
A Methodology for Automated

Service Level Agreement

Compliance Prediction

Thesis by

Rouaa Yassin Kassab

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

School of Computing Science

Newcastle University

Newcastle upon Tyne, UK

(Submitted 3 June 2013)

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this

thesis has previously been submitted for a degree or any other qualification at New-

castle University or any other institution.

Rouaa Yassin Kassab

i

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises go to Allah on whom ultimately we depend for

sustenance and guidance. Alhamdulillah for all the strengths and blessing He gave

me in completing this thesis.

I would like to thank all the people who have provided me with valuable advice

and support throughout my doctoral study.

First and foremost, my utmost gratitude goes to my supervisor, Professor Aad

van Moorsel who continuously guide me, support me, and encourage me throughout

the course of my research and writing of this thesis. He much importantly taught

me to be a confident self-dependent researcher. His patience and understanding on

different occasions eased all difficulties led to the completion of this research work.

Special thanks for Dr. Graham Morgan and Dr. Carlos Molina-Jimenez for being

members of my supervisory committee.

I would like to thank Tishreen University and the Ministry of Higher Education

in Syria for supporting me financially throughout my PhD study.

I can never express enough gratitude for the support I received from my parents.

Without their continuous emotional support and encouragement, I would never have

been able to complete my works. They were the place to reveal my fears without

fearing any blame especially my mother who passed away before I complete my PhD.

I owe my sincere gratitude to my wonderful husband, Siddek, for being patient,

supportive and understanding during the long period of my work. My thanks for my

little girl, Nour, who always succeed to bring the smile to my face, and my unborn

baby, who was accompanying me during my viva time. You have all been my source

of joy.

My heartfelt thanks goes to my parents in law, my brothers, my sisters and all

the family members for their encouragement, support and for taking care of my

daughter during my writing up stage.

To my close friends, thank you for being supportive, helpful and caring friends

during the hard times.

ii

Last but not least, thanks to everybody in the School of Computing Science who

have directly and indirectly helped me to complete the thesis.

iii

Abstract

Service Level Agreement (SLA) specification languages express monitorable con-

tracts between service providers and consumers. It is of interest to determine if

predictive models can be derived for SLAs expressed in such languages, if possible

in a fashion that is as automated as possible. Assuming that the service devel-

oper or user uses some SLA specification languages during the service development

or deployment process, the Service level agreement Compliance Prediction (SlaCP)

methodology is proposed as a general engineering methodology for predicting SLA

compliance. This methodology helps contractual parties to assess the probability of

SLA compliance, as automatically as is feasible, by mapping an existing SLA on a

stochastic model of the service and using existing numerical solution algorithms or

discrete event simulation to solve the model. The SlaCP methodology is generic,

but the methodology is mostly described, in this thesis, assuming the use of the

Web Service Level Agreement (WSLA) and the Stochastic Discrete Event Systems

(SDES) formalism. The approach taken in this methodology is firstly to associate

formal semantics with WSLA elements in order to be understood mathematically

precise. Then, a five-step mapping process between the source and the target for-

malisms is conducted. These steps include: mapping into model primitives, reward

metrics, expressions for functions of these metrics, the time at which the prediction

occurs, and the ultimate probability of SLA compliance. The proposed methodology

is implemented in a software tool that automates most of its steps using Möbius and

SPNP. The methodology is evaluated using a case study which shows the method-

ology’s feasibility and limitations in both theoretical and practical terms.

iv

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Problem . 3

1.3 Research Hypothesis and Questions 5

1.4 Research Aim, Objectives and Challenges 6

1.5 Research Approach . 8

1.6 Contributions of the Thesis . 9

1.7 Thesis Outline . 12

1.8 Publication History . 13

2 Background and Literature Review 15

2.1 Service Oriented Computing and Web Services 16

2.2 Service Level Agreement . 17

2.2.1 QoS Metrics Related to an SLA and their Categorisation . . . 18

2.2.2 SLA Specification Languages 21

2.2.2.1 Web Service Level Agreement (WSLA) 21

2.2.2.2 Web Service Agreement Specification (WS-Agreement) 23

2.2.2.3 Service Level Agreement Language (SLAng) 25

2.2.2.4 Comparison of SLA Languages 26

2.3 SLA Compliance Management . 26

2.3.1 What is SLA Management? 26

2.3.2 The Motivation for SLA Compliance Management 27

2.3.3 Where is SLA Compliance Management Conducted? 28

2.3.4 Types of SLA Compliance Management 29

2.4 Areas Related to SLA Compliance Prediction 30

2.4.1 Using Stochastic Probes for Performance Queries Specification

and Evaluation . 31

2.4.2 Model-Based Evaluation . 31

2.4.2.1 Why Use Model-Based Evaluation? 31

v

CONTENTS

2.4.2.2 Using Model-Based Evaluation in Predicting SLA

Compliance . 33

2.4.3 Mapping between Source and Target Formalisms 34

2.4.4 Transferring a Design-Oriented Model to an Analysis-Oriented

Model . 35

2.5 Stochastic Modelling Formalisms . 36

2.5.1 Stochastic Discrete Event System (SDES) 38

2.5.2 Stochastic Petri Nets . 39

2.5.2.1 Stochastic Activity Network 41

2.5.2.2 Stochastic Reward Network 42

2.6 Performance, Dependability, and Performability Models 43

2.6.1 Attributes of a Model with their Classifications 44

2.6.2 Reward Models . 46

2.6.3 Methods of Model Analysis 47

2.6.3.1 Numerical Solver . 47

2.6.3.2 Simulation . 48

2.6.4 Software Tools for Building and Solving Models 48

2.6.4.1 Möbius . 49

2.6.4.2 SPNP . 50

2.6.4.3 PIPE . 51

2.6.4.4 SHARPE . 52

2.6.4.5 GreatSPN . 52

2.7 Conclusion . 52

3 SlaCP Methodology for SLA Compliance Prediction 54

3.1 SlaCP Methodology: Preliminary Information 55

3.1.1 The Targeted Users of the Methodology 55

3.1.2 Requirements of the Methodology 56

3.1.3 Characteristics of the Methodology 56

3.1.4 Assumptions of the Methodology 58

3.2 SlaCP Methodology . 58

3.2.1 The Design of the SlaCP Methodology 59

3.2.2 User’s Perspective of the Methodology 66

3.2.3 Tool Designer’s Perspective 68

3.3 SlaCP Implementation for WSLA Contracts and SDES Models 68

3.3.1 WslaCP Methodology: An Implementation of the SlaCP Method-

ology . 69

vi

CONTENTS

3.3.2 WslaCP Tool: An Implementation of the SlaCP Tool 70

3.4 Conclusion . 71

4 A Formal Representation of WSLA 72

4.1 Introduction . 73

4.2 Representation Requirements . 74

4.3 Representation Foundation . 74

4.3.1 WSLA Elements and their Relationships 75

4.3.1.1 WSLA Prediction-Related Elements 75

4.3.1.2 WSLA Non-Prediction Related Elements 78

4.3.2 XPath Location for WSLA elements 79

4.4 Formal Representation of WSLA Elements 81

4.4.1 Service Level Objective . 81

4.4.1.1 Service Level Objective with a Simple Expression . . 82

4.4.1.2 Service Level Objective with Nested Expressions . . 83

4.4.2 SLAParameter . 84

4.4.3 Measurement Directives . 85

4.4.4 Schedules . 86

4.4.5 Functions . 87

4.4.6 Formal Representation of the Common Order of WSLA Ele-

ments to Define an SLAParameter 89

4.5 Defining the Monitoring Semantics of WSLA Elements 90

4.5.1 The Semantics of Measurement Directives 90

4.5.2 Mathematical Definition of WSLA Function Semantics 95

4.6 Related Work . 99

4.7 Conclusion . 100

5 Formal Mapping of WSLA Contracts on SDES Models 101

5.1 Outline of the Mapping Process . 102

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA . . . 104

5.2.1 Service Operation Mapping 104

5.2.2 MeasurementDirective(s) Mapping 104

5.2.2.1 StatusRequest and Status 107

5.2.2.2 InvocationCount . 108

5.2.2.3 Gauge . 109

5.2.2.4 Counter . 110

5.2.2.5 ResponseTime . 111

5.2.2.6 DownTime . 112

vii

CONTENTS

5.2.3 Schedule Mapping . 113

5.2.4 Function(s) Mapping . 115

5.2.5 SLO Threshold Mapping . 122

5.3 Discussion . 123

5.4 Conclusion . 126

6 A Software Tool Architecture for SLA Compliance Prediction 127

6.1 Introduction . 128

6.2 Tool Architecture and Design . 128

6.2.1 Tool Architecture Requirements 129

6.2.1.1 Functional requirements 129

6.2.1.2 Non-functional requirements 130

6.2.2 Architectural Assumptions . 131

6.2.3 The Tool’s Architectural Components and their Design 132

6.2.3.1 Metric Specification Engine (MS Engine) 134

6.2.3.2 Translator Engine (TS Engine) 137

6.2.3.3 Result Computation and Comparison Engine (RCC

Engine) . 141

6.2.3.4 The Modeller and Solver Engines 143

6.2.4 Discussion: Alternative Design of the SlaCP Tool 145

6.3 Implementation . 148

6.3.1 Tool Implementation Requirements 148

6.3.2 The Implementation of the Plugged-in Tool 149

6.3.2.1 Implementation Requirements of the Plugged-in Tool 149

6.3.2.2 The Chosen Modelling Tool 150

6.3.3 MS Engine Implementation 154

6.3.3.1 SDESsch Schema for Expressing the SLA-Model File 154

6.3.3.2 Matlab for Expressing the Functions File 159

6.3.4 TS Engine Implementation . 161

6.3.4.1 The In-Out Translator Implementation 162

6.3.4.2 The Out-In Translator Implementation 169

6.3.4.3 The Inner Translator Implementation 170

6.3.5 Implementation of the RCC Engine 170

6.4 Discussion . 172

6.5 Conclusion . 174

viii

CONTENTS

7 A Case-Study Based Methodology Evaluation 175

7.1 Introduction . 175

7.2 The Case Study . 176

7.2.1 Service Description . 177

7.2.2 WSLA Contract of the Stock Quote Service 178

7.2.2.1 An SLO with Simple Expression: GetQuote Avail-

ability . 178

7.2.2.2 An SLO with Nested Expressions: GetQuote Trans-

action Rate . 179

7.2.2.3 An SLO with Hard-to-Evaluate Measurement: Print-

Quote Response Time 183

7.2.3 The WSDL File of the Stock Quote Service 184

7.3 Evaluation of the WslaCP Methodology 187

7.3.1 Automatic Model Creation . 188

7.3.1.1 Looking for the Evidence 189

7.3.1.2 Interpreting the Evidence 192

7.3.1.3 Using a WSDL File in Building the Service Model . . 194

7.3.2 Methodology’s Applicability 198

7.3.2.1 Looking for the Evidence 198

7.3.2.2 Interpreting the Evidence 198

7.3.3 Methodology’s Generality . 199

7.3.3.1 Looking for the Evidence 199

7.3.3.2 Interpreting the Evidence 202

7.3.4 User Support . 203

7.3.4.1 Looking for the Evidence 203

7.3.4.2 Interpreting the Evidence 205

7.4 Evaluation of the WslaCP Tool . 206

7.4.1 Tool’s Applicability . 207

7.4.1.1 Looking for the Evidence 207

7.4.1.2 Interpreting the Evidence 215

7.4.2 User Support . 216

7.5 Conclusion . 216

8 Conclusion 218

8.1 Summary of Contributions . 218

8.2 Reflections on Research Outcomes . 221

8.2.1 The First Research Question 221

ix

CONTENTS

8.2.2 The Second Research Question 224

8.2.3 Overall Reflection . 226

8.3 Future Work . 227

A SDES Schema, SDESSch 229

A.1 State Variables . 229

A.2 Actions . 230

A.3 Reward Variables . 231

A.3.1 The Rate Reward Function 232

A.3.2 The Impulse Reward Function 234

A.3.3 The Evaluation Interval . 234

A.3.4 The Reward Hint . 235

A.4 The Complete SDESSch Schema . 236

B Implementation of the Complex WSLA Functions in Matlab 240

C WSLA Contract of a Stock Quote Service 244

References 265

x

List of Figures

1.1 The approach of the general SLA compliance prediction: mapping

any SLA contract to any stochastic model 8

2.1 The web service model . 16

2.2 Summary of QoS metrics’ classification 18

2.3 WSLA agreement structure . 22

2.4 Agreement structure of WS-Agreement, as specified by Andrieux et

al.[1] . 23

2.5 Techniques for evaluating system attributes 32

3.1 The design of the SlaCP methodology 59

3.2 The proposed methodology from a user perspective 67

3.3 The WslaCP methodology diagram 69

4.1 The Entity- Relationship diagram for the required WSLA elements

in WslaCP methodology . 75

5.1 The mapping process from WSLA to SDES 102

5.2 Mapping the WSLA schedule into the SDES observation interval . . . 113

6.1 Tool architecture of SLA Compliance Prediction (SlaCP) 133

6.2 The Metric Specification Engine (MS Engine) in the SlaCP tool . . . 135

6.3 The Translator Engine (TS Engine) in the SlaCP tool 137

6.4 The Result Computation and Comparison Engine (RCC Engine) in

the SlaCP tool . 142

6.5 The Plugged-in Modelling Tool in the SlaCP tool 143

6.6 Alternative design choice of the SlaCP tool 146

6.7 A WslaCP GUI for completing the model creation 163

6.8 A WslaCP GUI for completing the reward definition of Status 165

6.9 A WslaCP GUI for completing the reward definition of Gauge 166

6.10 An example of Möbius trace file . 169

xi

LIST OF FIGURES

7.1 WSDL Abstract Definition . 185

7.2 Mapping service operations in Listings 7.1 and 7.3 to SPN 189

7.3 Mapping measurement directives in Listings 7.1 and 7.2 to SPN . . . 189

7.4 Merging SPNs in Figure 7.3 and the upper part of Figure 7.2 189

7.5 Mapping the measurement directive of Listing 7.3 to SPN 190

7.6 Merging SPN parts of Figures 7.4 and 7.5 191

7.7 Completing the model of Figure 7.6 191

7.8 WSDL model for user interaction . 195

7.9 Mapping the WSDL file of Listing 7.4, and the WSDL user interaction

model of Figure 7.8 to SPN . 196

7.10 Mapping the WSDL and WSLA of the stock quote service to SPN . . 197

7.11 The SPN model of the stock quote service, completed by the user

manually . 203

7.12 The WslaCP welcoming GUI . 207

7.13 The WslaCP GUI for uploading a WSLA contract 208

7.14 A WslaCP GUI for completing the model creation 208

7.15 A WslaCP GUI for completing the StatusRequest reward function . 211

7.16 WslaCP GUI for completing the Gauge reward variable 212

7.17 WslaCP GUI for presenting the result of the SLO compliance 215

xii

List of Tables

2.1 Comparison of SLA languages . 26

2.2 Comparison of SLA managements types 29

2.3 Performance, dependability and performability attributes 44

2.4 A comparison between types of performance query 45

3.1 An example of the outcomes of the SLA-Model Mapping phase 62

4.1 Formal elements and associated WSLA location using XPath 2.0 . . . 80

4.2 Summary of semantics added to the measurement directives 91

5.1 Summary of Mapping MeasurementDirective(s) to SDES reward vari-

ables . 106

5.2 The part of the service model as a result of mapping WSLA elements

in Listing 4.2 to SDES . 126

6.1 SlaCP files formats: differences between the two SlaCP designs . . . 147

6.2 Comparison of different modelling tools with WslaCP requirements . 151

6.3 WSLA functions equal to solver output 160

6.4 Matlab functions equivalent to WSLA functions 160

6.5 Matlab function’ headers of the complex WSLA functions 160

6.6 Sample of the Functions File that contains the functions of Listing 4.2 161

6.7 The translation of the model primitives of the SLA-Model File of

Listing 6.3 from SDESSch into CSPL 163

6.8 The updated reward function in the SLA-Model File of Listing 6.3 . . 166

6.9 The equivalent CSPL code of the reward function presented in Table

6.8 . 167

6.10 A sample of the time generated from Table 6.8 for insertion into the

Reward Model File . 168

6.11 A sample output of the Unified Results File 170

xiii

LIST OF TABLES

6.12 An algorithm for computing the slo compliance probability from sim-

ulation replicas . 171

6.13 A summary of the implementation of the WslaCP’s output files . . . 172

6.14 Features implemented in the WslaCP tool 174

7.1 The reward variables generated from mapping measurement directives

and the schedules of Listings 7.1, 7.2 and 7.3 192

7.2 The reward functions completed by the user 204

B.1 TSSelect function implementation in Matlab 240

B.2 ValueOccurs function implementation in Matlab 241

B.3 PercentageGreaterThanThreshold function implementation in Mat-

lab . 241

B.4 PercentageLessThanThreshold function implementation in Matlab . 241

B.5 NumberGreaterThanThreshold function implementation in Matlab . 242

B.6 NumberLessThanThreshold function implementation in Matlab . . . 242

B.7 Span function implementation in Matlab 243

B.8 RateOfChange function implementation in Matlab 243

xiv

Listings

4.1 An example of a Service Level Objective for a stock quote service. . . 76

4.2 An example of an SLAParameter for a stock quote service 77

4.3 An example of a Service Level Objective with nested expressions . . . 81

4.4 General structure of the MeasurementDirective element in WSLA . . 85

6.1 The DTD of the SDESSch Schema . 155

6.2 An SLA-Model File with a complete template 156

6.3 An SLA-Model File with incomplete reward function template em-

ploying Listing 4.2 . 158

6.4 Completing the reward function template of Listing 6.3 158

6.5 Applying the Span function on the simulation output of Table 6.11 . 171

6.6 Evaluating the result of Listing 6.5 to True/False 171

6.7 Computing the probability of slo compliance for each replica 172

7.1 The “ContinuousDownTimeSLO” service level objective 178

7.2 The “ConditionalSLOForTransactionRate” service level objective . . 179

7.3 The “PrintingResponseTime” service level objective 183

7.4 The WSDL file of the stock quote service. 186

7.5 A snapshot of an SLA “with measured metric” written in the WS-

Agreement specification . 199

7.6 A snapshot of an SLA “with composite metric” written in the WS-

Agreement specification . 201

7.7 The CSPL file of the SPN model depicted in Figure 7.11 209

7.8 The CSPL code equivalent to the StatusRequest measurement direc-

tive in Figure 7.15 . 211

7.9 The CSPL code equivalent to the Gauge measurements 212

7.10 The CSPL code equivalent to the time to solve the StatusRequest

reward function . 213

7.11 The CSPL code equivalent to the time to solve the Gauge and Invo-

cationCount reward functions . 213

7.12 The CSPL code equivalent to solve the ResponseTime reward function214

xv

LISTINGS

A.1 The three main elements in the SDESSch schema 229

A.2 The definition of the state variable in the SDESSch schema 230

A.3 The definition of the action in the SDESSch schema 230

A.4 The definition of the reward variable in the SDESSch schema 231

A.5 The type of the measurement directive in the SDESSch schema 231

A.6 The definition of the rate reward function in the SDESSch schema . . 232

A.7 The definition of the condition in the SDESSch schema 233

A.8 The definition of the arithmetic relation in the SDESSch schema . . . 234

A.9 The definition of the impulse reward functions in the SDESSch schema 234

A.10 The definition of the reward interval in the SDESSch schema 234

A.11 The hint definition in the SDESSch schema 235

A.12 The complete SDESSch Schema . 236

C.1 WSLA contract of stock quote service 244

xvi

Chapter 1

Introduction

1.1 Background and Motivation

Over recent years, computer and Internet technologies have been incorporated into

many everyday activities such as aircraft control, shopping, banking and so on [2].

This rapid growth in interconnected computer networks has allowed companies to

offer their services electronically [3]. A number of paradigms have been developed to

support this [4], including Web Services [5], Cloud Computing [6], Utility Computing

[7] and Service Oriented Computing [3]. The concept on which these paradigms rely

is that of building distributed applications using electronic services; this has resulted

in loosely coupled, dynamic and inexpensive applications [8].

A service is a software system used to perform a specific task for its customers

using request-response messages [4]. A service customer may choose a specific ser-

vice from among similar ones that offer the same business. For this reason, it is a

challenge for a service provider to maintain the running of the service at an adequate

level in order to keep attracting potential customers [2, 9, 10]. Customers’ interest

regarding the level of service offered may vary and this can be related to different

dependability, performance and performability metrics such as response time, avail-

ability, throughput, reliability, exception handling, and security [2, 10, 11]. In this

context, and in order to give customers the ability to choose which service is best

suited to them, the term Quality of Service (QoS) has evolved to denote the quality

of the non-functional properties of a service [10]. Service providers and customers

choose QoS metrics and specify guarantees of their values over a certain period of

time; these are called Service Level Objectives (SLOs) [10, 12]. Owing to their im-

portance in attracting customers, SLOs have become a crucial part of a larger legal

document called a Service Level Agreement (SLA)[10].

1

1.1 Background and Motivation

SLAs were first developed in the 1980s by telecommunications firms and their

importance was strengthened later by the Grid computing community [13]. The

most important reason why an SLA is used in service provision is to clarify and for-

malise the relationship between the contractual parties regarding the overall quality

of the service offered [12, 14, 15]. Previously, the process of writing and editing SLA

contracts was carried out manually using natural language, which made this process

both difficult and time-consuming [16]. For this reason, and to create and specify

easily an SLA structure using templates that provide a certain amount of automa-

tion, different formal specification languages have been introduced. Examples of

these languages include WSLA [17], WS-Agreement [1], SLAng [18] and NextGRID

[19]. These languages aim to facilitate the construction of different SLA elements,

define their contents, and monitor their compliance [20]. Although each SLA lan-

guage has its own syntax and semantics, they have in common declarations of several

pieces of information. This may include information regarding the contractual par-

ties, the definition of the service, the specification of the set of QoS metrics (such as

availability) for a specific object of this service, their SLOs (e.g. service availability

is more than 90% in each business day), and finally the penalties in case of breach

of contract [21].

After agreeing in an SLA on the level at which a service should be delivered,

it becomes essential for the provider to implement techniques that provide some

assessment of these service metrics during a service’s design, its implementation, its

deployment, and during its running [2]. This is important because a service provider

may be at risk accepting an SLA that the service’s infrastructure is not able to fulfil.

Costly penalty payments, and adjustments to the contract or the underlying system,

may occur as a consequence [22]. Similarly, service customers are also interested in

such assessments because they are keen for guarantees that the level of service they

receive is that to which they agreed [9].

SLA compliance assessment techniques aim either to monitor or predict SLA

compliance, or a combination of both. SLA compliance monitoring implies checking

service performance during run-time against the agreed SLA. In the case of any

deviation, the provider is prompted to take corrective actions. Although this moni-

toring informs the provider of weak points in the SLA or in the underlying service,

it neither precludes errors nor allows enough time to adopt any necessary modifica-

tions [23]. On the other hand, predicting SLA compliance can be used to verify in

advance whether the service’s performance conforms to an SLA, either at the design

stage or when deploying the service in the real world. In the latter case, the predic-

tion can be carried out either off-line or during runtime. Predicting SLA compliance

2

1.2 Research Problem

beforehand gives the provider enough time to make any necessary adjustments in

order to improve the service [24]. Also, early prediction helps in determining which

SLO threshold the service can maintain by evaluating different ones and choosing

the optimal threshold from among them.

Many approaches have been devised for the purpose of SLA compliance assess-

ment, such as measuring the real service or a prototype thereof. This is often not

practical since such an approach cannot be used unless the service is being operated

in real, but controlled life. Furthermore, it may require years to obtain enough

and appropriate measurements of specific events (e.g. the expected failures in a

system) [2]. Another and more flexible way of providing such assessments is to con-

struct a model that captures the service’s characteristics using either Discrete Event

Simulation (DES) or analytic model solutions, and then perform assessments [2].

Assessment approaches using modelling techniques give the provider the ability

to predict if the service will be able to conform to an SLA when a new contract

is established with new users, or when the service parameters are modified accord-

ing to special circumstances [25]. In adopting a model-based prediction approach,

stochastic models have been used by some researchers because they better capture

the nondeterministic nature of service dynamics on the web [26]. Solving these

models analytically, or using simulation, allows for predicting the expected values

of those QoS metrics that are not available before a service is deployed. These pre-

dicted values can then be used to determine SLA compliance. The approach in this

thesis adopts the use of stochastic models for predicting SLA compliance.

1.2 Research Problem

A number of aspects regarding model-based SLA compliance prediction, representing

some research perspectives which motivate this work, have been recognised.

Firstly, current research does not typically try to utilise existing SLA contracts.

Most such research uses model-based metric definitions as an SLA and then checks

compliance. Software engineers have certain reasons for using SLA contracts in-

stead of the metrics used in mathematical modelling frameworks. In such cases, a

service contract already exists and the provider wants to check the probability of

its fulfilment. Hence, using an SLA as a starting point in the prediction process is

desirable.

Secondly, in current research, the scope of QoS metrics that are predicted by

stochastic models focus mostly on a limited set of QoS metrics. The metrics that are

used in prediction, such as response time and availability, are usually basic metrics:

3

1.2 Research Problem

i.e. there is no consideration of more complex metrics. Thus, when using existing

SLA definitions, there is a need to provide a prediction mechanism which is tailored

to the actual metrics specified in the SLA, such as maximum response time from a

number of service invocations and sequences of successful invocations.

Thirdly, a generalised stochastic model that is able to predict SLA compliance is

lacking. Usually, a researcher uses a specific type of stochastic model such as Process

Algebra or Stochastic Petri Nets, to predict SLA compliance. This unique stochastic

model of the service puts a usage restriction on non-specialists or other researchers

who might be unaware of this particular type of modelling language and the tools

related to it. For example, Franken, in [27], chose a Stochastic Petri Net (SPN) to

model the stochastic processes under consideration and used an SLA language that

defines metrics which fit with this model.

Fourthly, the lack of a formal relationship between an SLA and a model may

be readily recognised. Most of the research that has been carried out into SLA

prediction has used mainly two approaches. In the first, the prediction starts from

an ad-hoc SLO expression or a stand-alone QoS metric which might not specify

exactly how the QoS metric is assembled and computed. In this approach, there is

no consideration of the SLA specification from which these expressions or metrics

are taken. The assignment of the QoS metrics to the service model is carried out

manually according to the modeller’s perception; this may not be sufficiently precise.

In the second approach, the process starts the other way round by defining rewards

of interest in the model and then building an SLA with QoS metrics in a way that fits

with the model’s fragment description. For example, Suto et al. in [28] built an SLA

that suits the definition of the system model and then predicts its fulfilment. This

approach requires engineers or modellers to write and understand the sophisticated

metrics associated with a stochastic process. Hence, the automated conversion of a

metric from an existing SLA into a stochastic model is of interest.

Fifthly, a software tool that automates SLA compliance prediction is not presented

in the literature as an all-in-one software package starting from using an SLA as

the primary input and ending with compliance probability as an output. One reason

for this might be the lack of understanding of how to relate the QoS metrics of

an SLA to the model of the service. Such a tool would help service providers, SLA

engineers, or other users if they have only a basic knowledge of all the aspects related

to model-based SLA compliance prediction.

The aim of this thesis is to find a solution that investigates all of the aforemen-

tioned issues.

4

1.3 Research Hypothesis and Questions

1.3 Research Hypothesis and Questions

In model-based SLA compliance prediction, an obstacle for a service provider or an

SLA engineer is to produce an adequate stochastic model of the service [25]. This

is because the service model has to capture the service behaviour and has to reflect

the correct QoS metrics indicated by the SLA. If this is done correctly, the service

model can be evaluated and compared to thresholds implied in the SLOs to predict

SLA compliance. In line with this, the research hypothesis is:

Hypothesis:“The process of model-based SLA compliance prediction can be au-

tomated using an existing SLA document as the only input.”

If this hypothesis is fulfilled by a new SLA compliance prediction engineering

methodology, it means that this methodology will be able to obtain a service’s

stochastic model and its QoS metrics from an SLA specification in an automated

way to support the SLA compliance prediction process. Furthermore, if this hypoth-

esis is valid, it can be utilised in a supported software tool that will automate the

methodology. This tool will allow an SLA engineer or a service provider who has

a limited knowledge of stochastic modelling analysis to perform a prediction with-

out having to gain a thorough understanding of model-related metrics and analysis

tools. Furthermore, it will support them in parameterising SLAs more effectively

by informing them how different levels of service performance may affect SLA com-

pliance.

Bearing in mind the hypothesis mentioned above, a number of research questions

have been formulated. The research in this thesis is a hybrid of both theoretical

concepts and practical implementation, and the research questions are related to

both theoretical and practical aspects of the research. For the theoretical part, the

main question that is identified is as follows:

• Question 1: “Can an existing SLA be mapped theoretically to metrics of a

stochastic model in an automated fashion?” This question implies several sub-

questions:

1. Are all SLA elements useful for prediction-related mapping or are some

of them monitoring-related only? What are these elements?

2. Does an SLA provide any information that helps in automatically creating

a complete service model or a part of it? If yes, what are these elements?

Can other supporting documents enhance this automatic model creation?

3. Assuming that such a service model is available, how do the prediction-

related SLA elements correspond to the service model? In other words,

5

1.4 Research Aim, Objectives and Challenges

are they mapped on the model primitives or are they captured by a

function over the results of solving this model?

4. Given that the mapping from SLA into a stochastic model is feasible, to

what extent can the mapping process be automated?

• Question 2: For the practical part of the research, the following question is

formulated: “Is the theoretical mapping applicable in a real example scenario?”

This implies the following sub-questions:

1. Is the methodology, which exploits the research hypothesis, applicable

before or after deploying the service in the real world? Is it useful for

providers and customers?

2. Assuming that the methodology is applicable before deploying the ser-

vice, how will a user be able to obtain the necessary information for

parameterising the model (e.g. delay time)? How can the initial state

of the model, which is necessary for solving it, be determined (e.g. does

this depend on simulation results or historical data)?

3. Does the type of model affect the usage of this mapping? In other words,

is the type of stochastic model (i.e. closed or open, steady state or tran-

sient) important for mapping validity?

4. Is there any difference in prediction if a service is composite? Can a

service model for a composite service still be generated and used by the

methodology assuming the hypothesis?

5. Can an all-in-one software tool automate all aspects of the methodology?

1.4 Research Aim, Objectives and Challenges

Following the research problem, the hypothesis and the questions presented in the

previous two sections, the aim of the research conducted in this thesis is:

Aim: “To propose a new engineering methodology that helps SLA contractual

parties to predict automatically, as much as is possible, if an SLA can be fulfilled by

the service, when designing, deploying, or using the service.”

The main idea in accomplishing this aim is to adopt a model-based approach as

a means to predict the unknown values of QoS metrics. In other words, one of the

things the research seeks “to use an existing SLA language as a specification of the

metrics of a predictive discrete-event stochastic model”. This implies the following

objectives:

6

1.4 Research Aim, Objectives and Challenges

1. To create a general methodology that is able to predict the compliance prob-

ability of a predefined SLA. This involves the following:

(a) To map theoretically existing SLA contracts on the metrics of a discrete-

event stochastic model, as much as possible in an automated fashion.

(b) To use this mapping as the basis for producing a model in order to predict

values of the QoS metrics in the SLA.

(c) To use these values to compute the ultimate QoS metrics used by the

SLO, then to compare them with specified thresholds and hence predict

the SLA compliance probability.

2. To implement the methodology for a specific type of SLA and stochastic model

in order to check the methodology’s feasibility.

3. To construct a software tool that automates this methodology as much as

possible to support the methodology and to investigate its applicability in

practice.

4. To evaluate the research’s validity and the degree to which the research ques-

tions have been addressed through a detailed case study.

The model-based SLA compliance prediction approach, based on mapping SLAs

into a stochastic process, is not trivial owing to a number of challenges.

Firstly, SLAs are not written for the purpose of model-based prediction; they are

defined to be monitorable. As an example, SLAs do not typically define steady-state

metrics but rather functions over periodically monitored variables. The modelling

and solving of such metrics is typically more involved than solving steady-state

metrics because these SLA metrics are difficult to solve analytically.

Secondly, not all the information which is required to evaluate compliance with

an SLA is available before deploying the service. In an SLA, QoS metric values are

provided by measuring or intercepting service resources while the service is running.

Hence, before deploying a service in the real world, only an estimation of metrics

can be derived through a correct, well-defined model of this service.

Thirdly, an SLA does not provide information about the system’s dynamics. In

the approach taken in this thesis, the service model relies on the SLA. However,

there is not always a clear connection between an SLA, the system dynamics and the

underlying business process. SLA supporting documents such as service description

or work-flow documents can contain some information about service behaviour which

one can try to exploit.

7

1.5 Research Approach

Generalized
Stochastic

Model
with Reward

Variables

WSLA

WS-
Agreement

SLAng

…

Stochastic
Petri Net

Queuing
Network

Markov
Reward
Model

…

Map Translate
Solve &
Compute

SL
A

C

o
m

p
lia

n
ce

 p
ro

b
ab

ili
ty

Figure 1.1: The approach of the general SLA compliance prediction: mapping any
SLA contract to any stochastic model

Fourthly, SLA elements are not mathematically defined. The semantics of SLA

elements and metrics are usually defined in a natural language, which makes it

difficult for the QoS metrics to be understood precisely. This lack of precision might

result in different perspectives of a single metric being adopted by a service provider

and a customer. It is therefore necessary to be more formal about the SLA semantics.

1.5 Research Approach

The research work in this thesis begins by investigating SLA compliance prediction

techniques in the context of a service-based environment. In addition, related work

carried out by other researchers working in similar research areas is studied. Based

on this, a novel methodology is developed for automated SLA compliance prediction.

This is based on using an SLA as input for generating a stochastic model in order to

determine compliance probability. For this reason, the approach taken supports the

creation of a stochastic model by trying to prove that it can both be built and then

enhanced by using SLAs in a structured way. This automatically translates SLA

elements into stochastic model primitives in order to produce the service model (or

part of it). In addition, it automatically translates the definitions of QoS metrics,

along with the temporal constraints defined in the SLAs, into high-level model

description reward variables. It then adds them to the service model to produce

the desired model.

The approach taken to address the first main research objective is that the

8

1.6 Contributions of the Thesis

methodology should be general. This means, as depicted in Figure 1.1, the proposed

methodology has to map an SLA written in any SLA language (such as WSLA, WS-

Agreement, SLAng, etc.) to an intermediate and generalised stochastic model with

reward variables. This can then be translated into any stochastic model preferred by

the user (e.g. Stochastic Petri Net (SPN), Queuing Network (QN), Markov Reward

Model, etc.) in order to solve the model, perform any required computation, and

then produce the SLA compliance probability.

The abstract derivation of the general SLA compliance prediction methodology

proved to be complex. For this reason and, to address the second research objective,

the approach here is to implement this methodology for a specific SLA language,

namely the Web Service Level Agreement language (WSLA) [17], and a specific

generalised stochastic modelling formalism, namely the Stochastic Discrete Event

System (SDES) formalism developed in [29]. WSLA is chosen because it is, unlike

the rest of the SLA languages, powerful enough to define explicitly different QoS

metrics based on a constructive ontology (hierarchical QoS metrics). Thus it is

suitable for the aim of this thesis. Another reason for choosing WSLA is that it is

common, widely used and flexible in that an SLA engineer can extend new metric

types that suit a domain-specific environment. The stochastic modelling formalism

chosen is SDES as it supports a wide range of stochastic modelling formalisms in

such a way that a translation into any of them from SDES is not difficult.

After implementing the methodology for WSLA and SDES, and to address the

third research objective, the approach taken is to construct a software tool that will

automate the proposed methodology by adopting a special type of SDES, namely

the Stochastic Petri Net (SPN) [30], and tools that will solve them, namely SPNP

[31] and Möbius [32]. Finally, to address the last research objective, the approach

taken to validate the theoretical methodology and its practical implementation is

carried out based on a detailed case study of a stock quote service. A number

of evaluation questions are formulated to evaluate these in terms of automation,

applicability, generality, and user support.

1.6 Contributions of the Thesis

The main contribution of this thesis is:

“A new engineering methodology that helps SLA contractual parties to predict

automatically, as much as is possible, if an SLA can be fulfilled by the service, when

designing, deploying, or using the service.”

The principal contributions, which involve conducting, completing, and demon-

9

1.6 Contributions of the Thesis

strating this novel methodology, are four aspects:

1. A generalised SLA Compliance Prediction (SlaCP) methodology for predicting

SLA compliance probability. This includes its design, in addition to the archi-

tectural design of a software tool that automates it. The SlaCP methodology

facilitates the process of predicting the compliance of predefined SLAs. It

allows the user to create the model of the service, solve it, and perform the

necessary computations to produce the compliance probability in a partially

automated manner. Model-based SLA compliance prediction, evolved from

mapping SLAs on a stochastic model, has not yet been considered in the liter-

ature, and certainly not in the fashion pursued in this thesis. Most work has

used model-based metric definitions as SLAs which need extra manual effort

from service engineers or modellers in order for them to comprehend and write

adequate metrics related to a stochastic model. However, the work in this the-

sis starts from an SLA specified by an engineer to provide him/her with the

metrics that are a closest fit with the intended meaning of the SLA. SlaCP

methodology also differs from other works in that they do not provide an all-in

one methodology that uses an existing SLA as an input to predict compliance

automatically. In addition, they do not provide a generic methodology that

can be used for different SLAs and stochastic models; finally they do not con-

sider the architectural design required to build a tool that automates it. The

value of such a methodology is to help a user who is not expert in model-based

evaluation and analysis tools to predict SLA compliance as automatically as

possible.

2. An implementation of the SlaCP methodology using WSLA and SDES (called

WslaCP methodology). This contribution includes two inputs:

(a) A mathematical representation of WSLA contracts. The structure and

semantics of all the WSLA elements constituting the SLO are formalised.

A precise and formal interpretation is given of the basic measured QoS

metrics, the time instances/intervals, and the functions of the compos-

ite metrics; this is accomplished by associating them with mathematical

terms. A mathematical representation of SLAs is available in the litera-

ture [33] but not in the fashion considered here. The work in this thesis

not only formalises the main elements of an SLA, it also formalises how

different QoS metrics are composed according to the WSLA ontology. In

addition, the specific interpretation and semantics of the different WSLA

elements used in composing the desired QoS metrics are determined in

10

1.6 Contributions of the Thesis

detail. Defining the semantics of WSLA elements is important because

some of its terms are described vaguely, being defined using natural de-

scriptive language only (e.g. Span, Gauge, etc.). This thesis provides

a mathematical interpretation, more rigours than the descriptive one, so

that the semantics of WSLA elements can be easily and fully understood.

(b) A theoretical mapping of WSLA on SDES. This mapping consists of:

• Systematic translation of service operations, on which QoS metrics

are defined, onto SDES state variables/actions.

• Systematic translation of the measurable QoS metrics, indicated in

a WSLA specification, onto SDES reward variables.

• Systematic translation of the time instants and intervals, at which

metrics are measured, onto a set of observation intervals for the re-

ward variables.

• Systematic translation of the WSLA functions, used by composite

QoS metrics, onto functions associated with a mathematical semantic

tailored to the model’s stochastic nature; this specifies further the

reward variables in SDES.

• Finally, a systematic translation of the SLO onto an evaluation func-

tion that allows SLA compliance probability to be evaluated: i.e., a

determination of whether the agreed service level can be met.

This contribution is important because it facilitates the understanding

of the abstract SlaCP methodology. It also reflects the feasibility of

providing a formal methodology for mapping from a WSLA to a general-

purpose stochastic model. Predicting SLA compliance is possible using

the model emerges from the mapping. Hence, by solving this model

the provider is able to produce the values needed to evaluate the SLA

compliance before deploying the service, thus avoiding penalties.

3. An implementation of the architectural design of a software tool to support and

automate the WslaCP methodology. In order for the methodology to be more

useful and user-friendly, it is employed in a software tool that facilitates and

automates most of its different steps. This makes two contributions:

(a) SDESSch: This is an intermediate XML language that expresses the

mapped elements from the WSLA’s mathematical representation into

SDES in a high level, machine-readable format. This language is inde-

pendent of the SLA being used and the stochastic modelling formalisms

11

1.7 Thesis Outline

being utilised. Creating this language is necessary to achieve a higher

level of automation and modularity for the tool across different modelling

formalisms by performing a simple translation into them.

(b) An all-in-one software tool that automates the WslaCP methodology as

much as possible: The general architectural design of the tool is im-

plemented in a software tool that is developed using Java and which is

augmented with both the Möbius and SPNP tools. The construction of

this tool illustrates the viability of the methodology in practical terms

and adds more value to it. In addition, it is a step towards helping users

to check automatically the probability of SLA compliance for different

SLO thresholds and for different service parameters. This is because this

tool is the first that can automatically derive QoS metrics and SLOs def-

initions from an existing SLA, map them as a stochastic model and its

rewards, take their expected values, and then predict SLA compliance.

4. An evaluation of the proposed methodology and the tool through a detailed case

study. The case study utilised in this research facilitates the demonstration of

the applicability of both the methodology and the tool, the degree to which

they can achieve their desired objectives, and areas of enhancement. The value

of such an evaluation is that it leads to a new contribution, namely, the use of

a WSDL file in the automatic creation of the service model. This contribution

proves that using other supporting documents of a service, such as WSDL,

can provide a more complete service model and hence increase the level of

automation of the methodology.

1.7 Thesis Outline

The rest of the thesis is organised as follows:

Chapter 2 provides a relevant literature review and offers background informa-

tion that allows the reader to understand the topics and related work in the area

of SLA compliance prediction. The chapter focuses on SLA content and some of

the languages used to build it. It also explains SLA compliance management and

the different approaches to do this, as well as shedding light both on the stochastic

models used in the thesis and on the SDES formalism. It presents performance,

dependability and performability models with the types of metric defined in them.

Finally, some tools that are used for stochastic modelling and solving are presented.

12

1.8 Publication History

Chapter 3 demonstrates the design of the SlaCP methodology and then presents

it from two perspectives: those of the user and tool designer. It also gives an outline

of the implementation of this methodology, called WslaCP, for WSLA and SDES

in particular, as well as how the different steps in this outline are described in

subsequent chapters.

Chapter 4 introduces the mathematical representation of WSLA contracts in

addition to the precise semantics of WSLA elements. Formalising an SLA and

defining the semantics of QoS metrics is an introductory step in implementing the

methodology and for mapping the WSLA contract to the SDES model.

Chapter 5 empirically describes the theoretical mapping from WSLA contracts

to the generalised Stochastic Discrete Event System, SDES. A discussion about the

feasibility of this mapping is also provided.

Chapter 6 proposes the architectural design for developing a software tool that

is able to automate the methodology that is presented in Chapters 4 and 5. It

also describes its implementation and the intermediate language used to aid the

automation and modularity of the tool.

Chapter 7 evaluates the described methodology and tool through a case study

in terms of its automation, feasibility, generality, and usefulness for the user. It also

shows how using WSDL can support the automated model creation.

Chapter 8 concludes the thesis by answering the research questions, providing

reflections on the whole thesis, and summarising the research’s contributions. It also

suggests some possible extensions and future work for such research.

1.8 Publication History

The thesis contains some parts that have been published in or that are related to

peer-reviewed publications written by the author. These publications are as follows:

1. “Rouaa Yassin Kassab and Aad van Moorsel. Mapping WSLA on reward

constructs in Möbius. In 24th UK Performance Engineering Workshop, pages

137-147, 2008.”

The idea of mapping an SLA into a model was first introduced in this

publication at the UKPEW 2008 workshop [34]. It illustrated the feasibility

of this approach through an ad hoc mapping from a WSLA to Möbius rewards.

2. “Rouaa Yassin Kassab and Aad van Moorsel. Formal mapping of WSLA

contracts on stochastic models. In 8th European Performance Engineering

13

1.8 Publication History

Workshop - EPEW 2011, volume 6977 of Lecture Notes in Computer Science

(LNCS). Springer, 2011.”

This covered an extended and more generic version of a WSLA compliance

prediction approach [15]. This version, albeit in a somewhat different format,

is presented in more detail in Chapters 3, 4 and 5.

3. “Simon Edward Parkin, Rouaa Yassin Kassab, and Aad van Moorsel. The Im-

pact of Unavailability on the Effectiveness of Enterprise Information Security

Technologies. In Proceedings of ISAS’2008. pp.43-58.”

I was a co-author of this publication [35] in which the contribution was in

the development of a SAN model of the USB access control. Although it is not

included in the thesis, this work helped in developing a better understanding

of the construction of the stochastic model and the usage of the Möbius tool.

In addition to peer-reviewed papers, a number of technical reports have been

written and published in the Computing Science School Technical Reports Series.

1. “Rouaa Yassin Kassab and Aad van Moorsel. Predicting Compliance of WSLA

Contracts Using Automated Model Creation. School of Computing Science.

2010. School of Computing Science Technical Report Series 1204.”

This was a preliminary version of the design of a software tool that exploited

the early version of the WSLA compliance prediction methodology.

2. “Rouaa Yassin Kassab and Aad van Moorsel. Formal Mapping of WSLA

Contracts on Stochastic Models. School of Computing Science. 2011. School

of Computing Science Technical Report Series 1245.”

This was also a preliminary version of the generalised theoretical WSLA

compliance prediction. The paper was later enhanced and published in EPEW

2011 [15].

14

Chapter 2

Background and Literature

Review

This chapter provides background information and a literature review related to

the research conducted in this thesis to give the context for the problem of SLA

compliance prediction. The background gives information about the theoretical

and practical basis of the study of SLA prediction methodology, including service-

oriented computing, SLA specifications and their related QoS metrics. The relevant

literature is reviewed including: presenting different perspectives of the motivations

behind performing SLA compliance prediction (such as maximising revenue, increas-

ing customer satisfaction, minimising SLO violation, or raising the alarm regarding

the probability of performance degradation); describing different SLA compliance

prediction techniques used by researchers (such as measurement, simulation or per-

formance models); presenting approaches to and issues related to QoS mapping and

adding performance attributes in order to produce analytic models.

The remainder of the chapter is structured as follows: Section 2.1 gives a brief

description of service-oriented computing and web services. In Section 2.2, the im-

portance of SLAs, along with the content and languages used to create them are

presented. Section 2.3 introduces SLA compliance management using both mon-

itoring and prediction approaches, the different perspectives of performing SLA

compliance prediction, and the methods used for this purpose. This section also

illustrates the motivation behind the choice of using model-based prediction in this

thesis. Section 2.4 presents the aspects utilised in designing the methodology and

Section 2.5 explores stochastic modelling formalisms, and then describes those that

are relevant to this thesis. Section 2.6 describes the types of attribute, the reward

models, and the techniques used for analysing them. It also outlines some of the

tools used to create such models. Finally, Section 2.7 concludes this chapter.

15

2.1 Service Oriented Computing and Web Services

2.1 Service Oriented Computing and Web Ser-

vices

The rationale for companies’ tendencies to use service-based applications is that

they help to build dynamic, easily configurable and low cost software applications

in a way that increases their business efficiency [36]. The service-oriented computing

approach and the associated Service Oriented Architecture (SOA) paradigm were

developed to employ services as the key elements in building distributed applications

[3]. The architecture of the applications developed using service-oriented computing

depends on the existence of three roles: a provider, a customer and a registry that

is used by the provider to advertise his/her service [36].

A web service is an implementation of the Service Oriented Architecture ap-

proach [3]. It is defined as an interface with a set of operations that can be invoked

through the Web using XML messages [37]. The web service model also includes

three roles that interact with each other using Publish, Find and Bind operations

as depicted in Figure 2.1.

SOAP

SOAP WSDL

Service
Registry

UDDI

Service
Provider

Service
Customer

Publish

Bind

Find

Figure 2.1: The web service model

The service provider advertises his/her service by Publish-ing its description in

a registry. The description is written using the Web Services Description Language

(WSDL)1, while the registry of this service description is the Universal Description,

Discovery, and Integration (UDDI) directory2. Service customers can access the

service description registry using the Find operation. Finally, to invoke the desired

service, the customer has to Bind to the service that exists on the provider’s side.

1www.w3.org/TR/wsdl.html
2www.uddi.org

16

2.2 Service Level Agreement

Registry access and service invocation are done through the Simple Object Access

Protocol (SOAP)1 [37, 38].

2.2 Service Level Agreement

In the interconnected world of electronic services, the quality of the offered service

has been used by customers as a factor to distinguish between providers that of-

fer the same service [9]. To express a service’s offering, Service Level Agreements

(SLAs) were developed. These help in organising the relationship between the ser-

vice providers and their potential customers, whether they are consumers or other

businesses [39]. The SLA is a document that includes information regarding the

definition of the contractual parties of a particular service and their roles, the de-

scription of the specific QoS promises offered by the service provider for different

sets of businesses and customers, the charges the customer has to pay for using the

service, and finally the provider’s obligation in case of failing to satisfy its pledges

[39, 40].

SLAs have been used in a wide range of areas like e-commerce and outsourcing

between organisations [41]. Using SLAs, customers gain more confidence about the

service they desire to use because they have clearly defined expectations to receive

the service for which they pay. For this reason, customers have become keener to

negotiate an SLA that increases efficiency [9]. Providers, likewise, have become

more eager to propose a reasonable offering in their SLA that better suits their real

resource capacity in order to avoid incurring any penalties. Furthermore, using SLAs

compels providers to control and monitor their services more efficiently to avoid any

breach of contract that may lead to financial loss [9].

Contract breaching of an SLA occurs when a service provider is not able to fulfil

the Service Level Objectives specified in the service SLA. An SLO is defined through

thresholds that should be maintained for the desired service properties over a certain

validity period. A simple example of an SLO is ‘continuous down time is less than

8 minutes in a business day’.

In this section, the QoS metrics used within an SLA are described along with their

categorisation. Then, some of the languages which are used in SLA specification are

described.

1www.w3.org/TR/soap/

17

2.2 Service Level Agreement

2.2.1 QoS Metrics Related to an SLA and their Categorisa-

tion

A service has a set of functional and non-functional properties; the non-functional

ones are restrictions on the functionality of the service and are referred to as QoS

attributes [42, 43]. A service can be assigned different QoS attributes which are

usually defined for the operations of the service. However, any service object can

be assigned a QoS, such as interfaces, attributes, operation parameters and results

[44]. Each QoS attribute is measured by a metric and is thus referred to as a QoS

metric. A metric is usually used to describe the unit, the type of value that it can

take, and the time required to measure this attribute. For this reason, a QoS metric

can be considered as one evaluation of the QoS attribute [44].

In terms of the SLA, QoS metrics are its primary components and are related to

the non-functional attributes of the specified service [5, 21]. The service customer

and provider usually negotiate the desired quality of service metrics to be included

in their SLA. In addition, they agree to set the level at which the service has to offer

these metrics [45]. A QoS value is a positive or negative number [46], while the QoS

level specifies the upper or lower limit a QoS value can reach.

To be able to understand the semantics of the QoS metrics in a particular SLA,

the class under which these metrics may be categorised has to be addressed. This

QoS Metrics

Domain Interpretation Measurability Perspective Service Object

Measurable

Limited Measurability

Non Measurable

Composite (Computed)

Simple (Basic, Direct)

Service

Business

Network

Provider/Customer

Occupations

Customer (QoE)

Service

Network

Software

Hardware

Storage

Help Desk

Business (QoBiz)

Figure 2.2: Summary of QoS metrics’ classification

18

2.2 Service Level Agreement

is also useful in assigning the monitoring semantics of an SLA contract when it

is presented later in Section 4.5. A summary of all QoS classifications and sub-

classifications are depicted in Figure 2.2. These classifications are described in what

follows according to their occurrence in the figure moving from left to right.

The choice of QoS metrics in a particular SLA may vary according to the Do-

main in which they are used, such as Network management, Service management

and Business management [21]. For example, in the network management domain,

a typical QoS metric is ‘bandwidth’, which indicates the network capacity [47]. On

the other hand, a typical QoS in the business management domain may be ‘revenue’

and ‘cost’, indicating the outcome and price of the service [48]. Despite this variety

in QoS metric types used in different domains, the most commonly used ones are

those relating to service performance (e.g. ‘response time’) or to reliability (e.g.

‘availability’) [21]. Additional QoS metrics can include ‘serviceability’, ‘security’ and

‘scalability’ [5, 21, 45, 49]. The aforementioned QoS metrics can be defined in the

web service domain, which is the focus of this thesis, as follows [5, 50]:

• Availability: Indicates the probability that the service is up and working.

• Throughput: Indicates the number of requests the service receives during a

specific period of time.

• Scalability: Indicates the ability of a web service to handle arriving requests

even under different workloads.

• Security: Indicates the type of mechanism used to authenticate and authorise

customers, which is critical to protect their privacy.

• Response time: Indicates the time taken to respond to a request once it is

received by the service [51].

As the type of QoS metric used within an SLA differs from one service domain

to another, the Interpretation of a single QoS metric varies accordingly [21]. Each

Occupation may have its own interpretation of a certain QoS metric, just as the

service Provider and Customer may have different perspectives [21]. An example

of this diverse understanding of a QoS metric is that of ‘availability’. From the

provider’s perspective, availability means that the hardware is not down (an aspect

of infrastructure). However, from the customer’s point of view, it could be the ability

to serve a request (a service application aspect) or what is called ‘successability’ 1

[21].

1Successability is the number of response messages received divided by the number of request
messages sent [52]

19

2.2 Service Level Agreement

Another categorisation of QoS related metrics can be according to the Service

Object they are defined for. This might be related to physical Hardware, applica-

tion Software, the communication Network and its infrastructure, data Storage

repository or service Help Desk or to combination of them [21]. A typical example

of a QoS metric related to storage is ‘bytes per second’ which reflects the reading

and writing speed as specified in [21].

In addition to distinguishing QoS metrics according to their related domain,

interpretation, and object type, they can also be classified into three categories ac-

cording to their Measurability [21]. The first category is the Measurable metrics;

these, as their name suggests, can be measured automatically from the underlying

service, for example ‘queue size’. A metric that cannot be automatically measured

is called a Limited Measurability metric. This metric is related to customer opin-

ion, for example, the ‘degree of customer satisfaction’, and can be collected using

a questionnaire only. Finally, the metric that does not belong to the previous two

types is a Non-Measurable metric such as ‘staff quality’ [21].

Measurable QoS metrics are the most desirable metrics since they can be quan-

tified and evaluated [53]. These metrics can also be categorised according to sim-

plicity into Simple and Composite metrics. The simple (basic or direct) metrics

are obtained directly from the service by probing or instrumentation using mea-

surement directives such as throughput of ‘customer arrival’. However, composite

or computed metrics are derived by applying a function to a set of simple metric

values such as ‘maximum throughput of customers’ [17, 21].

Another way of categorising QoS metrics is according to the Perspective of

the Service, Customer, and Business [53]. In terms of service, QoS metrics are

related to the IT infrastructure of the service from the provider’s point of view.

This perspective is related to the service itself and does not consider the customer’s

or business’s point of view. An example of such a metric is service ‘throughput’.

The customer perspective, on the other hand, is usually referred to as the Quality

of Experience (QoE) and is related to the degree of customer satisfaction with the

service; this could involve subjective factors. An example of a QoE metric is the

‘response time’, as recognised by customers, from sending a request until receiving

the response (i.e. including network delays). The last perspective is that of the

business, which is referred to as Quality of Business (QoBiz) metrics. These metrics

convey how the service provider or customer looks at the service based on the mon-

etary value of the service’s properties. An example of a QoBiz metric is the provider

estimated financial loss per lost customer.

20

2.2 Service Level Agreement

2.2.2 SLA Specification Languages

Until a few years ago, SLA contracts were mostly written using natural expressions;

examination of compliance to the agreement also had to be done manually [54]. One

attempt to facilitate this process by using SLA templates was limited and unable

to specify different service levels for different customers [54]. For this reason, it has

become a necessity to automate the procedure through which different SLAs are

flexibly described, provisioned and observed [54].

Several SLA specification languages have been developed by researchers within

the service provision community to address the previous aspects [54]. Their aim is to

simplify the contractual process for the parties involved and to minimise the time and

cost included in this process [54]. Foremost among the SLA languages are the Web

Service Level Agreement (WSLA) [17] framework and the Web Service Agreement

Specification (WS-Agreement) [1]. The Service Level Agreement Language (SLAng)

[18] is also another attempt. All of these languages define the most important aspects

of SLAs, typically focusing on the technical aspects of the service [20].

In the following subsections, WSLA, WS-Agreement and SLAng are described

in detail. Then, a comparison of these languages in terms of the requirements of the

proposed methodology is presented.

2.2.2.1 Web Service Level Agreement (WSLA)

The Web Service Level Agreement (WSLA) contract is an XML-based document.

The main strength of this contract is its flexibility as it allows the contractual parties

to define their desired QoS metrics [17]. This flexibility is due to WSLA’s construc-

tive ontology that facilitates the construction of QoS metrics in a hierarchical way

[10]. This ontology defines the desired QoS metric by allowing a set of well-defined

terms (i.e. measured QoS metrics) to be composed using different composing op-

erators to produce new terms (i.e. composite QoS metrics) [10]. The well-defined

terms, composing operators, and the ultimate new terms are referred to in WSLA

as MeasurementDirective(s), Function(s), and SLAParameter(s) respectively. For

example, to define the new term ‘average of service response time’ in WSLA’s con-

structive ontology, the well-defined term (i.e. MeasurementDirective), ‘response

time’, needs to be specified first, then the composition operators (i.e. Function(s)),

‘series of response time values’ and ‘average’, need to be specified to create the

desired new term (i.e. SLAParameter).

WSLA describes all the aspects that are contracted between the signatory par-

ties, the service supplier and the service consumer, regarding a specific service. The

21

2.2 Service Level Agreement

Agreement

Parties

Obligations

SLAParameter

Service Description

Service Object

Metric

Figure 2.3: WSLA agreement structure

negotiation process for establishing such a document could be accomplished either

online or off-line through the use of a WSLA template that comprises most of the

defined and the agreed upon information needed to create the SLA contract [17].

WSLA represents, in its agreement, all the information that is normally con-

tained within an SLA document. This information is situated, as depicted in Figure

2.3, in the following three main parts:

• Parties: contains information about the parties engaged in the SLA contract.

These are the signatory parties, the service provider and the service consumer,

in addition to the supporting parties that may be involved in measuring, mon-

itoring or managing particular parts of the contract [17, 34].

• Service Description: contains an explanation of the Service Object on

which the QoS metrics are defined, its SLAParameter(s), and what Met-

ric(s) are used to compute their values. A metric will be measured from a

source by identifying a measurement directive, if it is basic. However, in the

case of a composite metric, its value will be computed using a function that

takes other metrics or constants as its operands. The SLA parameters are

one of the important parts of an SLA because they correlate the metrics to a

particular consumer with specific accepted values [17, 54, 34].

• Obligations: contains Service Level Objectives the service provider is obliged

to maintain. These are the agreed values of SLA parameters during a specific

duration and the actions to be taken in the case of a contract violation [17, 34].

The basis of the WSLA language is designed to be thin; its rules and its standard

extensions provide the most common requirements for the service providers [17].

22

2.2 Service Level Agreement

Agreement

Name

Context

Service Terms

Guarantee Terms

Terms

Figure 2.4: Agreement structure of WS-Agreement, as specified by Andrieux et al.[1]

However, to cover the complexity of real systems, WSLA, by the use of XML schema,

can be extended to create new types which express domain specific concepts. By

using this, new service descriptions, functions, and measurement directives can be

derived and used flexibly in describing different ranges of SLAs [17, 34].

One of the main strengths of WSLA in addition to its constructive ontology, is

its ability to provide management information (relating SLA to a monetary value)

and management actions (a warning in case of contract contravention). Further-

more, since SLA parameter descriptions are separated from the SLOs and those of

the parties, a third party monitoring agent can be incorporated without breaching

privacy. A WSLA shortcoming can be that it requires measurements that are avail-

able from monitoring agents whose role is not defined in the language specification

[55]. In addition, its semantics are not formally specified.

2.2.2.2 Web Service Agreement Specification (WS-Agreement)

WS-Agreement is an SLA specification presented by the Grid Resource Allocation

and Agreement Protocol Working Group of the Compute Area of the Open Grid

Forum [1]. It is an XML-based language and web service protocol for: firstly, pro-

moting through templates a set of possible accepted agreement offers from agreement

responders (which could be the service provider or consumer); secondly, generating

a proposed agreement offer that the agreement initiator is keen to establish based

on one of these templates; thirdly, negotiating this agreement according to specific

constraints; fourthly, creating an agreement between the service provider and cus-

tomer with all conditions and restrictions, and then finally observing its fulfilment

[1]. The WS-Agreement is structured in three parts [1] as follows:

23

2.2 Service Level Agreement

1. Agreement Schema (agreement creation offer schema): This is used by the

agreement initiator to create an offer according to a specific template. The

agreement creation offer and the agreement are structurally the same. The

agreement offer, as specified in Figure 2.4, contains the agreement Name, the

Context (this includes the involved parties and the agreement life span), and

the Terms, which is the most important part of an agreement offer. Within

the Terms, each term contains at least one Service Term and zero or more

Guarantee Terms which could be combined using logical operators. These

are defined as follows:

• Service term is used to describe the service to be offered and consists of

three parts: Service Description terms (SDTs) for describing the service

functionality, Service Reference terms to identify a service, and Service

Property terms to identify quantifiable measures (e.g. response time) that

are used to define service level objectives.

• Guarantee terms identify the agreed quality level of the offered service

that is specified in the service term. The Guarantee term consists of

many parts such as the service scope which names the services for which

this guarantee is valid; the qualifying conditions that make the guarantee

obligatory; the service level objectives, which define the required quality of

the service; and the business value list that includes the SLO’s importance

and the agreed penalties and rewards.

2. Agreement Template Schema: This is used by the agreement responder to

promote acceptable agreement offers.

3. Set of ports type and operations: These are used for organising and adminis-

trating the agreement life-cycle operations, such as accepting or rejecting the

offer, or identifying a type of a document for monitoring the agreement states.

One of the main strengths of WS-Agreement is that it is powerful in terms of

extending new elements that are domain-specific [56]. In addition, it contains more

information about the service functional’s properties than WSLA does. Also, busi-

ness values related to QoS metrics can be specified even if an accounting procedure

is not supported [57]. WS-Agreement does not support a constructive ontology to

define QoS metrics which is necessary to understand their exact definitions. Also

its semantics are not defined precisely. However, WS-Agreement has recently been

extended with SWAPS Extension [58] to overcome this semantic ambiguity.

24

2.2 Service Level Agreement

2.2.2.3 Service Level Agreement Language (SLAng)

The Service Level Agreement Language (SLAng) is a language that describes a

domain-specific SLA between a service provider and a consumer. It is one of the

deliverables of the Trusted and Quality of Service Aware Provision of Application

Services project. Its syntax is defined by an XML schema that allows it to be com-

bined with existing service description languages (e.g. WSDL) or other technologies

to allow a complete business clarification [18].

The semantics of SLAng are described by producing a UML model of the lan-

guage rules which is then used in the service’s behavioural model (including models

for the involved parties). By producing this abstract syntax, the SLA constraints,

which are described using OCL (Object Constraint Language, which is part of the

UML standard), comprise the semantics of SLAng [55].

The specification of SLAng is derived from a reference model of a distributed

system architecture. This reference model consists of three tiers: Application, Mid-

dle, and Underlying resources which contain an Application, an Application Service,

Container, Storage and Network providers [55].

An SLAng contract consists of a specification of the involved parties, contract

information (contract lifetime), and a Service Level Specification (SLS) which spec-

ifies the QoS metrics and their related values, the provider roles, the user roles, and

their shared roles [55].

SLAng differs from the other SLA specifications in many aspects [55] such as:

• Unlike most SLA specifications that concentrate on SLAs for web services only,

SLAng is used for a wider range of Internet services (such as the application

service provision, Internet service provision, and storage service provision).

• SLAng represents service and client behaviour in a formal semantic. This

decreases vagueness in the meaning of the language and minimises the need to

re-check it to eliminate any contradiction or flaw. Moreover, it makes SLAng

more user-friendly and simplifies SLA negotiation.

SLAng however suffers from the absence of certain characteristics. For example,

it does not contain a description pertaining to the actions the obliged party will take

or the charges that this party will incur if a contract is breached. In addition, unlike

WSLA, its structure does not allow the submission of only a part of the SLA to a

monitoring party. This causes information about the parties and the service to be

revealed to such a party. Furthermore, SLAng is unable to identify new parameter

types according to existing ones [55].

