MCF-7 and MDA-MB-231 cells were prepared by several 

different methods depending on their downstream application. Radio immuno-

precipitation assay (RIPA) buffer was used to extract 17β-oestradiol and fulvestrant 

stimulated cells. Sodium dodecyl sulphate (SDS) lysis buffer was used to harvest 

siRNA transfected cells. The components in each buffer are listed in Table 2.2 and 

methods for each protocol are detailed below. 

  

RIPA buffer SDS lysis buffer 

25mM Tris-HCl (pH7.6) 125mM Tris-HCl (pH6.8) 

0.1% SDS 2% SDS 

150mM NaCl 10% glycerol 

1% NP-40 10% β-mercapthoethanol 

0.1% sodium deoxycholate 0.1% bromophenol blue 

 

Table 2.2 Components of RIPA and SDS lysis buffer used in this study. 

 

2.4.1.1 RIPA buffer 

 

MCF-7 and MDA-MB-231 cells were cultured and stimulated with 17β-oestradiol and 

fulvestrant as previously described. Prior to use, every 1ml of ice-chilled RIPA buffer 

was supplemented with 20µl of protease inhibitor cocktail (Sigma-Aldrich) and 10µl of 

phosphatase inhibitor cocktail (Thermo Scientific). Cells were firstly rinsed 3 times in 
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cold 1× PBS and left in 1ml PBS to enable cell collection into a 1.5ml microcentrifuge 

tube by a cell scraper. The detached cells were collected by centrifugation at 200×g for 

5 minutes and the PBS supernatant was discarded. The pelleted cells were resuspended 

in 200µl of cold RIPA buffer with gentle agitation. Lysed cells were centrifuged for     

15 minutes at 13000×g to pellet cell debris and supernatant were stored at -20°C until 

ready for use. 

 

2.4.1.2 SDS lysis buffer 

 

MCF-7 and MDA-MB-231 cells were transiently transfected with various siRNA as 

previously described. After transfection, cells were collected into a                          

1.5ml microcentrifuge tube as described above. The pelleted cells were resuspended in     

100µl of SDS lysis buffer and stored at -20°C until ready for use. 

 

2.4.2 Preparation of cellular fractions 

 

MCF-7 and MDA-MB-231 cells stimulated with 17β-oestradiol were separated into 

subcellular fractions and phosphorylated/unphosphorylated fractions respectively. 

Cytoplasmic and nuclear fractions were prepared using the Universal Magnetic Co-IP 

kit (Active Motif). PhosphoProtein purification kit (Qiagen) was used to separate 

phosphorylated and unphosphorylated proteins within the whole cell lysate. The 

protocols used for each method are detailed below. 

 

2.4.2.1 Universal Magnetic Co-IP kit  

 

Cytoplasmic and nuclear fractions from MCF-7 and MDA-MB-231 cells stimulated 

with 17β-oestradiol were prepared according to the manufacturer’s protocol. Briefly, 

cells were washed in 1× PBS and collected with a cell scraper into hypotonic lysis 

buffer containing protease inhibitors and phosphatase inhibitors. Cell lysate was 

subjected to centrifugation at 13,000×g and 4°C for 5 minutes to separate the 

cytoplasmic fraction. The resulting supernatant at this step contains the cytoplasmic 

fraction that was removed for storage at -20°C. The pellet was resuspended in digestion 

buffer containing protease inhibitors, phosphatase inhibitors and detergent. Lysate was 
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incubated for 20 minutes on ice before enzymatic shearing cocktail was added for an 

additional incubation at 37°C for 10 minutes. 0.5M ethylenediaminetetraacetic acid 

(EDTA) was added to inactivate the enzyme and lysate was pelleted by centrifugation at 

13,000×g and 4°C for 5 minutes. The resulting contains the nuclear fraction that was 

removed for storage at -80°C. 

 

2.4.2.2 PhosphoProtein purification kit  

 

MDA-MB-231 cells were stimulated in culture with 1.0µM 17β-oestradiol or untreated 

for 24 hours prior to separation of phosphorylated proteins from whole cell lysate. 

Protein separation was performed according to the manufacturer’s instruction. Briefly, 

cells were collected into a 1.5ml microcentrifuge tube as previously described. The 

pelleted cells were resuspended in 5ml of CHAPS or 3-[(3-cholamidopropyl) 

dimethylammonio]-1-propanesulfonate lysis buffer containing protease inhibitors. Cell 

lysate was incubated for 30 minutes at 4°C, and then subjected to centrifugation at 

13,000×g and 4°C for 30 minutes. Supernatant was allowed to pass through the 

separation column provided in the kit and the gel bed within the column binds to any 

phosphorylated protein present in the cell lysate. The flow-through fraction was 

collected for analysis of unphosphorylated proteins in the lysate. Phosphorylated and 

unphosphorylated lysate were stored at -20°C until ready for use.  

 

2.4.3 Protein quantification 

 

Protein concentrations of whole cell lysates in RIPA buffer and all eluate fractions were 

determined by a colourimetric assay following detergent solubilisation using              

DC Protein Assay (BioRad). Protein quantification was performed according to the 

manufacturer’s protocol and absorbance were read at 750nm on SpectraMax              

190 microplate reader (Molecular Devices) using parameters for the Lowry assay       

(Lowry et al. 1951) on the SoftMax Pro software (Molecular Devices). 
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2.5 Co-Immunoprecipitation   

 

Co-Immunoprecipitation (Co-IP) was performed using the Universal Magnetic Co-IP 

kit (Active Motif) according to the manufacturer’s protocol. Briefly, 100µg nuclear 

extract from MCF-7 cells was incubated with 5µg SAFB1 or SAFB2 antibody or an 

appropriate IgG control at 4°C for 4 hours on a rotating platform. Thereafter,        

Protein G magnetic beads (Active Motif) were added to each tube and left to incubate 

overnight at 4°C on a rotating platform. Antibody/protein complexes bound to the 

Protein G beads were precipitated using a magnetic tube stand and the beads were 

washed repeatedly for 4 times prior to resuspension in 20µl SDS lysis buffer. Protein G 

coupled antibody/protein complexes were denatured by heating to 95°C for 5 minutes. 

Protein resuspended in SDS lysis buffer were separated from the magnetic beads and 

stored at -20°C until ready for use.  

 

2.6 Protein analysis  

2.6.1 SDS-Polyacrylamide Gel Electrophoresis 

 

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) was used to separate proteins 

for Western immunoblot analysis. Polyacrylamide gels were cast using a                 

Mini-PROTEAN III system (BioRad) in the components as listed in Table 2.3 below. A 

10% acrylamide resolving gel was allowed to set and overlaid by a 4% acrylamide 

stacking gel with an inserted comb to form 15 wells.  

 

Resolving gel Stacking gel 

10% acrylamide 4% acrylamide 

375mM Tris-HCl (pH7.6) 125mM Tris-HCl (pH6.8) 

0.1% SDS 1% SDS 

0.1% TEMED 0.1% TEMED 

0.1% ammonium persulphate 0.5% ammonium persulphate 

 

Table 2.3  Components of resolving and stacking gels used for SDS-PAGE. 
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Protein samples prepared in RIPA buffer and cell fractions were denatured by the 

addition of SDS lysis buffer and heating at 95°C for 5 minutes. Samples were loaded 

into the wells of the gel and BenchMark Pre-Stained Protein Ladder (Invitrogen) was 

used as a reference molecular weight marker. Electrophoresis was performed in 

electrode buffer at 175V for 1 hour using PowerPAC 3000 system (BioRad).  Proteins 

were transferred onto nitrocellulose membrane (BioRad) in transfer buffer at 120V for    

2 hours using PowerPAC 200 system (BioRad).  The components of the electrode and 

transfer buffer are detailed in Table 2.4. 

 

Electrode buffer Transfer buffer 

25mM Tris-HCl pH8.3 25mM Tris-HCl pH8.3 

190mM glycine 150mM glycine 

0.1% SDS 10% methanol 

 

Table 2.4  Components of electrode and transfer buffer used for SDS-

PAGE. 

 

2.6.2 Western immunoblotting 

 

All nitrocellulose membranes containing transferred proteins were routinely assessed 

for equal protein loading using Ponceau S protein staining (data not shown). 

Membranes were incubated in Ponceau S solution (Sigma-Aldrich) for 1 minute and 

rinsed in distilled water to visualise the protein bands. The membranes were destained 

by washing in 1× PBS prior to membrane blocking. Unbound membrane sites were 

blocked to prevent non-specific antibody binding by incubation in a blocking solution 

of 10% non-fat milk powder (Marvel) in 1× PBS at room temperature for 1 hour. 

Primary antibody incubations were performed at an appropriate dilution in 1% non-fat 

milk powder diluted in 1× PBS and 0.1% Tween-20 (PBST, Sigma-Aldrich). The 

nitrocellulose membranes were incubated in the primary antibody solution at                

4°C overnight. Details of the primary antibodies used are detailed in Table 2.5. After 

incubation, membranes were washed twice for 5 minutes and a final 15 minutes in       

1× PBS on a rocking platform. Horseradish peroxidase (HRP) conjugated secondary 

antibody (Dako) was diluted 1:3000 in 1× PBS and applied to the membranes for 1 hour 

at room temperature. Washes were repeated after secondary antibody incubation and 

proteins were detected by chemiluminescence. The ECL Western Blotting Substrate 
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(Thermo Scientific) or SuperSignal West Femto (Thermo Scientific) detection system 

was used to allow the development of luminescence on antibody bound proteins. 

Membranes were exposed to x-ray films (Kodak) and autoradiographs were developed 

using Compact X4 film processor (Xograph). 

 

2.6.3 Immunofluorescent staining 

 

MCF-7 and MDA-MB-231 cells were seeded at a density of 10×10
4
 cells per well in     

12-well culture plates containing glass coverslips (Scientific Laboratory Supplies). Cells 

were cultured in complete growth media until approximately 60% confluent and 

incubated in serum free media for 24 hours prior to stimulation with 0.01µM and 1.0µM 

17β-oestradiol for a further 24 hours. Cells on coverslips were fixed by immersion in 

cold absolute methanol and incubated at -20°C for 20 minutes. Coverslips were then air 

dried at room temperature before being mounted onto microscope slides                   

(Erie Scientific) using clear nail polish. 

Non-specific binding was blocked by a blocking solution of 10% normal goat serum 

(Jackson ImmunoResearch Laboratories) in Tris-buffered saline (0.1M Tris,           

0.05M NaCl, adjusted to pH7.6) and incubated at room temperature for 10 minutes. 

Primary antibody was added to the coverslips at a 1:200 dilution in 1% normal goat 

serum and incubated at 4°C overnight. Details of the primary antibodies used are 

detailed in Table 2.5. Following the removal of the primary antibody, coverslips were 

washed 3 times in TBS and fluorescein isothiocyanate (FITC) conjugated anti-mouse 

secondary antibody (Jackson ImmunoResearch Laboratories) was added to each 

coverslip at a 1:40 dilution in TBS for 30 minutes in a dark chamber at room 

temperature. The coverslips were stained in 4’,6-diamidino-2-phenylindole (DAPI) 

nucleic acid stain for 5 minutes and mounted over using Fluorescent Mounting Media 

(Dako). Analysis of immunofluorescent staining was performed using Leica TCS      

SP2 UV confocal microscope at the Newcastle University Bioimaging Facility. 
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Primary 

antibodies 

 

Company 
 

Source 
Dilution for 

Western blot 

Dilution for 

immunofluorescence 

SAFB1 Sigma-Aldrich Mouse 1:1000 1:200 

SAFB2 Sigma-Aldrich Mouse 1:250 1:200 

GAPDH Santa Cruz Rabbit 1:1000 - 

β-actin Santa Cruz Rabbit 1:1000 - 

ERK-1 BD Transduction 

Laboratories 

Mouse  1:1000 - 

c-Jun Santa Cruz Rabbit 1:200 - 

SRSF1 Zymed Mouse  1:1000 - 

Phosphoserine Millipore Mouse  1:500 - 

ER-α66 Vector Labs Mouse  1:200 - 

ER-α36 Gift from       

(Wang et al. 2006) 

Rabbit  1:250 - 

SC35 Abcam Mouse  - 1:200 

Sam68 Santa Cruz Rabbit 1:1000 - 

 

Table 2.5  Primary antibodies used in this study. 

 

2.7 RNA isolation and analysis  

2.7.1 RNA extraction and quantitation 

 

Total RNA was extracted from cultured cells and frozen breast tumour tissue using the 

SV Total RNA Isolation System (Promega) following the manufacturer’s protocol. 

Briefly, cells were collected in a 1.5ml microcentrifuge tube as described in Section 

2.4.1.1, while 30mg of frozen breast tumour tissue was homogenised in liquid nitrogen 

using mortar and pestle. Cells or tissue were resuspended in 175µl RNA Lysis Buffer. 

RNA Dilution Buffer was added into the lysate, heated at 70°C for 3 minutes and 

centrifuged at 13,000×g for 10 minutes. The cleared lysate solution was transferred to a 

fresh 1.5ml microcentrifuge tube and added with 200µl of 95% ethanol before being 

applied to the spin column assembly. After several washes and centrifugation of the 

spin column assembly, the spin column membrane containing the RNA was treated with 

DNase I at room temperature for 15 minutes. Following several washes and 

centrifugation, RNA was eluted in nuclease free water provided in the kit.               
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RNA concentrations were measured using a NanoDrop ND-1000 spectrophotometer 

(Thermo Scientific) and RNA samples stored at -80°C until ready for use. 

 

2.7.2 Reverse transcription 

 

First strand cDNA was synthesised from total RNA by reverse transcription using the 

SuperScript III Reverse Transcriptase kit (Invitrogen). Components listed in           

Table 2.6(a) were added to a 1.5ml microcentrifuge tube and heated to 65°C for             

5 minutes followed by at least 1 minute incubation on ice. The contents of the tube were 

collected by brief centrifugation and components listed in Table 2.6 (b) were added into 

the 1.5ml microcentrifuge tubes. Reverse transcription reaction was mixed by gentle 

pipetting and tubes were incubated in a thermal cycler (G-Storm) at 50°C for                

45 minutes followed by 70°C for 15 minutes. Synthesised cDNA was stored at                

-20°C until ready for use. 

 

RT reaction (a) RT reaction (b) 

1µl oligo (dT)20 primers (0.5 µg) 4µl 5× First Strand buffer 

1µl dNTP mix (10mM each) 1µl DTT (0.1M) 

1µg RNA 1µl RNaseOUT (40units/µl) 

Distilled water to 13µl volume 1µl SuperScript III reverse transcriptase 

 

Table 2.6  Components in each reverse transcription reaction. 

 

2.7.3 Quantitative real time polymerase chain reaction  

 

Quantitative real time polymerase chain reaction (qRT-PCR) was performed using 

TaqMan gene expression assays on the StepOne Real Time PCR System             

(Applied Biosystems, Life Technologies) according to the manufacturer’s instructions. 

Validated TaqMan assays were selected to target specific genes as listed in Table 2.7. 

The TaqMan assays were added to a reaction consisting of TaqMan Master Mix, cDNA 

template and RNase-free water. A total volume of 20µl of PCR reaction was transferred 

onto each well of a 96-well reaction plate and sealed with a clear adhesive film. The 

plate was loaded into the instrument and a standard cycling condition was performed as 

follows: 50°C for 2 minutes, 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and 
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60°C for 60 seconds. Data analysis was performed using the comparative Ct method 

normalised against β-actin expression. Experiments were performed in triplicate and 

statistical analysis was performed using student’s t-test (Microsoft Excel). All effects at 

p<0.05 are reported as significant.  

 

TaqMan assay RefSeq Product code Exon boundary 

SAFB1 NM_002967.2 Hs01561652_g1 3-4 

SAFB2 NM_014649.2 Hs01006796_g1 7-8 

β-actin NM_001101.3 Hs99999903_m1 1-1 

VEGF-A NM_001025366.2 Hs03929046_s1 8-8 

CLU NM_001831.3 Hs00156548_m1 3-4 

ITGB4 NM_000213.3 Hs00236216_m1 18-19 

IL-6 NM_000600.3 Hs00985639_m1 2-3 

SHF NM_138356.2 Hs00403125_m1 3-4 

 

Table 2.7  List of TaqMan assays used in this study. 

 

2.8 Gene expression profile study 

2.8.1 RT
2
 Profiler PCR Array 

 

SAFB1 and SAFB2 target genes were identified using a combined approach of siRNA 

gene knockdown and qRT-PCR in MDA-MB-231 cells. Cells were transiently 

transfected with negative control, SAFB1, SAFB2 and SAFB1 + SAFB2 siRNA as 

previously described (Section 2.3.7). Whole cell lysate and RNA were extracted         

(as described in Section 2.4.1.2 and 2.7.1) after transfection and analysed for the degree 

of gene knockdown by Western immunoblotting and qRT-PCR (as described in Section 

2.6.2 and 2.7.3). Once verified for sufficient levels of gene knockdown, RNA was 

reverse transcribed and subjected to qRT-PCR using the RT
2
 Profiler PCR Array system 

(SABiosciences) that utilises the SYBR green detection method. This qRT-PCR array 

system consists of 84 genes involved in breast cancer and ER signalling pathway,          

5 housekeeping genes, 1 genomic DNA control and 6 PCR controls (Figure 2.2).       

The experiment was performed in three replicates and data generated was analysed 

using the web-based RT
2
 Profiler PCR Array data analysis software (SABiosciences) 

that performs the comparative Ct calculations for fold change analysis. Following the 
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recommended fold change threshold, a fold change of ≥ 2.0 represents gene 

upregulation and a fold change of ≤ 0.5 represents gene downregulation. Relationship 

between target genes were analysed in an interaction network using the web-based 

GeneMANIA software (http://www.genemania.org). Several genes that were 

upregulated and downregulated beyond the fold change threshold were selected for 

further validation using qRT-PCR with TaqMan gene expression assays (Section 2.7.3). 

 

 

Figure 2.2  RT
2
 Profiler PCR Array 96-well plate layout. 

Wells A1 to G12 each contain a qRT-PCR assay for a gene related to breast 

cancer and ER signalling pathway. Wells H1 to H5 contain a housekeeping gene 

panel to normalise array data. Wells H6 contains a genomic DNA control. Wells 

H7 to H9 contain replicate reverse transcription controls and wells H10 to H12 

contain replicate positive PCR controls. 

 

2.8.2 Analysis of IL-6 secretion by enzyme-linked immunosorbent assay  

 

Following the qRT-PCR results obtained for interleukin 6 (IL-6) from the RT
2
 Profiler 

PCR Array and TaqMan gene expression assay, enzyme-linked immunosorbent assay 

(ELISA) was performed to analyse the protein secretion of IL-6. MDA-MB-231 cells 

were left untreated or transiently transfected with negative control, SAFB1, SAFB2 and 

SAFB1 + SAFB2 siRNA as previously described (Section 2.3.7). After transfection, the 

supernatant from the cultured cells were aspirated into a fresh 1.5ml microcentrifuge 

tube and cell debris was pelleted by refrigerated centrifuge at 13,000×g for 5 minutes. 

The cleared supernatant was subjected to ELISA using a Human IL-6 ELISA 

Development Kit (PeproTech) according to the manufacturer’s protocol.              
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Briefly, Immulon ELISA microplates (ThermoFisher Scientific) were coated with 

0.5µg/ml of capture antibody and incubated at 4°C overnight to allow antibody binding 

to the wells. Plates were washed with 1× PBST and blocked in 5% bovine serum 

albumin (Sigma-Aldrich) diluted in 1× PBST for 1 hour at room temperature on a 

shaking platform. After incubation, plates were washed again with 1× PBST and         

IL-6 standards were diluted (2,000pg/ml, 1,000pg/ml, 500pg/ml, 250pg/ml, 125pg/ml, 

62pg/ml, 31pg/ml and 0pg/ml) before added into the wells in triplicate. Previously 

collected supernatant from the cultured cells were also added into the wells in triplicate 

and incubated at 4°C overnight on a shaking platform. The wash steps were repeated 

twice and 0.25µg/ml detection antibody was added to each well for 2 hours at room 

temperature on a shaking platform. Plates were washed twice and strepavidin HRP 

conjugate diluted 1:5500 was added to each well for 1 hour at room temperature on a 

shaking platform. After another two washes in 1× PBST, a colourimetric substrate 

solution was added and absorbance was read at 492nm on the MRX II microplate reader 

(Dynex Technologies). A standard curve was produced based on readings from the      

IL-6 standards and the amount of IL-6 secretion (pg/ml) from each experimental sample 

was calculated. IL-6 secretion was compared to the untreated sample to generate a 

relative fold change and statistical analysis was performed using student’s t-test.         

All effects at p<0.05 are reported as significant.  

 

2.9 Crosslinking and immunoprecipitation 

2.9.1 Individual nucleotide resolution CLIP 

2.9.1.1 UV crosslinking of MCF-7 cells 

 

RNA targets for SAFB1 were identified by the UV crosslinking and 

immunoprecipitation (CLIP) technique. CLIP with individual nucleotide resolution 

(iCLIP) was performed using MCF-7 cells based on a published protocol               

(Konig et al. 2011). MCF-7 cells were cultured in 10cm tissue culture plates (Nunc) 

until approximately 80% confluent, then covered in ice-cold 1× PBS and irradiated with 

150mJ/cm
2
 of UV at 254nm in the UV Stratalinker (Stratagene). Cells were harvested 

with a cell scraper into 1.5ml microcentrifuge tubes and precipitated by centrifugation 

for 10 seconds at 13,000×g in a refrigerated centrifuge. Cell pellets were snap frozen on 

dry ice until ready for use. 
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2.9.1.2 Preparation of magnetic beads 

 

Magnetic beads were prepared by washing 100µl protein A or protein G Dynabeads 

(Invitrogen) twice in lysis buffer [Table 2.9 (a)] and resuspending in 100µl lysis buffer 

containing 5µg SAFB1 antibody (Sigma-Aldrich). The magnetic beads were incubated 

at room temperature for 1 hour on a rotating platform and washed twice with lysis 

buffer before the addition of cell lysates. 

 

2.9.1.3 Partial RNA digestion and immunoprecipitation 

 

UV-irradiated cell pellets were resuspended in lysis buffer and treated with Turbo 

DNase I (Ambion) and high (1:10 dilution) or low (1:500 dilution) RNase I (Ambion). 

Cell lysate was incubated at 37°C for 3 minutes while shaking at 1100 rpm (Eppendorf 

Thermomixer) and immediately placed on ice. Cell debris was precipitated by 

centrifugation at 13,000×g and 4°C for 20 minutes, followed by careful collection of the 

supernatant. The cleared lysate was added to the magnetic beads for immuno-

precipitation and incubated at 4°C for 2 hours on a rotating platform. After incubation, 

the supernatant was discarded and magnetic beads were washed twice in high-salt buffer 

[Table 2.9 (b)] followed by twice in wash buffer [Table 2.9 (c)].  

 

2.9.1.4 Dephosphorylation and linker ligation of RNA 3’ ends 

 

The RNA 3’ ends were dephosphorylated in 20µl of PNK mix [Table 2.9 (d)] and 

incubated at 37°C for 20 minutes. Samples were washed once in wash buffer and     

high-salt buffer, followed by two extended washes in wash buffer. RNA linker       

(Table 2.8) was ligated to the 3’ ends by resuspending the magnetic beads in            

20µl ligation mix [Table 2.9 (e)] and incubated overnight at 16°C.  

 

2.9.1.5 Radioactive labeling of RNA 5’ ends and protein separation 

 

After a series of washes, the magnetic beads were resuspended in 8µl of PNK mix 

containing 
32

P-γ-ATP and incubated at 37°C for 5 minutes to radioactively label the 

RNA 5’ ends. The PNK mix was removed and the magnetic beads were resuspended   
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in 20µl NuPAGE loading buffer (Invitrogen). After incubation on a thermomixer at 

70°C for 10 minutes, the empty magnetic beads were precipitated on a magnet and 

supernatant loaded on a 4-12% NuPAGE Bis-Tris gel (Invitrogen) with 1× MOPS 

running buffer (Invitrogen). BenchMark Pre-Stained Protein Ladder (Invitrogen) was 

used as a reference molecular weight marker and electrophoresis was performed at 

180V for 1 hour. Protein and covalently bound RNAs were transferred onto a 

nitrocellulose membrane (BioRad) using a Novex wet transfer apparatus (Invitrogen) 

for 2 hours at 30V. After transfer, the membrane was rinsed in 1× PBS buffer and 

wrapped in cling film to be exposed to a BioMax XAR Film (Kodak) at -80°C for            

1 hour or overnight. 

 

2.9.1.6 RNA isolation 

 

To isolate the protein-RNA complexes, the low RNase sample was cut out from the 

membrane above the molecular weight of SAFB1 protein (175kDa) and placed in a 

1.5ml microcentrifuge tube. Membrane pieces were incubated in 2mg/ml Proteinase K 

(Roche) diluted in PK buffer [Table 2.9 (f)] at 37°C for 20 minutes while shaking at 

1100 rpm. PK buffer containing 7M urea was then added into the tube and incubated at 

37°C for another 20 minutes. Samples were collected and added with 400µl RNA 

phenol/chloroform (Ambion) to a Phase Lock Gel Heavy tube (VWR). The solution was 

incubated at 30°C for 5 minutes while shaking at 1100 rpm prior to phase separation by 

centrifugation at 13,000×g for 5 minutes. The aqueous layer was transferred into a fresh 

tube and mixed with 0.5µl GlycoBlue (Ambion), 40µl 3M sodium acetate pH 5.5 and 

1ml 100% ethanol to precipitate the RNA overnight at -20°C. 

