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ABSTRACT 

One and multi dimensional raw data collections introduce noise and artifacts, which 

need to be recovered from degradations by an automated filtering system before, further 

machine analysis. The need for automating wide-ranged filtering applications 

necessitates the design of generic filtering architectures, together with the development 

of multidimensional and extensive convolution operators. Consequently, the aim of this 

thesis is to investigate the problem of automated construction of a generic parallel 

filtering system. Serving this goal, performance-efficient FPGA implementation 

architectures are developed to realize parallel one/multi-dimensional filtering 

algorithms. The proposed generic architectures provide a mechanism for fast FPGA 

prototyping of high performance computations to obtain efficiently implemented 

performance indices of area, speed, dynamic power, throughput and computation rates, 

as a complete package. These parallel filtering algorithms and their automated generic 

architectures tackle the major bottlenecks and limitations of existing multiprocessor 

systems in wordlength, input data segmentation, boundary conditions as well as inter-

processor communications, in order to support high data throughput real-time 

applications of low-power architectures using a Xilinx Virtex-6 FPGA board.  

For one-dimensional raw signal filtering case, mathematical model and architectural 

development of the generalized parallel 1-D filtering algorithms are presented using the 

1-D block filtering method. Five generic architectures are implemented on a Virtex-6 

ML605 board, evaluated and compared. A complete set of results on area, speed, power, 

throughput and computation rates are obtained and discussed as performance indices for 

the 1-D convolution architectures.  A successful application of parallel 1-D cross-

correlation is demonstrated. 

For two dimensional greyscale/colour image processing cases, new parallel 2-D/3-D 

filtering algorithms are presented and mathematically modelled using input decimation 

and output image reconstruction by interpolation. Ten generic architectures are 

implemented on the Virtex-6 ML605 board, evaluated and compared.  Key results on 

area, speed, power, throughput and computation rate are obtained and discussed as 

performance indices for the 2-D convolution architectures. 2-D image reconfigurable 

processors are developed and implemented using single, dual and quad MAC FIR units. 

3-D Colour image processors are devised to act as 3-D colour filtering engines. A 2-D 

cross-correlator parallel engine is successfully developed as a parallel 2-D matched 

filtering algorithm for locating any MRI slice within a MRI data stack library. Twelve 

3-D MRI filtering operators are plugged in and adapted to be suitable for biomedical 

imaging, including 3-D edge operators and  3-D noise smoothing operators.  

Since three dimensional greyscale/colour volumetric image applications are 

computationally intensive, a new parallel 3-D/4-D filtering algorithm is presented and 

mathematically modelled using volumetric data image segmentation by decimation and 

output reconstruction by interpolation, after simultaneously and independently 

performing 3-D filtering. Eight generic architectures are developed and implemented on 

the Virtex-6 board, including 3-D spatial and FFT convolution architectures. Fourteen 

3-D MRI filtering operators are plugged and adapted for this particular biomedical 

imaging application, including 3-D edge operators and 3-D noise smoothing operators. 

Three successful applications are presented in 4-D colour MRI (fMRI) filtering 

processors, k-space MRI volume data filter and 3-D cross-correlator.  
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Abbreviations and Symbols 

A list of the main abbreviations and Symbols that used in this thesis is given below; all 

their definitions are given within the text: 

Symbol Detail 

 One dimension point-by-point complex multiplication 

 Two dimensions point-by-point complex multiplication 

 Three dimensions point-by-point complex multiplication 

* One dimension linear convolution 

** Two dimensions linear convolution 

*** Three dimensions linear convolution 

1-D One dimension 

2-D Two dimensions 

3-D Three dimensions 

4-D Four dimensions 

ASIC Application Specific Integrated Circuit 

FPGA Field Programmable Gate Array 

VLSI Very Large Scale Integration 

BRAM Block random Access Memory; RAMB 18E1s (slice) 

DSP DSP 48E1s (slices) 