25

2.3 SLA Compliance Management

Table 2.1: Comparison of SLA languages

QoS Constructive Semantic Functional
Ontology Description Properties

WSLA Yes Natural Contains reference
language to WSDL

WS-Agreement No Natural Defined in Service
language Description Terms, SDTs

SLAng No Formal using Contains reference
UML and OCL to WSDL and BPEL

2.2.2.4 Comparison of SLA Languages

The main differences, with regard to the methodology proposed in this thesis, be-

tween the three SLA languages described in the previous subsections, are sum-

marised in Table 2.1. In this table, it is clear that the most vital difference between

WSLA and the other languages is its constructive ontology that allows hierarchical

QoS metrics to be defined. SLAng’s core difference from the others is that it is the

only language whose elements are formally defined using UML and OCL. Finally, an

important point regarding WS-Agreement is that some of the functional properties

of the service are defined within it, whereas the others only contain references to

separate documents that may contain a service description document like WSDL,

or a service business process like BPEL1.

2.3 SLA Compliance Management

SLA management in general can be related to different steps in the SLA life cy-

cle, including its discovery, negotiation, establishment, violation (compliance issue),

termination and enforcement [13]. This section concentrates on SLA compliance

management as it leads to the topic of SLA compliance prediction which is the fo-

cus of this thesis. In the following sub-sections, SLA management is defined and the

motivation for using is described, along with where in the service SLA management

is conducted. The types of SLA management are described thereafter.

2.3.1 What is SLA Management?

SLA management, as stated by Sahai et al. in [59], implies using techniques for

continuously monitoring, enforcing and optimising an SLA. The notion of Service

1BPEL is the Business Process Execution Language that describes business processes.

26

2.3 SLA Compliance Management

Level Management, as defined by Buco, was developed to describe the continuous

and accurate evaluation of SLA contracts in a way that aims at making the right

management decision [60].

SLA management can be considered as referring to SLA monitoring and pre-

diction during service runtime only. Design-time prediction of an SLA contract is

considered in the literature but under the performance prediction modelling area, as

in the work of Rathfelder in [61]. SLA design-time prediction was not considered as

part of SLA management until the creation of the SLA@SOI framework 1. In this

framework, the prediction of the performance and reliability of the QoS properties

of a service was included as part of the SLA management.

2.3.2 The Motivation for SLA Compliance Management

SLA compliance management and the performance prediction of a service are mo-

tivated primarily by business considerations, where minimising SLA violations is

essential so that costly penalties can be avoided [22]. Another motivation for main-

taining the QoS metric levels defined in an SLA is to increase customer satisfaction

so that customers will re-use a service continuously [24]. The latter motivation can

also be considered to have a business value.

A wide range of studies have offered a variety of techniques to perform SLA man-

agement depending on the previous motivations. This is done by utilising an SLA

or its QoS metrics as a basis for enhancing the service infrastructure or for assisting

any modifications to be made to SLA thresholds in a way that will accomplish the

desired business objectives [62].

An example of a work that considers an SLA for delivering value to business

metrics is the work of Bartolini [62] who introduced a Management by Contract

(MbC) concept as a new paradigm for IT Management. He proposed a way of

analysing contractual relationships in order to better inform IT-related decisions by

creating a utility function that computes the business loss/gain in cases of breaching

or fulfilling an SLA. Using this function, the provider can consider what is the

optimal choice between these cases. In a later work [63], Bartolini proposed the

term MBO (IT service Management driven by Business Objectives). He built a

decision support tool and an MBO business objectives information model for incident

management to prioritise incidents, which are variations of the standard operation

of a service that causes a drop in the QoS. Prioritising incidents are based on their

financial impact on the business objectives and they provide stability by quickly

1http://sla-at-soi.eu/

27

2.3 SLA Compliance Management

re-establishing the degraded service.

Another work that depends on an SLA to enhance business metrics is the work by

Sauve [64] who introduced an objective model to choose the optimal SLO according

to business perspectives. This optimal SLO was used later in building an SLA that

would minimise both the cost of system design and business loss.

An on-line management and dynamic resource allocation according to business

driven optimisation is also considered in the literature. For example, the work of

[65] used SLA thresholds as part of an algorithm to check any deviation in service

levels. This was done by running multiple simulations to allow a resource manager

to choose the optimal resource usage in a virtual environment in such a way that the

SLA could be fulfilled. Also, the work by [66] introduced a load-balancing solution to

distribute the incoming requests of a web server among a class of web services when

a heavy work load was detected. It predicted the maximum accepted request the

server could take and then distributed them on the services in a way that satisfied

QoS guarantees in the service SLA.

2.3.3 Where is SLA Compliance Management Conducted?

The existing frameworks for SLA management consider QoS metrics either at the

service level (i.e. application level), as in service throughput, or at the infrastruc-

ture level, as in server properties; the latter is the one most often considered in the

literature [67]. However, some runtime monitoring and prediction techniques con-

sider QoS deviation at both service and infrastructure levels, as in EVEREST+ [68],

where a general framework was described for detecting SLA violations at different

levels using statistical model-based prediction techniques.

SLA management can also be accomplished on the service side, the customer

side, or at specific points through the network. For example, QoS metrics such as

processing time can be measured on the service side, while total round-trip must

be measured on the customer side [69]. Many researchers are keen in server side

management only, using probing requests to the service, such as the work in [70].

Others focus on client side management only, like the counters of the Windows

Communication Foundation1 that are measured continuously to return server side

metrics. Little research, such as the work in [12, 71], considers both service and

customer sides.

1http://msdn.microsoft.com/en-us/library/ms735098.aspx

28

2.3 SLA Compliance Management

Table 2.2: Comparison of SLA managements types

Runtime Runtime Off-line
monitoring Prediction Prediction

Carried out Service design time,
Service runtime Service runtime deployment time,

negotiation phase,
or off-line modes

Violation After occurring Before occurring Design or
Detection deployment time

Advantage Notifying of Reducing the negative Change service
service weakness consequence by infrastructure,

corrective actions SLO threshold.

2.3.4 Types of SLA Compliance Management

There are three types of SLA compliance management that are considered in the

literature: SLA runtime monitoring, SLA runtime prediction and SLA off-line pre-

diction. The main differences between these types are concerned with when they

are carried out, when SLA violations are detected, and what are their advantages.

These are summarised in Table 2.2. The three types of SLA management, along

with the three comparison criteria, are described in more detail in what follows.

SLA runtime monitoring: This is carried out while the service is running and

can detect SLA violation only after it occurs [24]. Although this detection is useful in

notifying the provider of a specific weakness in the service, it cannot preclude them;

neither can it give the provider enough time to consider any changes [24]. Examples

of monitoring SLA compliance are in the works proposed in [12, 54, 69, 71, 72].

These works are not described here as they are out of the scope of this thesis.

SLA runtime prediction: To avoid paying penalties and to have consistent sat-

isfaction for their potential customers, service providers are keen to predict SLA

violations before they have occurred [24]. This early prediction of SLA violation

is useful because it gives the providers a considerable amount of time to take any

corrective action that may reduce or eliminate the effect of this violation [24]. For

this reason, SLA runtime prediction is carried out while the service is running, to

predict any SLA violation before it occurs.

SLA runtime prediction may be performed using the following models: (1) His-

torical Models that depend on QoS values and are based on how the service ran in

the past to predict prospective ones; (2) Observation Models that depend on the

29

2.4 Areas Related to SLA Compliance Prediction

present infrastructure model to estimate the potential QoS values; (3) Predictive

Models that depend on past service usage and past infrastructure observation to

predict prospective QoS values [73].

On-line predictive models, which are used for the sake of runtime prediction, of-

ten include machine learning regression capabilities based on historical data training

which allow the model to predict SLA deviation [24]. For example, the work in [24]

proposed the notation of check points to perform the prediction at specific points

during the service runtime. Two types of data facts (which are previously measured

values of a typical QoS metric) and estimates (which are values that are not yet

available) are used as input to a predictive model to produce a numeric estimation

of SLO.

According to previous studies, SLA runtime prediction is useful when the service

runs for a long time and enough historical data is available for the provider.

SLA off-line prediction: This may be carried out throughout the service design

time (before implementation), in the service deployment time, or during off-line

modes of the service. It can also be performed in the SLA negotiation phase. It is

used during these times to predict the probability of SLA violation or the service’s

ability to conform to a pre-defined SLA or QoS level.

SLA off-line prediction has the same advantages as SLA runtime prediction but

it allows more time to consider any changes before implementing the service; this

can also save money. Hence, this early prediction of SLA compliance will allow the

provider to consider changes to the IT infrastructure of the service in a way that

will help it to conform to the SLA, or to change SLO thresholds that contain the

agreed QoS levels to conform to the service infrastructure capability [25].

SLA compliance prediction needs data that are available only during runtime

(e.g. rates of incoming requests). Thus, obtaining historical data measurements,

estimations, or probability of their values has to be provided to be used as input for

predictive models [24]. This can be seen in the work of [74].

2.4 Areas Related to SLA Compliance Prediction

To the best of our knowledge, this work is novel in using this kind of approach.

Few related works in exactly the same area exist like the works related to using

Stochastic Probes for the specification and evaluation of the performance queries

[75, 76]. In addition, this thesis includes ideas and aspects that expand into differ-

ent existing research areas. This includes using a model-based approach to predict

30

2.4 Areas Related to SLA Compliance Prediction

the QoS metrics of an SLA, mapping between source and target formalisms, and fi-

nally transforming design-oriented models into analysis-oriented ones. These related

works are described in the following sub-sections.

2.4.1 Using Stochastic Probes for Performance Queries Spec-

ification and Evaluation

Similar to the approach taken in this thesis is the work in [75]. This work present

a new methodology to define performance measures on stochastic models. This

approach makes use of FPS, a unified Functional Performance Specification Lan-

guage, to define passage time, transient and steady state performance queries. It

then makes use of a generalisation of stochastic probes, a formalism for describing

stochastic process algebra models, to produce the values of these queries. This ap-

proach can be used to predict the probability of meeting different SLO levels defined

in an SLA. The similarities between the approach taken in this thesis and [75] laid in

the specification of the performance queries in an intermediate language that could

be integrated in a stochastic model to produce their value. In addition, both ap-

proaches separate the definition of the performance query from the stochastic model.

The work in this thesis is different since it does consider an automatic mapping from

a given SLA into a generalised stochastic model.

2.4.2 Model-Based Evaluation

In the following subsections, the motivation for using a model-based evaluation in

general is described. Then, using such evaluation for predicting SLA compliance is

presented, together with some related works that have adopted this usage.

2.4.2.1 Why Use Model-Based Evaluation?

Many techniques have been presented for the purpose of predicting and evaluating

the different attributes of a system. These techniques are summarised in Figure 2.5

and are described in what follows.

Guesses from Similar Systems can be derived to predict estimations about

these values; measurements of a Real System or its Prototype, in addition, can

be utilised. This may be not practical, however, since such techniques cannot be

used unless the system is deployed. Furthermore, there may be a need in many

situations to wait for a long period of time to derive measures of specific events

(e.g. the expected failures in a system). Another way to evaluate a system is

31

2.4 Areas Related to SLA Compliance Prediction

to construct a Model that captures its characteristics [2]. Models, describe the

temporal characteristics of the system and are used in complex computer systems to

predict their attributes using simulation or numerical solvers [77]. These models are

also used in software engineering to evaluate the characteristics of software during

its development [78].

The models used in system evaluation can be Simulation based (Discrete Event

Simulation DES) or Analytic models [2]. Simulation is widely used and can convey

system attributes correctly. In spite of the availability of several tools that assist

the user in designing and executing a simulation, it is very expensive because a long

execution time is required to produce precise results and it is difficult to simulate

rare events. On the other hand, analytic models that describe important aspects of

system behaviour in an abstract way are less time consuming and more cost effective

in representing a wide range of system characteristics for analysis [2]. There is a

broad variety of analytical models, often supported with software tools to create

and solve them. These models have potential power and limitations related to

their simplicity, the level of precision with regard to the results produced, and the

existence of software supported tools.

Analytical models can be categorised into two different kinds: Non State Based

Models (such as fault trees and reliability graphs for system dependability and di-

rected acyclic task precedence graphs for system performance), and State Space

Models (such as Markov Chains and Stochastic Petri Nets) [2]. Non state based

models are simple, accurate and have effective solution techniques but they can-

not represent characteristics such as system component dependency, concurrency

and synchronisation; each model can represent either performance or dependabil-

System Performance Evaluation

Similar Systems Model Real System or its

Prototype

Analytic

Non State Based

Models

State Based

Models

Simulation

Figure 2.5: Techniques for evaluating system attributes

32

2.4 Areas Related to SLA Compliance Prediction

ity. State space models, on the other hand, eliminate these shortcomings; they are

flexible and can model dependability, performance and performability [2]. However,

they have the problem of state-space explosion.

2.4.2.2 Using Model-Based Evaluation in Predicting SLA Compliance

Analytical models in a service domain context, for which the SLAs are defined, can

be used to predict QoS metric values and hence SLA compliance. Using these models

for predicting the values of QoS metrics is employed in the literature. However, non-

deterministic QoS metrics like Security are not considered useful metrics for model

based prediction [24]. Model-based evaluation of an SLA contract is sometimes

referred to in the literature as ‘QoS prediction’. Works in this domain consider QoS

metrics out of the context of their SLAs, such as the work of [79] which used a

predictive queuing network model to change dynamically the system parameters in

a way that satisfied a set of stand-alone QoS requirements.

Due to the nature of services and the network that is connecting them, using a

stochastic model to represent the service’s analytical model is more natural [78]. The

popular stochastic models which are used in model-based prediction are Stochastic

Petri Nets, Queuing Network, and Stochastic Process Algebra [78].

An example of using stochastic models for SLA compliance prediction is the work

pursued by Teixeira [26]. In this research, the author proposed a new methodology

that predicts any deviation in SLA thresholds, for a response time metric in a

SOA-based system, using stochastic models. He created an analytic model that

implements different SOA features and then accompanied it with a failure model

that is able to figure out if the result from the analytic model fails to comply with a

pre-defined SLA. This is done using two types of transition, the former is connected

to the analytic model and represents the completion of a request, while the latter

is connected to the failure model and its firing time represents the agreed response

time. When a new request arrives to the service, a token is sent both to the analytic

model and to a place in a failure model; the modeller waits to see which transition

fires first. If the analytic model completes first, the SLA is not violated and the

token is removed from the place of the failure model. If the opposite is true, the

SLA is considered to be violated. The model was simulated by TimeNet 4 to help

in deciding the optimal SLA when the workload is known and vice versa. Doing

this helps in assigning a workload limit at which the response time threshold can be

satisfied. Comparing to the proposed methodology, the model in this work cannot

predict any QoS metric in an SLA; rather, it is mainly used for predicting response

time compliance according to changes in workload. In addition, the model deals

33

2.4 Areas Related to SLA Compliance Prediction

with the services as black boxes, which is not always effective since some QoSs can

be related to a specific component in the service, not the service as a whole. Finally,

the mapping of the response time into the model is not automated.

The same author suggested a similar mechanism for SLA planning in a data

base [80]. In this work, the author considered a stochastic Petri Net model that is

simulated to predict how the resource consumption and performance of a database

can differ according to changing workloads. In this work, no mapping from the

SLA was considered. Instead, different SLA clauses of response time under different

arrival rates were assumed in order to choose one which was typical.

Model-based evaluation for the management of a cluster-based web service was

also considered in [81]. In this research, the author constructed a queuing model

which predicts the response time of a request under various resource allocations to

inform a business-based utility function. In this work, there is no direct usage of an

SLA.

2.4.3 Mapping between Source and Target Formalisms

In the methodology proposed in this thesis, the source and target formalisms are an

SLA specification and a stochastic model respectively. In the literature, there are no

directly related works regarding mapping SLAs to stochastic models. This is because

SLAs were mostly mapped to and represented by models like the Unified Modelling

Language UML to formalise the SLA structure precisely, such as in the work of [82].

Although UML models are precise and accurate, they are not a mathematically

based method that will allow the modeller to carry out performance analysis which

is needed for the work in this thesis. Hence, this mapping cannot be exploited.

Another mapping mechanism that is considered in the literature is mapping

QoS metrics between different levels of the service: i.e. application or infrastructure

levels. An example of this mapping is the work of [83] which mapped network

performance QoS metrics from a Web service layer to the underlying network layer.

Also, the work of [47] performed a mapping between the QoS metrics specified

in SLAs and the network performance metrics. Although this mapping is useful

for understanding the related service object that a QoS metric is defined for, the

fine-grained mapping details may not be important in the prediction context; this

mapping might be more suitable for use while monitoring.

Other works in the literature that concerned the mapping of QoS metrics actually

focused on representing these metrics as the metrics of stochastic models in an ad hoc

manner, rather than carrying out a one-to-one mapping as in the work of [26]. This is

34

2.4 Areas Related to SLA Compliance Prediction

because, in this research, QoS metrics were considered without their SLAs; instead,

standalone QoS expressions were mostly used. Furthermore, the representation was

accomplished manually and did not obey the exact temporal constraints through

which the QoS value had to be maintained; only average or percentile values were

considered. In addition, since the QoS metrics were considered outside the context

of an SLA, there was no support for automatic mapping between them and the

stochastic models. Therefore, and given the previously mentioned studies, the work

in this thesis can be considered as bridging the gap between the SLA contract,

stochastic models and the mapping between them.

2.4.4 Transferring a Design-Oriented Model to an Analysis-

Oriented Model

The central idea in this thesis is based on using an SLA as the basis to create a

generalised stochastic model, and then adding reward variables to it in order to

produce a reward model. This is transformed into a specific modelling formalism

to be solved so the expected values of QoS metrics can be obtained. This approach

has similarities with the well-known approach of adding performance attributes to

a system design model in order to generate an analytical predictive model. The

similarity lies in transferring the SLA, which is a non-modelling and non-predictable

oriented document, to an analytic model that represents it in order to assist in

deciding the probability of compliance.

An example of transferring a design-oriented model into an analytic one is the

work by Petriu [84] who created a unified intermediate meta-model that used the

UML Profile for Schedulability, Performance and Time (SPT) [85] to produce an an-

alytic model. The SPT UML extended UML, which was used to model the system’s

structure, by adding the ability to model time and performance related factors.

Other studies in the same area mapped a UML model to a specific stochastic

model for the sake of performance analysis. For example, [86] mapped a UML model

to a Stochastic Automata Network, while the work in [87] translated this model into

a Stochastic Process Algebra model. A list of works related to the direct translation

from a design model to an analytical one can be found in the survey paper in [78].

Another study that is much closer to the idea of the work presented in this thesis,

which is using an intermediate generalised model, is the research in [88]. In this work,

the author proposed the idea of mapping between a non-analysis oriented model and

an analysis oriented one to allow for the early prediction of a system’s performance.

This was achieved by offering an intermediate language called ‘KLAPER’, defined us-

35

2.5 Stochastic Modelling Formalisms

ing Meta-Object Facility, to bridge the gap between these two models. This centred

language reduced the cost of mapping N design models to M analysis models from

N.M into N +M transformations to and from the KLAPER language. The author

also implemented a tool that automatically maps [89] a UML model, representing

the design-oriented model, to a Layered Queuing Network model, representing the

analysis-oriented model.

Additional work which used a modular solution for mapping between design and

analysis models is the work in [90]. In this work, the author created a transformation

method based on an Intermediate Model (IM) to perform mapping at a meta-model

level. This method used an annotated UML model, in its XML format, as an input

and produced an analytic model, in its XML format, as an output by the use of a

graph transformation method. The author implemented this method using LQN as

a target model and the transformation techniques using XML algebra.

Since the work in this thesis considers using a stochastic model as a target

formalism when mapping from an SLA, an overview of these stochastic models is

presented in the next section.

2.5 Stochastic Modelling Formalisms

The likelihood of the occurrence of great many daily events is probabilistic making

them described as stochastic processes. For this reason, these events are modelled

using stochastic models which depend on the probabilistic theory. The Stochastic

Process is a mathematical representation of the system with probabilistic or random

characteristics. It models the system behaviour as a function of time’s which could

be continuous or discrete [30].

To specify the stochastic process formally, several definitions need to be intro-

duced first. These are as follows. The Random Experiment is an experiment that

may have one or more potential results (e.g. students’ marks). The Sample Space

of this experiment is a set of all potential results which could be finite or infinite

(e.g. positive integers between 0 and 100). If a single result is obtained from the

sample space (e.g. a student’s mark is 62) then it is called a Sample Point. The

Random Variable is a function identified over the sample space of an experiment and

it gives a real number to each result from the sample space. An example of this is

the random variable Pass which gives 0 (failed) for students whose marks are under

50 and 1 (passed) otherwise [91].

Given the aforementioned definitions, the Stochastic Process (or the Random

Process) {Xt, t ∈ T} is defined as a set of random variables sorted by a parameter,

36

2.5 Stochastic Modelling Formalisms

from an indexed set, T , which mostly represents a time, t. Hence, Xt is said to be

the current state of the system at time, t, and the State Space, S, of this process is

the set of all the random variable values [91].

The state space, S, of a stochastic process can be Discrete, if the states can be

counted by positive integers, or Continuous in the opposite case. Accordingly, the

stochastic process is said to be a Discrete-State Stochastic Process (or a Chain) if

its state space is discrete (e.g. the number of job arrivals), or a Continuous-State

Stochastic Process if its state space is continuous (e.g. the waiting time of jobs to be

served). Also, the index set, T , can be discrete if the process is examined in specific

time instants, or continuous if the process is examined during an interval of time.

Consequently, the stochastic process could be a Discrete-Time Stochastic Process

if its time parameter is discrete (e.g. every hour of the day), or a Continuous-

Time Stochastic Process if its time parameter is continuous (e.g. during the whole

day). Bearing these types in mind, the stochastic process could be one of four types

depending on the combination between state types and time types. These types

are: (1) Discrete Time Discrete State Space Stochastic Process (e.g. the number of

customers waiting in a shop every hour of the day); (2) Continuous Time Discrete

State Space Stochastic Process (e.g. the number of customers waiting in a shop at

any time of the day); (3) Discrete Time Continuous State Space Stochastic Process

(e.g. the waiting time of customers arriving every hour of the day); and finally (4)

Continuous Time Continuous State Space Stochastic Process (e.g. the waiting time

of customers arriving at any time of the day) [91, 92, 93].

Most concrete stochastic processes show some kind of dependence between the

states that have previously occurred, the current state and the future state. For

example, the total gain of a person after n coin flips depends on the gain at the end

of the (n − 1)-th flip. However, the more complicated this dependency becomes,

the more difficult the analysis of such systems. For this reason, processes with a

dependence of the first-order are desirable [92]. There is a set of stochastic processes

that exploits this specific kind of dependency of system states: this is called the

Markov property. Markov Property or the Memoryless Property considers that the

future state depends only on the present state; it is independent of the previous

states or the time spent in the current state. In other words, the firing rate of

system activities is exponentially distributed [30, 91]. The Markov Process is a

stochastic process that satisfies the Markov Property, while in the Semi Markov

Process, the sojourn time of the current state influences the next state: i.e. the

memoryless property of the state’s sojourn time is not valid [93].

As previously mentioned, the stochastic process describes the behaviour of the

37

2.5 Stochastic Modelling Formalisms

system with states and activities that change them [94]. To facilitate the applica-

tion of an analytical and numerical solution, these stochastic models often use a

Markov or Semi-Markov chain which describes the system at a low level, providing

all the states and transitions that the system may go through. However, high-level

modelling formalisms, such as Stochastic Petri Nets (SPNs), are often used because

of to the complexity of giving a full representation of every state and transition in

a concrete system. These formalisms are then automatically transformed into the

core Markov or Semi-Markov chain [28, 95].

In the next sub-sections, two modelling paradigms that are used to describe

stochastic systems are reviewed. Markov and Semi-Markov models are not described

because they are not used in this thesis. Only the paradigms that have been used

in this work are described; these are the Stochastic Discrete Event System (SDES)

and the Stochastic Petri Net (SPN).

2.5.1 Stochastic Discrete Event System (SDES)

In this thesis, the main concern relates to one important type of stochastic process,

which is the stochastic discrete event system [96]. Stochastic discrete event systems

can be in one state for some time before moving to another when an event occurs

[96]. An example of such a system is a queuing system where a state is represented

by the number of customers in a queue. This is changed once a new customer enters

or an existing customer leaves [96].

One of the abstract paradigms used to describe stochastic discrete event systems

is the Stochastic Discrete Event System (SDES) formalism. It is a general formal-

ism in which well-known formalisms, such as Stochastic Petri Nets and Queuing

Networks, can be expressed.

Definition 1 A stochastic discrete event system is a tuple, SDES=(SV, A, S,RV)

[29], where, SV is a set of state variables, A is a set of actions, S is a sort function

S : SV → S, that gives all possible values of a state variable sv ∈ SV (where S is

the set of all possible sorts), and RV is a set of reward variables.

An SDES is characterised by its state σ ∈ Σ, Σ =
∏

sv∈SV S(sv), where Σ is

the set of all theoretically possible SDES states (not all of them are necessarily

reachable). An SDES moves between its reachable states through the execution of

its actions. For the purpose of this thesis, the reward variable, rv ∈ RV , needs to

be explained further:

38

2.5 Stochastic Modelling Formalisms

Definition 2 An SDES reward variable rv ∈ RV is a tuple, rv = (rvrate, rvimp, rvint,

rvavg), where,

• rvrate : Σ → R: is a rate reward function that specifies the reward obtained

while the system is in a specific state.

• rvimp : A→ R: is an impulse reward function that specifies the reward obtained

when a specific action fires.

• rvint = [lo, hi]: is an observation interval under consideration specified by the

boundaries lo, hi ∈ R0+ ∪ {∞} and lo ≤ hi. Hence lo = hi implies an instant

of time measure and lo < hi an interval of time measure [97].

• rvavg ∈ B is a boolean value specifying if the measures should be computed as

an average over time (rvavg = TRUE) or accumulated (rvavg = FALSE).

An SDES model is represented as a stochastic process, SProc = {σ(t), A(t), t ∈
R0+}, where σ(t) ∈ Σ denotes the state at time t, and A(t) ⊂ A is a set of actions

executed at time t. Hence, the reward variable value at time instant t can be defined

as follows:

R(t) = rvrate(σ(t)) +
∑

a∈A(t)

rvimp(a)

In [29], this is written as:

rv =

lim
t→lo

R(t), if lo = hi and ¬rvavg

lim
x→lo,y→hi

∫ y

x

R(t) dt, if lo < hi and ¬rvavg

2.5.2 Stochastic Petri Nets

Petri Nets (PNs) are widely used for modelling systems with simultaneous and

chronological transitions in order to obtain qualitative measures. They are also

very effective in representing system concurrency and synchronisation. A Petri Net

consists of a set of places, transitions, and arcs that connect them and its state is

specified by the number of tokens stored in each place. Most Petri Net models are

basic and have no time specification related to the activities or places of models

[30, 98].

To allow the extraction of quantitative and time-related performance results,

Stochastic Petri Nets (SPNs) were introduced by assigning exponentially distributed

random functions to the delay of the Petri Net transitions. This exponential dis-

tribution allows the state of the modelled system to be changed in a probabilistic

39

2.5 Stochastic Modelling Formalisms

manner. This permits the estimation of more cumulative performance results from

the steady state distribution such as the average delay. Furthermore, the exponen-

tial distribution allows SPNs to resemble Continuous Time Markov Chains because

both of them use the memoryless property of transition firing [30, 98].

SPNs offer a desirable combination of the graph modelling and probabilistic mod-

elling which allow a system’s behaviour to be analysed. This is due to an SPN’s abil-

ity to give a visual description of a system process that is automatically transformed

into the underlying Markov Chain model for performance analysis [98]. To extract

performance measures, reward variables are defined at the network level. However,

to be able to solve these models numerically in order to obtain performance results,

they should be converted first to their equivalent underlying state-level stochastic

process with the corresponding rewards specified at the state level [99].

One of the shortcomings of an SPN is its ability to model, mostly, small-sized

systems. SPN graphs become very complicated when the system size expands,

making the number of Markov states explode dramatically. Another weakness of

SPNs is the need to associate an exponential distribution to each transition; this

may not be desirable for transitions with low impact on the model. Removing the

time from these kinds of transition may lead to a smaller number of Markov states

and thus simplify performance extraction [98].

To overcome the aforementioned weakness of SPN, Generalized Stochastic Petri

Nets (GSPNs) were created by introducing two kinds of transition: Timed with

an exponentially-distributed delay function, and Immediate with zero time delay.

Hence, a delay function is only related to timed transitions; it can be fixed or

dependent on a place marking. Immediate transitions have a firing priority over

timed transitions if they are both enabled. When multiple immediate transitions

are enabled, they fire according to a probability distribution function [98].

GSPNs exploit all the characteristics of SPNs, from the accurate description of

system operations to their correspondence to the Markovian models. However, its

smaller reachability set (which is the set of all the marking that can be reached from

the initial marking through launching a series of transitions) reduces the chaos of

performance analysis much more than an SPN does [98].

In addition to places, timed/immediate transitions, and directed arcs, GSPNs

also use inhibitor arcs. The inhibitor arc enables a transition to fire in such a way

that is opposite to that of normal arcs. The transition cannot fire if the input place

which is connected to the inhibitor arc contains tokens. This additional type of arc

allows for a more flexible description of the system graph and reduces its size [98].

In GSPN, the reachable markings are divided into Vanishing and Tangible. The

40

2.5 Stochastic Modelling Formalisms

Vanishing markings are the markings that enable one or more immediate transitions,

thus producing firing delay equal to zero. However, Tangible markings only fire timed

transitions yielding a time delay [100].

A GSPN model has different extensions. In the following subsections two of

these extensions that are used in this thesis are described. These are the Stochastic

Activity Network (SAN) and the Stochastic Reward Net (SRN).

2.5.2.1 Stochastic Activity Network

The Stochastic Activity Network (SAN) is one of the Petri Net’s stochastic exten-

sions; it allows the integration of time in the system model. It is also extended

from the activity networks (which are non-probabilistic models) with added proba-

bilistic nature. SAN models system behaviour at the network level and is used for

performability analysis. Furthermore, it is similar to the discrete state Markov pro-

cess and is employed in three modelling tools which are METASAN, UltraSAN and

Möbius [101]. These tools simplify model construction and solving with an equipped

analytic solver or simulation [102]. A SAN consists of many components connected

by arcs which can be graphically depicted. These components are as follows [101]:

• Places: Network marking is defined as a vector; each of its elements represents

the number of tokens in a specific place in the set of network places. Places

are symbolised as circles with small dots representing the tokens.

• Activities: These can be either timed or instantaneous with a non-zero set

of cases. Timed activities denote those activities whose delays influence the

system’s functionality. Each timed activity is assigned a time distribution

function to specify the delay period. Instantaneous activities indicate those

activities that have a tiny or negligible delay time. Cases are coupled with an

activity which has a case distribution function to indicate which case will be

selected. Activities are depicted as hollow ovals for timed activities and solid

bars for instantaneous ones. In situations where cases are used, small circles

are shown on the output side of the activity.

• Input gates: These have a bounded set of inputs, each of which is linked to a

single place, while only one output is connected to a single activity. Each input

gate has an enabling predicate to define the pre-conditions of an activity firing,

and an input function to define the change in marking after the completion of

an activity. An input gate is depicted as a triangle with its head pointing to

the left.

41

2.5 Stochastic Modelling Formalisms

• Output gates: These have only one input, which is connected to a single

activity, while they are linked to a number of output places. Each output gate

has an output function to specify the marking change in the network after an

activity fires. An output gate is depicted as a triangle with its head pointing

to the right.

SAN allows reward variables to be defined on the net level rather than on the

state level, allowing for more natural definitions of the performance variables [97].

The SAN model has many strengths. It is simple and its primitives can be

easily understood and graphically constructed. Also, it is based on an underly-

ing mathematical core which allows it to be exposed by verification and analytic

tools. Furthermore, it is very flexible due to its ability to describe the input/output

functions of the input/output gates using the C programming language. Moreover,

the SAN model is computational, allowing the functional examination of the model

using SAN’s nondeterministic settings (for the correctness of the model structure)

and operational assessment using SAN’s stochastic settings (performance analysis).

Finally, the SAN model can be solved analytically or by using simulations; a Markov

(or non-Markov) model can be derived for it [103].

The SAN formalism also has many shortcomings. Because of its simple primi-

tives, it is relatively hard to construct a complex system using them, and there is

no way to construct the system hierarchically from other sub-models. Furthermore,

there is no technique to begin modelling the system using abstract primitives which

could be substituted later with more comprehensive ones. Lastly, as in PN, SAN

also has a rapidly growing reachable graph that makes its analysis very complex.

For this reason, extensions for SAN have been developed which maintain the power

of SAN and add some other desirable capabilities. Examples of these extensions are

Hierarchical Stochastic Activity Networks (HSANs), Colored Stochastic Activity

Networks (CSANs), and Object Stochastic Activity Networks (OSANs) [103].

2.5.2.2 Stochastic Reward Network

The Stochastic Reward Network (SRN) is a stochastic extension of GSPN allowing

reward functions to be defined at the net level [104]. The SRN model has places,

transitions and arcs that connect them. These transitions can fire either after a

delay drawn from an exponential distribution or a zero time which result in a timed

transition firing or an immediate transition firing respectively [31]. An enabling

function can be assigned to a transition to enable/disable it; in addition, a tran-

sition priority relation can be specified to prioritise the firing of multiple enabled

42

2.6 Performance, Dependability, and Performability Models

transitions.

Other new features that have been added to the SRN model include: advanced

guard functions, marking dependency, and priority specification. Marking depen-

dency on a single or multiple places can be included in the firing rate, arc cardinality,

or the reward function [104]. For example, the cardinality of an arc can be the num-

ber of tokens in an input place. If this number is zero, then the transition connected

to it will be disabled and the arc is recognized as disappeared [104].

The SRN model has many strengths. Using this model, complex systems can be

modelled in more compact way due to its marking dependency feature. In addition,

since reward functions and firing rates are defined on the net level; they can be

changed easily leaving the actual model structure intact [105]. Furthermore, SRN

models have underlying Markov Reward Models (MRMs), allowing them to be anal-

ysed in order to derive performability characteristics. Moreover, an SRN model can

be built and analysed using tools such as SPNP [31] and SHARPE [106]. These

tools have been developed to simplify a model’s construction and solving with an

equipped analytic solver or simulation. The SRN model also has many shortcom-

ings. The most important one is that it only defines transitions which are immediate

or exponentially distributed [31]. This prevents a modeller from building a model

with an underlying Semi-Markov Process.

Given that there are many formalisms that can be used to model a stochastic

system, different performance, dependability, or performability attributes can also

be specified on these models. Furthermore, different techniques can be adopted to

derive measures of these attributes. Model attributes and their solving techniques

are part of the work undertaken in this thesis. For this reason, they are reviewed in

the next section.

2.6 Performance, Dependability, and Performa-

bility Models

In this section, the types of attribute that can be defined in a system model are

presented, together with their classifications. Also, the reward models that are used

in this thesis are defined. Then, the methods that are used for analysing a model

are presented, along with the software tools that help in building and solving these

models.

43

2.6 Performance, Dependability, and Performability Models

2.6.1 Attributes of a Model with their Classifications

The importance of identifying the behaviour of a stochastic system increases the

need to develop techniques for assessing its performance, dependability, and per-

formability attributes [94]. Definitions of these attributes, and an example of each

of them, are presented in Table 2.3 and are described in what follows.

Table 2.3: Performance, dependability and performability attributes

System Description Example
Attributes

Performance It is related to system behaviours in Throughput
Attributes a failure-free system

Dependability It is related to the infrastructure Availability
Attributes modification due to temporal deficiency

Performability It is related to system behaviour with Average response time
Attributes an existence of a failure given a fault presence

Performance Attributes describe measures relating to a user’s work flow

and the behaviours of other users or systems in the case of a failure-free system.

On the other hand, Dependability Attributes describe measures concerning un-

derlying infrastructure modifications due to a temporary or permanent deficiency

[107]. Given these two kinds of measure, dependability modelling and performance

modelling techniques do exist where a pure ‘Dependability Model’ usually models a

system’s behaviour related to up/down, fail/repair and reconfiguration character-

istics in order to derive measures related to Availability, Safety and Reliability [2].

However, a pure ‘Performance Model’ usually models a system’s behaviour under

a breakdown-free assumption to derive performance measures related to Response

Time, Throughput, and Utilization [2].

In recent years, ‘Performability Model’ has been presented as a term to describe

the integration between system performance and system dependability assessments

which largely reflect the effectiveness of a system [107]. This is because a pure

performance or dependability model cannot reflect the behaviour of the actual sys-

tem and hence can produce unrealistic results. For this reason, Performability

Attributes are usually related to a system’s behaviour when there is a failure to

derive measures such as average response time given the presence of a fault [2].

A model of a system can be queried for two different kinds of performance query

and the distinction is made depending on the type of result that is derived from these

queries. Table 2.4 provides a comparison of the two types of performance query that

can be produced from stochastic models. This is described in what follows:

44

2.6 Performance, Dependability, and Performability Models

Table 2.4: A comparison between types of performance query

Performance Answer Language used Verified
Queries To Express them

Performance Boolean answer CSL, CSRL, Model checker such as
Requirements Yes/No Performance Trees PRISM, PIPE2 tool

Performance Quantitative Tools based reward Analysing tools such as
Measures answer representation, SPNP, PIPE2 tool

Performance Trees

Performance Requirements give a Boolean answer to logical performance

questions such as “s the response time less than 15 seconds for 80 % of the requests?”

and Performance Measures give a quantitative answer to questions such as “What

is the average down time of the system in a steady state?” [28].

Performance requirement questions can be identified using several formalisms

such as CSL (Continuous Stochastic Logic) [108], CSRL (Continuous Stochastic

Reward Logic) [109], aCSL (Action-based Continuous Stochastic Logic), eCSL (Ex-

tended Continuous Stochastic Logic). Performance measures, however, can be iden-

tified using a tool-based reward representation of an analysis framework such as

SPNP (Stochastic Petri Net Package), SHARPE or Möbius. Both of these can be

specified by Performance Trees [28, 95].

To resolve performance queries, model checking tools, such as PRISM or MRMC

(Markov Reward Model Checker), are used to give results for performance require-

ments, while analysis tools, such as SHARPE or Möbius, give quantitative perfor-

mance measures [28].

It should be noted that the Performance Tree formalism can represent the two

types of system performance query. This has many advantages over Stochastic Logic

which was the primary method used to specify performance questions. The first

strength of a Performance Tree lies in its simplicity and this is because it contains

many operational and value nodes that can be gathered visually in a hierarchical

tree which means that difficult performance queries can be easily constructed. It

is also extensible either by identifying new nodes or using a macro to create a

representation of a complex operation from existing nodes [95]. Furthermore, it

expresses a wider range of queries than other formalisms. In addition, it is general

because it is specified using abstract states which allow it to be independent from the

core system modelling formalism. The greatest important feature of a Performance

Tree is its ability to give logical answers to the performance questions, in addition

to providing quantitative results with regard to the system performance measures

[28, 95]. Performance queries formulated using Performance Trees can be created

45

2.6 Performance, Dependability, and Performability Models

and evaluated using the PIPE2 tool [110].

Performance queries can also be classified according to the time they are define

for [28, 111] as follows.

Transient Queries: are used to derive the probability, at an instant of time t, that

a system occupies a state, or a set of states [28]. An example of this is: “What is the

probability that the system is in an up state at time instant 12?”. Transient queries

are normally used to derive a probability, a state, or true/false answer [28, 111].

Steady-State Queries: are used to derive the probability, in the long run, that a

system resides in a state, or a set of states [28, 111]. An example of this is: “What is

the steady-state probability that the system is staying in an up state?”. Steady-State

queries are normally used to derive a probability, a state, or an average action rate

[28, 111].

Passage Time Queries: are used to derive the time taken to reach a specific state

starting from a predefined one [28, 111]. An example of this is: “What is the average

time until the system reaches a state Exit, given that it started from a state Enter?”

These queries are mainly use for computing response time measures.

2.6.2 Reward Models

The model attributes, described in Section 2.6.1, are reflected in the model using the

notion of reward [94]. These reward-based attributes depend on using Reward Models

which are structured from a stochastic process, a reward structure, and a performance

variable applied on that structure, as stated in [94]. These are discussed in what

follows in more detail:

The Stochastic Process: This describes the system’s behaviour. It is already

defined in Section 2.5.

The Reward Structure: After building the model of the system, a reward struc-

ture (or what is called a Reward Function) is used to define the reward attributes

of interest in the state space of this process. This is achieved by applying two

functions: the Rate function, which gives the accumulated rewards depending on

the time spent in a specific state of the system, and the Impulse function, which

gives the accumulated rewards when a specific action fires [94]. Rewards can be

understood as cost; thus, attributes such as accumulated rewards under a specific

threshold can be identified.

The Performance Variable: Since the reward structure (reward function) does

not identify the period of time within which the reward will be computed, the

performance variable (or Reward Variable) is used to identify it. This variable could

46

2.6 Performance, Dependability, and Performability Models

be an Instant of Time, Interval of Time or Timed-Averaged Interval of Time [94].

The Instant of Time reward variable is used to derive its value at the instant of

time t. This time, t, can go to infinity which results in two types of the Instant of

Time reward variable [97]. The Interval of Time reward variable is used to derive

the value accumulated during an interval of time [t, a]. In this time interval, either

t or a can go to infinity. This results in three types of Interval of Time reward

variable. Finally, the Timed-Averaged Interval of Time reward variable is used to

derive its accumulated value averaged during an interval of time [t, a]. In this time

interval, either t or a can go to infinity as in the previous case.

As an example of a reward function, assume there is a printer with two states

(up and down) and two transitions (fail, repair) and the modeller wants to count

the number of times the printer fails, and the time spent in the down state. To do

so, a reward (real number) is associated to the system state or transition, according

to what is required. For the first attribute, a reward of 1 can be associated with

the transition fail, and each time it fires, an accumulation will be computed, thus

counting the failure times. In the second example, the state up can be equipped

with reward of 1 so it is accumulated whenever the system spends time in this state.

Some stochastic models, such as the Markov Reward Model (MRM) and Stochas-

tic Reward Nets (SRN), are equipped with the ability to define rewards. This is

accomplished by adding rewards to the equivalent non-reward models which are the

Continuous Time Markov Chain and the Generalized Stochastic Petri Net (GSPN)

respectively. These reward models are better suited to system description and can

be used to represent measures of new types [112].

2.6.3 Methods of Model Analysis

Many techniques can be used to solve a reward model, employing either a simulation

or a numerical solver. These are described in the following sub-sections.

2.6.3.1 Numerical Solver

A numerical solver of a model depends on its underlying state space, or what is

called a reachability graph, in order to derive the value of the model attributes

[32]. Numerical solvers are chosen according to the type of model and the type of

attribute. The type of model is determined by the firing distribution of its actions,

while the type of attribute can be determined as: (1) solved as in a steady state

or transient; (2) defined at a specific instant or during an interval of time; or (3)

measured using the mean or the variance [32].

47

2.6 Performance, Dependability, and Performability Models

The results obtained from a numerical solver are exact. However, numerical

solvers are not typically applicable for non-Markovian models. Only models with

an immediate or exponential firing distribution of its actions can be solved [113].

Another problem regarding the numerical solvers concerns state space explosion;

because of this, these are only useful for small-sized models.

2.6.3.2 Simulation

A simulation of a model depends on producing a set of possible trajectories this

model can pass through and then deriving model attributes from statistics applied

to them [114]. A single trajectory reflects a single possible behaviour of the system;

hence, multiple trajectories are required to reflect true system behaviour.

A simulation can be a discrete event or a continuous state. Discrete event sim-

ulation is used for systems in which states are changed according to discrete time

instants. There are two types of discrete event simulation: terminating and steady

state simulations. The former is used to solve the model for transient measures,

including instant of time or interval of time measures, while the latter is used for

steady state measures solved to infinity [114].

For transient analysis, discrete event simulation uses the independent replication

technique while for steady-state analysis, batch means are used. Estimations of

the statistics obtained from using these techniques include the mean, variance, and

distributions for specific confidence intervals [32], where the simulation runs as many

batches/replicas as necessary until reward variable results converge to a pre-defined

confidence interval width.

Using simulation entails utilising a smaller memory space than with a numerical

solver since no reachability graphs are generated [113]. However, the results from

simulation are not as accurate as with a numerical solver as they are estimated

within specific confidence bounds. In addition, simulation is time consuming.

2.6.4 Software Tools for Building and Solving Models

Several software tools have been introduced to help in carrying out all the steps from

building the model, assigning attributes of interest, then solving the model. Since

this thesis concentrates on stochastic models, and SPN in particular, the review that

follows relates to some of the tools that solve SPN models. However, the largest

proportion of the section below is devoted to the first two tools under review as

they are the ones used for the tool implementation in Chapter 6. It should be noted

that a comparison of the tools is not conducted in this section. Instead, Section

48

2.6 Performance, Dependability, and Performability Models

6.3.2.2, and Table 6.2 in particular, compares them in the light of the requirements

of the proposed WslaCP tool. The reason for deferring the comparison until Section

6.3.2.2 is that the WslaCP tool requirements are only specified in Sections 6.2.3.4

and 6.3.2.1.

2.6.4.1 Möbius

The Möbius tool is used in modelling the performance of a wide range of discrete

state computing systems. It is a framework that comprises multiple modelling for-

malisms (SAN, Bucket and Balls, PEPA, Fault tree) and multiple solution methods

(simulation, numerical solvers). Many of these methods are independent of the mod-

elling formalism being used and hence these can be employed in combination with

each other [102, 115].

Möbius allows a single model to be built using multiple modelling formalisms

[115]. Once a model has been constructed using supported modelling formalism

components, it is converted into a model that is specified using Möbius framework

components. This allows the tool to be extended by adding new modelling or so-

lution formalisms [102]. The different parts of the model communicate using the

Abstract Functional Interface (AFI) which is a group of C++ functions that allow

interaction between the different models and solvers [115].

To measure the attributes of a given system using the SAN formalism in Möbius,

these steps should be followed [32]:

• Building an atomic model that depicts all the relevant system states (using

tokens in the simple or extended places); the state changes that occur through

actions (using timed or instantaneous activities), which fire according to a

distribution rate (deterministic, exponential, etc.); and the input/output gates

that may be used to define the enabling predicate of an activity or the marking

change in a place.

• Creating the composite model if necessary. When the atomic model is a part

of a larger model, the modeller can compose different atomic models using

one of the composition formalisms, such as the Replicate/Join composition

formalism, graph composition formalisms, or synchronisation on actions.

• Building the reward model by associating the rewards of interest (as perfor-

mance variables) from which metrics will be computed with the atomic or the

composed model. There are two kinds of reward: rate rewards, which repre-

sent the time spent in each state (place), and impulse rewards, which count

49

2.6 Performance, Dependability, and Performability Models

activity completions. Each reward variable has a reward function that com-

putes its value, and a time that specifies when the reward function should be

evaluated. The reward variables are defined on the net level.

• Specifying studies on the model. Sometimes, global variables can be used

when constructing the atomic, composed, or reward models. These variables

are assigned to state markings, activity rates, functions, etc. without assigning

any value to them. The model cannot be solved unless each of these variables

receives a value; this is called an experiment. The set of all experiments for a

specific model is called a study.

• Solving the model by either by discrete event simulation or analytical numer-

ical solvers in order to derive transient or steady state measures. The result

may be the mean, the variance, or the distribution of the reward variables.

In the case of using a numerical solver, the State Space generator should be

used first to produce the state space for the underlying Markov Process of the

modelled system whose activities are exponentially distributed [115].

• Creating a connected model for a set of reward models and their equivalent

solvers when the input of one of them depends on the result from the preceding

model.

Each of the aforementioned models and each modelling or solving formalism

has its own separate editor interface in the Möbius tool. When new modelling,

compositions, rewards, solving or connecting formalisms are added to the tool, a

new editor will be integrated without any changes being made to the remaining

editors [102].

2.6.4.2 SPNP

The Stochastic Petri Net Package (SPNP) is a modelling tool that is used for

analysing the performance, dependability and performability of the system model.

It is used for building and solving Stochastic Petri Net (SPN) Reward Models, espe-

cially the Stochastic Reward Net (SRN) with the underlying Markov Reward Models

(MRM).

SPNP allows reward rates to be defined at the net level. It can be used to obtain

transient, steady-state, cumulative, and time-averaged measures using an analytic

model or discrete event simulation. Non-Markovian SPN models can be also defined

using SPNP; however, they can only be solved using discrete event simulation.

50

2.6 Performance, Dependability, and Performability Models

SPNP has a graphical and a textual input which uses iSPN and SCPL respec-

tively. CSPL is a language which is a subset of the C programming language with

extra constructs for defining the model primitives [116]. The iSPN interface has a

set of GUIs to facilitate creating and solving the model. Some of these GUIs are:

• Petri Net editor: to build the SRN model graphically.

• Function definition GUI: to create the reward, guard, distribution, arc cardi-

nality, and probability functions.

• Environment GUI: to choose the solver type, whether it is numerical or simu-

lation. From the same GUI, the analysis option (i.e. steady state or transient)

can be specified, in addition to all parameters required by the solver.

• Analysis frame: to define the time used to solve the reward variables. From

the same GUI, the solver can be run and the results are depicted.

• Animation GUI: the iSPN also has an animation GUI that allows the modeller

to visualise how the tokens are moved in the model.

2.6.4.3 PIPE

The Platform Independent Petri net Editor (PIPE) [110] is an open source Petri net

modelling tool that was extended to allow users not only to model a system using

a GSPN formalism, but also to identify queries on it and solve them [117]. After

building the model and identifying the performance query of interest using the PIPE

front-end user interfaces, they are both converted into XML files and are then sent to

the Analysis Server for assessment. A single query may consist of many sub-queries

that need to be evaluated before the main query can be assessed. For this reason,

the query is decomposed into its sub-queries according to their dependencies. The

analysing server controls many distributed analysing tools, and is used to allocate

each derived query to a suitable analysing tool after transforming the XML files to an

input type appropriate for that tool. These tools are: DNAmaca, which is dedicated

to solving queries of steady state probability, the mean rate of a transition firing,

or statistical analysis; SMARTA, which is used to calculate passage time density

and distribution; and MOMA which is used to compute the raw moments. The

analysing server then collects the results of the performance queries, gathers them

in an ordered manner, and then sends the result back to the client [117]. PIPE is

the first tool that provides an embedded performance tree [95] editor.

51

2.7 Conclusion

2.6.4.4 SHARPE

The Symbolic Hierarchical Automated Reliability and Performance Evaluator tool

(SHARPE) is a modelling tool that is used for analysing the performance, depend-

ability and performability of a system model [106]. SHARPE is used for building

models using different formalisms, including the Generalized Stochastic Petri Net

(GSPN). It also models Markov and Semi-Markov chains in very compact way be-

cause it allows for a hierarchical composition of the model using different formalisms.

SHARPE has both graphical and textual inputs. The textual input is based on

SHARPE’s own language that follows MRM enumeration [118]. Reward rates are

inserted at a state level by enumerating each state transition and the reward given

for each of them [118]. SHARPE can solve the model using only an analytic-numeric

solver that solves either state space or non-state space models [113].

As in SPNP, SHARPE also has a Graphical User Interface that allows the mod-

eller to create models easily. It also allows the user to plot the generated results or

export them into Excel spreadsheets.

2.6.4.5 GreatSPN

The GRaphical Editor and Analyser for Timed and Stochastic Petri Nets (Great-

SPN) is a software tool used for building, validating and analysing the system model

[119]. It runs on the Unix operating system. The model is built using either a Gen-

eralized Stochastic Petri Net (GSPN) and its coloured extensions, or a Stochastic

Well-formed Net (SWN) [120].

GreatSPN version 1.3 has a non-event driven based simulation and was originally

mainly devoted to steady state analysing [121]. This was solved in later versions and

a simulation based on the Natural Regeneration method has since been utilised [119].

Steady state performance measures can be obtained using batch means simulation

[122].

GreatSPN has no common rate and impulse reward definition. Instead, the

user can define performance results (or performance indices) which have limited

expressive power [31].

2.7 Conclusion

This chapter has provided background information regarding important aspects re-

lated to the contribution made by this thesis. These aspects include: Service Ori-

ented Computing and Web Services, SLA compliance management and its types,

52

2.7 Conclusion

stochastic modelling and stochastic Petri Nets, reward models and their metrics,

analysis techniques and tools. Furthermore, the chapter examines some related

works in the literature that: firstly, adopt a model-based approach for predicting

SLA compliance; secondly, examine mapping between source and target formalisms;

and finally, transfer a design-oriented model into an analysis-oriented one. The infor-

mation in this chapter forms the foundation of the proposed methodology described

in the next chapter.

53

Chapter 3

SlaCP Methodology for SLA

Compliance Prediction

This chapter describes SlaCP, the novel engineering methodology proposed in this

thesis to predict SLA compliance probability. The value of this methodology is

to help its users, who may have a basic knowledge of model-based analysis and

methodologies, to predict the compliance of their existing SLA contract without

having to gain a thorough understanding of reward metrics and analysis tools. An-

other advantage of this methodology is that it can help SLA engineers to assess how

parameterising the service model might affect SLA compliance probability, thus al-

lowing them to take better decisions regarding the choice of SLA thresholds or the

service’s infrastructure.

The main contribution of this chapter is illustrating the design of the SlaCP

methodology to allow a clear understanding of its constituting phases that are used

to address the aim of the methodology. The chapter introduces this design of the

methodology in its generic form from the perspectives of both users and tool de-

signers. The latter view helps in setting the guidelines to design and develop a

software tool with SLA compliance prediction capability in a way that automati-

cally addresses the view of the former. The generic design with its first perspective

represents the theoretical basis of the methodology while the second perspective

represents its practical aspect. The chapter also briefly outlines the application of

this methodology for a particular SLA and model specification to demonstrate its

implementation. This outline forms the basis for the detailed description of the

methodology implementation which is presented in Chapters 4 and 5.

The remainder of this chapter is structured as follows: Section 3.1 provides a

preliminary outline of the proposed methodology while Section 3.2 describes the

design of methodology in its generic form, then it presents this design from two

54

3.1 SlaCP Methodology: Preliminary Information

perspectives: a user utilising this methodology, and a tool designer employing it in

a software tool in order to automate it. Section 3.3 establishes an outline of how

this methodology is implemented for a specific type of SLA and a particular unified

abstract stochastic model. Finally, Section 3.4 concludes the chapter.

3.1 SlaCP Methodology: Preliminary Informa-

tion

Before describing the proposed SlaCP methodology, it is necessary to present the

information that will help in its design. For this reason, in this section, the users

the methodology is intended for are identified, and the requirements along with the

characteristics that should be considered for inclusion in the proposed methodology

are described. Finally, the methodology’s assumptions are presented.

3.1.1 The Targeted Users of the Methodology

Predicting SLA compliance can influence the selection of SLO thresholds, the choice

of QoS metrics, the adoption of an alternative infrastructure or different design of

the service, and so on. Any professional who is directly responsible for making a

decision regarding any of the aforementioned issues is a potential user of the proposed

methodology. This might be an SLA engineer, service provider, service engineer, or

a modeller. This choice of users can be justified for the following reason.

It is a complicated task for an SLA engineer if he/she is the person responsible for

dealing with the challenges related to model-based SLA compliance prediction while,

at the same time, he/she is trying to design the SLA that includes an appropriate

SLO threshold. This is because an SLA engineer might be unfamiliar with the

method used to create an adequate model or to insert correctly the QoS metrics

required by an SLA. Because of this difficulty, this task is delegated most often to

a modeller. The modeller has to carry out extensive work with regard to this task

each time an SLA or any service parameter has been changed. For this reason,

the methodology proposed in this thesis is intended to be used primarily by an SLA

engineer (SLA designer) in addition to the service provider. This is because they are

the ones who are directly responsible for making the final decisions about different

SLO thresholds and different infrastructure design choices. A modeller can also use

it to reduce the efforts involved in SLA compliance prediction.

55

3.1 SlaCP Methodology: Preliminary Information

3.1.2 Requirements of the Methodology

The requirements for the methodology to perform the SLA compliance prediction

lie in two areas: theoretical feasibility to demonstrate that it is possible in principle,

and practical feasibility to demonstrate its automation in particular so that the

methodology is helpful in the real world. These are described in what follows.

1. Theoretical feasibility: To discover if the methodology is possible in princi-

ple, its theoretical basis has to be described; this will illustrate the proposed

methodology’s ability to produce the probability of SLA compliance. De-

scribing this theoretical basis will help in demonstrating the feasibility of the

new methodology, as well as aiding in the recognition of those aspects that

could be automated. This theoretical description of the methodology has to

be presented in terms of its design, and from the point of view of a user of

this design. This will help a reader to understand the details that are either

hidden or shown to users of the methodology.

2. Practical feasibility: The theoretical basis of this methodology has to be

utilised in a way that is most useful for its users. For this reason, and to

address the practical feasibility of the methodology regarding automation in

particular, a design for a software tool that employs the theoretical basis needs

to be created. Moreover, presenting the methodology from the point of view

of a tool designer who utilises this methodology will help in implementing a

tool that automates the process of SLA compliance prediction. Using such a

tool allows for minimum interaction from a user. To guarantee such minimum

interference, the tool has to employ automatic mapping of the SLA elements

onto the metrics of a stochastic model of the underlying service.

According to the previously mentioned requirements, the SlaCP engineering

methodology proposed in this thesis need to be presented theoretically, by giving its

design with its user perspective, and practically by considering it from the point of

view of a tool designer.

3.1.3 Characteristics of the Methodology

Model-based SLA compliance prediction has many challenges: these include defining

an appropriate service model and choosing the desired QoS metrics to be predicted

[25]. Knowing these metrics, there is then the challenge of clearly understanding

their semantics and expressing them in such a way that will fit with the stochas-

tic model. The degree of accurate SLA compliance probability which is predicted

56

3.1 SlaCP Methodology: Preliminary Information

using models depends heavily on overcoming the aforementioned challenges. Given

these challenges, and the gaps in the current research on SLA compliance prediction

presented in Chapter 1, four characteristics have to be considered while designing

the SlaCP methodology. These characteristics are first outlined in what follows and

then the motivation for considering them is described.

1. Considering the SLA used by service engineers as a starting point.

2. Considering different types of QoS metrics to achieve as wide a usability as

possible for the methodology.

3. Considering a generalised stochastic model to achieve a higher level of flexi-

bility.

4. Considering automation to achieve minimum user interaction.

The motivation for the first characteristic, (i.e. considering the SLA used by ser-

vice engineers as a starting point) is that SLA engineers may have already created

their SLA using a particular SLA specification; thus, there is a need to use this

SLA without forcing them to use another SLA specification that is specific to the

methodology. In short, there is a need to start with what the SLA engineers have

already achieved. In addition, using an SLA as a starting point allows a formal

relationship to be formed between the SLA of a service and its model so the trans-

lation between them can be accomplished automatically. This will help in deciding

the exact QoS metrics in the SLA that need to be predicted without relying on

the modeller’s perception to do so. It will also help in predicting the compliance of

legacy contracts with their exact QoS metrics, as well as the precise temporal con-

straints. Finally, using an SLA as the starting point of the methodology also helps

in automating it as the necessary information can be extracted automatically with-

out human interference. (This characteristic addresses the first and fourth research

problems described in Section 1.2).

Regarding the second characteristic (the consideration of different types of QoS

metrics to achieve as wide a usability as possible for the methodology), this methodol-

ogy must consider a wider range of QoS metrics whether they are basic or composite.

This is useful for addressing different metrics types defined inside the SLA. (This

characteristic addresses the second problem described in Section 1.2)

Regarding the third characteristic (considering a generalised stochastic model

to achieve a higher level of flexibility), the proposed methodology has to consider

a generalised stochastic modelling formalism rather than a specific one. This is

to avoid putting constraints on a user who may lack awareness of a specific type

57

3.2 SlaCP Methodology

of modelling formalism. Using a generalised model, a simple translation can be

conducted to produce a model according to the desired modelling formalism. (This

characteristic addresses the third problem described in Section 1.2)

Finally, the rationale for the fourth characteristic (considering automation to

achieve minimum user interaction), is that automating the prediction methodology

is one characteristic that makes it appealing to use, as set in the second requirement

of Section 3.1.2. This is because automation will allow the extraction of the relevant

information which is necessary to perform the prediction process without the need

to obtain and assign it manually. Hence, an all-in-one tool that takes the SLA as an

input and produces its satisfaction probability can be achieved. (This characteristic

addresses the fifth problem described in Section 1.2)

3.1.4 Assumptions of the Methodology

The assumptions which were made before designing the methodology relate to the

SLA contract and the stochastic model. Regarding the former, the SLA contract

is supposed to be syntactically valid and pre-defined earlier; for the latter, the

stochastic behavioural model of the service is assumed to be complete and ready

after the mapping process has been completed and before it has been solved. This

can result from automatic mapping (which is part of the methodology), or as a result

of a user building it manually.

3.2 SlaCP Methodology

In this section, the design of the SLA Compliance Prediction (SlaCP) methodology

is described. Then it is presented from the perspectives of its users (a theoretical

view) and from the perspective of a tool designer (a practical view). This allows a

reader to understand the phases that the methodology passes through, as well as

which of them can be automated (i.e. hidden from users) and which cannot (i.e.

they require user interaction). The largest share of this section is devoted to the

methodology design because it forms the basis of the content of Chapters 4 and 5,

while the user and the tool designer’s perspectives are only outlined in this section.

This is because, extensive details regarding the tool’s design are offered in Chapter

6 in order to link with its implementation which is described in the same chapter.

58

3.2 SlaCP Methodology

3.2.1 The Design of the SlaCP Methodology

The design of the SlaCP methodology is given in Figure 3.1. In this figure, seven con-

secutive phases, depicted as rounded gray rectangles, must be employed to achieve

the purpose of the proposed methodology. In the top left corner of this figure, an

SLA Contract, represented as folded document, is proposed to be used as input

to this design. The seven methodology phases of the SlaCP design flow from left to

right; these are explained in what follows:

Phase 1: SLA Interpretation: The SLA contract created for a particular

service has to be used as an input to this phase. This SLA should be parsed to

obtain the information that is useful only for SLA compliance prediction. This

information concerns the SLO’s definition and the different QoS metrics that pertain

to this SLO. The parser should ignore any information that is not relevant, such as

the definitions of related parties and their roles, corrective actions in the case of

violating an SLA, and measurement mechanisms that are used to retrieve measured

SLA
Interpretat-

ion

SLA-Model
Mapping

Metric
Composition

Model
Specialisat-

ion

Model
Completion

Decision
Model
Solving

Service

SLA
Contract

Reward

Model

Result

Desired
Metric

Compliance
Probability

Service
Model

Service
Object

Basic Metric

Composite

Metric

Temporal
Constraint

SLO

Evaluation
Function

Reward
Solving

Time

Computation

Function

Reward
Variable

State

variable
and Action

User

SLA compliance
 result
 input

has

Completes model creation

assists

input

input

input

input

Figure 3.1: The design of the SlaCP methodology

59

3.2 SlaCP Methodology

metrics while monitoring the running service.

The SLA Interpretation phase should have five outcomes: a set of service ob-

jects, basic metrics, temporal constraints, composite metrics, and the SLO. These

outcomes, represented as white rectangles in Figure 3.1, are described in more detail

below:

1. Service Object: In each SLA, the desired QoS metrics are defined for a par-

ticular object of the service (e.g. an operation). Obtaining the object’s name

is necessary in order to distinguish the QoS metrics defined for it from the ones

that are defined for other objects i.e. several QoS metrics that have exactly the

same semantics might be defined for different service objects in the same SLA.

For example, in one SLA, QoS metrics that represent the throughput of in-

coming requests and also out-going responses might be defined. Furthermore,

having a set of service objects should help in realising some state variables/ac-

tions the stochastic model of the specified service has to include in the second

phase.

2. Basic Metric (measured metrics): The basic metrics are usually read directly

from a URI (or other measurement directives) because they are measured

during service runtime. Since the values of these metrics are not known before

the service’s deployment, and cannot be measured during an off-line mode of

a service, the value of them has to be predicted. Basic metrics are the primary

unit for producing the value of the desired metric used by the SLO; hence,

their value has to be obtained first. Obtaining the type of basic metric is vital

if they are to be mapped correctly in the second phase. One example of a type

of a basic metric is response time or throughput.