 

2.9.1.7 Reverse transcription 

 

The precipitated RNA was reverse transcribed in 7.25µl RNA/primer mix                   

[Table 2.9 (g)] containing different Rclip primers with individual barcode sequences for 

each replicate (Table 2.8). Samples were incubated at 70°C for 5 minutes and cooled to 

25°C before 2.75µl RT mix containing SuperScript III reverse transcriptase (Invitrogen) 

was added. Reverse transcription reaction was performed at the following conditions: 

25°C for 5 minutes, 42°C for 20 minutes, 50°C for 40 minutes and 80°C for 5 minutes 

before cooling to 4°C. cDNAs were precipitated by the addition of 90µl TE buffer, 
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0.5µl GlycoBlue, 10µl 3M sodium acetate pH 5.5 and 250µl 100% ethanol incubated 

overnight at -20°C. 

 

2.9.1.8 cDNA purification 

 

The precipitated cDNA was resuspended in 6µl of water and 2× TBE-urea loading 

buffer (Invitrogen) and incubated at 80°C for 3 minutes. Samples were loaded onto a 

6% TBE-urea gel (Invitrogen) beside a low molecular weight marker and 

electrophoresis performed at 180V for 40 minutes. Three gel fragments corresponding 

to cDNA size were cut at 120-200 nucleotides (high), 85-120 nucleotides (medium) and 

70-85 nucleotides (low). Gel fragments were mixed with 400µl TE buffer and crushed 

using a 1ml syringe plunger. The crushed gel mixture was incubated at 37°C for 2 hours 

while shaking at 1100 rpm. The liquid portion of the sample was transferred into a 

Costar SpinX column (Corning Incorporated) containing two glass pre-filters 

(Whatman). The tubes were centrifuged at 13,000×g for 1 minute into a fresh           

1.5ml microcentrifuge tube. The samples were added with 0.5µl GlycoBlue,              

40µl 3M sodium acetate pH 5.5 and 1ml 100% ethanol to precipitate again overnight at 

-20°C. 

 

2.9.1.9 Ligation of primer to cDNA 5’ ends 

 

Precipitated cDNAs were resuspended in 8µl ligation mix [Table 2.9 (h)] and incubated 

at 60°C for 1 hour to circularise the cDNAs. In order to subsequently linearise the 

cDNAs, a primer complementary to BamHI restriction site (Table 2.8) was annealed to 

the 5’ end of the cDNAs by adding 30µl oligo annealing mix [Table 2.9 (i)] and 

incubated at the following conditions: 95°C for 1 minute, then temperature decreased by 

1°C every 20 seconds until 25°C was reached. BamHI cleavage was performed by 

adding 2µl BamHI (Fermentas) and incubated at 37°C for 30 minutes. Samples were 

mixed with 50µl TE buffer, 0.5µl GlycoBlue, 10µl 3M sodium acetate pH 5.5 and 

250µl 100% ethanol to precipitate overnight at -20°C. 
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2.9.1.10 Incorporation of sequencing primers by PCR amplification 

 

cDNAs were amplified by adding a PCR mix [Table 2.9 (j)] containing P5/P3 Solexa 

primer mix (Table 2.8) and PCR was performed at the following conditions: 94°C for        

2 minutes, 30 cycles of [94°C for 15 seconds, 65°C for 30 seconds, 68°C for                

30 seconds], 68°C for 3 minutes and hold at 4°C. PCR products were loaded onto the 

QIAxcel analyser system (Qiagen) for an automated gel electrophoresis analysis of the 

cDNA fragments. 

 

2.9.2 High-throughput sequencing and mapping  

 

Prior to sequencing of the iCLIP libraries, the success of the experiment was monitored 

at two crucial steps: the autoradiograph of protein-RNA complex after membrane 

transfer and the gel image of the amplified PCR products. Once verified, samples were 

submitted for high-throughput sequencing at the Institute of Genetic Medicine 

(Newcastle University, UK), in collaboration with Professor Bernard Keavney’s group. 

The samples were prepared for sequencing using the TruSeq Sample Preparation kit 

(Illumina) and the three replicates were sequenced on one lane of the Genome Analyser 

II system (GAIIx, Illumina). Bioinformatics analyses were performed on the sequencing 

results with the help of Tomaz Curk (University of Ljubljana, Slovenia) on the web-

based iCount software (http://icount.fri.uni-lj.si/).  Mapping of SAFB1 crosslink sites to 

regions of respective genes were visualised in UCSC Genome Browser 

(http://genome.ucsc.edu/) and a graphical representation of the novel SAFB1 consensus 

binding motif was designed using the web-based WebLogo software 

(http://weblogo.berkeley.edu/). Two genes that contain SAFB1 binding sites were 

selected for further validation using qRT-PCR with TaqMan gene expression assays 

(Section 2.7.3) and conventional PCR. 

 

2.9.3 Polymerase chain reaction 

 

Conventional polymerase chain reaction (PCR) was used to investigate any alternative 

splicing of exon 2 in the serglycin (SRGN) mRNA transcript. Primers spanning the 

whole of SRGN exon 2 region were designed using Primer-BLAST software (NCBI) 

based on the SRGN mRNA sequence (NCBI accession: NM_002727.2) and synthesised 



 

57 

 

by Invitrogen (Figure 2.3). The exact primer sequences used for this experiment are                        

5’-CAAATGCAGTCGGCTTGTCC-3’ forward primer and 5’-CGTTAGGAAGCCA 

CTCCCAG-3’ reverse primer. PCR reactions consisted of 3µl cDNA template,            

0.25µl of each primer (forward and reverse, 0.5µg/µl), 12.5 µl PCR Master Mix 

(Promega) and 10µl DNase-free water (Promega). PCR reaction conditions were as 

follows: initial denaturation step of 95°C for 5 minutes, 35 cycles of denaturation at 

95°C for 30 seconds, annealing at 57°C for 30 seconds and extension at 72°C for         

60 seconds. This was followed by a final extension step of 72°C for 5 minutes and 

cooling to 4°C for storage. A ‘no template control’ was included and contained           

3µl DNase-free water instead of cDNA template. Blue/Orange Loading Dye (Promega) 

was added to the PCR products and 10µl 1kb DNA ladder (Promega) before loading on 

to a 2% agarose gel (Sigma-Aldrich) made in Tris-Borate-EDTA (TBE) buffer    

(Sigma-Aldrich) containing 2µl ethidium bromide (10mg/ml; Sigma-Aldrich).          

PCR products were separated by electrophoresis at 90V for 45 minutes using 

PowerPAC 200 system (BioRad).  The gel was visualised under ultraviolet (UV) light 

using BioSpectrum Multi Spectral Imager System (UVP). 

 

 

 

Figure 2.3  Schematic illustration of SRGN primers and PCR products. 

Conventional PCR primers were designed within exon 1 and exon 3 to span 

across exon 2 (grey box). This primer design enables the identification of exon 

skipping event based on the size of PCR products obtained. F represents the 

forward primer and R represents the reverse primer. 

 

 

 

 



 

58 

 

 

Primer Sequence 

L3 linker /5rApp/AGATCGGAAGAGCGGTTCAG/3ddC/ 

Rclip 4 X33NNAGGTNNNAGATCGGAAGAGCGTCGTGgatcCTGAACCGC 

Rclip 6 X33NNCCGGNNNAGATCGGAAGAGCGTCGTGgatcCTGAACCGC 

Rclip 8 X33NNCATTNNNAGATCGGAAGAGCGTCGTGgatcCTGAACCGC 

X33 5’ Phosphate 

Cut oligo GTTCAGGATCCACGACGCTCTTCaaaa 

P5 Solexa AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

P3 Solexa CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

 

Table 2.8  List of primers used in iCLIP experiment. 

Highlighted nucleotides represent unique barcode sequences for each replicate, red 

fonts represent BamH1 endonuclease recognition site.  
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(a) Lysis buffer (b) High-salt buffer (c) Wash buffer (d) PNK mix (e) Ligation mix 

50mM Tris-HCl, pH 7.4 

100mM NaCl 

1% NP-40 

0.1% SDS 

0.5% sodium deoxycholate  

Protease inhibitors 

50mM Tris-HCl, pH 7.4 

1M NaCl 

1mM EDTA 

1% NP-40 

0.1% SDS 

0.5% sodium deoxycholate 

20mM Tris-HCl, pH 7.4  

10mM MgCl2  

0.2% Tween-20 

 

15μl water  

4μl 5× PNK pH 6.5 

buffer [350mM Tris-HCl, 

pH 6.5; 50mM MgCl2; 

25mM dithiothreitol] 

0.5μl PNK enzyme  

0.5μl RNasin 

9μl water 

4μl 4× ligation buffer  

[200mM Tris-HCl;  

40mM MgCl2;  

40mM dithiothreitol] 

1μl RNA ligase  

0.5μl RNasin  

1.5μl pre-adenylated linker L3 

[20μM] 

4μl PEG400 

(f) PK buffer (g) RNA/primer mix (h) Ligation mix (i) Oligo annealing mix (j) PCR mix 

100mM Tris-HCl pH 7.4 

50mM NaCl 

10mM EDTA 

 

6.25μl water 

0.5μl Rclip primer  

[0.5 pmol/μl] 

0.5μl dNTP mix [10mM] 

 

6.5μl water 

0.8μl 10× CircLigase Buffer II 

0.4μl 50mM MnCl2 

0.3μl Circligase II 

26μl water 

3μl FastDigest Buffer  

1μl cut oligo [10μM] 

 

19μl cDNA 

1μl primer mix P5/P3 Solexa 

[10μM each] 

20μl Accuprime Supermix 1 

enzyme 

 

Table 2.9  Components of each buffer used in iCLIP experiment. 
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Chapter 3 : Characterisation of SAFB1 and SAFB2 expression in 

breast cancer cell lines 

3.1 Introduction  

 

SAFB proteins, particularly SAFB1 and SAFB2, have been widely studied and 

implicated in breast tumourigenesis (Section 1.4.4). The growing interest with SAFB1 

and SAFB2 in relation to cancer is generated from their well described ability to bind to 

and modulate ER-α, a central player in breast cancer development.  

Studies have indicated that the association of SAFB proteins with ER-α could be 

affected by the presence of ER-α ligands. Although SAFB proteins have been known to 

interact with ER-α regardless of oestradiol, the presence of the anti-oestrogen drug, 

tamoxifen, enhances the corepression effect of SAFB proteins (Oesterreich et al. 2000). 

Hashimoto et al. has shown that the presence of 17β-oestradiol initiates protein 

colocalisation of SAFB1 and SAFB2 with ER-α which decreases the intranuclear 

mobility of ER-α, thus inhibiting its function (Hashimoto et al. 2012). Apart from 

studies that investigate the functional effects of SAFB proteins on ER-α activity, there is 

a scarcity of knowledge on the regulation of SAFB1 and SAFB2 themselves in breast 

cancer cells.  

My previous investigation showed that 17β-oestradiol is capable of differentially 

regulating SAFB1 and SAFB2 expression in ER positive and negative breast cancer cell 

lines (Hong et al. 2010). Interestingly, 17β-oestradiol influenced SAFB1 and SAFB2 

expression in the breast cancer cell line MDA-MB-231, which is commonly known to 

be ER-α negative. This speculates a possible non-classical regulation potentially 

mediated by ER-α isoform present in this cell line (Wang et al. 2005). This preliminary 

observation suggests that SAFB1 and SAFB2 themselves may be regulated by the 

presence of ER ligand, in addition to their ability to regulate ER-α activity. However, 

this implication on SAFB1 and SAFB2 cellular function in breast cancer remains to be 

characterised. Therefore, the central focus of this chapter is to further understand the 

regulation of SAFB1 and SAFB2 in ER positive and ER negative breast cancer cell 

lines. 
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3.2 Aims  

 

The aims of this chapter were to: 

1. Validate the specificity of commercially available SAFB1 and SAFB2 

antibodies used in further experimentation 

2. Determine the effect of 17β-oestradiol stimulation on the expression of 

SAFB1 and SAFB2 in breast cancer cell lines 

3. Examine the effect of 17β-oestradiol stimulation on cellular localisation of 

SAFB1 and SAFB2 in breast cancer cell lines 

4. Investigate the possible post-translational modifications involved in the 

regulation of SAFB1 and SAFB2 by 17β-oestradiol 

5. Study the effect of the drug fulvestrant on the expression of SAFB1 and 

SAFB2 in breast cancer cell lines 

 

3.3 Results   

3.3.1 Validation of SAFB1 and SAFB2 antibodies and siRNA oligonucleotides  

 

The purification of SAFB1 and SAFB2 specific antibodies by previous groups has 

proven to be challenging due to the high sequence homology that they share. Most of 

the protein work relating SAFB expression to breast cancer has been performed using a 

pan-antibody, which recognises both SAFB1 and SAFB2 proteins but is unable to 

reliably distinguish them separately (personal communication). Commercial       

SAFB1- and SAFB2-specific antibodies have recently been made available; however 

the similarities between these two proteins necessitate the need to validate their 

specificity.  

 

3.3.1.1 Knockdown of SAFB1 and SAFB2 using siRNA oligonucleotides 

 

Due to the homology between SAFB1 and SAFB2, the specificity of their siRNA 

oligonucleotides also had to be validated to ensure knockdown using SAFB1         

siRNA doesn’t affect SAFB2 and vice versa. Knockdown of SAFB1 and              
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SAFB2 expression was performed using transient transfection of gene specific siRNA 

in MDA-MB-231 cells (Section 2.3.7). Whole cell lysate was extracted and analysed by 

immunoblotting using SAFB1 and SAFB2 antibodies respectively.  

Using a SAFB1 specific antibody, a significant knockdown of SAFB1 protein was 

observed only in the sample transfected with SAFB1 siRNA and no knockdown was 

seen in the SAFB2 siRNA transfected sample (Figure 3.1). A similar outcome was 

observed using the SAFB2 antibody, whereby a significant knockdown of SAFB2 

protein was observed only in the sample transfected with SAFB2 siRNA and not in the 

SAFB1 siRNA transfected sample. MDA-MB-231 cells were also transfected with 

GAPDH siRNA as a positive transfection control and a significantly reduced GAPDH 

level was observed in these cells. This validation included other experimental controls 

such as untreated cells, transfection reagent only (vehicle) treated cells and negative 

control siRNA treated cells to enable reliable comparison of protein levels within the 

same experiment.  

 

Figure 3.1  Validation of SAFB1 and SAFB2 antibody and siRNA 

specificity. 

MDA-MB-231 cells in culture were transiently transfected with 12nM of siRNA 

targeting SAFB1 and SAFB2 for 72 hours prior to whole cell extraction for    

SDS-PAGE and immunoblotting. Gene knockdown was performed in parallel 

with experimental control conditions including untreated cells, vehicle-only 

treated cells, negative siRNA as negative control and GAPDH siRNA as positive 

control. Successful gene knockdowns are highlighted in the red boxes. β-actin 

expression was analysed to ensure equal loading between the samples. Data 

shown is a representative immunoblot result from at least three biological 

replicates.  
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3.3.1.2 Immunoprecipitation using SAFB1 antibody  

 

The specificity of SAFB1 and SAFB2 antibodies was further tested by 

immunoprecipitation to rule out any antibody cross reactivity. MCF-7 cells under 

normal culture conditions were fractionated to obtain nuclear extracts for this part of the 

study (Section 2.4.2.1). SAFB1 and SAFB2 antibodies were used as ‘capture’ 

antibodies linked to Protein G magnetic beads to precipitate their respective epitope in 

100µg of nuclear extracts (Section 2.5). Precipitated products were separated by      

SDS-PAGE and analysed by immunoblotting with SAFB1 and SAFB2 antibodies 

respectively, as ‘detection’ antibodies.  

Immunoprecipitated protein was detected at approximately 175kDa by the SAFB1 

antibody in the corresponding nuclear extract containing SAFB1 antibody as a capture 

[Figure 3.2 (a), lane 2] but not found in lane 3 containing SAFB2 immunoprecipitant. 

Mouse anti-IgG was included as an experimental control to distinguish background 

signal. SAFB2 antibody was not able to detect any protein through this experimental 

design [Figure 3.2 (b)]. This could possibly be linked to its intracellular localisation, as 

nuclear extracts were used for this experiment, however SAFB2 is not exclusively 

present in the nucleus but also in the cytoplasm (Townson et al. 2003, Weighardt et al. 

1999). 
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Figure 3.2  Immunoprecipitation of SAFB1 and SAFB2 proteins in MCF-7 

cells. 

Nuclear fractions of MCF-7 cells were used in immunoprecipitation with          

3µg of SAFB1 (lane 2) and SAFB2 (lane 3) as the capture antibody. Mouse IgG 

(lane 1) was included as an experimental control. Precipitated products were 

separated on SDS-PAGE and analysed by immunoblotting with SAFB1 or SAFB2 

antibodies. (a) Immunoblotting for SAFB1 specifically detects immuno-

precipitated protein at approximately 175kDa in lane 2, a low background level in 

lane 1 but none in lane 3. (b) Immunoblotting using SAFB2 antibody fails to 

detect any immunoprecipitated protein at approximately 175kDa in any of the 

samples. Data shown is a representative immunoblot result from at least three 

biological replicates.  

 

3.3.2 Oestrogen responsive SAFB1 and SAFB2 expression in breast cancer       

cell lines 

 

Oestrogen is well recognised for its role in breast cancer development, exerting its effect 

on cell proliferation and differentiation via ER action (see Section 1.3). SAFB1 and 

SAFB2 have yet to be identified as oestrogen-response genes, however preliminary 

results from my previous study suggest this possibility (Hong et al. 2010).                   

An interesting observation showed that the active metabolite, 17β-oestradiol was able to 

regulate SAFB1 and SAFB2 expression in MDA-MB-231 cells, reportedly an            

a) b) 
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ER negative breast cancer cell line. Therefore, it was of interest to further examine the 

effects of 17β-oestradiol stimulation on the regulation of SAFB1 and SAFB2 in breast 

cancer cell lines. 

 

3.3.2.1 Effect of 17β-oestradiol on SAFB1 and SAFB2 expression  

 

Two breast cancer cell lines with different ER status were chosen to establish and 

confirm my preliminary observations; MCF-7 cells are known to be an ER positive 

breast cancer cell line, whilst MDA-MB-231 cells are reported to be an ER negative 

breast cancer cell line. These cells were stimulated in culture with 17β-oestradiol using 

a range of concentration (0.01µM-10.0µM) for 24 hours prior to total RNA and whole 

cell lysate extraction (Section 2.3.6.1). qRT-PCR using validated TaqMan gene 

expression assays was performed to analyse SAFB1 and SAFB2 mRNA expression and 

whole cell lysates were used in immunoblotting to examine their protein expression.  

In MCF-7 cells, increasing doses of 17β-oestradiol progressively increased the 

expression of SAFB1 and SAFB2 proteins [Figure 3.3 (a)]. A similar trend was 

observed for SAFB1 and SAFB2 mRNA transcript expression when the relative fold 

change was compared to untreated cells [Figure 3.3 (b)]. Interestingly, 17β-oestradiol 

has an opposite effect on SAFB1 and SAFB2 protein expression in the oestrogen      

non-responsive MDA-MB-231 cells. Increasing doses of 17β-oestradiol caused a 

progressive decrease in the expression of both SAFB1 and SAFB2 proteins          

[Figure 3.4 (a)]. However, this pattern of expression was not reflected at the mRNA 

level [Figure 3.4 (b)], suggesting that 17β-oestradiol may have an effect at the          

post-transcriptional or translational level of SAFB1 and SAFB2 in this particular         

ER negative cell line. 
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Figure 3.3  The effect of 17β-oestradiol on SAFB1 and SAFB2 expression 

in MCF-7 cells. 

MCF-7 cells were cultured in the presence of 17β-oestradiol at the concentration 

of 0.01µM to 10.0µM for 24 hours prior to total RNA and whole cell lysate 

extraction. Experimental control conditions included were untreated cells and 

ethanol only (vehicle) treated cells. (a) A total of 50µg whole cell lysate were 

separated in SDS-PAGE and analysed by immunoblotting for SAFB1 and SAFB2 

expression. β-actin expression was analysed to ensure equal loading between the 

samples. Data shown is a representative immunoblot result from at least three 

biological replicates. (b) mRNA extracted from MCF-7 cells was reverse 

transcribed into cDNA, then subjected to qRT-PCR using TaqMan gene 

expression assays targeting SAFB1 and SAFB2 gene. mRNA expression of each 

sample was normalised against a housekeeping gene, β-actin. SAFB1 and SAFB2 

expression were compared against their corresponding expression in untreated 

cells using the comparative Ct method to generate a relative fold change. Data 

represents the average of three biological replicates ± S.D. Statistical significance 

for SAFB1 expression was calculated using a student’s t-test. * = p<0.05. 

 

 

 

a) b) 
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Figure 3.4  The effect of 17β-oestradiol on SAFB1 and SAFB2 expression 

in MDA-MB-231 cells. 

MDA-MB-231 cells were cultured in the presence of 17β-oestradiol at the 

concentration of 0.01µM to 10.0µM for 24 hours prior to total RNA and whole 

cell lysate extraction. Experimental control conditions included were untreated 

cells and ethanol only (vehicle) treated cells. (a) A total of 50µg whole cell lysate 

were separated in SDS-PAGE and analysed by immunoblotting for SAFB1 and 

SAFB2 expression. β-actin expression was analysed to ensure equal loading 

between the samples. Data shown is a representative immunoblot result from at 

least three biological replicates. (b) mRNA extracted from MDA-MB-231 cells 

was reverse transcribed into cDNA, then subjected to qRT-PCR using TaqMan 

gene expression assays targeting SAFB1 and SAFB2 gene. mRNA expression of 

each sample was normalised against a housekeeping gene, β-actin. SAFB1 and 

SAFB2 expression were compared against their corresponding expression in 

untreated cells using the comparative Ct method to generate a relative fold change. 

Data represents the average of three biological replicates ± S.D. Statistical 

significance for SAFB2 expression was calculated using a student’s t-test.             

* = p<0.05. 

 

3.3.2.2 Effect of 17β-oestradiol on SAFB1 and SAFB2 cellular localisation  

 

The classical ligand bound ER-α66 is known to predominantly reside in the nucleus, 

however ER-α isoforms are shown to have extra-nuclear localisation (King et al. 1984, 

Monje et al. 2001, Wang et al. 2006). The cellular localisation of SAFB1 and SAFB2 

proteins may affect their repressive function on ER; as previously shown by     

Hashimoto et al. (Hashimoto et al. 2012). This association between SAFB proteins 

localisation and ER-α has only been established in osteosarcoma (Saos-2) and primate 

kidney (Cos-1) cells; therefore the next step of this study was to examine the effect of 

a) b) 
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oestrogen on the cellular distribution of SAFB1 and SAFB2 in breast cancer cell lines 

using immunoblotting and immunofluorescent staining. Cultured MCF-7 and         

MDA-MB-231 cells were stimulated with two selected concentrations of 17β-oestradiol, 

0.01µM and 1.0µM, or untreated for 24 hours (Section 2.3.6.1).  

Cells were fractionated to separate the cytoplasmic and nuclear proteins, and then 

subjected to immunoblotting using SAFB1 and SAFB2 antibodies (Section 2.4.2.1). 

SAFB1 protein was detected specifically in the nuclear fractions of both MCF-7   

[Figure 3.5 (a), top panel] and MDA-MB-231 [Figure 3.5 (b), top panel] in the absence 

and presence of 17β-oestradiol. Hormone stimulation did not to have any effect on 

SAFB1 cellular localisation in both these cell lines. In the absence and presence of                

17β-oestradiol, SAFB2 protein was detected in the cytoplasmic and nuclear fractions of 

MCF-7 cells [Figure 3.5 (a), second panel] but only in the nuclear fractions of       

MDA-MB-231 cells [Figure 3.5 (b), second panel]. Higher dose of 17β-oestradiol 

(1.0µM) appears to induce a slight increase of SAFB2 nuclear localisation in           

MCF-7 cells but did not show such an effect in MDA-MB-231 cells. The purity of the 

fractions was confirmed in both cell lines by the detection of ERK-1 protein in the 

cytoplasmic fractions and c-Jun specifically in the nuclear fractions. 

 

 

Figure 3.5  Detection of SAFB1 and SAFB2 in cytoplasmic and nuclear 

fractions of MCF-7 and MDA-MB-231 cells. 

 (a) MCF-7 and (b) MDA-MB-231 cells were stimulated with 0.01µM and 1.0µM 

17β-oestradiol or untreated for 24 hours prior to cell fractionation to separate 

cytoplasmic and nuclear proteins. An equal amount of 50µg protein was used for 

a) b) 
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SDS-PAGE and immunoblotting to detect SAFB1 and SAFB2 expression.      

Each membrane was probed sequentially with ERK-1 and c-Jun to verify the 

purity of the fractions. Data shown is a representative immunoblot result from at 

least three biological replicates. C=cytoplasmic fraction, N=nuclear fraction.  

 

To further validate the cellular distribution of SAFB1 and SAFB2 in these two breast 

cancer cell lines, immunofluorescent staining was performed using SAFB1 and SAFB2 

antibodies to examine their endogenous expression within the cells (Section 2.6.3). 

Confocal laser microscopy revealed punctate patterns of SAFB1 distribution in the 

nucleus of MCF-7 in the absence of 17β-oestradiol [Figure 3.6, top panel]. Addition of 

0.01µM 17β-oestradiol enhanced the distribution of SAFB1 protein in distinct nuclear 

speckles [Figure 3.6, middle panel], while 1.0µM 17β-oestradiol changed the punctate 

pattern to a diffuse nucleoplasmic pattern of SAFB1 [Figure 3.6, bottom panel].  