DSPs DSP processors 

GAs Gate Arrays 

FIR Finite impulse response filter 

h(m) FIR filter 1-D impulse response, 1-D kernel 

h (m1, m2) FIR filter 2-D impulse response, 2-D kernel 

h(m1,m2,m3) FIR filter 3-D  impulse response, 3-D kernel 

NMNT New Mersenne number transform 

ns Nanosecond 

ms Millisecond 

MRI Magnetic Resonance Imaging 

fMRI functional Magnetic Resonance Imaging 

x (n) Original audio signal 

x (n1, n2) Original 2-D input image 

  (n1, n2) Original 3-D colour input image 

x(n1,n2,n3) Input 3-D volume data image 

 (n1,n2,n3) Input 4-D colour volume data image 

y (n) Filtered Output audio signal 

y (n1, n2) Filtered output 2-D image 

  (n1, n2) Filtered output colour 3-D image 

y(n1,n2,n3) Filtered output 3-D image 

 (n1,n2,n3) Filtered output 4-D colour volume data image 

1-D MAC One dimension Multiply/Accumulate DSP operation 

2-D MAC Two dimension Multiply/Accumulate DSP operation 

3-D MAC Three dimension Multiply/Accumulate DSP operation 

mW Milli Watts 

MHz Mega Hertz 
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Symbol Detail 

BPS Block Per Second, 1-D throughput unit 

FPS Frame Per Second, 2-D throughput unit 

CFPS Colour Frame Per Second, 3-D throughput unit 

VPS Volume Per Second, 3-D throughput unit 

CVPS Colour Volume Per Second, 4-D throughput unit 

GMACPS Giga MAC Per Second,  computation rate unit 

1-D FFT One Dimension Fast Fourier Transform 

2-D FFT Two Dimensions Fast Fourier Transform 

3-D FFT Three Dimensions Fast Fourier Transform 

RCFFFT row-column-frame FFT  

1-D IFFT One Dimension Inverse Fast Fourier Transform 

2-D IFFT Two Dimension Inverse Fast Fourier Transform 

3-D IFFT Three Dimension Inverse Fast Fourier Transform 

XST Xilinx Synthesis Tool 

I/O Input/Output 

XSG Xilinx System Generator for DSP 

ISE Integrated System Environment (Xilinx) 

HDL Hardware Design Language 

RCF Row-Column-Frame implementation 

SDK System Design Kit (Xilinx) 

EDIF  Electronic Design Interchange Format 

pixel 2-D Picture element 

voxel 3-D volume element 

SRL Shift Register 
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Chapter 1. INTRODUCTION 

1.1 Background 

Flynn and Rudd [1] stated in 1996 that “the future is parallel”. Currently, there has been 

an increasing interest in the development and use of parallel hardware platforms, e.g. 

FPGA, as well as parallel algorithms in one and multi-dimensional processing 

applications such as weather forecasting, biomedical imaging and robotic vision 

requesting high speed and high throughput rates. One and multi-dimensional digital 

convolution and correlation operations are widely used for digital image processing 

applications such as image filtering, enhancement and recognition [2-14]. As the 

number of arithmetic operations is very large and the demand for real time high 

resolution images is ever increasing, this computation requirement becomes extensive 

and the need for high-performance parallel image processing algorithms is becoming 

more important [15].  

Previously, the main hardware platform to realize high performance parallel architecture 

was the ASIC. However, with the advances in semiconductor technology the capacity 

and performance of FPGAs have improved to such an extent that, together with their 

inherent parallelism and reconfigurability, these devices have become a viable 

prototyping hardware platforms for the investigation and implementation of high 

performance processing algorithm [16, 17]. Subsequently, FPGAs are now used, 

extensively, in modern high-performance filtering applications such as medical 

imaging, portable image, mobile video applications, satellite data, weather forecasting 

and seismic data, to mention few in enormous parallel algorithms applications that are 

mainly implemented utilizing FPGA as a reconfigurable hardware platform. 

However, as the complexity on FPGAs has increased, several inadequacies in the 

software support tools, associated with FPGA realizations are becoming apparent and 

need to be addressed [16-20]. First, there is a lack of suitable constructs in Hardware 

Design Language (HDL), used in early design phase, to efficiently describe the 

structures to implement the parallelism existing in multi-dimensional 

convolution/correlation algorithms and their parallel filtering architectures, being 

realized in FPGA technology. Second, to facilitate the rapid prototyping of 

architectures, an IP library of commonly used cores needs to be developed, which 

would also include an efficient mapping strategy for the fundamental blocks onto FPGA 

structure. Finally, as the complexity of the systems being implemented on an FPGA 
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device increased, there is a requirement for a concurrent hardware/software system 

design flow.    

As the application area for parallel processing increases, together with the amount of 

data to be processed, there is a growing requirement for the development of highly 

efficient FPGA implementations for a family of parallel filtering algorithms, for one and 

multi-dimensional applications in FPGA. Some of the related works in this area of 

research are outlined in the following section. 