3. Temporal Constraint: A temporal constraint in an SLA can refer to two

types of time constraint. The first is related to the period when a specific SLO

is valid. The other refers to the time intervals during a period when basic

metrics have to be measured to obtain composite metrics (in case the QoS

metric required by an SLO is a composite one). The total number of intervals

in a time period determines how many instances of the basic metric have to

be obtained before computing one instance of the composite metric. For this

reason, and to produce accurate results for the composite metrics, the SLA

has to be examined to extract these time intervals and periods. An example of

a time constraint is specifying a minute interval in a week period to check an

operation’s response time in order to produce its average response time later.

60

3.2 SlaCP Methodology

4. Composite Metric: The QoS metrics used within an SLA can be composite.

This means that extra computation is carried out on different instances of a

basic metric to produce the composite metric required. This phase has to

investigate what types of computation and functions are performed on a basic

metric in order to derive the composite one. Extracting this information is

necessary to produce the exact value of the desired QoS metric so that it can

be compared to the SLO threshold. An example of the types of function used

in a composite metric are Maximum and Average.

5. SLO: This SLO threshold is the numeric value that specifies the limit that

the desired QoS metric should maintain during a specific time period. The

phase has to obtain this value along with the binary relation (=,≤,≥,>,<)

through which the comparison is defined. An example of this is an SLO that

must maintain, at most, a three-second response time through the day (i.e.

less than 3 seconds).

After extracting all the aforementioned outputs from an SLA, there is sometimes

a need to formalise them and define their semantics mathematically. The reason

for formalising and mathematically interpreting SLA elements is that some SLAs

describe their elements in a textual, descriptive format. According to this, the

precise meaning and interpretation of the semantics can be misleading and may

differ between service provider and customer. To avoid any ambiguity in an SLA’s

syntax and semantics, this phase should assign a mathematical representation of

each of the extracted SLA elements. In doing this, the mapping also becomes more

precise since it depends on a rigid mathematical basis.

Phase 2: SLA-Model Mapping: This is the core of the SlaCP methodology.

The purpose of this phase is to draw a correlation between the SLA of a service and

its stochastic model in a way that a result for SLA compliance prediction can be

derived. This has to be done by taking the outputs of the SLA Interpretation phase

and mapping them to related fragments of the stochastic model. Nevertheless, some

outputs cannot be mapped on the actual model. Instead, they must be mapped

on the outputs of solving the model; this is described later in Section 5.2.4. The

rationale for this mapping, is to use the stochastic model, which represents the SLA’s

content, to predict the information that is unknown.

The SLA-Model Mapping phase must has five outcomes corresponding to SLA

Interpretation phase outcomes; these are, respectively, sets of: state variables and

actions, impulse/rate reward variables, reward solving time instants/intervals, com-

61

3.2 SlaCP Methodology

Table 3.1: An example of the outcomes of the SLA-Model Mapping phase

SLA Elements Example SLA-Model Mapping phase outcomes
from Phase 1

Service Object getQuote An action, a, connected to an input state
variable, sv.

Basic Metric Throughput An interval-of-time impulse reward variable, Ra
imp,

that gives the number of firing of an action, a:

Ra
imp(t) =

{
1 if a fires
0 otherwise

Temporal constraint Each hour Accumulated impulse reward assessed during
in a day each hour for 24 hours, T = {1 . . . 24}:

AccRa
imp

(t) = Σt∈TR
a
imp(t)

Composite Metric Maximum Apply Maximum function on solver output:
max = Max{AccRa

imp
(t1) . . . AccRa

imp
(tn)}t1,tn∈T

SLO threshold At most 100 A function to compare the result to the specified
threshold: f(max,<, 100) : max < 100

putation functions of the model’s output, and evaluation functions with SLO thresh-

olds. Recalling Figure 3.1, the light gray rectangles below the SLA-Model Mapping

phase represent the elements that should be mapped on the stochastic model itself,

while the white rectangles represent the ones should be mapped to the outcomes of

the solved model. To illustrate the mapping, Table 3.1 provides an example of the

outcomes of this phase given the outcomes of phase 1. This example is related to a

stock quote service whose provider promises in its SLA that the maximum through-

put a getQuote operation is able to deal with is, at most, 100 requests each hour in

the day. The phase outcomes, along with an illustrative example, are described in

more detail as follows:

1. A Service Object has to be mapped as an Action of a stochastic model with

an input State Variable. In the example provided, the mapping of a service

object (i.e. a getQuote operation) must be as a state variable, sv, connected to

an action, a. The reason for mapping the service object, as described earlier,

is that the service object usually needs time to serve the request and this is

reflected in the firing time of an action. Also, since the requests might arrive

at a rate higher than the servicing rate, a state variable has to be included to

reflect such queuing behaviour.

2. A Basic Metric refers to a service QoS attribute whose value is unknown be-

fore deploying the service. For this reason, it has to be mapped as a Reward

Variable of a stochastic model (as in the performance modelling prediction

approach). Hence, this phase should relate the semantics of basic metrics in

62

3.2 SlaCP Methodology

an SLA to equivalent reward variables represented in the format of a general

stochastic model. For each reward variable, this phase has to specify accord-

ing to the definition of each basic metric, the reward variable type, impulse or

rate; the time to be taken (i.e. instant or interval); and the reward function

that utilises the state variable or the action generated from the mapping of

the service object. However, the utilisation of these generated model primi-

tives might be inappropriate for the user, as will be described in Section 5.2.2,

and different stochastic model primitives are then preferred. For this reason,

the reward functions may be considered only as templates that provide an

abstraction of either a state variable or action. Hence, the actual assignment

to a concrete model primitive has to be the responsibility of the Model Spe-

cialisation phase which is described later. In the example in Table 3.1, the

basic metric, throughput, is considered as an impulse reward variable with a

reward function that assigns a value of 1 for each firing of an action, a. If a

different action is required, this can be changed later. This reward variable

should be considered as an interval of time variable in order to keep track

of each incrementation in request numbers. The mapping of different basic

metrics is described in Chapter 5.

3. A Temporal Constraint is used to sample the value of a basic metric at

different intervals within a period, and is mapped as the Reward Solving

Time which is the time required for solving a reward variable. The time

interval is mapped as the instant/interval at which basic metrics are sampled,

while the time period is mapped as the total time during which these samples

are taken. In the example in Table 3.1, the time is mapped as solving the

reward variable during the interval of one hour for 24 hours. The temporal

constraint related to the SLO validity period is usually the same as the one

used for evaluating the basic metrics. For this reason, it is not considered here.

This is described in Section 5.2.5.

4. A Composite Metric is based on sampling the values of a basic metric over

a period of time; these are then either aggregated or have another function

applied to them. For this reason, this metric should be mapped as a Com-

putation Function. These mathematical functions should not be mapped

on the model itself but on the results of solving the reward variable at the

specified time which represents their input. Hence, these functions should be

tailored to the nature of the output results (expected or distribution values)

rather than the nature of the monitoring results (integer or float values). In

63

3.2 SlaCP Methodology

Table 3.1, the maximum function is mapped as a function that computes the

maximum but to a set of reward variable results.

5. An SLO threshold and its binary relation have to be mapped as an Evalua-

tion Function with a mathematical value and an arithmetic relation. This

function has to compare the result obtained from the previous step (i.e. the

outcome of the desired composite metric that is used within an SLO) to the

specified value according to the arithmetic relation. The result of this compar-

ison should determine the probability to conform to the specified threshold.

In the example in Table 3.1, the SLO threshold is mapped as a function which

takes the result of the maximum function to determine if this is less than 100.

Phase 3: Model Completion: The SlaCP methodology adopts the use of a

stochastic model for predicting the SLA compliance. Hence, in this phase, a stochas-

tic model has to be created for the specified service. Since one of the characteristics

of the methodology is that it should be automated as much as is possible, the Ser-

vice Model, that describes its behaviour, should be produced as an outcome of

this phase and its creation has to be aided automatically. However, it is not actu-

ally possible to derive a complete model automatically from an SLA alone. This is

because, as stated in Section 1.4, the SLA does not provide any information about

the system’s dynamics. Furthermore, the mapping from phase 2 only includes a

small set of action/state variables; this does not help in creating a proper model.

Accordingly, as indicated in Figure 3.1, a User has to complete this model, at any

abstraction level, independently based on his/her knowledge of the service; alterna-

tively, he/she should use another means of automatic model creation in addition to

an SLA. An example of the latter is using service description documents to help in

creating a service model automatically. The remaining issue related to the Model

Completion phase is parameterising the model. Parameterising the stochastic model

(for aspects such as delay functions and the model’s initial state) can be achieved

through similar implemented services or from the service’s historical data.

One of the characteristics considered in the methodology is that the service model

should be general. This can be satisfied by the following:

1. The model is not type-specific: In essence, a user can choose any appropriate

stochastic modelling formalism to model his/her service. However, in order to

be general and modular, this service model has to be specified in an abstract

stochastic modelling formalism, such as SDES, that can be converted later to

any specific one (such as Stochastic Petri Net) with minor translation.

64

3.2 SlaCP Methodology

2. The model is not service-layer specific (i.e. not QoS-type specific): The ser-

vice has many different layers (e.g. software, hardware or network) and can

be looked at, in terms of its level of detail, in depth or abstractly (i.e. as

relations between services in a composite service, or as relations among the

infrastructure components of a specific service). Each abstraction level and

each layer has specific types of QoS metric that can be defined. For generality,

the model’s abstraction level has not been standardised in this methodology;

the same is true for the layers. Using a specific level of abstraction makes the

methodology inapplicable for several types of QoS metric. For example, in

the literature, the stochastic model of a service is targeted mostly either at a

specific layer of service infrastructure, such as software, or at a very high level

through which only the interactions between different services are modelled,

as in an SOA architecture [26]. In the latter, each service’s internal behaviour

is treated as a black box while modelling the communication between services

is the primary concern for the stochastic model; only response time related

metrics can be predicted from these very abstract models. In the proposed

methodology, the choice is left to the user to decide the level of detail his/her

model has to take into account. In this way, the model is not specific to one

layer of the service related infrastructure; it can reflect the software, hardware

or network layer, or any combination of them, that serves the purpose of the

SLA.

3. The model is not single-service-specific: In the methodology proposed in this

thesis, the aim is to model the behaviour of a single service. However, it is not

obligatory and the model can represent multiple services with the interaction

between them.

Phase 4: Model Specialisation: The outcome of the Model Completion phase

is a generalised stochastic model of the service. Since the user can choose a specific

formalism in which to model the service, the generalised model has to be translated

accordingly into this formalism. In addition, the reward variables generated from

step 2 of phase 2 have to be translated to suit the input language of the specified

model. The service model, along with the reward variables, produces a Reward

Model that is able to generate the value of these reward variables. Also, in this

phase, the time periods and intervals for solving the reward variables has to be

translated so that the solver can solve these reward variables according to them.

Hence, the Model Specialisation phase translates the generalised service model, the

general reward variable specification, and the reward solving time into fragments

65

3.2 SlaCP Methodology

that are compatible with the stochastic model and the solver chosen by the user.

In this phase, and as specified in the SLA-Model Mapping phase, the actual

connection between the reward function templates and the primitives of the actual

service model has to be specified. For example, if the basic metrics relate to the

throughput of a service object, and an impulse reward variable is generated for the

action representing this object, a link between the abstraction of this action and

its actual reference in the model has to be assisted by the user since this cannot be

completed automatically. If the desired action is the one generated automatically by

the SLA-Model Mapping phase, the user has to confirm this; otherwise the desired

action has to be chosen. Making the required reference allows the template to be

updated with a concrete reward function so that it is comprehensible to the model

solver in the next step. If this connection is not valid, the solver will not be able to

produce a meaningful result.

Phase 5: Model Solving: The outcome of the four consecutive phases pre-

sented earlier is a reward model that has to be solved analytically or by using

simulation to produce the required results. During this phase, the expected Result

of the reward variables at the specified time instants or intervals have to be pro-

duced and are then available for further processing. In the tool representation of

the proposed methodology in Chapter 6, the design choices available for choosing

the solver are described.

Phase 6: Metric Composition: During this phase, and to produce the value

of the desired composite QoS metric, the remaining specified computations (derived

from step 4 of phase 2) have to be applied as functions of the solver results. Conse-

quently, a set of functions can be applied to produce the Desired Metric. A set of

the functions that are used to further define a QoS metric, and how to accommodate

the expected values of the solver output, are described in Chapter 5.

Phase 7: Decision: After obtaining the value of the desired metric, the eval-

uation function taken from step 5 of phase 2 has to be applied to compare this

value with the SLO threshold. The result of this comparison is the Compliance

Probability of the SLA contract for this particular SLO.

3.2.2 User’s Perspective of the Methodology

The user’s view concerning the design of the SlaCP methodology depends on the

ability of the methodology to automate the aforementioned seven phases. From the

66

3.2 SlaCP Methodology

SLA
Interpretati-

on

SLA-Model
Mapping

Metric
Composition

Model
Specialisat-

ion

Model
Completion

Decision
Model
Solving

Service

SLA
Contract

Reward

Model

Result

Desired
Metric

Compliance
Probability

Service
Model

Service
Object

Basic Metric

Composite

Metric

Temporal
Constraint

SLO

Evaluation
Function

Reward
Solving

Time

Computation

Function

Reward
Variable

State

variable
and Action

User

SLA compliance
 result
 input

has

Completes model creation

assists

input

input

input

input

Automated Phase/outcome

1

4

3

2

Figure 3.2: The proposed methodology from a user perspective

user’s point of view, automating a phase allows it to be concealed and seen as a black

box. The rationale for describing this perspective is to help the tool designer who is

exploiting this methodology to understand the aspects that should be automated.

Depending on the design of the SlaCP methodology described earlier, Figure 3.2

depicts the phases with their outcomes that has to be automated. The automation

of a phase or its outcomes are illustrated in this figure as a black gear, while the

un-automated aspects of the methodology or the ones that the user can see are

numbered. According to this figure, the methodology has to be shortened for the

user into four steps. These are as follows:

1. The user has to supply the SLA document.

2. The user has to complete the generated model creation. This is part of the

Model Completion phase.

3. The user has to assist the correlation between each abstract primitive in the

reward function to the relevant primitive of the model that represents it. This

is a part of the Model Specialisation phase.

4. The result regarding SLA compliance probability is shown to the user.

To avoid repetition, the reasons why the rest of the SlaCP phases can be auto-

mated is presented in Chapter 6 where the tool architecture design is described.

67

3.3 SlaCP Implementation for WSLA Contracts and SDES Models

3.2.3 Tool Designer’s Perspective

The theoretical design of the SlaCP methodology proposed in Section 3.2.1 should

make it possible to map a given SLA of a service into a stochastic model. The

outcome of this methodology has to be a prediction of the probability of SLA com-

pliance; this is derived from solving the model after mapping (or what is called a

reward model). It is appealing to a user if this methodology can be supported by

a software tool which will automate the phases where possible. This software tool,

called SlaCP tool, has to consider the theoretical phases of the methodology design

so that a user’s perspective can be adopted. The tool designer has to represent each

phase as an engine that automates its functionality. In addition, the designer has

to make use of a set of existing and novel techniques to increase the modularity and

automation of the tool that exploits this methodology.

To achieve a better flow of information, the description of the tool designer’s

perspective (i.e., the SlaCP tool architectural design) is represented in Chapter 6

where the implementation of this tool design is also described.

3.3 SlaCP Implementation for WSLA Contracts

and SDES Models

The SlaCP methodology explained in the previous section describes a generic method

for SLA compliance prediction; it can be applied to any SLA contract and any gen-

eral stochastic model formalism. To facilitate a better understanding of the different

phases and perspectives of both the SlaCP methodology (that is explained in this

chapter) and the tool (that is explained in Chapter 7), an implementation of these

is performed. The implementation has been carried out for a specific type of SLA

contract, namely WSLA [17], and a specific generalised stochastic modelling formal-

ism, namely SDES [29]; this is called WSLA Compliance Prediction or WslaCP. The

Web Service Level Agreement language (WSLA) is chosen because it is already pub-

lished and is publicly available; it is also powerful enough to define SLA documents

in several domains (such as web services). It also defines QoS metrics clearly and

explicitly using constructive ontology which is important for the proposed method-

ology. Finally, it is XML based so it is accessible and extensible. Similarly, the

Stochastic Discrete Event System (SDES) formalism is a general purpose stochastic

process formalism that includes a variety of modelling formalisms; the mapping to

SDES therefore directly translates to formalisms that have extensive tool support.

The implementation of the SlaCP methodology is referred to as the WslaCP

68

3.3 SlaCP Implementation for WSLA Contracts and SDES Models

WSLA Compliance
Prediction WslaCP

WSLA Elements

Mapping to SDES W
sl

aC
P

 M
et

h
o

d
o

lo
gy

:
A

n
 im

p
le

m
en

ta
ti

o
n

 o
f

th
e

 S

la
C

P
 m

et
h

o
d

o
lo

gy

W
sl

aC
P

 T
o

o
l:

A

n
 im

p
le

m
en

ta
ti

o
n

 o
f

th
e

Sl
aC

P
 t

o
o

l

Case Study Evaluation

Fe
e

d
b

ac
k

Software Tool

To
o

l S
u

p
p

o
rt

Formal Representation

Defining Monitoring

Semantics

Figure 3.3: The WslaCP methodology diagram

methodology, while the implementation of the SlaCP tool design is referred to as

the WslaCP tool. These are briefly outlined in the following two subsections.

3.3.1 WslaCP Methodology: An Implementation of the SlaCP

Methodology

The WslaCP methodology implements the seven phases described for the SlaCP

methodology. In this implementation, there is no consideration of a new algorithm

to implement the Model Solving phase; it is assumed to be predefined.

The implemented WslaCP methodology is presented in two parts: WSLA ele-

ments and mapping to SDES, as depicted in the middle part of the WslaCP method-

ology diagram in Figure 3.3; each has a separate chapter devoted to it. The rationale

for this is to achieve a better flow of related information. These parts are as follows:

1. WSLA elements: This part represents the SLA Interpretation phase. It is

concerned with the Formal Representation of WSLA elements, first, to de-

fine accurately the structure of the document. Second, it concerns Defining

Monitoring Semantics to WSLA elements since WSLA is an XML based

document whose elements are described using a verbal description. The se-

mantics of WSLA elements in this part are precisely described so they can be

mapped correctly. This part is described in detail in Chapter 4.

69

3.3 SlaCP Implementation for WSLA Contracts and SDES Models

2. Mapping to SDES: This part completes the mapping process for the ultimate

SLA compliance prediction. It represents the remaining six phases of SlaCP.

Completing the interpretation of WSLA’s behavioural semantics, the actual

theoretical mapping of the WSLA contract to a stochastic model is carried

out. The mapping to SDES consists of five steps; these are outlined in what

follows 1:

• Step 1: Operation(s) Mapping maps service operations specified in a

WSLA document into SDES primitives.

• Step 2: MeasurementDirective(s) Mapping maps all the basic metrics

specified in a WSLA document into SDES reward variables.

• Step 3: Schedule Mapping maps the time specified in a WSLA docu-

ment to a set of observation intervals of the reward variable.

• Step 4: Function(s) Mapping maps the composite metrics into functions

of the results gained from solving SDES.

• Step 5: ServiceLevelObjective Mapping maps the SLO onto an eval-

uation function that produces the SLA compliance probability.

As described in the Model Specialisation phase of SlaCP, this mapping must

be carried out with the help of a user. Accordingly, the user’s interaction is

necessary in steps 1 and 2 in order to provide suitable information for com-

pleting the model creation and assigning the rewards. The aforementioned five

steps in this part are described in detail in Chapter 5.

3.3.2 WslaCP Tool: An Implementation of the SlaCP Tool

The architectural design of the tool for the SlaCP methodology (or what is called

the SlaCP tool) is implemented in a Software Tool, the WslaCP tool, that employs

WSLA and a Stochastic Petri Net (SPN) model [30]; this is depicted in the lower part

of Figure 3.3. The WslaCP tool is built using Java language and was augmented

with an SPNP modelling tool and Möbius for the solution of SPN models. The

rationale for using these tools in particular stems from their ability to describe the

SPN models, handling and solving them not only through a GUI but also using its

input language. This flexibility in expressing the SPN models allows the tool easily to

access the file that contains the model description in order to extract any information

1It should be noted that some keywords related to WSLA might be unfamiliar to the reader
at this stage (although these are described in the background chapter). However, each step, along
with any WSLA-specific keywords related to it, is described in Chapter 5.

70

3.4 Conclusion

necessary to assist the user more effectively, to complete the definitions of the reward

variables, and then to run the solver to solve the model. This implementation is

described further in Chapter 6.

To evaluate the WslaCP methodology and its software tool, a Case Study

Evaluation is conducted in Chapter 7 to assess, provide feedback and then amend

where necessary the proposed methodology and tool, as depicted in the rounded

rectangle at the bottom of Figure 3.3. This case study guided the approach taken

in this thesis, making it more robust and enabling it to be more automated. It also

highlighted the weaknesses, strengths and areas for enhancement.

3.4 Conclusion

This chapter described the SlaCP methodology and set the requirements and the

characteristics that need to be included in its design. This theoretical design, across

seven phases, should allow the user (possibly an SLA engineer, service designer,

service provider, or a modeller) to predict the compliance probability of a given

SLA in a largely automated way. The automated steps of the methodology are

highlighted by presenting the methodology from a user perspective where he/she

is responsible for entering the SLA, completing the service model, and assigning

the right primitives to the reward function. An outline of the methodology is also

briefly presented from the perspective of a tool designer who automates its phases.

Due to the complexity of the abstract derivation of this methodology, and to help in

understanding it, the methodology and its tool are implemented using WSLA and

SDES. In this chapter only an outline is given for the WslaCP methodology and

tool. This is discussed in detail in the forthcoming chapter.

71

Chapter 4

A Formal Representation of

WSLA

This chapter covers the first fold of the WslaCP methodology that implements the

SLA Interpretation phase of the SlaCP methodology. It addresses the problem of

the lack of formal, precise and unambiguous semantics of some WSLA elements.

The contribution of this chapter is firstly, to provide a formal characterisation of

WSLA elements in order to clarify their structure and relationships between them;

secondly, to give a mathematical definition of WSLA elements whose semantics are

not rigorously defined. This is done to avoid any misinterpretation of their meaning

between service providers and customers. Formalising and mathematically defining

the semantics of WSLA elements provides a firm basis for mapping on the SDES

models.

The remainder of the chapter is structured as follows. Section 4.1 introduces the

problem of semantic precision in WSLA specifications while Section 4.2 provides

the solution requirements to solve this problem. Section 4.3 specifies the foundation

of the formal representation. This includes defining the WSLA prediction-related

elements to be formalized and the exact XPath locations for them. In addition, the

non-prediction related elements are defined. In Section 4.4, a formal definition of the

main elements of WSLA is provided using tuples with the mathematical represen-

tation of each component in each tuple. Section 4.5 then defines the mathematical

semantics for WSLA elements that are not precisely defined. These semantics will

be addressed from a monitoring perspective to distinguish this from the prediction

perspective that is of a stochastic nature. Related work is provided in Section 4.6.

Finally, the chapter is briefly summarised in Section 4.7.

72

4.1 Introduction

4.1 Introduction

WSLA has the flexibility to define the desired QoS metrics due to its construc-

tive ontology [10, 17]. This ontology, as described in Section 2.2.2.1, allows a

set of measured QoS metrics to be composed using different operators in order

to produce the desired composite metrics. The measured metrics, operators of

the composite metrics, and the final QoS metric are presented in WSLA using

MeasurementDirective(s), Function(s), and SLAParameter(s)1 respectively.

Although WSLA defines a wide range of standard Function(s) for simplifying

the composition process, it does not provide precise mathematical semantics for

them. These functions are defined in a textual description, as appeared in [17],

making it difficult sometimes for the reader to understand their exact meaning. An

example of such a function is the SPAN function. This function is defined in WSLA

as returning “the number of sequential occurrences of a particular value in a time

series or queue, backwards from the most recent entry” [17]. This means that this

function gives for a specific position in the time series, the maximum length of an

uninterrupted sequence of a specific value ending at that position. This function

is not intuitive: i.e. it is hard to understand even after describing it in different

informal ways (unlike functions such as Max or Mean). If the function description is

put into a mathematical formula, its semantics will be more precise.

Semantic ambiguity is also associated with MeasurementDirective(s). Mea-

surements are related to a service object attribute, but some of their semantics

are not intuitive, like Gauge which intercepts the current value of an entity; hence

their semantics need to be defined. In addition, other commonly-used measure-

ments may hold multiple semantics according to a user’s perspective (i.e., service

providers and customers). Therefore, they have to be assigned a unified semantic

in a way that allows providers and customers to share the same perspective. An

example of a measurement with multiple semantic perspectives is ResponseTime.

From a provider perspective, it may be considered as the time taken to complete

the job and send the response back, starting from the instant of receiving the re-

quest. However, from a customer perspective, response time may be considered as

the time that elapses from sending the request from the terminal until the response

is received. The difference in perception could be explained by the fact that the

former perspective does not consider network delay, while the latter does. Given

this example implies that the difference in a single measurement’s interpretation

maybe due to the fact that it can be related to one or more of the service objects or

1WSLA elements are referred to using Courier font.

73

4.2 Representation Requirements

layers, including hardware, software, network, storage and help desk [21]. Response

time, for example, can be related to all the aforementioned service objects. Since

a measurement can comprise different service objects, and given the diversity in

understanding its exact semantics [45], clarifying its definition is important to avoid

any confusion.

4.2 Representation Requirements

The requirements identifying the aspects of the problem that have to be tackled,

and recalling the first fold of Section 3.3.1, are defined as:

• Formal Representation of WSLA Elements: To describe formally main ele-

ments of WSLA and their sub-elements which are important for prediction

only. This requirement is particularly helpful in clarifying the structure and

the dependencies between WSLA elements so they can be mapped appropri-

ately. (cf. Section 4.4.)

• Defining the monitoring semantics of WSLA elements: To provide a mathe-

matical representation that conveys the exact meaning of WSLA elements in

cases of monitoring. Monitoring semantics are those the customer is interested

in when agreeing to SLAs and hence he/she needs to understand them clearly.

This requirement helps in addressing the issue of semantic ambiguity and aids

in providing an exact mapping later on. (cf. Section 4.5.)

4.3 Representation Foundation

To address the aforementioned requirements, this section firstly presents the main

WSLA XML elements that are required to be formalised along with their rela-

tionships. For simplicity, the XML attributes and sub-elements they require are

described when providing the formal representation in Section 4.4. This section also

presents the non-prediction related elements. Secondly, to clarify the location of the

prediction-related elements inside a WSLA document, the exact XPath location for

each of them is provided. An augmented WSLA contract of a stock quote service

adapted from [17] is used as a running example throughout this chapter to illustrate

the required elements and the different aspects of the formal representation.

74

4.3 Representation Foundation

4.3.1 WSLA Elements and their Relationships

In this section, the WSLA contract is not formalised as a whole; only the elements

necessary for SLA prediction are considered. These are the agreed service level

objective (ServiceLevelObjective), the desired QoS metric (SLAParameter), and

the elements constituting them. The excluded information are regarding the involved

parties, the action guarantees in cases of SLO violation, and any element or attribute

that does not matter to the prediction process. The prediction-related and non-

related elements are described in Sections 4.3.1.1 and 4.3.1.2 respectively.

4.3.1.1 WSLA Prediction-Related Elements

To clarify the elements required for the WslaCP, Figure 4.1 is constructed to de-

pict the entity-relationship diagram of the main elements to be formalised, their

relationships, and the WSLA section that each of these elements belongs to.

1

O
b
l
i
g
a
t
i
o
n
s

S
e
r
v
i
c
e

D
e
f
i
n
i
t
i
o
n

C
o

m
p

o
s
it

e

 M
e
t
r
i
c

M
e
a
s
u

re
d

 M
e
t
r
i
c

ServiceLevelObjective
1

Expression

1

1

Predicate

1

SLAParameter

Value

Logical Operator

1

1

1

Function

1

*

Measurement

Directive

(0,*)

Schedule

1

1

(0,*) (1,2)

(1,*)

1

Validity

Operation

* 1

defines

(*,1)

(1,*)

Figure 4.1: The Entity- Relationship diagram for the required WSLA elements in
WslaCP methodology

The Obligations part of Figure 4.1 shows that a ServiceLevelObjective is de-

fined by a single logical Expression that has to be valid during a specific Validity

period. This Expression defines a single Predicate which performs a compari-

son of a specific type (such as Less, Greater, Equal, LessEqual, GreaterEqual1)

1There is another Predicate element called (Violation) which is used for triggering correction

75

4.3 Representation Foundation

between a single SLAParameter and a particular threshold Value. Many logical op-

erators (such as And, Or, Not, Implies) can be used to express an SLO with nested

expressions.

Listing 4.1: An example of a Service Level Objective for a stock quote service.

1:<Obligations >

2: <ServiceLevelObjective name="ContinuousDowntimeSLO">

3: <Validity >

4: <Start >2001 -11 -30 T14:00:00 .000 -05 :00</Start >

5: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

6: </Validity >

7: <Expression >

8: <Predicate xsi:type="Less">

9: <SLAParameter >CurrentDownTime </SLAParameter >

10: <Value>10</Value>

11: </Predicate >

12: </Expression >

13: </ServiceLevelObjective >

14:</Obligations >

Listing 4.1 shows, through an SLO of a stock quote service, the representation of

the Obligations’ elements in a WSLA context. In descriptive terms, this SLO states

that the system will not go down for 10 minutes or more in a row throughout the last

month of the year 2001. In WSLA terms, an SLO called ContinuousDownTimeSLO

(line 2) specifies an SLAParameter called CurrentDownTime (line 9) to be Less (line

8) than a Value of 10 (line 10) during a Validity period of a month Start-ed at the

end of November (line 4) and End-ed at the last day of December 2001 (line 5). The

reason for specifying the threshold value in minutes is that the CurrentDownTime

unit is defined as minutes (see line 10 in Listing 4.2).

The Service Definition part of Figure 4.1 is divided into two segments. The

one encompassed in the dashed rectangle shows the elements constituted in defining

the SLAParameter referred to in the Obligations section. The second segment

encompassed in a dotted rectangle shows the Operation (it represents a service

object) for which this SLAParameter is defined.

For the former segment, and as described in the introduction, WSLA allows the

contractual parties to choose the way the desired SLAParameter is measured and

computed. This is done using MeasurementDirective or Function elements. A

MeasurementDirective provides raw data obtained by intercepting or probing a

particular service object. If these data are insufficient to express an SLAParameter,

further manipulations are performed using Function(s). Many functions can be

applied as needed to express the desired SLAParameter. A Function may use a

actions while monitoring. This is not used in the ServiceLevelObjective context. For this reason
it has been ignored here.

76

4.3 Representation Foundation

Schedule if it is intended to construct a time series. This schedule defines a period

in order to specify the time during which the values are collected (day, month, etc.),

and an interval to specify the instances when a new value is added (minute, hour,

etc.). MeasurementDirective(s) and Function(s) are defined in WSLA inside a

measured and composite Metric respectively. However, in this thesis, and as shown

in Figure 4.1, Metric usage is ignored in the formal representation of WSLA elements

because it is used in WSLA to hold the value of a measurement or a function for re-

usability. This is not important for this SLA prediction approach. Hence, excluding

Metric usage is helpful for the sake of simplicity; it also avoids overlapping in an

SLAParameter definition.

For the latter segment, WSLA defines at least one service object in its service

definition section. A service object in WSLA may represent, for example, a WS-

DL/SOAP operation, a business process, a web hosting service, an on-line storage

service [17], an interface, attribute, operation parameter, or operation result [44].

The SLAParameter is defined for one of these objects which is mainly an Operation.

Listing 4.2: An example of an SLAParameter for a stock quote service

1:<ServiceDefinition name="DemoService">

2: <Schedule name="availabilityschedule">

3: <Period >

4: <Start >2001 -11 -30 T14:00:00 .000 -05 :00</Start >

5: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

6: </Period >

7: <Interval > <Minutes >1</Minutes > </Interval >

8: </Schedule >

9: <Operation name="GetQuote" xsi:type="WSDLSOAPOperationDescriptionType">

10: <SLAParameter name="CurrentDownTime" type="long" unit="minutes">

11: <Metric >CurrentDownTime </Metric >

12: </SLAParameter >

13: <Metric name="CurrentDownTime" type="long" unit="minutes">

14: <Function xsi:type="Span" resultType="double">

15: <Metric >StatusTimeSeries </Metric >

16: <Value> <LongScalar >0</LongScalar > </Value>

17: </Function >

18: </Metric >

19: <Metric name="StatusTimeSeries" type="TS" unit="">

20: <Function xsi:type="TSConstructor" resultType="TS">

21: <Schedule >availabilityschedule </Schedule >

22: <Metric >MeasuredStatus </Metric >

23: <Window >1440</Window >

24: </Function >

25: </Metric >

26: <Metric name="MeasuredStatus" type="integer" unit="">

27: <MeasurementDirective xsi:type="StatusRequest" resultType="integer">

77

4.3 Representation Foundation

28: <RequestURI >http: //ym.com/StatusRequest/GetQuote </RequestURI >

29: </MeasurementDirective >

30: </Metric >

31: </Operation >

32:</ServiceDefinition >

As an example of an SLAParameter definition in a WSLA context, Listing 4.2

specifies how CurrentDownTime (line 10) of a GetQuote operation (line 9) is com-

puted. In descriptive terms, the status of the service is probed periodically each

minute for a month and stored into a time series. This time series is checked

each minute to compute the length of consecutively occurring down status back-

wards from the current minute. In WSLA terms, the StatusRequest measurement

(line 27) in the MeasuredStatus metric (line 26) checks if the service is up or

down and returns 1 or 0 respectively. The result from this metric is used as in-

put to the StatusTimeSeries metric (line 19) that uses a TSConstructor function

(line 20) to construct a series of MeasuredStatus values (line 22). To determine

when these values are collected, the availabilityschedule (line 2) is used by the

StatusTimeSeries metric to take input from the MeasuredStatus metric at each

minute (line 7) for a month (lines 4 and 5). A Window of 1440 elements (line 23)

of the time series is saved by this metric to allow enough values to be available for

doing computation at any time instant. In turn, the CurrentDownTime metric (line

13) applies a Span function (line 14) on the produced series to give, for a specific

position in that time series, the maximum length of an uninterrupted sequence of

a value (0 in this example) ending at that position. Finally, the CurrentDownTime

metric output (line 11) is used as the SLAParameter value.

All the aforementioned elements define the SLO in a constructive and detailed

way and constitute the information necessary for the WslaCP methodology. These

are the ServiceLevelObjective with its Expression, Predicate and Validity pe-

riod, and the SLAParameter with its Function, MeasurementDirective, Schedule

and the Operation that it is defined for. The sub-elements and attributes related

to the previous elements are specified in Section 4.4.

4.3.1.2 WSLA Non-Prediction Related Elements

The rest of the WSLA elements are ignored. Examples of these elements and the

reason for ignoring them are described in what follows. Given that the proposed

methodology is not intended to react to any low SLA compliance probability, the

ActionGuarantee element and the notification mechanisms needed in case of SLO

violation (defined in the Obligation section) are ignored. Since the methodology is

78

4.3 Representation Foundation

mainly used before service deployment, there is no need to include information about

the contractual parties (ServiceProvider and ServiceConsumer) since they may

be not yet exist. Also, since the methodology is not intended for monitoring, there is

no need to include information about the supporting parties (SupportingParty) and

their roles in monitoring the service. Hence, the Parties section with its elements

is ignored. Furthermore, as the methodology is used for prediction only, all the

information related to the monitoring nature of the WSLA contract are omitted.

An example of this information that is defined in the ServiceDefinition section is

the communication elements that describe which party is able to see SLAParameter

values and how these values are transferred to the required parties (using Pull and

Push mechanisms). Finally, as the methodology assumes that the WSLA document

is predefined and valid, information regarding the data type, resultType and unit

of different WSLA elements is ignored. The reason behind this is that a validity

check of WSLA syntax is not required to prove that the data types of the elements

constituting an SLAParameter complement with each other.

4.3.2 XPath Location for WSLA elements

To be able to provide a precise representation of WSLA prediction-related elements,

there is a need to identify the actual places of the elements inside the WSLA doc-

ument. Table 4.1 provides the exact location path of the required elements using

the XPath 2.0 query language [123]. These location paths will be employed in

the parsing algorithm needed when implementing the Interpretation phase of the

methodology.

Table 4.1 contains three columns representing WSLA elements and attributes,

their notation in the equivalent formal representation, and their location path inside

WSLA. The formal representations of WSLA elements with their notation are de-

scribed in the forthcoming section. The location paths are not explained as they are

self-described. However, the main constructs used by XPath to define these paths

are specified in what follows.

XPath is used to identify elements in an XML document. It uses location path

expressions to reach a specific node or set of nodes [123]. A node, used in this work,

is an element, an attribute, or a text node, reached using nodename, @nodename

and text() constructs, respectively. A path expression consists of a set of steps

separated by a slash /, to represent a parent-child relation, or double slash // to

represent an ancestor-descendant relation. The latter relation means that the nodes

matching the selection are returned starting from the ancestor node, regardless of

79

4.3 Representation Foundation

Table 4.1: Formal elements and associated WSLA location using XPath 2.0

WSLA Formal
Element/attribute Element WSLA Location Path Expressions

Notation
ServiceLevel- slo /SLA/Obligations/ServiceLevelObjective/@name

Objective

S
e
r
v
i
c
e
L
e
v
e
l
O
b
j
e
c
t
i
v
e SLAParameter slap //ServiceLevelObjective[@name=’slo’]//Express-

ion/Predicate/SLAParameter/text()

Predicate type c //ServiceLevelObjective[@name=’slo’]//Express-
ion/Predicate/SLAParameter[text()=′slap′]/../
@xsi:type

Value sl
o

v //ServiceLevelObjective[@name=’slo’]//Express-
ion/Predicate/SLAParameter[text()= ′slap′]/../
Value/text()

Start vs //ServiceLevelObjective[@name=’slo’]/Validity/
Start/text()

End ve //ServiceLevelObjective[@name=’slo’]/Validity/
End/text()

Expression expr //ServiceLevelObjective[@name=’slo’]//Express-
ion/node()

And, OR, lo //ServiceLevelObjective[@name=’slo’]/Express-
Not, Implies ion//Expression/../fn:name()

Predicate pre //ServiceLevelObjective[@name=’slo’]//Express-
ion/Predicate/node()

S
L
A
P
a
r
a
m
e
t
e
r Measurement- m /SLA/ServiceDefinition/Operation/Metric/Measu-

Directive rementDirective/@xsi:type

Function

sl
a
p //Metric[Function/Metric/text()=//Metric/Meas-

Fm,i urementDirective[@xsi:type=’m’]/../@name |

//Metric/Function[@xsi:type=’Fm,i−1’]/../@name

]/Function/@type

Schedule sch //Metric[Function/Metric[text()=//Metric/Meas-

urementDirective[@type=′m′]/../@name]]/Functi-
on[@type=’TSConstructor’]/Schedule/text()

S
c
h
e
d
u
l
e Start s /SLA/ServiceDefinition/Schedule[@name=′sch′]

/Period/Start/text()

End

sc
h e /SLA/ServiceDefinition/Schedule[@name=′sch′]

/Period/End/text()

Interval i /SLA/ServiceDefinition/Schedule[@name=′sch′]
/Interval/node()/text()

Operation op /SLA/ServiceDefinition/Operation/Metirc[Meas-

urementDirective[@xsi:type=′m′]]/../@name
RequestURI uri //Operation/Metirc/MeasurementDirective[@xsi:

MeasurementURI type=′m′]/node()/text()
Window w //Function[@xsi:type=’TSConstructor’]/Window

/text()

Value vf //Function/Value/node()/text()

Element ef //Function[@type=’TSSelect’]/Element/text()

Digit df //Function[@type=’Round’]/Digit/text()

where these nodes are. Predicates (inserted into square brackets []) are used to

search for a node with a particular index or that matches a particular value. Also

two dots (..) are used to select the parent of the current node. The function

80

4.4 Formal Representation of WSLA Elements

fn:name() is used to return the name of the node. Finally, node() is a wild card

used to return all the child nodes of the current node.

All the XPath expressions in Table 4.1 were validated using Altova XMLSpy

software [124] to check their correctness. This was done using the WSLA example

in Listings 4.1 and 4.2.

4.4 Formal Representation of WSLA Elements

In this section, the structure of the WSLA’s core elements, depicted in Figure 4.1,

is formalised. These elements are represented using mathematical constructs rather

than XML tags. The XML sub-elements and attributes related to these elements and

needed for prediction are also formalised. In the following subsections, the formal

representations of ServiceLevelObjective, SLAParameter, MeasurementDirecti-

ve, Schedule, and Function are described. Then a formal representation of the

common order in which MeasurementDirective, Schedule, and Function elements

are aggregated to define the SLAParameter is defined.

4.4.1 Service Level Objective

ServiceLevelObjective is the key element in WSLA contracts, defining the ul-

timate goal. As described in the flow of Figure 4.1, an SLO defines a logical

Expression that could be nested into another by using a logical operator. If the

Expression is evaluated to true through the specified Validity period, then the

SLO is met; otherwise it is violated.

The simplest SLO in WSLA has a single expression that defines one Predicate;

this compares one predefined SLAParameter with a specific Value. An example of an

SLO with a simple expression is the example in Listing 4.1. Here the SLO consists

of one expression (line 7) that has one SLAParameter called CurrentDownTime (in

line 9) compared using Less (in line 8) to a value of 10 (in line 10).

An example of an SLO with nested expressions is the example in Listing 4.3

which is taken from [17].

Listing 4.3: An example of a Service Level Objective with nested expressions

1:<ServiceLevelObjective name="ConditionalSLOForTransactionRate">

2: <Validity >

3: <Start >2001 -11 -30 T14:00:00 .000 -05 :00</Start>

4: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

5: </Validity >

6: <Expression >

7: <Implies >

81

4.4 Formal Representation of WSLA Elements

8: <Expression >

9: <Predicate xsi:type="Less">

10: <SLAParameter >OverloadPercentage </SLAParameter >

11: <Value>0.3</Value >

12: </Predicate >

13: </Expression >

14: <Expression >

15: <Predicate xsi:type="Greater">

16: <SLAParameter >TransactionRate </SLAParameter >

17: <Value>1000</Value>

18: </Predicate >

19: </Expression >

20: </Implies >

21: </Expression >

22:</ServiceLevelObjective >

The SLO in this listing consists of three expressions (lines 6, 8, 14): one for

OverloadPercentage to be Less than 0.3 (lines 10, 9, 11 respectively), the other

for TransactionRate to be Greater than 100 (lines 16, 15, 17 respectively), and the

last (the topmost expression) is the expression that combines these two expressions

together using the Implies (line 7) logical operator (this operator is equivalent to

‘giving that’).

In the following subsections, a distinction is made between formalising an SLO

depending on expression types (simple or nested) because the paper describing this

formalisation [15] was limited to the first type. Nested type is supported later.

4.4.1.1 Service Level Objective with a Simple Expression

The ServiceLevelObjective with a simple Expression does not include logical

operators in its definition. This means Expression is a Predicate that compares

an SLAParameter with some threshold Value for a specific Validity period. This

consideration allows the following formal definition, where the Expression is not

represented, since it does not matter to the mathematical semantics of this case.

Definition 3 A WSLA ServiceLevelObjective with a single expression can be

denoted by a tuple slo = (slap, c, v, vs, ve), where:

• slap ∈ SLAP : is the desired SLAParameter from the set of all SLAParameter(s)

(SLAP) defined in a WSLA document. slap is defined in Definition 7.

• c ∈ C: is the comparison type, where C = {=, <,>,≤,≥}.

• v ∈ R: is the value the slap is compared to.

• vs, ve ∈ R≥0, vs ≤ ve: is the start and end of the validity period.

82

4.4 Formal Representation of WSLA Elements

Given the example in Listing 4.1, the slo named ContinuousDowntimeSLO can

be written as:

slo = (slap,<, 10, 0, 31),

where, the slap named CurrentDownTime is specified in Section 4.4.2. For simplicity,

vs,ve are represented by 0 and the difference between the start and end dates which

is 31 days. The value of ve can be represented using a different time unit other than

days (such as second, minutes, etc.).

4.4.1.2 Service Level Objective with Nested Expressions

A ServiceLevelObjective with nested Expression(s) (as in Listing 4.3) may use

a logical operator such as Or, And, Not, or Implies to combine multiple expressions.

In this case, the topmost expression that encompasses all other expressions should be

valid during the specified Validity period. This consideration allows the following

definition.

Definition 4 A WSLA ServiceLevelObjective with nested expressions can be

denoted by a tuple slo = (expr, vs, ve), where:

• expr ∈ Expr: is the topmost expression that consists of at least two expressions

from the set of all expressions, Expr, defined in a WSLA document. expr is

defined in detail in Definition 5.

• vs, ve ∈ R≥0, vs ≤ ve: is the start and end of the validity period through which

the expr should be valid.

The topmost expression, expr ∈ Expr, contains all the nested expressions defined

for an slo. These expressions are combined using a unary or binary logical operator.

In WSLA, a unary operator is applied on a single expression (such as the negate

operator Not) to produce another expression, while a binary operator is used to

aggregate two expressions into a new one (such as And). In WSLA, applying any

logical operator will result in a new expression. Therefore, the topmost expr has at

least two expressions, one for a unary operator and the other for a single predicate.

It will have at least three expressions with two predicates if a binary operator is

used. Given what was described previously, expr is defined as the following.

Definition 5 A WSLA Expression of an SLO can be denoted by a tuple expr =

(LO,Pre), where:

• LO: is a set of logical operators, i.e. LO ⊆ {∨,∧,¬, =⇒ }.

83

4.4 Formal Representation of WSLA Elements

• Pre: is a non-empty set of predicates, where a predicate pre ∈ Pre is defined

in detail in Definition 6.

The way the two sets are combined to create a logical expression is complicated to

write in mathematical terms. Instead, an algorithm that conveys this is implemented

in the tool. The same problem was identified in [33] where the service level objective

cannot be defined formally in an ideal way.

The set LO in this definition can be empty. In this case the expression is simple

and is equal to a predicate. (This is the case in Definition 3.)

Each predicate compares an SLAParameter with some threshold Value. Hence,

pre ∈ Pre is defined as:

Definition 6 A WSLA Predicate can be denoted by a tuple pre = (slap, c, v),

where the components in this tuple follow the same definition as in Definition 3.

As an example of the previous two definitions, and given the SLO with nested

expressions presented in Listing 4.3, the following can be obtained:

LO = { =⇒ }, P re = {pre1, pre2} : expr = pre1 =⇒ pre2,

where: pre1 = (slap1, <, 0.3), and pre2 = (slap2, >, 1000) and the definition of

slap1, slap2 (named as OverloadPercentage and TransactionRate respectively)

are not presented in this example.

In this section, the formal definition of slo is specified. This was done for slo

with both simple and nested expressions. The rest of the definitions in the following

sections can be applied to slo with simple or nested expressions.

4.4.2 SLAParameter

An slo refers to slap in its definition. What slap means exactly is represented in the

WSLA ServiceDefinition section. The next step is to define the SLAParameter,

slap, formally. As depicted in Figure 4.1, the most commonly used case for defining

the exact slap is by collecting MeasurementDirective(s) at regular intervals of a

Schedule and then by applying a set of Function(s) over them. This allows the

definition of slap as:

Definition 7 A WSLA SLAParameter is a tuple slap = (M,Sch, F), where:

• M : is a non-empty set of |M | elements. Each m ∈M specifies a Measurement-

Directive that is used to define this slap. m ∈M is defined in detail in Def-

inition 8.

84

4.4 Formal Representation of WSLA Elements

• Sch: is a set of |Sch| elements. Each sch ∈ Sch specifies a schedule used

by a WSLA function to collect measurements or function values periodically.

sch ∈ Sch is defined in detail in Definition 9

• F : is the set of all Function(s) defined for a specific slap. For each m ∈ M ,

a set of functions Fm = {Fm,1, . . . , Fm,|Fm|} is defined to identify the ultimate

slap; each refers to a WSLA Function. This set can be empty if the slap

represents the value of a single m ∈ M . The set Fm is defined further in

Definition 10.

Given the example in Listing 4.1, the slap named CurrentDownTime can be

written as:

slap = (M,Sch, F), where:

m=((StatusRequest, GetQuote, ”http : //ym.com/StatusRequest/GetQuote”))

sch = {0 . . . 44640}
Fm = {Fm,1, Fm,2}, where:

Fm,1 = (TSConstructor,m, {0 . . . 44640}, 1440)

Fm,2 = (Span, Fm,1, 0)

This can be written as:

slap=((StatusRequest, GetQuote, ”http : //ym.com/StatusRequest/GetQuote”),

{0 . . . 44640}, {(TSConstructor,m, {0 . . . 44640}, 1440), (Span, Fm,1, 0)})1,

where the tuple assigned to m ∈ M , named StatusRequest, is discussed in

Section 4.4.3. Also, the list of values assigned to sch, named availabiltyschedule,

is discussed in Section 4.4.4. The same is true for the set F that is described in

Section 4.4.5.

4.4.3 Measurement Directives

The MeasurementDirective(s) are the actual metrics constituting the slap. These

can be one of seven types, namely Status, StatusRequest, Counter, Gauge, Respon-

seTime, DownTime, and InvocationCount. These types can be extended to add mea-

surements of a domain-specific type. Each slap consists of at least one measurement

taken from measuring or intercepting the service [17].

Listing 4.4: General structure of the MeasurementDirective element in WSLA

<MeasurementDirective xsi:type="wsla:Measurement_Type" resultType="result_Type">

<?additional tags specifying URI name?>

</MeasurementDirective >

1The formal representations of WSLA functions and measurements are referred to by empha-
sizing them to differentiate them from the XML tags.

85

4.4 Formal Representation of WSLA Elements

Listing 4.4 provides the generic structure of a MeasurementDirective. The

values of the attributes depend on the measurement type; all other tags remain the

same. The measurement type is specified in the type attribute, which affects the

type of result specified in the resultType attribute. The structure also contains an

element that refers to the URI, from where this measurement value can be retrieved.

Formally, the set M can be defined as the set of all MeasurmentDirective types.

Hence, the set M that is defined for a particular slap is:

slap = (M,F, Sch),M = {m : m ∈M} and M 6= ∅

Since each slap is defined for a particular Operation, m should refer to it because

m is used to measure this operation. Accordingly, m is defined as:

Definition 8 A WSLA MeasurementDirective is a tuple m = (mname, op, uri),

where:

• mname: specifies the label, or name, of this measurement.

• op ∈ OP : is a string that specifies the operation that the measurement is

defined for from the set of all service operations OP.

• uri: is a string that specifies the place from which to read the measurement’s

value during the runtime.

Given the example in Listing 4.4, m, named StatusRequest, can be written as:

m = (StatusRequest,GetQuote, ”http : //ym.com/StatusRequest/GetQuote”),

where StatusRequest is defined in Section 4.5.1.

4.4.4 Schedules

A WSLA Schedule can be used inside many elements in a WSLA document. For this

reason, it is defined separately in the ServiceDefinition section allowing multiple

WSLA elements to refer to it.

In the ServiceDefinition section, a Schedule is used mostly by a time series

function (called TSConstructor) to create a time series of either measurement’s

values or the values of another function used within a specified slap (see line 22 of

Listing 4.2). A Schedule defines a Period (line 3 of Listing 4.2) during which the

86

4.4 Formal Representation of WSLA Elements

values have to be collected. It is characterised by a Start and End time1. It also

specifies an Interval (line 7 in Listing 4.2) between consecutive retrievals of new

values. An Interval element contains sub-elements representing Milliseconds,

Seconds, Minutes, and Hours. Any combination of these sub-elements can be used

to specify the required interval. Formally, the schedule can be specified as:

Definition 9 A WSLA Schedule is a tuple sch = (s, e, i), where this in turn defines

a set of time points {t1, . . . , tk}, where:

• t1 = s : is the start point.

• tk = e : is the end point.

• tj+1 = tj + i; j = 1 . . . k − 2: are the sample points, where i, is the increment

in time and k = b e−s
i
c ∈ N≥0, is the number of sample points.

In this formal representation of a schedule, sch, i is considered to represent the

interval in the form of the lowest sub-element type. For example, if the interval is 2

hours and 30 minutes, then i = 150 minutes.

Given the example in Listing 4.2, sch named availabilityschedule is a set {t1, . . . , tk}
where:

t1 = s = 0

tk = e = 44640

i = 1 minute

k = 44640

The interval here is 31 days, then e = 44640 minutes (the number of minutes in

this interval).

4.4.5 Functions

In WSLA, a MeasurementDirective is used as the basis for performing other

WSLA computations to produce the topmost metric that represents the required

SLAParameter. These computations are carried out through Function(s). WSLA

defines a set of 17 function types in its standard specification. Each one corresponds

to either series constructors (TSConstructor, QConstructor), arithmetic functions

(Plus, Minus, Divide, Multiply), statistical functions (Mean, Median, Mode, Sum,

Max, Size), or other functions (TSSelect, Span, PercentageGreaterThanThreshold,

1The time in WSLA is specified using either a DateTime format of the standard xsd schema
or a IETF RFC 3060 [17]

87

4.4 Formal Representation of WSLA Elements

PercentageLessThanThreshold, NumberGreaterThanThreshold, NumberLessTha-

nThreshold, ValueOccures, RateOfChange, Round) [17].

All the aforementioned functions should have an operand which is either a

MeasurementDirective or another Function output. As well as this operand, some

functions require additional ones. For example, the time series constructor function

needs a schedule, sch, to construct the series according to its time specification.

Also, other functions may need a constant value for the reason of comparison like

ValueOccures which uses a constant operand to compare the series value accord-

ing to it and then returns the number of times of its occurrence. However, WSLA

statistical functions do not need any extra operands.

Formally, the set F can be defined as a set of all functions in the WSLA specifi-

cation. Hence, the set F defined for a particular slap is:

slap = (M,F, Sch), if M = {m, . . . ,mj} : F = {Fm, . . . , Fmj
}, Fm, . . . , Fmj

⊂ F,

where Fm is a set of functions applied on m. Each function, Fm,i ∈ Fm, represents

the function that is of order i to be applied on m and is defined as:

Definition 10 A WSLA Function is defined as a tuple Fm,i = (Fname, O), where:

• i ∈ N>0: is the order in which this function is applied on a measurement m,

i ∈ {1 . . . |Fm|}.

• Fname: is the label, or name, of this function type.

• O: is a set of operands that this function needs in order to perform its function-

ality. An operand o ∈ O = {sch, w, vf , df , ef , Fm,i−1}, where sch is a schedule,

the w, vf , df , ef ∈ R are constant values situated in Window, Value, Digit,

and Element elements respectively; Fm,i−1 is the previous function output.

Given the example in Listing 4.1, the function, Fm,1, named TSConstructor, can

be written as:

Fm,1 = (TSConstructor,m, {0 . . . 44640}, 1440),

where m is defined previously; TSConstructor is defined in Section 4.5.2. The func-

tion Fm,2, named Span, can be written as:

Fm,2 = (Span, Fm,1, 0),

where Span is defined in Section 4.5.2.

88

4.4 Formal Representation of WSLA Elements

4.4.6 Formal Representation of the Common Order of WSLA

Elements to Define an SLAParameter

The following assumption has been made to clarify and simplify the application of

measurements, schedule and functions constituting an slap definition.

Assumption: WSLA rarely depends on a single measurement m ∈ M to

represent an SLAParameter, slap. Rather, it applies a set of functions on m,

Fm = {Fm,1, . . . , Fm,|Fm|} , where the function Fm,i, i = 1, . . . , |Fm| is the i-th func-

tion to be applied on m. The functions in Fm can be any of the types specified in

Section 4.4.5. However, from an observation of existing WSLA contracts [16, 17, 54],

a common order in which function types are applied has been obtained. Depending

on the order in which WSLA functions are applied, it is easier to show the ultimate

slap value. This order is adopted when mapping to SDES in Chapter 5 in order to

achieve a clearer insight into the steps involved. Using this order does not eliminate

the applicability of the proposed methodology, both theoretically and in the prac-

tical implementation, to any order through which the functions may applied. This

common order for applying WSLA functions is described in the following steps:

1. Firstly, time series functions are considered to be used only for collecting

measurement values (not values that come from other WSLA functions). This

means that WSLA applies a time series function, TSConstructor, to create

a time series that collects values of m using a schedule, sch. Hence, Fm,1 is

always the TSConstructor function and its output is a series of measurements:

{m(t1), . . . ,m(tk)}, {t1, . . . , tk} ∈ sch,

where m(tj) is the measurement m at time tj, j = 1, . . . , k.

2. Secondly, a function, Fm,2, is applied in this series so that a single output is

produced. All WSLA functions return a single value, except for series con-

structor functions and RateOfChange; these return a series instead of a single

value.

3. Finally, additional functions {Fm,3, . . . , Fm,|Fm|} can be applied so that the

exact slap is obtained.

It should be noted that, in steps 2 and 3 (described earlier), WSLA functions

applied on a set of measurements or a function output may specify an additional

operand, o ∈ O − {sch} (as specified in Section 4.4.5). These WSLA functions can

89

4.5 Defining the Monitoring Semantics of WSLA Elements

be written in a monitoring case as: Fm,2 = (Fname, {m(t1), . . . ,m(tk)}, o), o ∈ R for

step 2, and as Fm,i = (Fname, Fm,i−1, o), o ∈ R, i = 3 . . . |fm| for step 3.

4.5 Defining the Monitoring Semantics of WSLA

Elements

This section adds semantics to WSLA MeasurementDirective and Function ele-

ments depending on the formal representation given in the previous section. This is

to avoid any misconceptions in understanding their meaning, as well as to help in

mapping them correctly later. These semantics are given, depending on the mon-

itoring nature of WSLA, to distinguish them from the stochastic model semantics

presented in Chapter 5 when mapping them to SDES.

4.5.1 The Semantics of Measurement Directives

In the WSLA specification, all measurement directives are used to measure the

specific QoS attributes of an object of a service, such as availability, although WSLA

might not refer to them explicitly. For this reason, a measurement, m ∈M, should

be assigned a precise semantic. Furthermore, it should be specified when to measure

(instants, intervals), and where to measure (provider side, customer side or network

point) [125].

In general, measured QoS metrics (i.e. WSLA measurements) have to be defined

in such a way that gives the same perspective for both a service provider and a

customer. In a service domain, a QoS metric may be referred to in an SLA using

different syntaxes. Efforts have been made by researchers to address the need to

unify metric semantics. An example of this is the work in [44] where the researcher

attempted to enrich his WSDi semantic framework with different syntactical QoS

attributes which had the same semantics. He also set the requirements for formal-

ising QoS descriptions. However, it is has been proven that it is usually hard to

decide on the semantic of a QoS metric without considering the domain that it is

related to [44]. Since the primary domain for WSLA is a web service, the decision

is made by the WslaCP methodology for its measurements to be assigned semantics

depending on this domain.

Table 4.2 provides a brief summary of this section. It states the measurement

directives available in WSLA and then shows three pieces of information for each

measurement directive. In the first, the Semantic assigned to each measurement

directive is specified. This is done by matching it with a common, well-defined QoS

90

4.5 Defining the Monitoring Semantics of WSLA Elements

Table 4.2: Summary of semantics added to the measurement directives

WSLA Measurement Directives

Status/
Status- Invocation Gauge Counter Response Down
Request Count Time Time

Status of
Semantic Availabil- Throughput Queue Throughput Processing Down

ity size Time Time
When to
take a Me- End During End During End During
asurement of interval of interval an interval an interval an interval an interval
Where to
take a Me- server server server server server server
asurement side side side side side side

attribute of service-based systems. Other WSLA measurement directives, that have

well-defined QoS attributes, are assigned one semantic from the number they can

take. The second information that is given is When to take the Measurement

and the third one is Where to take the Measurement. The former specifies

whether the measurement will be taken at an instant or interval of time, while the

latter specifies if the measurement will be taken at the server or customer side. The

content of this table is described when presenting each measurement in what follows.

1- Status and StatusRequest: According to WSLA, StatusRequest gives 1 if

the system is up and 0 otherwise, while Status gives true if the system is up and

false if it is down [17]. This difference is ignored because it does not matter to the

semantics. The measurements follow the syntax in Listing 4.4 with resultType of

“integer” for StatusRequest. The URI is referred to using <RequestURI> tag.

- Semantics: This measurement can be related to the status of the well-known

availability QoS attribute. Availability is the probability that the system is working:

A = u/T,

where, T is a time interval during which the system is observed, and u is the service

uptime during this interval [126]. The status of availability means the system is

either up or down (0 or 1). Thus, this means that T = 1 unit.

- When to take the measurement: since the status of a service operation

should return either 0 or 1 (Yes, No), it has to be assessed at specific instants of time.

This means that, when the WSLA schedule specifies intervals through a period to

91

4.5 Defining the Monitoring Semantics of WSLA Elements

collect the measurement, it considers the measurement to be taken at the end of

each.

- Where to take the measurement: This measure is taken at the provider’s

side. The availability condition of a web service operation is complex and can be

related to different aspects [127, 128]. The web service might be unavailable due to

a software failure (such as when upgrading software or because of system overload),

hardware failure (such as disk or server breakdown), security attack (such as denial of

service attack), or human error (such as adjusting system parameters inaccurately)

[128]. Availability of a service, from a service provider’s perspective, might differ

from that of a customer if the provider does not consider all these aspects of failures.

For this reason, and in order to achieve the same perceived availability by both the

service provider and the customer, the methodology assumes that the service will be

unavailable due to hardware failure only. This means that if the service slows down

due to overload, network clogging, or denial attack, this is not considered as a failure.

This assumption simplifies the job of building the service model necessary for SLA

compliance prediction because the provider can set the parameters related to this

kind of failure better than he/she can do for the rest. This is because parameterising

the probabilities of all kinds of failure in the service model may be too complex or

unrealistic, making it difficult to predict the actual availability.

2- InvocationCount: WSLA defines this as “the number of usages of an oper-

ation per unit time” [17]. In other words, it corresponds to the throughput of a

service operation. Its syntax follows Listing 4.4 with resultType=“integer” and a

<CounterURI> tag for specifying the URI.

- Semantics: This measurement can be related to the well-known throughput

QoS attribute.

Th = CR/T,

where, CR is the number of completed requests during a time interval of length, T .

- When to take the measurement: Since throughput is a counting mecha-

nism, it will be checked during an interval and retrieved at the end of it. This means

that, when WSLA specifies intervals through a period to collect the measurement,

it considers the measurement to be taken during those intervals, not at the end of

them [126].

- Where to take the measurement: The throughput is always checked at the

service provider side in the case of monitoring because it is related only to service

hardware. No other constraints have to be considered that may affect it.

92

4.5 Defining the Monitoring Semantics of WSLA Elements

3- Gauge: This is defined in WSLA as “a non-negative integer that may increase

or decrease; it is used to measure the current value of some entity” [17]. Gauge has

a resultType of “double” and the URI is referred to using <MeasurementURI> tag.

- Semantics: In essence, there is no common QoS metric that relates directly

to this measurement. However, it might be considered as a metric that returns a

current queue size.

- When to take the measurement: The gauge will be checked at specific

instants of time to give the current value of a system component. This means

that, when WSLA specifies intervals through a period to collect the measurement,

it considers the measurement to be taken at the end of each.

- Where to take the measurement: This will be on the server side because

it is usually used to measure a service object that is situated on the provider side.

4- Counter: According to WSLA this “describes the relevant information to

retrieve a counter from the instrumentation of a service or managed resource” [17]. It

is used to count specific events of a service. Counter has a resultType of “integer”

and the URI is referred to using the <MeasurementURI> tag.

Counter and Gauge are added in the latest version of the WSLA specification.

This is because, at first, WSLA had measurement directives that were web service

specific. However, the authors found that they needed a generic counter and gauge

to specify any metric required.

- Semantics: This measurement also corresponds to the throughput of an oper-

ation as in InvocationCount.

- When to take the measure: The counter is checked during the interval and

retrieved at the end of it.

- Where to take the measure: This will be taken at the server side because

the objects whose throughput is measured are situated on the provider side.

5- ResponseTime: This is a well-known QoS metric. One of its different definitions

will be chosen. The syntax of ResponseTime has a resultType= “double” and the

URI is specified inside a <MeasurementURI> tag.

- Semantics: Response time, RT , can be looked at from different perspectives.

For example, it may be considered as processing time, PT :

RT = PT

The work in [129] considered response time, RT , as:

93

4.5 Defining the Monitoring Semantics of WSLA Elements

RT = NL+ PT,

where NL is network latency. The authors in [130] considered a new latency,

called client latency, which was added to the previous one. Accordingly, the response

time is defined as:

RT = CL+NL+ SL,

where, CL is client latency, and SL is server latency (i.e. processing time).