In MDA-MB-231 cells, a punctate pattern of SAFB1 distribution was also observed in 

the absence of 17β-oestradiol [Figure 3.7, top panel]. Stimulation with 0.01µM and 

1.0µM 17β-oestradiol induced redistribution of SAFB1 from punctate nuclear speckles 

to a diffuse nucleoplasmic pattern [Figure 3.7, middle and bottom panel].  

In untreated conditions, endogenous SAFB2 showed a diffusely homogenous pattern in 

the nucleoplasmic region and slight cytoplasmic expression in MCF-7 cells [Figure 3.8, 

top panel] and MDA-MB-231 cells [Figure 3.9, top panel]. Concentrated nuclear 

staining was observed following the addition of 17β-oestradiol (0.01µM or 1.0µM) in 

both cell lines [Figure 3.8 and Figure 3.9].  

The observations on SAFB1 distribution in the nuclear speckles prompted further 

investigation for a correlation with splicing factor, splicing component 35kDa (SC35) 

which is known to reside in nuclear speckles (Fu et al. 1990). Limitations of the SAFB1 

antibody made co-localisation study challenging, however SC35 protein distribution 

showed similar punctate pattern indicative of nuclear speckles [Figure 3.10];                

as observed for SAFB1 localisation in both MCF-7 and MDA-MB-231 cells        

[Figure 3.6 and Figure 3.7]. 
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Figure 3.6  Distribution of SAFB1 in 17β-oestradiol stimulated             

MCF-7 cells. 

MCF-7 cells were cultured on glass coverslips in the presence of 0.01µM or 

1.0µM 17β-oestradiol for 24 hours prior to fixing and immunofluorescent staining. 

Nuclear staining was performed using DAPI (blue) and SAFB1 (green) staining 

using validated SAFB1 antibody. Untreated cells were also stained for 

comparison. Confocal laser microscopy at 63× magnification revealed punctate 

patterns of SAFB1 in nucleus speckles were enhanced by 0.01µM 17β-oestradiol 

and redistributed into a diffuse nucleoplasmic pattern by 1.0µM 17β-oestradiol.  
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Figure 3.7  Distribution of SAFB1 in 17β-oestradiol stimulated           

MDA-MB-231 cells. 

MDA-MB-231 cells were cultured on glass coverslips in the presence of 0.01µM 

or 1.0µM 17β-oestradiol for 24 hours prior to fixing and immunofluorescent 

staining. Nuclear staining was performed using DAPI (blue) and SAFB1 (green) 

staining using validated SAFB1 antibody. Untreated cells were also stained for 

comparison. Confocal laser microscopy at 63× magnification revealed punctate 

patterns of SAFB1 in nucleus speckles were redistributed to a diffuse 

nucleoplasmic pattern in response to 0.01µM and 1.0µM 17β-oestradiol 

stimulation.  
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Figure 3.8  Distribution of SAFB2 in 17β-oestradiol stimulated            

MCF-7 cells. 

MCF-7 cells were cultured on glass coverslips in the presence of 0.01µM or 

1.0µM 17β-oestradiol for 24 hours prior to fixing and immunofluorescent staining. 

Nuclear staining was performed using DAPI (blue) and SAFB2 (green) staining 

using validated SAFB2 antibody. Untreated cells were also stained for 

comparison. Confocal laser microscopy at 63× magnification revealed a diffused 

pattern of SAFB2 in the nucleoplasmic and slight expression in the cytoplasmic 

region (arrow). 
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Figure 3.9  Distribution of SAFB2 in 17β-oestradiol stimulated           

MDA-MB-231 cells. 

MDA-MB-231 cells were cultured on glass coverslips in the presence of 0.01µM 

or 1.0µM 17β-oestradiol for 24 hours prior to fixing and immunofluorescent 

staining. Nuclear staining was performed using DAPI (blue) and SAFB2 (green) 

staining using validated SAFB2 antibody. Untreated cells were also stained for 

comparison. Confocal laser microscopy at 63× magnification revealed a diffused 

pattern of SAFB2 in the nucleoplasmic and slight expression in the cytoplasmic 

region.  
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Figure 3.10  Intranuclear distribution of SC35 in MCF-7 and               

MDA-MB-231 cells. 

MCF-7 and MDA-MB-231 cells were cultured on glass coverslips for 24 hours 

prior to fixing and immunofluorescent staining. Nuclear staining was performed 

using DAPI and SC35 staining using SC35 antibody. Confocal laser microscopy 

revealed a punctate pattern of SC35 in nuclear speckles similar to the observed 

SAFB1 distribution in these cells. 

 

3.3.3 Oestrogen affects SAFB1 and SAFB2 protein stability in breast cancer cells 

 

Oestrogen is known to regulate post-translational modifications and protein turnover 

that consequently affect the stability of a protein (Dery et al. 2003, Horner-Glister et 

al. 2005, Rebas et al. 2005). The ability of 17β-oestradiol to alter SAFB1 and 

SAFB2 proteins but not mRNA expression in MDA-MB-231 cells prompted 

investigations on the effect of oestrogen stimulation on SAFB1 and SAFB2 protein 

stability especially in this cell type (Section 3.3.2.1). 

 

3.3.3.1 Effect of 17β-oestradiol on SAFB1 and SAFB2 protein phosphorylation  

 

Post-translational modifications can regulate protein activity, cellular localisation and 

stability (Nishi et al. 2011, Ptacek et al. 2006). Numerous putative post-translational 

modifications such as phosphorylation, acetylation, methylation, ubiquitination and 
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sumoylation sites have been identified in SAFB1 and SAFB2 proteins                   

(Garee et al. 2011, Lin et al. 2008, Song et al. 2011). Renz and Fackelmayer identified 

phosphorylated SAFB1 as its naturally-occuring state and suggest that post-translational 

modifications could possibly explain the high discrepancy between its apparent 

molecular weight (150-175kDa) and actual calculated molecular weight (102kDa) 

(Renz et al. 1996). Various reports have shown that 17β-oestradiol can modify the 

degree of protein phosphorylation while others have shown that phosphorylation can 

affect protein stability and function (Auger et al. 2001, Auricchio et al. 1987, Dery et al. 

2003, Nishi et al. 2011, Ptacek et al. 2006, Rebas et al. 2005). Altered phosphorylation 

status of SAFB1 and SAFB2 proteins may affect their protein stability and potentially 

impede their mechanism of action; therefore the effect of 17β-oestradiol stimulation on 

SAFB1 and SAFB2 phosphorylation status was assessed. 

MDA-MB-231 cells were stimulated in culture with 1.0µM 17β-oestradiol or untreated 

for 24 hours prior to separation of phosphorylated proteins using the PhosphoProtein 

purification kit (Section 2.4.2.2). Purified phosphorylated and unphosphorylated lysates 

were used in immunoblotting to examine SAFB1 and SAFB2 protein expression. 

SAFB1 and SAFB2 proteins were readily present in their phosphorylated form in 

MDA-MB-231 cells in the absence of hormone and the stimulation with 1.0µM       

17β-oestradiol did not alter their state of protein phosphorylation [Figure 3.11(a)]. This 

demonstrates that 17β-oestradiol stimulation appears not to affect SAFB1 and SAFB2 

phosphorylation modification. Equal loading for each fraction was validated using       

β-actin and serine/arginine-rich splicing factor 1 (SRSF1) antibodies. β-actin is an 

unphosphorylated protein while SRSF1 protein is extensively phosphorylated in vivo on 

serine residues within its serine/arginine-rich region (Colwill et al. 1996). The purity of 

the fractions was confirmed using a phosphoserine-specific antibody [Figure 3.11(b)]. 
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Figure 3.11  The effect of 17β-oestradiol on SAFB1 and SAFB2 protein 

phosphorylation. 

MDA-MB-231 cells were cultured in the presence of 1.0µM 17β-oestradiol (E2) 

or untreated (U) for 24 hours prior to the purification of phosphorylated and 

unphosphorylated protein fractions. A total of 15µg of each purified fractions 

were separated in SDS-PAGE and analysed by immunoblotting for SAFB1 and 

SAFB2 expression. (a) SAFB1 and SAFB2 were detected only in the 

phosphorylated fractions of both untreated and hormone stimulated cells; not in 

the unphosphorylated fractions. β-actin and SRSF1 expression were analysed in 

these samples to ensure equal loading. (b) The purity of the fractions was verified 

on the same membrane using a phosphoserine-specific antibody. 

 

3.3.3.2 Effect of 17β-oestradiol on SAFB1 and SAFB2 protein turnover  

 

The steady-state level of any protein is the outcome of the change in its rate of synthesis 

compared with its rate of degradation. The balance between these opposing processes, 

known as protein turnover, determine the concentration of a protein (Benaroudj 2005). 

Damaged or unneeded proteins are marked for destruction by the attachment of 

ubiquitin and subsequently degraded by proteasomes (Berg et al. 2002). Recent work by 

Song et al. has shown that BRCA1 induces SAFB2 ubiquitination in vivo               

a) b) 
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(Song et al. 2011). On the other hand, BRCA1 expression is positively regulated by 

oestrogen in breast cancer cells (Gudas et al. 1995, Romagnolo et al. 1998). 

Considering these reports together with the oestrogen induced downregulation of SAFB 

proteins observed in Section 3.3.2.1, the effect of 17β-oestradiol stimulation on SAFB1 

and SAFB2 protein degradation was examined. 

MDA-MB-231 cells were stimulated in culture with 17β-oestradiol at previously used 

concentrations (0.01µM-10.0µM) in the presence of 0.25µM MG132 proteasome 

inhibitor for 24 hours (Section 2.3.6.2). Whole cell lysate was extracted and used in 

immunoblotting to examine SAFB1 and SAFB2 protein expression. Oestrogen-induced 

decrease of SAFB1 and SAFB2 expression was blocked in the presence of MG132 

[Figure 3.12 (right panel)]. 

 

Figure 3.12  The effect of 17β-oestradiol on SAFB1 and SAFB2 pretreated 

with MG132. 

MDA-MB-231 cells were stimulated with 17β-oestradiol at the concentration of 

0.01µM to 10.0µM in the presence of 0.25µM MG132 proteasome inhibitor for 

24 hours prior to whole cell lysate extraction (right panel). Cells were also 

stimulated with 17β-oestradiol only for parallel comparison (left panel). 

Experimental control conditions included were untreated cells and ethanol only 

(vehicle) treated cells. A total of 50µg whole cell lysate were analysed for SAFB1 

and SAFB2 expression. As previously observed, SAFB1 and SAFB2 antibodies 

detected a gradual decrease in protein expression in response to 17β-oestradiol 

stimulation (left panel). This 17β-oestradiol induced effect was abolished in the 

presence of the MG132 proteasome inhibitor (right panel). β-actin expression was 
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analysed to ensure equal loading between the samples and a representative 

immunoblot from at least three biological replicates.  

 

3.3.4 Anti-oestrogen alters SAFB1 and SAFB2 expression in breast cancer        

cell lines 

 

Oestrogen responsiveness of breast tumours play a key role in treatment selection as it 

determines patients’ responses to anti-oestrogen drugs. Conventionally, anti-oestrogen 

therapies are only used to treat patients with ER positive breast cancer (Section 1.2.5.4). 

However, the recent detection of truncated but functional ER-α (Section 1.3.1) and 

observed oestrogen-stimulated response in ER negative breast cancer (Section 3.3.2.1) 

beckons further investigation on the effect of anti-oestrogen drug in ER positive and ER 

negative breast cancer cells. 

The 17β-oestradiol stimulated upregulation of SAFB1 and SAFB2 expression in MCF-7 

cells and the opposite effect of protein downregulation in MDA-MB-231 cells mimic 

the characteristic of oestrogen-response genes (Section 3.3.2.1). To examine if their 

response to oestrogen was mediated by ER, the anti-oestrogen drug fulvestrant was 

selected for further experimentation. Fulvestrant is a routinely used pure ER antagonist 

that functions by downregulating and degrading ER-α (Dauvois et al. 1993).  

Both ER positive and ER negative cell lines were treated with fulvestrant to study its 

effect on SAFB1 and SAFB2 expression. MCF-7 and MDA-MB-231 cells were 

stimulated in culture with fulvestrant at a range of concentration (0.001µM-1.0µM) for 

24 hours prior to total RNA and whole cell lysate extraction (Section 2.3.6.3). qRT-PCR 

using validated TaqMan gene expression assays was performed to analyse SAFB1 and 

SAFB2 mRNA expression and whole cell lysates were used in immunoblotting to 

examine their protein expression. 

In MCF-7 cells, increasing doses of fulvestrant decreased the expression of SAFB1 and 

SAFB2 proteins [Figure 3.13 (a)]. SAFB1 and SAFB2 mRNA transcript expression 

mirrors this progressively decreasing trend when the relative fold change was compared 

to untreated cells [Figure 3.13 (b)]. Conversely, fulvestrant treatment did not appear to 

substantially alter SAFB1 and SAFB2 protein or mRNA expression in MDA-MB-231 

cells (Figure 3.14).  
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Figure 3.13  The effect of fulvestrant on SAFB1 and SAFB2 expression in 

MCF-7 cells. 

MCF-7 cells were cultured in the presence of fulvestrant at the concentration of 

0.001µM to 1.0µM for 24 hours prior to total RNA and whole cell lysate 

extraction. Experimental control conditions included were untreated cells and 

ethanol only (vehicle) treated cells. (a) A total of 50µg whole cell lysate were 

separated in SDS-PAGE and analysed by immunoblotting for SAFB1 and SAFB2 

expression. SAFB1 and SAFB2 antibodies detected a gradually decreasing protein 

expression in response to fulvestrant stimulation. β-actin expression was analysed 

to ensure equal loading between the samples. Data shown is a representative 

immunoblot result from at least three biological replicates. (b) mRNA extracted 

from cells was reverse transcribed into cDNA, then subjected to qRT-PCR using 

TaqMan gene expression assays targeting SAFB1 and SAFB2 gene. mRNA 

expression of each sample was normalised against a housekeeping gene, β-actin. 

SAFB1 and SAFB2 expression were compared against their corresponding 

expression in untreated cells to generate a relative fold change. Data represents the 

average of three biological replicates ± S.D. Statistical significance of SAFB1 and 

SAFB2 expression was calculated using a student’s t-test. **=p<0.01,                   

*** = p<0.001. 

 

 

 

 

 

 

a) b) 
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Figure 3.14  The effect of fulvestrant on SAFB1 and SAFB2 expression in 

MDA-MB-231 cells. 

MDA-MB-231 cells were cultured in the presence of fulvestrant at the 

concentration of 0.001µM to 1.0µM for 24 hours prior to total RNA and whole 

cell lysate extraction. Experimental control conditions included were untreated 

cells and ethanol only (vehicle) treated cells. (a) A total of 50µg whole cell lysate 

were separated in SDS-PAGE and analysed by immunoblotting for SAFB1 and 

SAFB2 expression. SAFB1 and SAFB2 antibodies detected unaltered protein 

expression in response to fulvestrant stimulation. β-actin expression was analysed 

to ensure equal loading between the samples. Data shown is a representative 

immunoblot result from at least three biological replicates. (b) mRNA extracted 

from cells was reverse transcribed into cDNA, then subjected to qRT-PCR using 

TaqMan gene expression assays targeting SAFB1 and SAFB2 gene. mRNA 

expression of each sample was normalised against a housekeeping gene, β-actin. 

SAFB1 and SAFB2 expression were compared against their corresponding 

expression in untreated cells to generate a relative fold change. Data represents the 

average of three biological replicates ± S.D. Statistical significance of SAFB1 and 

SAFB2 expression was calculated using a student’s t-test. * = p<0.05. 

 

3.3.5 Oestrogen and anti-oestrogen mediate a response in both ER positive and 

ER negative breast cancer cell lines 

3.3.5.1 Oestrogen and anti-oestrogen affects ER protein expression 

 

Interesting evidence from my findings in MDA-MB-231 cells led to extended 

investigations to examine its ability to mediate a hormone response. Although 

commonly described as an ER negative breast cancer cell line, the truncated ER-α36 

variant is present in MDA-MB-231 cells and able to mediate non-genomic oestrogen 

a) b) 
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signalling (Wang et al. 2006, Zhang et al. 2012). As previously observed, differential 

expression of SAFB1 and SAFB2 was regulated by 17β-oestradiol and fulvestrant in 

MCF-7 and MDA-MB-231 cells (Section 3.3.2.1 and Section 3.3.4). To further 

elucidate the involvement of ER-α in the responsiveness to oestrogen and its antagonist, 

the presence and regulation of ER-α and its isoforms in both these cell lines were 

characterised. 

Firstly, the effect of 17β-oestradiol stimulation on ER-α66 and ER-α36 in MCF-7 and 

MDA-MB-231 cells was investigated. Cells were stimulated in culture with              

17β-oestradiol using a range of concentrations (0.01µM-10.0µM) for 24 hours prior to 

whole cell lysate extraction (Section 2.3.6.1). Immunoblotting was performed to analyse 

ER-α66 and ER-α36 protein expression. In MCF-7 cells, ER-α66 was readily present in 

the untreated sample but ER-α36 protein level was low and negligible [Figure 3.15 (a)]. 

17β-oestradiol stimulation did not appear to significantly alter the expression of these 

receptors. As expected in MDA-MB-231 cells, ER-α66 was not present but ER-α36 

protein was present in the untreated sample. The expression of these receptors was also 

not significantly altered by 17β-oestradiol stimulation [Figure 3.15 (b)]. 

 

Figure 3.15  The effect of 17β-oestradiol on ER-α expression in MCF-7 and 

MDA-MB-231 cells. 

 (a) MCF-7 and (b) MDA-MB-231 cells were cultured in the presence of         

17β-oestradiol at the concentration of 0.01µM to 10.0µM for 24 hours prior to 

whole cell lysate extraction. Experimental control conditions included were 

untreated cells and ethanol only (vehicle) treated cells. A total of 50µg whole cell 

lysate were separated in SDS-PAGE and analysed by immunoblotting for ER-α66 

and ER-α36 protein expression. β-actin expression was analysed to ensure equal 

a) b) 
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loading between the samples. Data shown is a representative immunoblot result 

from at least three biological replicates.  

 

The effect of fulvestrant treatment on ER-α66 and ER-α36 was also examined in the  

ER positive and ER negative cells. MCF-7 and MDA-MB-231 cells were stimulated in 

culture with fulvestrant at a range of concentration (0.001µM-1.0µM) for 24 hours prior 

to whole cell lysate extraction (Section 2.3.6.3). Immunoblotting was performed to 

analyse ER-α66 and ER-α36 protein expression. Increasing doses of fulvestrant 

stimulation in MCF-7 cells progressively downregulates ER-α66 expression, consistent 

with its function as an ER downregulator [Figure 3.16 (a)] (Peekhaus et al. 2004).          

ER-α36 protein expression was slightly increased in the presence of increasing doses of 

fulvestrant. In MDA-MB-231 cells, stimulation with increasing doses of fulvestrant 

gradually enhanced ER-α36 expression [Figure 3.16 (a)]. ER-α66 was again not 

detected in this cell line. 

 

 

Figure 3.16  The effect of fulvestrant on ER-α expression in MCF-7 and 

MDA-MB-231 cells. 

 (a) MCF-7 and (b) MDA-MB-231 cells were cultured in the presence of 

fulvestrant at the concentration of 0.001µM to 1.0µM for 24 hours prior to whole 

cell lysate extraction. Experimental control conditions included were untreated 

cells and ethanol only (vehicle) treated cells. A total of 50µg whole cell lysate 

were separated in SDS-PAGE and analysed by immunoblotting for ER-α66 and 

ER-α36 protein expression. β-actin expression was analysed to ensure equal 

loading between the samples. Data shown is a representative immunoblot result 

from at least three biological replicates.  

 

a) b) 
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3.3.5.2 Oestrogen and anti-oestrogen affects oestrogen-response gene in     

MDA-MB-231 cells 

 

The presence of ER-α36 and observed upregulation by anti-oestrogen in MDA-MB-231 

cells prompted further assessment on its function and downstream effect on oestrogen-

response genes. A bi-functional role of ER-α36 has been described by Wang et al. even 

at the onset of its discovery (Wang et al. 2006). They have shown that ER-α36 could 

effectively block and suppress ERE-dependent gene transactivation; while on the other 

hand, it could also elicit gene transcriptional activation via the MAPK/ERK pathway. 

To determine the significance of increased ER-α36 protein in MDA-MB-231 cells, an 

oestrogen-response gene was selected to establish a potential link to the anti-oestrogen 

induced ER-α36 expression (Section 3.3.5.1). Vascular endothelial growth factor A 

(VEGF-A) transcriptional activity is regulated by oestrogen stimulation in an          

ERE-dependent manner and therefore, was chosen as the oestrogen-response target gene 

for this part of the study (Applanat et al. 2008, Hyder et al. 1999, Mueller et al. 2000). 

VEGF-A expression was examined in MDA-MB-231 cells stimulated with                 

17β-oestradiol. Cells were incubated in 17β-oestradiol at a range of concentration 

(0.01µM-10.0µM) for 24 hours prior to total RNA extraction (Section 2.3.6.1).       

qRT-PCR using validated TaqMan gene expression assays was performed to analyse 

VEGF-A mRNA expression. 17β-oestradiol stimulation did not appear to alter 

expression of VEGF-A in MDA-MB-231 cells (Figure 3.17). 

VEGF-A expression was also examined in breast cancer cells stimulated with fulvestrant.  

MCF-7 and MDA-MB-231 cells were stimulated with fulvestrant at a range of 

concentration (0.001µM-1.0µM) for 24 hours prior to total RNA extraction            

(Section 2.3.6.3). qRT-PCR using TaqMan gene expression assay was performed to 

analyse VEGF-A mRNA expression. As expected in MCF-7 cells, the mRNA 

expression of VEGF-A inversely correlates with the dose concentration of fulvestrant 

[Figure 3.18 (a)]. Interestingly, a similar pattern of expression was observed in      

MDA-MB-231 cells, showing that fulvestrant could significantly downregulate    

VEGF-A mRNA expression in ER-negative cells [Figure 3.18 (b)]. VEGF-A protein 

expression were not examined due to challenges with antibody in immunoblotting. 
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Figure 3.17  The effect of 17β-oestradiol on VEGF-A expression in       

MDA-MB-231 cells. 

MDA-MB-231 cells were cultured in the presence of 17β-oestradiol at the 

concentration of 0.01µM to 10.0µM for 24 hours prior to total RNA extraction. 

Experimental control conditions included were untreated cells and ethanol only 

(vehicle) treated cells. mRNA extracted was reverse transcribed and subjected to 

qRT-PCR using TaqMan gene expression assays targeting VEGF-A. mRNA 

expression of each sample was normalised against a housekeeping gene, β-actin. 

VEGF-A expression were compared against its corresponding expression in 

untreated cells using the comparative Ct method to generate a relative fold change. 

Data represents the average of three biological replicates ± S.D.               

Statistical significance for VEGF-A expression was calculated using a student’s    

t-test. 

 

 

 



 

85 

 

 

 

Figure 3.18  The effect of fulvestrant on VEGF-A expression in MCF-7 and 

MDA-MB-231 cells. 

 (a) MCF-7 and (b) MDA-MB-231 cells were cultured in the presence of 

fulvestrant at the concentration of 0.001µM to 1.0µM for 24 hours prior to total 

RNA extraction. Experimental control conditions included were untreated cells 

and ethanol only (vehicle) treated cells. mRNA extracted was reverse transcribed 

and subjected to qRT-PCR using TaqMan gene expression assays targeting 

VEGF-A. mRNA expression of each sample was normalised against a 

housekeeping gene, β-actin. VEGF-A expression were compared against its 

corresponding expression in untreated cells using the comparative Ct method to 

generate a relative fold change. Data represents the average of three biological 

replicates ± S.D. Statistical significance for VEGF-A expression was calculated 

using a student’s t-test. * = p<0.05, ** = p<0.01, *** = p<0.001. 

 

a) 

b) 
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3.4 Discussion   

 

Many of the function and regulation of SAFB proteins are still unknown. In regards to 

breast cancer development, their role as a potential cause or consequence of the disease 

remains to be elucidated. Nevertheless, unanswered questions about their fundamental 

characteristics and regulation in breast cancer provide a vast and fascinating area of 

study. Preliminary work has shown interesting observations that suggest oestrogen-

induced SAFB1 and SAFB2 regulation in breast cancer cells (Hong et al. 2010). The 

central focus of this chapter is to advance our current understanding on the regulation of 

SAFB proteins by oestrogen in breast cancer cells. 

MCF-7 and MDA-MB-231 cells, representing ER positive and ER negative breast 

cancer cells respectively, were used as a model system to determine if the regulation of 

SAFB1 and SAFB2 is oestrogen-responsive. This was examined predominantly by 

stimulating cultured cells with the ER ligand (17β-oestradiol) or ER antagonist 

(fulvestrant) to observe the change in SAFB1 and SAFB2 expression. A novel 

discovery from this study revealed an ER-α66 dependent mechanism for SAFB1 and 

SAFB2 regulation in ER positive MCF-7 cells. Oestrogen-induced an increase in both 

protein and mRNA expression that mimics the classic effect of oestrogen-responsive 

genes (Figure 3.3); the anti-oestrogen induced a decrease in both protein and mRNA 

confirms the participation of ER-α66 in the regulation of these genes (Figure 3.13). The 

evaluation of VEGF-A mRNA expression and ER-α66 stability in response to 

fulvestrant further validates this notion (Figure 3.16 and Figure 3.18). An initial 

bioinformatics analysis using the Dragon ERE Finder web-based software predicted the 

presence of at least nine ERE on SAFB1 and SAFB2 genome sequence                    

(Bajic et al. 2003). Considering these evidences, SAFB1 and SAFB2 could potentially 

be oestrogen-responsive genes; although further experimentation is needed to validate 

this speculation. 