1.2 Related Research Works  

Although, there are many papers published on parallel processing and implementation, a 

few focus specifically on FPGA-based implement parallel filtering algorithms in 1-D, 2-

D, 3-D and 4-D. Nevertheless, the research papers found in the literature can be 

classified into the following broad groups: 

1.2.1 Parallel Field Programming Tools 

FPGA implementation of parallel multidimensional filtering algorithms goes beyond the 

low-level line-by-line hardware description language programming [21]. High-level 

abstract hardware-oriented parallel programming tools are required to bridge this gap. 

Fortunately, the tools for implementing parallel filtering algorithms on FPGA enable 

parallel field programming at a higher-level abstraction. A comparison study was 

undertaken by Zoss et al [22] of three parallel design flow tools that adopt the modern 

specify-explore-refine concept,  for the hardware realization of parallel Multi-

dimensional convolution/correlation algorithms developed in the MATLAB / 

SIMULINK framework, as shown in Table 1.1.  

The specify-explore-refine concept starts with the specification of an executable 

floating-point model, design exploration by fixed-point design followed by design space 

refinement with parameters influencing the architecture by resource allocation and a 

final scheduling.  The three hardware generation tool chains are tightly coupled with the 

MATLAB/SIMULINK design and simulation tools. In the design flow of Table 1.1(b), 

the toolbox needed for the System Generator hardware generation is specific to Xilinx 

FPGAs. Both design flows in Table 1.1(a) and (c), however, have no restrictions with 

respect to FPGA or ASIC target technologies. 
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Table 1.1: parallel signal processing algorithm implementations in FPGA/ASIC. 

 

Another comparison study [23] was undertaken into software design tools to implement 

parallel multi-dimensional convolution/correlation algorithms in FPGAs that accelerate 

the migration from traditional software algorithms to faster hardware implementations. 

In this study, MATLAB/SIMULINK is suitable for the simulation of parallel multi-

dimensional filtering algorithms that are intended to be implemented on hardware, 

because of its timing simulation feature in the time and frequency domains with flexible 

presentation formats for easy viewing. This study compared Xilinx System Generator 

with Altera DSP Builder for automatically translating Simulink models into 

synthesizable hardware descriptions to be used with FPGA implementation tools of ISE 

and Quartus II development suite respectively. These tools provide Simulink libraries 

including common DSP, arithmetic, bus manipulation, control logic, storage, imaging, 

or communication functions. Advanced options such as HDL co-simulation and 

hardware-in-the-loop are also supported. HDL co-simulation allows designers to import 

legacy or new HDL code, and simulate it directly from the Simulink framework. 

Hardware-in-the-loop allows designers to verify designs in hardware directly from 

Simulink. 

In a study [24] of visual data flow environments, the combination of tools and IP 

libraries helps the system designer manage design complexity, provides a flexible 

modelling framework, and facilitates migration from algorithms into silicon. In this 

study, the System Generator can maintain an abstract development level for modelling 
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and designing parallel multi-dimensional filtering algorithms that map designs into 

hardware implementations that are faithful, synthesizable, and efficient without 

substantially compromising the quality of either the functional representation or the 

performance of the hardware implementation. 

1.2.2 Parallel 1-D Signal Filtering Architectures 

Parallel 1-D raw signal filtering algorithms have been efficiently implemented as 

temporal or FFT convolution/correlation architectures using either DSPs or FPGAs. 

In [25] DSPs were exploited. A one dimensional parallel block filter algorithm based on 

the overlap-add approach was implemented on multi-DSPs platform in the ASP-PI5 

DSP card. An input of length (N = 4035) and a variable length impulse response filter 

(m =15, 31, 61) were used; FIR filtering was carried out using the complex Fast Fourier 

transform (FFT) transform provided by the DSP library of functions. 1-D filtering 

results were obtained using single DSP processor  and parallel 4-DSP system. The 4-

parallel DSP system achieved a high speed up factor, close to the number of processors 

used. The performance indices of logic area, power consumption and throughput were 

not taking into consideration.  