In this methodology, the decision is made to use processing time (service latency)

only as response time; hence, no network and client latencies are considered here.

That is because most often the provider has no control over the rest. This choice

of monitoring semantic for response time makes it easier to parameterise the model

when predicting.

- When to take the measurement: The response time is checked at instant

of time.

- Where to take the measurement: Since response time is chosen to be the

processing time, it is checked at the server side.

6- DownTime: WSLA defines this as it gives a direct reading of the total time

throughout which the system is considered to be at down status [17]. This measure-

ment has a resultType of “double”. Downtime does not specify any URI.

- Semantics: This measurement is the well-known down Time QoS attribute.

It can be defined as [126]:

DT = TT − UT,

where, DT is the down time, TT is the total observed time, and UT is uptime

during the total time. Using availability probability,A, down time can be written

as:

DT =
UT

A
− UT

- When to take the measurement: This down time is checked during the

interval and retrieved at the end of it.

- Where to take the measurement: As in StatusRequest, the down time due

to the network being down is not considered. For this reason, down time will be

checked at the server side.

94

4.5 Defining the Monitoring Semantics of WSLA Elements

4.5.2 Mathematical Definition of WSLA Function Seman-

tics

WSLA functions are represented formally by assigning a mathematical definition for

each of them. This is described in what follows.

1- Time Series Constructor: Most of the time, this function is the first function

to be applied on MeasurementDirective. Furthermore, its output forms the basis

for WSLA’s statistical functions as they are used to store measurement values ac-

cording to a specific Schedule so that additional computations can be performed

on them easily.

A WSLA TSConstructor function creates a time series of a specific size. Each

element in this series is a single measurement or function, evaluated at time specified

in the schedule that it depends on. Formally, this can be defined as:

Definition 11 A WSLA TSConstructor function, denoted as TSConstructor, cre-

ates a series of a specific size, w ∈ N≥0. Each element in this series is a single

measurement, m ∈M , possibly a result of a function, Fm,i ∈ Fm, evaluated at time,

tj ∈ sch, j = 1 . . . k, k ∈ N≥0.

TSConstructor(h,w, sch) = {h(tj), . . . , h(tj+w)}, j + w ≤ k, h ∈M ∪ F

2- Queue Constructor: A WSLA QConstructor function creates a collection of

values of a specific size, w ∈ N≥0, without depending on a schedule. Alternatively,

the values are pushed by events that take these values from a uri and put them in

the queue.

Definition 12 A WSLA QConstructor function, denoted as QConstructor, creates

an array of specific size, w ∈ N. Each element in this array is a single measurement

or function evaluated using some triggering events.

QConstructor(h,w) = {h(i), . . . , h(i+ w)}, i, w ∈ N≥0, h ∈M ∪ F

3- Time Series Select: A WSLA TSSelect function is applied on a time series,

created by the TSConstructor function, to select an element of a specific index, i.

Definition 13 A WSLA TSSelect function, denoted as TSSelect, is defined as:

TSSelect({h(tj), . . . , h(tj+w)}, ti) = h(ti),

where ti ∈ sch, j ≤ i ≤ j + w, j = 1 . . . k, h ∈M ∪ F

95

4.5 Defining the Monitoring Semantics of WSLA Elements

4- Number Greater Than Threshold: A WSLA NumberGreaterThanThreshold

is applied on a time series output to return the total number of elements greater

than a specific value, e.

Definition 14 A WSLA NumberGreaterThanThreshold function, denoted as NGTT,

is defined as:

NGTT ({h(t1), . . . , h(tk)}, e) = |{h(tj)|h(tj) > e, j = 1 . . . k}|,

where e ∈ N≥0, tj ∈ sch, h ∈M ∪ F

5- Number Less Than Threshold: A WSLA NumberLessThanThreshold is ap-

plied on a time series output to return the total number of elements less than a

specific value, e.

Definition 15 A WSLA NumberLessThanThreshold function, denoted as NLTT,

is defined as:

NLTT ({h(t1), . . . , h(tk)}, e) = |{h(tj)|h(tj) < e, j = 1 . . . k}|,

where e ∈ N≥0, tj ∈ sch, h ∈M ∪ F

6- Percentage Greater Than Threshold: A WSLA PercentageGreaterThanTh-

reshold is applied on a time series output to return the percentage of elements

greater than a specific value, e.

Definition 16 A WSLA PercentageGreaterThanThreshold function, denoted as

PGTT, is defined as:

PGTT ({h(t1), . . . , h(tk)}, e) =
NGTT ({h(t1), . . . , h(tk)}, e)

k
∗ 100

7- Percentage Less Than Threshold: A WSLA PercentageLessThanThreshold

is applied on a time series output to return the percentage of elements less than a

specific value, e.

Definition 17 A WSLA PercentageLessThanThreshold function, denoted as PLTT,

is defined as:

PLTT ({h(t1), . . . , h(tk)}, e) =
NLTT ({h(t1), . . . , h(tk)}, e)

k
∗ 100

96

4.5 Defining the Monitoring Semantics of WSLA Elements

8- Span: A WSLA Span is applied on a time series to return for a specific position

in the time series, the maximum length of an uninterrupted sequence of a value, e,

ending at that position.

Definition 18 A WSLA Span function, denoted as Span, is defined as:

Span({h(t1), . . . , h(tk)}, e) = Max(s1, . . . , sk),

where Max is the maximum function and sj, j = 1, . . . , k is defined as follows:

sj =

u if h(tj) = e ∧ . . . ∧ h(tj−u+1) = e ∧ h(tj−u) 6= e,

with e < u < j

0 if h(tj) 6= e

j otherwise (that is, h(t1) = e, . . . , h(tj) = e)

9- Mean: A WSLA Mean is the well-known arithmetic mean applied on a time

series to return its mean.

Definition 19 A WSLA Mean function, denoted as Mean is defined as:

Mean({h(t1), . . . , h(tk)}) =

∑k
i=1 h(ti)

k

10- Median: A WSLA Median is the well-known arithmetic Median for un-

grouped data applied on a time series to return its median.

Definition 20 A WSLA Median function, denoted as Median, of the ordered series

h(tz1), . . . , h(tzk), h(tz1) ≤ h(tzj) ≤ h(tzk) of size k is defined as:

Median({h(tz1), . . . , h(tzk)}) =

h(t k+1

2
) if k is odd,

h(t k
2

)+h(t k
2 +1

)

2 if k is even.

where 0 ≤ z1, zj, zk ≤ k.

11- Size: A WSLA Size is applied on a time series to return its size.

Definition 21 A WSLA Size function, denoted as Size, is defined as:

Size({h(t1), . . . , h(tk)}) = |{h(t1), . . . , h(tk)}| = k

97

4.5 Defining the Monitoring Semantics of WSLA Elements

12- Sum: A WSLA Sum is the well-known arithmetic Sum applied on a time series

to add its numeric elements.

Definition 22 A WSLA Sum function, denoted as Sum, is defined as:

Sum({h(t1), . . . , h(tk)}) =
k∑

j=1

h(tj)

13- Arithmetic Functions: WSLA arithmetic functions are used to divide, add,

multiply or subtract two operands. These operands can be a constant, a measure-

ment, or a function output.

Definition 23 A WSLA Minus/Plus/Divide/Multiply function, denoted as Mi-

nus/Plus/Divide/Multiply, are the well-known arithmetic functions:

Minus(o1, o2) = o1 − o2,

P lus(o1, o2) = o1 + o2,

Divide(o1, o2) = o1/o2,

Multiply(o1, o2) = o1 × o2,

where o1, o2 ∈M ∪ F ∪ Vf , where vf ∈ Vf is an integer value ∈ N≥0.

14- Maximum: A WSLA Max is the well-known maximum function that returns

the maximum value in a series.

Definition 24 A WSLA Max function, denoted as Max, is defined as:

Max({h(t1), . . . , h(tk)}) = h(ta), for some ta ∈ {t1 . . . tk},

where h(ta) ≥ h(ti),∀ti ∈ {t1, . . . , tk}

15- Mode: A WSLA Mode is the well-known mode function applied on the time

series to return the most frequently occurring value within it.

Definition 25 A WSLA Mode function, denoted as Mode, is defined as:

Mode({h(t1), . . . , h(tk)}) = h(ta), for some ta ∈ {t1 . . . tk},

where freq(h(ta)) ≥ freq(h(ti)), ∀ti ∈ {t1 , . . . , tk} and freq(h(ti)) is the frequency with

which the item h(ti) exists in the series.

98

4.6 Related Work

16- Rate of Change: A WSLA RateOfChange is applied on a time series and

returns a new time series containing the rate at which their values have changed.

Definition 26 A WSLA RateOfChange function, denoted as RoC, is defined as:

RoC({h(t1), . . . , h(tk)}, e) = {h(t2)− h(t1)

t2 − t1
, . . . ,

h(tk)− h(tk−1)

tk − tk−1

}, e = tk

17- Round: A WSLA Round is the well-known round function that returns the

decimal number rounded to a specific decimal place, d.

Definition 27 A WSLA Round function, denoted as Round1, is defined as:

Round(n, d) =

[n×10d]

10d
if (10× ((n× 10d)− ([n× 10d]))) < 5

[n×10d]+1
10d

if (10× ((n× 10d)− ([n× 10d]))) ≥ 5

All WSLA functions return a single value, r ∈ R, except for time series construc-

tors TSConstructor and QConstructor, and RoC functions. However, the results of

these functions are always manipulated by another WSLA function to produce a

single value that represents an slap value. According to this, applying the set of all

the WSLA functions available for one slap will produce a single value r ∈ R.

4.6 Related Work

The first requirement for addressing the semantic ambiguity of WSLA contract,

outlined in Section 4.2, is addressed by defining the formal representation of the

structure of WSLA elements through mathematical notations using tuples. The

second requirement is carried out by defining monitoring-related semantics to WSLA

elements. This is achieved by using mathematical formulae representing WSLA

functions and by assigning semantics for WSLA measurement directives.

Semantic ambiguity exists in XML-based SLA specifications other than WSLA

such as the Web Service Offerings Language (WSOL) [131]. Some of these SLA

languages have made steps towards resolving this issue in different ways. For ex-

ample, SLAng achieves precise semantics by modelling its structure using UML2

and OCL constraints3. Another attempt to add rigid semantics to an SLA speci-

fication in the literature is by incorporating ontologies that add formal semantics

1[m] is used to refer to the integer part of the number m.
2http://www.uml.org/
3http://www.omg.org/spec/OCL/2.0/

99

4.7 Conclusion

to a Web Service (WS) description model [44]. In addition, the authors in [132]

expressed WS-agreement schema using the Web Ontology Language (OWL) [133]

and SLO constraints using the Semantic Web Rule Language (SWRL)1 as a rule

language. Since OWL cannot express a relationship between properties, the work in

[41] proposed a new semantic-enabled SLA model for SLA monitoring using OWL-S

ontology for a web service. In this model, the SLO expressions are written using

SWRL to allow both a service provider and a customer to have a common under-

standing when building the contract and to allow the model to be read by a machine

automatically. OWL-S was used in this model to describe terms such as SLA param-

eters, measurements, functions, and service operations. However, the predicate is

defined using SWRL rules to identify violating conditions and the correction actions.

Although OWL-S was designed to describe the functional requirements for a web

service, it has limited ability in terms of describing QoS metrics. For this reason,

OWL-Q was created to complement OWL-S in describing QoS metrics, where QoS

guarantees are represented using SWRL [134].

One of the main reasons for adding semantics to the aforementioned SLA con-

tracts and QoS definitions was to use them in QoS matching where several QoS

offers are compared for equality. Another reason for adding semantics to describe a

web service was to use them in web service discovery, replacing the UDDI’s syntac-

tic discovery [135]. Also, modelling SLO constraints using SWRL rules was used in

achieving automatic SLA monitoring, as in the work in [41].

4.7 Conclusion

This chapter addresses the problem of the semantic ambiguity of WSLA elements.

To eliminate this ambiguity, this chapter provides first a formal representation of the

structure of the main elements. Second, it adds semantics to WSLA measurement

directives whose meaning might be vague for the service provider and consumer;

finally, it adds mathematical definitions to WSLA functions that suit the monitoring

case. The contribution of this chapter is to allow for a better understanding of the

structure and semantics of WSLA which is fundamental for the mapping process.

In the next chapter, this formal definition of WSLA’s structure and semantics is

utilised as the basis for the mapping process to SDES.

1http://www.w3.org/Submission/SWRL/

100

Chapter 5

Formal Mapping of WSLA

Contracts on SDES Models

This chapter covers the second fold of the WslaCP methodology, outlined in Section

3.3.1, to implement theoretically the last six phases of the SlaCP methodology that

were described in Section 3.2.1. WslaCP implementation of the first phase of the

SlaCP (i.e. the SLA Interpretation phase) was described in Chapter 4. This was

achieved by formalising the structure of WSLA elements and adding mathematical

semantics to them. The remaining six phases (i.e. the SLA-Model Mapping, Model

Completion, Model Specialisation, Model Solving, Metric Composition, and Deci-

sion) are implemented and described from a theoretical point of view in this chapter.

This description is presented from the perspective of the SLA-Model Mapping phase

because this phase contains most of the theoretical contributions. Another reason

behind embedding the implementation of the phases in one mapping process is to

provide better integrity and continuity in terms of the flow of the information, and

also because the rest of the subtle and fine-grained details of all phases relate mostly

to the practical implementation of the methodology and are hence described in detail

in the information on the tool implementation in Chapter 6. The mapping process is

considered also as a central point because the WslaCP methodology does not offer

any newly invented solving algorithm; rather, it depends on an existing one and

hence no theoretical contribution has been made regarding this particular issue.

The main contribution of this chapter is the detailed formal mapping of WSLA

contracts on SDES models which is the core of the WslaCP methodology. This

includes the mapping of WSLA operations, measurement directives and time con-

straints on SDES primitives, the mapping of WSLA functions on the model output

(i.e. on the random variables representing the output of the SDES model), and

finally the mapping of the SLO expression as an evaluation function that produces

101

5.1 Outline of the Mapping Process

the SLA compliance probability.

The chapter is organised as follows. In Section 5.1, an outline of the steps

required in the mapping process is presented, each mapping step is described in

Section 5.2 in detail, a discussion is provided in Section 5.3 and finally, the chapter

concludes with Section 5.4.

5.1 Outline of the Mapping Process

In the WslaCP methodology, WSLA elements need to be mapped firstly on an ab-

stract stochastic model description before being translated into a user-chosen mod-

elling formalism. For this reason, the WslaCP methodology uses an SDES formalism

as a canonical form for the stochastic model of the service. The SDES formalism

generalises the notation of the primitives that are used usually in a stochastic model,

such as the set of reward variables as RV, the set of state variables as SV, and the

set of actions as A (this was presented in Section 2.5.1).

The mapping process from WSLA to SDES is depicted in Figure 5.1. This figure

consists of two gray rectangles. The former represents the Formal Semantics of

the elements in the WSLA Document (this is the output of the SLA Interpretation

phase), while the latter represents the components used in the Formal Mapping,

which are the SDES Model, the SDES Reward Variable and the SDES Model

4

WSLA

Document

Formal Mapping

Function on Reward

Values, F(X)

<SLA>

.

..

.

<Operation name="GetQuote"

<SLAParameter name=

"OverloadPercentage"

type="float" unit="Percentage">

<Metric>

OverloadPercentageMetric

</Metric>

</SLAParameter>

 …

<Obligation>

..

<\Obligation>

</SLA>

User

Supply

State

 variables

 or actions

Formal Semantics

S
e
r
v
i
c
e
L
e
v
e
l
-

O
b
j
e
c
t
i
v
e

M
e
a
s
u
r
e
m
e
n
t

D
i
r
e
c
t
i
v
e

1

5

S
c
h
e
d
u
l
e

SLO

Compliance

Probability

4

SDES Model Output

2

Reward Variables RV

Observation Interval

SDES Reward Variable

O
p
e
r
a
t
i
o
n

 SDES Model

State Variables SV,

Actions A

3

int
rv

F
u
n
c
t
i
o
n

Solve

Map

Map

Map

Map

Map

Complete the

model

Evaluation Function

Figure 5.1: The mapping process from WSLA to SDES

102

5.1 Outline of the Mapping Process

Output. The first two components have been placed inside a solid-line rectangle

because they are related to the actual service model while the latter is related to

the output of solving this model.

The mapping process consists of five steps (these are numbered in the figure) that

define a set of mapping rules specifying how different WSLA elements are mapped

to SDES. These are outlined in what follows and then they are described in detail

in the next section.

Step 1: Operation mapping. It provides a systematic translation of WSDL

operations into the SDES model primitives sv ∈ SV and a ∈ A.
Step 2: MeasurementDirective(s) Mapping. It provides a systematic transla-

tion of all measured metrics into the SDES reward variables RV.

Step 3: Schedule Mapping. It provides a systematic translation to obtain

the set of observation intervals, rvint, of the reward variable. This can be a set of

observation intervals that are either instants or intervals of time.

Step 4: Function(s) Mapping. Each WSLA function is associated to a math-

ematical semantic suitable to the stochastic nature of the model output, F (X), in

order to specify further the reward variables in SDES.

Step 5: ServiceLevelObjective Mapping. The outcome of this mapping is an

evaluation function which allows SLO compliance probability to be produced, i.e.,

it determines the probability with which the service level agreed to has been met.

Steps 1, 2 and 3 of this mapping process map WSLA elements to the actual SDES

primitives (solid arrows in Figure 5.1), while steps 4 and 5 map WSLA elements to

the model output represented as random variable X (the dashed arrow in Figure

5.1).

All the aforementioned steps are intended to be automated as much as is possi-

ble. However, some manual steps are still required. As can be seen in Figure 5.1,

the mapping must be aided in its first and second steps by the User to complete

the SDES model creation and to supply the right state variables/actions that are

necessary to define the reward variable. This user interference is pointed out in

Section 5.2.2.

Although this outline promises several mapping steps, it does not include in-

formation regarding the SlaCP SLA-Model Mapping phase only. However, all the

theoretical concepts related to the remaining six phases are described implicitly.

When describing each mapping step in Section 5.2, an indication is made regarding

the elements required from the other phases related to this step.

103

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

5.2 The Detailed Mapping: Adding Stochastic Se-

mantics to WSLA

This section describes the mapping steps outlined in Section 5.1. To illustrate them,

the example of a stock quote service, presented in Listings 4.1 and 4.2, is utilized.

This aids the understanding of the different steps and also allows the reader to

narrow down the theoretical concepts.

Mapping WSLA to SDES means that WSLA elements have to be represented

according to the stochastic nature of the service model rather than the monitoring

nature of the SLA. Before starting the mapping description, it should be recalled

that the SDES model is represented by the following tuple: SDES = (SV,A, S,RV),

where rv ∈ RV is given as a tuple: (rvrate, rvimp, rvint, rvavg), and that the formal

description of WSLA’s SLO elements is given by a tuple slo = (slap, c, v, vs, ve),

where slap = (M,F, sch). Given these tuples, the mapping of the formal WSLA

elements into the SDES primitive is carried out in the following subsections.

5.2.1 Service Operation Mapping

WSLA defines an slap for a specific service object (find line 9 in Listing 4.2). Since

the WSLA service object is mainly an operation [17], then mapping this operation,

op (defined in Definition 8), to SDES will be carried out according to the SLA-Model

Mapping phase, presented in Section 3.2.1. This is as follows:

op is mapped formally as an action aop ∈ A, and a state variable svop ∈ SV,

connected to the input of this action.

Recalling the example in Listing 4.2, the mapping of the service operation, named

GetQuote, is a state variable, svGetQuote ∈ SV , and an action, aGetQuote ∈ A.

If all service objects available in a WSLA document are mapped as pairs of state

variables/actions, a part of the SDES model, consisting of a set of these pairs, can

be produced automatically for the user.

5.2.2 MeasurementDirective(s) Mapping

The formal set that contains WSLA’s seven measurement types was described in

Section 4.4.3 as follows:

M = {Status, StatusRequest, Counter,Gauge,ResponseT ime,DownTime,

InvocationCount}

A measurement, m ∈ M, is the core unit in computing an SLAParameter slap

104

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

value. Hence, its value should be predicted first. Since no runtime measurement

information is available before a service’s deployment, the measurement directive

should be added to the model of this service to produce its expected value. Having

said this, the methodology maps WSLA measurement directives into SDES reward

variables. This includes the determination of three points:

1. The type of reward variable, impulse or rate.

2. The content of its reward function.

3. The time to solve this reward variable, instant or interval.

For determining the type of reward variable that represents a measurement direc-

tive, typically, reward variables of a stochastic model are used for predicting some

performance attributes, as described in Section 4.5.1. Hence, each measurement

directive is expressed as a rate/impulse reward variable in a way suits its semantics.

This mapping is referred to formally using the function MtoRV as follows:

MtoRV : M→ RV

∀m ∈M : MtoRV (m) = rv ∈ RV, rv = (rvrate, rvimp, rvint, rvavg),

where rvrate defines the rate reward function if the reward variable rv is rate-

based, while rvimp defines the impulse reward function otherwise. These reward

functions specify respectively the rewards earned if the model spends time in a

specific state or when an action has fired. The type of reward variable of each

measurement directive will be defined when presenting its mapping.

Regarding the determination of the content of the reward function, after decid-

ing the type of reward variable, its reward function has to be specified. Because a

rate/impulse reward function depends on the model state variables/actions respec-

tively, a correlation to the right primitives in the service model has to be made in

order to build a correct function. Since slap is defined in the WSLA per opera-

tion, its measurement is related to this operation. Accordingly, the reward function

will relate either to the state variable aop or the action svop that results from this

operation mapping. Hence, even though a complete model does not exist yet, the

state variables and actions generated may be used to build the reward function. For

example, InvocationCount is related to the aop action, as discussed later in Section

5.2.2.2, and its reward function returns 1 whenever this action fires. Although it

is reasonable to relate a reward function to a produced model primitive in the way

described earlier, other measurements may not depend on these primitives directly.

105

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

These can be related to primitives that influence aop or svop. For example, Status-

Request is related to the ability of the action aop to fire; hence, its reward function

may be linked to state variables that inhabit the firing of this action. In this case,

the user has to specify the primitives needed. Otherwise, a URI of a measurement

directive may be used to indicate the action or the state variable required for this

function. All the previous aspects are discussed when each measurement mapping

is presented.

Concerning the determination of the time to solve the reward variables, after

deciding what type of reward variable can represent a measurement, the time at

which this variable has to be evaluated (rvint) should be specified. Usually, reward

variables are collected, as defined in [29, 97], at an instant of time, an interval of

time, or a time-averaged interval of time. The boundary of these intervals can stretch

to infinity, producing a steady state measure. Given these types of time evaluation,

which of these best suits a measurement prediction should be specified. WSLA, being

monitoring-centred, makes statements about values observed at regular time instants

that are asynchronous in respect to the system, rather than about states/transitions

of the underlying system or the stochastic model of that system. Consequently, the

model has to evaluate a reward variable for every instant when an observation is

Table 5.1: Summary of Mapping MeasurementDirective(s) to SDES reward variables

WSLA WSLA Measurement Directives
to

SDES Status/
Mapping Status- Invocation Gauge Counter Response Down

Request Count Time Time

rv type rvrate rvimp rvrate rvimp rvrate rvrate

rvint

[lo,hi] lo = hi lo < hi lo = hi lo < hi lo = hi lo < hi

S
D
E
S

P
r
im

it
iv
e
s

rvavg False False False False False False

sv/a svup = 1 svop aop svend svup = 0
Hint for or user aop or user or auri or user or user
reward defined defined or user defined defined
function defined

sv/a svup, svdown aop svop aop svend svup, svdown

Hint for afail, arepair already already already or closed afail, arepair
SDES or user defined defined defined model or user
model defined or auri defined

User availability automated automated availability
Input condition automated automated or auri or svend condition

106

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

made. According to the type of measurement, the evaluation can happen exactly at

a specified instant, or be accumulated between instants. Hence, the reward variable

could be an instant [lo, hi], lo <= i or an interval [lo, hi], lo < hi of times with

rvavg = false. This is described when each measurement mapping is presented.

Table 5.1 summarises all the information needed regarding the mapping of all the

WSLA measurement directive types into SDES reward variables. This information,

given the aforementioned discussion of the three points regarding reward variable

specification, includes: the reward variable type; the type of evaluation interval

rvint and whether it is averaged or not rvavg; the hint provided for the automatic

construction of the reward function; and the hint for the SDES model’s automatic

creation. The input of the user for completing each reward function definition is

also pointed out. This information is presented in detail in the following subsections

where an unambiguous mapping from each measurement, m, to a reward variable,

rv, in SDES is provided.

5.2.2.1 StatusRequest and Status

StatusRequest gives 1 if the system is up and 0 otherwise, while Status gives a

true/false value [17]. This difference is not important when modelling; hence, in the

methodology, they are treated identically.

- Reward variable type and function: In Section 4.5.1, StatusRequest is

defined as the status of an Availability of the service operation. For this reason, this

measurement is mapped as a rate reward variable that returns 1 while the service is

in an up state and 0 otherwise. If Σ∗ ∈ Σ is the set of system states under which the

SDES model is considered to be up and working, then the reward function template

is as follows:

rv =

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
1 if σ ∈ Σ∗

0 otherwise

- Evaluation Interval: WSLA retrieves this measurement at specific time in-

stances. Hence, it is represented as instant of time reward variable: i.e., rvint =

[lo, hi],with lo = hi & rvavg = False.

- Hint for reward function: The assumption is that the reward function

refers to the status of the availability of a WSDL operation represented as aop (or

the service status as a whole). The states under which this operation is working

cannot be derived automatically from WSLA; hence, this operation is user-defined

and no hint can be given. However, if the indication that will be specified in the

107

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

hint for the SDES model is used, then svup = 1 can be used in the reward function.

- Hint for SDES model: This indicates a need to include service up/down

states in the model. If a simple failing/repairing mechanism is desired, this can be

automated by including two state variables, svup = 1, svdown = 0 ∈ SV , to indicate

the up/down states, and two actions, afail, arepair ∈ A, to reflect the fail/repair

procedures. Then, svup should be connected to aop to prevent its firing when this

place is empty. If a more complicated up/down mechanism is desired, the user has

to specify it manually.

- User input: The user has to specify the system states Σ∗ that correspond to

an available service operation.

An example of mapping StatusRequest that exists in Listing 4.2 is as follows:

rv =

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
1 if σ ∈ Σ∗

0 otherwise

rvint = [lo, hi], lo = hi

rvavg = false.

The template of the above reward function is produced automatically and the

user has to define Σ∗, the service’s up states. If the service is working when the

number of CPUs is greater than three, then the user has to specify: the state

variable reflecting this number; the relation “ > ”; and the value 3. In the SDES

model, this equates to the condition svnoOfCPU(σ) > 3,∀σ ∈ Σ. If the the hint

for the SDES model is correct, then the condition svup(σ) = 1 will be specified

automatically.

5.2.2.2 InvocationCount

This is mapped to SDES as follows:

- Reward variable type and function: In Section 4.5.1, InvocationCount

was defined as the throughput of a service operation. Since an impulse reward is

used to reflect the counting mechanism for a specific action, using impulse reward

is more natural for describing this measurement than a rate reward. Accordingly,

the natural manner in which to define InvocationCount in SDES is to associate an

impulse reward of value 1 each time the action, aop ∈ A, that represents the WSDL

operation is fired. Accordingly, the reward function template will be defined as

108

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

follows:

rv =

rvrate(σ) = 0 ∀σ ∈ Σ

rvimp(a) =

{
1 if a = aop

0 otherwise

- Evaluation Interval: The evaluation of the reward variable at instant of

time is not realistic for impulse reward because the action may complete a short

time before or after the instant [97]. The interpretation of WSLA’s usage of this

measurement is the increment in the number of the service invocations from one

reading to the next [17]. For this reason, there is a need to count all the firings of an

action from the last observed instant until the currently observed one. Hence, the

reward variable should be evaluated as an interval of time reward variable between

specific instants to keep track of the increment in the invocation counting, i.e.,

rvint = [lo, hi],with lo < hi, & rvavg = False.

- Hint for reward function: This includes the action that represents the

WSDL operation, aop, which has already been specified in Section 5.2.1. This is

because the invocation of the service is reflected by this action.

- Hint for SDES model: The inclusion of the action, aop, is already specified

in Section 5.2.1. For this reason, no additional hint can be provided.

- User input: Since this measurement refers to the WSDL operation, the

methodology assumes that the reward function refers to the action, aop. However,

if the user has built the model from scratch and has assigned a different name to

the action representing this operation, then he/she has to specify this action as aop.

Hence, unlike StatusRequest where the availability condition should be modelled and

specified, the throughput can be retrieved automatically when modelling the service

operation since there are no other constraints that have to be modelled that may

affect it.

5.2.2.3 Gauge

This is mapped to SDES as follows:

- Reward variable type and function: In Section 4.5.1, Gauge was defined

as returning the current value or queue size of a service entity. Hence, it can be

mapped as a reward variable that returns the current value of an SDES primitive.

In essence, Gauge corresponds to the current value of a state variable and, in SDES

terms, rate as well as impulse rewards can add to it. The reward definition is

then unrestricted, and the user can assign any rewards to the gauge. However,

the methodology provides a special gauge, corresponding to a single state variable

representing the gauge value (which is usually the case). Depending on the model

109

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

at hand, this simplifies the job of the user. If it is assumed that the state variable

that holds the number of a particular task in the service is svop ∈ SV , as defined

in Section 5.2.1, with svop(σ) being the value of svop in a state σ, then the reward

function template is defined as:

rv =

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
svop(σ) ∀σ ∈ Σ

0 otherwise

- Evaluation Interval: The reward variable is an instant of time variable

to give the current value of a service entity represented in a state variable, i.e.,

rvint = [lo, hi],with lo = hi & rvavg = False.

- Hint for reward function: This includes the state variable svop, which

represents the requests queuing for the WSDL operation; this has already been

specified in Section 5.2.1.

- Hint for SDES model: The state variable svop is already specified. For this

reason, no additional hint can be provided.

- User input: Since this measurement refers to the WSDL operation, the

methodology assumes that the reward function refers automatically to the state

variable svop retrieved in Section 5.2.1. However, if this state variable is not the

relevant one or if the user built the model and assigned a different name to the state

variable representing the incoming requests to the operation, then the user should

choose or introduce a state variable svop.

5.2.2.4 Counter

This is mapped to SDES as follows:

- Reward variable type and function: In Section 4.5.1, Counter was defined

as being related to the throughput of a service operation. For this reason, it can

be mapped as an impulse reward variable of an action ai ∈ A in the model as in

InvocationCount. The only difference is that it can refer to any action in the model.

rv =

rvrate(σ) = 0 ∀σ ∈ Σ

rvimp(a) =

{
1 if a = ai

0 otherwise

- Evaluation Interval: This reward variable is an interval of time reward

variable, i.e., rvint = [lo, hi],with lo < hi & rvavg = False.

- Hint for reward function: This includes an action that represents the WSDL

operation aop which was already specified in Section 5.2.1. If this action is not the

110

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

intended one, the measurement URI can be used as a hint to the required action

that performs a special function. In the example below, ipPacketsIn hints to choose

an action that indicates an IP packet arrival.

<MeasurementDirective xsi:type="wsla:Counter" resultType="double">

<MeasurementURI>http://support1.com/ipPacketsIn</MeasurementURI>

<MeasurementDirective>

- Hint for SDES model: No additional hint can be provided since the action

aop is already specified. However, if the action aop is not the one aimed to measure

its counter, a URI value can hint to add an action auri that represents it.

- User input: By default, the reward function refers automatically to the action

representing the WSDL operation, in this case, ai = aop so no input is required.

However, if this is not the case, the user has to specify the action ai.

5.2.2.5 ResponseTime

This is mapped to SDES as follows:

- Reward variable type and function: To express the response time in terms

of rewards, different methods can be used. For example, an additional state variable

svend ∈ SV can be added to the SDES model to signal the receipt of the response.

In this case, svend is initially set to 0 and can jump to 1 once only, indicating the

response has been received. Then, RT (t), the probability that the response time is

less than t, is equal to the probability that the state variable is 1 at time t. Hence,

the response time of an operation is determined by checking, at each time instance,

if the state variable equals 1. That is:

RT (t) = P (response time ≤ t) = P (svend(σ) = 1 at time t)

This is represented by using a rate-based reward function such as:

rv =

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
1 if σ ∈ Σ∗

0 otherwise

where Σ∗ represents all system states σ and where svend(σ) = 1. The response

time distribution is then computed by determining the expected reward at time

t. This leaves the user with one complicating factor, one that is well-known when

computing response times: response times computed in above manner depend on

the initial state. Often it is appropriate to take the steady-state distribution as the

initial state, but this depends on the circumstances. Hence, it can be left to the

111

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

user to set an appropriate initial state. This is not completely satisfactory, since it

requires the user to possess good modelling judgment.

Another way of computing response time is when the model is closed. In this

case, the state variable svop can be used as an indicator of whether a response has

been returned. However, this may be useful if the model has only one user or under

an assumption that the first request leaving svop is the first one to return to it.

- Evaluation Interval: This reward variable is an instant of time reward vari-

able to check the service response at this instant, i.e., rvint = [lo, hi],with lo = hi &

rvavg = False.

- Hint for reward function: This refers to the response time of the WSDL

operation aop. Hence, if the first type of computing response time is used, the hint

that can be offered to the user is to use the additional state variable svend that

reflects the receipt of the response. However, if the closed model response time is

used, the state variable svop, specified in Section 5.2.1, can be used in the reward

function to indicate the receipt of the response.

- Hint for SDES model: As specified in the reward function’s hint, this

measurement can indicate that the user should add a state variable that reflects the

response receipt or should consider a closed model of the service.

- User input: By default, the reward function can also refer to the svop if the

closed model is used. However, if this is not the case, the user has to specify the

state variable svend = 0 in the model and set to 1 when the response is received; the

user also has to determine an appropriate initial state for the model.

5.2.2.6 DownTime

This is mapped to SDES as follows:

- Reward variable type and function: Since DownTime gives the total down

time of an operation, the mapping is similar to that of Status, but is measured as

an interval of time rather than an instant of time.

rv =

rvimp(a) = 0 ∀a ∈ A

rvrate(σ) =

{
0 if σ ∈ Σ∗

1 otherwise

where Σ∗ ∈ Σ is the set of system state under which this SDES model is consid-

ered to be up. Hence, this reward function returns 0 if the model resides in one of

these up states.

- Evaluation Interval: This reward variable is an interval of time reward

variable to check the system’s down period. This means: rvint = [lo, hi],with lo < hi

112

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

and rvavg = False.

- Hint for reward function: This is the same as the one defined in Section

5.2.2.1. However, svup = 0 should be used in the reward function instead.

- Hint for SDES model: This is the same as the one defined in Section 5.2.2.1.

- User input: The user has to specify the states Σ∗ that correspond to an

available service, as with the StatusRequest user input defined in Section 5.2.2.1.

The outcome of the mapping of the service operation and the measurement

directives’ hints (and after the user has completed the model creation) represents a

complete service model that is the outcome of the SlaCP Model Completion phase.

5.2.3 Schedule Mapping

After mapping each measurement m ∈M to a specific reward variable rv ∈ RV and

determining if it is an instant or interval of time variable, what these instants/inter-

vals are needs to be determined. For this reason, it is of particular interest to map

the WSLA monitoring times defined in the schedule, sch, to time in SDES. WSLA’s

schedule, sch, is defined in Definition 9 as a set of time points as follows:

sch = {t1, . . . , tk}; t1 = s, tj+1 = tj + i, j = 1, . . . , k − 2, tk = e

This is depicted in the lower part of Figure 5.2. For simplicity, the methodology

considers the starting time as the zero instant t1 = 0 and the end time tk is the sub-

traction of the start date and the end date taken from the WSLA. This subtraction

value is represented according to the smallest measures for the increment i.

These time points of WSLA are mapped onto an SDES observation interval.

Start
s

End
e

Period
k elements

Interval
i

Interval of Time
Observation Interval

Instant of Time
Observation Interval

],[
jj

j
int

ttrv

k
t

SD
ES

W

SL
A

1
t

],[
1

jjjint

ttrv

Figure 5.2: Mapping the WSLA schedule into the SDES observation interval

113

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

Since SDES has a primitive rvint (defined in Definition 2) that defines a single

observation interval for a reward variable rv ∈ RV, there is a need to define a set

{rvint} that contains multiple observation intervals for each reward variable:

{rvint} = {rvintj |rvintj = [loj, hij]}, loj, hij ∈ R≥0, j = 1, . . . , k

Because the reward variable rv ∈ RV could be either an instant or interval, the

boundaries loj, hij of each rvintj will vary accordingly.

In cases where m ∈ M is mapped as an instant of time reward variable, then

loj = hij in each observation interval rvintj . Hence, sch is mapped as a set of

instants of time observation intervals as depicted in the right upper part of Figure

5.2. This set is written as:

{rvint} = {[tj, tj]}, j = 1, . . . , k.

However, if m ∈ M is mapped as an interval of time reward variable, then

loj < hij in each observation interval rvintj . In this case, sch is mapped as a set of

intervals of time observation intervals where each interval is between two sequential

time points in sch. This is as depicted in the left upper part of Figure 5.2. This set

is written formally as:

{rvint} = {[tj, tj+1]}, j = 1, . . . , k − 1.

An example of mapping the schedule in line number 2 of Listing 4.2 to the SDES

model is as follows. Since StatusRequest is an instant of time reward variable, the

model needs to provide instant of time results at the following points in time:

{rvint} = {[0; 0]; [1; 1]; . . . ; [44640; 44640]}

Here, the unit of the increment time is in minutes (line 7); hence the start time

point is 0 and the end time of 44640 is obtained by expressing one month (31 days)

in minutes.

The outcome of mapping measurement directives and schedule (after translating

them to a concrete stochastic model) represents the SlaCP Model Specialisation

phase. This contains a complete reward model ready to be solved. For the next

step, this model is assumed to be solved and its outcomes are obtained.

114

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

5.2.4 Function(s) Mapping

The formal set that contains WSLA’s function types was described in Section 4.4.5

as follows:

F = {TSConstructor ,QConstructor ,TSSelect ,Size,Mean,Median,Mode,Round ,

Sum,Max ,ValueOccurs,Span,RateOFChange,PercentageGreaterThanTh−

reshold ,PercentageLessThanThreshold ,NumberGreaterThanThreshold ,

NumberLessThanThreshold ,ArithmeticFunction}

These functions are not mapped into the actual SDES primitives, but on the

results of solving the reward variables. In the previous three sections, all the elements

required for preparing the reward model were discussed and hence the Model Solving

phase can be conducted. During this phase, the solver has to solve the model to

produce the expected values of the reward variables. These values are the input of

WSLA functions which raises another difficulty when applying these functions to the

values produced. This is because WSLA, being monitoring-dependent, has an input

of ∈ N≥0 to most of its functions, while the output of the model is expected values or

distribution. Consequently, WSLA functions must be mapped to suitable derivations

from the result of the SDES model. In order to clarify what these derivations are,

the mapping is provided for each of the steps, as presented in Section 4.4.6. This

describes the common order in which WSLA elements are applied:

1. Since a measurement is mapped as an rv and a schedule is mapped as {rvint},
then the time series constructor function in SDES evaluates the reward variable

rv ∈ RV for each evaluation interval in {rvint}. This is expressed as a set:

{rv(t1), . . . , rv(tk)},

where rv(tj) is the reward variable with the evaluation interval rvintj = [tj, tj]

in the case of an instant of time reward variable, and rvintj = [tj, tj+1] in

the case of an interval of time reward variable. In SDES, each rv(tj) can be

thought of as a random variable, Xtj : Σ → R. Accordingly, the previous set

can be written as a set of random variables as follows:

{Xt1 , . . . , Xtk}

2. The function Fm,2 is applied on the above set of random variables. Any func-

tion over a set of random variables results in a new random variable whose

115

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

probability distribution is determined by the probability distribution of each

random variable [136].

XFm,2 = Fm,2(Xt1 , . . . , Xtk)

3. The rest of the functions Fm,3, . . . , Fm,|Fm| in the set Fm will be applied in

sequence. This also results in a new random variable each time a new function

is applied.

XFm,i
= Fm,i(XFm,i−1

), i = 3, . . . , |Fm|

The random variableXFm,|Fm|
that results from applying the last function Fm,|Fm| ∈

Fm, represents the value of slap.

If WSLA functions specify an additional operand o ∈ O − {sch} (as speci-

fied in Section 4.4.6), these functions after mapping to SDES can be written as:

Fm,2(Xt1 , . . . , Xtk , o), o ∈ R, for step 2 and as Fm,i(XFm,i−1, o), o ∈ R, for step 3.

In what follows, an exact mapping of each WSLA function is described. The

functions are mapped according to the mathematical definition given in Section

4.5.2 but with stochastic model semantics which is represented as a set of random

variables.

1- Time Series Constructor: The time series constructor function that represents

the reward variable values taken according to specified intervals is already defined

in the first step presented earlier, as a set of random variables:

TSConstructor(rv, {rvint}, w) = {Xtj , . . . , Xtj+w
},

where j + w ≤ k, and Xtj represents the random variable evaluated during rvintj ∈
{rvint}. The values TSConstructor(m, sch, w) = m(tj), . . . ,m(tj+w) when monitor-

ing (Definition 11) represents only one realisation xitj , . . . , xitj+w
of Xtj , . . . , Xtj+w

after mapping. If j = 1, w = k, then

TSConstructor(rv, {rvint}, 1) = {Xtk , . . . , Xtk},

The output random variables can be continuous or discrete depending on the

measurement type. For example, response time and down time can take any number

∈ R≥0 while the other measurements take a discrete value. Status can take either 0

or 1, while counter, gauge, and invocation count can take any number ∈ N≥0.

2- Queue Constructor: This function is monitoring-dependent because it depends

on events, that are implemented in deployment stage, to push the values inside the

queue. For this reason, it is treated like the TSConstructor function in the context

116

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

of WSLA compliance prediction. Hence, the events are replaced by a schedule and

the scheduling choice is left to the user.

3- Time Series Select: The time series select function after mapping to SDES

output represents one random variable, Xtj , at an observation interval, rvintj , of the

set of random variables representing the output of the TSConstructor.

TSSelect({Xt1 , . . . , Xtk}, rvintj) = Xtj ,

where j ∈ {1 . . . k}. The value TSSelect(m(t1),m(tk), tj) = m(tj) when mon-

itoring (Definition 13) represents one realisation xitj of Xtj after mapping, where

i ∈ {1, . . . , n} and n is the number of realisation.

4- Number Greater than Threshold: The NGTT function is applied on a set

of random variables to return a new random variable, XNGTT , in which each ele-

ment, xiNGTT
, represents the number of elements greater than a threshold in the i-th

realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

NGTT ({Xt1 , . . . , Xtk}, e) = XNGTT ,

where xiNGTT
∈ XNGTT is given as:

xiNGTT
= |{xitj |xitj > e, j ∈ {1, . . . , k}}|, i ∈ {1, . . . , n},

where n is the number of realisations.

5- Number Less than Threshold: The NLTT function is applied on a set of

random variables to return a new random variable, XNLTT , in which each element,

xiNLTT
, represents the number of elements less than a threshold in the i-th realisation

{xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

NLTT ({Xt1 , . . . , Xtk}, e) = XNLTT ,

where xiNLTT
∈ XNLTT is given as:

xiNLTT
= |{xitj |xitj < e, j ∈ {1, . . . , k}}|, i ∈ {1, . . . , n},

where n is the number of realisations.

6- Percentage Greater than Threshold: The PGTT function is applied on a

set of random variables to return a new random variable, XPGTT , in which each

element, xiPGTT
, represents the percentage of elements greater than a threshold in

the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

117

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

PGTT ({Xt1 , . . . , Xtk}, e) = XPGTT ,

where xiPGTT
∈ XPGTT is given as:

xiPGTT
=
|{xitj |xitj > e, j ∈ {1, . . . , k}}|

k
, i ∈ {1, . . . , n},

where n is the number of realisations.

7- Percentage Less than Threshold: The PLTT function is applied on a set

of random variables to return a new random variable, XPLTT , in which each ele-

ment, xiPLTT
, represents the percentage of elements less than a threshold in the i-th

realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

PLTT ({Xt1 , . . . , Xtk}, e) = XPLTT ,

where xiPLTT
∈ XPLTT is given as:

xiPLTT
=
|{xitj |xitj < e, j ∈ {1, . . . , k}}|

k
, i ∈ {1, . . . , n},

where n is the number of realisations.

8- Span:

The Span function is applied on a set of random variables to return a new random

variable, XSpan, in which each element, xiSpan
, represents the maximum number

of consecutive occurrences of a value, v, in the i-th realisation {xit1 , . . . , xitk} of

{Xt1 , . . . , Xtk}.

Span({Xt1 , . . . , Xtk}, e) = XSpan,

where xiSpan
∈ XSpan, i ∈ {1 . . . n} is given as:

xiSpan
= Max({v1, . . . , vk}),

where Max is the function that return the maximum value in a set, and vj, j ∈
{1, . . . , k} is given as:

vj =

u if xitj = e ∧ . . . ∧ xitj−u+1

= e ∧ xitj−u
6= e,

with e < u < j

0 if xitj 6= e

i otherwise (that is, xit1 = e, . . . , xitj = e)

where n is the number of realisations.

118

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

9- Mean: The Mean function is applied on a set of random variables to return a

new random variable, XMean, in which each element, xiMean
, represents the mean of

the elements in the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

Mean({Xt1 , . . . , Xtk}) = XMean,

where xiMean
∈ XMean is given as:

xiMean
=

∑k
j=1(xitj)

k
, i ∈ {1, . . . , n}

where n is the number of realisations.

10- Median: The Median function is applied on a set of random variables to

return a new random variable, XMedian, in which each element, xiMedian
, represents

the median of the elements in the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

Median({Xt1 , . . . , Xtk}) = XMedian,

Suppose that xitz1 , . . . , xitzk , xitz1 ≤ xitzj ≤ xitzk , 0 ≤ z1, zj, zk ≤ k, is the ordered

i-th realisation, then xiMedian
∈ XMedian, i ∈ {1, . . . , n} is given as:

xiMedian
=

xit k+1

2

, if k is odd,

xit k
2

+xit k
2 +1

2
, if k is even.

where n is the number of realisations.

11- Size: Size is applied on a set of random variables to return a new random

variable, XSize, in which each element, xiSize
, represents the number of elements in

the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

Size({Xt1 , . . . , Xtk}) = XSize,

where xiSize
∈ XSize is given as:

xiSize
= |{xit1 , . . . , xitk , j ∈ {1, . . . , k}}|, i ∈ {1, . . . , n}

where n is the number of realisations.

12- Sum: Sum is applied on a set of random variables to return a new random

variable, XSum, in which each element, xiSum
, represents the summation of elements

in the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

119

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

Sum({Xt1 , . . . , Xtk}) = XSum,

where xiSum
∈ XSum is given as:

xiSum
=

k∑
j=1

(xitj), i ∈ {1, . . . , n},

where n is the number of realisations.

13- Arithmetic Functions: Arithmetic functions are used when predicting to

divide, add, multiply or subtract two operands. These operands can be a random

variable Xtj , a constant, or a function output. If arithmetic functions are applied

on two random variables, they return a new random variable, XArithmeticFunction,

in which each element, xiArithmeticFunction
, represents the result from applying the

arithmetic function on the i-th realisation of each random variable i.e. {xitj , xitw}
of {Xtj , Xtw}. For example, if the arithmetic function is Add, it is applied on two

random variables as follows:

Add(Xtj +Xtw) = Xtj +Xtw = XAdd,

where xiAdd
∈ XAdd is given as:

xiAdd
= (xitj + xitw); j, w ∈ {1, . . . , k}; i ∈ {1, . . . , n},

where n is the number of realisations.

14- Maximum: The Max function is applied on a set of random variables to

return a new random variable, XMax, in which each element, xiMax
, represents the

maximum of the elements in the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

Max({Xt1 , . . . , Xtk}) = XMax,

where xiMax
∈ XMax, i ∈ {1 . . . n} is given as:

xiMax
= Max({xit1 , . . . , xitk}) = xita , for some a ∈ {1, . . . , k},

where, xita ≥ xitj ,∀j ∈ {1, . . . , k}, and n is the number of realisations.

15- Mode: Mode is applied on a set of random variables to return a new random

variable, XMode, in which each element, xiMode
, represents the mode of the elements

in the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

120

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

Mode({Xt1 , . . . , Xtk}) = XMode,

where xiMode
∈ XMode, i ∈ {1, . . . , n} is given as:

xiMode
= Mode({xit1 , . . . , xitk}) = xita , for some a ∈ {1, . . . , k},

where, freq(xita) ≥ freq(xitj), ∀j ∈ {1, . . . , k}, where freq(xita) is the frequency at

which the item xita exists in the series, and n is the number of realisations.

16- RateOfChange: The RoC function is applied on a set of random variables to

return a new random variable, XRoC , in which each element, xiRoC
, represents the

rate of change of the elements in the i-th realisation {xit1 , . . . , xitk} of {Xt1 , . . . , Xtk}.

RoC({Xt1 , . . . , Xtk}, e) = XRoC ,

where e = rvintk , and xiRoC
∈ XRoC , i ∈ {1, . . . , n} is given as:

xiRoC
= {

xit2 − xit1
t2 − t1

, . . . ,
xitk − xitk−1

tk − tk−1

}, j ∈ {1, . . . , k}

where n is the number of realisations.

17- Round: If Round is applied on a random variable Xtj , it returns a new random

variable, XRound, in which each element, xiRound
, represents the decimal number

rounded to a specific decimal place, d, for the i-th realisation xitj of Xtj .

Round(Xtj , d) = XRound,

where xiRound
∈ XRound, i ∈ {1, . . . , n} is given as:

xiRound
=

[xitj

×10d]

10d
if (10× ((xitj × 10d)− ([xitj × 10d]))) < 5

[xitj
×10d]+1

10d
if (10× ((xitj × 10d)− ([xitj × 10d]))) ≥ 5

where j ∈ {1, . . . , k}, and n is the number of realisations.

An example of mapping the functions in Listing 4.2 to the SDES model is as

follows. In this example, two functions are identified. The first one is the time

series function Fm,1 named TSConstructor which is mapped to a set of random

variables {Xt1 , . . . , Xtk}. This represents the reward variable at each time instant.

The random variables’ state space is {0, 1}, since the system can be either up (1) or

down (0). Thus, for j = 1, . . . , k:

121

5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA

Xtj =

{
1 if system is up at time tj

0 if system is down at time tj

The Fm,2 named Span is the second function. It counts the number of consecutive

random variables with an identical value, which is 0 in this example. For j = 1, . . . , k

in each of the n realisations, the j-th element of the xiSpan
∈ XSpan, as given in the

formal definition of Span in this section, then is:

vj =

u if xitj = 0 ∧ . . . ∧ xitj−u+1

= 0 ∧ xitj−u
= 1,

with 0 < u < j

0 if xitj = 1

j otherwise (that is, xit1 = 0, . . . , xitj = 0)

The outcome of the step of mapping the functions represents the SlaCP Metric

Composition phase. In this phase, all the functions available in WSLA are applied

on the model outcome to return a single random variable for each slap. In the next

section, the Decision phase is conducted by using the evaluation function which

results from mapping the SLO to produce the WSLA compliance probability.

5.2.5 SLO Threshold Mapping

In the previous section, the mapping of all the functions in the set Fm results in a

single random variable XFm,|Fm|
. This represents SLAParameter, slap. Hence, the

random variable Xslap can be defined as:

Xslap , XFm,|Fm|

Depending on this random variable, an slo will be evaluated. This is the last step

in the mapping process and in the methodology as a whole. The evaluation function,

Eval, maps the random variable into a single value representing the compliance

probability:

Eval(Xslap) = pr ∈ [0, 1]

This evaluation is accomplished by performing a comparison of a type c of an

slap value against a value v (as defined in Section 4.4.1.1). For example, if c =′≤′

then the probability that an slo is met is as follows:

pr = P (slo) = P (Xslap ≤ v)

122

5.3 Discussion

Note that vs and ve of the validity period specified for an slo have not been

considered in the evaluation function of slo. This is because they have often the

same value as the start s and the end e period of the schedule sch defined within

the slap. Thus, vs and ve are implicit in the definition of sch and hence all values

of slap are already between vs and ve.

An example of mapping the SLO in Listing 4.1 to SDES is as follows. In this

example, the SLO is satisfied if all Span values for j = 1, . . . , k are smaller than the

agreed value of v = 10. So, the slo is evaluated using the random variable XSpan,

that is:

P (slo) = P (Xslap < 10) = P (XSpan < 10)

5.3 Discussion

In this section, a number of questions are addressed regarding some aspects of the

mapping process. These questions are as follows:

1. Why are WSLA functions not mapped on the model primitives?

2. Does the mapping process work for a composite service?

3. Can the methodology work for different function orders?

4. Why was the choice made to use transient reward variables instead of steady-

state reward variables?

5. How can the initial state distribution that is necessary for solving the model

be retrieved?

6. Is there a different way of computing the response time value?

7. How does the methodology help in providing a service model?

The answer to the first question “Why are WSLA functions not mapped on the

model primitives?” is as follows: In this methodology, the measurement directives

are mapped as reward variables on the SDES model automatically. Then, this

model is solved to produce a prediction of these values. Later, the remaining WSLA

functions are mapped on the model results (not directly on the model primitives) to

produce the SLA parameter; then, an evaluation of the SLO compliance is carried out

accordingly. Hence, in this methodology, the model is used to predict measurement

directive values only. Another way of predicting SLOs could be to map the whole

SLO expression, and not only a measurement, on the model: i.e. including WSLA

123

5.3 Discussion

functions as part of the reward variable. Although this might be straightforward for

some functions, such as Mean, it is prohibited by the nature of the tool solvers for

others. This is because WSLA functions depend on the value of a reward variable

at many instants of time not only a single one. However, the tool solver cannot

use the results of a reward variable evaluated at specific instant as an input to

the same reward variable in the same model [34]. In other words, measurement

directives cannot be predicted and used in the same model in the same run. For this

reason, the model is used to predict measurement directive only. In the early stage

of this research work, some WSLA functions were mapped as a part of the reward

function. This was implemented for the SRN model and the SPNP tool solver [137].

Nevertheless, after realising the aforementioned problem, the direction was changed

so that WSLA functions are now mapped instead on the solver output, in particular

on the random variable realisations.

For the second question “Does the mapping process work for a composite ser-

vice?”, in a composite service, each service has an SLA with each of the other

services. Hence, the methodology of predicting WSLA compliance will not differ

whether it is for a composite or a single service because each SLA between two ser-

vices is mapped independently. SLAParameter (and measurement directive in turn)

is usually defined for a specific operation inside the SLA, not for all the services’

operation in a single service. As an example, if WSLA specifies a response time

measurement, it is for a specific operation in the composite service, not the overall

response time for all operations of all services. Hence, the mapping process can be

accomplished as normal. The only difficulty in the case of a composite service might

be in producing an adequate model that is able to represent the communication

among the services correctly.

Regarding to the third question “Can the methodology work for different function

orders?”, the choice of the order of the function applications selected in Section 5.2.4

will not affect the applicability of the WslaCP methodology as the functions can be

applied on a reward variable in any other order. The only reason for the selected

order is because this is the most common; it also allows the description of the

mapping to be clearer. In a case where the time constructor function is not the

first to be applied on the reward variable, then it might be that each instant of a

reward variable is computed separately by different calls of the solver (rather than

producing a reward variable directly at multiple instances).

The answer to the fourth question “Why was the choice made to use transient

reward variables instead of steady-state reward variables?” is as follows: The method-

ology tries to emulate the monitoring case specified in WSLA when the mapping to

124

5.3 Discussion

SDES is carried out. For this reason, the reward variable is assumed to be solved

at an instant or interval of time rather than in a steady state since it is more nat-

ural for the dynamic changes of the service. Another way of mapping the time

for solving the reward variable is by using steady state metrics and investigating

how these can correspond to transient reward metrics. However, the theoretically

challenging question of how time-dependent metrics (specified via monitoring times)

can be expressed approximately as steady-state measures (for reasons of efficiency)

is challenging. Also, because the problem of applying WSLA functions on suitable

derivations of these steady-state metrics will raise its head again.

For the fifth question “How can the initial state distribution that is necessary for

solving the model be retrieved?”, the problem of providing the correct initial state

distribution (which is important, not only for response time evaluation, but for any

transient measure) is a delicate task that is not (and probably cannot be) supported

by the automatic mapping process proposed in this chapter. Hence, it is assumed

that parameterising the model is achieved by a user.

Regarding the sixth question “Is there a different way of computing the response

time value?”, there is a cleaner way of analysing the probability distribution of a

response time in the models than that proposed in the mapping. This might be

done by using passage time computation methods. However, since the methodology

aims to represent measurements as reward variables, the choice has been to adhere

to the method proposed in this chapter.

The answer to the seventh question “How does the methodology help in providing

a service model?” is as follows: Using the operations mapping presented in Section

5.2.1, the user can have a set of pairs, each containing a state variable and an

action. Another piece of information that can help in the automatic creation of

a model that suits WSLA, is to consider the type of measurement directives that

exists in a WSLA document. Knowing this, the user will obtain some idea of and an

insight into what WSLA expects the model to pertain to and produce. For example,

if a measurement StatusRequest exists in a WSLA document, the user is informed

that he/she should consider in the model how that the service might go down. This

can be supported either manually or automatically. The hints indicated by the

existence of measurement were discussed in Section 5.2.2. For example, information

for building the service model resulting from mapping WSLA elements to SDES, as

shown in Listing 4.2, appears in Table 5.2.

Although this partial model is not complete and lacks some essential informa-

tion, such as including other state variables/actions, parameterising the delay of its

125

5.4 Conclusion

Table 5.2: The part of the service model as a result of mapping WSLA elements in
Listing 4.2 to SDES

SDES
WSLA State Variables SV Actions A

op GetQuote svGetQuote ∈ SV aGetQuote ∈ A

m StatusRequest svup, svdown ∈ SV afail, arepair ∈ A

actions, and determining the initial state, it helps a user of the methodology by of-

fering a basis for constructing the complete service model when this job is delegated

to him/her. Another technique to make sure that the model reflects all the needs

of WSLA, is to consider all the hints from all types of measurement directive and

then to include them in the model so that the model can accommodate any future

changes in the WSLA contract.

5.4 Conclusion

This chapter describes the second fold of the WslaCP methodology that theoreti-

cally implements the final six phases of the SlaCP methodology. The contribution of

this chapter is to describe the mapping of WSLA contracts on SDES models. This

was achieved by conducting a mapping process of five steps: mapping operations as

model primitives, mapping measurement directives as reward variables, mapping a

schedule as observation intervals, mapping functions to suitable derivations from the

model’s results, and finally, mapping an SLO into an evaluation function that per-

forms the subsequent check of the adequacy of the modelled service with respect to

the service level objective threshold. The mapping process aimed to be automated;

however, the role of the user remains a requisite, even if the rewards function is

standardised in a template. The user’s role is to complete the model definition first

and then to identify the incarnation, in the model, of the specified SDES primitives

in the reward variable.

126

Chapter 6

A Software Tool Architecture for

SLA Compliance Prediction

This chapter addresses the need to construct a software tool that supports the SLA

compliance prediction methodology. The first part of this chapter employs the theo-

retical foundation of the SlaCP methodology, described in Section 3.2.1, in designing

a general tool architecture that aids its users to predict the probability of SLA com-

pliance. This was indicated in the tool designer perspective presented in Section

3.2.3. The contribution made by this part lies in providing a set of architectural

components for building the SlaCP tool and describing the design of each compo-

nent. The design of these components focuses on increasing the tool’s modularity

in order to accommodate different SLA languages and several stochastic models. It

also makes the most of the available solutions to automate, as much as possible, the

mapping of SLA elements to a stochastic model which leads to the prediction of the

required results. The second part of this chapter implements the proposed design of

the tool for WSLA and Stochastic Petri Net (SPN) models by employing the WslaCP

methodology presented in Chapters 4 and 5. The contribution of this part involves,

firstly, constructing the SDESsch schema to provide a structured machine-readable

language that represents the model-related primitives produced from mapping SLA

to SDES. Secondly, it describes the implementation of each component proposed in

the tool architectural design and shows how they work together.

This chapter is organised as follows: Section 6.1 recaps essentials concerning

the SlaCP methodology and introduces the common stages used by researchers in

the process of constructing a software tool. These stages are described in detail

in Section 6.2 by describing the tool’s requirements and then the tool architecture

with its design. This section provides the detailed description of each architectural

component and its design regardless of the type of SLA document or stochastic

127

6.1 Introduction

model. The implementation of these design components is presented in Section

6.3. Section 6.4 then provides a related discussion concerning the tool’s design and

implementation. Finally, Section 6.5 concludes the chapter.

6.1 Introduction

The design of the SlaCP methodology proposed in Section 3.2.1 made it possible,

through seven phases, to predict the probability of a service conforming to a prede-

fined SLA. This was accomplished by performing the mapping of SLA metrics into

stochastic model primitives, reward variables, and a set of functions defined on this

model’s output. Solving the model to generate the required results allows SlaCP to

produce the likelihood of conforming to the SLO thresholds.

Since the SlaCP methodology incorporates seven interdependent phases, it is im-

portant to support the user with a software tool that exploits it. Having a tool that

utilises the methodology’s phases helps in automating their functionality as much

as possible. Furthermore, it assists the user in choosing the correct inputs required

for completing the prediction process when full automation is not possible. To con-

struct such a tool, the SlaCP tool architecture has to be designed and implemented

according to the theoretical basis of the design of the SlaCP methodology (addressed

in Section 3.2.1) and in a way that reflects a user’s perspective (addressed in Section

3.2.2). Attaining the latter perspective through the architectural design of the tool

allows for minimum user interaction to produce the required result.

In software engineering, the design stage of a software system differs from the

implementation stage because the latter needs notations and methods [138]. Hence,

and to be able to contribute to the design of a generalised tool which is independent

of the way a software designer might want to implement it, a distinction is made

in this chapter between designing the SlaCP tool architecture and implementing it.

For the former, the designer has to pass through certain stages, from setting up the

tool’s requirements, defining the architecture components, and describing the design

of these components [138]. For the latter, the implementation requirements, along

with the mode of implementing each design component, have to be specified. In the

following section, the stages for designing the SlaCP tool are described in detail.

6.2 Tool Architecture and Design

The tool architecture sets the appropriate elements and components required to

build a tool that is able to accomplish a set of predefined requirements, while the

128

6.2 Tool Architecture and Design

tool design sets the algorithm and any details that reinforce the architecture with

the required behaviour [138].

In this section, the tool’s architectural requirements are defined in Section 6.2.1

while the architectural assumptions are described in Section 6.2.2. The core and de-

tailed architectural components, together with their design, are described in Section

6.2.3. Finally, a different design of the SlaCP tool is outlined in Section 6.2.4.

6.2.1 Tool Architecture Requirements

In general, the requirements of the tool architecture define the essential information

and handling, together with their properties, that the tool designer has to consider

when constructing the tool [138]. These requirements are classified as functional

if they are related to actual software functionality, or as non-functional if they are

related to software quality aspects [139, 140].

For the SlaCP tool, both the functional and non-functional architectural require-

ments that should be considered are defined in the following two subsections.

6.2.1.1 Functional requirements

The functional requirements of the SlaCP tool are characterised as follows:

1. Tool automation. The tool has to employ the SlaCP phases of Section 3.2.1 in

software engines that perform the phases’ functionality automatically as much

as possible. The automation can be achieved by incorporating different parsers

which implement the algorithms that each phase requires. To achieve a higher

level of automation, the output and input of these phases have to be available

in a machine-readable format. Having such interchangeable inputs and outputs

allows the parsers to read, write or update their contents automatically. It also

allows for the passing on of results to the ’downstream’ software.

2. Tool modularity. The SlaCP tool has to be modular across formalisms and

languages which include: multiple stochastic modelling formalisms, multiple

SLA languages, and different implementation programming languages. To

achieve this modularity, the following requirements have to be considered:

(a) SlaCP has to be modular across different stochastic models and solvers.

To achieve this, any primary outputs of SlaCP should be written indepen-

dently of the type of the stochastic modelling formalism used to model

the service and the type of solving techniques used to solve this model.

129

6.2 Tool Architecture and Design

Given these independent outputs, SlaCP has to provide embedded trans-

lators to perform a translation to and from them. These translators,

with simple alterations, can translate SlaCP outputs to be compatible

with new stochastic modelling formalisms and solution techniques.