Another novel key finding from this study revealed that oestrogen may induce 

degradation of SAFB1 and SAFB2 proteins potentially via the ubiquitin-mediated 

protein degradation pathway in the ER negative MDA-MB-231 cells. 17β-oestradiol 

induced a progressive decrease of SAFB expression at the protein level which was not 

mirrored at the mRNA level (Figure 3.4). Similar to this inability to stimulate a change 

at the transcriptional level, the evaluation of VEGF-A mRNA expression confirms that 

17β-oestradiol does not have an effect on the transcriptional activity of oestrogen-



 

87 

 

responsive genes (Figure 3.17). Further investigations at the post-translational level 

revealed that 17β-oestradiol regulates SAFB proteins by disrupting their protein 

stability, but not by altering their protein phosphorylation (Figure 3.11).                   

Post-translational modification such as phosphorylation is achieved by the adding or 

removing of a phosphate group on a protein that might alter its protein activity, 

subcellular localisation and stability (Nishi et al. 2011, Ptacek et al. 2006).             

Many tumour suppressors are regulated by phosphorylation and although 17β-oestradiol 

is capable of modifying the degree of protein phosphorylation, it did not exert the same 

effect on SAFB1 and SAFB2 in this system (Heilmann et al. 2012, Rizzolio et al. 2012, 

Trzepacz et al. 1997). On the other hand, 17β-oestradiol induced degradation of SAFB1 

and SAFB2 was sensitive and protected by proteasome inhibition, suggesting that 

proteasome inhibition increases SAFB protein stability in MDA-MB-231 cells      

(Figure 3.12). Repression of ER corepressor regulated by oestrogen induced proteolysis 

can lead indirectly to an enhancement of transcriptional activation due to the elimination 

of a repressor.  Several nuclear receptor corepressors are known to be modulated by 

proteasome-dependent proteolysis and oestrogen stimulated protein degradation through 

the ubiquitin-proteasome pathway have also been reported in other proteins          

(Alarid et al. 1999, Dace et al. 2000, Hoyt 1997, Zhang et al. 1998, Zhao et al. 2011). 

Specifically, proteasome inhibitor has been shown to block oestrogen-induced            

ER degradation by inhibiting proteasome activity, suggesting that oestrogen is capable 

of mediating protein turnover through the ubiquitin-proteasome pathway             

(Nawaz et al. 1999). As such, this evidence supports the possible occurrence for 

oestrogen-stimulated SAFB degradation through proteasome activity, as observed in the 

MDA-MB-231 cells. Furthermore, this result indicates that SAFB protein degradation 

may be linked to BRCA1 induced ubiquitination of SAFB2 potentially facilitated by 

oestrogen mediated BRCA1 upregulation (Romagnolo et al. 1998, Song et al. 2011). 

However, this remains a speculation and calls for further investigation.  

Taking into account the data showing unaltered SAFB expression in response to the 

anti-oestrogen fulvestrant in MDA-MB-231 cells (Figure 3:14), it was initially unclear 

if this effect resulted from the inability of this ER negative cells to respond to           

anti-oestrogen or an antagonist-mediated opposing counter reaction that stabilises SAFB 

protein expression. The anti-oestrogen response was examined and data shows that 

MDA-MB-231 cells are capable of exerting an anti-oestrogen response as fulvestrant 

mediated a decrease in VEGF-A mRNA similar to that observed in MCF-7 cells    



 

88 

 

(Figure 3.18). The ability of this cell line to respond to anti-oestrogen stimulation 

suggests that fulvestrant appears to induce a ‘protective’ effect on SAFB protein 

stability opposed to the oestrogen-induced repression of these proteins. 

As seen in this study, MDA-MB-231 cells that lack ER-α66 expression were able to 

mediate a response to oestrogen and anti-oestrogen stimulation. This ability to respond 

to oestrogen and anti-oestrogen stimulation has been linked to the presence of truncated 

ER-α36 in MDA-MB-231 cells (Wang et al. 2006, Zhang et al. 2012, Zhang et al. 

2012). This study has also investigated the effects of oestrogen and anti-oestrogen 

stimulation on ER and its related isoforms. In previous reports, 17β-oestradiol has been 

shown to decrease the steady-state level of ER-α66 in MCF-7 cells (Alarid et al. 1999, 

Saceda et al. 1988). A similar effect was not observed in this study possibly because   

ER-α66 was examined after 24 hours of 17β-oestradiol stimulation [Figure 3.15 (a)], 

while significant ER-α66 downregulation was normally seen after 17β-oestradiol 

stimulation for more than 48 hours (Pink et al. 1996, Ree et al. 1989).  

Fulvestrant is a potent ER-antagonist that has a binding affinity to ER-α66 that is      

89% of 17β-oestradiol (Wakeling et al. 1987). Fulvestrant binding to ER impairs 

receptor dimerisation and blocks nuclear localisation of the receptor, resulting in an 

unstable complex that accelerates its degradation (Dauvois et al. 1993, Fawell et al. 

1990). An expected effect of ER-antagonist was observed in MCF-7 cells, where 

increasing doses of fulvestrant successfully decreased ER-α66 expression             

[Figure 3.16 (a)]. Consistently, the expression of the oestrogen-response gene, VEGF-A 

mRNA decreased accordingly with fulvestrant stimulation [Figure 3.18 (a)]. 

Interestingly, fulvestrant mediated an increased ER-α36 protein expression in         

MDA-MB-231 cells, a previously unknown effect of this ER-antagonist                

[Figure 3.16 (b)]. This fulvestrant-induced ER-α36 expression is inversely correlated 

with VEGF-A mRNA expression, however their association is yet to be explored 

[Figure 3.18 (b)]. 

It has been well reported that SAFB1 and SAFB2 differ in their intracellular 

localisation. While SAFB1 is exclusively present in the nucleus, SAFB2 has shown 

cytoplasmic and nuclear staining as well as an interaction with vinexin                 

(Chiodi et al. 2000, Townson et al. 2003, Weighardt et al. 1999). Consistent with 

previous reports, SAFB2 has also been found in the cytoplasmic fractions of MCF-7 

and MDA-MB-231 cells (Figure 3.5). Considering the promiscuity of these            
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SAFB proteins, multiple levels of control of their actions would be expected         

(Debril et al. 2005). Their potential to influence a broad spectrum of cellular processes 

may be reliant on their spatio-temporal regulation, even within the nucleus    

(Hermanson et al. 2002). Although corepressors can translocate between the nucleus 

and cytoplasm, very little is understood regarding the regulation of shuttling 

corepressors. In this study, SAFB1 translocation did not occur in the presence of       

17β-oestradiol; however high dose of 17β-oestradiol could induce SAFB2 translocation 

into the nucleus (Figure 3.5, Figure 3.8 and Figure 3.9).  

Within the nucleus, SAFB1 is localised exclusively in a punctuate pattern in the 

nucleoplasm excluding the nucleoli (Figure 3.6 and Figure 3.7). The addition of a low 

dose of 17β-oestradiol enhances SAFB1 punctate staining in MCF-7 cells to a similar 

pattern observed in SC35 splicing factor (Figure 3.6 and Figure 3.10). SC35 is known to 

reside in nuclear speckles which are enriched for pre-mRNA metabolic factors           

(Fu et al. 1990, Hall et al. 2006). As SAFB1 has been reported to be involved in 

alternative splicing (Section 1.4.2.3), this observation suggests a possibility of enhanced 

SAFB1 localisation in nuclear speckles induced by 17β-oestradiol. An initial study has 

shown that SAFB1 co-localises with SC35, although subsequent studies showed that the 

SAFB1 speckles were distinct from SC35 nuclear speckles in the cervical cancer,   

HeLa cells (Chiodi et al. 2000, Nayler et al. 1998, Weighardt et al. 1999). However,  

co-localisation studies have yet to be performed for SAFB1 and SC35 in the MCF-7 cell 

line. For this study, both SAFB1 and SC35 antibodies were produced in a mouse host, 

therefore limiting the ability to perform specific co-localisation studies.  

In summary, this study has revealed novel mechanisms of SAFB1 and SAFB2 

regulation in ER positive and ER negative breast cancer cells; and provided evidence 

that both SAFB proteins are regulated by oestrogen. Collectively, data from this study 

forms an essential basis for the following work in this thesis. 
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Chapter 4 : Loss of SAFB1 and SAFB2 mediates expression of          

ER target genes in ER negative breast cancer cell line 

4.1 Introduction  

 

The role of SAFB proteins in transcriptional regulation has been well characterised 

(Section 1.4.2.2). SAFB1 and SAFB2 have the ability to control gene transcription 

through direct interaction at the promoter region or indirect interaction via transcription 

factors [reviewed in (Hong et al. 2012)]. Comparison of SAFB1 and SAFB2 target 

genes identified through ChIP and genome-wide expression array revealed a lack of 

significant similarities, suggesting a vital contribution of indirect protein-protein 

interaction with other transcription factors in mediating their role in transcriptional 

regulation (Hammerich-Hille et al. 2010).  

The promiscuous nature of SAFB proteins has been observed through their association 

with various transcription factors. However, their interaction with the hormone receptor 

ER-α remains the most extensively studied and understood, especially in relation to 

breast cancer. SAFB proteins have been described as ER corepressors that bind and 

negatively modulate ER-α transcriptional activity (Oesterreich et al. 2000, Townson et 

al. 2003). The direct role of SAFB proteins on gene regulation in ER positive breast 

cancer cells has been investigated by Hammerich-Hille et al. In the ER positive MCF-7 

breast cancer cells, oestrogen-mediated repression of ER-α target genes appears to be 

SAFB1 and ER-α dependent (Hammerich-Hille et al. 2010). In this study, most of the 

identified target genes were upregulated in the absence of SAFB1 or SAFB2, 

consistently reflecting their role as ER-α corepressors. SAFB1 appears to have more 

unique target genes than SAFB2 and many of these oestrogen-repressed genes are 

critical immune regulators and apoptotic genes (Hammerich-Hille et al. 2010). 

Triple negative breast cancer patients, defined by ER, PR and HER2 negativity, have 

poor prognosis due to the aggressive tumour biology and lack of targeted therapy. 

Endocrine therapies are typically not administered to triple negative breast cancer 

patients based on the premise that it lacks steroid hormone receptors to mediate a 

treatment response. The ER status of breast cancer patients is determined by the 

screening for its full-length receptor, ER-α66, thus neglecting the presence of any other 

truncated forms of ER-α or PR (Cork et al. 2012, Pelekanou et al. 2012). The ability of 

the truncated ER-α36 to mediate anti-oestrogen signalling in triple negative breast 

cancer cells and endocrine therapy resistance in ER-α66 positive patients may challenge 
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the competency of current screening strategies and potentially lead to the consideration 

of ER-α36 status in patient selection for endocrine therapy (Lee et al. 2008, Shi et al. 

2009, Zhang et al. 2012). 

MDA-MB-231 cells are known as a triple negative metastatic breast cancer cell line and 

it has been demonstrated in this thesis that oestrogen and anti-oestrogen stimulation on 

these cells can trigger a response in the regulation of SAFB1 and SAFB2 expression 

(Section 3.3.2.1 and 3.3.4). It was also demonstrated in Section 3.3.5.1 and 3.3.5.2 that 

the anti-oestrogen drug fulvestrant could negatively regulate the ER-α target gene 

VEGF-A and also increase ER-α36 expression in MDA-MB-231 cells. These 

observations, in addition to other reported evidence of hormone responsiveness in 

MDA-MB-231 cells, present it as an ideal candidate to identify potential SAFB target 

genes from a panel of ER-regulated genes. 

 

4.2 Aims  

 

The aims of this chapter were to: 

1. Identify potential oestrogen-mediated SAFB1 and SAFB2 target genes 

related to ER signalling pathway and breast cancer regulation in           

MDA-MB-231 cells 

2. Validate the expression profile of selected SAFB1 and SAFB2 target genes 

using specific TaqMan assays 

3. Investigate the effect of loss of SAFB1 and SAFB2 on the protein expression 

of target genes in MDA-MB-231 breast cancer cells  
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4.3 Results   

4.3.1 Identification of SAFB1 and SAFB2 target genes using gene expression 

array 

 

The role of SAFB proteins in the triple negative metastatic breast cancer cell line, 

MDA-MB-231 cells, was investigated using the Human Breast Cancer and Estrogen 

Receptor Signalling RT2 Profiler PCR Array System (SABiosciences). This experiment 

was designed to identify changes in the levels of gene transcripts within a focused panel 

of ER-related genes which are altered upon the decrease of SAFB1 or SAFB2 by RNAi. 

This experimental strategy was selected as it mimics the in vivo effects of decreased 

SAFB expression in invasive breast tumours (Hammerich-Hille et al. 2009, Oesterreich 

S 2002). 

 

4.3.1.1 Experimental design and optimisation of SAFB1 and SAFB2 RNAi        

in MDA-MB-231 cells 

 

A combined approach of siRNA gene knockdown and qRT-PCR was employed to 

identify SAFB1 and SAFB2 target genes in MDA-MB-231 cells (Section 2.8).        

Cells were transiently transfected with siRNA targeting SAFB1 or SAFB2 to decrease 

their expression prior to gene expression profile study. Cells were also cotransfected 

with siRNA targeting both SAFB1 and SAFB2 to address the combined effects of these 

two paralogs. Transient transfection was performed for 48 hours, followed by 

stimulation with 0.01µM 17β-oestradiol for another 24 hours. The concentration of  

17β-oestradiol and stimulation time was selected based on optimal effects previously 

observed  (Section 3.3.2.1). RNA and whole cell lysate were extracted after transfection 

and analysed for the degree of gene knockdown in all experiments before they were 

subjected to qRT-PCR. The gene profiler array consists of 84 genes related to breast 

cancer regulation and ER signalling (Section 2.8.1). Once the samples were verified for 

sufficient levels of gene knockdown (50% decrease or more), mRNA was reverse 

transcribed into cDNA and subjected to qRT-PCR using the SYBR green detection 

method. This experiment was performed in three biological replicates to generate 

sufficient data to allow statistical analysis using comparative Ct method for relative fold 

change against negative control siRNA. The complete workflow of this experimental 

design is illustrated in Figure 4.1. 
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Level of SAFB1 and SAFB2 gene knockdown was examined at transcript and protein 

level prior to qRT-PCR. Significant knockdown of SAFB1 expression was observed in 

SAFB1 siRNA transfected and cotransfected samples; similarly for SAFB2 expression 

(Figure 4.2). qRT-PCR analysis confirmed that SAFB1 and SAFB2 mRNA levels were 

decreased by approximately 60% and 85% [Figure 4.2(a)]. Immunoblotting data 

showed a significant decrease in SAFB1 and SAFB2 protein levels as very low intensity 

or no bands were visible in these experimental conditions [Figure 4.2(b)]. The mRNA 

from biological triplicates was subsequently used for cDNA synthesis and qRT-PCR in 

the ER signalling pathway focused gene expression array. 

 

 

Figure 4.1  Gene expression profile study design. 

MDA-MB-231 cells in culture were transiently transfected with 12nM of siRNA 

targeting SAFB1 and SAFB2 for 48 hours followed by stimulation with      

0.01µM 17β-oestradiol for another 24 hours. Cells were also cotransfected with 

siRNA targeting both SAFB1 and SAFB2, and negative siRNA as control.     

RNA and whole cell lysate were analysed for the quality of gene knockdown 

before they were used in the gene expression array. Once verified, mRNA was 

reverse transcribed into cDNA and subjected to qRT-PCR in ER signalling 

pathway focused gene expression array using the SYBR green detection method. 

This procedure was performed in three biological replicates. Data generated was 

analysed using comparative Ct method for relative fold change against negative 

siRNA.  



 

94 

 

   

Figure 4.2  SAFB1 and SAFB2 downregulation by siRNA in                  

MDA-MB-231 cells. 

MDA-MB-231 cells were transiently transfected with negative, SAFB1, SAFB2 

or SAFB1 and SAFB2 siRNA. Significant and specific downregulation by siRNA 

was observed at the mRNA and protein level. (a) mRNA levels were measured by 

qRT-PCR. Data represents the average of three biological replicates ± S.D. 

Statistical significance of mRNA expression was calculated using a student’s       

t-test. * = p<0.05. (b) Protein levels were analysed by immunoblotting using 

SAFB1 and SAFB2 antibodies. β-actin expression was analysed to ensure equal 

loading between the samples. Data shown is a representative immunoblot result 

from at least three biological replicates. 

 

4.3.1.2 SAFB1 and SAFB2 contributes greatly to gene regulation                        

in MDA-MB-231 cells 

 

The gene expression array data was analysed using RT2 Profiler PCR Array Data 

Analysis software (SABiosciences) for gene expression. Analysis of gene expression 

was performed in comparison to negative siRNA and presented as relative fold change 

using the comparative Ct method. Using the recommended fold change threshold of 

more than 2.0 for gene upregulation and less than 0.5 for gene downregulation,           

the expression of genes across three experimental groups (SAFB1 siRNA, SAFB2 

siRNA or SAFB1 + SAFB2 siRNA) were analysed to identify the SAFB1 or SAFB2 

regulated gene set.  

From this study, expression of 12 candidate genes altered in the loss of SAFB1 or/and 

SAFB2 [Figure 4.3(a)]. Specifically, expression of 11 genes increased while expression 

of only one gene decreased; reflecting the known role of SAFB1 and SAFB2 in 

transcriptional repression (Hammerich-Hille et al. 2010, Oesterreich et al. 2000, 

a) b) 
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Townson et al. 2003). The genes that were upregulated in the absence of SAFB1 or/and 

SAFB2 are cyclin-dependent kinase inhibitor 2A (CDKN2A), clusterin (CLU), 

oestrogen receptor 1 (ESR1), insulin-like growth factor binding protein 2 (IGFBP2), 

interleukin 2 receptor alpha (IL2RA), integrin beta 4 (ITGB4), v-kit Hardy-Zuckerman 4 

feline sarcoma viral oncogene homolog (KIT), kallikrein-related peptidase 5 (KLK5), 

metallothionein 3 (MT3), nerve growth factor receptor (NGFR) and small proline-rich 

protein 1B (SPRR1B). The only gene that was downregulated in the absence of SAFB1 

or/and SAFB2 is interleukin 6 (IL-6). These genes are listed in Table 4.1 with their 

corresponding fold change in each experimental condition. 

As shown in Table 4.1, the loss of SAFB1 altered the expression of 3 genes (CLU, KIT 

and NGFR) and the loss of SAFB2 altered the expression of 8 genes (CLU, KIT, ESR1, 

IL2RA, ITGB4, KLK5, SPRR1B and IL-6). Combined knockdown of SAFB1 and 

SAFB2 regulated the expression of 10 genes (CDKN2A, CLU, KIT, ESR1, IGFBP2, 

IL2RA, KLK5, MT3, SPRR1B and IL-6), suggesting a possible relationship between 

SAFB1 and SAFB2 in gene regulation.  

The overlapping genes between these three experimental groups (genes regulated by 

SAFB1 siRNA, SAFB2 siRNA or SAFB1 + SAFB2 siRNA) were investigated to 

identify individual contributors and combined effects of SAFB1 and SAFB2 in gene 

regulation [Figure 4.3(b)]. CLU and KIT appear to be upregulated in all three 

experimental groups, suggesting that the loss of either SAFB1 or SAFB2 is sufficient to 

alter the expression of both these genes. On the other hand, altered NGFR expression 

appears to be specific to the loss of SAFB1 while the upregulation of ITGB4 is specific 

in the absence of SAFB2. Interestingly, the expression of CDKN2A, IGFBP2 and MT3 

is only upregulated in the absence of both SAFB1 and SAFB2; suggesting a possible 

compensatory effect between SAFB1 and SAFB2 in the regulation of these genes.  
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RefSeq 

 

Official 
gene 

symbol 

 
 

Gene name 

 
SAFB1 
siRNA 

 
SAFB2 
siRNA 

 
  SAFB1 
+SAFB2 
siRNA 

1 NM_000077 CDKN2A Cyclin-dependent kinase inhibitor 2A 1.0953 1.179 3.0851 

2 NM_001831 CLU Clusterin 3.0384 4.2004 3.266 

3 NM_000125 ESR1 Oestrogen receptor 1 1.3817 2.3556 3.4701 

4 NM_000597 IGFBP2 Insulin-like growth factor binding 
protein 2 

1.5266 1.6529 2.4272 

5 NM_000417 IL2RA Interleukin 2 receptor alpha 1.9672 2.9273 4.5411 

6 NM_000213 ITGB4 Integrin beta 4 1.5481 2.4671 1.7421 
7 NM_000222 KIT V-kit Hardy-Zuckerman 4 feline 

sarcoma viral oncogene homolog 
2.1898 2.4395 2.2595 

8 NM_012427 KLK5 Kallikrein-related peptidase 5 1.3505 2.0235 3.6878 

9 NM_005954 MT3 Metallothionein 3 1.6914 0.9267 3.2198 
10 NM_002507 NGFR Nerve growth factor receptor 2.5525 1.8195 1.9933 
11 NM_003125 SPRR1B Small proline-rich protein 1B 1.5543 2.2703 4.4874 

12 NM_000600 IL-6 Interleukin 6  0.5521 0.3912 0.3515 

 

Table 4.1  SAFB1 and SAFB2 target genes identified by gene expression 

array in MDA-MB-231 cells. 

The table contains 12 candidate genes identified through the three experimental 

groups (SAFB1 siRNA, SAFB2 siRNA or SAFB1 + SAFB2 siRNA). The fold 

change of ≥ 2.0 is highlighted in red, while ≤ 0.5 is highlighted in green.           

The expression of 11 genes was upregulated while the expression of only 1 gene 

(IL-6) was downregulated in the absence of SAFB1 or/and SAFB2. 

 

    Fold change 
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Figure 4.3  Identification of SAFB1, SAFB2, and SAFB1 and SAFB2 target 

genes in MDA-MB-231 cells. 

Gene expression array data were analysed against negative siRNA and presented 

as fold change. The fold change threshold of ≥ 2.0 signifies gene upregulation and 

≤ 0.5 signifies gene downregulation. Gene expression across three experimental 

groups (SAFB1 siRNA, SAFB2 siRNA or SAFB1 + SAFB2 siRNA) was 

compared. (a) The heat map represents 12 candidate genes regulated by SAFB1 

siRNA, SAFB2 siRNA or the combination of SAFB1 and SAFB2 siRNA. 

Expression levels are shown in red and green, representing levels above and 

below the median respectively. (b) The Venn diagram represents genes that are 

regulated by SAFB1 siRNA, SAFB2 siRNA or SAFB1 + SAFB2 siRNA. While 

the relationship between SAFB1 and SAFB2 is important in the regulation of 

most ER-related genes, SAFB2 regulates more target genes than SAFB1 in  

MDA-MB-231 cells. 

 

4.3.1.3 SAFB1 and SAFB2 target genes in MDA-MB-231 cells are key players in 

breast tumourigenesis 

 

The identity of the 12 candidate genes were further investigated to gain insight into their 

functions. These genes were evaluated for their associated Gene Ontology terms 

(UniProt-GOA) and analysis revealed that SAFB1 and SAFB2 target genes are involved 

in important biological processes including apoptosis (CDKN2A, CLU, NGFR), cell 

proliferation (IGFBP2, MT3, KIT), immune response (IL-6, IL2RA), cellular adhesion 

a) b) 
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(ITGB4, KLK5, SPRR1B) and transcriptional regulation (ESR1) (Figure 4.4). 

Considering the pivotal role of these genes in tumourigenesis, the loss of SAFB1 or/and 

SAFB2 that leads to the de-repression of these oestrogen-regulated genes may 

contribute to the invasive properties of this metastatic breast cancer cell line. 

 

 

Figure 4.4  SAFB1 and SAFB2 regulate key players of tumourigenesis in 

MDA-MB-231 cells. 

Gene ontology analysis for SAFB1 and SAFB2 regulated genes revealed 

important key players in apoptosis, cell proliferation, immune response, cellular 

adhesion and transcriptional regulation. The gene ontology annotations were 

classified using UniProt-GOA database (ebi.ac.uk/GOA). 

 

The relationship between these genes was examined in a bioinformatics analysis using 

GeneMANIA prediction server (Warde-Farley et al. 2010). GeneMANIA utilises a 

large collection of genomics and proteomics interaction network to make predictions 

about gene function, analyse gene lists and reveal additional genes that share the same 

function. GeneMANIA makes predictions based on the scoring of each gene on its 

interaction network and assigns a weight to each network based on how well connected 

these genes are. It also connects the gene list to a predicted top 20 most similar genes.  

When examining the interaction network between the 12 candidate genes together with 

SAFB1 and SAFB2, it is clear that these genes share many physical interactions either 

directly or indirectly with each other, encompassing 52.70% of the network          

[Figure 4.5 (a), pink network]. It is interesting to note that the network weight assigned 
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for the physical interaction between SAFB1 and SAFB2 exceeds the maximum weight of 

1.0, indicating a strong connection between these two paralogs [Figure 4.5 (b)].        

This could be a possible explanation for the highest number of altered genes observed in 

the absence of both SAFB1 and SAFB2 [Figure 4.3 (b)]. Network interactions between 

ESR1 with SAFB1 and SAFB2 were also observed in this analysis, consistent with 

previous studies reporting their role as ER-α corepressors (Oesterreich et al. 2000, 

Townson et al. 2003, Townson et al. 2004). Another 35.81% of the network defines the 

co-expression link between the 12 candidate genes and their top 20 most similar genes 

[Figure 4.5 (a), purple network]. The assigned network weights and connections 

between specific genes are summarised in the table below [Figure 4.5 (b)]. 
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Figure 4.5  Analysis of the interaction network between the 12 candidate 

genes of SAFB1 and SAFB2. 