In the work undertaken by Hasan et al [26, 27], the performance indices of area, speed 

and power consumption are considered as a complete package. A generalized parallel 1-

D signal filtering algorithm is implemented as a parameterized efficient FPGA-based 

architecture using Xilinx System Generator. The implemented algorithm is a linear 

spectral filter achieved by a parallel FFT/point-by-point complex inner product/ IFFT 

convolution unit array. An input of  real-time speech (22050 KHz /1Ch/16 bit) sequence 

was filtered using a distinctive FIR filter impulse response kernel of (3, 7, 15, 31, 61, 

127, 255, 511, 1023 and 2047)  coefficients to be individually applied with a FFT/IFFT 

N-point (8, 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096) respectively. The 

parameterized implementation provides a rapid system-level FPGA prototyping and 

operating frequency flexibility. Consequently, the results are readily obtained for two 

targeted Virtex-6 FPGA boards, namely xc6vlX240T and xc6vlX130T, with a low total 

power consumption ( static + dynamic) of 1.6 W and down to 0.99 W, respectively, at a 

maximum frequency of up to 216 MHz .  

The work outlined in [26] has been cited in research undertaken in two other institutions 

[28, 29]. The first was the Microsystems Design Laboratory (MDL), Department of 
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Computer Science and Engineering, The Pennsylvania State University, where 

researchers developed efficient FPGA-based implementation for a reconfigurable 

Network-on-Chip platform  [28]. The second paper will be mentioned in subsection 

1.2.3.  

The work discussed in [27] was cited by an application [30] of model based 

development of the digital part of a RFID transponder with Xilinx System Generator for 

Virtex-4 xc4vfx60 FPGA board. The reported approach proved the efficacy of usage of 

system-level abstraction of hardware-oriented programming, as an alternative to gate-

level hardware descriptive language, to satisfy the conformant RFID product 

development at a minimal development-to-market time. 

In the work carried out by Hwang and Ballagh [31] on the implementations of FIR 

filters using System Generator, the trade off between filter size and throughput was 

discussed by providing the performance results of three 64-tap FIR filters with a varying 

number of MAC engines. The performance indices of the occupied slices and speed 

were taken into consideration. The operating clock frequency was not particularly 

sensitive to the number of MAC-engines employed. A single-MAC architecture has the 

drawback that the throughput is inversely proportional to the number of filter taps. The 

throughput can be increased dramatically by exploiting parallelism that matches 

resource usage and availability to throughput, using System Generator. 

1.2.3 Parallel 2-D Image Filtering Architectures 

Parallel 2-D image filtering algorithms using spatial or spectral convolution/correlation 

architectures were efficiently implemented using either DSPs or FPGAs.  

In [32], a 2D parallel block-filtering algorithm was implemented on the ASP-P15 card 

of  4-ADSP21060. The 2D algorithm was found to improve the performance of digital 

filtering systems by segmenting the 2D input into smaller block sizes, which led to a 

highly parallel implementation. The speed up results were presented for three different 

input image sizes (128×128), (256×256) and (512×512). Each input was filtered using 

fast number theoretic transforms. Only, the speed was considered out of the other 

performance indices of area, power consumption and throughput. 

A research team led by Bouridane [33] successfully reported an interesting comparison 

for multi-processor platform and FPGA implementations of a parallel 2-D FFT single 

unit architecture using parameterizable structural of row-column processing. The FFT 
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algorithms were including radix-2, radix-4, split-radix and fast Hartley transform 

(FHT). These implementations were carried out under a common parallel architecture in 

order to enable the system designers to meet different system requirements.  

Parallel 2-D FFT processor implementations were based on different FFT algorithms for 

matrix sizes N = 256 and 1024. Speed-up decreased with an increase in the number of 

PEs because of the increased delay due to memory conflict [33]. The performance 

results of parallel 2-D FFT implementation were subsequently displayed in terms of the 

maximum system frequency , chip area and throughput against the number of PEs for 

matrix sizes N = 256 and 1024. The chip area requirement and the throughput increased 

linearly as the number of PEs increased for all FFT algorithms, while the maximum 

system frequency slightly decreased. 

The FPGA-based implementations of the parallel 2-D FFT algorithms, targeted on 

Virtex-2000E FPGA, presented a low-cost solution for 2-D FFT with real-time 

performance [33]. In addition, the FPGA implementation compared favourably in terms 

of area and area/speed ratio with multi-processor implementation. The throughput was 

stable at 35 FPS for 512 × 512 image.  The performance indices that were taken into 

consideration are occupied slices, speed, throughput and the power consumption that 

was inferred from the area occupation.  