(b) SlaCP has to support multiple SLA languages. To achieve this, the parser

has to match different measured metrics that have the same semantics to

one category and then map them accordingly. The same has to be con-

sidered for different composite metrics that have the same functionality.

In other words, the SLA parser has to be abstract enough to convey the

meaning of different measured and composite metrics.

(c) The implementation of a tool architecture usually incorporates one of a

number of different programming languages (e.g. Java [141]) for building

its skeleton and connecting components. Hence, to satisfy the latter type

of tool modularity, the architecture has to set any file the tool has to deal

with internally (not across modelling and solving techniques) as a set of

interfaces with abstract functionality; this is in order to be able to accom-

modate different implementations using different desired languages. For

example, the functions representing SLA composite metrics are specified

firstly as interfaces only to allow for the preferred implementation later.

6.2.1.2 Non-functional requirements

The non-functional requirements of the SlaCP tool are characterised as follows:

1. The tool has to be extensible without modifying its core. The tool has to be

able easily to adapt the following components: a new SLA language by util-

ising/amending an additional parser to allocate/match the relevant measured

and composite metrics; a new stochastic model by utilising an additional trans-

lator which will translate to it from the abstract model; new measured and

computed metrics by incorporating a suitable mapper which will map from

them to the stochastic model; and any additional parsing or modelling mod-

ules for special purposes that will allow the tool to achieve extra automation

power. An example of the latter is a module for parsing a service description

document in order to generate a complete service model automatically. The

tool should also be able to conform to changes in the model’s parameter val-

ues or in SLO threshold values by incorporating additional methods to set and

obtain these values.

130

6.2 Tool Architecture and Design

2. Tool accessibility. The tool has to be easy to use with clear GUIs which

describe the required inputs, together with means that help the user to enter

them.

3. Usability and re-usability of the tool. The different components of the SlaCP

tool have to be re-usable in such a way that allows the designer to exploit

them in new tools with different orientations. For example, an SLA parser

component can be used in a tool that syntactically validates SLA documents.

6.2.2 Architectural Assumptions

The tool specifies a set of assumptions regarding phases of the SlaCP methodology,

the model of the service, and the SLA document. These assumptions are as follows:

Assumptions regarding phases of the SlaCP methodology: As stated

in the first requirement in Section 6.2.1.1, the tool architecture will implement the

SlaCP phases in ‘engines’ that accomplish the functionality of these phases. It is

assumed that the tool architecture will identify both a modelling and a solving

engine that the rest of the SlaCP engines, defined in Section 6.2.3, can interact

with. It is not necessary to design and implement these engines because several

existing commercial and researcher modelling and solving tools can be exploited to

deliver the functionality necessary for this part of the tool architecture. For this

reason, and to avoid re-implementing an existing functionality, these engines are

assumed to be present as part of a well-known modelling tool; this offers modules

for creating and solving stochastic models. Accordingly, a plug-in tool will fulfil the

role of the modelling and solving engines (automating the Model Completion and

Model Solving phases); this has to be augmented with the SlaCP tool. The SlaCP

tool, in turn, has to set up communication with this tool in a way that will minimise

or eliminate user interaction.

Assumptions regarding SLA documents: As stated in the assumptions

concerning the SlaCP methodology in Section 3.1.4, the SLA document is pre-defined

and valid and is therefore used as an input to the tool. To help in achieving the

first functional requirement of the tool’s architecture (i.e., tool automation), the

SLA document is assumed to be available in a machine-readable format in order

for the tool to parse it automatically. This assumption is intuitive since most SLA

specification languages are XML-based languages and are electronically available.

Since the SLA is assumed to be syntactically correct, there is no need for the parser

to perform any validity checks.

Assumptions regarding the model: These include two points:

131

6.2 Tool Architecture and Design

1. The description of the stochastic model (i.e. service model) can be (a) prede-

fined or (b) not yet available. For the former, the model is constructed previ-

ously, either manually, or using any stochastic modelling tool such as Möbius

[32]. In this case, the model is used as an input of the tool. For the latter, the

model creation is aided by the engine representing the SLA-Model Mapping

phase to produce some model primitives, or by a complementary engine able to

produce the model automatically from a specific service description document.

However, since no optimal model can be generated automatically, extra prim-

itives may need to be added and model validation may have to be performed

manually. In all cases, the parameters of the model primitives (such as firing

rates), along with the model’s initial state, are assumed to be predefined.

2. The description of the stochastic model has to be available in a machine-

readable format (i.e. in an exchange format). Most commercial or researcher

modelling tools include a graphical representation of the stochastic model in

addition to a textual one that can be produced from it automatically. Having

the model in a text-based file allows the tool to parse it automatically (the first

functional requirement) in order to extract some or add other information. For

example, the tool can produce automatically a list of all the state variables and

actions of a model. This list can be displayed in the tool’s GUI so that it aids

the user in choosing the correct primitives that are necessary for completing the

reward variable templates when implementing the SLA-Model Mapping phase.

Also, the tool can insert the produced reward variables into the appropriate

place in the model file and prepare this file with suitable commands to call the

solver automatically. The use of the model’s textual file is described in detail

when the tool’s implementation is presented in Section 6.3.

6.2.3 The Tool’s Architectural Components and their De-

sign

In the design of the SlaCP tool, the functionality of each component is considered as

a black-box which takes an input and produces an output. This is so that the way

these boxes are implemented does not affect the concepts of the SlaCP methodology.

The architectural components of the SlaCP tool, whose design is presented in

this section, are depicted in Figure 6.1. This contains two parts illustrated using

two rectangles. The left-hand gray rectangle is the key part representing the created

‘SlaCP Entity’ while the right-hand one represents an existing ‘Plugged-in Modelling

132

6.2 Tool Architecture and Design

Plugged- in

Modelling Tool

O
u

t-
In

Tr

an
sl

at
o

r

SlaCP Entity

SLA-Model
File

M
et

ri
c

Sp
e

ci
fi

ca
ti

o
n

 (
M

S)
 E

n
gi

n
e

C
o

m
p

o
si

te

M
et

ri
cs

 T

em
p

o
ra

l
C

o
n

st
ra

in
t

B

as
ic

 M

et
ri

cs

SLA

Functions
File

Translator (TS) Engine

Reward
Model

File

Tool Solver
(Solver Engine)

Solver
Results

File

Result GUI

Result Computation & Comparing (RCC) Engine

Computation &
Comparing

 Model

Description
(Modeller

Engine)

A
ss

ig
n

 G
U

I

SL

O

Textual
Model

File

Unified
Results

File

SL
A

 P
ar

se
r

Se

rv
ic

e

O
b

je
ct

In
n

er

Tr
an

sl
at

o
r

Functions
Impleme-

ntation
File

File written in the plugged-in tool format

File written in an independent format

File written in the SlaCP implementation format

Tool Engines

Software Components Tool Interaction

M
ap

p
er

SLA/Model Elements

GUI Graphical User Interface

In
-O

u
t

Tr
an

sl
at

o
r

M
o

d
el

 P
ar

se
r

U
p

lo
ad

 G
U

I

St

at
e

V

ar
ia

b
le

A
ct

io
n

User Back to the parser

User Interaction (input – output)

Figure 6.1: Tool architecture of SLA Compliance Prediction (SlaCP)

tool’ with which SlaCP has to be augmented so as to create and solve the model. The

difference between these parts is that the former is an original design while the latter

depends on well-defined techniques. The functionality of the components in the two

parts is outlined in what follows; this is described in forthcoming subsections.

The architecture of the SlaCP Entity consists of three engines: namely, the

Metric Specification Engine (MS Engine), the Translator Engine (TS Engine) and

the Result Computation and Comparison Engine (RCC Engine). These engines are

depicted as rounded gray rectangles inside the SlaCP Entity rectangle in Figure

6.1 to distinguish them from their design components. The three engines have to

perform, in total, the functionality of five phases of the methodology design; this was

presented in Section 3.2.1. These phases are: the SLA Interpretation, SLA-Model

Mapping, Model Specialisation, Metric Composition, and Decision phases.

The first engine, MS, has to parse the file containing the SLA in order to map it

into the SLA-Model File and Functions File which are specified in an independent

format. These files are represented as black folded-corner papers in the figure. It

also has to parse the model description file, Textual Model File, to extract informa-

133

6.2 Tool Architecture and Design

tion that aids user interaction later. The second engine, TS, has to translate and

implement the files generated from the MS Engine into the plugged-in tool and the

SlaCP implementation formats respectively. These files are the Reward Model File

and the Functions Implementation File; they are represented in the figure using dark

gray and gradient gray folded-corner papers respectively. After this, this engine has

to handle the Solver Results File, written in the plugged-in tool’s solver format, into

an independent format, written into the Unified Results File, so it can be used by

the third engine. Finally, the last engine, RCC, has to apply the functions to the

handled results and then compare the final output against the specified threshold

in order to produce the SLA compliance probability.

The architecture of the second part of the tool, i.e. the ‘Plugged-in Modelling

Tool’, consists of two engines: namely, the ‘Modeller Engine’ and ‘Solver Engine’.

The two engines are depicted as dark-gray rectangles inside the Plugged-in Modelling

Tool rectangle in Figure 6.1. These two engines perform the functionality of the

Model Completion and Model Solving phases respectively.

The SlaCP engines have to interact with each other and with the plugged-in

modelling tool, represented as solid lines in Figure 6.1, in order to accomplish the

ultimate goal of the tool. Each engine also has to communicate with a User through

dedicated GUIs, represented as white boxes in the figure, when an input is necessary

from the user (represented as dashed lines) or when an output is presented to the user

(represented as dotted lines). The User figure plays different roles in this tool; these

could include the role of SLA engineers, service providers/engineers or modellers.

In what follows, each engine’s design is described along with its inputs, software

components, outputs, its ability to be fully automated, and its interactions with the

other engines. Please note that all design components depicted in Figure 6.1 are

referred to using an emphasised font.

6.2.3.1 Metric Specification Engine (MS Engine)

The Metric Specification Engine (MS Engine) has to emulate the function of the first

two phases of the SlaCP theoretical methodology: namely, the SLA Interpretation,

and the SLA-Model Mapping phases. It also has to contain another feature that

is not included in the theoretical phases which is parsing the file that contains the

service model. This feature is added to the tool design in order to increase the tool’s

level of automation and to increase the help offered to the user; this is described

later in this section.

The MS Engine is depicted in Figure 6.2. This is the same as Figure 6.1 but the

related design components, together with their input and output, are the only ones

134

6.2 Tool Architecture and Design

Plugged- in

Modelling Tool

O
u

t-
In

Tr

an
sl

at
o

r

SlaCP Entity

SLA-Model
File

M
et

ri
c

Sp
e

ci
fi

ca
ti

o
n

 (
M

S)
 E

n
gi

n
e

C
o

m
p

o
si

te

M
et

ri
cs

 T

e
m

p
o

ra
l

C
o

n
st

ra
in

t

B

as
ic

 M

et
ri

cs

SLA

Functions
File

Translator (TS) Engine

Tool Solver
(Solver Engine)

Result GUI

Result Computation & Comparing (RCC) Engine

Computation &
Comparing

Model
Description
(Modeller

Engine)

A
ss

ig
n

 G
U

I

SL

O

Textual
Model

File

Unified
Results

File

SL
A

 P
ar

se
r

Se

rv
ic

e

O
b

je
ct

In
n

er

Tr
an

sl
at

o
r

Functions
Impleme-

ntation
File

M
ap

p
er

In
-O

u
t

Tr
an

sl
at

o
r

M
o

d
el

 P
ar

se
r

U
p

lo
ad

 G
U

I

St

at
e

V

ar
ia

b
le

A
ct

io
n

Solver
Results

File

User Back to the parser

Reward
Model

File

Figure 6.2: The Metric Specification Engine (MS Engine) in the SlaCP tool

that are highlighted. This engine is the first engine to be executed in the SlaCP

Entity. It is responsible for parsing the files containing the SLA and the model

description, and for mapping the parser output to the relevant stochastic model

related metrics. Its design is as follows:

Engine Input: The MS Engine has two inputs: the SLA contract and the Textual

Model File which is generated either manually by the user or semi-automatically with

the aid of the tool. This input is achieved through a dedicated GUI, Upload GUI,

from which the user can upload these files.

Software Components and their Output: This engine has three software com-

ponents: namely, the SLA Parser, the Model Parser, and the Mapper. The design

of each is as follows:

1. SLA Parser: This emulates the SLA Interpretation phase by implementing

an algorithm to parse the SLA automatically in order to extract the infor-

mation that is relevant to the SLA prediction. This output information, as

shown in the light-gray rectangles in Figure 6.2, is the same as specified in the

SLA Interpretation phase. The outputs are: the Service Object, Basic Metric,

Temporal Constraint, Composite Metric and the SLO.

2. Mapper: This emulates the SLA-Model Mapping phase in order to produce

two machine-readable files, the SLA-Model File and the Functions File (See

Figure 6.2). The output of this engine is placed in two files because they

135

6.2 Tool Architecture and Design

are used by different engines of the SlaCP Entity in order to be applied at

different stages of the prediction process. The first file contains the model state

variables/actions, the reward variables, and the time for solving them. This

file is used to complete the model creation which is described in Paragraph a.2

of Section 6.2.3.2. The second file contains the interfaces of the mathematical

functions representing the computation performed by composite metrics. Also,

it contains a function representing the comparison of the SLO threshold with

the predicted value of the ultimate composite metrics. This file is applied on

the solver output which is described in Section 6.2.3.3.

A specific modelling-tool language is not sufficient to express the SLA-Model

File since the user can choose from a wide range of modelling formalisms and

tools, each of which has its own input language (such as CSPL for the SPNP

tool, or C for Möbius). For this reason, as mentioned in Section 6.2.1.1, this

file has to be written in an intermediate technical computing language that

is able to express the outcome independently of the choice of the modelling

tool or its solver. This intermediate language also has to be machine-readable.

The SLA-Model File is considered to be an intermediate file that has to be

translated into one that fits the chosen model. The same is true regarding the

Functions File where the function interfaces have to be available in a machine-

readable format to allow the SlaCP tool to read them, implement them using

the preferred programming language, and apply them on the solver results

automatically. Although this file is used internally by the SlaCP tool (i.e., it

does not interact with the plugged-in modelling tool), the design choice here

is also to write it in a unified mathematical language to be independent of the

choice of the programming language (such as Java, for example) the designer

wants to implement in the SlaCP.

3. Model Parser: This does not relate directly to the theoretical foundation

of the SlaCP methodology. Nevertheless, its usage in the tool is to offer extra

help to the user in completing the prediction process correctly and easily (i.e.,

it adds an extra level of automation to the tool). The rationale behind using

the Model Parser is to extract all the state variables and actions from the

service model after the user has completed its creation or uploaded it to the

tool (as a Textual Model File). The usage of this information is described in

Paragraph a.2 of Section 6.2.3.2).

136

6.2 Tool Architecture and Design

Ability for Automation of the MS Engine: This engine is fully automated

since it implements different algorithms. The first one is for parsing the SLA file to

extract the elements required for SLA prediction. The second one is for mapping

SLA elements to produce the content of the SLA-Model File and Functions File in an

independent format. The last algorithm is for parsing the model file to extract the

available state variables and actions. The only interaction the user has to perform

within this engine is to upload the files containing the SLA and the model descrip-

tion. Hence, the design of this engine achieves the first step of the methodology

from a user’s perspective, as presented in Section 3.2.2.

6.2.3.2 Translator Engine (TS Engine)

The Translator Engine (TS Engine), which is depicted in the coloured part of Figure

6.3, has to emulate the purpose of the Model Specialisation phase. It is used by the

SlaCP Entity to communicate with the Plugged-in Modelling Tool and the User. In

addition to this interaction, the TS Engine interacts within the SlaCP Entity with

the other engines, namely, the MS and RCC engines. In what follows, each of these

interactions is described with the required inputs, the software components and its

outputs. A summary of these software components and the automation possibilities

of this engine as a whole are discussed at the end of this section.

a)- TS Engine Interaction with the Plugged-in Tool and the User: As

depicted in Figure 6.3, the SlaCP Entity has to deal with the Plugged-in Modelling

Plugged- in

Modeling Tool

O
u

t-
In

Tr

an
sl

at
o

r

SlaCP Entity

SLA-Model
File

M
et

ri
c

Sp
ec

if
ic

at
io

n
 (

M
S)

 E
n

gi
n

e

C
o

m
p

o
si

te

M
et

ri
cs

 T

em
p

o
ra

l
C

o
n

st
ra

in
t

B

a
s
ic

 M

et
ri

cs

SLA

Functions
File

Translator (TS) Engine

Tool Solver
(Solver Engine)

Result GUI

Result Computation & Comparing (RCC) Engine

Computation &
Comparing

Model
Description

(Modeler Engine)

A
ss

ig
n

 G
U

I

SL

O

Unified
Results

File

SL
A

 P
ar

se
r

Se

rv
ic

e

O
b

je
ct

In
n

er

Tr
an

sl
at

o
r

Functions
Impleme-

ntation
File

M
ap

p
er

In
-O

u
t

Tr
an

sl
at

o
r

M
o

d
el

 P
ar

se
r

U
p

lo
ad

 G
U

I

St

at
e

V

ar
ia

b
le

A
ct

io
n

Reward
Model

File

Solver
Results

File

User Back to the parser Textual
Model

File

Figure 6.3: The Translator Engine (TS Engine) in the SlaCP tool

137

6.2 Tool Architecture and Design

tool’s solver in order to give information to it and to receive other information from

it. One of the design options for providing such a communication, as presented

earlier in Section 6.2.3.1, is to express any output from the SlaCP tool in a format

independent of the one of the plugged-in tool. This is achieved by using two inter-

mediate languages; each is suitable for expressing one of the MS Engine outputs.

Accordingly, it is the TS Engine that is in charge of translating any input/output

of the plugged-in tool to/from its specific language. The tool’s modularity, extensi-

bility and generality thus increases due to the ability of the TS Engine to provide

translation to and from the input and output languages of new plugged-in tools by

only making small changes to the algorithm that translates to and from the interme-

diate languages. However, integrating the translator engine inside the tool involves

an immense amount of translation. This introduces extra time overheads and hence

affects its speed.

To perform the aforementioned translations to and from the solver, a set of

translating components is utilised inside the TS Engine. The number and type

of these components depends on the way the plugged-in tool that represents the

modeller/solver engines is integrated inside the SlaCP tool. The choice that will be

made in Section 6.2.3.4 is to use a single tool that is capable of both modelling and

solving a stochastic model. Given this choice, the engine’s input, its components

responsible for interacting with the plugged-in solver, along with the outputs, are

as follows.

a.1)- Interaction Input: The inputs are firstly, the SLA-Model File that

contains the generated model primitives, the reward variable templates, and the

specified time to solve them; secondly, the Textual Model File which contains the

model description in case the user completes its creation or builds it from scratch;

and finally, the output of the Model Parser which includes all the state variables

and actions available in the model.

a.2)- Software Components and their Outputs: The design choice for in-

teracting with the plugged-in tool solver would be to embed two translating compo-

nents (In-Out Translator and Out-In Translator) within the TS Engine, as depicted

in Figure 6.3. The justification for using two translating components depends on

the input and output of the plugged-in tool as described in what follows.

1- In-Out Translator: This performs two kinds of translation. The first is to

produce the Textual Model File while the second is to generate the Reward Model

File. This is described in what follows.

138

6.2 Tool Architecture and Design

The first translation depends on whether or not the Textual Model File is pre-

defined. If it is predefined, this translation is ignored because the Textual Model

File will be already written according to the plugged-in tool’s language. However, if

this file is not already defined, the In-Out Translator takes the SLA-Model File from

the MS Engine and translates its state variables/actions into fragments compatible

with the language used by the plugged-in tool. After doing this, it asks the user

to complete the creation of the model description textually. When the user has

completed this interaction, the translator saves the model into the Textual Model

File and sends it back to the Model Parser of the MS Engine (the back to parser

arrow in Figure 6.3) in order to obtain the required parser outputs.

The second translation also obtains the SLA-Model File and translates its ab-

stract reward variables into fragments compatible with the language used by the

plugged-in tool. Performing this translation allows the solver of the plugged-in tool

to understand the input, therefore producing the desired results.

The latter translation cannot be fully completed automatically since the reward

variables stored in the SLA-Model File are templates only. Each of these templates

requires either the user’s confirmation of its correctness or the user’s interaction to

complete it with the relevant model primitives. The former case occurs when the

intended state variable or action representing the service object is used in the tem-

plate. However, the latter occurs when the primitives used within these templates

are unknown or do not reflect the intended service object in the model. Hence, the

TS Engine has to inquire the user while performing this type of translation.

The GUI related to this engine, Assign Engine, displays the set of state variables

and actions existing in the model by using the Model Parser output in a drop-down

list tailored to the type of the reward variable. This means that, if the reward

variable is rate-based, it displays the state variables; otherwise, it displays the ac-

tions. The user, with the tool’s assistance, has to choose the one that completes

the definition of each reward variable in the SLA-Model File. For example, if the

reward variable concerns an object throughput, the tool will ask the user to choose

the name of the action representing this object from a list of all the actions in the

model. Using the drop-down list helps the user to choose the right primitives be-

cause it eliminates the need to input the model primitives manually. It also prevents

any typo the user might make when writing down these primitives.

After completing the reward variable definitions and translating them, the trans-

lator takes the Textual Model File and automatically inserts these into the suitable

place in the file. It also inserts any execution commands necessary for solving the

model. In addition, it automatically embeds the time needed to solve the reward

139

6.2 Tool Architecture and Design

functions (stored in the same file) in a format suitable to the solver. The output of

this engine is a Reward Model File that contains the model description, the reward

variables, the time needed for solving them, and the execution commands. This file

is used as a solver input that is called implicitly by the SlaCP Entity.

2-Out-In Translator: This translates the Solver Results File into a unified

format and writes it into the Unified Results File to be used later as input to the

RCC Engine. This is because the file that stores the solver outputs has a unique

extension, syntax and semantic for each modelling tool. Hence, this file has to be

translated into a new file, written in a unified format, to allow it to be sufficiently

general to be used by the SlaCP Entity and across other tools if needed.

b)- TS Engine Interaction with the RCC Engine: In addition to the previous

interaction with the user and the plugged-in tool, the TS Engine, as depicted in

Figure 6.3, is responsible for translating and preparing two of the tool outputs to be

used as input to the RCC Engine. First, as described earlier in the Out-In Translator

component, it translates the Solver Results File, which contains the output of the

solver, into the Unified Results File, which represents the results in an independent

format so that they are portable. These results are presented in a form that the

SlaCP can understand so that further computations can be applied. Second, it

translates and implements the Functions File, which is the second output of the MS

Engine. The second translation compels the TS Engine to have extra input and an

additional software component than the ones specified in the paragraph above.

b.1)- Interaction Input: The Functions File that contains the interfaces of

WSLA functions.

b.2)- Software Component and its Outputs: The component required for

this translation is the Inner Translator. It translates and implements the functions’

interfaces into a language that the SlaCP tool can understand (i.e. the language

that SlaCP APIs are built in, such as C or Java). It then writes these into the

Functions Implementation File.

Given what is described earlier for this type of interaction, the TS Engine has to

prepare any output files generated from the plugged-in tool or the MS Engine in a

format that the RCC Engine can understand and then write them into the Unified

Results File and the Functions Implementation File respectively.

140

6.2 Tool Architecture and Design

c)- Interaction of the TS Engine with the MS Engine: The interaction

that TS Engine performs with the MS Engine lies in obtaining the independent-

format generated files (the SLA-Model File and the Functions File) and translating

them to be understood by the plugged-in tool solver and the RCC Engine. These

interactions were presented earlier. To recall them, the TS Engine translates the

SLA-Model File into a format specific to the plugged-in tool in order for it to be

used as a solver input. It also translates and implements the functions’ interfaces

written in the Functions File into a language the SlaCP tool is implemented with

so that it can be used as input to the RCC Engine.

d)- The Software Components of the TS Engine for all the Interactions:

According to the three types of TS interaction previously described, the TS Engine

in this design has to perform three types of translation in total. The translating

components used inside the TS Engine are therefore: the In-Out Translator, the

Out-In Translator, and the Inner Translator. Accordingly, the TS Engine can be

considered as the core engine in the SlaCP Entity because all the other engines

interact through it. It is also the one that helps the tool to be portable across a

range of modelling tools and implementation languages.

3)- Ability for Automation of the Whole TS Engine: The TS Engine mech-

anism can be considered as semi-automated since the user’s interaction is needed

to complete the model’s creation and to provide the connection between reward

variable templates and stochastic model primitives. However, all the other required

translations and implementations has to be performed in a fully automatic way. In

addition, the process of assigning the reward is aided by a dedicated GUI in which

the user can choose the most suitable stochastic model primitives that correspond

to the state variables or actions in the reward variable templates. In this way, the

rewards will be assigned correctly, depending on the specific model. Hence, the de-

sign of this engine is compatible with the third step of the theoretical methodology

from the user’s perspective; this was presented in Section 3.2.2.

6.2.3.3 Result Computation and Comparison Engine (RCC Engine)

The Result Computation and Comparison Engine (RCC Engine), depicted in Figure

6.4, has to emulate the functionality of the last two phases of the theoretical SlaCP

design: namely, the Model Composition and Decision phases. This engine is the

last one in the SlaCP Entity and it accomplishes the ultimate goal of the SlaCP

methodology. Its design is as follows:

141

6.2 Tool Architecture and Design

Plugged- in

Modeling Tool

O
u

t-
In

Tr

an
sl

at
o

r

SlaCP Entity

SLA-Model
File

M
et

ri
c

Sp
ec

if
ic

at
io

n
 (

M
S)

 E
n

gi
n

e

C
o

m
p

o
si

te

M
et

ri
cs

 T

em
p

o
ra

l
C

o
n

st
ra

in
t

B

as
ic

 M

et
ri

cs

SLA

Functions
File

Translator (TS) Engine

Tool Solver
(Solver Engine)

Result GUI

Result Computation & Comparing (RCC) Engine

Computation &
Comparing

Model
Description

(Modeler Engine)

A
ss

ig
n

 G
U

I

SL

O

Textual
Model

File

Unified
Results

File

SL
A

 P
ar

se
r

Se

rv
ic

e

O
b

je
ct

In
n

er

Tr
an

sl
at

o
r

Functions
Impleme-

ntation
File

M
ap

p
er

In
-O

u
t

Tr
an

sl
at

o
r

M
o

d
el

 P
ar

se
r

U
p

lo
ad

 G
U

I

St

at
e

V

ar
ia

b
le

A
ct

io
n

Reward
Model

File

Solver
Results

File

User Back to the parser

Figure 6.4: The Result Computation and Comparison Engine (RCC Engine) in the
SlaCP tool

Engine Input: The RCC Engine has two inputs. The first one is the Functions

Implementation File that contains both the implementation of the mathematical

functions to be applied on the solver’s output, and the evaluation function which

computes the ultimate probability of the SLA compliance. The second input is

Unified Results File that contains the solver results.

Software Component and its Outputs: RCC Engine has a Computation &

Comparing component which automatically applies all the functions specified in the

Functions Implementation File on the solver output specified in the Unified Results

File in order to derive the desired SLA computed metric. After obtaining this value,

the engine uses the evaluation function, stored in the same file, to compare the value

to the specified SLO threshold. The outcome of this function is the SLA compliance

probability that is depicted to the user through the Result GUI.

Ability for Automation of the RCC Engine: This engine is fully automated

because it implements an algorithm for parsing the input files, producing the final

result, and then comparing it. Hence, the design of this engine is compatible with

the fourth step of the methodology from a user’s perspective which was presented

in Section 3.2.2.

142

6.2 Tool Architecture and Design

6.2.3.4 The Modeller and Solver Engines

In this section, the design choice of the Solver and Modeller engines (i.e. plugging in

an existing modelling tool into the SlaCP tool) is presented. Then, the requirements

which need to be available in this plugged-in tool are identified.

The Design Choice of Plugging-in an Existing Modelling Tool: As de-

scribed in Section 6.2.2, one of the design options of the SlaCP tool is to use existing

model creation tools and solving techniques to represent the Model Completion and

Model Solving phases. The plan here is to assemble them in the proposed SlaCP

tool to aid in building the stochastic model and providing a better prediction accu-

racy when solving the generated reward model. Usually, the solving techniques can

belong either to an integrated tool that both builds and solves the model, or they

can be stand-alone solvers. Deciding whether to choose integrated or independent

environments for building and solving the model affects the way they are plugged

into the SlaCP. In addition, this affects the design choice of the other engines in the

SlaCP Entity. The design choice made in this thesis is to use a single integrated

plugged-in tool to fulfil both the Model Completion and Model Solving phases (i.e.

the Modeller and Solver engines). This choice is made because using a single tool

is more intuitive and powerful in obtaining an accurate result. The integration is

accomplished in the way described in what follows.

The Plugged-in Modelling Tool is depicted in the coloured part of Figure 6.5. The

Model Description represents the Model Completion phase, while the Tool Solver

integrated with this particular tool represents the Model Solving phase.

Plugged- in

Modelling Tool

O
u

t-
In

Tr

an
sl

at
o

r

SlaCP Entity

M
et

ri
c

Sp
ec

if
ic

at
io

n
 (

M
S)

 E
n

gi
n

e

C
o

m
p

o
si

te

M
et

ri
cs

 T

em
p

o
ra

l
C

o
n

st
ra

in
t

B

a
s
ic

 M

et
ri

cs

SLA

Functions
File

Translator (TS) Engine

Reward
Model

File

Tool Solver
(Solver Engine)

Solver
Results

File

Result GUI

Result Computation & Comparing (RCC) Engine

Computation &
Comparing

Model
Description
(Modeller
 Engine)

A
ss

ig
n

 G
U

I

SL

O

Textual
Model

File

Unified
Results

File

SL
A

 P
ar

se
r

Se

rv
ic

e

O
b

je
ct

In
n

er

Tr
an

sl
at

o
r

Functions
Impleme-

ntation
File

M
ap

p
er

In
-O

u
t

Tr
an

sl
at

o
r

M
o

d
el

 P
ar

se
r

U
p

lo
ad

 G
U

I

St

at
e

V

ar
ia

b
le

A
ct

io
n

User

SLA-Model
File

Back to the parser

Figure 6.5: The Plugged-in Modelling Tool in the SlaCP tool

143

6.2 Tool Architecture and Design

For the former, the user can produce the model from scratch in a graphical

format; the plugged-in tool then translates it automatically into a textual one (a

tool requirement). Alternatively, the textual format could be written manually by

an advanced user if he/she is sophisticated in terms of producing such a model.

Hence, the output required from the plugged-in tool is the Textual Model File, as

depicted in Figure 6.5). This is usually written in a format specific to the plugged-in

tool. If the user does not want to build the model from scratch, the SLA-Model File

can aid model creation by giving a set of service model primitives mapped from an

SLA; this then allows the user to complete the creation of the model.

For the latter part of the Plugged-in Modelling Tool, the solver is called au-

tomatically from the command line by the SlaCP Entity to solve the model after

augmenting it with the relevant reward variables, time intervals, and the commands

that solve it. The output of the solver that runs in the background is a file called

Solver Results File. This contains the results in a format specific to the chosen tool.

In this chapter, concentration focuses on this design choice as it is the one used

in the implementation. Another design choice, that of plugging in the modelling

and solving tools, is presented in Section 6.2.4.

The Requirements of the Plugged-in Modelling Tool: There are several

well-known modelling tools that can be plugged into the SlaCP tool. However, the

choice of this tool depends on the existence of a set of features. These are as follows:

1. The preferred type of modelling formalism. Although the model-related prim-

itives generated in the SLA-Model File are written in an abstract stochastic

model, these need to be transferred into a concrete modelling formalism to

allow the solver to solve them. The user has to be comfortable with the choice

in a way that allows him/her to build or complete the service model correctly.

For example, the Möbius tool can be used to build and solve models written

in stochastic extensions of Petri nets (Stochastic Activity Network (SAN)),

Markov Chains and extensions, and Stochastic Process Algebras (SPA). An-

other example is the SPNP tool that can be used to build and solve models

written in the Stochastic Reward Net (SRN).

2. The ability to define impulse/rate reward variables. In other words, the chosen

stochastic model has to be defined with an underlying Markov Reward Model

(MRM) [142] to allow the definition of the reward variables representing the

SLA measured metrics. The tool also has to allow this definition on the model

144

6.2 Tool Architecture and Design

level rather than the state level. This is because assigning rewards on the state

level tends to be too complicated and time-consuming for large models.

3. The ability to represent the model in a textual format to allow it to be parsed

automatically; also, to allow the SlaCP Entity to call the solver and pass the

model file to it automatically. For example, the SPNP tool has a simple input

language called CSPL; this is based on C programming language. This lan-

guage represents the model textually with its state variables, actions, reward

variables and solving commands in a single file.

4. The simplicity of the textual description of the model. It is not enough for the

model to be available textually; it also has to be simple, allowing the parser

to extract the required information intuitively. For example, it is hard for

multiple files representing a model to be used as input to the SlaCP tool; they

are also difficult to parse. This complex textual description can be found in

tools that employ hierarchical modelling such as Möbius. This has a textual

description consisting of a set of classes, written in C language, specifying the

atomic, composed, reward, study, and solver models. Each of these classes is

written to a separate file in a separate folder [32].

These requirements are extended when the tool’s implementation is described in

Section 6.3.1.

6.2.4 Discussion: Alternative Design of the SlaCP Tool

The design choice of the SlaCP tool presented in Section 6.2.3.4 depends on using a

single plugged-in modelling tool for building and solving the model. Although this

design is modular, it involves a heavy translation workload. Given this, an alterna-

tive design choice can be considered. This design attempts to minimise the effort of

translation by making a change to the way the plugged-in tool is augmented and,

as a consequence, in the design choice of the MS and TS engines. This alternative

design depends on choosing a stand-alone solver to solve any model independent of

the chosen modelling tool used to describe the model. This means that the model

can be developed using any tool associated with a stochastic model of choice while

the solver has to solve this model after translating it into the solver input format.

To place this into the context of the SlaCP methodology, Figure 6.6 depicts this

alternative design of the SlaCP tool. The main difference between this design and

the one presented in Figure 6.1 is that the right-hand side rectangle is now divided

into two parts: the Plugged-in Solver and the Plugged-in Modelling Tool. This means

145

6.2 Tool Architecture and Design

Plugged- in

Solver

SlaCP Entity

SLA-Model
File

M
et

ri
c

Sp
e

ci
fi

ca
ti

o
n

 (
ST

)
En

gi
n

e

C
o

m
p

o
si

te

M
et

ri
cs

 T

em
p

o
ra

l
C

o
n

st
ra

in
t

B

as
ic

 M

et
ri

cs

SLA

Functions
File

Translator (TS) Engine

Reward
Model

File

Tool Solver
(Solver Engine)

Solver
Results

File

Result GUI

Result Computation & Comparing (RCC) Engine

Computation &
Comparing

 Model

Description
(Modeller Engine)

A
ss

ig
n

 G
U

I

SL

O

Textual
Model

File

SL
A

 P
ar

se
r

Se

rv
ic

e

O
b

je
ct

In
n

er

Tr
an

sl
at

o
r

Functions
Impleme-

ntation
File

File written in the plugged-in tool format

File written in an independent format

File written in the SlaCP implementation format

Tool Engines

Software Components

User Interaction (input – output)

Tool Interaction

M
ap

p
er

SLA/Model Elements

GUI Graphical User Interface
M

o
d

el

Tr
an

sl
at

o
r

M
o

d
el

 P
ar

se
r

U
p

lo
ad

 G
U

I

St

at
e

V

ar
ia

b
le

A
ct

io
n

Plugged- in

Modelling Tool

User Back to the parser

Figure 6.6: Alternative design choice of the SlaCP tool

that the model description of the Plugged-in Modelling Tool implements the Model

Completion phase while a single stand-alone Plugged-in Solver (independent of the

tool) implements the Model Solving phase. For the former, the description of its

output is the same as described in Section 6.2.3.4. However, for the latter, the design

consideration regarding the translating components responsible for communicating

with the plugged-in solver and their output differs from that outlined in Section

6.2.3.4. In addition, the format type of the SLA-Model File that represents the

output of the MS Engine is different. This is described in what follows.

Inside the TS Engine, the choice is to embed a single translating component,

the Model Translator (as depicted in Figure 6.6)1. The Model Translator takes the

Textual Model File and translates it into fragments which are compatible with the

input format of the plugged-in solver. It then takes the SLA-Model File and directly

inserts these fragments into the relevant place in the file. This is because, in this

design, the SLA-Model File is written, from the beginning, according to the solver

input format since this solver is always being used; i.e., it is not in a generalised

format and so there is no need to translate it. The Model Translator then updates

the file with any execution commands necessary for solving the model. The output

of the TS engine is the Reward Model File; this is used as input to the solver, called

implicitly from the SlaCP Entity to produce the Solver Results File. This contains

1An example of a similar design is the PDETool where a model, developed using one of different
formalisms, is translated into an SDES file which is the input of the SimGine simulation [143].

146

6.2 Tool Architecture and Design

the solver output which does not have to be translated because it always has a fixed

syntax since this solver is always being used.

According to what has been previously described, in this design, the MS engine

produces the SLA-Model File giving the solver-input format instead of an inde-

pendent one. In addition, the TS engine performs only two types of translation in

total. The translating components used inside the TS engine are therefore the Model

Translator and the Inner Translator which is the same as defined in Section 6.2.3.2.

The difference between the two choices of design for the SlaCP tool, presented

in Figures 6.1 and 6.6, is that the second minimises the overheads of communication

and the translation load. It is also easier to implement, and has a faster execution

time. However, it is less modular. The first design, instead, is believed to be more

modular and powerful in obtaining accurate results. Other differences regarding the

format of the SlaCP files are depicted in Table 6.1.

In this table, Design 1 uses a single plugged-in tool for modelling and solving

the model. In this design, the SLA-Model File is written in a unified format; thus,

it is translated into a format compatible with the Textual Model File. Hence, the

core of the actual textual model file is left intact and the rewards are inserted into

it after they have been translated. On the other hand, Design 2 uses a single

stand-alone solver. In this design, the SLA-Model File is written in a solver specific

format and hence, no translation is required. Instead, the translation is carried out

on the textual model file into the solver-specific format. In this case, the core of

the actual textual model file is modified and the content of the SLA-Model File is

inserted directly into it without being translated. In both designs, the Textual model

File can be written in one of multiple modelling formalisms. The Reward Model File

is written in the format of the chosen modelling tool in the first design, while it is

written in the solver format in the second design. Finally, in the second design, the

Unified Results File does not exist since the solver always has the same format; this

is the opposite in the first design which is written in a unified format.

Table 6.1: SlaCP files formats: differences between the two SlaCP designs

SlaCP file format
SLA- Textual Reward Solver Unified
Model Model Model Results Results
File File File File File

Design 1
Unified Multiple Modelling tool Solver’s Unified
format formalisms format specific format format

Design 2
Solver Multiple Solver Solver’s N/A
format formalisms format specific format

147

6.3 Implementation

6.3 Implementation

The implementation of a tool design defines the way in which the design components

are represented in all their details. It specifies the algorithms and data types for

which the architectural design, together with its requirements, is fulfilled [138]. The

design components specified in Section 6.2.3 for the SlaCP tool are the MS engine,

TS engine, and RCC engine, and the plugged-in modelling tool.

To implement the SlaCP design components, a WSLA contract is used as a

concrete representation of the SLA document and the Stochastic Petri Net (SPN) is

used as a representation of the stochastic modelling formalism. Hence, to be specific

to the WSLA’s context when implementing the SLA Parser and Mapper of the MS

engine (in terms of service objects, time constraints, basic and composite metric

definitions, and the SLOs), the implementation of these components exploits the

WslaCP methodology represented in Chapters 4 and 5. Accordingly, the tool that

implements the SlaCP design components using the WslaCP methodology is called

from now on the WslaCP tool.

The WslaCP tool skeleton, algorithms, software components and all communi-

cation among these components (or what are called the Application Programming

Interface (API)1) are built and implemented using Java [141] through Eclipse IDE

[144]. Java is used because it can create Object-Oriented applications that are

portable across platforms since it runs on the Java Virtual Machine. The imple-

mentation also exploits Java Swing [145] to build a set of Graphical User Interfaces

(GUIs) that assist the user through the different steps of the tool. Java Swing is

used instead of the Abstract Window Toolkit (AWT)2 because it is a lightweight

component that can therefore be used across platforms.

In the following subsections, the implementation requirements of the WslaCP

tool are specified in Section 6.3.1. Later, the implementation of the design of each

of the architectural components, that was specified in Section 6.2.3, is described

from Section 6.3.2 to Section 6.3.5.

6.3.1 Tool Implementation Requirements

To implement the tool design, the following requirements have to be considered:

1. In order to express the SLA-Model File, which represents the model-related

Mapper outputs, the implementation has to provide an intermediate machine-

readable language in which to write this file. This has to be abstract and it

1http://en.wikipedia.org/wiki/Application programming interface
2http://docs.oracle.com/javase/1.5.0/docs/guide/awt/index.html

148

6.3 Implementation

is desirable that it depends on the SDES formalism in order to exploit the

WslaCP methodology which maps the WSLA to this SDES.

2. To be able to express the Functions File containing the functions’ interfaces

which are applied on the solver output, the implementation has to provide a

mathematical machine-readable language in which to write this file.

6.3.2 The Implementation of the Plugged-in Tool

The implementation of the plugged-in modelling tool is described first as it forms

the basis for describing the implementation of the SlaCP engines. The choice of the

modelling tool, as described in Section 6.2.3.4, is related to the preferred type of

stochastic model. In this thesis, the Stochastic Petri Net was chosen to represent

the service’s concrete model. Hence, the chosen plugged-in tool has to be able to

build and solve SPN. In what follows, additional implementation requirements for

choosing the plugged-in tool are stated. Then, the choice of this tool is determined.

6.3.2.1 Implementation Requirements of the Plugged-in Tool

The four requirements outlined in Section 6.2.3.4 have to be considered when choos-

ing the plugged-in tool, in addition to the following requirements: the ability of the

tool to solve the model using a transient simulation, and the ability to retrieve the

simulation observations (replicas) from this tool. This is described in what follows.

The Ability to Solve the Model using a Transient Simulation: The choice

to use simulation rather than an analytic solver is made for a number of reasons:

1. The monitoring nature of the SLA composite metrics requires, for their input,

the raw data of the measured QoS metrics. Hence, in SLA prediction, using

the results of the reward variable (i.e. the normal solver output such as the

expected values) for applying a function, such as counting the occurrence of

a specific value, is not valid. Using simulation instead of an analytic solver

permits the extraction of the raw simulation replicas underlying the expected

results of the solver. This provides the data in the form required by the

composite metrics. Applying the functions representing the composite metrics

to each replica, and then computing for each the ability to meet the slo, allows

the tool to find the compliance probability from among all the replicas.

2. If a reward variable distribution (during an interval of time/at an instant of

time) is produced as an output of a solver, there is no possibility of producing

149

6.3 Implementation

the probability that this reward variable at time, t, had n past consecutive

occurrences of a specific value, v (on which some WSLA functions depend).

Hence, there is no possibility of computing WSLA functions given this distri-

bution. This is because each reward variable was considered in Section 5.2.4

as a random variable, and WSLA functions depend on counting or comparing

mechanisms of these random variables. Hence, the probability that X equals

a and Y equals b, pr(X = a ∧ Y = b), is required by WSLA functions to

determine a probability occurrence of a specific value. However, this prob-

ability cannot be equal to the multiplication of individual probabilities: i.e.

pr(X = a ∧ Y = b) is equal to pr(A = a|Y = b).pr(Y = b) rather than

pr(X = a).pr(Y = b) because the random variables are dependent. This

cannot be obtained using the available tools, as much as is currently known.

These tools normally produce the distribution only at each instant or produce

the accumulated rewards up until a specific instant. Accordingly, using the

replicas generated from the simulation output can resolve this issue because

each one represents one possible behaviour of the running service; hence, any

function can be applied, as in the monitoring case.

3. Using a terminating (transient) simulation is more appropriate than a steady-

state one since the reward variables are evaluated, either at a finite instant of

time, or during a finite interval of time [114], as defined in Section 5.2.3.

The Ability to Retrieve the Simulation Observations (Replicas): This is

an essential requirement since not all tools write the simulation replicas into a file

that the user can obtain. The rationale behind this is that the replicas cannot be

produced off-line from the distribution/expected value of a reward variable because

the result at a specific instant is dependent on past instants.

6.3.2.2 The Chosen Modelling Tool

The aforementioned requirements for the chosen modelling tool, in addition to the

ones presented in Section 6.2.3.4, make it difficult to decide which tool can be imple-

mented as the plugged-in tool. This is because, from among the ones that have been

studied in this thesis, there is no single tool that accomplishes all these requirements.

A summary of the comparison of the tools, which were briefly described in Section

2.6.4, is presented in Table 6.2. The tools, as stated earlier are required to possess

the following: SPN type, reward definition, textual input, simple input, transient

simulation and simulation trace. This is described in detail in what follows.

150

6.3 Implementation

1. Möbius: This tool can model and solve multiple modelling formalisms of which

the Stochastic Activity Network (SAN) is one. The reward variables are de-

fined on the net level. Möbius can define hierarchal models and so, for that

reason, multiple C-based textual files are generated for each model. However,

the syntax of these files is complicated, making it difficult to parse and up-

date its content automatically and to call the solver implicitly. The Möbius

model can be solved using transient simulation; its trace can be generated and

obtained.

2. SPNP: This tool can build and solve SPN Reward Models, especially the

Stochastic Reward Net (SRN) [146]. It permits the definition of reward vari-

ables at the net level. SPNP has textual representation using the CSPL lan-

guage. This textual model is available in a single simple file that can be

extracted easily. Finally, SPNP can be used to obtain transient measures

using discrete event simulation. However, there is no way of extracting the

simulation trace. Also, simulation runs for multiple time instants do not work

properly.

3. SHARPE: This tool can build and solve models of different formalisms includ-

ing the Generalized Stochastic Petri Net (GSPN). SHARPE does not allow

reward definition on the net level; instead, reward rates are inserted at the

state level by enumerating each state transition and the reward given for each

of them. SHARPE has a textual representation using MRM enumeration; this

Table 6.2: Comparison of different modelling tools with WslaCP requirements

WslaCP Tool Requirements
SPN

Modelling SPN Reward Textual Input Transient Simulation
Tool Type Definition Input Simplicity Simulation Trace

Möbius SAN Net level Yes Hierarchical, Yes Yes
v. 2.3.1 C-Based multiple files,

complicated
SPNP SRN Net level Yes Simple, Yes, not No
v. 6.0 CSPL file single, and working

compact properly
SHARPE GSPN State level Yes, Simple, not No N/A

v. 1.01 MRM file well
structured

GreatSPN GSPN Net Level, Yes, Two files, Yes Yes
v. 2.0.2 limited expr- BNF file cannot be

ession power tested
PIPE GSPN No Yes, Simple, but No transient N/A
v. 2.5 XML/ not enough simulation/

PNML file analysis

151

6.3 Implementation

can be extracted easily but it is not well-structured. SHARPE can solve the

model using an analytic-numeric solver only.

4. GreatSPN: This tool is used for building and solving models built using a Gen-

eralized Stochastic Petri Net (GSPN) and its coloured extension. GreatSPN

can define rate and impulse rewards as user-defined performance results (or

performance indices) that have a limited expression power. GreatSPN 2.0.2

stores the graphical representation of the model in two ASCII files with the

extensions .net and .dat. This textual description of the model is written

according to the Backus-Naur Form (BNF)1 format. It can be solved for dis-

crete event simulation and it stores its trace file. These files cannot be tested

or investigated because they are UNIX based.

5. PIPE: This tool is an open-source tool for modelling and solving models built

using the Generalized Stochastic Petri Nets (GSPNs) [147]. PIPE does not al-

low the definition of reward variables; instead, non-reward based performance

statistics can be derived, such as passage time analysis (using the DNAmaca

interface), or state space analysis, such as the expected number of tokens in

a place. The latter can be accomplished using GSPN analysis or a simulation

[147]. PIPE is XML/PNML2 based so the model is converted into this format

before it is solved. Although this file is simple and place/transitions can be

derived easily from it, it is, however, inadequate because it does not support

the definition of analysis module control commands. PIPE does not support

transient analysis either analytically or by using simulation.

Although there is no single tool that satisfies all the requirements for the plugged-

in tool, the decision is made to augment WslaCP with two tools: SPNP and Möbius.

This is because they fulfil most of these requirements. In what follows, an overview

of the main strengths and drawbacks of the chosen tools are reviewed.

SPNP Tool: The factors for choosing SPNP lie in its ability to represent Stochas-

tic Petri Nets (SRN in particular), as well as, its flexibility. It allows models to be

built graphically, using the SRN editor, or textually, using the CSPL language (a

C-based language specific to SPNP). The CSPL file contains a description of the

model and has many built-in SPNP functions that are necessary to solve it later.

This CSPL file corresponds exactly to the graphical representation of the model.

1en.wikipedia.org/wiki/BackusNaur Form
2http://www.pnml.org/

152

6.3 Implementation

According to this, the Textual Model File needed by the WslaCP tool can be gen-

erated in two ways. The first one is to write the model (or complete it) manually

using SPNP-dedicated CSPL statements, while the second is to use the SPNP editor

to build an SRN model graphically. This will automatically produce the equivalent

CSPL file. The previous characteristic is the most important factor to support the

use of SPNP because the WslaCP tool would then be able to extract/insert the code

of interest automatically from/to this CSPL file and then call this file to be solved

from the command line. For example, the WslaCP can retrieve the information

regarding state variables and actions and add new constructs representing a model’s

behaviour, reward functions, time to solve them, variable definitions, and other

SPNP statements to aid in solving the model and producing the desired results.

A negative aspect of using SPNP lies in its transient simulation. This can only

produce a single reward variable value at a time although it allows the definition of a

set of instants to solve the reward variable.This has already been discovered and was

reported to the SPNP team while this research was being conducted. Unfortunately,

this is yet to be fixed. Also, another missing requirement in using SPNP is that there

is no possibility of accessing the log file that contains the simulation replicas. The

reasons for continuing to use SPNP despite its inability to serve the purpose are

stated in Section 6.4.

Möbius Tool: The factors for choosing Möbius lie in its capability of representing

Stochastic Petri Nets (SAN in particular), as well as, its powerful transient simula-

tion and the ability to extract the simulation observations (replicas) necessary for

completing the prediction process. These replicas are stored in a text file that can

be extracted directly by the WslaCP to perform the required computations.

The disadvantage of using Möbius is its inability to offer a single compact textual

file that represents the model as a whole. This prevents the WslaCP tool reading

from or inserting into it any code automatically. This is because, since Möbius is so

powerful in terms of building a hierarchical model, a model can be composed of a set

of atomic and composite models that are written as C classes. Hence, many files are

produced for a single model with each being devoted to a specific functionality (e.g.

atomic, composite, study, reward, solver files). This is very complicated to upload

to, as well as in terms of being analysed by the WslaCP tool. In addition, it is hard

to call the Möbius solver from the command line and pass onto it the required files.

Recalling Figure 6.1, the service model has to be available in a textual format.

Using the SPNP tool means that the Textual Model File is written in CSPL, while

it is written in C language when using Möbius.

153

6.3 Implementation

6.3.3 MS Engine Implementation

In this section, the implementation of the Metric Specification Engine is described.

The software components of the MS Engine (i.e. the Model Parser, SLA Parser

and the Mapper), designed in Section 6.2.3.1, are implemented using three Java

executables. The Model Parser executable utilises a text parser which uses a Java

Scanner class to parse the textual model file using regular expressions. On the

other hand, the SLA Parser executable utilises a DOM parser to parse the XML-

based WSLA file. The DOM parser is used instead of the SAX because the SLA

document is usually not large and the parser needs to visit different locations at the

same time. This parser implements an algorithm to extract the prediction-related

elements automatically from the WSLA and write them into a new XML file; this

is a short version of the WSLA file. The reason for producing this file is to obtain a

separate WSLA document that includes only the information related to prediction.

Starting from this new file, the Mapper executable uses another DOM parser that

implements an algorithm to perform the mapping from WSLA elements in order to

produce the two files required: the SLA-Model File and the Functions File.

According to the mapping of service operation, measurement, and schedule de-

scribed in Sections 5.2.1, 5.2.2, and 5.2.3 respectively, the SLA-Model File contains

some model primitives, together with the reward variables and the time to solve

them. This means it contains those elements from the WSLA that the modelling

tool needs to produce their values. The Functions File, as noted in Section 5.2.4,

contains the computational functions applied on the solver result in order to pro-

duce the desired SLA compliance probability. As described in the tool requirements,

these files are written in a format that does not depend on the kind of augmented

modelling tool. Hence, the implementation choice for the Functions File is to write

it using Matlab. However, for the SLA-Model File, an SDESsch schema is developed

whose instants are used as the intermediate language to write this file. The two im-

plementation languages, along with a sample file representing the SLA-Model File

and the Functions File, are described in the following sub-sections.

6.3.3.1 SDESsch Schema for Expressing the SLA-Model File

The SDESsch schema is developed to represent the SLA-Model File, i.e. the WSLA

elements mapped to the SDES model, in a machine-readable format following the

normal SDES formalism context. The value of this schema is that it enables the

WslaCP tool to read and manipulate the SLA-Model File automatically. In addition,

it allows this file to be used by different modelling formalisms/tools by translating

154

6.3 Implementation

it into the chosen formalism/tool-specific language.

An XML schema for representing an SDES model was developed in [148] for its

instances to be used as inputs to the SimGine simulation. However, the developed

schema in this work differs in that it does not represent the whole SDES model.

Rather, it only considers the SDES elements related to the results of mapping the

SLA elements. Also, the rate reward functions of the reward variable are represented

here in a more formal way, rather than the one in [148] where a subset of C++

fragments was used to represent the reward function. In addition, the SDESsch

considers new elements that are not related directly to the SDES model description

and reward variable definitions. Instead, they are used to offer extra help to the

user in terms of choosing the appropriate primitives to complete the model or the

reward function.

The entity declaration DTD of the SDESSch is defined in Listing 6.1. The ratio-

nale for using DTD is to give the reader a complete overview of the elements of the

schema. For a full description of SDESSch, please refer to Appendix A.

Listing 6.1: The DTD of the SDESSch Schema

<?xml version="1.0" encoding="UTF -8"?><!ENTITY %sdes_prefix "sdes">

<!ENTITY %sdes_prefix .. "%sdes_prefix;:"><!ENTITY % documentElementAttributes"

xmlns:%sdes_prefix;CDATA ’D:/writingup2012/sdes ’">

<!--element name mappings -->

.... Omitted

<!--element and attribute declarations -->

<!ELEMENT %sdes..SV; (%sdes..Name;, (%sdes..Value;)?)>

<!ELEMENT %sdes..A; (%sdes..Name;, (%sdes..Rate;)?, (%sdes.. InputS ;)?,

(%sdes.. OutputS ;)?)>

<!ELEMENT %sdes..RV; ((% sdes.. rvRate ;)?, (%sdes..rvImp;)?, %sdes..rvInt;,

(%sdes..hint;)?)>

<!ATTLIST %sdes..RV;

type (Gauge | Counter | InvocationCount | ResponseTime | DownTime | Status)

#IMPLIED

name CDATA #IMPLIED >

<!ELEMENT %sdes..SDES; ((% sdes..SV;)+, (%sdes..A;)+, (%sdes..RV;)+)>

<!ATTLIST %sdes..SDES;

name CDATA #IMPLIED

%documentElementAttributes;>

<!ELEMENT %sdes..Name; (# PCDATA)>

<!ELEMENT %sdes.. Value; (# PCDATA)>

<!ELEMENT %sdes..Rate; (# PCDATA)>

<!ELEMENT %sdes.. InputS; (# PCDATA)>

<!ELEMENT %sdes.. OutputS; (# PCDATA)>

<!ELEMENT %sdes.. rvRate; ((% sdes..IF;, (%sdes.. ElseIf ;)?, (%sdes.. ElseReturn ;)?) |

(%sdes.. Return ;))>

<!ATTLIST %sdes.. rvRate;

%documentElementAttributes;>

<!ELEMENT %sdes..IF; (%sdes.. condition;, %sdes.. return ;)>

<!ELEMENT %sdes.. ElseIf; (%sdes.. condition;, %sdes.. return ;)>

<!ELEMENT %sdes.. ElseReturn; (# PCDATA)>

155

6.3 Implementation

<!ELEMENT %sdes.. Return; (# PCDATA)>

<!ELEMENT %sdes..stv; (# PCDATA)>

<!ELEMENT %sdes..R; (# PCDATA)>

<!ELEMENT %sdes..V; (# PCDATA)>

<!ELEMENT %sdes..And; ((% sdes.. condition;, %sdes.. condition ;))>

<!ELEMENT %sdes..Or; ((% sdes.. condition;, %sdes.. condition ;))>

<!ELEMENT %sdes..Not; (%sdes.. condition ;)>

<!ELEMENT %sdes.. condition; (((% sdes..stv;, %sdes..R;, %sdes..V;) | %sdes..And; | %

sdes..Or; | %sdes..Not;))>

<!ELEMENT %sdes.. rvImp; (%sdes..ac;, %sdes.. return ;)>

<!ATTLIST %sdes.. rvImp;

%documentElementAttributes;>

<!ELEMENT %sdes..ac; (# PCDATA)>

<!ELEMENT %sdes.. return; (# PCDATA)>

<!ELEMENT %sdes..hint; (%sdes..svH; | %sdes..aH;)>

<!ATTLIST %sdes..hint;

%documentElementAttributes;>

<!ELEMENT %sdes..svH; (# PCDATA)>

<!ELEMENT %sdes..aH; (# PCDATA)>

<!ELEMENT %sdes.. rvInt; (%sdes..S;, %sdes..E;, %sdes..I;)>

<!ATTLIST %sdes.. rvInt;

type (Instant | Interval) #IMPLIED

%documentElementAttributes;>

<!ELEMENT %sdes..S; (# PCDATA)>

<!ELEMENT %sdes..E; (# PCDATA)>

<!ELEMENT %sdes..I; (# PCDATA)>

Depending on the SDESSch schema, and on mapping WSLA measurements to

SDES represented in Section 5.2.2, the SLA-Model File can be in one of two cases,

depending on the reward function template status: i.e., whether it is complete or

incomplete. There is a need to distinguish between these two cases because the user

has to react differently to them in a later step. These cases are as follows:

1- The Reward Function Template is Complete: This is the case when the

measurement directive used in the WSLA is one of the following: Gauge, Counter,

or InvocationCount when the reward function is generated completely with a specific

state variable/action that represents the service operation. In this case, the user has

to confirm only, in a later step, that the automatically chosen state variable/action

is correct; otherwise, he/she has to select the correct one from the set of other state

variables/actions in the model. An example of this type of reward function template

inside a reward variable generated by the MS Engine, is presented in Listing 6.2.

Listing 6.2: An SLA-Model File with a complete template

<sdes:SDES xmlns:sdes="D:/writingup2012/sdes" xmlns:xsi="http://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation="D:/writingup2012/sdes file: ///D:/

writingup2012/sdesXML/SDESschema.xsd" name= "DemoService">

<!-- Model Primitives -->

1: <sdes:SV >

2: <sdes:name >GetQote_s </sdes:name >

156

6.3 Implementation

3: </sdes:SV >

4: <sdes:A >

5: <sdes:name >GetQuote_a </sdes:name >

6: <sdes:InputS >GetQuote_s </sdes:InputS >

7: </sdes:A >

<!-- Reward Variable: Function + Time -->

8: <sdes:RV type="Gauge" name="Gauge_GetQuote">

9: <sdes:rvRate >

10: <sdes:Return >GetQuote_s </sdes:Return >

11: </sdes:rvRate >

12: <sdes:rvInt type="Instant">

13: <sdes:S >0</sdes:S >

14: <sdes:E >100</sdes:E >

15: <sdes:I >10</sdes:I >

16: </sdes:rvInt >

17: </sdes:RV >

</sdes:SDES >

In this listing, the mapping of the service object (i.e. the GetQuote operation)

is defined by a single state variable GetQuote s inside the sdes:SV element (line 2)

and a single action GetQuote a inside the sdes:A element (line 5) where the state

variable GetQuote s is the input of this action (line 6). The reward variable that

represents the Gauge measurement is represented as a rate reward rvRate inside

the sdes:RV element (line 9) that its reward function returns the value of the state

variable GetQuote s (line 10). The name of this reward variable is created auto-

matically by attaching the name of the measurement to the name of the operation

Gauge GetQuote (line 8). It is then solved as an instant of time (line 12), starting

at 0 and ending at 100 with a step size of 10 defined inside the S, E, I elements

respectively (lines 13, 14, and 15). The contents in this listing are produced auto-

matically. The user has only to confirm that the state variable used for the reward

variable is GetQuote s1. If it is not, he/she has to choose the correct state variable

from the set of state variables available in the model2.

2- The Reward Function Template is Incomplete: This is the case when the

measurement is one of the following: ResponseTime, Status, or DownTime when the

reward function does not refer only to the model’s primitives representing the service

operation. This case is more complicated than the former because it includes defining

new state variables, a condition, and a return statement. Although in Section 5.2.2

primitives were assigned automatically to the mapping of these measurements, they

1If some primitives of the service model are generated automatically from SLA, the name of
the state variables and actions come from the name of the service operation. Hence, the chosen
state variable in the reward variable is typically the one specified in the templates.

2This case may occur when the model is built manually by a user. In this case, he/she might
represent the model primitives or assign their name differently.

157

6.3 Implementation

are, however, often more complicated and hence the reward functions are left blank.

Thus, the user, in a later step, has to choose the state variable with its condition

and the return value which completes the reward function definition. An example

of this case, and depending on Listing 4.2, is the XML instance in Listing 6.3.

Listing 6.3: An SLA-Model File with incomplete reward function template employing Listing 4.2

1: <sdes:SV >

2: <sdes:name >GetQuote_s </sdes:name >

3: </sdes:SV >

4: <sdes:A >

5: <sdes:name >GetQuote_a </sdes:name >

6: <sdes:InputS >GetQuote_s </sdes:InputS >

7: </sdes:A >

<!-- Reward Variable: Function + Time -->

8:<sdes:RV type="Status" name="Status_GetQuote">

9: <sdes:rvRate >

10: <sdes:IF >

11: <sdes:condition/>

12: <sdes:return/>

13: </sdes:IF >

14: <sdes:ElseReturn > </sdes:ElseReturn >

15: </sdes:rvRate >

16: <sdes:rvInt type="Instant">

17: <sdes:S >0</sdes:S >

18: <sdes:E >44640</sdes:E >

19: <sdes:I >1</sdes:I >

20: </sdes:rvInt >

21: </sdes:RV >

In this listing, the reward variable that represents the Status measurement is

defined as a rate reward (line 9). The rate reward function is composed of two

elements, condition (line 11) and return (line 12). The user has to choose in a

later step what condition is required in order for the service to be up and what reward

is earned while this condition is true. The user might also specify via ElseReturn

(line 14) what the reward will be earned while the condition is false. In SDESsch

there is a flexibility in defining multiple conditions to express the actual condition

of the service status. An example of completing the reward function template of

Listing 6.3 with multiple conditions is displayed in the content of Listing 6.4.

Listing 6.4: Completing the reward function template of Listing 6.3

2: <sdes:rvRate >

3: <sdes:IF >

4: <sdes:condition >

5: <sdes:And >

6: <sdes:condition >

7: <sdes:sv >DF</sdes:sv >

8: <sdes:R >Less</sdes:R >

9: <sdes:V >10</sdes:V >

10: </sdes:condition >

158

6.3 Implementation

11: <sdes:condition >

12: <sdes:sv >TR</sdes:sv >

13: <sdes:R >Less</sdes:R >

14: <sdes:V >5</sdes:V >

15: </sdes:condition >

16: </sdes:And >

17: </sdes:condition >

18: <sdes:return >1</sdes:return >

19: </sdes:IF >

20: <sdes:ElseReturn >0</sdes:ElseReturn >

21: </sdes:rvRate >

In this listing, the condition is composed of two nested conditions (lines 6 and

11) joined by the And logical operator (line 5). The first one specifies a state variable

DF to be Less than 10 (lines 7, 8 and 9), while the second specifies a state variable

TR to be Less than 5 (lines 12, 13 and 14). The reward function will return 1 (line

18) if the condition is valid and 0 (line 20) otherwise.