 (a) Graphical view of the gene interaction network generated by GeneMANIA 

when the names of 14 genes (CDKN2A, CLU, ESR1, IGFBP2, IL2RA, ITGB4, 

KIT, KLK5, MT3, NGFR, SPRRB1, IL-6 plus SAFB1 and SAFB2) were input as 

the query list (http://www.genemania.org). The black nodes correspond to genes 

in the query list and the grey nodes indicate the extended gene list consisting of 

the top 20 neighbour gene predictions. The background colours for the                

12 candidate genes correspond to previously described gene ontology annotations. 

The combined network is constructed from co-expression, co-localisation, 

pathway, physical interactions and shared protein domains. (b) A table summary 

of the assigned network weights for each connections between specific genes from 

the query list. 

a) 

b) 
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4.3.2 Validation of transcriptional target genes from gene expression           

profile study 

4.3.2.1 Clusterin (CLU) 

 

Considering the critical role of CLU in tumourigenesis and its rate of fold change in the 

three experimental groups (SAFB1 siRNA, SAFB2 siRNA or SAFB1 + SAFB2 siRNA), 

CLU was selected as the first candidate for further validation. A specific TaqMan assay 

targeting CLU was used for qRT-PCR. Surprisingly, this different experimental 

approach on the same sample set was unable to confirm the induced CLU expression 

previously observed; instead data revealed that CLU was suppressed in the absence of 

SAFB1 or/and SAFB2 (Figure 4.6). The possible explanation for this observation will 

be discussed later in Section 4.4. 

 

Figure 4.6  Expression of CLU in the absence of SAFB1 or/and SAFB2. 

qRT-PCR was performed on mRNA from MDA-MB-231 cells transfected with 

negative, SAFB1, SAFB2 or SAFB1 and SAFB2 siRNA using validated TaqMan 

probes specifically targeting CLU. In contrast to previously observed data, CLU 

expression significantly decreased in the absence of SAFB1 or/and SAFB2. Data 

represents the average of three biological replicates ± S.D. Statistical significance 

of mRNA expression was calculated using a student’s t-test. ***=p<0.001,            

** = p<0.01, * = p<0.05.  
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4.3.2.2 Integrin beta 4 (ITGB4) 

 

The prospect of SAFB proteins affecting the transcription of ITGB4 attracted an 

interest due to its association with aggressive behaviour of breast tumours              

(Lu et al. 2008). Therefore, ITGB4 was selected as the next candidate for validation 

study. A specific TaqMan assay targeting ITGB4 was used for qRT-PCR. Consistent 

with gene expression array data, the loss of SAFB1 did not have a significant effect 

on ITGB4 mRNA expression but the loss of SAFB2 and both SAFB proteins 

significantly increased ITGB4 expression (Figure 4.7). 

 

Figure 4.7  Expression of ITGB4 in the absence of SAFB1 or/and SAFB2. 

qRT-PCR was performed on mRNA from MDA-MB-231 cells transfected with 

negative, SAFB1, SAFB2 or SAFB1 and SAFB2 siRNA using validated TaqMan 

probes specifically targeting ITGB4. Data represents the average of three 

biological replicates ± S.D. Statistical significance of mRNA expression was 

calculated using a student’s t-test. * = p<0.05.  

 

After successful validation of ITGB4 mRNA expression in MDA-MB-231 cells, an 

initial qRT-PCR experiment was performed using breast tissue samples. Primary breast 

tumours from two patients with ER negative, infiltrating ductal carcinoma was obtained 

according to the procedure described in Section 2.2. Total RNA was extracted from the 

non-involved ‘normal’ tissue and ‘tumour’ tissue from each patient (Section 2.7.1) and 

qRT-PCR performed to examine ITGB4 expression (Section 2.7.2 and Section 2.7.3). 
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Data shows that ITGB4 mRNA expression significantly increased in tumour tissue 

compared to their normal counterpart [Figure 4.8 (a)]. This prompted a second qRT-

PCR experiment to investigate SAFB1 and SAFB2 mRNA levels in relation to the 

observed ITGB4 mRNA expression. The expression of SAFB1 and SAFB2 in tumour 1 

did not differ significantly compared to its normal counterpart but significantly 

increased in tumour 2 [Figure 4.8 (b)]. Comparison between SAFB1 and SAFB2 with 

ITGB4 mRNA levels shows that lower levels of SAFB1 and SAFB2 correlates with 

higher ITGB4 expression, whilst increased levels of SAFB1 and SAFB2 correlates with 

lower levels of ITGB4 mRNA. 

 

 

Figure 4.8  Expression of ITGB4, SAFB1 and SAFB2 in breast tissue 

samples. 

qRT-PCR was performed on mRNA from non-involved ‘normal’ and ‘tumour’ 

tissue samples validated TaqMan assays specifically targeting (a) ITGB4,            

(b) SAFB1 and SAFB2. Data represents the average of three experimental 

replicate ± S.D. Statistical significance of mRNA expression was calculated using 

a student’s t-test. * = p<0.05.  

a) 

b) 
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4.3.2.3 Interleukin 6 (IL-6) 

 

The effect of SAFB1 and SAFB2 on immune regulatory genes in MDA-MB-231 cells 

was also of interest due to the ability of immune evasion as an emerging hallmark of 

cancer and the association between SAFB1 and immune regulatory genes in MCF-7 

cells (Hammerich-Hille et al. 2010, Hanahan et al. 2011). IL-6 was the only unique 

candidate whose gene expression decreased in the absence of SAFB1 or/and SAFB2 

and therefore was selected as another candidate gene for further validation. Specific 

validated TaqMan assay targeting IL-6 was used in qRT-PCR to validate the previous 

observation generated from the gene expression array (Section 2.7.3). Data confirms the 

significant repression of IL-6 in the absence of SAFB1 or/and SAFB2 (Figure 4.9).  

Loss of SAFB1 or/and SAFB2 that led to the repression of IL-6 suggest a potentially 

novel role for SAFB1 and SAFB2 in transcriptional activation that has yet to be 

reported. 

 

Figure 4.9  Expression of IL-6 in the absence of SAFB1 or/and SAFB2. 

qRT-PCR was performed on mRNA from MDA-MB-231 cells transfected with 

negative, SAFB1, SAFB2 or SAFB1 and SAFB2 siRNA using validated TaqMan 

probes specifically targeting IL-6. Consistent with previously observed data,      

IL-6 expression significantly decreased in the absence of SAFB1 or/and SAFB2. 

Data represents the average of three biological replicates ± S.D.               

Statistical significance of mRNA expression was calculated using a student’s        

t-test. ***=p<0.001, ** = p<0.01.  
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The next step in this study was to examine whether loss of SAFB1 and SAFB2 affected 

expression of IL-6 at the protein level. The production and secretion of IL-6 was 

assessed by ELISA using culture medium from MDA-MB-231 cells that were 

transiently transfected with SAFB1 or/and SAFB2 siRNA (Section 2.8.2). In agreement 

with the mRNA data, untreated and negative siRNA transfected cells express high 

levels of IL-6 while SAFB1 or SAFB2 siRNA transfected cells express significantly 

lower amount of IL-6 (Figure 4.10). Cells that express decreased levels of both SAFB1 

and SAFB2 produced the lowest concentration of IL-6, suggesting that a correlation 

between these two paralogs may be important in the regulation of IL-6 gene expression 

which leads to the reduction in IL-6 secretion. 

 

Figure 4.10  Secretion of IL-6 in the absence of SAFB1 or/and SAFB2. 

MDA-MB-231 cells were transfected with negative, SAFB1, SAFB2 or SAFB1 

and SAFB2 siRNA to assess their effect on IL-6 production. Untreated cells were 

included as control. Aliquots of supernatant from the culture medium were 

removed 72 hours after transfection and IL-6 concentration was determined by 

ELISA. The values obtained were compared to that of the untreated cells and 

represented here as a relative fold change. IL-6 production was significantly 

repressed in the absence of SAFB1 or/and SAFB2. Data represents the average of 

three biological replicates ± S.D. Statistical significance was calculated using a 

student’s t-test. ** = p<0.01.  
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4.4 Discussion   

 

The association between SAFB proteins and ER-α nuclear receptor in transcriptional 

regulation has gathered much attention in the recent years, particularly due to their 

relevance to breast cancer. Since being identified as ER-α corepressors          

(Oesterreich et al. 2000, Townson et al. 2003), substantial evidence has confirmed the 

direct correlation of SAFB1 and SAFB2 in ER-α mediated transcriptional repression, 

specifically in an ER positive breast cancer cell line, MCF-7 (Hammerich-Hille et al. 

2010). In consideration of previously reported results, this part of the study was 

performed to determine the role of SAFB1 and SAFB2 in a breast cancer cell line that 

displays characteristics of the triple negative subtype. 

The MDA-MB-231 cell line was utilised to investigate the effects of SAFB1 and 

SAFB2 in the regulation of ER-related genes. Although generally referred to as an     

ER and PR negative cell line that should not mediate a hormonal response, increasing 

evidence including the work reported in this thesis has shown the contrary to be true 

[discussed in Chapter 3 and (Cork et al. 2012)]. Twelve novel target genes for SAFB1 

and SAFB2 were identified using RNAi and a gene expression array analysis approach 

on a focused panel of ER signalling candidates. Consistent with the work of 

Hammerich-Hille et al. in MCF-7 cells, the primary role of SAFB1 and SAFB2 as 

transcriptional repressors was also confirmed in MDA-MB-231 cells           

(Hammerich-Hille et al. 2010). Contrary to the observation by Hammerich-Hille et al. 

in MCF-7 cells, SAFB2 regulates more target genes than SAFB1 in MDA-MB-231 cells 

[Figure 4.3(b)]. The findings from this study confirm previous speculations regarding 

the distinct molecular role between SAFB1 and SAFB2 (Hammerich-Hille et al. 2010, 

Ivanova et al. 2005, Sergeant et al. 2007). 

Another important observation from this study revealed an importance of the physical 

interaction between SAFB1 and SAFB2 in oestrogen-mediated repression of ER-target 

genes. Comparing the list of regulated genes and overlapping them according to their 

experimental groups (SAFB1 siRNA, SAFB2 siRNA or SAFB1 + SAFB2 siRNA) 

showed that the absence of both SAFB1 and SAFB2 affects the expression of the most 

number of genes [Figure 4.3(b)]. It has been established since the discovery of SAFB2 

that both these SAFB proteins physically interact with each other, as observed in        

co-immunoprecipitation experiments (Townson et al. 2003). Bioinformatics data from 

Section 4.3.1.3 also supports a strong physical interaction between SAFB1 and SAFB2 
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(Figure 4.5). Another study has also revealed that SAFB1 and SAFB2 interact and 

colocalise with ER-α in the presence of 17β-oestradiol and work together to cause a 

synergistic reduction of ER-α mobility and co-operatively inhibit ER-α mediated 

transcription (Hashimoto et al. 2012). Taken together with these reports, the results 

from this study suggest a co-operative SAFB1 and SAFB2 effect on the repression of 

ER-target genes in MDA-MB-231 breast cancer cells.  

The data from this study also revealed SAFB1 or/and SAFB2 mediated regulation of 

apoptotic, cell proliferation, immune response, cellular adhesion and transcriptional 

regulation genes in the triple negative breast cancer cells (Figure 4.4). A number of 

these genes are closely linked to the development of breast cancer.  

CDKN2A 

CDKN2A or more commonly known as the tumour suppressor p16, is a cyclin-

dependent kinase inhibitor that negatively regulates cell cycle and induces apoptosis in 

tumour cells (Liggett et al. 1998, Shapiro et al. 1996). The inactivation of CDKN2A 

through aberrant DNA methylation appears to be a common event in many human 

cancers, including breast cancer (Cairns et al. 1995, Herman et al. 1995, Merlo et al. 

1995, Nobori et al. 1994). Knockout mouse model has shown that CDKN2A deficiency 

is implicated with spontaneous tumour development, rapid cell proliferation and high 

colony-formation efficiency; hence directly confirming its role as a tumour suppressor                   

(Serrano et al. 1996). Interestingly, despite its correlation to anti-tumour and            

anti-proliferative effects, a comprehensive study of CDKN2A mRNA expression in a 

cohort of primary breast tumour samples revealed an inverse relationship between 

CDKN2A expression and ER status; speculating that overexpression of CDKN2A may 

be a marker of poor prognosis in breast cancer patients (Hui et al. 2000). Coincidentally, 

the loss of SAFB proteins in invasive breast tumours was also associated with worse 

patient survival (Hammerich-Hille et al. 2009, Oesterreich S 2002). The evidence from 

this study revealed that the loss of both SAFB1 and SAFB2 led to a 3.0 fold increase in 

CDKN2A (Table 4.1). Taken together with evidence from other reports, SAFB1 and 

SAFB2 may be important players in the regulation of CDKN2A expression that could 

contribute to worse outcome in ER negative breast cancer patients. 
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IGFBP-2 

Another candidate that has been extensively studied in relation to breast cancer is 

IGFBP-2, an insulin-like growth factor binding protein that modulates IGF action. 

IGFBP-2 is highly expressed in breast cancer compared to non-malignant tissue and 

levels of IGFBP-2 positively correlate with disease progression (Busund et al. 2005, So 

et al. 2008). In the ER positive breast cancer cell line, MCF-7, IGFBP-2 is positively 

regulated by 17β-oestradiol while the loss of IGFBP-2 in this cell line inhibits cell 

proliferation and enhances chemosensitivity (Clemmons et al. 1990, Foulstone et al. 

2013, Juncker-Jensen et al. 2006, Yee et al. 1991). Several investigations have reported 

undetectable levels of IGFBP-2 expression in MDA-MB-231 cells, however; exogenous 

overexpression of IGFBP-2 in this ER negative cell line conferred growth advantage 

and chemoresistance (Clemmons et al. 1990, Dubois et al. 1995, Kim et al. 1991, So et 

al. 2008, Yee et al. 1991). Other evidence has implicated IGFBP-2 as a novel 

therapeutic target and useful marker to predict lymph node metastasis in invasive breast 

carcinoma patients (So et al. 2008, Wang et al. 2008). To date, there still remains a 

scarcity of knowledge regarding the molecular mechanisms that underlie the regulation 

of IGFBP-2 in breast cancer. Recent evidence has shown that IGFBP-2 expression is 

regulated by the PI3K/Akt/mTOR pathway through Sp1-induced transcription    

(Mireuta et al. 2010). Data from my study show that IGFBP-2 transcription is induced 

in the absence of both SAFB1 and SAFB2 in MDA-MB-231 cells, previously shown to 

be negative for IGFBP-2 expression, therefore suggesting that SAFB1 and SAFB2 may 

be involved in the repression of this gene (Table 4.1). 

ESR1 

Unexpectedly, ESR1 was detected from the gene expression array as a potential 

transcriptional target for SAFB1 and SAFB2 (Table 4.1). The link between ESR1 and 

breast cancer is unprecedented and has been extensively described in Section 1.3.1. 

However, the MDA-MB-231 cell line used in this study is known to be ER negative and 

therefore the detection of this gene provoked further analysis. The location of the SYBR 

green primers used in the gene expression array was interrogated using Primer-BLAST 

software (NCBI). This revealed its primer location on exon 1 that generates a         

160bp PCR product starting at nucleotide position 254 of ESR1 mRNA transcript 

(NCBI accession: NM_000125.3). Although ER-α variants were detected in this 

particular cell line, they usually lack the first coding exon and result in a truncated    
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ER-α protein [Section 3.3.5.1 and previous reports by (Flouriot et al. 2000, Wang et al. 

2005)]. The ambiguity between these observations prompted a preliminary experiment 

to examine the specificity of the ESR1 primers used in the gene expression array. 

Primers were designed to target the exact location as the ones used in the array and 

generated for use in conventional PCR. These primers were tested on RNA extracted 

from untreated MCF-7 and MDA-MB-231 cells. As shown in Figure 4.11, the ESR1 

primers were able to generate one specific PCR product in MCF-7 cells of the expected 

size (160bp) but multiple PCR products in MDA-MB-231 cells of around 100bp, 160bp 

and 500bp. This data suggests that the ESR1 primers used in the SYBR green gene 

expression array may also generate non-specific PCR products in MDA-MB-231 cells 

which could possibly explain the observed fold change in ESR1 (Table 4.1).  

Computational analysis of these primers using the Primer-BLAST software (NCBI) 

revealed a long list of PCR products from potential target mRNA templates. When this 

list of target templates was filtered for mRNA templates that would generate            

PCR products between 400bp to 600bp, at least 14 target templates were identified 

(Appendix I), indicating the lack of specificity of the ESR1 primers used in the gene 

expression array. 

 

Figure 4.11  Analysis of ESR1 primers used in the gene expression array. 

Conventional PCR was performed on mRNA from MCF-7 and MDA-MB-231 

using the exact primers used in the SYBR green gene expression array 

(SABiosciences). PCR products were separated by electrophoresis on an agarose 

gel. Data represents preliminary experiment that was only performed once. 

 



 

110 

 

CLU 

Gene expression array data from this study identified the increase of CLU in the absence 

of SAFB1 or/and SAFB2 (Table 4.1). This observation suggests that the repression of 

CLU is highly dependent on SAFB1 and SAFB2, and their function is independent of 

any synergistic action with each other. CLU is a single gene that expresses numerous 

mRNA transcripts as a result of alternative pre-mRNA splicing and several protein 

isoforms with different sub-cellular localisation and diverse biological functions. CLU 

protein isoforms have been associated with contradictory functions in apoptosis; the 

secreted form of CLU protein (sCLU) is anti-apoptotic and the nuclear form of CLU 

protein (nCLU) is pro-apoptotic [reviewed in (Shannan et al. 2006)]. sCLU is translated 

from the full-length CLU mRNA to produce a precursor protein that is directed to the 

endoplasmic reticulum, undergoes cleavage and extensive glycosylation before being 

transported to the Golgi for secretion (de Silva et al. 1990). In contrast, nCLU is 

synthesised from an alternatively spliced CLU mRNA transcript to form a precursor 

protein that does not undergo cleavage or glycosylation but localised to the cytoplasm in 

unstressed conditions (Leskov et al. 2003). In response to cytotoxic stress, such as 

ionising radiation or TGF-β stimulation, the precursor cytoplasmic CLU protein is post-

translationally modified and translocated to the nucleus to induce apoptosis          

(Reddy et al. 1996, Yang et al. 2000).  

CLU upregulation has been reported in various human cancers, especially in    

hormone-dependent malignancies such as prostate and breast cancer                  

(Bettuzzi et al. 2002, Leskov et al. 2003, Miyake et al. 2004, Redondo et al. 2000).   

The precise relationship between CLU gene expression and programmed cell death has 

not been clearly elucidated, due to the recognition of different protein forms and their 

apparent opposing functions. Several studies have demonstrated that overexpression of 

nCLU acts as pro-death signal and inhibit cell survival, while the expression of sCLU 

exert cytoprotective properties (Leskov et al. 2003, Li et al. 2012, Niu et al. 2012, 

Wang et al. 2012, Zhang et al. 2012). The activation of tumour suppressor p53 in  

MCF-7 cells has been implicated in the suppression of sCLU secretion by repressing 

CLU promoter activity and transcription (Criswell et al. 2003). On the other hand, loss 

of functional p53 result in lost of nCLU function. Additionally, stable knockdown of 

CLU inhibits tumour cell invasion and metastasis in MDA-MB-231 breast cancer cells 

(Li et al. 2012). These evidences propose that tumour cell survival is associated with 



 

111 

 

overexpression of sCLU and loss of nCLU; and the function of CLU in tumour growth 

may be related to a pattern shift in its isoform production (Pucci et al. 2004). 

In this study, CLU expression was induced in the loss of SAFB1, SAFB2 or SAFB1 and 

SAFB2 in the gene expression profile study using SYBR green detection method  

(Table 4.1). When using a highly specific TaqMan gene expression assay to validate 

this observation, results revealed that the expression of CLU was significantly decreased 

in the absence of SAFB1, SAFB2 or SAFB1 and SAFB2 (Figure 4.6). To explain these 

contradicting observations, the location of both SYBR green primers and TaqMan gene 

expression assay was analysed and mapped to the CLU gene to identify the regions of 

CLU mRNA transcripts detected by qRT-PCR (Figure 4.12). Analysis of CLU mRNA 

and its alternative isoforms revealed that the SYBR green primers were located within 

exon 10 of CLU gene while the TaqMan probe was located within exon 6, a region that 

is prone to multiple alternative splicing events (Figure 4.12). Although the only 

transcript currently known to encode a functional CLU protein is transcript variant 1 

(NCBI accession: NM_001831.3), several other transcript variants have been detected 

in human tissues. The position of the SYBR green primers indicates that most, if not all, 

of the CLU mRNA transcript variants would be detected and amplified; while the 

TaqMan probe, though specific, is more restrictive and unable to detect mRNA 

transcripts that  have a skipped or truncated exon 6 (Figure 4.12). The fact that the two 

qRT-PCR assays are targeting different regions within the CLU transcript provides a 

possible explanation for the conflicting results obtained using two different qRT-PCR 

approaches. Irrespective of this, loss of SAFB1 and SAFB2 did have a significant effect 

on the transcriptional regulation of CLU. 
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Figure 4.12  Analysis of CLU transcript variants and location of SYBR 

green primers and TaqMan gene expression assay. 

The CLU gene was analysed in the Alternative Splicing Annotation Project 

(ASAP) database for alternative splicing information of this gene (Lee et al. 2003). 

Several transcript variants listed here have been reported in different human 

tissues. Mapping of the SYBR green primer and TaqMan gene expression assay 

used in this study revealed their position on exon 10 and exon 6 respectively. 

Exon skipping (CR617497.1) and alternate transcription start site (CR602228.1) 

result in transcript variants that lack exon 6, consequently undetected by TaqMan 

probes. However, exon 10 remains intact in all transcript variants and therefore 

could be detected by SYBR green primer. 
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ITGB4 

The gene expression array data identified the increase of ITGB4 mRNA expression 

particularly in the absence of SAFB2 (Table 4.1). This suggests that the regulation of 

ITGB4 transcription may be dependent on the corepressor role of SAFB2. The ITGB4 

gene encodes the beta4 (ITGβ4) subunit that associates with the alpha6 (α6) subunit to 

form the α6/β4 integrin laminin receptor. ITGβ4 plays a pivotal role in pathways 

associated with cancer progression by facilitating the migration, invasion and survival 

of carcinoma cells (Lipscomb et al. 2005, Wilhelmsen et al. 2006). A comprehensive 

study using mouse models revealed that loss of ITGβ4 signalling suppresses tumour 

progression and metastasis, while ITGβ4 signalling promotes cell proliferation, invasive 

growth and inhibits apoptosis (Guo et al. 2006). ITGβ4 contributes to anchorage-

independent growth and its gene expression significantly correlates with breast cancer 

size and grade, as well as basal-like breast cancer (Diaz et al. 2005, Lipscomb et al. 

2005, Lu et al. 2008). Arrestin domain-containing 3 (ARRDC3), a gene inversely 

correlates with breast tumour progression, has been shown to function as a novel 

regulator of ITGβ4 internalisation, ubiquitination and ultimate degradation (Draheim et 

al. 2010). In ovarian cancer cells, ITGB4 expression was upregulated in response to 

17β-oestradiol (Parker et al. 2009). ITGB4 transcription is also induced by the depletion 

of homeodomain-interacting protein kinase 2 (HIPK2), suggesting that HIPK2 

corepresses its transcription in ITGB4-null cancer cells (Bon et al. 2009). Despite our 

current understanding on ITGB4 and its significant contribution in tumour progression, 

the mechanism underlying ITGB4 transcriptional regulation remains unclear.  

In this study, successful validation by TaqMan gene expression assay has shown that 

the loss of SAFB2 and both SAFB proteins significantly increased ITGB4 mRNA 

expression (Figure 4.7). Despite the very small sample size (n=2), comparison between 

SAFB1 and SAFB2 with ITGB4 mRNA levels in normal and breast tumour samples 

reflects the data observed in vitro (Figure 4.8). Although this analysis was performed in 

only two tumour samples, further bioinformatics analysis using the newly available 

multidimensional cBioPortal cancer genomics database (www.cBioPortal.org) revealed 

that amplified ITGB4 expression inversely correlate with SAFB expression in at least  

69 breast cancer case studies (data from cBioPortal). These observations collectively 

show that the loss of SAFB proteins, particularly SAFB2, result in the loss of ITGB4 

repression.  
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IL-6 

In this study, IL-6 was the only candidate that was significantly suppressed in the 

absence of SAFB1 and SAFB2 (Table 4.1). This interesting finding highlights a novel 

role of SAFB1 and SAFB2 in transcriptional activation. IL-6 is a pleiotropic 

inflammatory cytokine that acts in a paracrine or autocrine fashion to alter the function 

of its target cells. In vitro studies on breast cancer cells revealed controversial effects of 

IL-6 that indicate its tumour promoting and tumour inhibitory role in breast cancer 

[reviewed in (Knupfer et al. 2007)]. It has been established that MCF-7 cells are 

incapable of expressing IL-6 due to the presence of an active gene repression 

mechanism on the IL-6 gene in this cell line (Faggioli et al. 1996). The mechanism of 

IL-6 gene silencing in MCF-7 cells involves local chromatin remodelling causing the 

surrounding chromatin to be in a repressed state (Armenante et al. 1999). In this       

non-expressing cell line, production of IL-6 could be induced in an autocrine fashion by 

exogenous IL-6 and its expression increases resistance to doxorubicin chemotherapy 

drug, indicating a protective effect of IL-6 against drug-induced cell death (Conze et al. 