The SLA-Model File produced from the MS Engine executable is assigned a

name which is equal to the service name (DemoService for this particular example

in Listing 4.2); it has an extension of .m (to denote a set of model primitives).

6.3.3.2 Matlab for Expressing the Functions File

Matlab (MATrix LABoratory) [149] is incorporated in this implementation to rep-

resent the Functions File. Using Matlab to express the content of the Functions

File means a computer can read WSLA undisputed mathematical meaning clearly.

Also, it allows different implementation languages to make use of and implement

this file. Matlab is chosen since it is powerful enough in expressing maths and be-

cause well-known programming languages, such as C or Java, have libraries that can

automatically map code written in Matlab. Other mathematical languages such as

OpenMath [150] can be chosen; however, Matlab’s coding is more concise.

A Matlab equivalent functions’ header is produced automatically by the Map-

per executable of the MS Engine for each function in the WSLA document and for

the SLO. These functions are applied either on the result of the model solver, the

Solver Results File, or on the result of another Matlab function. Although Matlab is

used to express the header of the functions in the Functions File, the functionality

(function implementation) of the more complex WSLA functions may also be spec-

ified in Matlab in order to help implement them correctly in the desired language.

Accordingly, the notation used in the Functions File regarding data types, variable

definitions, and function definitions will follow Matlab-style language.

The functions in the Functions File can be in one of several cases. There is a

need to distinguish between these cases in order to know which functionality needs

159

6.3 Implementation

to be implemented using Matalb and which do not. These cases are as follows:

1. If a WSLA function is one of the time series functions, it will be represented

as an array equals to the solver output. This is presented in Table 6.3.

Table 6.3: WSLA functions equal to solver output

WSLA Function Math in Matlab

TSConstructor/QConstructor function[TSC []] = solver output

2. If a WSLA function has the same functionality as an existing Matlab function,

it will be referred to it directly. This means that, if the WSLA function is a

well-known Matlab function, only the header of the function will be produced

since its functionality is intuitive. Well-defined WSLA functions, together with

their corresponding Matlab functions, are presented in Table 6.4.

Table 6.4: Matlab functions equivalent to WSLA functions

WSLA Function Math in Matlab

Size function[size] = length(TSC [])
Mean function[wmean] = mean(TSC [])
Median function[wmedian] = Median(TSC [])
Mode function[wmode] = mode(TSC [])
Round/Truncate function[wround] = round(v)
sum function[wsum] = sum(TSC [])
Max function[wmax] = max (TSC [])
Plus/Minus/Multiply/Divide +/-/*//

3. If a WSLA function is not equivalent to any well-defined Matlab function, the

header, along with the function body (functionality), will be defined in Matlab

to prevent any misunderstanding when it is implemented. The complex WSLA

Table 6.5: Matlab function’ headers of the complex WSLA functions

WSLA Function Math in MATLAB

TSSelect function[v] = TSS (TSC [], x)
ValueOccurs function[v []] = VO(TSC [], x)
PercentageGreaterThanThreshold function[v []] = PGTT (TSC [], x)
PercentageLessThanThreshold function[v []] = PLTT (TSC [], x)
NumberGreaterThanThreshold function[v []] = NGTT (TSC [], x)
NumberLessThanThreshold function[v []] = NLTT (TSC [], x)
Span function[v []] = Span(TSC [], x)
RateOfChange function[v []] = RoC (TSC [], sch[], x)

160

6.3 Implementation

function headers are presented in Table 6.5. It appears from this table that

the header does not provide any particular meaning. Hence, the functionality

definition is important, as is specified in the following example.

Table 6.6: Sample of the Functions File that contains the functions of Listing 4.2

//Functions Headers

function[TSC[]]=solver output

function[xCount[]]= Span(TSC[],0)
function[slo]= Less(xCount[],10)

//Complex Functions Functionality

function[xCount[]]= Span(TSC[],0)
xCount=0;

i=0;

for i=0:1:length(TSC[])

if TSC(i)= 0

xCount=xCount+1;

xCount[i]=xCount;

else

xCount=0;

xCount[i]=xCount;

end

end

return(xCount[])

end

Table 6.6 contains an example of a sample output of the Functions File that

contains the functions of Listing 4.2. The output file contains the method headers

and then the functionality descriptions of the complex ones. In this table, the func-

tionality of the Span function is defined; this is not stated explicitly in WSLA and

does not have any equivalent in Matlab. Hence, the pseudo code of the Span func-

tionality is stated because it gives a better degree of confidence when implementing

the function than writing Span only. Others WSLA function implementations in

Matlab are specified in Appendix B.

The Functions File produced from the MS Engine executable is assigned a name

which is equal to the service name (DemoService for this example); it has an ex-

tension of .f (to denote a set of functions).

6.3.4 TS Engine Implementation

In this section, the implementation of the Translator Engine is described. The three

software components of the TS Engine (i.e. In-Out Translator, Out-In Translator

and Inner Translator), which were designed in Section 6.2.3.2, are implemented

as Java executables. These executables utilise a set of algorithms to translate the

161

6.3 Implementation

intermediate files (i.e. SLA-Model File and Functions File) into the plugged-in

tool’s input language and the WslaCP implementation language respectively. In

what follows, the implementation of these three software components is presented.

6.3.4.1 The In-Out Translator Implementation

The In-Out translator translates the SLA-Model File, which is written according to

SDESSch, into the input language of the tool that solves the type of SDES model

being used; this generates the Reward Model File. Before generating this file, the

translator creates part of the Textual Model File (if it is not predefined) by trans-

lating the model-related parts of the SLA-Model File; this is completed by the user.

In the current status of the implementation, the WslaCP tool is capable of making

the transformation to CSPL and, with a few alterations, it can be transformed into

another language. For this reason, SPNP is used to describe the implementation of

the In-Out translator. Given that the plugged-in tools is SPNP, the Textual Model

File and the Reward Model File are expressed in CSPL. Hence, these files have

the service name but with the extension “.spnp” and “.c” respectively (the latter

represents the extension of the SPNP solver input file).

The translation of the SLA-Model File through the In-Out translator passes

through the following steps:

1. Parsing the file to translate the model primitives being used.

2. Generating the GUI for completing the model creation by the user.

3. Parsing the file to recognise type of the reward variables being used.

4. Generating the GUI that suits the specific type of reward variable.

5. Accepting the user input that completes the reward function definition.

6. Creating the Reward Model File with the reward functions.

7. Adding the instant/interval of time required to solve the reward functions.

These steps are described in detail in what follows.

1- Parsing the File to Translate the Model Primitives being used: The

translator parses the first part of the SLA-Model File to translate the state vari-

ables/actions into the corresponding places/transitions of the SPNP model. It

then stores them in a text file that has the service name with the extension .spnp

(demoService.spnp in this example). This file represents part of the Textual Model

162

6.3 Implementation

Table 6.7: The translation of the model primitives of the SLA-Model File of Listing
6.3 from SDESSch into CSPL

/* ========= DEFINITION OF THE NET ========== */

void net(){
/* ====== PLACE ====== */

place("GetQuote s");

/* ====== TRANSITION ====== */

/* Timed Transitions */

rateval("GetQuote a",1);

/* ====== ARC ====== */

/* Input Arcs */

iarc("GetQuote s","GetQuote a");}

File. Recalling the information relating to model primitives in Listing 6.2, the au-

tomatic translation from SDESSch to CSPL can be as it appears in Table 6.7.

The second part of the SLA-Model File that contains the reward variable defi-

nitions is postponed to step 3 in order to separate the model completion step from

the reward function completion step.

2- Generating the GUI for Completing the Model Creation by the User:

After translating the model primitive into the plugged-in tool input (CSPL here), a

Figure 6.7: A WslaCP GUI for completing the model creation

163

6.3 Implementation

GUI is presented to the user to allow the model creation to be completed manually

(see Figure 6.7). After completing the model, the Textual Model File (which is

demoService.spnp here) is updated. If the user does not want to complete the

model creation manually, he/she can upload the model file that contains a predefined

textual description of the model (see the ‘Upload Model File’ button in Figure 6.7).

In this case, this file replaces the Textual Model File.

3- Parsing the File to Recognise the Type of Reward Variables being

Used: This is necessary for deciding the type of GUI the tool will present in the

next step. If the reward variable represents Gauge, InvocationCount or Counter, the

reward variable template regarding the reward function is complete since it refers to

the state variable or action representing the service operation (as specified in Section

6.3.3.1). This can be seen in what follows.

Gauge → <sdes:rvRate>

<sdes:Return>state variable name</sdes:Return>

</sdes:rvRate>

InvocationCount → <sdes:rvImp>

<sdes:a>action name</sdes:a>

<sdes:Return/>1</sdes:Return>

</sdes:rvImp>

Counter → <sdes:rvImp>

<sdes:a>action name</sdes:a>

<sdes:Return/>1</sdes:Return>

</sdes:rvImp>

Alternatively, if the reward variable represents StatusRequest, Status, Response-

Time, or DownTime, the reward function template is incomplete since it does not

refer directly to the service operation primitives and hence it is hard for this to be

generated automatically (as specified in Section 6.3.3.1). The part of the reward

variable with regard to the incomplete reward function is presented in what follows.

StatusRequest, ResponseT ime,DownTime →
<sdes:rvRate>

<sdes:IF>

</sdes:condition/>

<sdes:return/>

</sdes:IF>

<sdes:ElseReturn/>

</sdes:rvRate>

164

6.3 Implementation

The condition in this case is a place, an arithmetic relational operator, and a

value, in addition to a logical operator, when multiple conditions are used.

4- Generating the GUI that Suits the Specific Type of Reward Variable:

If the reward function templates are complete, the user has to specify whether or

not the usage of the model primitives in this template is correct. If it is not, then

he/she will be asked to choose the correct state variable or action from the model.

However, if the reward function templates are incomplete, the user will be asked

to specify the condition needed to complete the reward function. In either of these

cases, the GUI will be tailored according to the type of reward variable. This means

that the dedicated GUI will present only a suitable set of primitives (i.e. places and

transitions available in the model) for this kind of reward variable. For example, for

the reward variable representing Status, the user will be asked to choose the relation

that specifies when the system is up. This is achieved through a user interface

(Figure 6.8) that displays, in a drop-down list, all the places available in the model

from which to choose a set of these with the corresponding number of tokens and

an arithmetic relation.

Another example is when the reward variable represents Gauge. In this case, the

Figure 6.8: A WslaCP GUI for completing the reward definition of Status

165

6.3 Implementation

Figure 6.9: A WslaCP GUI for completing the reward definition of Gauge

user will be asked, through a GUI (Figure 6.9), to choose the state variable he/she

wants for measuring gauge if this is not the state variable representing the service

operation. This is achieved using a drop-down list that is populated automatically

Table 6.8: The updated reward function in the SLA-Model File of Listing 6.3

<sdes:RV type="Status" name="Status GetQuote">

<sdes:rvRate>

<sdes:IF>

<sdes:condition>

<sdes:sv>UP</sdes:sv>

<sdes:R>Equal</sdes:R>

<sdes:V>1</sdes:V>

</sdes:condition>

<sdes:return>1</sdes:return>

</sdes:IF>

<sdes:ElseReturn>0</sdes:ElseReturn>

</sdes:rvRate>

<sdes:rvInt type="Instant">

<sdes:S>0</sdes:S>

<sdes:E>44640</sdes:E>

<sdes:I>1</sdes:I>

</sdes:rvInt>

</sdes:RV>

166

6.3 Implementation

with all the places available in the model from which to choose an option.

5- Accepting the User Input that Completes the Reward Function Def-

inition: Once the GUIs related to completing the reward function appear, the

user has to choose the relevant model primitives. Once this is done, the tool will

automatically update the SLA-Model File with the entered values. For example,

if the value that is entered for completing the Status reward function is: the state

variable UP is equal to a value of 1, then the updated SLA-Model File will appear

as in Table 6.8.

Table 6.9: The equivalent CSPL code of the reward function presented in Table 6.8

double Status GetQuote() {
if (mark("UP")> 0)

return (1.0);

else

return (0.0); }

The tool will then automatically generate the CSPL code of this completed

reward function. For example, the code in Table 6.9 represents the CSPL equivalent

of the reward template from Table 6.8. This generated CSPL code will be saved in

the tool’s memory to be used in the next step.

6- Creating the Reward Model File with the Reward Functions: In this

step, the tool creates the Reward Model File (which represents the solver input)

and it gives it the name of the service with the extension .c. The tool then copies

the content of the model description that is taken from the Textual Model File

(demoService.spnp in the running example) into this new file demoService.c. After

this, it automatically inserts the generated CSPL reward functions into the appro-

priate place inside the demoService.c file; this is after the net definition and before

the ac final() function. This file content will appear in the lower part of Figure 6.8

each time a new reward variable is completed and translated.

7- Adding the Instant/Interval of Time Required to Solve the Reward

Functions: After creating and inserting the reward functions into the Reward

Model File (demoService.c here), the last part of the reward variable template in

the SLA-Model File is used. This part concerns the time required to solve the reward

variable and is translated by the tool automatically into the equivalent CSPL code

for solving the reward functions.

167

6.3 Implementation

Since the Reward Model File is used as the input to the solver of the plugged-in

tool, the instructions for solving the model have to be inserted in the ac final()

function. This SPNP function is the one that tells the tool which outputs need to

be computed. All the variable definitions necessary for the loop, which are defined

in ac final, are also generated and inserted automatically.

Table 6.10: A sample of the time generated from Table 6.8 for insertion into the
Reward Model File

void ac final(){
int loop=0;

/* Compute the reward function for the interval

and time period specified in the schedule. */

for (loop=0; loop < 44640; loop+=1)

{
solve ((double) loop);

expected(Status GetQuote);

}

Given the example in Table 6.8, the status of the system is checked every minute

during a 44640 minute period. This is reflected in Table 6.10 through the use of a

‘for’ loop, where solve() is the function used to solve the SPNP model.

To inform the SPNP solver to use the simulation rather than the numerical

solver, the command iopt(IOP SIMULATION,VAL YES) needs to be placed in an SPNP

function called option(); this is also done automatically. Any other preferences, such

as the simulation confidence interval, the simulation seeds, and the maximum and

minimum replicas, also go here.

Given all the aforementioned steps performed by the In-Out Translator, the gen-

erated Reward Model File will contain a complete version of the model description,

in addition to the reward variables and the time to solve them. Hence, this file is

ready to be solved via the solver of the plugged-in modelling tool in order to produce

the result of each reward variable at each time instant/interval.

Calling the solver, which is simulation-based, is triggered by clicking the solve

button, as shown in Figure 6.8. The result of solving the model is the Solver Results

File that contains n realisations for each reward variable at each instant. The

number of realisations (replicas), n, is determined according to the user’s preference

regarding the confidence interval. These results are stored in a text file, the Solver

Results File, in which each line represents one realisation of the reward variable at

all the required time instants/intervals.

Given the implementation of the plugged-in tool in Section 6.3.2.2, SPNP cannot

solve the output of the In-Out Translator using simulation. Hence, Möbius is used

168

6.3 Implementation

Figure 6.10: An example of Möbius trace file

instead. However, Möbius is not called implicitly from the WslaCP tool; rather, it

is run manually by the user because of the limitation described in Section 6.3.2.2.

The simulation trace file generated by Möbius (written in an ASCII format into .txt

or .cvs files as shown in Figure 6.10) is taken then as input to the WslaCP tool to

complete its work. This trace contains, in each line, the ID number for the obtained

reward variable with the value of this variable. These are separated by a comma.

6.3.4.2 The Out-In Translator Implementation

The Out-In Translator translates the simulation trace stored in the Solver Results

File1 (DemoService.cvs here for Möbius) into a unified format. This translator

implements an algorithm to read each line and then stores it in a matrix of size

equal to the number of realizations × total number of instants/intervals. This

algorithm ignores any text that is specific to the solver format. For example, if the

simulation trace has 100 realizations and the reward variable is obtained for 44640

time instants (as specified in Table 6.10), then the new Unified Results File will look

like the one illustrated in Table 6.11.

Inside this file, the simulation replicas related to a specific reward variable are

preceded by its name. This is a combination of the MeasurementDirective name

and the Operation name separated by an underscore sign (Status GetQuote for the

1SPNP’s output file extension is .out

169

6.3 Implementation

Table 6.11: A sample output of the Unified Results File

Status GetQuote results:

1: 1 1 0 0 0 0 0 ... 0 0 0

2: 1 1 1 0 0 0 0 ... 0 0 1

...

100: 1 0 0 0 0 0 1 ... 0 0 0

running example). The whole generated file (i.e. the Unified Results File) will be

stored under a name which is a combination of the service name and the word result

separated by an underscore sign (demoService result.txt for the running example).

6.3.4.3 The Inner Translator Implementation

This translator implements the functions specified in the Functions File in the lan-

guage in which the WslaCP is implemented; in this case, this is Java. This imple-

mentation is stored in a separate Functions Implementation File that has the service

name with the extension .f i (to denote the function’s implementation). Because of

its simplicity, a sample file is not presented here.

6.3.5 Implementation of the RCC Engine

The Computation & Comparing software component in this engine is implemented as

a Java executable that uses a specific algorithm in order to predict the probability

of SLA compliance. The implemented algorithm is presented in Table 6.12. Its

inputs are the simulation replicas, R, that are stored in the Unified Results File

and the functions, Func(s), that are stored in the Functions Implementation File.

For each replica Ri, i ≤ n (line 8), where n is the total number of replicas, the

algorithm takes the value of the reward variable vj for each instant j ≤ w (line 9),

where w is the number of time instants/intervals for which the reward variable are

solved, and applies all the functions Func(s) in sequence (line 10). The result of

applying the final function for each replica will be w different values of the slap (this

is represented in line 11 using slapvj). These results are compared by the algorithm

against the threshold specified in the evaluation function of the slo. The result will

be w answers of True/False for each replica (this is represented in line 12 using slovj).

The algorithm then counts the number of True answers, Y , (which means the slo

is met) for each value of each replica (lines 14 and 15) and then divides the sum by

the number of instants w to produce the probability that slo is met in this replica

(this is represented using prRi
in line 16). It then computes the summation of the

probability compliance for each replica and divides it by n to give the probability of

170

6.3 Implementation

Table 6.12: An algorithm for computing the slo compliance probability from
simulation replicas

1: /*Input : R: Simulation replicas of the Unified Results File*/
2: /* Func(s): Functions of the Functions Implementation File*/
3: /*Output : Finding SLA compliance probability*/
4: /*Variables: n: Number of replicas*/
5: /* w: Number of time instants/intervals in each replica*/
6: /* vj : Value of the reward variable at index j ≤ w*/
7: //After Solving the Model:
8: For each replica Ri, i ≤ n
9: For each value vj≤w
10: 1.1 Apply all the Func(s) in sequence;
11: 1.2 Assign the final value to SLA parameter, slapvj ;
12: 1.3 Evaluate SLO to True/False, slovj ;
13: End;
14: Y=0 (number of instances satisfying slo threshold at each slovj);
15: For all slovj , j ∈ w
16: If (slovj=True) then Y=Y+1;

17: prRi=
Y
w ;

18: End;
19: End;

20:Return (prslo =
∑

prRi
n);

SLA compliance prslo for all the n replicas (line 20).

To simplify this, the algorithm presented in Table 6.12 is applied for the functions

in the example of Listing 6.6. This means that the simulation output of Listing 6.11

will be parsed first to apply the Span function on it, as appear in Listing 6.5.

Listing 6.5: Applying the Span function on the simulation output of Table 6.11

1: 0 0 1 2 3 4 5 ...8 9 10

2: 0 0 0 1 2 3 4 ...5 6 0

...

100: 0 1 2 3 4 5 0 ...1 2 3

Then, the result will be compared against SLO threshold as specified in Listing

6.6. This means for each instant in the replica, if the result is less than 10 then true

will be returned (T) else it will be false (F). This is appeared in Listing 6.6.

Listing 6.6: Evaluating the result of Listing 6.5 to True/False

1: T T T T T T T...T T F

2: T T T T T T T...T T T

...

100: T T T T T T T...T T T

The probability of SLO compliance for each replica is computed, as appeared in

171

6.4 Discussion

Listing 6.7, by summing the true value and dividing them by the number of instants.

Listing 6.7: Computing the probability of slo compliance for each replica

1: 13000/44640

2: 14530/44640

......

100: 23400/44640

Finally, the ultimate SLO compliance probability will be the summation of the

compliance probability of all the replicas divided by the number of replicas. This is

displayed to the user through the engine specified GUI.

After describing the implementation of all the tool engines, the information re-

lated to the WslaCP output files is summarised in Table 6.13. This table contains

the design name of the output file, its implementation name and its extension.

Table 6.13: A summary of the implementation of the WslaCP’s output files

Output File Output File Extension
Design Name Implementation Name

SLA-Model File service name .m
Functions File service name .f
Textual Model File service name .spnp
Reward Model File service name .c (SPNP)
Solver Results File service name .txt/.cvs (Möbius)

.out (SPNP)
Unified Results File service name result .txt
Functions Implementation File service name .fi

6.4 Discussion

To explain the implementation choices that were made for the WslaCP tool, it is

necessary to discuss briefly the challenges faced when carrying out the research for

this PhD.

The reason for using SPNP in spite of its inability to satisfy the WslaCP require-

ments presented in Section 6.3.2.2 regarding the ability to run a transient simulation

and retrieve its replicas, is that the WslaCP tool was originally built to be used with

the transient analytic solver of SPNP rather than its simulation1. This tool was ca-

pable of implementing all the phases of the methodology for only a specific set of

WSLA functions. This is because deriving a numerical solution of the WSLA met-

rics is prohibitively difficult, and sometimes impossible, for various WSLA functions.

1This was described at an early stage of this thesis in [137].

172

6.4 Discussion

When it was realised that using an analytic solution was not possible for all WSLA

functions, the direction of the work was modified to use simulation replicas as a

way of accommodating all the WSLA functions. For this reason, the decision was

taken to change the tool’s design with regard to solving the model. Unfortunately,

the SPNP transient simulation was not working properly and the simulation trace

could not be tracked. In the light of this problem, the direction of the work had to

change once again to use Möbius in the WslaCP tool instead of SPNP. Although

using Möbius was possible and gave the intended results for the step of producing

the reward variable results onwards, it was difficult to implement the tool steps in

terms of solving the model backwards (i.e. the steps relating to parsing the model

file, manipulating it, and then calling the solver implicitly).

Given these problems, other tools had to be investigated in order to check their

applicability to the new requirements of the WslaCP tool. However, this was

achieved for only a limited number of tools because of time limitations. Hence,

it was not possible to search among all the stochastic modelling tools to find a more

suitable one that would satisfy all the needs of the WslaCP tool. Because no tool

from among the ones studied was ideal for implementing the proposed tool design,

a step back was made to use both SPNP and Möbius in the following way. SPNP

is used to implement the tool design from the point where the SLA document is

uploaded until the reward model file creation is completed and the solver is called,

while Möbius implements the tool design from the point at which the model is solved

until the slo compliance prediction is produced.

The aforementioned implementation may seem unsatisfactory because the WslaCP

tool does not provide one continuous flow from the SLA input to its compliance pre-

diction. However, this implementation, using SPNP and Möbius, can be completed

in the future when the SPNP simulation bug is solved, or when an easy way to

produce a textual input of the Möbius model can be worked out. Hence, there is no

reason why the architectural design cannot be fully implemented when the afore-

mentioned solution are satisfied or when a plugged-in tool that satisfies all the tool

requirements is utilised.

The implemented components of the WslaCP tool can be exploited for other

purposes: for example, for learning purposes regarding SLA content and stochastic

modelling, or as parts of other tools with different orientations, such as a tool which

may validate SLA content. This implementation has also led to a different design

choice that might be applied in future work, as specified in Section 6.2.4.

It should be noted that the change in the research’s direction towards using

simulation replicas and to consider each reward variable as a random variable (as

173

6.5 Conclusion

Table 6.14: Features implemented in the WslaCP tool
X supported N/A Not applicable (WslaCP tool specific)
7 Not supported ∼ supported for a single tool

Design Engines SPNP Möbius WslaCP

RS Engine
SLA Parser N/A N/A X
Model Parser X 7 ∼
Mapper N/A N/A X

TS Engine
In-Out Translator X 7 ∼
Out-In Translator 7 X ∼
Inner Translator N/A N/A X

RCC Engine Computation & Comparing 7 X ∼

presented in [15]), might be achievable without obtaining these replicas if the current

software modelling tools were capable of computing functions over random variables.

Since this was hard to tackle in practice, simulation replicas was the issue to explore.

A summary of what the current implementation of the WslaCP tool is capable

of doing is presented in Table 6.14. For the RS Engine in this table, the SLA Parser

is not related to the plugged-in tool; hence, it is supported by WslaCP. The same

is true for the Mapper. However, for the Model Parser, the WslaCP can parse

the model represented in SPNP simple textual format, but this is not supported for

Möbius. For the TS Engine, the In-Out Translator is implemented for SPNP but not

for Möbius. The opposite is true for the Out-In Translator where only Möbius can

solve the model using a transient simulation and allow the replicas to be extracted.

The Inner Translator, on the other hand, is not related to the plugged-in tool;

hence, it is implemented fully by the WslaCP. Finally, although the RCC Engine

is not related to the plugged-in tool directly, it takes its output as an input to the

Computation & Comparing components. Hence, this engine can be considered as

supporting Möbius only.

6.5 Conclusion

This chapter addresses the architecture design and implementation of a software

tool that automates the process of predicting SLA compliance. The chapter has two

main contributions: firstly, the architectural design of the SlaCP tool that automates

the SlaCP methodology; secondly, the implementation of this tool design based on

WslaCP methodology. Also in this chapter, arguments concerning the inability to

provide a complete working tool implementation are provided. In the next chapter,

an evaluation of the WslaCP software tool is conducted via a case study employing

a stock quote service.

174

Chapter 7

A Case-Study Based Methodology

Evaluation

This chapter presents a case study to evaluate the applicability of the WslaCP

methodology presented in Chapter 5, and to evaluate the usability of the tool pre-

sented in Chapter 6. The value of this evaluation is to investigate the degree to

which both the methodology and the tool can achieve their objectives. Further-

more, it aims to explore the level of help and automation both the methodology and

the tool offer to their users. It also discusses the areas that need to be enhanced.

In addition, it introduces the use of an add-on feature to the WslaCP methodol-

ogy, namely the use of a WSDL document in the automatic creation of the model,

thus increasing the level of the automation. The chosen case study is of a stock

quote service, used to predict the service’s ability to satisfy performance thresholds

specified within a WSLA contract. These thresholds are defined using three types

of SLO: an SLO with a simple expression, an SLO with nested expressions, and an

SLO with hard to evaluate measurement types.

The remainder of this chapter is organised as follows: Section 7.1 introduces

the steps normally included in an evaluation process; in Section 7.2, the case study

used in this work is outlined; the methodology evaluation is discussed in Section 7.3,

while the tool evaluation is examined in Section 7.4. Finally, Section 7.5 concludes

the chapter.

7.1 Introduction

The evaluation of a piece of work (such as a program, a methodology or a framework)

means that it will be discussed, explored and assessed against the degree to which it

175

7.2 The Case Study

achieves the goals and objectives it was designed for. It helps the evaluator to detect

and explore areas of weakness and strength [151]. The fundamentals for carrying

out an evaluation in general, according to Bond in [151], are:

1. Framing the evaluation: To determine the context of the evaluation (i.e. de-

scribing its environment and the factors that influence it) and the specification

of the targeted users for the specified piece of work.

2. Defining evaluation goal and objectives. The goal is the broad target of what

the proposed work wants to achieve, while the objectives are the detailed steps

towards accomplishing it. After setting the goals and objectives, the evaluation

uses formative or summative questions. The former are objective-related and

they inspect the degree at which the work achieves its objectives, while the

latter are goal-related; they inspect the impact of these objectives on the main

goal. In this step, the kind of quantitative and qualitative data that have

to be collected should be determined. The former are numerical and usually

measurement-based; they can be expressed using averages, percentages and so

on. The latter are word-based and can be obtained mostly by observation.

The quantitative and qualitative data are then used as indicators to judge the

degree to which the goal and objectives are met.

3. Looking for the evidence; also called data collection. It defines what resources

or methods supply the evaluator with the desired data. This may include

experiments, questionnaires, interviews, focus groups, etc.

4. Interpreting the evidence. To examine the obtained data and results, evaluate

them against the indicators, and discuss how they reflect on the work. The

evaluator may assess how to use these results in enhancing the work.

The aforementioned evaluation steps are used in the context of the evaluation of

the WslaCP methodology in Section 7.3 and the tool in Section 7.4.

7.2 The Case Study

The example is an on-line stock quote service built to suit the WSLA contract

described in the WSLA manual [17]. The aim of this case study is to predict the

probability that this service will meet three kinds of SLOs defined in a WSLA

document. The first SLO of this case study (Section 7.2.2.1) has been used in our

paper [15] as a simple example to demonstrate the applicability of the theoretical

176

7.2 The Case Study

methodology when considering a single SLO with simple expression. This SLA is

extended in this thesis to cover another aspect of WSLA contracts, namely nested

SLO expressions, and hard to evaluate measurement directives such as response

time.

This section is structured as follows: the stock quote service is described in

Section 7.2.1 while the WSLA contract with its SLOs is illustrated in Section 7.2.2.

The WSDL contract of this service is described in Section 7.2.3 and is used later in

building the service model.

7.2.1 Service Description

In the stock quote service, the service provider offers to deliver two kinds of service

for a particular number of users. Therefore, the web service employs two main

operations allowing the user either to request a stock quote (GetQuote) or to print

its history (PrintQuote). The request operation is triggered when the customer

requests a quote, causing the service to store this request in a queue. The service

then checks the quote value and creates a response which waits in another queue

before being sent back to the user. The sending and receiving mechanism in this

service is assumed to be durable. However, checking the stock value may fail, in

which case the quote requests wait in the queue until the service is up again. The

printing operation, added in this thesis work, is triggered when the customer submits

a request to print a file of a quote history. The service checks the database to

retrieve all the related information and then prepares them in a file for printing.

The database is considered reliable too.

The provider of this stock quote service offers an SLA with three different SLOs:

1. The GetQuote operation is offered with high availability. The provider specifies

that the service down time will not reach a continuous ten minute threshold

during the last month of the year.

2. The GetQuote operation promises a transaction rate of more than 1000 trans-

actions/hour if the load, when greater than 80%, does not exceed 30% of the

time in the last month of the year.

3. The PrintQuote operation is provided with a reasonable response time. The

SLO guarantees that a history file will be available for printing by the end

user after, at most, 15 seconds in the last month of the year.

177

7.2 The Case Study

7.2.2 WSLA Contract of the Stock Quote Service

The WSLA contract of the stock quote service is presented in Listing C.1 in Ap-

pendix C. For practical reasons, this contract is presented in this section in three

listings; each contains one SLO with all the information related to it. The first

two SLO are taken from the WSLA manual [17] and are defined for the GetQuote

operation. The third SLO is a modified version from [17] and is defined for the

PrintQuote operation. The three SLOs are described separately in what follows.

7.2.2.1 An SLO with Simple Expression: GetQuote Availability

The first SLO offered in WSLA refers to the down time of the GetQuote operation

which will be less than ten minutes during the last month of the year. Its complete

WSLA syntax is presented in Listing 7.1.

Listing 7.1: The “ContinuousDownTimeSLO” service level objective

1:<ServiceDefinition name="DemoService">

2: <Schedule name="availabilityschedule">

3: <Period >

4: <Start >2001 -11 -30 T14:00:00 .000 -05 :00</Start >

5: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

6: </Period >

7: <Interval > <Minutes >1</Minutes > </Interval >

8: </Schedule >

9:<Operation name="GetQuote" xsi:type="WSDLSOAPOperationDescriptionType">

10: <SLAParameter name="Availability_CurrentDownTime" type="long" unit="minutes">

11: <Metric >CurrentDownTime </Metric >

12: </SLAParameter >

13: <Metric name="CurrentDownTime" type="long" unit="minutes">

14: <Function xsi:type="Span" resultType="double">

15: <Metric >StatusTimeSeries </Metric >

16: <Value> <LongScalar >0</LongScalar > </Value >

17: </Function >

18: </Metric >

19: <Metric name="StatusTimeSeries" type="TS" unit="">

20: <Function xsi:type="TSConstructor" resultType="TS">

21: <Schedule >availabilityschedule </Schedule >

22: <Metric >MeasuredStatus </Metric >

23: <Window >1440</Window >

24: </Function >

25: </Metric >

26: <Metric name="MeasuredStatus" type="integer" unit="">

27: <MeasurementDirective xsi:type="StatusRequest" resultType="integer">

28: <RequestURI >http:// ymeasurement.com/StatusRequest/GetQuote </RequestURI >

29: </MeasurementDirective >

30: </Metric >

178

7.2 The Case Study

31: <WSDLFile >DemoService.wsdl</WSDLFile >

32: <SOAPBindingName >SOAPNotificationBinding </SOAPBindingName >

33: <SOAPOperationName >getQuote </SOAPOperationName >

34: </Operation >

35:</ServiceDefinition >

36:<Obligations >

37: <ServiceLevelObjective name="ContinuousDowntimeSLO">

38: <Validity >

39: <Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

40: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

41: </Validity >

42: <Expression >

43: <Predicate xsi:type="Less">

44: <SLAParameter >Availability_CurrentDownTime </SLAParameter >

45: <Value>10</Value>

46: </Predicate >

47: </Expression >

48: </ServiceLevelObjective >

49:</Obligations >

This listing consists of a ServiceDefinition section (line 1) to define the SLA

parameter with its metrics, and an Obligation section (line 36) to define the SLO

with its threshold and validity period. These sections are described in detail in

Section 4.3.1.1 (please refer to Listings 4.1 and 4.2 with their descriptions). For this

reason, their description are not repeated here. The only part of this listing that

was not included in Section 4.3.1.1 is described in what follows.

Each operation in WSLA refers to a file that describes it. Any kind of service

description document can be used [17]. However, given that WSLA is used mostly

for web services, the WSDL [152] document is used to define this service operation.

Inside WSLA, the name of this WSDL file is defined in the WSDLFile element (line

31). It is DemoService.wsdl in this example. Another piece of information may also

be specified, such as the name of the binding, along with the service SOAP operation

name. These are defined in the SOAPBindingName and SOAPOperationName elements

respectively (lines 32 and 33).

7.2.2.2 An SLO with Nested Expressions: GetQuote Transaction Rate

The second SLO offered in WSLA is that the service is able to deal with more than

1000 transactions per hour if, and only if, the service experiences a heavy load of

80% for less than 30% of the time and this during the last month. Its complete

WSLA syntax is presented in Listing 7.2.

Listing 7.2: The “ConditionalSLOForTransactionRate” service level objective

1:<ServiceDefinition name="DemoService">

2: <Schedule name="businessdayschedule">

179

7.2 The Case Study

3: <Period >

4: <Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

5: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

6: </Period >

7: <Interval > <Minutes >1440</Minutes > </Interval >

8: </Schedule >

9: <Schedule name="5minuteschedule">

10: <Period >

11: <Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

12: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

13: </Period >

14: <Interval > <Minutes >5</Minutes > </Interval >

15: </Schedule >

16: <Schedule name="hourlyschedule">

17: <Period >

18: <Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

19: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

20: </Period >

21: <Interval > <Minutes >60</Minutes > </Interval >

22: </Schedule >

23: <Operation name="GetQuote" xsi:type="WSDLSOAPOperationDescriptionType">

24: <SLAParameter name="OverloadPercentage" type="float" unit="Percentage">

25: <Metric >OverloadPercentageMetric </Metric >

26: </SLAParameter >

27: <SLAParameter name="TransactionRate" type="float" unit="transactions/hour">

28: <Metric >Transactions </Metric >

29: </SLAParameter >

30: <Metric name="OverloadPercentageMetric" type="float" unit="Percentage">

31: <Function xsi:type="PercentageGreaterThanThreshold" resultType="float">

32: <Schedule >businessdayschedule </Schedule >

33: <Metric >UtilizationTimeSeries </Metric >

34: <Value> <LongScalar >0.8</LongScalar > </Value >

35: </Function >

36: </Metric >

37: <Metric name="UtilizationTimeSeries" type="TS" unit="">

38: <Function xsi:type="TSConstructor" resultType="float">

39: <Schedule >5minuteschedule </Schedule >

40: <Metric >ProbedUtilization </Metric >

41: <Window >12</Window >

42: </Function >

43: </Metric >

44: <Metric name="ProbedUtilization" type="float" unit="">

45: <MeasurementDirective xsi:type="Gauge" resultType="float">

46: <RequestURL >http: //acme.com/SystemUtil </RequestURL >

47: </MeasurementDirective >

48: </Metric >

49: <Metric name="Transactions" type="long" unit="transactions">

50: <Function xsi:type="Minus" resultType="double">

180

7.2 The Case Study

51: <Operand >

52: <Function xsi:type="TSSelect" resultType="long">

53: <Operand > <Metric >SumTransactionTimeSeries </Metric > </Operand >

54: <Element >0</Element >

55: </Function >

56: </Operand >

57: <Operand >

58: <Function xsi:type="TSSelect" resultType="long">

59: <Operand > <Metric >SumTransactionTimeSeries </Metric ></Operand >

60: <Element >-1</Element >

61: </Function >

62: </Operand >

63: </Function >

64: </Metric >

65: <Metric name="SumTransactionTimeSeries" type="TS" unit="transactions">

66: <Function xsi:type="TSConstructor" resultType="TS">

67: <Schedule >hourlyschedule </Schedule >

68: <Metric >SumTransactions </Metric >

69: <Window >2</Window >

70: </Function >

71: </Metric >

72: <Metric name="SumTransactions" type="long" unit="tansactions">

73: <MeasurementDirective xsi:type="InvocationCount" resultType="long"/>

74: </Metric >

75: <WSDLFile >DemoService.wsdl</WSDLFile >

76: <SOAPBindingName >SOAPNotificationBinding </SOAPBindingName >

77: <SOAPOperationName >getQuote </SOAPOperationName >

78: </Operation >

79:</ServiceDefinition >

80:<Obligations >

81: <ServiceLevelObjective name="ConditionalSLOForTransactionRate">

82: <Validity >

83: <Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

84: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

85: </Validity >

86: <Expression >

87: <Implies >

88: <Expression >

89: <Predicate xsi:type="Less">

90: <SLAParameter >OverloadPercentage </SLAParameter >

91: <Value>0.3</Value>

92: </Predicate >

93: </Expression >

94: <Expression >

95: <Predicate xsi:type="Greater">

96: <SLAParameter >TransactionRate </SLAParameter >

97: <Value>1000</Value >

98: </Predicate >

99: </Expression >

100: </Implies >

101: </Expression >

102:</ServiceLevelObjective >

103:</Obligations >

181

7.2 The Case Study

In the WSLA contract presented in this listing, this SLO is described in two sec-

tions as follows. In the Obligations section (line 80), an SLO called ConditionalSL-

OForTransitionRate is defined (line 81) using nested expressions joined by the

Implies logical operator (line 87). The first expression (line 88) specifies a pred-

icate of type Less (line 89) to compare the SLA parameter OverloadPercentage

(line 90) with a value of 0.3 (line 91). The second expression specifies a predicate of

type Greater (line 95) to compare the SLA parameter TransactionRate (line 96)

with a value of 1000 (line 97). This SLO is valid through the period of December

(lines 83 and 84).

In the ServiceDefinition section (line 1), it is clear that the intended SLA pa-

rameters OverloadPercentage (line 24) and TransactionRate (line 27) are defined

for the GetQuote WSDL operation (line 23). This section also specifies how these

parameters are computed.

For the former SLA parameter, the Gauge measurement (line 45) in the ProbedUt-

ilization metric checks the current value of resource utilisation. This is used as

input to the UtilizationTimeSeries metric (line 37) which uses a TSConstructor

function (line 38) to define a series of these values; these are obtained every five min-

utes (according to a 5minutesschedule in line 39). In turn, each day (according to a

businessdaysschedule in line 32), the OverloadPercentageMetric metric applies

a PercentageGreaterThenThreshold function (line 31) on that series that gives the

percentage of elements whose value is greater than 80%. Finally, this metric value

is used as the SLAParameter value (line 25). The 5minutesschedule is defined to

collect values every 5 minutes (line 14) for one month (lines 11 and 12). Also, the

businessdaysschedule is defined to collect values every 1440 minutes (line 7) for

one month (lines 4 and 5).

For the latter SLA parameter, the InvocationCount measurement (line 73) in

the SumTransaction metric returns the number of invocations of the GetQuote

operation. This is used as input to the SumTransactionTimeSeries metric (line

65) that uses a TSConstructor function (line 66) to define a series of these values

which is obtained each hour (according to a hourlySchedule in line 67). In turn,

the Transactions metric (line 49) applies a Minus function (line 50) on that series

to give the difference between the current (line 54) and the previous (line 60) value

of two entries from this series. The current and previous values are selected using

the TSSelect function (lines 52 and 58). Finally, this metric value is used as the

SLAParameter value (line 28). The hourlySchedule is defined to collect values

every 60 minutes (line 21) for one month (lines 18 and 19).

182

7.2 The Case Study

7.2.2.3 An SLO with Hard-to-Evaluate Measurement: PrintQuote Re-

sponse Time

The third SLO offered in WSLA is that the printing operation is able to prepare the

history file and send it back to the user in less than 15 seconds and this is during

the last month of the year. Its complete WSLA syntax is presented in Listing 7.3.

Listing 7.3: The “PrintingResponseTime” service level objective

1:<ServiceDefinition name="DemoService">

2: <Schedule name="ResponseSchedule">

3: <Period >

4: <Start >2001 -11 -30 T14:00:00 .000 -05 :00</Start>

5: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

6: </Period >

7: <Interval ><Seconds >15</Seconds ></Interval >

8: </Schedule >

9: <Operation name="PrintQuote" xsi:type="WSDLSOAPOperationDescriptionType">

10: <SLAParameter name="MaxResponseTime" type="double" unit="seconds">

11: <Metric >MaximumResponseTime </Metric >

12: </SLAParameter >

13: <Metric name="MaximumResponseTime " type="long" unit="seconds">

14: <Function xsi:type="Max" resultType="double">

15: <Metric >ResponseTimeSeries </Metric >

16: </Function >

17: </Metric >

18: <Metric name="ResponseTimeSeries" type="TS" unit="seconds">

19: <Function xsi:type="TSConstructor" resultType="TS">

20: <Schedule >ResponseSchedule </Schedule >

21: <Metric >ResponseTimeMetric </Metric >

22: <Window >4</Window >

23: </Function >

24: </Metric >

25: <Metric name="ResponseTimeMetric" type="double" unit="seconds">

26: <MeasurementDirective xsi:type="ResponseTime" resultType="double">

27: <RequestURI >http:// ymeasurement.com/ResponseTime/PrintQuote </RequestURI >

28: </MeasurementDirective >

29: </Metric >

30: <WSDLFile >DemoService.wsdl</WSDLFile >

31: <SOAPBindingName >SOAPNotificationBinding </SOAPBindingName >

32: <SOAPOperationName >PrintQuote </SOAPOperationName >

33: </Operation >

34:</ServiceDefinition >

35:<Obligations >

36: <ServiceLevelObjective name="PrintingResponseTime">

37: <Validity >

38: <Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

39: <End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

40: </Validity >

183

7.2 The Case Study

41: <Expression >

42: <Predicate xsi:type="Less">

43: <SLAParameter >MaxResponseTime </SLAParameter >

44: <Value>15</Value>

45: </Predicate >

46: </Expression >

47: </ServiceLevelObjective >

48:</Obligations >

This SLO is described in two sections of WSLA as follows. In the Obligations

section (line 35), an SLO called PrintingResponseTime (line 36) is defined using

a simple expression that specifies a predicate of type Less (line 42); this compares

the SLA parameter MaxResponseTime (line 43) with a value of 15 (line 44). This

SLO is valid through the validity period of December (lines 38 and 39).

In the ServiceDefinition section, the required SLA parameter MaxResponseTi-

me (line 10) is defined for the PrintQuote WSDL operation (line 9). This operation

is defined in the DemoService.wsdl file (line 30). To define how this parameter is

computed, the ResponseTime measurement (line 26) in the ResponseTimeMetric

metric returns the response time of a printing request. This is used as input to the

ResponseTimeSeries metric (line 18) that uses a TSConstructor function (line

19) to define a series of these values entered every 15 seconds (according to a

ResponseSchedule in line 20). In turn, the MaximumResponseTime metric applies

a Max function (line 14) on that series to give the maximum response time. Fi-

nally, this metric value is used as the SLAParameter value (line 11). In the same

ServiceDefinition section, the ResponseSchedule is defined to collect values ev-

ery 15 seconds (line 7) for one month.

7.2.3 The WSDL File of the Stock Quote Service

WSLA can contain a reference to a WSDL document that describes service opera-

tions and its management actions. WSDL is described in this section because it is

used in Section 7.3.1.3 to help in creating the service model.

WSDL can be seen as complementary to WSLA. This is because WSLA is used

to specify the quantitative attributes that both the service provider and customer

agree on, and the way of measuring and computing their values. On the other hand,

WSDL is used to describe the actual web service and how it communicates with its

application. To clarify further, WSDL is used as an input when creating the actual

service or implementing it in the real world. Later, WSLA is used as an input to

a management agent that is responsible for testing the service against the agreed

contract.

184

7.2 The Case Study

Service

Binding
transport

PortTypes
Input, output, fault

Messages
Parts (parameter)

Types
(data types)

Ports

Operations

Operations

Service section contains port elements

Binding section contains operations
elements

PortTypes section contains port name

Service section refers to the binding section

Binding section refers to the PortType
 section

PortType section uses definitions in
the Message section

Message uses definition in the types

Figure 7.1: WSDL Abstract Definition

WSDL is an XML-based document that contains elements which are used to

describe the web service, its location, how to access it, the communication messages

and their format, the service operations and their input and output information

[153]. To simplify the relations of the previous elements, Figure 7.1 shows the

abstract definition of WSDL that is taken from the work in [153]. This is important

to simplify the idea of representing WSDL elements as Stochastic Petri Net (SPN)

primitives when this is discussed later in Section 7.3.1.3. The WSDL elements are

[153]:

• Type: defines the types employed by a message element.

• Message: defines the transferred data.

• PortType: defines a set of operations where each operation has an input,

output, and fault messages.

• Binding: defines the type of communication protocol which could be SOAP,

HTTPGET, HTTPPOST, and MIME.

• Service: defines a set of ports; each port relates a location with a binding.

This location contains the address of the file that contains the service method

which the client wants to invoke. A service refers to one portType with several

operations in this portType. A WSDL file can contain multiple services.

185

7.2 The Case Study

The complete WSDL contract of the stock quote service is presented in Listing

7.4. Part of this file is adopted from [154].

Listing 7.4: The WSDL file of the stock quote service.

1:<?xml version="1.0" encoding="UTF -8"?>

2: <definitions name="DemoService" targetNamespace="http:// example.com.wsdl/

DemoService/" xmlns="http:// schemas.xmlsoap.org/wsdl/" xmlns:tns="http: //

example.com.wsdl/DemoService/" xmlns:xsd="http://www.w3.org /2001/ XMLSchema">

3: <message name="getQuoteRequest">

4: <part name="ticker" type="xsd:float"/>

5: </message >

5: <message name="getQuoteResponse">

6: <part name="result" type="xsd:float"/>

7: </message >

8: <message name="printQuoteRequest">

9: <part name="ticker" type="xsd:string"/>

10: </message >

11: <message name="printQuoteResponse">

12: <part name="result" type="xsd:string"/>

13: </message >

14: <portType name="StockQuote_get">

15: <operation name="getQuote">

16: <input message="tns:getQuoteRequest" name="getQuoteRequest"/>

17: <output message="tns:getQuoteResponse" name="getQuoteResponse"/>

18: </operation >

19: </portType >

20: <portType name="StockQuote_print">

21: <operation name="printQuote">

22: <input message="tns:printQuoteRequest" name="printQuoteRequest"/>

23: <output message="tns:printQuoteResponse" name="printQuoteResponse"/>

24: </operation >

25: </portType >

26: <binding name="StockQuoteBinding_get" type="tns:StockQuote_get">

27: <soap:binding style="document" transport="http: // schemas.xmlsoap.org/soap/

http"/>

28: <operation name="getQuote">

29: <soap:operation soapAction="http: // localhost/getQuote"/>

30: <input>

31: <soap:body use="literal"/>

32: </input >

33: <output >

34: <soap:body use="literal"/>

35: </output >

36: </operation >

37: </binding >

38: <binding name="StockQuoteBinding_print" type="tns:StockQuote_print">

39: <soap:binding style="document" transport="http: // schemas.xmlsoap.org/soap/

http"/>

40: <operation name="printQuote">

41: <soap:operation soapAction="http:// localhost/printQuote"/>

42: <input>

43: <soap:body use="literal"/>

44: </input>

186

7.3 Evaluation of the WslaCP Methodology

45: <output >

46: <soap:body use="literal"/>

47: </output >

48: </operation >

49: </binding >

50: <service name="StockQuoteService">

51: <port name="StockQuotePort_get" binding="tns:StockQuoteBinding_get">

52: <soap:address location="’http:// localhost/StockQuoteService.asmx"/>

53: </port>

54: <port name="StockQuotePort_print" binding="tns:StockQuoteBinding_print">

55: <soap:address location="’http:// localhost/StockQuoteService.asmx"/>

56: </port>

67: </service >

58:</definitions >

In this listing, the StockQuoteService is defined (line 50). It defines two ports:

StockQuotePort get and StockQuotePort print (lines 51 and 54). These ports re-

fer to the bindings which are StockQuoteBinding get and StockQuoteBinding pri-

nt which are defined in lines 26 and 38 respectively. These bindings in turn re-

fer in their type attributes to the PortType(s) which are StockQuote get and

StockQuote print; these are defined in lines 14 and 20 respectively. These port

types define two Operation(s) which are getQuote and printQuote (lines 15 and

21); these operations are the ones used in the WSLA example. They also refer to

the message(s) defined from lines 3 to 13.

7.3 Evaluation of the WslaCP Methodology

In this section, an evaluation of the theoretical aspects of the WslaCP methodology

based on the described case study is provided. Recalling the evaluation funda-

mentals presented in Section 7.1, four steps should be conducted to complete the

evaluation process. These steps can be written in the context of evaluating the

WslaCP methodology as follows:

Framing the evaluation: The targeted users of the WslaCP methodology, as

defined in Section 3.1.1, are service providers/engineers, SLA engineers, or modellers.

Hence, the evaluation should be addressed from their perspectives.

Defining evaluation goals and objectives and evaluation methods: The

evaluation of the WslaCP methodology is assessed by a case study. This evaluation

is based on the degree to which the methodology can achieve the aim and objectives

it was designed for. The research aim and objectives were stated in Section 1.4. A

number of questions are formulated to evaluate them; these are aligned with some

of the research questions addressed in Section 1.3. These questions are regarding:

187

7.3 Evaluation of the WslaCP Methodology

1. Automatic Model Creation: The questions related to this are as follows:

• Q1: Can a service’s stochastic model be generated automatically?

• Q2: Is there any difference if the automatic model creation is carried out

before or after deploying the service in the real world?

• Q3: Can a WSDL file aid this automatic creation of a service model?

2. Methodology’s Applicability: The questions related to this are as follows:

• Q1: Is the methodology applicable in a realistic scenario (i.e. can all its

proposed steps be achieved)?

• Q2: Is it scalable for more complicated scenarios?

• Q3: Does the generated model reflect the actual service?

3. Methodology’s Generality: The questions related to this are as follows:

• Q1- Is the methodology general enough to be applicable for different

SLAs?

• Q2- Is the methodology general enough to be applicable for different

stochastic models?

4. User Support: The questions related to this are as follows:

• Q1: What degree of automation and help does this methodology offer to

its users?

• Q2: Does it accomplish the aim of minimal user interaction?

For the last two steps of the fundamentals of evaluation, which are Looking for

the evidence and Interpreting the evidence, the described case study has been

utilised to answer the aforementioned evaluation questions. This is then used as

feedback to enhance the methodology in a way that better addresses the questions.

In the following sub-sections, each of the aforementioned evaluation questions,

along with looking for evidence and interpreting it, are discussed in detail.

7.3.1 Automatic Model Creation

To answer the questions regarding the ability to generate a service model auto-

matically, the case study is utilised in Section 7.3.1.1. The answers are provided in

Section 7.3.1.2 and finally, a complementary feature of using a WSDL file to enhance

the automatic model creation is described in Section 7.3.1.3.

188

7.3 Evaluation of the WslaCP Methodology

7.3.1.1 Looking for the Evidence

The stock quote service is modelled in a specific SDES model, namely the Stochastic

Petri Net (SPN). Recalling the three SLOs in Listings 7.1, 7.2 and 7.3, and the

service operation mapping and measurements mapping presented in Sections 5.2.1

and 5.2.2, the following SPN primitives can be produced automatically from WSLA:

1. The service operation of Listing 7.1, GetQuote, is mapped as depicted in the

upper part of Figure 7.2. This includes a place GetQuote s with a connected

transition GetQuote a.

GetQuote_s

GetQuote operation

PrintQuote operation

GetQuote_a

PrintQuote_s PrintQuote_a

mapped

mapped

Figure 7.2: Mapping service operations in Listings 7.1 and 7.3 to SPN

2. The service operation of Listing 7.3, PrintQuote, is mapped as depicted in

the bottom part of Figure 7.2. This also includes a place PrintQuote s with a

connected transition PrintQuote a.

3. The StatusRequest measurement directive of the GetQuote operation in Listing

7.1 is mapped as depicted in the upper part of Figure 7.3. This includes

GetQuote_s

StatusRequest

Gauge

InvocationCount

GetQuote_a

Fail

Repair

SystemDown SystemUp

GetQuote_a

mapped

mapped

mapped

Figure 7.3: Mapping measurement directives
in Listings 7.1 and 7.2 to SPN

GetQuote_s
GetQuote_a

Fail

Repair

SystemDown SystemUp

Figure 7.4: Merging SPNs in Figure
7.3 and the upper part of Figure 7.2

189

7.3 Evaluation of the WslaCP Methodology

PrintQuote_s

ResponseTime

PrintQuote_a

FinishedUsers

PrintQuote_s

PrintQuote_a

1

2

m
a

p
p

ed

m
a

p
p

ed

Figure 7.5: Mapping the measurement directive of Listing 7.3 to SPN

the simplest fail-repair mechanism allowing the GetQuote a transition to be

enabled/disabled.

4. The Gauge and the InvocationCount measurement directives of the GetQuote

operation in Listing 7.2 are mapped as depicted in the middle and bottom parts

of Figure 7.3. This includes a place GetQuote s and a transition GetQuote a

respectively. The former represents the queue that stores the incoming requests

while the latter represents the operation execution.

5. The set of primitives in Figure 7.3 and the upper part of Figure 7.2 can be

merged into the model depicted in Figure 7.4.

6. The ResponseTime measurement directive of the PrintQuote operation in

Listing 7.3 is mapped as depicted in Figure 7.5. This is done (1) using a

FinishedUsers place to prompt the completion of the printing request in case

of an open model, or (2) using an arc that links back to the PrintQuote s place

to prompt the completion of the printing request in the case of a closed model.

In Figure 7.3, the dashed parts represent unspecified sets of places/transitions.

7. The model parts in Figures 7.4 and 7.5 are merged into the model in Figure

7.6 where the first way of mapping the response time, presented in Figure

7.5, is utilised. In this figure, the model is extended by including the dotted

parts which represent an extra place (Users) and a transition (t). The latter

represents the choice of either requesting or printing a quote, while the former

represents a fixed number of users to prevent a state space explosion if the

action is used alone (the action will fire continuously). These two primitives

are added only when the WSLA document contains more than one operation.

190

7.3 Evaluation of the WslaCP Methodology

GetQuote_s

GetQuote_a

Fail

Repair

SystemDown SystemUp

PrintQuote_s

PrintQuote_a

Users

t

FinishedUsers

Figure 7.6: Merging SPN parts of Figures 7.4 and 7.5

The model in Figure 7.6, generated from mapping service operations and mea-

surement directives, is incomplete because the GetQuote a is not connected to an

output place. This can be enhanced automatically by connecting the GetQuote a

back to the Users place as appears in the dotted parts of Figure 7.7.

All the transitions are assigned a firing rate of value 1 by default except for

repair-fail transitions that are assigned 0.1 and 0.9 firing rates respectively. The

user can then change these values manually if necessary.

The reward variables (i.e. reward functions with evaluation intervals), that are

generated automatically for the measurement directives and schedules of Listings

7.1, 7.2 and 7.3, are depicted in Table 7.1. These are not described here because of

their simplicity.

GetQuote_s

GetQuote_a

Fail

Repair

SystemDown SystemUp

PrintQuote_s

PrintQuote_a

Users

t

FinishedUsers

Figure 7.7: Completing the model of Figure 7.6

191

7.3 Evaluation of the WslaCP Methodology

Table 7.1: The reward variables generated from mapping measurement directives and
the schedules of Listings 7.1, 7.2 and 7.3

Measurement
Directives & Reward Function (rvrate/rvint) Evaluation Intervals
Schedules ({rvint})

StatusRequest &
rvrate(σ) =

{
1 if SystemUp = 1
0 otherwise

At instants:{[0,0],[1440,
Businessdaysche- 1440],. . . ,[44640,44640]}
dule
Gauge &

rvrate(σ) =

{
GetQuotes(σ) ∀σ ∈ Σ
0 otherwise

At instants:{[0,0],[5,
5minuteschedule 5],. . . ,[44635,44640]}

InvocationCount &
rvimp(a) =

{
1 if a = GetQuotea
0 otherwise

During intervals:{[0,60],
hourlyschedule [60,120],. . . ,[44580,44640]}

ResponseTime &
rvrate(σ) =

{
1 if FinishedUsers=1
0 otherwise

At instants:{[0,0],
ResponseSchedule [15,15],. . . ,[44625,44640]}

7.3.1.2 Interpreting the Evidence

The model created in Figure 7.7 with the reward variables of Table 7.1 are the out-

come of the automatic model creation. This was produced by mapping the available

operations and measurement directives in WSLA to a specific state variable or ac-

tion, or a combination of them. Furthermore, this was derived by considering the

hints of including some fail-repair mechanism and a response time measuring mech-

anism in the form of a set of transitions/places/arcs primitives. Comparing this

model with the one built manually by a user (depicted in Figure 7.11) implies that

only a small amount of information regarding the stochastic model of the service can

be known automatically from the SLA alone; this information is limited and some-

times scattered. Given this, and as appears in Figure 7.7, a number of shortcomings

in the automatic production of a stochastic service model are recognised:

1. The produced model is abstract. Since there is no way to know the exact im-

plementation of the GetQuote and PrintQuote operations from WSLA alone

(i.e. how these operations perform their work), they cannot be reflected truly

in the model. For example, the manually created model in Figure 7.11 speci-

fies, in its bottom part, that the RequestPrinting operation (that represents the

printQuote a operation in Figure 7.7) checks the database for the quote history

before preparing the file for printing and sending it back to the user (this is

accomplished using RequestFromDB, CreatingPrintingHistory and SendPrint-

ing). This was not included in the model that is created automatically.

2. The model is not complete. There is no way either to assign a true firing

192

7.3 Evaluation of the WslaCP Methodology

rate automatically to the transitions, or to know the true initial state of the

model. All these rates are assumed and hence may not reflect the real service

parameters.

3. Some mechanisms that are used in the model may not be desired. For ex-

ample, StatusRequest gives a hint to specify the up and down status of the

service. The automatically chosen mechanism (depicted in Figure 7.7) might

be trivial and not wanted by the user who possibly wants to replace it with a

more complicated one. The same problem is true for ResponseTime where the

user might be interested in a different mechanism to measure the response, es-

pecially since the one used (using FinishedUsers in Figure 7.7) can reflect the

response time for one-customer only or promote the assumption that the first

token to leave the Users place is the first one to arrive at the FinishedUsers

place. If more than one-customer is used in the Users place, the response time

might not be truly reflected since the tokens in SPN are not marked; hence the

returned token to the FinishedUsers place might not be the one which left the

Users place first. For example, in Figure 7.11, the user specifies the response

time for printing a quote history without considering the FinishedUsers place

chosen in Figure 7.7. Instead, the user links the SendPrinting transition back

to the Users place; hence the response time is measured by tracking the token

from the time it left the Users place until it returned to it.

In the light of on these shortcomings, the evaluation questions related to the

automatic model creation addressed in Section 7.3 can be answered as follows:

Q1: Can a service’s stochastic model be generated automatically?

Not fully. Only an abstract and incomplete model can be generated automati-

cally from the WSLA specification alone. Given the abstraction and incompleteness

of the generated model, the user of the methodology has to refine the model, assign

concrete firing rates, and assign the model’s initial state. However, the reward vari-

ables, which depend on the generated model, can be automatically derived without

user interaction, as appears in Table 7.1. Nevertheless, when the model is completed

by the user, this might imply some changes in the reward function content and hence

user interference is required.

Q2: Is there any difference if the automatic model creation is carried out before

or after deploying it in the real world?

No. The methodology itself is related to how WSLA can be used to create

a service model automatically given the assumption that it is the only document

the user has access to. This will not differ whether or not the service is deployed.

193

7.3 Evaluation of the WslaCP Methodology

However, if the methodology is extended to use the service’s definition documents,

in addition to the SLA, then there will be a difference. Hence, if this methodology

is used after deploying the service (or after its implementation), a number of files

that contain either the business process (such as the Business Process Execution

Language for Web Services (BPEL4WS)[155]) or the service work-flow (such as

the Web Services Flow Language (WSFL)[156]) can be utilised to refine the model

automatically given that these documents are accessible to the users. Furthermore,

if the service is deployed, parameterising the model (transition firing rate and initial

state) can be derived from data taken from the running service; these better reflect

the model parameters.

Q3: Can a WSDL file aid this automatic creation of a service model?

Yes, if it is accessible. A user of the methodology might have access to the WSDL

file that describes the service operations (this might be in the design, implementation

or deployment stage). A WSDL file can then be utilised to add more primitives to

the model. A service methods file, WSFL, or BPEL4WS can be used after the

service’s implementation to refine the model further, if the user is permitted access

to them. Given that WSDL can add extra primitives to the model, the next section

describes the way a WSDL file is used to serve this purpose.

7.3.1.3 Using a WSDL File in Building the Service Model

WSLA refers to a WSDL file to describe the service operations. Depending on this,

a complementary feature that exploits WSDL mapping is added to the automatic

creation of the service model. Hence, in this section, an investigation with regard

to whether a Stochastic Petri Net model can be derived automatically from WSLA

as well as WSDL is addressed. This is done by introducing the rules of mapping

a WSDL to a timed Petri Net model (designed by [153]), then using these rules to

map WSDL to an SDES model and SPN accordingly.

The Mapping Rules from WSDL to a Timed Petri Net Model: In the

literature, some studies were undertaken with regard to accomplishing automatic

mapping from WSDL to timed PNs1. The most detailed work was carried out by

Javed in his thesis [153] where a set of rules for mapping WSDL elements to a timed

PN model was defined as follows:

• A Place represents a PortType that contains the operation with the input and

output messages.

1WSDL file is used for automated mapping from WSDL to a timed Petri Net model according
to [157], and to GSPN according to [158].

194

7.3 Evaluation of the WslaCP Methodology

Method

User

Stock Quote Service

Port

PortType

PortType

Methods

Method
getQuote
Operation
 (input,
 output)

printQuote
Operation
 (input,
 output)

Figure 7.8: WSDL model for user interaction

• A Transition represents a Service-Port that contains Name, Binding, and Lo-

cation.

• An Arc represents a Binding containing the PortType and Protocol.

A WSDL file describes what the service can do, i.e. service operations (meth-

ods), in an abstract way without expressing how to implement them. However, the

parameters and their data type, required to invoke these methods, are placed inside

the WSDL file published by this service [153]. The methods represent the business

process computations which may contain conditional statements, loops, and other

service method calls. These computations are stored in a separate file which is re-

ferred to by the WSDL’s Port element. If this file is reachable (i.e. if it exists), then

the rules for mapping it to timed Petri Net according to [153] are as follows:

• Places represent the data storage.

• Transitions represent the computational primitives.

The mapping by Javed [153] does not depend on a WSDL file only, but also

on the WSDL flow model implied between the web service and its client, or what

is called a WSDL model for user interaction. For example, Figure 7.8 depicts the

WSDL flow model of the example in this case study. To map this to a timed PN,

Method and Ports are represented as transitions, while PortType and Service are

represented as places.

The Mapping Rules from WSDL to an SDES Model: According to the

predefined rules for mapping a WSDL file and its flow model1, these rules can be

1The method file that is referred to from a WSDL file is ignored in this mapping.