2001). Interestingly, in the triple negative MDA-MB-231 cells a positive feedback 

mechanism in IL-6 secretion has been proposed, where increased cytokine 

concentrations cause more cell aggregation and proliferation that further stimulated 

cytokine secretion (Geng et al. 2013). 

Several studies have also shown that IL-6 can promote breast cancer cell motility, 

contributing to tumour metastasis. IL-6 induces significant cell migration and spreading 

in ER negative breast cancer cells, MDA-MB-231 and SK-BR-3 (Arihiro et al. 2000, 

Verhasselt et al. 1992). The effects of IL-6 were also investigated in four breast cancer 

cell lines and results showed that IL-6 decreased cell adhesion in three ER positive 

breast cancer cell lines, however did not further affect the already poorly adherent cell 

line MDA-MB-231 (Asgeirsson et al. 1998). Although IL-6 on its own did not show 

significant effect on the proliferation of MCF-7 cells, the simultaneous stimulation of 

IL-6 and oestrone sulphate significantly increased cell proliferation (Honma et al. 2002). 

On the other hand, Chiu et al. reported that ER negative breast cancer cell lines secrete 

high levels of biologically active IL-6 that could inhibit proliferation of IL-6 sensitive 

breast cancer cells through paracrine signalling induced apoptosis, but had no effect on 

autocrine signalling (Chiu et al. 1996). Growth inhibitory effects of IL-6 were also 

observed in other cancers, especially in prostate cancer (Wang et al. 2004). IL-6 has 

also been demonstrated to contribute in cell cycle arrest by inhibiting IGF-induced 
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DNA synthesis (Shen et al. 2002). Taken together, the in vitro data regarding IL-6 in 

breast cancer cells are not uniformly consistent and highlights the pleiotropic nature of 

this cytokine.  

Regulation of IL-6 expression in breast cancer cell lines has been examined and 

reported. An early study presented evidence that 17β-oestradiol inhibits the expression 

of IL-6 via an indirect interaction with its receptor, ER-α (Pottratz et al. 1994). Another 

later study substantiates this observation when wild type ER-α was shown to repress  

IL-6 expression through its trans-acting process (Bhat-Nakshatri et al. 2004).           

Post-transcriptional regulation also plays a vital role in IL-6 expression by modulating 

its mRNA stability [reviewed in (Palanisamy et al. 2012)]. IL-6 transcripts have 

abundant adenine- and uracil-rich (AU-rich) elements (AREs) in the 3’-untranslated 

region (UTR) that promote its mRNA degradation (Hao et al. 2009). RNA-binding 

proteins such as tristetraprolin (TTP) and AT-rich interactive domain containing protein 

5a (Arid5a) have been shown to regulate IL-6 mRNA stability through their interaction 

with AREs (Masuda et al. 2013, Van Tubergen et al. 2011). 

Data presented in this thesis study reveals a novel correlation between loss of SAFB1 

and SAFB2 and regulation of IL-6 expression and secretion in MDA-MB-231 cells 

(Figure 4.9 and Figure 4.10). Transient transfection experiments using human IL-6 

promoter reporter constructs showed that the loss of SAFB1 and SAFB2 had no direct 

effect on IL-6 promoter activity (data not shown). Considering the presence of AREs in 

IL-6 and the speculative role of SAFB as RNA-binding proteins, it is plausible that 

SAFB2 may affect IL-6 mRNA stability rather than its transcription. This mechanism of 

action could potentially be investigated in future work. Irrespective of the mechanism 

involved, this study is the first associate SAFB1 and SAFB2 proteins in the regulation 

of IL-6 expression. 

In summary, this study has provided further evidence for the role of SAFB1 and SAFB2 

as transcriptional repressors. While SAFB1 appeared to be the main transcriptional 

regulator in MCF-7 cells (Hammerich-Hille et al. 2010), this work shows that SAFB2 

has a more prominent role in transcriptional repression in MDA-MB-231 cells. This 

also highlights the difference in gene expression and transcriptional control that exists 

between ER positive and ER negative breast cancer cells. Evidence also suggests that 

SAFB1 and SAFB2 may function synergistically in mediating the repression of their 
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target genes. For the first time, this study has reported a link between SAFB proteins in 

the regulation of ITGB4 and IL-6 expression. 
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Chapter 5 : Transcriptome-wide identification for RNA-binding sites 

of SAFB1 in breast cancer cells 

5.1 Introduction  

 

The role of SAFB1 in RNA processing, metabolism and splicing has been well 

described (Section 1.4.2.3). SAFB1 and SAFB2 proteins share a highly conserved 

RNA-recognition motif (RRM) with 98% similarity in the central region although their 

direct RNA-binding potential is still currently unknown. Sequence analysis revealed the 

alignment of SAFB RBD residues with the consensus sequence of RBD as defined by 

Birney et al. (Birney et al. 1993). SAFB1 was classified as a RNA-binding protein and 

a novel hnRNP protein due to its similarity to the highly conserved RBD found in the 

hnRNP protein family (Weighardt et al. 1999).  

Subsequent studies have implicated both SAFB proteins in alternative splicing,            

as overexpression of SAFB1 and SAFB2 was shown to inhibit the splicing of a TRA2B 

variable exon (Sergeant et al. 2007, Stoilov et al. 2004). Further investigation using 

mutants lacking the RRM domain revealed that SAFB1’s ability to inhibit TRA2B exon 

skipping was independent of its RNA-binding ability (Stoilov et al. 2004).                

This evidence suggests that SAFB1 may not bind directly to TRA2B pre-mRNA to 

regulate exon skipping but could possibly mediate an indirect effect through its 

interaction with various splicing factors (Arao et al. 2000, Li et al. 2003, Nikolakaki et 

al. 2001, Sergeant et al. 2007, Weighardt et al. 1999). In an unrelated study, in vitro 

evidence has shown that the RRM domain of SAFB1 was able to bind RNA isolated 

from MCF-7 cells, although the identity of the RNA targets was not described 

(Townson et al. 2004). Although implicated in alternative splicing, it is still largely 

unknown whether SAFB1 exerts its RNA processing functions through direct RNA 

interaction or by tethering to other protein factors. This is an unexplored avenue of 

research that beckons a collaborative effort to expand our knowledge of the function of 

SAFB proteins. Therefore, much interest has been generated for an in depth 

investigation to identify possible direct RNA targets of SAFB1, especially in the context 

of breast cancer. 

CLIP combined with high-throughput sequencing is an emerging powerful tool to study 

protein-RNA interactions in cells or tissues. This method has been utilised to identify 

transcriptome-wide binding maps of several RNA-binding proteins (Licatalosi et al. 

2008, Sanford et al. 2008, Ule et al. 2005, Ule et al. 2003, Yeo et al. 2009). Despite the 
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high specificity of the CLIP data, primer extension assays frequently truncate 

prematurely before the crosslink nucleotide, causing truncated cDNA to be lost during 

CLIP library preparation (Urlaub et al. 2002). Konig et al. have recently improved this 

method and developed iCLIP that captures the truncated cDNA and provides insights 

into the position of the crosslink site at single nucleotide resolution (Konig et al. 2011). 

This improved method has been applied to study RNA-binding proteins such as hnRNP 

C, SRSF3, SRSF4 and T-cell intracellular antigen 1 (TIA1) (Anko et al. 2012, Konig et 

al. 2010, Wang et al. 2010). 

Irradiation of cells with UV light creates a covalent bond between proteins and the 

RNAs to which they are bound in vivo. This physical bond is used to isolate the  

protein-bound RNAs using protein immunoprecipitation followed by denaturing gel 

electrophoresis. After the isolation of RNAs that are crosslinked to the protein of 

interest, the proteins are digested by Proteinase K while a residue polypeptide remains 

attached at the RNA crosslink site, causing cDNA products generated to truncate at this 

site (Konig et al. 2011). cDNA is generated by reverse transcription using primers with 

random barcodes to enable discrimination between unique cDNA products and        

PCR duplicates. A second adapter is introduced via self-circularisation of the cDNA to 

prepare a quantitative cDNA library that allows for high-throughput sequencing to 

identify RNA targets from transcriptome-wide binding maps and precise mapping of 

protein-RNA interaction sites at single nucleotide resolution (Konig et al. 2010, Ule et 

al. 2003). 

A brief report has shown that SAFB1 was able to bind RNA in MCF-7 cells     

(Townson et al. 2004), therefore this cell line was selected as a candidate for this part of 

the study. iCLIP was performed for SAFB1 (Section 2.9.1) followed by                   

high-throughput sequencing and mapping (Section 2.9.2) to generate a transcriptome-

wide binding map for SAFB1. 
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Figure 5.1  Schematic representation of the iCLIP protocol. 

MCF-7 cells are UV-irradiated on ice to enable the formation of protein-RNA 

covalent bonds in vivo. Protein is purified by immunoprecipitation together with 

the bound RNA. An RNA adapter is ligated to the 3’ end to allow sequence 

specific priming of reverse transcription, while the 5’ end is radioactively labelled. 

The crosslinked protein-RNA complexes are purified from unbound RNA using 

SDS-PAGE and membrane transfer. The recovered RNA is subjected to protein 

digestion by Proteinase K, leaving a short polypeptide at the crosslink nucleotide. 

Reverse transcription incorporates two cleavable adapter regions and barcode 

sequences into the newly synthesised cDNA that truncates at the crosslink 

nucleotide. The cDNA undergoes size separation to remove primers prior to     

self-circularisation. Linearisation of cDNA at known restriction enzyme site 

produces suitable templates for PCR amplification. Finally, high-throughput 

sequencing generates reads that contain the barcode sequences followed by the 

last nucleotide of the cDNA, allowing the binding site to be deduced with high 

resolution [image taken from (Konig et al. 2011)]. 
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5.2 Aims  

 

The aims of this chapter were to: 

1. Identify RNA-binding sites for SAFB1 protein in MCF-7 cells 

2. Investigate the distribution of SAFB1 binding sites  

3. Determine a potential consensus binding motif for SAFB1  

4. Identify novel RNA targets from transcriptome-wide binding maps 

generated by iCLIP 

5. Validate selected RNA targets in SAFB1 knockdown cells using qRT-PCR 

and conventional PCR 

 

5.3 Results   

5.3.1 Identification of SAFB1 binding sites in MCF-7 cells 

5.3.1.1 Optimisation and sequencing of iCLIP library for SAFB1 in MCF-7 cells 

 

An initial experiment was performed to examine the compatibility of the SAFB1 

antibody with the magnetic beads used for protein-RNA immunoprecipitation.       

MCF-7 cells were irradiated with 150mJ/cm
2
 of UV at 254nm and lysed             

(Section 2.9.1.1), prior to immunoprecipitation with protein A or protein G magnetic 

beads coupled with SAFB1 antibody (Section 2.9.1.3). Once the crosslinked RNAs have 

been radioactively-labelled, the samples were subjected to denaturing gel 

electrophoresis and membrane transfer (Section 2.9.1.5). The autoradiograph revealed 

that both SAFB1-coupled protein A and protein G magnetic beads were capable of 

precipitating the protein-RNA complex with different binding affinity (Figure 5.2). 

Protein G magnetic beads appear to have higher affinity binding to protein-RNA 

complex; however RNA digestion with high RNase concentration was unable to have 

any effect on the radioactive signal on the autoradiograph [Figure 5.2 (a), lane 3].      

This observation suggests that the protein G samples may potentially contain high levels 

of background noise. Comparison of SAFB1-coupled protein A magnetic beads 

revealed a difference in radioactive signals between samples with high and low RNase 

concentration [Figure 5.2 (a), lanes 1 and 2]. This preliminary experiment confirms the 



 

121 

 

suitability of protein A magnetic beads in the application of the iCLIP experiments, 

based on the low background noise seen in these samples.  

To further validate the efficiency and specificity of the immunoprecipitation step,       

the membrane was analysed for SAFB1 protein by a conventional immunoblotting 

method (Section 2.6.2). The SAFB1 antibody successfully detected SAFB1 protein in 

all immunoprecipitants using either protein A or protein G magnetic beads           

[Figure 5.2 (b)]. This observation validates the accuracy for SAFB1 

immunoprecipitation in this crucial step of the iCLIP experiment. 

 

Figure 5.2  Optimisation of magnetic beads for the use of iCLIP in MCF-7 

cells. 

UV-irradiated MCF-7 cells were lysed and treated with high (H) or low (L) 

concentration of RNase to allow for partial RNA digestion. High RNase digestion 

is necessary as a control for antibody specificity, while low RNase digestion is 

needed for sequencing library preparation. Cell lysates were subjected to 

immunoprecipitation using SAFB1-coupled protein A or protein G magnetic 

beads, followed by radioactive labelling of the 5’ end of the RNAs. Samples were 

separated by denaturing gel electrophoresis and transferred onto a membrane to 

a) 

b) 
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allow analysis using autoradiography and immunoblotting. (a) Autoradiograph 

revealed that high RNase dilution could reduce the radioactive signal in protein A 

immunoprecipitants (lane 1) but not in protein G immunoprecipitants (lane 3), 

when compared to their corresponding samples treated with low RNase dilution 

(lanes 2 and 4 respectively). Sam68-coupled protein A beads were included as a 

control for antibody specificity (lane 5). (b) The lower panel shows immunoblot 

analysis of protein extracts used as input for the immunoprecipitation.      

Antibody against SAFB1 reveals its protein was present in the corresponding 

immunoprecipitant samples (lanes 1-4), but not in the Sam68 samples (lane 5). 

 

To identify potential RNA targets of SAFB1 in vivo, three biological replicates of iCLIP 

experiments were performed using the SAFB1 antibody on MCF-7 cell lysates. Prior to 

sequencing of the iCLIP library, the success of the experiments were monitored during 

the purification of protein-RNA complex (Section 2.9.1.5) and amplification of the 

cDNA (Section 2.9.1.10). Conditions were altered in several samples to provide a 

parallel comparison for experimental controls. In reactions when UV crosslinking or the 

use of SAFB1 antibody was omitted during sample preparation, purified protein-RNA 

complex was absent in the autoradiograph (Figure 5.3, lanes 3-6). This validates the 

presence of purified protein-RNA complex observed in the actual iCLIP replicates 

(Figure 5.3, lanes 1-2). 
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Figure 5.3  Analysis of crosslinked SAFB1-RNA complexes. 

Cell extracts were prepared from UV crosslinked and control MCF-7 cells, then 

RNA was partially digested using high (H) or low (L) concentration of RNase. 

SAFB1-RNA complexes were immuno-purified from cell extracts using     

SAFB1 antibody (α-SAFB1) and the RNAs were ligated to RNA adapters at the 

3’ ends before radioactively labelled with 
32

P-γ-ATP at the 5’ ends. SAFB1-RNA 

complexes were separated using denaturing gel electrophoresis and transferred to 

a membrane before being exposed on an autoradiograph. The shift of         

SAFB1-RNA complexes upwards from the size of the protein was observed   

(lane 2), while this shift was less pronounced when high concentrations of RNase 

were used (lane 1). The radioactive signal disappears when cells were not         

UV crosslinked (lanes 3 and 4) or no antibody was used in the 

immunoprecipitation (lanes 5 and 6). The red box marks a region of the 

membrane that was cut out for subsequent purification steps. This image is a 

representative of the three iCLIP biological replicates. 

 

RNA recovered from the membrane was purified and reverse transcribed. The cDNA 

generated was size-purified using denaturing gel electrophoresis into three size fractions 

[high (H): 120-200 nucleotides, medium (M): 85-120 nucleotides and low (L):           

70-85 nucleotides]. The recovered cDNA was amplified by PCR using P5/P3 Solexa 

sequencing primers that introduces an additional 76 nucleotides to the cDNA.          

PCR products of different size distribution corresponding to the sizes of the input 

fractions were observed for all replicates (Figure 5.4, lanes 4-12). An experiment that 

lacked    the SAFB1 antibody during immunoprecipitation was included as a control for 
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PCR specificity and no corresponding PCR products were detected in this sample 

(Figure 5.4, lanes 1-3). Following the analysis of PCR products by denaturing gel 

electrophoresis, the three iCLIP replicates were submitted for high-throughput 

sequencing using the Illumina Genome Analyser II system (Illumina Inc;                   

San Diego, USA) (Section 2.9.2). 

 

 

Figure 5.4  Analysis of PCR amplified iCLIP cDNA libraries. 

RNA recovered from the membrane was reverse transcribed and size-purified into 

three size fractions [high (H): 120-200 nucleotides, medium (M):                       

85-120 nucleotides and low (L): 70-85 nucleotides]. Purified cDNA was 

recovered, self-circularised, relinearised and PCR amplified using sequencing 

primers that introduces an additional 76 nucleotides to the cDNA. Amplified 

cDNA of different size distribution were observed in all three replicates        

(lanes 4-12) while PCR products were absent when no antibody was used for 

immunoprecipitation (lanes 1-3). PCR products were submitted for high-

throughput sequencing. 

 

Bioinformatics analyses were performed on the sequencing results by Tomaz Curk 

(University of Ljubljana, Slovenia) and uploaded on the web-based iCount software 

(icount.fri.uni-lj.si/). High-throughput sequencing of all three biological replicates for 

SAFB1 iCLIP generated a total of 1,145,271 unique cDNA reads with single-hits 

mapping to the human genome. In order to reduce false positive hits and increase the 

resolution of the dataset, clusters of SAFB1 crosslink sites were identified by the iCount 

software according to a previous CLIP study (Yeo et al. 2009). This filtering approach 

removed almost 49% of all crosslink nucleotides and identified 587,119 significant 
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SAFB1 crosslink clusters (FDR<0.05). The number of sequences at each crosslink 

nucleotide were summarised into a ‘cDNA count’ to represent a quantitative measure of 

the amount of SAFB1 crosslinking at each position. The random barcode introduced 

into the iCLIP cDNAs allowed for the distribution of SAFB1 on human RNAs to be 

analysed in a quantitative and reproducible manner. An example of the view for SAFB1 

crosslink sites on the UCSC Genome Browser (genome.ucsc.edu/) is shown below 

(Figure 5.5).  

 

 

Figure 5.5  Global view of SAFB1 crosslink nucleotides on chromosome 20. 

The three individual biological replicates of SAFB1 iCLIP (labelled as ‘crosslink 

sites’) are shown in BedGraph format in the UCSC hg19 Genome Browser. The 

peaks within each replicate represent cDNA counts at crosslink sites. Purple peaks 

denote crosslink sites on the sense strand while orange peaks represent crosslink 

sites on the antisense strand. The bottom track refers to known gene annotations 

based on the RefSeq database. Similar pattern of crosslink sites was observed 

between each replicate and an example is highlighted in the red box. 

 

5.3.1.2 Mapping of SAFB1 crosslink sites to the transcriptome  

 

iCLIP identified binding of SAFB1 across the whole transcriptome, where 100% of 

significant cDNA reads mapped to the sense orientation to annotated genes.              

This confirms the high strand specificity of iCLIP also observed in other studies    
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(Konig et al. 2010, Wang et al. 2010). Analysis of crosslinking frequency mapped to 

transcript regions revealed that SAFB1 binds to coding and non-coding RNAs 

(ncRNAs). The highest proportion of SAFB1 crosslink sites mapped to ncRNAs, 

followed by intergenic regions, open reading frames (ORF), introns and 3’ or 5’ 

untranslated regions (UTR) [Figure 5.6 (a)]. When the cDNA density for each transcript 

regions was analysed relative to the cDNA density in the whole genome, the highest 

density enrichment was detected in ncRNAs [Figure 5.6 (b)]. The distribution of 

SAFB1 crosslink sites within ncRNA subclasses was also analysed. SAFB1 crosslink 

sites were most abundant in small nuclear RNA (snRNA), mitochondrial RNA          

(Mt RNA) and small nucleolar RNA (snoRNA) (Figure 5.7). 

 

 

Figure 5.6  Distribution of significant SAFB1 crosslink sites within       

RNA segment types. 

 (a) The proportion of cDNAs mapped to different transcript regions relative to 

the total number of cDNA reads revealed that the highest percentage of cDNAs 

was mapped to ncRNA (47.08%), followed by intergenic regions (23.24%), ORFs 

(19.38%), introns (5.23%), 3’ UTRs (3.83%) and 5’ UTRs (0.86%). (b) The fold 

enrichment of cDNA density in different types of RNAs relative to cDNA density 

in the whole genome highest density enrichment in ncRNAs.  

 

 

a) b) 
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Figure 5.7  Distribution of significant SAFB1 crosslink sites within    

ncRNA subclasses. 

The distribution of SAFB1 crosslink sites within different ncRNA subclasses 

revealed significant abundance in snRNA, Mt RNA and snoRNA. ‘Other RNA’ 

consists of pseudogenes and processed transcripts with no known ORF or function. 

 

5.3.1.3 Identification of consensus binding motif for SAFB1   

 

The in vivo binding specificity of SAFB1 is still currently unknown. The advantage of 

single nucleotide resolution provided by iCLIP method enabled the assessment of 

sequence specificity for SAFB1 binding. To derive whether a consensus binding motif 

exists for SAFB1, enriched pentamer sequences surrounding the crosslink sites were 

identified. The frequencies of each pentamer were analysed to determine the               

top 20 pentamers for SAFB1. Strikingly, adenine appeared as the most frequent 

nucleotide in the top 20 pentamers and represents 68% of the enriched pentamers 

[Figure 5.8 (a)]. The predicted SAFB1 consensus binding motif contains adenine-rich 

sequences derived from the pentamers [Figure 5.8 (b)]. When the frequency of each 

nucleotide in the cDNA libraries was analysed relative to its base position, a strong 

inclusion of adenine at base position 5 was observed (80%) while thymine              

(uracil in RNA) was excluded at base position 4 of the putative RNA-binding motif             

[Figure 5.8 (c)]. The consensus binding motif for SAFB1 has not been described before, 

thus this novel finding is likely to be of great importance to further our current 

understanding of SAFB1 RNA-binding specificity. 
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Figure 5.8  In vivo consensus binding motif of SAFB1. 

 (a) The frequency (million k-mers) of pentamers surrounding SAFB1 crosslink 

sites was determined. Adenine represents 68% of the 20 pentamers that has the 

highest frequencies. (b) Weblogo showing base frequencies of each base at 

respective positions of the pentamer. SAFB1 binds to adenine-rich motifs.           

(c) The frequency of each base relative to its position within the pentamer was 

summarised in this table. Highest frequency of adenine was observed at base 

position 5, thymine was excluded at base position 4 of the consensus binding 

motif. This consensus binding motif was predicted from iCLIP cDNA libraries, 

therefore the uracil base is referred as thymine in these sequences. 

 

5.3.2 Identification of novel RNA targets from data generated by iCLIP  

 

Data analysis of bound RNAs revealed the number of SAFB1 crosslink sites within 

each RNA target (Appendix II). When the top 10 RNA targets with the largest number 

of crosslink sites were listed according to each RNA segment, the position of SAFB1 

binding within each gene was visualised using the USCS Genome Browser.              

a) b) 

c) 



 

129 

 

This enabled the identification of several interesting RNA targets that were selected for 

validation. Further experimentations were performed using qRT-PCR or conventional 

PCR on RNAi transfected MCF-7 and MDA-MB-231 cells to verify the effect of loss of 

SAFB1 on the expression of these selected RNA targets (Section 2.3.7). Since SAFB2 

shares 98% sequence homology to the RRM of SAFB1, these cells were also depleted 

of SAFB2 in this part of the study. Double knockdown of SAFB1 and SAFB2 were also 

included as previous study in this thesis has shown the importance of their interaction in 

regulating gene expression (Section 4.3.1.2). 

 

5.3.2.1 Src homology 2 domain containing F (SHF) 

 

Analysis of the RNA map revealed a large number of SAFB1 binding sites on the SHF 

mRNA, particularly accumulated around the alternative promoter (Figure 5.9).          

The use of an alternative promoter plays a significant role in gene expression control 

[reviewed in (Ayoubi et al. 1996, Davuluri et al. 2008, Koch et al. 2008)].               

More importantly, the aberrant use of a alternative promoter has been linked to a 

number of diseases, including cancer (Singer et al. 2008). Therefore, the identification 

of SHF as a potential RNA target for SAFB1 warrants further investigation.  

MCF-7 and MDA-MB-231 cells were transfected with SAFB1 siRNA, SAFB2 siRNA 

or SAFB1 and SAFB2 siRNA and analysed for SHF mRNA expression using specific 

validated TaqMan probes targeting SHF in qRT-PCR (Section 2.7.3). Interestingly, the 

loss of SAFB1 had opposite effects in both cell lines. In MCF-7 cells, loss of SAFB1 

did not appear to significantly alter SHF mRNA expression; whereas in MDA-MB-231 

cells there was a significant increase in SHF mRNA expression when SAFB1 was 

absent (Figure 5.10). Loss of SAFB2 and both SAFB proteins increased SHF expression, 

again supporting their role as transcriptional repressors. 
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Figure 5.9  Distribution of SAFB1 crosslink sites on SHF mRNA. 

Overview of the crosslink nucleotides on chromosome 15 shows the location of 

SHF mRNA. SAFB1 crosslink sites are enriched within the alternative promoter 

of SHF pre-mRNA (SAFB1 tags). The bottom tracks represent known SHF 

transcripts and alternative splicing events that occur within this gene. Figure 

represents a modified image of the UCSC genome browser (human genome, 

version hg19, chromosome 15, nucleotides 45,459,412 to 45,493,373).  
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Figure 5.10  Expression of SHF in the absence of SAFB1 or/and SAFB2. 

qRT-PCR was performed on mRNA from MCF-7 and MDA-MB-231 cells 

transfected with negative, SAFB1, SAFB2 or SAFB1 and SAFB2 siRNA using 

validated TaqMan probes specifically targeting SHF. Data represents the average 

of three biological replicates ± S.D. Statistical significance of mRNA expression 

was calculated using a student’s t-test. * = p<0.05.  