195

7.3 Evaluation of the WslaCP Methodology

generalised for mapping WSDL and its flow model into the stochastic model of the

specified service SDES = (SV,A, S,RV). This is accomplished as follows:

1. Each PortType in the WSDL file and each service in the WSDL model for

user interaction represents a state variable sv ∈ SV .

2. Each Port in the WSDL file and each method in the WSDL model for user

interaction represents an action a ∈ A.

3. Each WSDL binding represents an arc.

According to the predefined rules of mapping a WSDL file and its flow model,

the SPN model in Figure 7.9 can be produced automatically from the WSDL file

presented in Listing 7.4 and the flow model presented in Figure 7.8.

The User

User

The Service Method

GetQuoteMethod

The Service Method

PrintQuoteMethod

Quote Service Port Type

StockQuote_get

User Port Type

UserPortType1

User Port Type

UserPortType2

The User Method

UsersMethod1

Quote Service Port

StockQuotePort_get

The Service

GetQuote

User Port

UserPort1

User Port

UserPort2

Print Service Port Type

StockQuote_print

Print Service Port

StockQuotePort_print

The Service

PrintQuote

The User Method

UsersMethod2

Figure 7.9: Mapping the WSDL file of Listing 7.4, and the WSDL user interaction
model of Figure 7.8 to SPN

The underlined labels in Figure 7.9 represent the type of element being modelled

(such as User, Service, Port, PortType, and Method), while the bold labels rep-

resent the name assigned to this element after mapping it. Some of these element

names are taken from the WSDL file of Listing 7.4, such as the StockQuote get,

StockQuotePort get and GetQuote, while the others are generated automatically,

such as the GetQuoteMethod, UserPortType1, and UserPort1. The latter elements

are generated from the WSDL model for user interaction; for that they are assigned

196

7.3 Evaluation of the WslaCP Methodology

randomly generated names. However, the former elements are generated from a

WSDL file; for that they are assigned the name of the elements in this file.

The model generated from the WSDL mapping in Figure 7.9 is also abstract

in that the actual service method implementations are not defined. However, com-

paring the model produced from WSLA alone (in Figure 7.7) and the model built

manually by the user (in Figure 7.11), the WSDL model is much more complete.

Accordingly, using WSDL can partially extend the automatic model creation so that

an additional set of information can be provided to a user of the methodology.

The WSDL generated model does not reflect the up-down mechanism specified

in WSLA for the StatusRequest; hence, the model can be enhanced automatically by

attaching the primitives describing this mechanism to the GetQuoteMethod transi-

tion. To reflect the ResponseTime, there is no need to add an extra place since the

generated model is closed and the response time can be computed from the token

returning to the User place. Accordingly, the generated service model using both

WSDL and WSLA, as shown in Figure 7.10 where the added part is depicted using

dashed lines, is a better option for automatic model creation.

If the generated model of Figure 7.10 is used for the automatic model creation,

the state variable and action used within the reward function of the reward variable

should be changed to refer to the names of the PortType and Port respectively. This

is because they were referred to previously (in the WSLA generated model of Figure

User

GetQuoteMethod

PrintQuoteMethod

StockQuote_get

UserPortType1

UserPortType2

UsersMethod1

StockQuotePort_get

GetQuote

UserPort1

UserPort2

StockQuote_print

StockQuotePort_print

PrintQuote

UsersMethod2

Fail

Repair

SystemDown SystemUp

Figure 7.10: Mapping the WSDL and WSLA of the stock quote service to SPN

197

7.3 Evaluation of the WslaCP Methodology

7.7) using the operation name with the extensions s and a respectively.

7.3.2 Methodology’s Applicability

This section investigates the ability to apply the WslaCP methodology for a real

WSLA and a service model. This is discussed in Section 7.3.2.1, while the answers

to the evaluation questions are provided in Section 7.3.2.2.

7.3.2.1 Looking for the Evidence

The theoretical basis of the WslaCP methodology, described in Chapters 4 and 5,

includes defining WSLA semantics and then carrying out a five-step mapping pro-

cess. This process consists of the mapping of the: service operation, measurement

directives, functions, schedules and the SLO. The SLO in Listing 4.1 and the SLA-

Parameter in Listing 4.2 (which are the same as the first SLO in Listing 7.1) were

utilised as a running example for each mapping step in order to show the method-

ology applicability. This was described from Section 5.2.1 to Section 5.2.5. For this

reason, there is no need to study the remaining SLOs in this case study as no new

outcome can be obtained.

7.3.2.2 Interpreting the Evidence

The evaluation questions regarding the methodology’s applicability are answered

below as follows:

Q1- Is the methodology applicable in a realistic scenarios?

Yes. All steps are applicable. The only difficulty is in mapping the WSLA

functions (as described in Section 5.2.4). This is because, during prediction, these

functions depend on the expected value of the solver outputs as their inputs rather

than on the monitoring values of the running service. WSLA functions depend on

counting, comparing, or performing other statistics on the monitored values of the

measurement directives. This is hard to do using their expected values. For this

reason, and to solve this issue, the output of the reward variables (representing

these measurements) is considered as a random variable. Hence, the functions were

applied on realisations of this random variable.

Q2- Is it scalable for a more complicated scenario?

Theoretically, yes. The methodology can be scalable for different composite ser-

vices with different SLA and WSDL documents being defined among these services.

It is also scalable for more than one SLO, for longer evaluation periods, and for more

198

7.3 Evaluation of the WslaCP Methodology

fine-grained interval units. However, this could be time consuming with regard to

the tool support especially when obtaining the simulation trace.

Q3- Does the generated model reflect the actual service?

In some ways, yes. The final model, generated in Figure 7.10 from the automatic

mapping of WSLA and WSDL, is abstract: i.e. the actual implementation of the

method is not there. Solving this model in order to produce the value of the desired

metrics might differ from the model that reflects the actual implementation of the

service (in Figure 7.11). Although the generated model is abstract, it gives some

idea about the expected performance of the service. Besides, it is all the user may

have at hand. This is because, before the service’s implementation, the user may

have only the WSLA and WSDL documents at hand with which to start predictions.

In addition, even after deployment, if the user of the methodology is a customer who

wishes to predict SLA compliance before agreeing on it, he/she may only have access

to these documents because the provider will not publish more. In a later focus, the

model could be refined and might be expanded to cover more automatic aspects of

the model by using a methods’ file or work-flow documents.

7.3.3 Methodology’s Generality

To answer the questions about the methodology’s ability to accommodate several

SLA languages and modelling formalisms, the case study and examples from a new

SLA specification are utilised in Section 7.3.3.1. The answers are provided in Section

7.3.3.2.

7.3.3.1 Looking for the Evidence

In this section, an SLA written in a WS-Agreement specification is presented in

order to investigate its mapping possibilities. Listing 7.5 presents a snapshot of this

SLA 1.

Listing 7.5: A snapshot of an SLA “with measured metric” written in the WS-Agreement speci-

fication
1:<wsag:ServiceProperties wsag:Name="AvailabilityProperties" wsag:ServiceName="

GPS0001">

2: <wsag:Variables >

3: <wsag:Variable wsag:Name="ResponseTime" wsag:Metric="metric:Duration">

4: <wsag:Location >qos:ResponseTime </wsag:Location >

5: </wsag:Variable >

6: </wsag:Variables >

7:</wsag:ServiceProperties >

1This example is taken from http://serviceqos.wikispaces.com/WSAgExample

199

7.3 Evaluation of the WslaCP Methodology

<!-- statements to offered service level(s) -->

8:<wsag:GuaranteeTerm Name="FastReaction" Obligated="ServiceProvider">

9: <wsag:ServiceScope ServiceName="GPS0001">

10: http: //www.gps.com/coordsservice/getcoords

11: </wsag:ServiceScope >

12: <wsag:QualifyingCondition >

13: applied when current time in week working hours

14: </wsag:QualifyingCondition >

15: <wsag:ServiceLevelObjective >

16: <wsag:KPITarget >

17: <wsag:KPIName >FastResponseTime </wsag:KPIName >

18: <wsag:Target >

19: // Variable/@Name="ResponseTime" LOWERTHAN 1 second

20: </wsag:Target >

21: </wsag:KPITarget >

22: </wsag:ServiceLevelObjective >

23:</wsag:GuaranteeTerm >

In this example, the service has an SLO called FastResponseTime (line 15) which

states that the ResponseTime will be less than 1 second (line 19). This SLO is

defined in particular for the getcoords operation (defined inside the ServiceScope

in line 10) for the period that covers a week’s working hours (defined inside the

QualifyingCondition in line 13). The ResponseTime variable is defined in the

ServiceProperties element as a Duration metric (line 3).

To map such an SLA to SDES, the methodology has to distinguish the five

elements in SLA in order to map them later. These elements are the service object,

measured metric, temporal constraint, composite metric and the SLO. From the

SLA in Listing 7.5, the value of these elements are as follows:

• The service object is the getcoords operation.

• The measured metric is the ResponseTime.

• The temporal constraint regarding the period is the week working hours.

However, the interval is not specified.

• The composite metric is null.

• The SLO threshold is LOWERTHAN 1 second.

From the elements retrieved earlier, the service operation and measured metric

can be mapped normally according to WslaCP (or the general SlaCP methodology).

However, since the interval of time at which to measure the response time inside

the week period is not specified, then there is no way to figure out the evaluation

interval during which the reward variable representing the response time has to be

evaluated. In addition, this validity period is written in English which prevents the

200

7.3 Evaluation of the WslaCP Methodology

automatic reading and interpretation of it. The composite metric in this example

does not exist since the response time is defined without applying any function on

it. Finally, the SLO threshold and comparison types are stated explicitly; hence

they can be mapped as in WslaCP.

Another example of an SLA with a composite metric that is written according

to the WS-Agreement is presented in Listing 7.6.

Listing 7.6: A snapshot of an SLA “with composite metric” written in the WS-Agreement

specification
1:<wsag:ServiceProperties wsag:Name="AvailabilityProperties" wsag:ServiceName="

GPS0001">

2: <wsag:Variables >

3: <wsag:Variable wsag:Name="AvgThroughput" wsag:Metric="

metric:ThroughputofArrival">

4: <wsag:Location >qos:ThroughputofArrival </wsag:Location >

5: </wsag:Variable >

6: </wsag:Variables >

7:</wsag:ServiceProperties >

<!-- statements to offered service level(s) -->

8:<wsag:GuaranteeTerm Name="FastReaction" Obligated="ServiceProvider">

9: <wsag:ServiceScope ServiceName="GPS0001">

10: http://www.gps.com/coordsservice/getcoords

11: </wsag:ServiceScope >

12: <wsag:QualifyingCondition >

13: applied when current time in week working hours

14: </wsag:QualifyingCondition >

15: <wsag:ServiceLevelObjective >

16: <wsag:KPITarget >

17: <wsag:KPIName >AvgThroughputLimit </wsag:KPIName >

18: <wsag:Target >

19: // Variable/@Name="AvgThroughput" LOWERTHAN 1000 transactions

20: </wsag:Target >

21: </wsag:KPITarget >

22: </wsag:ServiceLevelObjective >

23:</wsag:GuaranteeTerm >

Here, the service has an SLO called AvgThroughputLimit (line 17) which states

that the AvgThroughput will be less than 1000 (line 19). This SLO is defined for

the getcoords operation (line 10) for the period that covers the week’s working

hours (line 13). The AvgThroughput variable is defined as a ThroughputofArrival

metric (line 3). From this SLA, the values of the required elements are as follows:

• The service object is the getcoords operation.

• The measured metric is the Throughput.

• The temporal constraint regarding the period is the week working hours.

However, the interval is not specified.

201

7.3 Evaluation of the WslaCP Methodology

• The composite metric is Average.

• The SLO threshold is LOWERTHAN 1000 transactions.

The problem in this example is that the variable AvgThroughput, which is defined

inside the SLO, is not defined explicitly inside the ServiceProperties element (line

1). Here it is assumed that the measured metric is the Throughput and that the

composite metric is derived using the Average function. However, this is not formal

and it is hard to accomplish this automatically. In addition, the time intervals when

the average of the throughput metric is taken are also unknown.

7.3.3.2 Interpreting the Evidence

Depending on mapping the SLA of Listings 7.5 and 7.6 in the previous section, and

depending also on the discussion presented throughout this thesis, the evaluation

questions regarding the methodology’s generality can be answered as follows:

Q1- Is the methodology general enough to be applicable to different SLAs?

Possibly. Since the methodology is aimed at SLAs with QoS metrics built us-

ing a constructive ontology, its application might be limited to the type of SLA

languages that accomplish this principle. For example, depending on the mapping

in Listing 7.6, the definition of the AvgThroughput metric is not explicitly stated;

hence, the automatic decomposition of its semantic in order to retrieve the measured

metric with the functions applied on it, is not possible. Thus, using a constructive

ontology does place a restriction on the type of SLA that is employed. However,

some SLAs are moving towards implementing this ontology in order define their

QoS metrics such as in the work of [58] who adopted the functions used by WSLA

to define precisely its QoS metrics. Another restriction regarding the application

of the methodology might be considered in the mapping of Listing 7.5. In this ex-

ample, and even though the QoS metric used is measured (i.e. there is no need for

constructive ontology in this case), the absence of the interval definition (i.e. the

time needed to take the measure) also poses a problem in applying the methodol-

ogy. However, this can be solved under the assumption that the measured metric

is checked every second (depending on the fact that the response time in this SLO

has a threshold of 1 second).

Q2- Is the methodology general enough to be applicable for different stochastic

models?

Yes. Since the methodology is already defined for SDES, which is an abstract

high-level stochastic modelling formalism, the methodology can be used for any

stochastic model. This is because only a simple translation from the SDES model to

202

7.3 Evaluation of the WslaCP Methodology

the preferred one is required. However, since the methodology depends on mapping

QoS measured metrics (i.e. measurement directives in WSLA) as reward variables,

the stochastic models must have an underlying Markov Reward Model (MRM) to

be able to define the reward variable. Accordingly, using rewards as part of the

methodology limits the type of stochastic model that can be used. However, since

the models that depend on the underlying MRM are widely used and are supported

with many software tools to build and solve them, no real restriction can be imposed.

7.3.4 User Support

To answer the questions about the methodology’s ability to support its users, the

case study is utilised in Section 7.3.4.1. The answers are provided in Section 7.3.4.2.

7.3.4.1 Looking for the Evidence

Depending on Figure 7.7 and Table 7.1, an incomplete model of the service with its

reward variable can be generated automatically from a WSLA document. Hence,

the user has to complete the model creation and then assign the right primitives to

the reward functions.

SystemDown SystemUp

Fail

Repair

GetQuote

SendQuote

Users

RequestQuote

QuoteRequested QuoteChecked

RequestPrinting SendPrinting

PrintingRequested PrintingPrepared

DBResponse

RequestFromDB CreatingPrintingHistory

Figure 7.11: The SPN model of the stock quote service, completed by the user
manually

Suppose that the user completes the model manually, as in Figure 7.11 where

the red places indicate that these places are not empty. This SPN model is closed.

It contains a Users place which represents a pool of all the customers who may want

to check a quote value or print a quote history at any time. A user cannot send a

203

7.3 Evaluation of the WslaCP Methodology

new request until it receives the result of a previous one. This allows the token in

the places to be treated as a request, a response or a user.

The first operation of this service is represented in the upper part of Figure 7.11.

When requesting a quote value, the transition GetQuote is fired and the request is

queued in the place QuoteRequested. After this, the quote value is checked by firing

the transition GetQuote which is suspended if the service is down. When the service

is up again, the quote value is checked and the response is queued again in the place

QuoteChecked; this is sent to the user when firing the transition SendQuote. The

service up/down states are described in this model using a single token in SystemUp

and SystemDown places respectively. The model alternates between the up/down

states through the Repair and Fail transitions respectively.

The second operation of the stock quote service is represented in the lower part

of Figure 7.11. When requesting the printing of a quote history, the transition

RequestPrinting is fired and the request is queued in the place PrintingRequested.

After this, the history of the quote values is retrieved from the database by firing

the transition RequestFromDB, which is assumed to be reliable. After retrieving the

quote history, the printing file is prepared through firing the transition Creating-

PrintingHistory and the response is queued again in the place PrintingPrepared to

be sent to the user by firing the transition SendPrinting. All activities in this model

have exponential distributions.

Accordingly to the model in Figure 7.11, the reward functions that are automat-

ically generated in Table 7.1 are no longer valid due to changes in the names of the

primitives and in the model’s structure. Hence, the reward functions have to be

updated by the user with the new primitives to complete their definitions.

Table 7.2: The reward functions completed by the user

Automatically User Automatically
Measurement Generated Manual Updated
Directive Reward Function Input Reward Functions

StatusRequest {
1 if SystemUp = 1
0 otherwise

- -

Gauge {
GetQuote s(σ) ∀σ
0 else

Quote- {
QuoteRequested(σ) ∀σ
0 else

Requested

InvocationCount {
1 if a = GetQuote a
0 otherwise

GetQuote {
1 if a = GetQuote
0 otherwise

ResponseTime {
1 if FinishedUsers=1
0 otherwise

Users {
1 if Users=1
0 otherwise

204

7.3 Evaluation of the WslaCP Methodology

Table 7.2 shows the automatically generated reward functions taken from Table

7.1, in addition to the user manual input (which depends on the model in Figure

7.11) and the updated reward functions. When the user does not want to make

any changes, he/she only confirms this (this is represented using the dash (-) sign

in the table). For example, in this table, the reward function of the StatusRequest

measurement directive does not need any change since the same up/down mechanism

is used in both models (in Figures 7.7 and 7.11).

After finishing the reward function creation, no interaction from the user is

needed. The methodology can perform the remaining steps automatically in terms

of producing the compliance probability.

7.3.4.2 Interpreting the Evidence

Depending on the previous section, the evaluation questions regarding the support

this methodology offers to its users are answered as follows:

Q1- What degree of automation and help does this methodology offer to its users?

It can be considered to offer a reasonable amount of help in different areas as

follows:

• Completing the model: Comparing the model completed by the user (Figure

7.11) and the one generated from WSLA automatically (Figure 7.7), it can be

seen that there is some kind of similarity. This means that the automatically

generated model has offered a basis and some sort of structure for completing

the desired model; hence, it helps the user to envisage the final model of the

service. For example, the user in Figure 7.11 kept the fail/repair mechanism

while he/she did change the mechanism related to the response time (i.e. delet-

ing the FinishedUsers place). The user also added more detail to the printing

operation, which involved making requests of the database (RequestFromDB);

this was expected using the dashed box in Model 7.7.

• Updating the reward function: Looking at the user’s input in Table 7.2, the

user would not be involved in taking care of building the reward function with

the fine grained information or with the required evaluation intervals. All that

is needed is a confirmation of the correction to the reward function or the

supplying of the desired place/transition.

• Overall steps: All other steps of the methodology are automated (except up-

loading the SLA and the model files). Accordingly, reasonable help and au-

tomation are offered to users.

205

7.4 Evaluation of the WslaCP Tool

Q2- Does it accomplish the aim of minimal user interaction?

It is not ideal. According to the previous answer, user interaction is still neces-

sary to complete the model and to help in assigning the model primitives correctly.

However, even when user interaction is needed, help is offered by the methodology.

This might not be a perfect solution but it is a step forward in helping the user

to perform SLA compliance prediction for his/her predefined SLA. Hence, although

the aim of the methodology is for it to be as automated as possible, this cannot

be done (as ideally) unless the user of the methodology has access to other service

supporting documents that help in reflecting a real implementation of this service.

7.4 Evaluation of the WslaCP Tool

In this section, an evaluation of the WslaCP tool based on the described case study

is provided. Recalling the evaluation fundamentals presented in Section 7.1, four

steps should be conducted to complete the evaluation process. These steps can be

written in the context of evaluating the WslaCP tool as follows:

Framing the evaluation: For the WslaCP tool, the targeted users are the same

as for the WslaCP methodology: i.e. service providers/engineers, SLA engineers, or

modellers.

Defining evaluation goals and objectives and evaluation methods: The

evaluation is conducted using the case study as in the WslaCP methodology eval-

uation. This evaluation is based on the degree to which the tool can achieve the

aim and objectives it was designed for. A number of questions can be formulated

to evaluate the aim and objectives of the tool. These are aligned with the research

questions addressed in Section 1.4 and concern:

1. Tool’s Applicability: The questions related to this are as follows:

• Q1- Does the tool implement the WslaCP methodology?

• Q2- Is the tool applicable for real example scenarios? Is it scalable for

more complicated scenarios?

2. User Support: The questions related to this are as follows:

• Q1- Is the tool GUI usable and user-friendly?

• Q2- What degree of automation and help does this tool offer to its users?

206

7.4 Evaluation of the WslaCP Tool

For the last two steps, which are Looking for the evidence and Interpreting

the evidence, the described case study is utilised to answer the aforementioned

evaluation questions.

In the following sub-sections, the evaluation questions, along with looking for

evidence and interpreting it, are discussed in detail.

7.4.1 Tool’s Applicability

To answer the questions about the ability to use the WslaCP tool for a real WSLA

and web service model, the case study is utilised in Section 7.4.1.1. The answers are

provided in Section 7.4.1.2.

7.4.1.1 Looking for the Evidence

This section investigates the way the tool utilises the WslaCP methodology for a

real WSLA (the described WSLA for the stock quote service) and a real SPN model.

This is achieved by examining the GUIs that the tool uses to interact with its users.

The main GUIs the user has to follow in the WslaCP tool are specified as follows:

1. Uploading the WSLA file.

2. Completing the model creation or uploading its file.

3. Completing the reward function definition.

4. Solving the model.

5. Displaying the results.

These steps are described in detail in what follows.

Figure 7.12: The WslaCP welcoming GUI

207

7.4 Evaluation of the WslaCP Tool

Figure 7.13: The WslaCP GUI for uploading a WSLA contract

1- Uploading the WSLA File: When executing the WslaCP tool, a welcoming

GUI appears, as depicted in Figure 7.12. After clicking the proceed button, the next

GUI, depicted in Figure 7.13, is presented. This GUI contains a button that opens

a file chooser for uploading the WSLA contract of the stock quote service.

2- Completing the Model Creation or Uploading its File: Once the file is

uploaded, the tool stores a copy of it in a specific directory (WslaCP\WSLA DOC).

Figure 7.14: A WslaCP GUI for completing the model creation

208

7.4 Evaluation of the WslaCP Tool

The tool then examines this file automatically to produce a shorter version of it by

omitting all the unnecessary information. This makes the mapping in the next step

faster. This new file is stored in a new XML document called CompactSLA.xml.

This file is used by the tool and is hidden from the user. However, the user can find

it in the (WslaCP\WSLA DOC) directory. After generating this file, the tool then

parses it automatically to produce the SLA-Model File (recalling Figure 6.1) and

stores it in the same directory. This file is used by the tool in a later step.

As described in Section 6.3.4.1, the part relating to the model primitives in the

SLA-Model File is translated automatically to CSPL. After this, the user has to

complete the model creation. However, in the current implementation of the tool, it

is not possible to do this in a graphical format; instead it has to be done in a text-

based format, as appears in Figure 7.14. The content of this figure is the textual

CSPL representation of the automatically generated model depicted in Figure 7.7.

The user has to modify this and then save the changes. However, if the user wants to

upload an existing file that contains a complete model definition, he/she can use the

‘Upload Model File’ button. If the user completes the model manually, as specified

in Figure 7.11, then the CSPL file representing it will be as presented in Listing 7.7.

This file is stored in the folder (WslaCP\SPNP DOC).

Listing 7.7: The CSPL file of the SPN model depicted in Figure 7.11

#include <stdio.h>

#include "user.h"

/* global variables */

/* ================= OPTIONS ================ */

void options () { }

/* ========= DEFINITION OF THE NET ========== */

void net() {

/* ====== PLACE ====== */

place("Users"); init("Users" ,10); place("QuoteChecked");

place("QuoteRequested"); place("SystemUp"); init("SystemUp" ,1);

place("SystemDown");place("PrintingRequested");

place("PrintingPrepared"); place("DBResponse");

/* ====== TRANSITION ====== */

/* Timed Transitions */

rateval("RequestQuote" ,1); rateval("GetQuote" ,1); rateval("SendQupte" ,1);

rateval("Fail" ,0.1); rateval("Repair" ,0.9);

rateval("RequestPrinting" ,1); rateval("CreatingPrintingHistory" ,1);

rateval("RequestFromDB" ,1); rateval("SendPrinting" ,1);

/* ====== ARC ====== */

/* Input Arcs */

iarc("Users","RequestQuote"); iarc("QuoteRequested","GetQuote");

iarc("QuoteChecked","SendQuote"); iarc("SystemDown","Repair");

209

7.4 Evaluation of the WslaCP Tool

iarc("SystemUp","Fail");

iarc("Users","RequestPrinting"); iarc("PrintingRequested","RequestFromDB");

iarc("DBResponse","CreatingPrintingHistory");

iarc("PrintingPrepared","SendPrinting");

/* Output Arcs */

oarc("RequestQuote","QuoteRequested"); oarc("GetQuote","QuoteChecked");

oarc("SendQuote","Users"); oarc("Fail","SystemDown"); oarc("Repair","SystemUp");

oarc("RequestPrinting","PrintingRequested"); oarc("RequestFromDB","DBResponse");

oarc("CreatingPrintingHistory","PrintingPrepared"); oarc("SendPrinting","Users");

}

/* REWARD Functions */

/* ======= DEFINITION OF THE FUNCTIONS ====== */

int assert () {}

void ac_init () { /* Information on the net structure */ }

void ac_reach () { /* Information on the reachability graph */ }

void ac_final () {}

After completing or uploading the model file, the tool parses it to extract all the

available transitions and places in order to help the user choose the most suitable

primitives to complete the reward function definition in the next step. These details

are hidden from the user.

3- Completing the Reward Function Definition: After completing the model,

the tool extracts all the reward function templates for the available measurement

directives that are situated in the second part of the SLA-Model File. From these

templates, the tool automatically specifies the parts that need a user’s assistance,

as well as those that can be translated directly to the solver input language without

user interaction. Accordingly, the tool generates, for each of the seven measurements

available in the WSLA specification, a tailored GUI that is dedicated to receive

the required input from the user. These GUIs provide a brief description of the

measurement used and what slap it is related to. They also present some description

about the information that needs to be entered with a window that presents only

the suitable set of primitives (i.e. places and transitions available in the model)

for completing the reward function of this kind of measurement. This is aided by

drop-down lists that are populated automatically by using the output of the model

file.

In this case study, four reward functions were generated, as specified in Table

7.1. These are presented in the tool GUIs one after another for completing their

definition. For example, Figure 7.15 presents the GUI related to the reward function

of the StatusRequest measurement that is part of the first SLO. The tool recognises

automatically that it should present a grid inside this GUI. The grid columns are

210

7.4 Evaluation of the WslaCP Tool

Figure 7.15: A WslaCP GUI for completing the StatusRequest reward function

populated automatically with the following information: a list of all the places

available in the first column, a list of the common arithmetic relations in the second

column, a text box for entering an integer number (token number) in the third

column, and a list of the common boolean operators in the fourth column. When

this GUI is presented, the tool automatically populates the reward function template

of this measurement, as shown in Table 7.1, inside the grid of this GUI (in this

case, it is : SystemUp = 1). The user then has to confirm the correctness of this

availability condition or modify it appropriately and then click the save button.

Using lists inside the grid makes it easier for the user to modify the availability

condition because the user can choose from them rather than entering the values

manually where it is possible to make a spelling error or a mistake.

Once the changes are saved, the tool automatically generates the CSPL reward

function, in Listing 7.8, that meets with the existing or the modified condition.

Listing 7.8: The CSPL code equivalent to the StatusRequest measurement directive in Figure

7.15
double StatusRequest_GetQuote () {

if (mark("SysemUp")=1)

211

7.4 Evaluation of the WslaCP Tool

return (1.0);

else return (0.0); }

This reward function is inserted directly in the appropriate place in the SPNP

file (in the ‘REWARD Functions’ area in Listing 7.7). The user can view this from

the text area related to the SPNP file shown at the bottom of Figure 7.15.

Figure 7.16: WslaCP GUI for completing the Gauge reward variable

Another example of the GUI that is presented for completing the reward function

definition is depicted in Figure 7.16. This GUI concerns the Gauge measurement

directive that is part of the OverloadPercentage SLA parameter used in the second

SLO. Its reward function template, as illustrated in to Table 7.1, is presented using

the place name (GetQuote s). If it is not correct to use this place, which is the

case here, the user has to choose the desired place from the drop-down list (which

is QuoteRequested)1.

Listing 7.9: The CSPL code equivalent to the Gauge measurements

double Gauge_GetQuote () {

1This reward function is a rate reward returning the number of tokens in his place.

212

7.4 Evaluation of the WslaCP Tool

return (mark("QuoteRequested"));}

The CSPL code (in Listing 7.9) is generated automatically from this GUI; this

can be viewed by the user in the text area of Figure 7.16.

The GUIs related to InvocationCount, which is also part of the second SLO, and

the ResponseTime, part of the third SLO, are not discussed here because they are

almost similar.

4- Solving the Model: After completing the definition of all the reward functions,

the user has to click the ‘SOLVE’ button. When this is done, the tool automatically

updates the model file with the time required to solve the reward functions (these

times are specified in the SLA-Model File) following CSPL syntax. The tool also

adds the commands necessary to solve the model inside the ac final() function of

the model file and then calls the solver implicitly. All these are hidden from the

user.

For example, in the first SLO, the reward function of StatusRequest is checked,

as shown in Table 7.1, every 1440 minutes for one month (i.e. 31 days = 44640

minutes). This is automatically expressed in CSPL as in Listing 7.10.

Listing 7.10: The CSPL code equivalent to the time to solve the StatusRequest reward function

int loop =0;

/* Compute the reward function for the interval and time period specified in the

schedule. */

for (loop =0; loop < 44640; loop +=1440)

{

solve ((double) loop);

expected(StatusRequest_GetQuote);

}

To clarify this further, the loop in Listing 7.10 begins at 0 until it reaches the

upper bound of 44640 with increments of 1440. An SPNP function (solve) is used to

solve the model according to these time instants; this computes the expected value

(expected) of the reward function (StatusRequest GetQuote) at each instant.

For the second SLO, the reward function of Gauge is checked, as in Table 7.1,

every 5 minutes for one month. In addition, the reward function of InvocationCount

is checked every 60 minutes for one month. This is automatically expressed in CSPL

as in Listing 7.11.

Listing 7.11: The CSPL code equivalent to the time to solve the Gauge and InvocationCount

reward functions
int loop =0;

/* Compute the reward function for the interval and time period specified in the

schedule. */

213

7.4 Evaluation of the WslaCP Tool

for (loop =0; loop < 44640; loop +=5)

{

solve ((double) loop);

expected(Gauge_GetQuote);

}

for (loop =0; loop < 44640; loop +=60)

{

solve ((double) loop);

pr_cum_expected(InvocationCount_GetQuote);

}

where pr cum expected() is used to compute the expected accumulated value

(interval of time) for the reward functions. For the third SLO, the reward function

of ResponseTime is checked, as seen in Table 7.1, every 15 seconds for one month.

This is automatically expressed in CSPL as in Listing 7.12.

Listing 7.12: The CSPL code equivalent to solve the ResponseTime reward function

int loop =0;

/* Compute the reward function for the interval and time period specified in the

schedule. */

for (loop =0; loop < 44640; loop +=15)

{

solve ((double) loop);

expected(ResponseTime_PrintQuote);

}

5- Displaying the Results: After the tool has run the plugged-in solver in order

to obtain the required results, the tool automatically uses these results to compute

the probability of SLA compliance; this is done for each SLO individually. However,

as described in Section 6.4, SPNP does not provide the required simulation results;

for this, Möbius is used from the point of solving the model onwards. Unfortunately,

this mans that all the previous steps have to be undertaken manually by the user

using the Möbius tool.

After receiving the simulation results from Möbius, the user has to upload the

file containing these simulation replicas into the WslaCP tool in order to derive

the compliance prediction for each SLO automatically. The fine-grained details of

preparing the result file, parsing each replica, applying WSLA functions to it, evalu-

ating its compliance with the SLO threshold, and finally computing the probability

of SLO compliance among all the replicas, are hidden from the user. All the user

can see is the result, as depicted in Figure 7.17.

214

7.4 Evaluation of the WslaCP Tool

Figure 7.17: WslaCP GUI for presenting the result of the SLO compliance

7.4.1.2 Interpreting the Evidence

Depending on the previous section, the evaluation questions regarding the tool’s

applicability can be answered as follows:

Q1- Does the tool implement WslaCP methodology?

Yes. All the steps are applicable. However, the difficult issue with regard to

implementing the WslaCP methodology in the tool is that the mapping functions

cannot be applied when the solver being used is analytic. This is because this

type of solver depends on mathematical formulae to compute the expected results

of the reward variables. Hence, it is not possible to retrieve the raw data that

generate these values. However, when a simulation is used, applying the functions

becomes feasible because the simulation depends on running the model multiple

times and then generating the result depending on these runs. Using a simulation

trace permits the application of the functions because each of them represents one

instance of monitoring the running service and, in turn, a realisation of the random

variable assumed in the WslaCP methodology.

A disadvantage of the implemented WslaCP tool is that it is implemented using

two plugged-in modelling tools, SPNP and Möbius, and each can only be used for

specific steps. This is because a plugged-in tool that is able to provide both a simple

textual input and an accessible simulation trace file at the same time could not be

found. Hence, although the tool implements all aspects of the WslaCP methodology,

it cannot do this in a continuous fashion, using a single plugged-in tool, from the

time the SLA file is uploaded and until the compliance probability is received.

Q2- Is the tool applicable for real example scenarios? Is it scalable for more

complicated scenarios?

Yes, it is applicable for a real example scenario but it is not readily scalable.

This is because the reward variable has to be solved for every instant when an

observation is made; this makes the model expensive to solve. As the tool depends

on the plugged-in tool to solve the reward variable and to store the replicas to a

file, this proves to be very time consuming. In the first SLO example, the Möbius

tool took more than four hours to complete a simulation run of 100 replicas using a

215

7.5 Conclusion

single 2.19 GHz processor. This run solved the reward variable for 44640 instants as

specified in a month’s validity period. However, the running time would be longer if

a longer period were considered or if multiple SLOs were used. This raises problems

with scalability which can be attributed to the simulation speed of the plugged-in

tool, or the tool design that requires the extraction of the simulation replicas.

7.4.2 User Support

To be able to answer the questions regarding the ability of the WslaCP tool to

support its users, the same example regarding the tool’s applicability, as presented

in Section 7.4.1.1, is utilised. The evaluation answers, related to interpreting the

evidence, are provided in what follows:

Q1- Are the tool GUIs usable and user-friendly?

Yes, for most of the GUIs. This is because WslaCP GUIs provide good de-

scriptions of the required inputs and an easy way of entering these inputs using

drop-down lists. The only exception is the GUI relating to completing the creation

of the service model (as depicted in Figure 7.13); this might put a burden on the

user who has to complete the model textually in a CSPL format instead of carrying

this out graphically.

Q2- What degree of automation and help does this tool offer to its users?

It offers a reasonable level of help. The aim of the WslaCP tool is to allow the

user to predict the WSLA fulfilment by completing the service model and choosing

some primitives for this model. However, in the current implementation this is not

possible because of the use of two plugged-in modelling tools. Hence, the user has to

carry out more steps manually than was the aim before the model can be solved by

Möbius. These manual steps that are specific to Möbius include putting the reward

functions into the model, assigning the time to solve them, running the simulation,

and then uploading the result file into the WslaCP tool.

7.5 Conclusion

This chapter evaluates the WslaCP methodology and its tool in terms of achieving

the aim and objectives they were designed for. The evaluation was carried out based

on a case study of a stock quote service considering a number of evaluation questions.

The contribution of this chapter is to demonstrate the following: first, the viability of

the WslaCP methodology in terms of its applicability, generality, and user support;

second, the use of the WSDL file in adding an extra level of automation to the model

216

7.5 Conclusion

creation; third, to show the feasibility of the WslaCP tool in term of its applicability

and user support. The case study proves that the WslaCP methodology is general

enough to accommodate different stochastic models. However, its generality with

regard to adopting another SLA language is less easily applicable since it depends

on SLAs with a constructive ontology. The methodology is considered applicable

for a real scenario. In addition, it has been proved to offer reasonable help to its

users as many details are hidden. The WslaCP methodology evaluation regarding

the automatic model creation shows that only a part of the service model can be

produced from WSLA, which is abstract and incomplete. Hence, the methodology

was extended to allow the use of WSDL file in producing this model. Although the

newly generated model does miss some information, it helps the user in constructing

a complete service model when such a job is delegated to him/her. Finally, the

tool which exploits WslaCP methodology is considered to implement all its aspects.

However, this is achieved by using two plugged-in tools which prevents the user from

obtaining one continuous solution, thus exposing him/her to more manual work. In

the next chapter, a summary of the research’s contributions and some potential

future work are presented.

217

Chapter 8

Conclusion

In this thesis, SlaCP, a new engineering methodology that predicts the probability

of SLA compliance, is proposed including the architectural design of a software tool

that automates many of its aspects. The SlaCP methodology achieves compliance

prediction by mapping SLA elements into metrics of a service’s stochastic model

which is created semi-automatically. It then uses the outcome of the solved model

to specify further the desired SLA metrics. Finally, it predicts SLA compliance by

comparing the predicted values of the SLA metrics with the agreed SLO thresholds.

In order to show its applicability, an implementation of the SlaCP methodology was

achieved by using WSLA and SDES; this is called WslaCP. The tool’s architectural

design was also implemented using SPNP and Möbius to automate most aspects of

WslaCP. Finally, a case study was employed to evaluate both the WslaCP method-

ology and the tool. This indicated their usability and also revealed some limitations

in specific areas. Furthermore, it showed the methodology’s ability to offer an in-

creased level of automation in the creation of the service model when using a WSDL

file that describes the service operation.

The remainder of this chapter is organised as follows: Section 8.1 outlines the

contributions made by this thesis. Section 8.2 then provides reflections on the re-

search conducted in this thesis in the light of answering the research questions.

Finally, Section 8.3 offers a brief discussion regarding possible future extensions to

the work proposed in this thesis.

8.1 Summary of Contributions

The contributions made by this thesis are as follows:

1- SlaCP, a new engineering methodology for the automated predic-

tion of the probability of SLA compliance (addressed in Chapter 3). The

218

8.1 Summary of Contributions

methodology exploits a model-based approach to predict SLA compliance, as au-

tomatically as possible, through seven phases. These include: interpreting existing

SLA metrics; mapping them into a generalised stochastic model (this includes prim-

itives, reward variables, time to solve them, functions over solver output, and SLO

evaluation function); completing the model creation; refining the model into a con-

crete one to be solved; solving the model to produce the desired values; using these

to compose the ultimate SLA metrics; and finally evaluating them against the SLO

thresholds to decide the probability of compliance. The design of the SlaCP method-

ology is described and addressed from two viewpoints: that of the methodology’s

user and that of its tool designer. This was done to provide interested users with a

basis from which to understand the methodology, irrespective of the concrete SLA

language and stochastic modelling formalism. To the best of our knowledge, this is

the first research study that performs SLA prediction in an all-in-one methodology

starting from a predefined SLA and ending with a compliance probability. Although

the methodology offers a reasonable level of automation, user interaction is still re-

quired to complete the model creation and the reward function definitions. SlaCP

can be considered to apply to stochastic models in general since it uses a generalised

model that can be translated automatically into a concrete one. However, it is less

easily applicable to SLA specifications in general since it assumes that the SLAs

used employ a constructive ontology to define their QoS metrics.

2- WslaCP, a theoretical implementation of the proposed methodology

for WSLA and SDES. This includes:

1. A formal representation of a WSLA agreement through an unambiguous math-

ematical representation (addressed in Chapter 4). This provides a complete

and formal view of the WSLA elements necessary for prediction (rather than

for monitoring). In addition, it paves the way towards achieving the correct

application of the phases of the methodology. Some literature has already

attempted to formalise general SLA specifications but only at a high level

and without utilising the hierarchical definition of QoS metrics. In addition,

the proposed representation in this contribution is tightly coupled only with

prediction-related elements. The relation between the components of some

formal elements (such as the SLO nested expressions) was difficult to reflect in

mathematical terms; hence, this was accomplished using algorithms that are

implemented by the tool.

2. A mapping process from WSLA to SDES (addressed in Chapter 5). This in-

cludes five steps: representing service operations as model primitives; mapping

219

8.1 Summary of Contributions

measured QoS metrics as reward variables; mapping the time at which mea-

sured QoS metrics are taken as observation intervals; mapping the functions

constituting QoS composite metrics as functions of the model outputs; and

finally, mapping the SLO threshold and its comparison operator as an evalua-

tion function to predict the probability of SLA compliance. This demonstrates

the applicability of the generic methodology for concrete SLA and stochastic

model specifications. It also permits better concrete understanding of the pro-

posed methodology. This mapping helps in building a service model, but user

interaction is still needed to complete the model.

3- The architectural design and implementation of a software tool. The

former automates the SlaCP methodology, while the latter implements this design

using WSLA, SPNP and Möbius (addressed in Chapter 6). This includes:

1. The SlaCP tool’s architectural design: A set of architectural components are

proposed, together with their design. This design aims at making the tool

modular for use with different SLA specifications, modelling formalisms and

implementation languages. This was achieved by expressing the tool’s primary

outputs in a language independent of the modelling tool used to build and solve

the model, and the language utilised to implement the tool’s APIs. The tool

design also aims to automate the SlaCP methodology as much as possible to

help users to predict SLA compliance with minimum interaction.

2. The WslaCP tool: The architectural design of the SlaCP tool was implemented

for WSLA and an SPN model. It exploits the WslaCP methodology regarding

the mapping details; hence, it is referred to as WslaCP. The implementation

was accomplished using different techniques, both existing and novel. Existing

tools, namely SPNP and Möbius, were used as plugged-in tools; Java was used

to implement the rest of the tool engines and to provide the communication

among them; the SDESSch novel schema was created as a means of representing

the reward model in a machine-readable format; and finally, Matlab was used

to represent the functions that were applied on the solver outputs. Using this

tool, the user can predict SLA compliance with a minimum level of interaction.

Furthermore, such a tool allows the user to adopt a new SLO threshold or

service design according to their impact on SLA compliance. This tool cannot

provide a continuous flow from uploading the SLA until the SLA compliance

is produced due to the lack of a plugged-in tool that satisfies all the tool

requirements. This left no choice other than to use two plugged-in tools;

220

8.2 Reflections on Research Outcomes

each is suitable for a set of the steps involved in the WslaCP tool. This

unfortunately increases the manual interaction required from the user.

4- Using WSDL as a new extension to WslaCP methodology (described

in Chapter 7). The WslaCP methodology was extended by employing WSDL docu-

ments. Using WSDL to produce the service model improved the level of automation

and completeness in the model’s creation, although user interaction is still required

to refine it, parameterise its parameters and specify its initial state.

8.2 Reflections on Research Outcomes

This section provides reflections on the research conducted in this thesis in the light

of the research questions addressed in Section 1.3. In this section, each research

question is answered first, then, a reflection on the overall thesis work is provided.

8.2.1 The First Research Question

The first research question was as follows: Can an existing SLA be mapped

theoretically to metrics of a stochastic model in an automated fashion?”

This question implies several sub-questions, as indicated in Section 1.3.

Q1- Are all SLA elements useful for prediction-related mapping or are some of

them monitoring-related only? What are these elements?

A review of some SLA examples showed that SLAs are written for monitoring

purposes. SLA elements are designed to measure QoS metrics using URIs or mea-

surement directives of the running service. Moreover, the functions of its composite

metrics are also designed to work on values of these measurements. Many elements

also exist to manage the runtime relationship between the service provider and cus-

tomers, and within the different elements of the SLA. For compliance prediction,

not all elements are considered, only those elements that are used to build up the

QoS metrics (these are the basic metrics, the temporal constraints to retrieve these

metrics, and the composite metrics) with all the SLO threshold information (the

acceptable numeric value, the arithmetic relation, and the validity period), in addi-

tion to elements that help in building the model of the service (these are the service

objects and URIs). All the previous information allows this question to be answered

as follows :“Not all of SLA elements are necessary for its prediction: only elements

related to model creation, QoS metric definitions and SLO information are used.”

Q2- Does an SLA provide any information that helps in automatically creating

221

8.2 Reflections on Research Outcomes

a complete service model or a part of it? If yes, what are these elements? Can other

supporting documents enhance this automatic model creation?

An exploration was carried out to find out what elements inside an SLA can

be used to produce model primitives. Since all QoS metrics inside an SLA are

defined for a specific service object such as an operation, this can be utilised as a

state variable and an action in the service model. This is because the requests that

this service object handles are queued normally before they can be served; this can

be represented as a state variable. In addition, the service object typically takes

some time to service the request; this can be reflected as a firing delay of an action.

Furthermore, basic QoS metrics in an SLA can be used as reward variables. These

metrics usually describe a service attribute, and reward models can be utilised to

retrieve their values. In addition, the temporal constraint inside an SLA, through

which the basic QoS metrics are measured, can be used as an evaluation interval

of the reward variables. Finally, since the derivation of some basic metric implies

the presence of specific primitives inside the model, this can provide hints for model

creation. An example of this is the QoS that measures availability; this implies the

use of primitives that reflect the up/down states in the model. As a conclusion, a part

of the reward model (i.e. a service model with reward variables) can be produced

automatically from an SLA. This model contains pairs of state variables/actions

(service objects), other primitives (hints from basic QoS metrics), reward variables

(basic QoS metrics), and the time to solve them (temporal constraints). This allows

the question to be answered as follows: “An SLA can provide some information

that helps to create automatically an abstract reward model which includes part of

the service model and the reward variables defined in it”.

Using WSLA as the SLA language, another supporting document can be used to

enhance the level of detail and completeness in the automatically produced service

model. The model generated from WSLA and WSDL is more complete. However,

more work needs to be done to increase the level of detail in this model. This poten-

tially can be done using service supporting documents such as WSFL or BPEL4WS.

However, it is still difficult to parameterizse the model automatically. This allows

the question to be answered as follows: “A WSDL document that describes the

service operations inside a WSLA document can be used to create a more detailed

service model automatically.”

Q3- Assuming that such a service model is available, how do the prediction-

related SLA elements correspond to the service model? In other words, are they

mapped on the model primitives or are they captured by a function over the results

of solving this model?

222

8.2 Reflections on Research Outcomes

After completing the service model, the basic QoS metrics are mapped to it as

reward variables; this creates a reward model. In addition, the temporal constraints

are used to define the times at which these reward variables are solved. Functions

that are used inside the composite metrics, on the other hand, cannot be mapped

as a part of these reward variables. They need to be mapped as functions over

the results of solving the reward models. This is because, in an early part of the

work of this thesis, functions were mapped as parts of the reward variables. This

proved to be possible for some functions but not for all. This is because WSLA

functions, while monitoring, are applied on the values of a basic metric that are

taken at different time instants. However, this cannot be reflected as part of a

single reward variable because a reward variable value at a specific instant cannot

be predicted and used by the same reward variable in the same model (i.e. a reward

variable value at a specific time cannot be used as an input to itself). The impact

of considering functions being applied on the reward model outcome rather than

as part of the reward variable was explored using Möbius; this proved to be more

reasonable. This allows the question to be answered as follows: “The basic QoS

metrics are mapped on the service model as reward variables in order to generate a

reward model. However, the functions of the composite metrics are mapped on the

output of solving this reward model.”

Q4- Given that the mapping from SLA into a stochastic model is feasible, to

what extent can the mapping process be automated?

The research in this thesis does not provide a complete automation of the process

of SLA compliance prediction. User interaction is always necessary to complete the

model creation and to assign the necessary primitives that are relevant to the reward

functions. However, the methodology succeeds in simplifying this process for the

user as much as possible. This allows the question to be answered as follows: “An

automated mapping process from an SLA to a stochastic model of the service is only

partly possible as user interaction is vital to complete the model creation and the

assignment of reward functions.”

In the light of the analysis of these four sub-questions, the following answer

holds for the first main question: “An existing SLA can be mapped semi-

automatically to produce a reward model that helps in predicting the

SLA compliance probability.”

223

8.2 Reflections on Research Outcomes

8.2.2 The Second Research Question

The second research question was as follows: “Is the theoretical mapping pro-

cess applicable in a real example scenario?” This question implies the following

sub-questions:

Q1- Is the methodology, which exploits the research hypothesis, applicable before

or after deploying the service in the real world? Is it useful for service providers and

customers?

The SlaCP methodology that explores the research hypothesis was developed.

It can be applied at any stage of service creation or SLA establishment. However,

after service deployment, the user may have more supporting documents that may

help in the automatic model creation, or data that will help in parameterising the

model.

The SlaCP methodology is primarily targeted at service providers, modellers,

or SLA engineers, helping them in designing a better SLA document with compli-

ance probability that is better understood. A service customer may also use this

methodology if he/she is interested in the ability of the desired service to comply

with an SLA. To use the methodology, the customer must have the SLA and should

be able to parameterise the service model. This allows the question to be answered

as follows: “An SLA compliance prediction methodology can help its users to predict

SLA compliance probability in as automated way as possible, either after or before

deploying the service.”

Q2- Assuming that the methodology is applicable before deploying the service,

how will the user be able to obtain the necessary information for parameterising the

model (e.g. delay time)? How can the initial state of the model, which is necessary

for solving it, be determined (e.g. does this depend on simulation results or historical

data)?

A review of some literature studies showed that most of the parameters in a

model-based evaluation approach are either assumed or taken from historical data.

In addition, some model parameters can sometimes be extracted from the log of a

system that is similar to the one under consideration, or from scenarios that are

running theoretically [78]. In this methodology, it is assumed that parameterising

the model will be completed by a user and not investigated further. This allows the

question to be answered as follows: “The parameters of the service model that is

used in the SLA compliance prediction methodology are assumed.”

Q3- Does the type of model affect the usage of the methodology? In other

words, is the type of stochastic model (i.e. closed or open, steady state or transient)

224

8.2 Reflections on Research Outcomes

important for mapping validity?

The model of a service can be open; that is, requests arrive to the model ran-

domly at a specific rate, are served, and then leave the model (the number of requests

is not fixed). The model may also be closed, where the number of requests is fixed

[159]. The type of the model (i.e. whether closed or open) is not crucial for the pro-

posed methodology since basic metrics can be mapped to both of them (for response

time mapping, either choice is possible). Given that the SLA is monitoring centric,

it naturally leads to QoS metric evaluation at instants/intervals of time instead of

a steady state. Consequently, the model evaluates the reward variables for every

instant when an observation is made. This allows the question to be answered as fol-

lows: “The service model that is used in the SLA compliance prediction methodology

is transient to reflect the monitoring nature of the SLA.”

Q4- Is there any difference in prediction if a service is composite (i.e. not single)?

Can a service model for a composite service still be generated and used by the

methodology assuming the hypothesis?

In a composite service, each service has a specific SLA for each of the other

services. This cannot affect the application of the methodology as each service,

with its SLA and WSDL files, is treated independently. This means that, for any

SLA between any two services, the mapping to a reward model can be accomplished

as normal. The whole model representing the composite metrics results by merging

all the individual models. This allows the question to be answered as follows: “There

is no difference in prediction if the service is composite or single, and a reward model

can still be generated partially for this service.”

Q5- Can an all-in-one software tool automate all aspects of the methodology?

An architectural design of a tool that automates the proposed SlaCP methodol-

ogy was presented and a number of techniques were adopted to increase the tool’s

modularity and automation. This was done by implementing a set of intermedi-

ate files to represent the tool’s output in a way that can be understood by engines

reasoning about them. However, a number of issues restricted the implementation

of all aspects of the architectural design in the implemented WslaCP tool. Func-

tions cannot be applied on the expected values of the solver; rather, this has to be

achieved on individual runs (replicas) obtained from a simulation rather than on

results from an analytic model.

Möbius proved to be very powerful in obtaining the required simulation replicas

but its complicated textual representation prevents the WslaCP tool from utilise-

ing Möbius during the first steps of the tool. The opposite is true for the SPNP

225

8.2 Reflections on Research Outcomes

tool. Hence, due to time limitations, and in the light of the lack of a tool that

could accomplish the WslaCP requirements from among the ones studied, WslaCP

was implemented using the two previously mentioned modelling tools, SPNP and

Möbius. All the previous information allows the question to be answered as follows:

“A software tool that automates the methodology can be designed and implemented.”

In the light of the analysis of the three aforementioned sub-questions, the follow-

ing answer holds for the second main question: “A theoretical mapping of an

SLA to a stochastic model is applicable in a real scenario, and it can be

implemented in a software tool that automates it.”

In the light of answering the main research questions, the research hypothesis

that “the process of model-based SLA compliance prediction can be automated using

an existing SLA document as the only input”, as presented in Section 1.3, is not

entirely valid because user interaction is still vital.

8.2.3 Overall Reflection

This section gives an overall opinion about the viability of the proposed methodology.

The methodology proposed in this thesis starts from an existing SLA contract

and maps it on reward models. Purposely, well-established specification languages

for defining the QoS metrics in an SLA, such as Performance Trees or the Continu-

ous Stochastic Logic, were not used. The reason for this is that it would require the

rewriting of an existing SLA in a new specification. Instead, the proposed method-

ology assumes a predefined SLA that the user already has and makes use of it.

The methodology is aimed at users who are non-specialists in the area of model-

based evaluation and tries to help them as much as possible. However, although the

methodology aims to help non-specialists to carry out SLA compliance prediction, it

needs user interaction to perform some manual steps which have been shown to be

non-trivial; these indeed require some modelling skills (such as the ability to com-

plete a model creation and reward definitions). As a conclusion, the methodology

can be considered to provide advantages, but it does not avoid the need for some

expert involvement.

Finally, the main advantage of using the proposed SlaCP methodology and its

implementation is to allow the SLA engineers or service providers to gain an early in-

sight in the ability of the service to conform to a predefined SLA in a semi-automated

fashion. This methodology can help them also in later stages of SLA negotiation

and establishment to perform SLA management. This can aid in predicting the

probability of breaching an SLA while the service is running.

226

8.3 Future Work

8.3 Future Work

The work presented in this thesis can be enhanced and extended in terms of all of its

three aspects: the methodology, the tool, and the evaluation. The possible future

work is as follows:

1. The methodology: The areas that need to be enhanced regarding the theoret-

ical basis of the methodology are as follows:

(a) Regarding the SlaCP methodology, it would be useful to implement the

general methodology presented in this thesis for different SLA languages.

The methodology is aimed at SLAs with a constructive ontology for defin-

ing QoS metrics. An idea would be to extend it in a way that other SLAs,

which define its QoSs without considering such an ontology, could also

be used. For example, this could be accomplished by using a decomposi-

tion mechanism to transform the composite QoS metrics into measured

metrics and the functions over them.

(b) Regarding the WslaCP methodology, in this thesis, the intention was to

use WSLA in a prediction context. Therefore, semantics were associated

with its elements in order to make sure that they were obvious when

mapping them. It would be useful to integrate the semantics with a

WSLA contract or to develop a mechanism for agreeing on them. For

the sake of practicality, these semantics could be written in a machine-

readable format so they are accessible for the SLA parties to read.

2. The tool: The areas that need to be enhanced regarding the tool are as follows:

(a) To integrate a WSDL mapping module in the tool.

(b) To extend the tool so that it not only gives the probability of SLO com-

pliance, but can also offer suggestions about areas of weakness that cause

low SLA satisfaction, as well as possible solutions to this.

(c) To allow the user to complete the model’s creation graphically instead of

achieving this using textual input.

(d) To improve the usability of the WslaCP tool by improving the graphical

user interface. This would be useful, especially when the user wants to

change action rate values or the initial model state.

(e) To find new estimation methods to produce prediction results more quickly,

other than by storing and analysing the simulation replicas. This would

reduce the time complexity and would make the solution more scalable.

227

8.3 Future Work

3. The evaluation: The areas that need to be enhanced regarding the evaluation

are as follows:

(a) The proposed methodology could be connected to a monitoring frame-

work to support the validation of the stochastic model against the real

system; the proposed method could ensure the coherence of both the

measured values and the model-derived ones.

(b) Applying the tool to a running service. This would provide a comparison

between the predicted SLA compliance values and the monitored ones.

228

Appendix A

SDES Schema, SDESSch

The SDESSch schema represents the SLA-Model File, which is the output of the Met-

ric Specification Engine (MS Engine) in a unified machine-readable format following

the notation used in the SDES formalism.

The root element of the SDESSch schema, as appears in Listing A.1, is the SDES

of the type SDESType (line 9). This type consists of three main parts: SV, A, and RV

(lines 3, 4, and 5). These describe the state variables, the actions, and the reward

variables that are derived from the WSLA contract respectively.

Listing A.1: The three main elements in the SDESSch schema

1:<xsd:complexType name="SDESType">

2: <xsd:sequence >

3: <xsd:element name="SV" type="sdes:SVType" maxOccurs="unbounded"/>

4: <xsd:element name="A" type="sdes:AType" maxOccurs="unbounded"/>

5: <xsd:element name="RV" type="sdes:RVType" maxOccurs="unbounded"/>

6: </xsd:sequence >

7: <xsd:attribute name="name" type="xsd:string"/>

8:</xsd:complexType >

9:<xsd:element name="SDES" type="sdes:SDESType"/>

The name attribute (line 7) represents the name of the service that the WSLA

document is defined for. SDES elements and types are defined in the name-space

“sdes”. The type of each of the main elements of the SDESSch schema is described

in the following sections.

A.1 State Variables

The set of state variables, SV, that is derived from the mapping of the WSLA’s

service operation is defined using the SVType complex type. This type is presented

229

A.2 Actions

in Listing A.2.

Listing A.2: The definition of the state variable in the SDESSch schema

1:<xsd:complexType name="SVType">

2: <xsd:sequence >

3: <xsd:element name="Name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

4: <xsd:element name="Value" type="xsd:double" minOccurs="0"

maxOccurs="1"/>

5: </xsd:sequence >

6:</xsd:complexType >

The Name element in this listing (line 3) refers to the name of the state variable;

this is equal to the name of the WSLA’s service operation with the attached string

(s). The Value element (line 4) represents the initial value of this state variable;

this is set to 1 by default.

A.2 Actions

The set of actions, A, that is derived from mapping the WSLA’s service operation

is defined using the AType complex type; this is presented in Listing A.3.

Listing A.3: The definition of the action in the SDESSch schema

1:<xsd:complexType name="AType">

2: <xsd:sequence >

3: <xsd:element name="Name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

4: <xsd:element name="Rate" type="xsd:double" minOccurs="0"

maxOccurs="1"/>

5: <xsd:element name="InputS" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

6: <xsd:element name="OutputS" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

7: </xsd:sequence >

8:</xsd:complexType >

The Name element in this listing (line 3) refers to the name of the action; this is

equal to the name of the WSLA’s service operation with the attached string (a).

The Rate element (line 4) represents the firing rate of this action which is set to 1

by default. The InputS and OutputS elements refer to the input and output state

variables connected to this action.

230

A.3 Reward Variables

A.3 Reward Variables

The set of reward variables, RV, that is derived from mapping WSLA’s measurement

directives is defined using the RVType complex type; this appears in Listing A.4.

Listing A.4: The definition of the reward variable in the SDESSch schema

1:<xsd:complexType name="RVType">

2: <xsd:sequence >

3: <xsd:element ref="sdes:rvRate" minOccurs="0" maxOccurs="1"/>

4: <xsd:element ref="sdes:rvImp" minOccurs="0" maxOccurs="1"/>

5: <xsd:element ref="sdes:rvInt" minOccurs="1" maxOccurs="1"/>

6: <xsd:element ref="sdes:hint" minOccurs="0" maxOccurs="1"/>

7: </xsd:sequence >

8:<xsd:attribute name="type" type="sdes:MesurementTypes"/>

9:<xsd:attribute name="name" type="xsd:string"/>

10:</xsd:complexType >

This definition is compatible with the required outputs of mapping the mea-

surement directives as reward variables (which is described in Section 5.2.2). These

outputs are the reward variable type (rate or impulse), the time to solve it, and the

hint to the user (the elements rvRate, rvImp, rvInt, and hint in lines 3, 4, 5, and

6 respectively). According to this definition, an element RV can contain, at most,

one rate-based reward function; at most, one impulse-based reward function; only

one reward variable evaluation interval and, at most, one hint. These elements and

their types are described in detail in the forthcoming subsections. However, before

this, the attributes of the RVType are described.

The first attribute, type (line 8), represents the type of the measurement direc-

tive, which can be one of six types (equivalent to the six types of the measurement

directive in WSLA, where Status and StatusRequest are treated identically); these

are specified in Listing A.5. The type attribute is needed to allow the tool to recog-

nise how to deal with the template of the reward variables and what type of GUI is

related to each of them.

Listing A.5: The type of the measurement directive in the SDESSch schema

<xsd:simpleType name="MesurementTypes">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Gauge"/>

<xsd:enumeration value="Counter"/>

<xsd:enumeration value="InvocationCount"/>

<xsd:enumeration value="ResponseTime"/>

<xsd:enumeration value="DownTime"/>

<xsd:enumeration value="Status"/>

</xsd:restriction >

</xsd:simpleType >

231

A.3 Reward Variables

The second attribute, name (line 9 in Listing A.4), represents the name that is

given to the reward variable. This name is generated automatically by assigning

the name of the measurement directive to the name of the operation on which this

measurement is defined separated by an underscore sign ().

A.3.1 The Rate Reward Function

After defining the type of the reward variable, the reward function has to be spec-

ified. According to the mapping in Section 5.2.2, the measurement directives that

are mapped as rate reward functions are: Gauge, ResponseTime, Status and Down-

Time. These rate reward functions, according to Section 5.2.2, can be in one of

two types: the first specifies a state variable whose value is returned (for Gauge),

while the second specifies a condition that should be satisfied (with state variables,

relations and thresholds) along with the value it returns (for Status, ResponseTime

and DownTime). Accordingly, the rvRate element is defined using the RateType

complex type as appears in Listing A.6.

Listing A.6: The definition of the rate reward function in the SDESSch schema

1:<xsd:element name="rvRate" type="sdes:RateType"/>

2:<xsd:complexType name="RateType">

3: <xsd:choice >

4: <xsd:sequence >

5: <xsd:element name="Return" type="xsd:string"/>

6: </xsd:sequence >

7: <xsd:sequence >

8: <xsd:element name="IF" type="sdes:IFType"/>

9: <xsd:element name="ElseIf" type="sdes:IFType" minOccurs="0"/>

10: <xsd:element name="ElseReturn" type="xsd:double" minOccurs="0"/>

11: </xsd:sequence >

12: </xsd:choice >

13:</xsd:complexType >

14:<xsd:complexType name="IFType">

15: <xsd:sequence >

16: <xsd:element name="condition" type="sdes:LogicExpressionType"/>

17: <xsd:element name="return" type="xsd:double"/>

18: </xsd:sequence >

19:</xsd:complexType >

For the first type of the rate reward function, the element Return (line 5) is

used to specify the name of the state variable whose value should be returned.

For the second type of the rate reward function, the condition is specified using

the IF, ElseIf, and ElseReturn elements (lines 8, 9 and 10). All these elements

232

A.3 Reward Variables

are of the type IFType; this specifies condition (line 16) and return (line 17)

elements. The condition can be either simple or nested. This is reflected us-

ing a binary operator (And, Or) or a unary operator (Not). The binary and

unary operators are specified using the complex type BinaryOperatorType and

UnaryOperatorType respectively. These complex types are defined using another

complex type, LogicExpressionType, as appears in Listing A.7.

Listing A.7: The definition of the condition in the SDESSch schema

1:<xsd:complexType name="LogicExpressionType">

2: <xsd:sequence >

3: <xsd:choice >

4: <xsd:sequence >

5: <xsd:element name="stv" type="xsd:string"/>

6: <xsd:element name="R" type="sdes:relationType"/>

7: <xsd:element name="V" type="xsd:double"/>

8: </xsd:sequence >

9: <xsd:element name="And" type="sdes:BinaryOperatorType"/>

10: <xsd:element name="Or" type="sdes:BinaryOperatorType"/>

11: <xsd:element name="Not" type="sdes:UnaryOperatorType"/>

12: </xsd:choice >

13: </xsd:sequence >

14:</xsd:complexType >

15:<xsd:complexType name="BinaryOperatorType">

16: <xsd:sequence >

17: <xsd:element name="condition" type="sdes:LogicExpressionType"

minOccurs="2" maxOccurs="2"/>

18: </xsd:sequence >

19:</xsd:complexType >

20:<xsd:complexType name="UnaryOperatorType">

21: <xsd:sequence >

22: <xsd:element name="condition" type="sdes:LogicExpressionType"

minOccurs="1" maxOccurs="1"/>

23: </xsd:sequence >

24:</xsd:complexType >

In the BinaryOperatorType (line 15), two condition(s) are exactly specified

(line 17), while for the UnaryOperatorType (line 20) one condition is only specified

(line 22). Each condition of the aforementioned types is defined by the LogicExpres-

sionType type (line 1). The simple condition of the LogicExpressionType can be

defined by specifying a state variable stv, an arithmetic relation R, and a value V

(lines 5, 6, and 7). However, the complex condition can be defined by specifying

multiple simple ones that are joined using one of the logical operators And, Or, or

Not (lines 9, 10, and 11). The arithmetic relation, R, is defined using the complex

type relationType as presented in Listing A.8.

233

A.3 Reward Variables

Listing A.8: The definition of the arithmetic relation in the SDESSch schema

<xsd:simpleType name="relationType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Greater"/>

<xsd:enumeration value="Less"/>

<xsd:enumeration value="GreaterEqual"/>

<xsd:enumeration value="LessEqual"/>

<xsd:enumeration value="Equal"/>

</xsd:restriction >

</xsd:simpleType >

A.3.2 The Impulse Reward Function

According to Section 5.2.2, the measurement directives that are mapped as impulse

reward functions are: Counter and InvocationCount. For defining the impulse reward

function, the action and the returned value should be determined. Accordingly, the

rvImp element is defined using the ImpulseType complex type as appears in Listing

A.9.

Listing A.9: The definition of the impulse reward functions in the SDESSch schema

1:<xsd:element name="rvImp" type="sdes:ImpulseType"/>

2:<xsd:complexType name="ImpulseType">

3: <xsd:sequence >

4: <xsd:element name="ac" type="xsd:string"/>

5: <xsd:element name="return" type="xsd:double"/>

6: </xsd:sequence >

7:</xsd:complexType >

The ac element (line 4) is used to specify the name of the action whose firing

is considered, while the return element (line 5) specifies the value that should be

returned when this action fires.

A.3.3 The Evaluation Interval

According to Section 5.2.3, the schedule determines the time at/during which the

reward variable should be solved. This time is recognised as an evaluation interval

which could be an instant or interval of time. Accordingly, the rvInt element is

defined using the rvIntervalType complex type as appears in Listing A.10.

Listing A.10: The definition of the reward interval in the SDESSch schema

1:<xsd:element name="rvInt" type="sdes:rvIntervalType"/>

2:<xsd:complexType name="IntervalType">

234

A.3 Reward Variables

3: <xsd:sequence >

4: <xsd:element name="S" type="xsd:double"/>

5: <xsd:element name="E" type="xsd:double"/>

6: <xsd:element name="I" type="xsd:double"/>

7: </xsd:sequence >

8: <xsd:attribute name="type" type="sdes:TimeType"/>

9:</xsd:complexType >

10:<xsd:simpleType name="TimeType">

11: <xsd:restriction base="xsd:string">

12: <xsd:enumeration value="Instant"/>

13: <xsd:enumeration value="Interval"/>

14: </xsd:restriction >

15:</xsd:simpleType >

The S, E and I elements (lines 4, 5, and 6) are used to specify the start time,

the end time, and the increment respectively. The type attribute (line 8) is defined

using the TimeType complex type. It specifies whether the evaluation is done at an

Instant of time (line 12) or an Interval of time (line 13).

A.3.4 The Reward Hint

The last element that is defined inside the RV element. This element, hint, gives

an information about the state variable or the action that can be included in the

reward function or in the model. Accordingly, the hint is defined using the HintType

complex type as appears in Listing A.11.

Listing A.11: The hint definition in the SDESSch schema

1:<xsd:element name="hint" type="sdes:HintType"/>

2:<xsd:complexType name="HintType">

3: <xsd:choice >

4: <xsd:element name="svH" type="xsd:string"/>

5: <xsd:element name="aH" type="xsd:string"/>

6: </xsd:choice >

7:</xsd:complexType >

The svH and aH elements (lines 4 and 5) refer to the name of the state variable

and the action accordingly.

It should be noted that when mapping the measurement directives in Section

5.2.2, the reward variable values were either instant or interval of time reward vari-

ables; i.e. they are not averaged (rvAvg is always false). For this reason, there is

no need to include a reference to rvAvg in the SDESSch schema.

235

A.4 The Complete SDESSch Schema

A.4 The Complete SDESSch Schema

The complete SDESSch Schema is presented in Listing A.12.

Listing A.12: The complete SDESSch Schema

<?xml version="1.0" encoding="UTF -8"?>

<xsd:schema xmlns:xsd="http: //www.w3.org /2001/ XMLSchema" xmlns:sdes="D:/

writingup2012/sdes" targetNamespace="D:/writingup2012/sdes"

elementFormDefault="qualified">

<xsd:complexType name="SDESType">

<xsd:sequence >

<xsd:element name="SV" type="sdes:SVType" maxOccurs="unbounded"/>

<xsd:element name="A" type="sdes:AType" maxOccurs="unbounded"/>

<xsd:element name="RV" type="sdes:RVType" maxOccurs="unbounded"/>

</xsd:sequence >

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType >

<xsd:element name="SDES" type="sdes:SDESType"/>

<xsd:complexType name="SVType">

<xsd:sequence >

<xsd:element name="Name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="Value" type="xsd:double" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="AType">

<xsd:sequence >

<xsd:element name="Name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="Rate" type="xsd:double" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="InputS" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="OutputS" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="RVType">

<xsd:sequence >

<xsd:element ref="sdes:rvRate" minOccurs="0" maxOccurs="1"/>

<xsd:element ref="sdes:rvImp" minOccurs="0" maxOccurs="1"/>

<xsd:element ref="sdes:rvInt" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="sdes:hint" minOccurs="0" maxOccurs="1"/>

</xsd:sequence >

236

A.4 The Complete SDESSch Schema

<xsd:attribute name="type" type="sdes:MesurementTypes"/>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType >

<xsd:element name="rvRate" type="sdes:RateType"/>

<xsd:complexType name="RateType">

<xsd:choice >

<xsd:sequence >

<xsd:element name="IF" type="sdes:IFType"/>

<xsd:element name="ElseIf" type="sdes:IFType" minOccurs="0"/>

<xsd:element name="ElseReturn" type="xsd:double" minOccurs="0"/>

</xsd:sequence >

<xsd:sequence >

<xsd:element name="Return" type="xsd:string"/>

</xsd:sequence >

</xsd:choice >

</xsd:complexType >

<xsd:complexType name="LogicExpressionType">

<xsd:sequence >

<xsd:choice >

<xsd:sequence >

<xsd:element name="stv" type="xsd:string"/>

<xsd:element name="R" type="sdes:relationType"/>

<xsd:element name="V" type="xsd:double"/>

</xsd:sequence >

<xsd:element name="And" type="sdes:BinaryOperatorType"/>

<xsd:element name="Or" type="sdes:BinaryOperatorType"/>

<xsd:element name="Not" type="sdes:UnaryOperatorType"/>

</xsd:choice >

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="BinaryOperatorType">

<xsd:sequence >

<xsd:element name="condition" type="sdes:LogicExpressionType"

minOccurs="2" maxOccurs="2"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="UnaryOperatorType">

<xsd:sequence >

<xsd:element name="condition" type="sdes:LogicExpressionType"

minOccurs="1" maxOccurs="1"/>

</xsd:sequence >

</xsd:complexType >

<xsd:element name="rvImp" type="sdes:ImpulseType"/>

<xsd:complexType name="ImpulseType">

237

A.4 The Complete SDESSch Schema

<xsd:sequence >

<xsd:element name="ac" type="xsd:string"/>

<xsd:element name="return" type="xsd:double"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name="IFType">

<xsd:sequence >

<xsd:element name="condition" type="sdes:LogicExpressionType"/>

<xsd:element name="return" type="xsd:double"/>

</xsd:sequence >

</xsd:complexType >

<xsd:element name="hint" type="sdes:HintType"/>

<xsd:complexType name="HintType">

<xsd:choice >

<xsd:element name="svH" type="xsd:string"/>

<xsd:element name="aH" type="xsd:string"/>

</xsd:choice >

</xsd:complexType >

<xsd:element name="rvInt" type="sdes:IntervalType"/>

<xsd:complexType name="IntervalType">

<xsd:sequence >

<xsd:element name="S" type="xsd:double"/>

<xsd:element name="E" type="xsd:double"/>

<xsd:element name="I" type="xsd:double"/>

</xsd:sequence >

<xsd:attribute name="type" type="sdes:TimeType"/>

</xsd:complexType >

<xsd:simpleType name="TimeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Instant"/>

<xsd:enumeration value="Interval"/>

</xsd:restriction >

</xsd:simpleType >

<xsd:simpleType name="MesurementTypes">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Gauge"/>

<xsd:enumeration value="Counter"/>

<xsd:enumeration value="InvocationCount"/>

<xsd:enumeration value="ResponseTime"/>

<xsd:enumeration value="DownTime"/>

<xsd:enumeration value="Status"/>

</xsd:restriction >

</xsd:simpleType >

238

A.4 The Complete SDESSch Schema

<xsd:simpleType name="relationType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Greater"/>

<xsd:enumeration value="Less"/>

<xsd:enumeration value="GreaterEqual"/>

<xsd:enumeration value="LessEqual"/>

<xsd:enumeration value="Equal"/>

</xsd:restriction >

</xsd:simpleType >

</xsd:schema >

239

Appendix B

Implementation of the Complex

WSLA Functions in Matlab

In this appendix, the implementation of the complex WSLA functions is provided.

These functions are the TSSelect, ValueOccurs, PercentageGreaterThanThreshold,

PercentageLessThanThreshold, NumberGreaterThanThreshold, NumberLessThanTh

reshold, Span and ValueOccurs. The implementation of these functions resides inside

the Functions File of the Metric Specification Engine. The implementation of these

functions are described in the what follows.

1- TSSelect: As appears in Table B.1, this function takes the time series function’s

output, represented as the array TSC[], and returns an index x from it.

Table B.1: TSSelect function implementation in Matlab

function[xCount]= TSS(TSC[],x)

xCount= TSC(x);

return(xCount);

end

2- ValueOccurs: As appears in Table B.2, this function takes the time series

function’s output, represented as the array TSC[], and returns, at each index i of

this series, the number of times a value x occurs in this series.

3- PercentageGreaterThanThreshold: As appears in Table B.3, this function

takes the time series function’s output, TSC[], and returns the percentage of elements

whose value are greater than a value x, and this at each index i of this series.

240

Table B.2: ValueOccurs function implementation in Matlab

function[xCount[]]= VO(TSC[],x)

xCount=0;

i=1;

for i=1:1:length(TSC[])

if TSC(i)= x

xCount=xCount+1;

xCount(i)=xCount;

else

xCount(i)=xCount;

end

end

return(xCount[])

end

Table B.3: PercentageGreaterThanThreshold function implementation in Matlab

function[xCount[]]= PGTT(TSC[],x)

xCount=0;

i=1;

for i=1:1:length(TSC[])

if TSC(i)> x

xCount=xCount+1;

xCount(i)=xCount/i;

else

xCount(i)=xCount/i;

end

end

return(xCount[])

end

Table B.4: PercentageLessThanThreshold function implementation in Matlab

function[xCount[]]= PLTT(TSC[],x)

xCount=0;

i=1;

for i=1:1:length(TSC[])

if TSC(i)< x

xCount=xCount+1;

xCount(i)=xCount/i;

else

xCount(i)=xCount/i;

end

end

return(xCount[])

end

241

4- PercentageLessThanThreshold: As appears in Table B.4, this function takes

the time series function’s output, TSC[], and returns the percentage of elements

whose value are less than a value x, and this at each index i of this series.

5- NumberGreaterThanThreshold: As appears in Table B.5, this function

takes the time series function’s output, TSC[], and returns the number of elements

whose value are greater than a value x, and this at each index i of this series.

Table B.5: NumberGreaterThanThreshold function implementation in Matlab

function[xCount[]]= NGTT(TSC[],x)

xCount=0;

i=1;

for i=1:1:length(TSC[])

if TSC(i)> x

xCount=xCount+1;

xCount(i)=xCount;

else

xCount(i)=xCount;

end

end

return(xCount[])

end

6- NumberLessThanThreshold: As appears in Table B.6, this function takes

the time series function’s output, TSC[], and returns the number of elements whose

value are less than a value x, and this at each index i of this series.

Table B.6: NumberLessThanThreshold function implementation in Matlab

function[xCount[]]= NLTT(TSC[],x)

xCount=0;

i=1;

for i=1:1:length(TSC[])

if TSC(i)< x

xCount=xCount+1;

xCount(i)=xCount;

else

xCount(i)=xCount;

end

end

return(xCount[])

end

242

7- Span: As appears in Table B.7, this function takes the time series function’s

output, TSC[], and returns the length of the consecutive occurrence of a value x

inside this series, and this at each index i of this series.

Table B.7: Span function implementation in Matlab

function[xCount[]]= Span(TSC[],x)

xCount=0;

i=0;

for i=length(TSC[]):-1:1

if TSC(i)= x

xCount=xCount+1;

xCount(i)=xCount;

else

xCount=0;

xCount(i)=xCount;

end

end

return(xCount[])

end

8- RateOfChange: As appears in Table B.8, this function takes the time series

function’s output, TSC[], and returns the rate at which its items are changed (the

difference between the series value at the current index and the index before, divided

by the difference between the schedule value at the current index and the index

before), and this at each index i of this series.

Table B.8: RateOfChange function implementation in Matlab

function[xCount[]]= RoC(TSC[],sch[],x)

xCount=0;

i=1;

for i=length(TSC[]):-1:1

xCount(i)=(TSC(i)-TSC(i-1))/(sch(i)-sch(i-1));

end

return(xCount[])

end

243

Appendix C

WSLA Contract of a Stock Quote

Service

The complete WSLA contract of the stock quote service used in Chapter 7 is pre-

sented in this appendix in Listing C.1.

Listing C.1: WSLA contract of stock quote service

<SLA xmlns="http://www.ibm.com/wsla"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http://www.ibm.com/wsla WSLA.xsd"

name="DemoSLA123" >

<ServiceDefinition name="DemoService">

<Schedule name="businessdayschedule">

<Period >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

</Period >

<Interval >

<Minutes >1440</Minutes >

</Interval >

</Schedule >

<Schedule name="businessdayschedule">

<Period >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

</Period >

<Interval >

<Minutes >1440</Minutes >

</Interval >

</Schedule >

<Schedule name="5minuteschedule">

<Period >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

244

</Period >

<Interval >

<Minutes >5</Minutes >

</Interval >

</Schedule >

<Schedule name="ResponseSchedule">

<Period >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

</Period >

<Interval >

<Seconds >15</Seconds >

</Interval >

</Schedule >

<Operation name="GetQuote" xsi:type="WSDLSOAPOperationDescriptionType">

<SLAParameter name="Availability_CurrentDownTime" type="long"

unit="minutes">

<Metric >CurrentDownTime </Metric >

</SLAParameter >

<SLAParameter name="OverloadPercentage" type="float"

unit="Percentage">

<Metric >OverloadPercentageMetric </Metric >

</SLAParameter >

<SLAParameter name="TransactionRate" type="float"

unit="transactions/hour">

<Metric >Transactions </Metric >

</SLAParameter >

<Metric name="CurrentDownTime" type="long" unit="minutes">

<Function xsi:type="Span" resultType="double">

<Metric >StatusTimeSeries </Metric >

<Value>

<LongScalar >0</LongScalar >

</Value>

</Function >

</Metric >

<Metric name="StatusTimeSeries" type="TS" unit="">

<Function xsi:type="TSConstructor" resultType="TS">

<Schedule >availabilityschedule </Schedule >

<Metric >MeasuredStatus </Metric >

<Window >1440</Window >

</Function >

</Metric >

<Metric name="MeasuredStatus" type="integer" unit="">

<MeasurementDirective xsi:type="StatusRequest"

resultType="integer">

<RequestURI >http: // ymeasurement.com/StatusRequest/GetQuote

</RequestURI >

245

</MeasurementDirective >

</Metric >

<Metric name="OverloadPercentageMetric" type="float" unit="Percentage">

<Function xsi:type="PercentageGreaterThanThreshold" resultType="float">

<Schedule >businessdayschedule </Schedule >

<Metric >UtilizationTimeSeries </Metric >

<Value>

<LongScalar >0.8</LongScalar >

</Value >

</Function >

</Metric >

<Metric name="UtilizationTimeSeries" type="TS" unit="">

<Function xsi:type="TSConstructor" resultType="float">

<Schedule >5minuteschedule </Schedule >

<Metric >ProbedUtilization </Metric >

<Window >12</Window >

</Function >

</Metric >

<Metric name="ProbedUtilization" type="float" unit="">

<MeasurementDirective xsi:type="Gauge" resultType="float">

<RequestURL >http: //acme.com/SystemUtil </RequestURL >

</MeasurementDirective >

</Metric >

<Metric name="Transactions" type="long" unit="transactions">

<Function xsi:type="Minus" resultType="double">

<Operand >

<Function xsi:type="TSSelect" resultType="long">

<Operand >

<Metric >SumTransactionTimeSeries </Metric >

</Operand >

<Element >0</Element >

</Function >

</Operand >

<Operand >

<Function xsi:type="TSSelect" resultType="long">

<Operand >

<Metric >SumTransactionTimeSeries </Metric >

</Operand >

<Element >-1</Element >

</Function >

</Operand >

</Function >

</Metric >

<Metric name="SumTransactionTimeSeries" type="TS" unit="transactions">

<Function xsi:type="TSConstructor" resultType="TS">

<Schedule >hourlyschedule </Schedule >

<Metric >SumTransactions </Metric >

<Window >2</Window >

</Function >

</Metric >

246

<Metric name="SumTransactions" type="long" unit="tansactions">

<MeasurementDirective xsi:type="InvocationCount" resultType="long"/>

</Metric >

<WSDLFile >DemoService.wsdl</WSDLFile >

<SOAPBindingName >SOAPNotificationBinding </SOAPBindingName >

<SOAPOperationName >getQuote </SOAPOperationName >

</Operation >

<Operation name="PrintQuote" xsi:type="WSDLSOAPOperationDescriptionType">

<SLAParameter name="MaxResponseTime" type="double"

unit="seconds">

<Metric >MaximumResponseTime </Metric >

</SLAParameter >

<Metric name="MaximumResponseTime " type="long" unit="minutes">

<Function xsi:type="Max" resultType="double">

<Metric >ResponseTimeSeries </Metric >

</Function >

</Metric >

<Metric name="ResponseTimeSeries" type="TS" unit="seconds">

<Function xsi:type="TSConstructor" resultType="TS">

<Schedule >ResponseSchedule </Schedule >

<Metric >ResponseTimeMetric </Metric >

<Window >4</Window >

</Function >

</Metric >

<Metric name="ResponseTimeMetric" type="double" unit="seconds">

<MeasurementDirective xsi:type="ResponseTime"

resultType="double">

<RequestURI >http: // ymeasurement.com/ResponseTime/PrintQuote

</RequestURI >

</MeasurementDirective >

</Metric >

<WSDLFile >PrintService.wsdl</WSDLFile >

<SOAPBindingName >SOAPNotificationBinding </SOAPBindingName >

<SOAPOperationName >PrintQuote </SOAPOperationName >

</Operation >

</ServiceDefinition >

<Obligations >

<ServiceLevelObjective name="ContinuousDowntimeSLO">

<Obliged >ACMEProvider </Obliged >

<Validity >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

</Validity >

<Expression >

<Predicate xsi:type="Less">

<SLAParameter >Availability_CurrentDownTime </SLAParameter >

<Value>10</Value>

247

</Predicate >

</Expression >

</ServiceLevelObjective >

<ServiceLevelObjective name="ConditionalSLOForTransactionRate">

<Validity >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

</Validity >

<Expression >

<Implies >

<Expression >

<Predicate xsi:type="Less">

<SLAParameter >OverloadPercentage </SLAParameter >

<Value>0.3</Value >

</Predicate >

</Expression >

<Expression >

<Predicate xsi:type="Greater">

<SLAParameter >TransactionRate </SLAParameter >

<Value>1000</Value>

</Predicate >

</Expression >

</Implies >

</Expression >

</ServiceLevelObjective >

<ServiceLevelObjective name="PrintingResponseTime">

<Validity >

<Start>2001 -11 -30 T14:00:00 .000 -05 :00</Start>

<End>2001 -12 -31 T14:00:00 .000 -05 :00</End>

</Validity >

<Expression >

<Predicate xsi:type="Less">

<SLAParameter >MaxResponseTime </SLAParameter >

<Value>15</Value>

</Predicate >

</Expression >

</ServiceLevelObjective >

</Obligations >

</SLA>

248

References

[1] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,

Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu.

Web Services Agreement Specification (WS-Agreement). Open Grid Forum,

version 2005/09 edition. xi, 2, 21, 23

[2] Katerina Goseva Popstojanova and Kishor Trivedi. Stochastic modeling for-

malisms for dependability, performance and performability. In Performance

Evaluation - Origins and Directions, Lecture Notes in Computer Science,

pages 403–422. Springer Verlag, 2000. 1, 2, 3, 32, 33, 44

[3] Michael P. Papazoglou. Service-oriented computing: concepts, characteristics

and directions. In WISE 2003. Proceedings of the Fourth International Confer-

ence on Web Information Systems Engineering, 2003, pages 3 – 12, December

2003. 1, 16

[4] Ian Foster and Carl Kesselman. Grid resource management. chapter The Grid

in a nutshell, pages 3–13. Kluwer Academic Publishers, 2004. 1

[5] Michael P. Papazoglou. Web Services: Principles and Technology. Pearson

Education Limited, 2008. 1, 18, 19

[6] Peter Mell and Timothy Grance. The NIST definition of cloud computing,

September 2011. 1

[7] J. W. Ross and G. Westerman. Preparing for utility computing: The role of

IT architecture and relationship management. IBM Systems Journal, 43(1):5

–19, 2004. 1

[8] Michael P. Papazoglou. Service-oriented computing: A research roadmap.

International Journal of Cooperative Information Systems, 17(02):223+, 2008.

1

249

REFERENCES

[9] Li jie Jin, Vijay Machiraju, and Akhil Sahai. Analysis on service level agree-

ment of web services. Technical report, HP Laboratories, 2002. 1, 2, 17

[10] Heiko Ludwig. Web services QoS: external SLAs and internal policies or:

how do we deliver what we promise? In Proceedings of the Fourth Inter-

national Conference on Web Information Systems Engineering Workshops

(WISEW03), pages 115–120, 2003. 1, 21, 73

[11] Daniel A. Menascè. QoS issues in web services. Internet Computing, IEEE,

6(6):72 – 75, nov/dec 2002. 1

[12] Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad van Moorsel, and Fabio

Casati. Automated SLA monitoring for web services. In M. Feridum,

P. Kropf, and G. Babin, editors, Management Technologies for E-Commerce

and E-Business Applications. 13th IFIP/IEEE International Workshop on

Distributed Systems: Operations and Management, volume 2506 of Lecture

Notes in Computer Science, pages 28–41. Springer Verlag, 2002. 1, 2, 28, 29

[13] Linlin Wu and Rajkumar Buyya. Service level agreement (SLA) in utility

computing systems, 2010. 2, 26

[14] Carlos Molina-Jimenez, James Pruyne, and Aad van Moorsel. The role of

agreements in IT management software. In R. de Lemos, C. Gacek, and

A. Romanovsky, editors, Architecting Dependable Systems III, volume 3549 of

Lecture Notes in Computer Science, pages 36–58. Springer Verlag, 2005. 2

[15] Rouaa Yassin Kassab and Aad van Moorsel. Formal mapping of WSLA

contracts on stochastic models. In 8th European Performance Engineering

Workshop - EPEW 2011, volume 6977 of Lecture Notes in Computer Science

(LNCS). Springer, 2011. 2, 14, 82, 174, 176

[16] Heiko Ludwig, Alexander Keller, Asit Dan, and Richard King. A service level

agreement language for dynamic electronic services. Proceedings Fourth IEEE

International Workshop on Advanced Issues of ECommerce and WebBased

Information Systems WECWIS 2002, 59(Wecwis):25–32, 2003. 2, 89

[17] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard

Franck. Web service level agreement (WSLA) language specification, 2003.

IBM Corporation. 2, 9, 20, 21, 22, 23, 68, 73, 74, 77, 81, 85, 87, 88, 89, 91,

92, 93, 94, 104, 107, 109, 176, 178, 179

250

REFERENCES

[18] D. Davide Lamanna, James Skene, and Wolfgang Emmerich. SLAng: A lan-

guage for defining service level agreements. In The Ninth IEEE Workshop on

Future Trends of Distributed Computing Systems, pages 100–106, 2003. 2, 21,

25

[19] D. Snelling, M. Fisher, and A. Basermann. An introduction to the NextGRID

vision and achievements v1.0, 2008. Fujitsu Labs Europe, The University of

Edinburgh and Members of the NextGRID Consortium. 2

[20] Philipp Masche, Paul Mckee, and Bryce Mitchell. The increasing role of ser-

vice level agreements in B2B systems. In WEBIST (2), Proceedings of the

Second International Conference on Web Information Systems and Technolo-

gies, pages 123–126, 2006. 2, 21

[21] Adrian Paschke and Elisabeth Schnappinger-Gerull. A categorization scheme

for SLA metrics. In Service Oriented Electronic Commerce, pages 25–40, 2006.

2, 18, 19, 20, 74

[22] Claus Rautenstrauch and André Scholz. Performance engineering on the basis

of performance service levels. In Performance Engineering, State of the Art

and Current Trends, pages 68–77. Springer-Verlag, 2001. 2, 27

[23] Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Waldemar Hum-

mer, Schahram Dustdar, and Frank Leymann. Preventing SLA violations in

service compositions using aspect-based fragment substitution. In ICSOC’10,

pages 365–380, 2010. 2

[24] Philipp Leitner, Branimir Wetzstein, Florian Rosenberg, Anton Michlmayr,

Schahram Dustdar, and Frank Leymann. Runtime prediction of service level

agreement violations for composite services. In Proceedings of the 2009 inter-

national conference on Service-oriented computing, ICSOC/ServiceWave’09,

pages 176–186, Berlin, Heidelberg, 2009. Springer-Verlag. 3, 27, 29, 30, 33

[25] Nicholas J. Dingle, William J. Knottenbelt, and Lei Wang. Service level

agreement specification, compliance prediction and monitoring with perfor-

mance trees. In 22nd Annual European Simulation and Modelling Conference

(ESM’08), pages 137–144, September 2008. 3, 5, 30, 56

[26] Marcelo Teixeira, Ricardo Massa, Cesar Oliveira, and Paulo Maciel. Planning

service agreements in SOA-based systems through stochastic models. In Pro-

251

REFERENCES

ceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages

1576–1581, New York, NY, USA, 2011. ACM. 3, 33, 34, 65

[27] L.J.N. Franken and B.R. Haverkort. The performability manager. Network,

IEEE, 8(1):24 –32, jan/feb 1994. 4

[28] Tamas Suto, Jeremy T.Bradley, and William J.Knottenbelt. Performance

trees: A new approach to quantitative performance specification. In in Proc.

14th IEEE/ACM Intl. Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunications Systems (MASCOTS 2006, pages 303–313,

2006. 4, 38, 45, 46

[29] Armin Zimmermann. Stochastic Discrete Event Systems: Modeling, Evalua-

tion, Applications. Springer-Verlag New York, Inc., 2007. 9, 38, 39, 68, 106

[30] M. Ajmone Marsan. Stochastic Petri Nets: An elementary introduction. In

In Advances in Petri Nets, pages 1–29. Springer, 1989. 9, 36, 37, 39, 40, 70

[31] Gianfranco Ciardo, Jogesh K. Muppala, and Kishor S. Trivedi. SPNP: Stochas-

tic Petri Net Package. In PNPM89. Proceedings of the Third International

Workshop On Petri Nets and Performance Models, 1989, Kyoto, Japan, pages

142–151. IEEE Computer Society Press, 1990. 9, 42, 43, 52

[32] William H. Sanders. Möbius User Manual, Version 2.3.1. University of Illinois,

May 2010. 9, 47, 48, 49, 132, 145

[33] Tobias Unger, Frank Leymann, Stephanie Mauchart, and Thorsten Scheibler.

Aggregation of service level agreements in the context of business processes.

In 2008 12th International IEEE Enterprise Distributed Object Computing

Conference, pages 43–52. IEEE, September 2008. 10, 84

[34] Rouaa Yassin Kassab and Aad van Moorsel. Mapping WSLA on reward con-

structs in Möbius. In 24th UK Performance Engineering Workshop, pages

137–147, 2008. 13, 22, 23, 124

[35] Simon Edward Parkin, Rouaa Yassin Kassab, and Aad P. A. van Moorsel. The

impact of unavailability on the effectiveness of enterprise information security

technologies. In ISAS’08, pages 43–58, 2008. 14

[36] M.N. Huhns and M.P. Singh. Service-oriented computing: key concepts and

principles. Internet Computing, IEEE, 9(1):75 – 81, jan-feb 2005. 16

252

REFERENCES

[37] Heather Kreger. Web Services Conceptual Architecture (WSCA 1.0), 2001.

16, 17

[38] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal

Mukhi, and Sanjiva Weerawarana. Unraveling the web services web: An in-

troduction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6:86–93,

March 2002. 17

[39] Zhen Liu, Mark S. Squillante, and Joel L. Wolf. On maximizing service-

level-agreement profits. In EC ’01: Proceedings of the 3rd ACM conference on

Electronic Commerce, pages 213–223, New York, NY, USA, 2001. ACM Press.

17

[40] Emmanuel Marilly, Olivier Martinot, Stéphane Betgé-Brezetz, and Gérard

Delégue. Requirements for service level agreement management, 2002. IP

Operations and Management, 2002 IEEE Workshop. 17

[41] K. Fakhfakh, T. Chaari, S. Tazi, K. Drira, and M. Jmaiel. Semantic enabled

framework for SLA monitoring. International Journal on Advances in Soft-

ware, 2(1):36–34, 2009. 17, 100

[42] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa

Villani. An approach for QoS-aware service composition based on genetic

algorithms. In Proceedings of the 2005 conference on Genetic and evolutionary

computation, GECCO ’05, pages 1069–1075, 2005. 18

[43] Justin O’Sullivan, David Edmond, and Arthur H. M. ter Hofstede. Formal

description of non-functional service properties, 2005. 18

[44] Kyriakos Kritikos and Dimitris Plexousakis. Requirements for QoS-based web

service description and discovery. IEEE Transactions on Services Computing,

2:320–337, 2009. 18, 77, 90, 100

[45] Andrew N. Hiles. Service level agreements: Panacea or pain? The TQM

Magazine, 6(2):14–16, 1994. 18, 19, 74

[46] M. Sathya, M. Swarnamugi, P. Dhavachelvan, and G. Sureshkumar. Evalu-

ation of QoS based web- service selection techniques for service composition.

International Journal of Software Engineering (IJSE), 1:7390, 2010. 18

[47] H. J. Lee, M. S. Kim, J. W. Hong, and G. H. Lee. QoS parameters to network

performance metrics mapping for SLA monitoring. 2002. 19, 34

253

REFERENCES

[48] Katinka Wolter and Aad van Moorsel. The relationship between quality of

service and business metrics: Monitoring, notification and optimization. Tech-

nical Report HPL-2001-96, HP Laboratories Palo Alto, April 2001. 19

[49] Christian N. Madu and Assumpta A. Madu. Dimensions of e-quality. Inter-

national Journal of Quality & Reliability Management, 19(3):246–258, 2002.

19

[50] Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for

web services, January 2002. IBM DeveloperWorks. 19

[51] Kuyoro Shade O., Awodele O., Akinde Ronke O., and Okolie Samuel O. qual-

ity of service (Qos) issues in web service. IJCSNS International Journal of

Computer Science and Network Security, 12(1):94–97, Janyary 2012. 19

[52] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service: A

neural network-based solution. In Systems, Man and Cybernetics, 2009. SMC

2009. IEEE International Conference on, pages 4250 –4255, oct. 2009. 19

[53] Aad van Moorsel. Metrics for the internet age: Quality of experience and

quality of business. Technical report, 5th Performability Workshop, 2001. 20

[54] Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and

monitoring service level agreements for web services. Network and Systems

Management, 11(1):57–81, March 2003. 21, 22, 29, 89

[55] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. Precise service

level agreements. In In: Proc. of 26th Intl. Conference on Software Engineering

(ICSE), pages 179–188. IEEE Press, 2004. 23, 25

[56] Philip Bianco, Grace A. Lewis, and Paulo Merson. Service level agreements

in service-oriented architecture environments. Technical Report CMU/SEI-

2008-TN-021, Software Engineering Institute, September 2008. 24

[57] Paul Käranke and Stefan Kirn. Service level agreements: An evaluation from

a business application perspective, 1988. 24

[58] Nicole Oldham, Kunal Verma, Amit Sheth, and Farshad Hakimpour. Seman-

tic ws-agreement partner selection. In Proceedings of the 15th international

conference on World Wide Web, WWW ’06, pages 697–706. ACM, 2006. 24,

202

254

REFERENCES

[59] Akhil Sahai, Anna Durante, and Vijay Machiraju. Towards automated SLA

management for web services. Technical Report HPL-2001-310 (R.1), HP

Laboratories Palo Alt, 2002. 26

[60] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S. Yu.

Utility computing SLA management based upon business objectives. IBM

Syst. J., 43:159–178, January 2004. 27

[61] Christoph Rathfelder, Benjamin Klatt, Franz Brosch, and Samuel Kounev.

Performance modeling for quality of service prediction in service-oriented sys-

tems. In Stephan Reiff-Marganiec and Marcel Tilly, editors, Handbook of

Research on Service-Oriented Systems and Non-Functional Properties: Future

Directions, pages 258–79. Hershey: IGI Global, 2012. 27

[62] Claudio Bartolini, Abdel Boulmakou, Athena Christodoulou, Andrew Farrell,

Mathias Sall, and David Trastour. Management by contract: It management

driven by business objectives. In in Proceedings of the 11th Workshop of the

HP OpenView University Association (HPOVUA 2004, 2004. 27

[63] C. Bartolini, M. Salle, and D. Trastour. It service management driven by busi-

ness objectives an application to incident management. In Network Operations

and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 45

–55, april 2006. 27

[64] Jacques Sauv, Filipe Marques, Anto Moura, Marcus Sampaio, Joo Jornada,

and Eduardo Radziuk. SLA design from a business perspective. In In Pro-

ceedings of DSOM 2005. Springer, 2005. 28

[65] R. Nou and J. Torres. Heterogeneous QoS resource manager with prediction.

In Autonomic and Autonomous Systems, 2009. ICAS ’09. Fifth International

Conference on, pages 69 –74, april 2009. 28

[66] Katja Gilly, Nigel Thomas, Carlos Juiz, and Ramon Puigjaner. Scalable QoS

content-aware load balancing algorithm for a web switch based on classical

policies. Advanced Information Networking and Applications, International

Conference on, pages 934–941, 2008. 28

[67] Davide Lorenzoli and George Spanoudakis. Runtime prediction. In Philipp

Wieder, Joe M. Butler, Wolfgang Theilmann, and Ramin Yahyapour, editors,

Service Level Agreements for Cloud Computing, pages 139–152. Springer New

York, 2011. 28

255

REFERENCES

[68] Davide Lorenzoli and George Spanoudakis. EVEREST+: run-time SLA viola-

tions prediction. In Proceedings of the 5th International Workshop on Middle-

ware for Service Oriented Computing, MW4SOC ’10, pages 13–18, New York,

NY, USA, 2010. ACM. 28

[69] Ernst Oberortner, Stefan Sobernig, Uwe Zdun, and Schahram Dustdar. Mon-

itoring of performance-related QoS properties in service-oriented systems: A

pattern-based architectural decision model. In Proceedings of the 16th Euro-

pean Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Ger-

many, July 2011. 28, 29

[70] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping

performance and dependability attributes ofweb services. In Proceedings of the

IEEE International Conference on Web Services, ICWS ’06, pages 205–212,

Washington, DC, USA, 2006. IEEE Computer Society. 28

[71] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dust-

dar. Comprehensive QoS monitoring of web services and event-based SLA

violation detection. In Proceedings of the 4th International Workshop on Mid-

dleware for Service Oriented Computing, MWSOC ’09, pages 1–6, New York,

NY, USA, 2009. ACM. 28, 29

[72] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour. Establishing

and monitoring SLAs in complex service based systems. In Web Services,

2009. ICWS 2009. IEEE International Conference on, pages 783 –790, july

2009. 29

[73] Chris Smith. Uncertainty In Service Provisioning Relationships. PhD thesis,

Newcastle University. 30

[74] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. Monitoring, predic-

tion and prevention of SLA violations in composite services. In Web Services

(ICWS), 2010 IEEE International Conference on, pages 369 –376, july 2010.

30

[75] Ashok Argent-katwala and Jeremy T. Bradley. Functional performance speci-

fication with stochastic probes. In Formal Methods and Stochastic Models for

Performance Evaluation: Third European Performance Engineering Workshop

(EPEW 2006). Number 4054 in LNCS, Springer-Verlag, pages 31–46, 2006.

30, 31

256

REFERENCES

[76] Richard A. Hayden, Jeremy T. Bradley, and Allan Clark. Performance specifi-

cation and evaluation with unified stochastic probes and fluid analysis. IEEE

Transactions on Software Engineering, 39(1):97–118, 2013. 30

[77] Samuel Kounev, Fabian Brosig, Nikolaus Huber, and Ralf Reussner. Towards

self-aware performance and resource management in modern service-oriented

systems. In Services Computing (SCC), 2010 IEEE International Conference

on, pages 621 –624, july 2010. 32

[78] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based perfor-

mance prediction in software development: a survey. Software Engineering,

IEEE Transactions on, 30(5):295 – 310, may 2004. 32, 33, 35, 224

[79] Daniel A. Menascé, Daniel Barbará, and Ronald Dodge. Preserving QoS of

e-commerce sites through self-tuning: a performance model approach. In Pro-

ceedings of the 3rd ACM conference on Electronic Commerce, EC ’01, pages

224–234, New York, NY, USA, 2001. ACM. 33

[80] Marcelo Teixeira and Pablo Sabadin Chaves. Planning databases service level

agreements through stochastic Petri Nets. JIDM, 2(3):369–384, 2011. 34

[81] Giovanni Pacifici, Mike Spreitzer, Asser Tantawi, and Alaa Youssef. Perfor-

mance management for cluster based web services. Technical report, IEEE

Journal on Selected Areas in Communications, Volume 23, Issue, 2003. 34

[82] Markus Debusmann, Kurt Geihs, and Reinhold Kroeger. Unifying service level

management using an MDA-based approach. In Raouf Boutaba and Seong B.

Kim, editors, Proceedings of the 9-th International IFIP/IEEE Network Op-

erations and Management Symposium (NOMS 2004), pages 801–814. IEEE,

2004. 34

[83] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J.S. Freie. A concept

for QoS integration in web services. In Web Information Systems Engineering

Workshops, 2003. Proceedings. Fourth International Conference on, pages 149

– 155, dec. 2003. 34

[84] Dorin B. Petriu and Murray Woodside. A metamodel for generating perfor-

mance models from UML designs. In Lecture Notes in Computer Science:

The Unified Modelling Language: Modelling Languages and Applications. 7th

International Conference, Lisbon, Portugal, October 11-15, 2004 / Thomas

257

REFERENCES

Baar, Alfred Strohmeier, Ana Moreira, et al. (Eds.), volume 3273, pages 41–

53. Springer-Verlag, 2004. 35

[85] Object Management Group. Uml profile for schedulability, performance, and

time specification, 2002. OMG Adopted Specification ptc/02-03-02. 35

[86] Ihab Sbeity, Leonardo Brenner, and Mohamed Dbouk. Generating a perfor-

mance stochastic model from UML specifications. IJCSI International Journal

of Computer Science Issues, 8:13–21, 2011. 35

[87] Rob Pooley. Using UML to derive stochastic process algebra models. In PROC.

of XV UK Performance Engineering Workshop, pages 23–33. 1999. 35

[88] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the gap

between design and performance/reliability models of component-based sys-

tems: A model-driven approach. J. Syst. Softw., 80:528–558, April 2007. 35

[89] Vincenzo Grassi, Raffaela Mirandola, Enrico Randazzo, and Antonino Sa-

betta. KLAPER: An intermediate language for model-driven predictive anal-

ysis of performance and reliability. In The Common Component Modeling

Example, volume 5153 of Lecture Notes in Computer Science, pages 327–356.

Springer Berlin / Heidelberg, 2008. 36

[90] Gordon P. Gu and Dorina C. Petriu. From UML to LQN by XML algebra-

based model transformations. In Proceedings of the 5th international workshop

on Software and performance, WOSP ’05, pages 99–110, New York, NY, USA,

2005. ACM. 36

[91] Isi Mitrani. Probabilistic Modelling. Cambridge University Press, 1998. 36, 37

[92] U. Narayan Bhat and Gregory K. Miller. Elements of Applied Stochastic Pro-

cesses. Wiley-Interscience, 3 edition, 2002. 37

[93] Boudewijn R. Haverkort. Performance of Computer Communication Systems:

A Model- Based Approach. John Wiley & Sons, Inc., New York, NY, USA,

1998. 37

[94] Muhammad A. Qureshi and William H. Sanders. Reward model solution

methods with impulse and rate rewards: An algorithm and numerical results.

38, 44, 46, 47

258

REFERENCES

[95] Tamas Suto, Jeremy T. Bradley, and William J. Knottenbelt. Performance

trees: Expressiveness and quantitative semantics. In QEST’07, 4th Interna-

tional Conference on the Quantitative Evaluation of Systems, pages 41–50.

IEEE Computer Society, 2007. 38, 45, 51

[96] H̊akan L. S. Younes and Reid G. Simmons. Statistical probabilistic model

checking with a focus on time-bounded properties. Inf. Comput., 204(9):1368–

1409, September 2006. 38

[97] William H. Sanders and John F. Meyer. A unified approach for specifying

measures of performance, dependability, and performability. Dependable Com-

puting and Fault-Tolerant Systems: Dependable Computing for Critical Appli-

cations, 4:215–237, 1991. 39, 42, 47, 106, 109

[98] Marco Ajmone Marsan and Gianni Conte. A class of generalized stochastic

Petri Nets for the performance evaluation of multiprocessor systems. ACM

Transactions on Computer Systems, 2:93–122, 1984. 39, 40

[99] Muhammad A. Qureshi, William H. Sanders, Aad P. A. van Moorsel, and

Reinhard German. Algorithms for the generation of state-level representations

of stochastic activity networks with general reward structures. In IEEE Trans-

actions on Software Engineering, pages 180–190. IEEE Comp. Soc. Press,

1995. 40

[100] Giovanni Chiola, Marco Ajmone Marsan, Gianfranco Balbo, and Gianni

Conte. Generalized stochastic Petri Nets: A definition at the net level and its

implications. IEEE Transactions on Software Engineering, 19:89–107, 1993.

41

[101] Willaim H. Sanders and John F. Meyer. Stochastic activity networks: formal

definitions and concepts, 2001. Springer Lectures On Formal Methods And

Performance Analysis. 41

[102] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem De-

risavi, Jay M. Doyle, William H. Sanders, and Patrick G. Webster. The Möbius

framework and its implementation. IEEE Trans. Softw. Eng., 28(10):956–969,

2002. 41, 49, 50

[103] Mohammad Abdollahi Azgomi and Ali Movaghar. Application of stochastic

activity networks on network modeling. In The 10th International Conference

on Software, Telecommunications and Computer Networks (SoftCOM’02).

259

REFERENCES

Faculty of Electrical Engineering, Mechanical Engineering and Naval Archi-

tecture, Split, CROATIE, 2002. 42

[104] Jogesh K. Muppala, Gianfranco Ciardo, and Kishor S. Trivedi. Stochastic re-

ward nets for reliability prediction. In Communications in Reliability, Main-

tainability and Serviceability, pages 9–20, 1994. 42, 43

[105] Razib Hayat Khan and Poul E. Heegaard. Derivation of stochastic reward

net (SRN) from UML specification considering cost efficient deployment man-

agement of collaborative service components. International Journal on New

Computer Architectures and Their Applications (IJNCAA), 2011. 43

[106] Robin A. Sahner, Kishor S. Trivedi, and Antonio Puliafito. Performance and

reliability analysis of computer systems: an example-based approach using the

SHARPE software package. Kluwer Academic Publishers, Norwell, MA, USA,

1996. 43, 52

[107] J. F. Meyer. On evaluating the performability of degradable computing sys-

tems. IEEE Transactions on Computing, 29(8):720–731, August 1980. 44

[108] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying

continuous time markov chains. In CAV ’96: Proceedings of the 8th Interna-

tional Conference on Computer Aided Verification, pages 269–276. Springer-

Verlag, 1996. 45

[109] Boudewijn R. Haverkort, Lucia Cloth, Holger Hermanns, and Joost-Pieter

Katoen. Model checking performability properties. In DSN ’02: Proceedings

of the 2002 International Conference on Dependable Systems and Networks,

pages 103–112. IEEE Computer Society, 2002. 45

[110] Nicholas J. Dingle, William J. Knottenbelt, and Tamas Suto. PIPE2: a tool for

the performance evaluation of generalised stochastic Petri Nets. SIGMETRICS

Perform. Eval. Rev., 36(4):34–39, March 2009. 46, 51

[111] Tamas Suto. Performance Trees: A Query Specification Formalism For Quan-

titative Performance Analysis. PhD thesis, University of London, Imperial

College London, Department of Computing. 46

[112] Kishor S. Trivedi, Gianfranco Ciardo, Manish Malhotra, and Robin A. Sah-

ner. Dependability and performability analysis. In Performance Evaluation of

Computer and Communication Systems, Joint Tutorial Papers of Performance

’93 and Sigmetrics ’93, pages 587–612. Springer-Verlag, 1993. 47

260

REFERENCES

[113] B. Tuffin, P. K. Choudhary, C. Hirel, and K. S. Trivedi. Simulation ver-

sus analytic-numeric methods: illustrative examples. In Proceedings of the

2nd international conference on Performance evaluation methodologies and

tools, ValueTools ’07, pages 63:1–63:10. ICST (Institute for Computer Sci-

ences, Social-Informatics and Telecommunications Engineering), 2007. 48, 52

[114] William H. Sanders. Simulation basics, 2002. http://www.ece.virginia.

edu/~mv/edu/prob/stat/simulation-tips-from-uiuc.pdf. 48, 150

[115] David Daly, Daniel D. Deavours, Jay M. Doyle, Patrick G. Webster, and

William H. Sanders. Möbius: An extensible tool for performance and de-

pendability modeling. In TOOLS ’00: Proceedings of the 11th International

Conference on Computer Performance Evaluation: Modelling Techniques and

Tools, pages 332–336. Springer-Verlag, 2000. 49, 50

[116] Kishor S. Trivedi. SPNP Users Manual, version 6.0 ed. Duke University, 1999.

51

[117] Darren K. Brien, Nicholas J. Dingle, William J. Knottenbelt, Harini Ku-

latunga, and Tamas Suto. Performance trees: Implementation and distributed

evaluation. In PDMC’08, 7th International Workshop on Parallel and Dis-

tributed Methods in Verification. Elsevier Sciencey, March 2008. 51

[118] Boudewijn R. Haverkort and Ignas G. Niemegeers. Performability modelling

tools and techniques. Perf. Ev, 25:17–40, 1996. 52

[119] Performance Evaluation group. GreatSPN Users Manual, version 2.0.2. De-

partment of Computer Science, University of Torino, 2001. 52

[120] Boudewijn Haverkort and Kishor Trivedi. Specification techniques for

Markov reward models. Discrete Event Dynamic Systems, 3:219–247, 1993.

10.1007/BF01439850. 52

[121] Kishor Trivedi, Boudewijn Haverkort, Andy Rindos, and Varsha Mainkar.

Techniques and tools for reliability and performance evaluation: Problems

and perspectives. In Günter Haring and Gabriele Kotsis, editors, Computer

Performance Evaluation Modelling Techniques and Tools, volume 794 of Lec-

ture Notes in Computer Science, pages 1–24. Springer Berlin / Heidelberg,

1994. 52

261

 http://www.ece.virginia.edu/~mv/edu/prob/stat/simulation-tips-from-uiuc.pdf
 http://www.ece.virginia.edu/~mv/edu/prob/stat/simulation-tips-from-uiuc.pdf

REFERENCES

[122] Soheib Baarir, Marco Beccuti, Davide Cerotti, Massimiliano De Pierro, Su-

sanna Donatelli, and Giuliana Franceschinis. The GreatSPN tool: recent en-

hancements. SIGMETRICS Perform. Eval. Rev., 36(4):4–9, March 2009. 52

[123] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndezd, Michael

Kay, Jonathan Robie, and Jerome Simon. XML path language (XPath) 2.0.

Technical report, World Wide Web Consortium, January 2007. 79

[124] Altova XMLSpy, v2011r3 enterprise edition. www.altova.com, 2011. 81

[125] Daniel A. Menasce. Composing web services: a QoS view. Internet Computing,

IEEE, 8(6):80 –90, nov.-dec. 2004. 90

[126] Shuping Ran. A model for web services discovery with QoS. ACM SIGecom

Exchanges, 4:1–10, 2003. 91, 92, 94

[127] Mohamad Ibrahim Ladan. Web services metrics: A survey and a classifica-

tion. In 2011 International Conference on Network and Electronics Engineer-

ing IPCSIT, volume 11, 2011. 92

[128] Soila Pertet and Priya Narasimhan. Causes of failure in web applications.

Technical Report CMU-PDL-05-109, Carnegie Mellon University, Dec 2005.

92

[129] I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, and M.E. Anagnostou. A

QoS ontology language for web-services. In Advanced Information Network-

ing and Applications, 2006. AINA 2006. 20th International Conference on,

volume 1, page 6 pp., april 2006. 93

[130] Web services quality factors version 1.0, July 2011. OASIS Committee Speci-

fication 01. 94

[131] Vladimir Tosic, Bernard Pagurek, and Kruti Patel. WSOL - a language for

the formal specification of various constraints and classes of service for web

services. Technical report, in the international conference on web services,

ICWS03, 2002. 99

[132] Hao Wu and Hai Jin. Specifying web service agreement with OWL. In Next

Generation Web Services Practices, 2005. NWeSP 2005. International Con-

ference on, pages 109 – 114, aug. 2005. 100

262

www.altova.com

REFERENCES

[133] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ

and RDF to OWL: The making of a web ontology language. Journal of Web

Semantics, 1:2003, 2003. 100

[134] Kyriakos Kritikos and Dimitris Plexousakis. Semantic QoS metric matching.

In Proceedings of the European Conference on Web Services, ECOWS ’06,

pages 265–274, Washington, DC, USA, 2006. IEEE Computer Society. 100

[135] Kyriakos Kritikos and Dimitris Plexousakis. Service-oriented computing -

icsoc 2007 workshops. chapter A Semantic QoS-Based Web Service Discovery

Engine for Over-Constrained QoS Demands, pages 151–164. Springer-Verlag,

Berlin, Heidelberg, 2009. 100

[136] Charles Miller Grinstead and James Laurie Snell. Introduction to probability.

American Mathematical Society, 1997. 116

[137] Rouaa Yassin Kassab and Aad van Moorsel. Predicting compliance of WSLA

contracts using automated model creation. School of Computing Science Tech-

nical Report Series 1204, School of Computing Science, Newcastle University,

June 2010. 124, 172

[138] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of soft-

ware architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, October 1992.

128, 129, 148

[139] Lihua Xu, Hadar Ziv, and Debra Richardson. Towards modeling nonfunctional

requirements in software architecture. In In Proceedings of Aspect-Oriented

Software Design, Workshop on Aspect Oriented Requirements Engineering and

Architecture Design, 2005. 129

[140] Lawrence Chung and Julio do Prado Leite. On non-functional requirements in

software engineering. In Alexander Borgida, Vinay Chaudhri, Paolo Giorgini,

and Eric Yu, editors, Conceptual Modeling: Foundations and Applications,

volume 5600 of Lecture Notes in Computer Science, pages 363–379. Springer

Berlin / Heidelberg, 2009. 129

[141] Sun Microsystems. Java, 2012. http://www.java.com. 130, 148

[142] R.M. Smith, K.S. Trivedi, and A.V. Ramesh. Performability analysis: mea-

sures, an algorithm, and a case study. Computers, IEEE Transactions on,

37(4):406 –417, apr 1988. 144

263

 http://www.java.com

REFERENCES

[143] Ali Khalili, Amir Jalaly Bidgoly, and Mohammad Abdollahi Azgomi.

PDETool: A multi-formalism modeling tool for discrete-event systems based

on SDES description. In Giuliana Franceschinis and Karsten Wolf, editors,

Applications and Theory of Petri Nets, volume 5606 of Lecture Notes in Com-

puter Science, pages 343–352. Springer Berlin / Heidelberg, 2009. 146

[144] Eclipse Foundation. Eclipse classic 3.7.2, 2012. http://www.eclipse.org/.

148

[145] Sun Microsystems. A Swing architecture overview, 2012. http://java.sun.

com/products/jfc/tsc/articles/architecture/. 148

[146] Gianfranco Ciardo, Jogesh K. Muppala, and Kishor S. Trivedi. Analyzing

concurrent and fault-tolerant software using stochastic reward nets. Journal

of Parallel and Distributed Computing, 15:255–269, 1992. 151

[147] Pere Bonet, Catalina M Llad, Ramon Puigjaner, and William J Knottenbelt.

PIPE v2.5 : a Petri Net tool for performance modeling. Proceedings of the

23rd Latin American Conference on Informatics, 2007. 152

[148] Performance and Dependability Engineering Lab (PDE Lab) Computer Fac-

ulty, Iran University of Science and Technology. SimGine version 1.0., 2009.

155

[149] MathWorks. MATLAB: The language of technical computing, 2012. http:

//www.mathworks.co.uk/products/matlab/. 159

[150] OpenMath Society. OpenMath, 2012. www.openmath.org/. 159

[151] Sally L. Bond, Sally E. Boyd, Kathleen A. Rapp, Jacqueline B. Raphael, and

Beverly A. Sizemore. Taking stock: A practical guide to evaluating your own

programs, 1997. 176

[152] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-

awarana. Web services description language (WSDL) 1.1, 15 March 2001.

IBM, Microsoft, Ariba. 179

[153] Muhammad Asif Javed. Petri Net modeling of web services. Master thesis,

Faculty of the Graduate College of the Oklahoma state University. 185, 194,

195

264

 http://www.eclipse.org/
 http://java.sun.com/products/jfc/tsc/articles/architecture/
 http://java.sun.com/products/jfc/tsc/articles/architecture/
 http://www.mathworks.co.uk/products/matlab/
 http://www.mathworks.co.uk/products/matlab/
 www.openmath.org/

REFERENCES

[154] IBM. Stockquote.wsdl, 2012. http://pic.dhe.ibm.com/infocenter/

ratdevz/v7r6/index.jsp?topic=/com.ibm.etools.est.doc/concepts/

csfprj002.html. 186

[155] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Johannes Klein, Frank

Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trick-

ovic, and Sanjiva Weerawarana. Business process execution language for web

services version 1.1, May 2003. 194

[156] Frank Leymann. Web services flow language (WSFL 1.0), May 2001. 194

[157] Johnson P Thomas, Mathews Thomas, and George Ghinea. Modeling of web

services flow. In E-Commerce, 2003. CEC 2003. IEEE International Confer-

ence on, pages 391 – 398, june 2003. 194

[158] Zhangxi Tan, Chuang Lin, Hao Yin, Ye Hong, and Guangxi Zhu. Approximate

performance analysis of web services flow using stochastic Petri Net. In In

GCC, 2004. 194

[159] Ward Whitt. Open and closed models for networks of queues. AT&T Bell

Laboratories Technical Journal, 63(9):1911–1979, 1984. 225

265

 http://pic.dhe.ibm.com/infocenter/ratdevz/v7r6/index.jsp?topic=/com.ibm.etools.est.doc/concepts/csfprj002.html
 http://pic.dhe.ibm.com/infocenter/ratdevz/v7r6/index.jsp?topic=/com.ibm.etools.est.doc/concepts/csfprj002.html
 http://pic.dhe.ibm.com/infocenter/ratdevz/v7r6/index.jsp?topic=/com.ibm.etools.est.doc/concepts/csfprj002.html

	1 Introduction
	1.1 Background and Motivation
	1.2 Research Problem
	1.3 Research Hypothesis and Questions
	1.4 Research Aim, Objectives and Challenges
	1.5 Research Approach
	1.6 Contributions of the Thesis
	1.7 Thesis Outline
	1.8 Publication History

	2 Background and Literature Review
	2.1 Service Oriented Computing and Web Services
	2.2 Service Level Agreement
	2.2.1 QoS Metrics Related to an SLA and their Categorisation
	2.2.2 SLA Specification Languages
	2.2.2.1 Web Service Level Agreement (WSLA)
	2.2.2.2 Web Service Agreement Specification (WS-Agreement)
	2.2.2.3 Service Level Agreement Language (SLAng)
	2.2.2.4 Comparison of SLA Languages

	2.3 SLA Compliance Management
	2.3.1 What is SLA Management?
	2.3.2 The Motivation for SLA Compliance Management
	2.3.3 Where is SLA Compliance Management Conducted?
	2.3.4 Types of SLA Compliance Management

	2.4 Areas Related to SLA Compliance Prediction
	2.4.1 Using Stochastic Probes for Performance Queries Specification and Evaluation
	2.4.2 Model-Based Evaluation
	2.4.2.1 Why Use Model-Based Evaluation?
	2.4.2.2 Using Model-Based Evaluation in Predicting SLA Compliance

	2.4.3 Mapping between Source and Target Formalisms
	2.4.4 Transferring a Design-Oriented Model to an Analysis-Oriented Model

	2.5 Stochastic Modelling Formalisms
	2.5.1 Stochastic Discrete Event System (SDES)
	2.5.2 Stochastic Petri Nets
	2.5.2.1 Stochastic Activity Network
	2.5.2.2 Stochastic Reward Network

	2.6 Performance, Dependability, and Performability Models
	2.6.1 Attributes of a Model with their Classifications
	2.6.2 Reward Models
	2.6.3 Methods of Model Analysis
	2.6.3.1 Numerical Solver
	2.6.3.2 Simulation

	2.6.4 Software Tools for Building and Solving Models
	2.6.4.1 Möbius
	2.6.4.2 SPNP
	2.6.4.3 PIPE
	2.6.4.4 SHARPE
	2.6.4.5 GreatSPN

	2.7 Conclusion

	3 SlaCP Methodology for SLA Compliance Prediction
	3.1 SlaCP Methodology: Preliminary Information
	3.1.1 The Targeted Users of the Methodology
	3.1.2 Requirements of the Methodology
	3.1.3 Characteristics of the Methodology
	3.1.4 Assumptions of the Methodology

	3.2 SlaCP Methodology
	3.2.1 The Design of the SlaCP Methodology
	3.2.2 User's Perspective of the Methodology
	3.2.3 Tool Designer's Perspective

	3.3 SlaCP Implementation for WSLA Contracts and SDES Models
	3.3.1 WslaCP Methodology: An Implementation of the SlaCP Methodology
	3.3.2 WslaCP Tool: An Implementation of the SlaCP Tool

	3.4 Conclusion

	4 A Formal Representation of WSLA
	4.1 Introduction
	4.2 Representation Requirements
	4.3 Representation Foundation
	4.3.1 WSLA Elements and their Relationships
	4.3.1.1 WSLA Prediction-Related Elements
	4.3.1.2 WSLA Non-Prediction Related Elements

	4.3.2 XPath Location for WSLA elements

	4.4 Formal Representation of WSLA Elements
	4.4.1 Service Level Objective
	4.4.1.1 Service Level Objective with a Simple Expression
	4.4.1.2 Service Level Objective with Nested Expressions

	4.4.2 SLAParameter
	4.4.3 Measurement Directives
	4.4.4 Schedules
	4.4.5 Functions
	4.4.6 Formal Representation of the Common Order of WSLA Elements to Define an SLAParameter

	4.5 Defining the Monitoring Semantics of WSLA Elements
	4.5.1 The Semantics of Measurement Directives
	4.5.2 Mathematical Definition of WSLA Function Semantics

	4.6 Related Work
	4.7 Conclusion

	5 Formal Mapping of WSLA Contracts on SDES Models
	5.1 Outline of the Mapping Process
	5.2 The Detailed Mapping: Adding Stochastic Semantics to WSLA
	5.2.1 Service Operation Mapping
	5.2.2 MeasurementDirective(s) Mapping
	5.2.2.1 StatusRequest and Status
	5.2.2.2 InvocationCount
	5.2.2.3 Gauge
	5.2.2.4 Counter
	5.2.2.5 ResponseTime
	5.2.2.6 DownTime

	5.2.3 Schedule Mapping
	5.2.4 Function(s) Mapping
	5.2.5 SLO Threshold Mapping

	5.3 Discussion
	5.4 Conclusion

	6 A Software Tool Architecture for SLA Compliance Prediction
	6.1 Introduction
	6.2 Tool Architecture and Design
	6.2.1 Tool Architecture Requirements
	6.2.1.1 Functional requirements
	6.2.1.2 Non-functional requirements

	6.2.2 Architectural Assumptions
	6.2.3 The Tool's Architectural Components and their Design
	6.2.3.1 Metric Specification Engine (MS Engine)
	6.2.3.2 Translator Engine (TS Engine)
	6.2.3.3 Result Computation and Comparison Engine (RCC Engine)
	6.2.3.4 The Modeller and Solver Engines

	6.2.4 Discussion: Alternative Design of the SlaCP Tool

	6.3 Implementation
	6.3.1 Tool Implementation Requirements
	6.3.2 The Implementation of the Plugged-in Tool
	6.3.2.1 Implementation Requirements of the Plugged-in Tool
	6.3.2.2 The Chosen Modelling Tool

	6.3.3 MS Engine Implementation
	6.3.3.1 SDESsch Schema for Expressing the SLA-Model File
	6.3.3.2 Matlab for Expressing the Functions File

	6.3.4 TS Engine Implementation
	6.3.4.1 The In-Out Translator Implementation
	6.3.4.2 The Out-In Translator Implementation
	6.3.4.3 The Inner Translator Implementation

	6.3.5 Implementation of the RCC Engine

	6.4 Discussion
	6.5 Conclusion

	7 A Case-Study Based Methodology Evaluation
	7.1 Introduction
	7.2 The Case Study
	7.2.1 Service Description
	7.2.2 WSLA Contract of the Stock Quote Service
	7.2.2.1 An SLO with Simple Expression: GetQuote Availability
	7.2.2.2 An SLO with Nested Expressions: GetQuote Transaction Rate
	7.2.2.3 An SLO with Hard-to-Evaluate Measurement: PrintQuote Response Time

	7.2.3 The WSDL File of the Stock Quote Service

	7.3 Evaluation of the WslaCP Methodology
	7.3.1 Automatic Model Creation
	7.3.1.1 Looking for the Evidence
	7.3.1.2 Interpreting the Evidence
	7.3.1.3 Using a WSDL File in Building the Service Model

	7.3.2 Methodology's Applicability
	7.3.2.1 Looking for the Evidence
	7.3.2.2 Interpreting the Evidence

	7.3.3 Methodology's Generality
	7.3.3.1 Looking for the Evidence
	7.3.3.2 Interpreting the Evidence

	7.3.4 User Support
	7.3.4.1 Looking for the Evidence
	7.3.4.2 Interpreting the Evidence

	7.4 Evaluation of the WslaCP Tool
	7.4.1 Tool's Applicability
	7.4.1.1 Looking for the Evidence
	7.4.1.2 Interpreting the Evidence

	7.4.2 User Support

	7.5 Conclusion

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Reflections on Research Outcomes
	8.2.1 The First Research Question
	8.2.2 The Second Research Question
	8.2.3 Overall Reflection

	8.3 Future Work

	A SDES Schema, SDESSch
	A.1 State Variables
	A.2 Actions
	A.3 Reward Variables
	A.3.1 The Rate Reward Function
	A.3.2 The Impulse Reward Function
	A.3.3 The Evaluation Interval
	A.3.4 The Reward Hint

	A.4 The Complete SDESSch Schema

	B Implementation of the Complex WSLA Functions in Matlab
	C WSLA Contract of a Stock Quote Service
	References