 

5.3.2.2 Serglycin (SRGN) 

 

The identification of SRGN in the list of RNA targets also sparked an interest for further 

validation due to concentrated SAFB1 crosslink sites along all the exons, especially 

around the cassette exon (Figure 5.11). Previous evidence has shown the ability of 

SAFB1 and SAFB2 to promote the skipping of a variable exon, although this splicing 

event was independent of their RNA-binding ability (Nayler et al. 1998, Sergeant et al. 

2007, Stoilov et al. 2004). The interaction between SAFB1 and SRGN RNA may shed 

some light on the direct or indirect involvement of SAFB proteins in alternative splicing, 

therefore was chosen as a RNA target for validation. 

MCF-7 and MDA-MB-231 cells were transfected with SAFB1 siRNA, SAFB2 siRNA 

or SAFB1 and SAFB2 siRNA as described, and analysed for SRGN exon skipping event 

using specially designed primers spanning the cassette exon in conventional PCR 

(Section 2.9.3). The primers were designed to allow a distinct size separation of       

PCR products dependent on the inclusion or exclusion of the cassette exon (Figure 2.2). 
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The full length SRGN transcript produces a PCR product of 325bp while the transcript 

that lacks the cassette exon produces a 177bp PCR product. Conventional PCR only 

detected the 325bp PCR product in all MCF-7 and MDA-MB-231 samples tested, while 

the 177bp PCR product was not detected (Figure 5.12).  

 

 

Figure 5.11  Distribution of SAFB1 crosslink sites on SRGN mRNA. 

Overview of the crosslink nucleotides on chromosome 10 shows the location of 

SRGN mRNA. SAFB1 crosslink sites are enriched on exons, particularly around 

the cassette exon (SAFB1 tags). The bottom tracks represent known SRGN 

transcripts and alternative splicing events that occur within this gene. Figure 

represents a modified image of the UCSC genome browser (human genome, 

version hg19, chromosome 10, nucleotides 70,847,828 to 70,864,567).  
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Figure 5.12  Analysis of SRGN exon skipping event in the absence of  

SAFB1 or/and SAFB2. 

Conventional PCR was performed on mRNA from MCF-7 and MDA-MB-231 

cells transfected with negative, SAFB1, SAFB2 or SAFB1 and SAFB2 siRNA 

using primers spanning across the cassette exon. PCR products were separated by 

electrophoresis on an agarose gel. Data represents a gel image of at least three 

biological replicates. 

 

5.3.2.3 Integrin beta 4 (ITGB4) 

 

The list of 12 SAFB-regulated genes obtained from the gene expression profile study in 

Chapter 4 were examined in the RNA map using the UCSC genome browser to identify 

direct SAFB1 binding sites in these genes. Interestingly, overlapping of the dataset 

revealed that only ITGB4 mRNA contains SAFB1 crosslink sites. Due to time 

constraints, further experimentation was not performed to examine this observation. 

However, preliminary computational analysis of the iCLIP data shows that SAFB1 

crosslink nucleotides were present along the entire length of the ITGB4 mRNA, 

suggesting that it may be involved in the expression of ITGB4 through direct RNA 

interaction (Figure 5.13).  
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Figure 5.13  Distribution of SAFB1 crosslink sites on ITGB4 mRNA. 

Overview of the crosslink nucleotides on chromosome 17 shows the location of 

ITGB4 mRNA. SAFB1 crosslink sites are enriched along the entire length of the 

exons (SAFB1 tags). The bottom tracks represent known ITGB4 transcripts and 

alternative splicing events that occur within this gene. Figure represents a 

modified image of the UCSC genome browser (human genome, version hg19, 

chromosome 17, nucleotides 73,717,516 to 73,753,899).  

 

5.3.2.4 Transformer 2 protein homolog beta (TRA2B) 

 

Both SAFB1 and SAFB2 have been implicated in the alternative splicing of TRA2B 

(Sergeant et al. 2007, Stoilov et al. 2004). Interestingly, Stoilov et al. also revealed that 

SAFB1 is able to promote TRA2B exon skipping independent of its RNA-binding 

ability (Stoilov et al. 2004). Using the iCLIP data obtained from this study, TRA2B was 

analysed for SAFB1 binding sites to further validate these reported observations. 

Computer analysis of TRA2B mRNA revealed that SAFB1 binding sites were not 
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present in the TRA2B variable exons, supporting the observation by Stoilov et al. 

(Figure 5.14).  

 

 

Figure 5.14  Distribution of SAFB1 crosslink sites on TRA2B mRNA. 

Overview of the crosslink nucleotides (SAFB1 tags) on chromosome 3 shows the 

location of TRA2B mRNA. SAFB1 crosslink sites are not present in the variable 

exons (SAFB1 tags). The bottom tracks represent known TRA2B transcripts and 

alternative splicing events that occur within this gene. Figure represents a 

modified image of the UCSC genome browser (human genome, version hg19, 

chromosome 3, nucleotides 185,632,358 to 185,655,924).  
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5.4 Discussion   

 

The presence of the highly conserved RRM within SAFB1 and SAFB2 proteins has 

been a subject of interest since their discovery, especially in relation to their           

RNA-binding potential. Despite the fascination surrounding this question, very little has 

been undertaken and reported to describe their RNA-binding capabilities. Initial in vitro 

evidence has shown that the RRM of SAFB1 was able to bind RNA when glutathione 

S-transferase (GST)-tagged SAFB1 protein combined with total RNA from MCF-7 

cells could generate a PCR product when reverse transcribed and PCR amplified 

(Townson et al. 2004). In that report, the identity of the RNA targets was not described 

and important questions with respect to the role of SAFB1 and SAFB2 in RNA 

processing remained unanswered. This area of research has not yet been investigated, 

therefore this work will serve as a pioneering study to advance our current knowledge 

on the RNA-binding potential of SAFB1 in breast cancer. 

iCLIP has been proven as a powerful method to determine protein-RNA interactions     

in vivo on a global scale and identify the positions of crosslink sites at nucleotide 

resolution (Konig et al. 2010). The random barcode incorporated to individual cDNA 

molecules addresses the problem of PCR artifacts faced by all high-throughput 

sequencing methods. iCLIP has generated a huge dataset and this is an initial analysis of 

the RNA-binding data for SAFB1. In this study, a global view comparison of the 

complete dataset from each individual biological replicate showed that all datasets 

generated consistent and reproducible results, underlining the high quality iCLIP data 

achieved by high stringency purification and library preparation (Figure 5.5). The use of 

a highly specific SAFB1 antibody that has been tested multiple times prior to the onset 

of the iCLIP experiments also greatly contributed to the quality of the iCLIP data 

(Section 3.3.1 and Section 5.3.1.1).  

The identification of in vivo targets by iCLIP enabled the mapping of transcript regions 

and RNA classes bound by SAFB1. An overview of the iCLIP results showed that the 

important class of RNAs bound by SAFB1 was ncRNAs. Although SAFB1 binds to 

both coding and ncRNAs, highest proportion of SAFB1 crosslinked to ncRNAs and the 

highest density enrichment was also detected in ncRNAs (Figure 5.6). Interestingly, this 

binding distribution of SAFB1 is similar to the RNA-binding distribution of SRSF3 and 

SRSF4 splicing factors rather than hnRNP C protein, even though SAFB1 was initially 

classified as a novel member of the hnRNP protein family (Weighardt et al. 1999). 
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Recent work by Anko et al. utilised the iCLIP method to reveal that concentrated 

SRSF3 and SRSF4 binding sites were also in ncRNAs (Anko et al. 2012), while    

Konig et al. showed that hnRNP C binding sites were most abundant within introns 

(Konig et al. 2010). This observation raises the possibility that SAFB1 protein may 

have similar characteristics to SR proteins rather than hnRNP protein members, 

although at this stage this is only speculative. 

The term ncRNA is commonly used for RNA that does not encode a protein but appears 

to comprise internal signals that control various levels of gene expression, including 

chromatin organisation, transcription, RNA splicing, editing, translation and turnover 

[reviewed in (Mattick et al. 2006)]. Consistent with already known functions of SAFB 

proteins, concentrated SAFB1 binding in ncRNAs observed from the iCLIP data could 

possibly contribute to its various role in chromatin organisation, transcription and   

RNA metabolism (Section 1.4.2). Analysis of SAFB1 distribution within ncRNA 

subclasses revealed most abundant SAFB1 binding in snRNAs (Figure 5.7). snRNAs 

are a class of small RNA molecules found to be uridylate-rich and localised within the 

nucleus (Busch et al. 1982). The most common members of snRNAs are the U1, U2, 

U4, U5 and U6 snRNAs that form the spliceosome along with many other protein 

factors and primarily function in pre-mRNA splicing [reviewed in (Wahl et al. 2009)]. 

The high distribution of SAFB1 binding sites in snRNAs observed in this study supports 

previously identified interactions between SAFB1 with various RNA processing factors 

and splicing machinery (Li et al. 2003, Nayler et al. 1998, Rappsilber et al. 2002, 

Weighardt et al. 1999). 

Another interesting observation from the iCLIP data revealed significant              

SAFB1 binding sites to metastasis associated lung adenocarcinoma transcript 1 

(MALAT-1) (data not shown). MALAT-1 is a highly conserved long ncRNA enriched in 

nuclear speckles that regulates alternative splicing by modulating splicing factor 

phosphorylation (Tripathi et al. 2010). Several studies have shown that MALAT-1 is 

overexpressed in many different cancers including breast cancer and suggest that 

MALAT-1 is an oncogenic long ncRNA (Li et al. 2009, Perez et al. 2008). It has also 

been shown that MALAT-1 co-localises with SC35 in nuclear speckles (Hutchinson et al. 

2007). In addition, abundant SAFB1 crosslink sites were also found on 7SK RNA (data 

not shown), another nuclear speckle localised ncRNA (Prasanth et al. 2010). These 

findings support the previously observed punctuate pattern of SAFB1 distribution 

indicative of its ‘nuclear speckles’ localisation (Section 3.3.2.2). Furthermore, other 
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splicing factors that localise in nuclear speckles such as SRSF1, SRSF3 and SRSF4 also 

bind to MALAT-1 and 7SK (Anko et al. 2012, Sanford et al. 2009). It is therefore 

conceivable that SAFB1 may possess other typical characteristics of a splicing factor 

that supports its observed function in pre-mRNA splicing (Nayler et al. 1998, Sergeant 

et al. 2007, Stoilov et al. 2004). 

The genome-wide, single nucleotide resolution of iCLIP data enabled the prediction of 

in vivo consensus binding sequences for SAFB1 based on the enriched pentamer 

sequences surrounding the crosslink sites. This study is the first to report that SAFB1 

binds a consensus adenine-rich sequence in vivo [Figure 5.8 (b)]. Closer examination of 

the putative consensus binding sequence revealed the exclusion of thymine at base 

position 4 and a strong inclusion of adenine at base position 5 [Figure 5.8 (c)]. 

Interestingly, the predicted SAFB1consensus binding motif shows high similarity to the 

purine-rich sequences found in RNA-binding motifs for other SR proteins [reviewed in 

(Long et al. 2009)].  

When analysing SAFB1 crosslink sites within protein-coding transcripts, SAFB1 

binding density was also enriched in regions encompassing the ORF, 3’ and 5’ UTR 

[Figure 5.6 (b)]. The list of RNA targets was filtered according to the region and density 

of SAFB1 binding to identify targets that are relevant to tumourigenesis. Several 

interesting genes were highlighted in this study. 

SHF 

SHF is a member of a family of adaptor protein characterised by their ability to mediate 

protein-protein interactions through their Src homology 2 domain (Lindholm et al. 2000, 

Welsh et al. 1994). Although the function of SHF is not fully understood, evidence has 

shown that overexpression of SHF significantly decreases the rate of growth factor-

induced apoptosis in neuroblastoma cells (Lindholm et al. 2000). Subsequently,     

Ohira et al. showed that SHF mRNA was highly expressed in non-metastatic 

neuroblastoma compared to metastatic tumour samples (Ohira et al. 2003).         

Another recent study provided evidence that loss of SHF increased cellular mobility and 

the invasive capability of neuroblastoma cells (Takagi et al. 2013).  

Initial iCLIP data from this study revealed enriched SAFB1 binding sites at the 

alternative promoter of SHF (Figure 5.9). As the aberrant expression of alternative 

promoters is linked to cancer, SAFB1 binding surrounding this region gathered an 
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interest for further examination. Interestingly, the knockdown of SAFB1 in MCF-7 cells 

did not significantly alter SHF expression while the knockdown of SAFB2 or both 

SAFB proteins significantly increased SHF expression (Figure 5.10). This suggests that 

direct SAFB1 binding to the alternative promoter did not affect the expression of this 

gene. MDA-MB-231 cells were included in this part of the study for comparison and in 

this cell type, increased SHF expression was observed in the loss of SAFB1 or SAFB2 

and both SAFB proteins. Although the RNA-binding pattern of SAFB1 in             

MDA-MB-231 cells is not yet known, this data shows that SAFB1 differentially 

regulate SHF expression in non-invasive (MCF-7) and invasive (MDA-MB-231) breast 

cancer cells. 

SRGN 

SRGN encodes the protein serglycin, a proteoglycan composed of a core peptide with 

serine-glycine dipeptide repeats and various glycosaminoglycan side chains     

[reviewed in (Kolset et al. 2008)]. Overexpression of serglycin has been observed in 

nasopharyngeal carcinoma (NPC) and shown to promote motility, invasion and 

metastasis of NPC cells (Li et al. 2011). The core protein of serglycin is encoded by 

three exons that form three functional domains. Exon 1 encodes a signal peptide domain 

that is commonly present in secreted proteins, exon 2 encodes the N-terminal domain 

and exon 3 encodes a glycosylation domain that enables glycosaminoglycan attachment 

(Nicodemus et al. 1990). Exon 2 of SRGN has been identified as a cassette exon 

although the significance of exon 2 deletion is still uncertain. However,         

Castronuevo et al. has also speculated that a deletion would generate a different          

N-terminal sequence that could influence interactions of serglycin with other proteins 

(Castronuevo et al. 2003). 

iCLIP data revealed abundant binding of SAFB1 within the entire exonic region of 

SRGN that dropped towards the exon-intron boundaries (Figure 5.11). This pattern of 

binding resembles that of SR proteins that are known to bind to exonic splicing 

enhancers, where they influence adjacent splice sites [reviewed in (Blencowe 2000)]. 

Considering the similarities that have been observed in this study between SAFB1 and 

SR proteins, the effect of both SAFB paralogs on the alternative splicing of            

SRGN   exon 2 was examined in breast cancer cells. Data shows that the knockdown of 

SAFB1 or SAFB2 and both SAFB proteins in MCF-7 and MDA-MB-231 cells did not 

alter the inclusion or exclusion of SRGN exon 2 (Figure 5.12). This observation 
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suggests that SAFB1 may not be involved in the alternative splicing of the SRGN 

cassette exon. 

ITGB4 

As previously discussed in Chapter 4 (Section 4.4), ITGβ4 plays an important role in 

cancer progression by influencing the migration, invasion and survival of cancer cells 

(Lipscomb et al. 2005, Wilhelmsen et al. 2006). Interestingly, the comparison between 

the gene expression array dataset (Section 4.3.1.2) and iCLIP data in this study 

highlights only one common target, ITGB4. Analysis of the ITGB4 mRNA revealed 

abundant SAFB1 binding sites along the entire length of the RNA, suggesting that 

SAFB1 may be involved in post-transcriptional modification of ITGB4 (Figure 5.13). 

Multiple alternatively spliced transcript variants encoding distinct isoforms have been 

found for ITGB4, although the full function of most variants remains to be defined 

(Clarke et al. 1994, Tamura et al. 1990, van Leusden et al. 1997). Alternative splicing 

mechanism has been indicated to subtly regulate the ligand binding and signalling 

activity of many integrin subunits [reviewed in (de Melker et al. 1999)]. Although the 

mechanism and significance of alternative splicing in ITGB4 has not been elucidated, 

the discovery of SAFB1 binding sites in its exonic regions may provide a new 

perspective to further understand the mRNA processing of ITGB4. 

TRA2B 

TRA2B encodes the Tra2β splicing regulator protein which functions predominantly in 

mRNA splicing [reviewed in (Elliott et al. 2012)]. Tra2β activates the splicing inclusion 

of bound exons by direct binding to target sites within an exon (Clery et al. 2011, 

Grellscheid et al. 2011, Tacke et al. 1998). The activation of splicing events by Tra2β is 

concentration dependent, as increased Tra2β concentration correlates with increased 

levels of target exon inclusion (Elliott et al. 2012, Grellscheid et al. 2011). 

Overexpression of Tra2β has been observed in several cancers, including breast cancer 

and associated with tumour metastasis (Best et al. 2013, Fischer et al. 2004, Gabriel et 

al. 2009, Ouyang et al. 2011, Watermann et al. 2006). Tra2β protein concentration is 

known to be influenced by the alternative splicing of a TRA2B variable exon.    

Inclusion of the TRA2B variable exon introduces a premature stop codon and prevents 

translation of the full length protein, thus reducing the concentration of Tra2β protein. 

Tra2β has been shown to autoregulate its protein concentration by influencing the 

inclusion of its own variable exon (Stoilov et al. 2004). SAFB1 and SAFB2 proteins 
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have also been implicated in the alternative splicing of the TRA2B variable exon 

(Sergeant et al. 2007, Stoilov et al. 2004). Specifically in both studies, SAFB proteins 

inhibit the inclusion of TRA2B variable exon in embryonic kidney cells (HEK293) 

transfected with TRA2B minigene thereby increasing the concentration of Tra2β protein. 

However, this splicing inhibition by SAFB1 was mediated independent of its RNA-

binding ability, suggesting that SAFB1 may not bind directly to TRA2B pre-mRNA 

(Stoilov et al. 2004). Using the iCLIP data for SAFB1 obtained from this study, TRA2B 

mRNA was analysed for the presence of SAFB1 binding sites. Computational analysis 

shows that SAFB1 binding sites were not present at the TRA2B variable exon (Figure 

5.14). Taken together, these evidences provide additional rationale to speculate that the 

effect of SAFB1 on TRA2B variable exon splicing is a result of an indirect RNA 

interaction possibly mediated through its interaction with other splicing factors. 

In summary, this study is the first to investigate the RNA-binding ability of SAFB1 in 

breast cancer cells. The data revealed that SAFB1 binds directly to RNA and its binding 

is particularly enriched at adenine-rich sequences. Utilising the powerful single 

nucleotide resolution iCLIP method, a putative SAFB1 consensus binding motif was 

derived for the first time. SAFB1 shares multiple similarities in RNA-binding pattern 

and characteristics with SR proteins although it was initially identified as a novel 

member of the hnRNP protein family. Analysis of SAFB1 crosslink regions and RNA 

targets confirm previous reports regarding its interaction with other RNA processing 

machinery and function. 
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Chapter 6 : Summary and future work  

6.1 Summary  

 

At the onset of this study, very little was known about the fundamental characteristics 

and biological effect of the two related SAFB proteins, SAFB1 and SAFB2. The work 

presented in this thesis, utilising RNAi and both medium and high throughput 

experimental strategies, provides evidence to explain how SAFB1 and SAFB2 are 

regulated and also what impact they have on the regulation of SAFB target genes.  

Novel SAFB1 and SAFB2 target genes, with defined roles in breast cancer biology, 

were identified in this study.  

In Chapter 3, ER positive and ER negative breast cancer epithelialcells were used to 

characterise the regulation of SAFB1 and SAFB2 in response to steroid hormone; 

results presented here show that these ER coregulatory proteins are themselves 

regulated by oestrogen in ER positive MCF-7 cells and also ER negative MDA-MB-231 

cells. In MCF-7 cells, the regulation of SAFB1 and SAFB2 by 17β-oestradiol appears to 

be via a classical ER-signalling pathway suggesting that they are typical oestrogen-

responsive genes. The participation of ER-α66 in this mechanism of regulation was 

confirmed by the stimulation with pure ER antagonist, fulvestrant. Oestrogen response 

elements (ERE) were also identified in SAFB1 and SAFB2 genomic sequences, another 

characteristic of ER target genes. 

In MDA-MB-231 cells, oestrogen regulates SAFB1 and SAFB2 protein expression at 

the post-translational level. 17β-oestradiol appears to disrupt SAFB1 and SAFB2 

protein turnover rate by reducing their protein stability. The participation of ubiquitin-

mediated protein degradation pathway was indicated when this effect by 17β-oestradiol 

was protected by proteasome inhibition. In vitro evidence obtained from this chapter 

suggests that SAFB1 and SAFB2 are regulated by different mechanisms in cell lines 

that display distinct breast cancer phenotypes. These findings led to the proposition that 

SAFB1 and SAFB2 are oestrogen-responsive genes. Another outcome highlighted in 

this part of the study is the ability of fulvestrant to increase expression of the             

ER-α variant, ER-α36 in the MDA-MB-231 breast cancer cells. 

In Chapter 4, a medium throughput gene expression profile study was undertaken to 

investigate the role of SAFB1 and SAFB2 in the regulation of known ER target genes. 
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From a panel of 84 pre-determined ER-related candidate genes, twelve potential targets 

closely linked to tumour progression were identified for SAFB1 and SAFB2 in the ER 

negative MDA-MB-231 cells. Eleven of the targets increased in their mRNA expression 

when cells were depleted of SAFB1 or/and SAFB2 by RNAi, thus confirming their 

primary role as transcriptional repressors. This study has also established a new link 

between SAFB1 and SAFB2 in the regulation of ITGB4 and IL-6. Another novel 

finding that is contrary to the observation in non-invasive MCF-7 breast cancer cells is 

that SAFB2, not SAFB1, plays a more prominent role in transcriptional regulation in the 

invasive MDA-MB-231 breast cancer cells. In addition, data presented from this study 

raises the possibility that SAFB1 and SAFB2 function synergistically to repress the 

transcription of their target genes. 

In Chapter 5, the RNA-binding ability of SAFB1 was examined in MCF-7 breast cancer 

cells using the iCLIP high throughput method that identifies direct protein-RNA 

interactions in vivo. Mapping of transcript regions bound by SAFB1 revealed high 

density enrichment in ncRNAs, particularly within snRNAs. These snRNA are localised 

within the nucleus and form the spliceosome, thus confirming reports that identified 

interactions between SAFB1 and various RNA processing factors. Significant SAFB1 

binding sites were identified in MALAT-1, a highly conserved and potentially oncogenic 

ncRNA that co-localises with SC35 in nuclear speckles. This provides further 

explanation to the nuclear speckle-like localisation of SAFB1 observed in Chapter 3 

(Section 3.3.2.2). Data also revealed the first description of a putative consensus    

RNA-binding sequence for SAFB1. The proposed consensus RNA-binding motif for 

SAFB1 is an adenine-rich sequence, highly similar to the RNA-binding motifs for other 

SR proteins. The iCLIP data also revealed the presence of SAFB1 on ITGB4 mRNA, 

supporting the role of SAFB proteins in regulating ITGB4 expression observed in 

Chapter 4 (Section 4.3.2.2). This initial analysis of SAFB1 RNA-binding patterns, 

binding targets and binding sequences shows that SAFB proteins share multiple 

characteristics with the SR protein family.   

Taken together, the evidence presented in this thesis show that oestrogen exerts its 

effect on SAFB expression via the genomic and non-genomic ER-signalling pathway in 

MCF-7 and MDA-MB-231 cells respectively. ER-α66 upregulates the expression of 

SAFB mRNA through the classical genomic pathway in ER positive breast cancer cells, 

while ER-α36 downregulates SAFB protein expression through the ubiquitin-mediated 

protein degradation pathway in ER negative breast cancer cells (Figure 6.1).              
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The downregulation of SAFB proteins in ER negative cells led to significant 

transcriptional alterations of 12 novel target genes, notably in ITGB4 and IL-6.         

More importantly, the transcriptional changes observed in ITGB4 is associated with 

direct SAFB1 binding to its mRNA. SAFB1 also binds directly to other RNAs and its 

binding sites are particularly enriched in ncRNAs. The consensus RNA-binding 

sequence for SAFB1 is defined as adenine-rich pentamers within the transcriptome. The 

model below proposes the mechanism of SAFB regulation and function that summarises 

the key findings highlighted in this thesis. 

 

  

Figure 6.1  Proposed mechanism of SAFB regulation and function in breast 

cancer cells. 

Diagramatic illustration shows the proposed mechanism of action for SAFB 

regulation and function observed in this thesis. Prolonged exposure to the active 

17β-oestradiol metabolite exerts its action via two different mechanisms. Pathway 

A refers to its ability to activate genomic signalling through ER-α66 present in ER 

positive cells. A(i) Activated ER-α66 is able to initiate the transcription of     

SAFB mRNA possibly through several ERE that are present within this          
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gene. A(ii) Transcribed mRNA is subsequently translated into SAFB protein. 

A(iii) SAFB protein then exerts its function in the cell through direct binding to 

RNA at adenine-rich sites. Pathway B refers to oestrogen’s ability to activate non-

genomic signalling through ER-α36 present in ER negative cells. B(i) Activated 

membrane bound ER-α36 could lead to the degradation of SAFB protein possibly 

through the PI3K/Akt signalling pathway. B(ii) The progressive loss of SAFB 

protein, especially SAFB2, in the cell leads to the transcriptional change of 

several target genes, particularly ITGB4 and IL-6. The illustration was created 

using Servier Medical Art (servier.co.uk/medical-art-gallery). 

 

Several limitations in this work have been acknowledged. In Chapter 3, the SAFB2 

antibody was unable to successfully immunoprecipitate its own peptide               

(Section 3.3.1.2). Although this observation is linked to its intracellular localisation in 

MCF-7 cells, a pan-SAFB antibody could have been included as a positive control in 

this experiment. When investigating the effects of 17β-oestradiol in SAFB protein 

turnover, the rate of protein degradation was examined using the proteasome inhibitor 

MG132 (Section 3.3.3.2). However, the steady-state level of any protein is the outcome 

of the change in its rate of synthesis compared with its rate of degradation. The effect of    

17β-oestradiol on the rate of SAFB protein synthesis should also be taken into account 

to fully understand SAFB protein turnover. This could be performed by inhibiting 

protein synthesis using the translation inhibitor cycloheximide. 

In Chapter 4, the gene expression array used was based on the SYBR green detection 

method. This method utilises a double-stranded DNA binding dye (SYBR green) to 

detect and quantify PCR products as it accumulates during qRT-PCR. The limitations of 

using this method is the possibility of false positive signals generated through the 

binding of the SYBR green dye to any double-stranded DNA sequences and its inability 

to distinguish between specific and non-specific PCR products. The SYBR green 

detection method is therefore highly dependent on the specificity of the primers to not 

amplify non-target sequences. Experience from using this SYBR green gene expression 

array revealed a weakness in the primers targeting ESR1. Analysis of the melting curve 

revealed multiple peaks using this primer, suggesting amplification of more than one 

PCR product. In silico analysis revealed a plethora of non-specific targets that could be 

amplified by these primers (Appendix I). Preliminary experiment was performed to 

examine the specificity of the ESR1 primers using conventional PCR (Figure 4.11). The 

PCR product generated could be sequenced to confirm the specificity of the ESR1 
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primers. Nevertheless, accumulated data from these analyses show the weakness in the 

design of ESR1 primers used in this array.  

This example highlights the limitation in direct interpretation of the SYBR green    

qRT-PCR results and emphasises the need for caution when analysing data. It also 

indicates the necessity of validation work with a more specific method such as TaqMan 

gene expression assays that contain both primers and gene-specific probes. It is 

noteworthy to mention that the gene expression array plate used in this study has since 

been improved and the primers for both ESR1 and CLU have been exchanged. 

Another limitation noted in this work is the lack of ‘normal’ breast cells and tissues to 

assist the further analysis of the data. Primary breast cells derived from healthy 

individuals could be included for in vitro studies, while tissue from breast reduction 

surgery could be used as a control for in vivo studies. In the ITGB4 gene expression 

studies, a brief experiment was performed with only two breast tumour samples 

(Section 4.3.2.2). Although ‘normal’ samples were included in this work, they were 

derived from non-involved tissues within the same tumour sample. This indicates that 

even though these tissues were not involved in tumourigenesis, they came from diseased 

patients and may not truly reflect a normal phenotype. Furthermore, incorporating truly 

normal breast phenotype as experimental controls (e.g. from cosmetic breast reduction 

surgery) could facilitate the analysis for biological significance of the observed data. 

In conclusion, despite the limitations aforementioned, the work presented in this thesis 

provides new insights into understanding the regulation, function and RNA-binding 

ability of SAFB1 and SAFB2. It has also paved the way for new opportunities and 

interesting scope of study for future research into the role of SAFB1 and SAFB2 in 

breast cancer. 
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6.2 Future work  

 

Future work that will follow on from this study includes investigating the in vivo 

implications and physiological relevance of SAFB1 and SAFB2 regulated genes in 

different breast cancer subtypes. Experimental strategies will also be included to 

evaluate the mechanism(s) involved in SAFB1- and SAFB2- mediated regulation of 

ITGB4 and IL-6. Another direction will be to verify the predicted consensus binding 

motif for SAFB1 using computational and experimental strategies. The iCLIP work has 

generated a vast iCount dataset, therefore future work will continue analysing the 

dataset and also perform RNA sequencing using breast cancer cells expressing or 

lacking SAFB1 or/and SAFB2. 
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Appendix I  

 

ESR1 Primer pair_______________________________________________ 

 
Sequence (5'->3') Length Tm GC% Self 

complement 

Self 3' 

complement 

Forward 

primer 
CCAAAGCATCTGGGATGG 18 55.36 55.56 5.00 3.00 

Reverse 

primer 
TAGGCGGCGCCCTCGG 16 64.31 81.25 7.00 2.00 

 

 

Products on target templates 

 

>NM_002333.3 Homo sapiens low density lipoprotein receptor-related protein 3 (LRP3), mRNA 
 

product length = 416 

Forward primer  1    CCAAAGCATCTGGGATGG  18 

Template        478  TG..G...GG........  461 

 

Reverse primer  1   TAGGCGGCGCCCTCGG  16 

Template        63  G...........G...  78 

 

>NM_001171816.1 Homo sapiens ring finger protein 166 (RNF166), transcript variant 3, mRNA 
 

product length = 595 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        1350  A.......CT.....T  1335 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        756  ........C...C...  771 

 

>NM_033452.2 Homo sapiens tripartite motif containing 47 (TRIM47), mRNA 
 

product length = 440 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        440  AG...C..........  425 

 

Reverse primer  1  TAGGCGGCGCCCTCGG  16 

Template        1  --...........G..  14 

 

>NM_004472.2 Homo sapiens forkhead box D1 (FOXD1), mRNA 
 

product length = 449 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        1466  GC.......G..G...  1451 

 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        1018  ..C...C.........  1033 

 

>NM_001040653.2 Homo sapiens ZXD family zinc finger C (ZXDC), transcript variant 2, mRNA 
 

product length = 430 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        533  GC..........G...  518 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=284521570
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=54792145
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=89903020
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=217035098
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Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        104  AT.......G..C...  119 

 

>NM_002332.2 Homo sapiens low density lipoprotein receptor-related protein 1 (LRP1), mRNA 
 

product length = 453 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        7996  G.TT....C.......  7981 

 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        7544  CG........T.....  7559 

 

>NM_025112.4 Homo sapiens ZXD family zinc finger C (ZXDC), transcript variant 1, mRNA 
 

product length = 430 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        533  GC..........G...  518 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        104  AT.......G..C...  119 

 

>NM_006602.2 Homo sapiens transcription factor-like 5 (basic helix-loop-helix) (TCFL5), mRNA 
 

product length = 517 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        569  .T.........G....  554 

 

Reverse primer  1   TAGGCGGCGCCCTCGG  16 

Template        53  CCC...T........C  68 

 

>NM_001098834.1 Homo sapiens gastrulation brain homeobox 1 (GBX1), mRNA 
 

product length = 522 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        1030  .GT........G....  1015 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        509  C....T.T.......A  524 

 

>NM_005853.5 Homo sapiens iroquois homeobox 5 (IRX5), transcript variant 1, mRNA 
 

product length = 494 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        653  GCTT...G........  638 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        160  .TCA...........C  175 

 

>NM_001252197.1 Homo sapiens iroquois homeobox 5 (IRX5), transcript variant 2, mRNA 
 

product length = 494 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        653  GCTT...G........  638 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        160  .TCA...........C  175 

 

>NM_006237.3 Homo sapiens POU class 4 homeobox 1 (POU4F1), mRNA 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=126012561
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=98961132
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=38505158
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=149588929
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=139394645
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=356582256
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=110347448
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product length = 547 

Reverse primer  1     TAGGCGGCGCCCTCGG  16 

Template        1256  CGCTG...........  1241 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        710  CG.......G..C...  725 

 

>NM_138444.3 Homo sapiens potassium channel tetramerization domain containing 12 (KCTD12), 
mRNA 
 

product length = 624 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        681  AG.......G..C...  666 

 

Reverse primer  1   TAGGCGGCGCCCTCGG  16 

Template        58  ACA.......G....C  73 

 

>NM_024963.4 Homo sapiens F-box and leucine-rich repeat protein 18 (FBXL18), mRNA 
 

product length = 589 

Forward primer  1    CCAAAGCATCTGGGATGG  18 

Template        144  .TGC....G.C.......  161 

 

Reverse primer  1    TAGGCGGCGCCCTCGG  16 

Template        732  AG.AT..........C  717 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=146149187
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=157426874
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Appendix II 

 

Distribution of x-link sites and counts in RNAmaps. 
[x-link sites] total: 579977 

[x-link sites] used in any map: 257504 (44.40%) 

[unknown_counts] total: 579977 

[unknown_counts] used in any map: 505177 (50.73%) 

 

map 
span 

(upstream; downstream) 

[x-link sites] 

used in map 

[x-link sites] 

% of total 

[x-link sites] 

% of used in any map 

exon-intron -300; 300 58460 10.08% 22.70% 

intron-exon -300; 300 105228 18.14% 40.86% 

5-ncRNA -1000; 300 18027 3.11% 7.00% 

ncRNA-3 -300; 1000 18863 3.25% 7.33% 

ORF-3UTR -300; 300 23302 4.02% 9.05% 

5UTR-ORF -300; 300 6313 1.09% 2.45% 

inter-5UTR -1000; 300 7807 1.35% 3.03% 

3UTR-inter -300; 1000 17043 2.94% 6.62% 

inter-5 -1000; 300 21103 3.64% 8.20% 

3-inter -300; 1000 27219 4.69% 10.57% 

BP best in intron -300; 100 17956 3.10% 6.97% 

 

RNAmap exon-intron 

x-links and junctions distributions 

strand 
[x-link sites] 

used in map 

[x-link sites] 

% of total 

[x-link sites] 

% of used in 

any map 

[x-link sites] 

% of used in map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 56213 9.69% 21.83% 96.16% 30192 1.78812 

anti 2247 0.39% 0.87% 3.84% 1616 0.0714763 

both 58460 10.08% 22.70% 100.00% 31437 1.85959 

 

                          Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; 

downstream) 

associated gene 
[x-link sites] 

(same; anti) 

chr2:85133785@- -173; 300 C2orf89 0; 101 

chr5:76129052@+ -269; 287 F2RL1 87; 0 

chr15:45490968@- -165; 300 SHF 68; 0 

chr7:139025365@+ -85; 256 C7orf55 66; 1 

chr14:102453100@+ -300; 300 DYNC1H1 63; 0 

chr11:62296095@- -300; 300 AHNAK 62; 0 

chr1:45241812@+ -253; 174 RPS8 51; 0 

chr14:56079289@+ -277; 300 KTN1 46; 0 

chr11:62288933@- -61; 300 AHNAK 43; 0 

chr17:38600336@+ -175; 300 IGFBP4 40; 0 
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RNAmap exon-intron 

junction is at position zero. 

upstream is regions of type: ORF, 3UTR, 5UTR 

downstream is regions of type: intron 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_exon-intron.eps
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RNAmap intron-exon 

x-links and junctions distributions 

strand 
[x-link sites] 

used in map 

[x-link sites] 

% of total 

[x-link sites] 

% of used in 

any map 

[x-link sites] 

% of used in map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 103045 17.77% 40.02% 97.93% 43574 2.30361 

anti 2183 0.38% 0.85% 2.07% 1547 0.0488018 

both 105228 18.14% 40.86% 100.00% 44732 2.35241 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr10:17279228@+ -300; 182 VIM 121; 0 

chr2:122288320@- -300; 249 CLASP1 0; 112 

chr7:5568349@- -150; 219 ACTB 107; 0 

chr10:17271274@+ -124; 300 VIM 98; 0 

chr1:153507850@- -206; 141 S100A6 98; 0 

chr5:76129626@+ -287; 300 F2RL1 94; 0 

chr1:153507305@- -131; 116 S100A6 93; 0 

chr15:45009804@+ -300; 277 B2M 91; 0 

chr14:102452023@+ -300; 300 DYNC1H1 78; 0 

chr17:79478651@- -138; 219 ACTG1 77; 0 
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RNAmap intron-exon 

 

junction is at position zero. 

upstream is regions of type: intron 

downstream is regions of type: ORF, 3UTR, 5UTR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_intron-exon.eps
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RNAmap 5-ncRNA 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 11518 1.99% 4.47% 63.89% 2809 2.56183 

anti 6509 1.12% 2.53% 36.11% 1966 1.44773 

both 18027 3.11% 7.00% 100.00% 4496 4.00956 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr11:65269806@+ -1000; 29 MALAT1 220; 0 

chr14:20811565@- -1000; 166 RNaseP_nuc-ENSG00000252678 146; 1 

chr9:35658013@- -429; 132 RNase_MRP-ENSG00000199916 113; 2 

chr10:17276831@- -1000; 66 RP11-124N14.3 0; 111 

chr3:58156362@- -1000; 70 RP11-456N14.2 0; 103 

chr16:3202679@- -1000; 36 AC108134.5 0; 102 

chr2:27273131@- -1000; 42 AC013472.6 0; 101 

chr11:62609280@- -1000; 95 U2-ENSG00000222328 98; 1 

chr6:28864306@+ -1000; 100 HCG14 1; 93 

chr8:67025246@- -1000; 36 AC084082.1 0; 84 
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RNAmap 5-ncRNA 

junction is at position zero. 

upstream is regions of type: intron, inter, telo 

downstream is regions of type: ncRNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_5-ncRNA.eps
http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_5-ncRNA.eps
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RNAmap ncRNA-3 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 14326 2.47% 5.56% 75.95% 2834 3.43138 

anti 4537 0.78% 1.76% 24.05% 1511 1.08671 

both 18863 3.25% 7.33% 100.00% 4175 4.51808 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; 

downstream) 

associated gene 

[x-link 

sites] 

(same; anti) 

chrUn_gl000220:118417@+ -300; 1000 28S 463; 2 

chr11:65271080@+ -300; 1000 MALAT1 338; 0 

chr1:28835512@- -182; 1000 AL513497.3 0; 174 

chr1:173833079@+ -300; 1000 RP5-1198E17.1 0; 154 

chr14:20811232@- -167; 1000 
RNaseP_nuc-

ENSG00000252678 
143; 0 

chr9:35657749@- -132; 1000 
RNase_MRP-

ENSG00000199916 
131; 0 

chr11:62609089@- -96; 978 U2-ENSG00000222328 120; 1 

chr6:52860748@+ -166; 1000 7SK-ENSG00000202198 112; 0 

chr1:153507591@+ -106; 1000 BX470102.3 0; 112 

chr14:50053596@+ -150; 1000 RN7SL1 97; 0 
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RNAmap ncRNA-3 

junction is at position zero. 

upstream is regions of type: ncRNA 

downstream is regions of type: intron, inter, telo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_ncRNA-3.eps
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RNAmap ORF-3UTR 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 22875 3.94% 8.88% 98.17% 5114 4.34143 

anti 427 0.07% 0.17% 1.83% 266 0.08104 

both 23302 4.02% 9.05% 100.00% 5269 4.42247 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr11:18428923@+ -130; 300 LDHA 105; 0 

chr7:116199341@+ -171; 300 CAV1 90; 0 

chr17:79477712@- -73; 300 ACTG1 90; 0 

chr17:38612835@+ -68; 300 IGFBP4 84; 0 

chr10:70864297@+ -300; 135 SRGN 83; 0 

chr9:127998867@- -283; 300 HSPA5 78; 0 

chr2:55199719@- -300; 198 RTN4 77; 0 

chr19:13054727@+ -101; 288 CALR 74; 0 

chr6:26046049@+ -206; 300 HIST1H3C 73; 0 

chr11:1774729@- -85; 223 CTSD 73; 0 
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RNAmap ORF-3UTR 

junction is at position zero. 

upstream is regions of type: ORF 

downstream is regions of type: 3UTR 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_ORF-3UTR.eps
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RNAmap 5UTR-ORF 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 6106 1.05% 2.37% 96.72% 1847 3.16866 

anti 207 0.04% 0.08% 3.28% 140 0.107421 

both 6313 1.09% 2.45% 100.00% 1927 3.27608 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr17:38599987@+ -138; 174 IGFBP4 72; 0 

chr17:4851688@- -300; 66 PFN1 55; 0 

chr2:113404405@+ -133; 167 SLC20A1 53; 0 

chr6:31508971@- -66; 265 BAT1 51; 0 

chr3:57994291@+ -83; 146 FLNB 46; 0 

chr2:55277435@- -149; 278 RTN4 43; 0 

chr8:119123284@- -300; 300 EXT1 34; 0 

chr14:102431028@+ -82; 128 DYNC1H1 31; 0 

chr7:116166578@+ -124; 82 CAV1 30; 0 

chr22:38201551@+ -219; 292 H1F0 30; 0 
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RNAmap 5UTR-ORF 

junction is at position zero. 

upstream is regions of type: 5UTR 

downstream is regions of type: ORF 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_5UTR-ORF.eps
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RNAmap inter-5UTR 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 3275 0.56% 1.27% 41.95% 1579 1.15561 

anti 4532 0.78% 1.76% 58.05% 1769 1.59915 

both 7807 1.35% 3.03% 100.00% 2834 2.75476 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr14:21152371@+ -1000; 158 RNASE4 149; 0 

chr11:62623517@+ -1000; 112 SLC3A2 0; 129 

chr8:33370702@- -1000; 286 C8orf41 0; 119 

chr1:153643523@- -1000; 63 ILF2 0; 106 

chr20:47894962@- -1000; 248 ZNFX1 0; 83 

chr5:180649498@+ -1000; 141 TRIM41 0; 74 

chr16:22308729@+ -1000; 64 POLR3E 68; 1 

chr11:66115160@- -1000; 72 AP001107.2 0; 67 

chr17:37026255@+ -1000; 93 LASP1 0; 63 

chr14:21078042@- -1000; 170 RNASE11 0; 63 
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RNAmap inter-5UTR 

junction is at position zero. 

upstream is regions of type: inter, telo 

downstream is regions of type: 5UTR 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_inter-5UTR.eps
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RNAmap 3UTR-inter 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 12690 2.19% 4.93% 74.46% 4142 2.63223 

anti 4353 0.75% 1.69% 25.54% 1090 0.902925 

both 17043 2.94% 6.62% 100.00% 4821 3.53516 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr17:8024297@- -294; 1000 HES7 105; 64 

chr17:8091650@- -300; 1000 C17orf59 0; 91 

chr4:119201191@- -300; 1000 PRSS12 0; 75 

chr19:39220830@- -300; 1000 CAPN12 0; 70 

chr17:38613983@+ -300; 1000 IGFBP4 70; 0 

chr15:72491368@- -300; 616 PKM2 64; 0 

chr17:79476997@- -300; 1000 ACTG1 61; 0 

chr6:28912314@+ -125; 1000 C6orf100 60; 0 

chr10:75880014@- -300; 1000 AP3M1 0; 57 

chr15:45010359@+ -278; 1000 B2M 56; 0 
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RNAmap 3UTR-inter 

junction is at position zero. 

upstream is regions of type: 3UTR 

downstream is regions of type: inter, telo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_3UTR-inter.eps


 

199 

 

RNAmap inter-5 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 10302 1.78% 4.00% 48.82% 3501 1.64385 

anti 10801 1.86% 4.19% 51.18% 3569 1.72347 

both 21103 3.64% 8.20% 100.00% 6267 3.36732 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; 

downstream) 

associated gene 

[x-link 

sites] 

(same; anti) 

chrUn_gl000220:117814@- -1000; 67 AL592188.5 1; 755 

chr14:21152371@+ -1000; 158 RNASE4 149; 0 

chr14:20811565@- -1000; 166 
RNaseP_nuc-

ENSG00000252678 
146; 1 

chr11:62623517@+ -1000; 112 SLC3A2 0; 129 

chr9:35658013@- -429; 132 
RNase_MRP-

ENSG00000199916 
113; 2 

chr10:17276831@- -1000; 66 RP11-124N14.3 0; 111 

chr1:45241481@- -1000; 127 RP11-269F19.2 0; 107 

chr1:153643523@- -1000; 63 ILF2 0; 106 

chr3:58156362@- -1000; 70 RP11-456N14.2 0; 103 

chr11:62609280@- -1000; 95 U2-ENSG00000222328 98; 1 
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RNAmap inter-5 

junction is at position zero. 

upstream is regions of type: inter, telo 

downstream is regions of type: ORF, intron, 3UTR, 5UTR, ncRNA 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_inter-5.eps


 

201 

 

RNAmap 3-inter 

x-links and junctions distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[junctions] 

in map 

[x-link sites] 

per unique 

[junction] 

same 18799 3.24% 7.30% 69.07% 5725 2.56082 

anti 8420 1.45% 3.27% 30.93% 2165 1.14698 

both 27219 4.69% 10.57% 100.00% 7341 3.70781 

 

Top 10 junctions with largest x-link sites sum (both strands) 

position of 

[junction] 

span 

(upstream; 

downstream) 

associated gene 

[x-link 

sites] 

(same; anti) 

chrUn_gl000220:118417@+ -300; 1000 28S 463; 2 

chr11:65271080@+ -300; 1000 MALAT1 338; 0 

chr1:28835512@- -182; 1000 AL513497.3 0; 174 

chr17:8024297@- -294; 1000 HES7 105; 64 

chr2:55199157@+ -142; 1000 EML6 0; 156 

chr1:173833079@+ -300; 1000 RP5-1198E17.1 0; 154 

chr14:20811232@- -167; 1000 
RNaseP_nuc-

ENSG00000252678 
143; 0 

chr9:35657749@- -132; 1000 
RNase_MRP-

ENSG00000199916 
131; 0 

chr17:16344889@- -300; 1000 C17orf76 0; 121 

chr6:52860748@+ -166; 1000 7SK-ENSG00000202198 112; 0 
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RNAmap 3-inter 

junction is at position zero. 

upstream is regions of type: ORF, intron, 3UTR, 5UTR, ncRNA 

downstream is regions of type: inter, telo 

 

 

 

 

 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_3-inter.eps
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RNAmap "BP best in intron" 

x-links and BPs distributions 

strand 

[x-link 

sites] 

used in 

map 

[x-link 

sites] 

% of total 

[x-link sites] 

% of used in any 

map 

[x-link sites] 

% of used in 

map 

unique 

[BPs] 

in map 

[x-link sites] 

per unique 

[BP] 

same 16881 2.91% 6.56% 94.01% 11281 1.40231 

anti 1075 0.19% 0.42% 5.99% 865 0.0893005 

both 17956 3.10% 6.97% 100.00% 12038 1.49161 

 

Top 10 BPs with largest x-link sites sum (both strands) 

position of 

[BP] 

span 

(upstream; downstream) 
associated gene 

[x-link sites] 

(same; anti) 

chr1:28835317@+ -300; 22 SNHG3 148; 0 

chr3:39449972@+ -288; 100 SNORA62-ENSG00000206760 98; 0 

chr10:101996964@- -287; 100 SNORA12-ENSG00000212464 97; 0 

chr5:138614713@+ -297; 24 MATR3 93; 0 

chr10:120819634@- -109; 100 SNORA19-ENSG00000207468 92; 0 

chr12:6619768@+ -224; 24 NCAPD2 90; 0 

chr14:103804475@+ -300; 100 EIF5 85; 0 

chr9:130210892@- -238; 100 SNORA65 83; 0 

chr11:8707006@+ -177; 100 SNORA3-ENSG00000212607 82; 0 

chr11:75111460@+ -283; 100 SNORD15-ENSG00000206941 81; 0 
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RNAmap "BP best in intron" 

BP is at position zero. 

upstream is usptream of branch point 

downstream is downstream of branch point 

 

 
 

 

 

 

 

 

http://icount.fri.uni-lj.si/results/analyses/ensembl59/RNAmaps/73619/RNAmaps_id73619_maxUw-300_maxDw300_maxUf-1000_maxDf1000_smooth5_group_3322_Elliott8_sum_G_hg19--ensembl59_from_3306-3307-3308_bedGraph-cDNA-hits-in-ge_BP%20best%20in%20intron.eps
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Publications  

 

Hong, E.A., Elliott, D.J. and Tyson-Capper, A.J. (In preparation) Loss of oestrogen-

responsive SAFB1 and SAFB2 alters expression of ER-target genes that contribute to 

the invasive and metastatic charecteristics of breast cancer cells 

 

Hong, E.A., Gautrey, H.L., Elliott, D.J. and Tyson-Capper, A.J. (2012) SAFB1 and 

SAFB2 mediated transcriptional repression: relevance in cancer. Biochem Soc Trans 

40(4):826-30 

 

Hong, E.A., Elliott, D.J. and Tyson-Capper, A.J. (2011) Identification of SAFB1 and 

SAFB2 target genes within the oestrogen receptor signalling pathway in breast cancer 

cells. Reproductive Sciences (Supplement) A359. 

 

Hong, E.A., Elliott, D.J. and Tyson-Capper, A.J. (2010) The effects of oestrogen on 

alternative splicing regulators in breast cancer cells. (http://www.isge2010.com) 

 

Hong, E.A., Elliott, D.J. and Tyson-Capper, A.J. (2009) Effect of oestrogen on RNA-

binding splicing regulators in breast cancer cells. Reproductive Sciences, 17, (3) 

(Supplement) 109A-110A. 

 

Presentations  

 

21/01/2012 An investigation into the regulation and function of scaffold attachment 

factors, SAFB1 and SAFB2, in breast cancer cells. (Oral presentation, 

RNA UK 2012 conference, Lake District, UK) 

04/10/2011 An investigation into the regulation and function of scaffold attachment 

factors, SAFB1 and SAFB2, in breast cancer cells. (Oral presentation, 

ICM Seminar, Newcastle University) 

05/03/2010 The effects of oestrogen on alternative splicing regulators in breast 

cancer cells. (Poster presentation, 14
th

 World Congress of Gynecological 

Endocrinology, Florence, Italy) 
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Prizes and Awards 

 

04/03/2010 Young Scientist Travel and Conference Registration Award, 

International Society for Gynecological Endocrinology Abstract 

Competition for the 14
th

 World Congress of Gynecological 

Endocrinology. 

21/09/2008 Overseas Research Students Award Scheme (ORSAS), Newcastle 

University 

 

 