In [34] a parallel 2-D Image filtering algorithm was implemented on a Xilinx 

XC4VSX35 FPGA board using a spatiotemporal convolution implementation, suitable 

for  portable image processing applications. The system reduces the power consumption 

while still maintaining video rate operation. This paper describes how splitting the data 

stream into multiple processing pipelines can reduce power consumption in contrast to 

the traditional spatial (pipeline) parallel processing technique. Real-time image 

processing system functions (3×3 Sobel filters and 3×3 anisotropic diffusion) were 

implemented to show the principle of the technique. A relation was observed between 

the frame processing time achieved and the consumed power when processing the 

images without any partitioning, partitioning into three and 6 partitions respectively. 

The effect of this image partitioning technique was strongest when faster processing 

times were required. Particularly, when real time image smoothing were using the 

anisotropic diffusion algorithm, which required large number of iterations to process 

one frame. For example, if 100 iterations were required and each iterative sub frame 

processed at 0.6 ms, a total frame time will takes 60 ms with a final video rate of 15Hz, 
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running one partition at 300 MHz, or three partitions at 100Mhz. The resultant 

difference in power consumption is 261mW. In the case of smaller iterations the 

background power consumption of the FPGA dominates. The performance indices gave 

increasing benefits with shorter processing times, and up to 45% drop in the power 

consumption. The performance indices did not take into considerations the throughput. 

In [21, 35], nine parallel  2-D grayscale MRI spatial convolution algorithms were 

developed  as one generic architecture, targeted on two Virtex-6 FPGA boards, namely, 

xc6vlX240T and xc6vlX130T. This generic architecture was used as “ bulge and 

develop” processor to improve the nine MRI image filtering operators for  generating 

enhanced MRI scans filtering results without significantly affecting the developed 

performance indices of high throughput and low power consumption at maximum 

operating frequency.  

This approach of development, improvement and implementation was accomplished 

using Xilinx System Generator. Where, a single generic architecture was efficiently 

prototyped to achieve high filtering performance of (11230 FPS) throughput for 64×64 

MRI grayscale scan, minimum total power consumption of 0.86 Watt with a junction 

temperature of 52°C and a maximum frequency of up to (230 MHz). The improved 

generic architecture provides visibility enhancement within the filtered MRI scan to aid 

the physician in detecting brain diseases, e.g., trauma or intracranial haemorrhage. The 

high filtering throughput is feasibly nominee the nine parallel MRI filtering algorithms 

for applications such as real-time MRI potential future applications.  

The research work described in [21] was cited in four interesting and related research 

papers in parallel 2-D image filtering algorithms which are FPGA- based 

implementation using Xilinx system generator. The first paper [29] was gesture 

recognition application using field programmable gate arrays, the performance indices 

of its architecture was only the logic area occupation. The second paper [36] was 

teaching and research program in FPGA based Digital Signal Processing using Xilinx 

System Generator, the implementation of various designs was carried out on a Xilinx 

Spartan-3E FPGA, no performance indices were mentioned.  The third paper [37] was a 

VLSI Implementation of an Edge detection system for images, its implementation was 

developed in Spartan 3A DSP FPGA, the performance relates only to the logic area 

occupation. The fourth paper [38] was an efficient FPGA implementation of MRI image 

filtering and tumour characterization using Xilinx System Generator, six (3×3) edge 



 

8 

 

detection, Gaussian blur, thresholding & edge sharpening algorithms were implemented 

on a Spartan 3E starter kit (XC3S500E-FG320),  the performance indices considered 

were only the logic area occupation and clock speed of 50 MHz . 

1.2.4 Parallel 3-D Volumetric Data Image Filtering Architectures 

Parallel 3-D raw volume image filtering algorithms were efficiently implemented as 3-

D spatial or 3-D spectral convolutions /correlations architectures using either multi-

DSPs platform or FPGAs boards. 

In the research papers [39, 40], a parallel 3-D spatial convolution algorithm was 

implemented on a multiprocessor DSP system (the ASP-P15 Quad-DSP card), 

consisting of 4-SHARC DSP processors (ADSP21060), and benchmarked against a 

single SHARC-DSP processor system, to obtain the performance index of more than 5-

fold speed up factor. This method is suitable for high resolution / high speed 3-D image 

and video processing. The proposed 3-D parallel filtering algorithm eliminates the 

overlapping segments overhead in the block-filtering method, and the boundary 

conditions in parallel filtering applications. When the system impulse response is large, 

the overall memory distribution of the parallel system was enhanced by segmenting 

both the 3-D input data and the impulse response of the system into smaller independent 

subsections that can be simultaneously processed. The input 3-D volume image was of 

size (64×64×64). 

In the research papers [41, 42], a parallel 3-D fast transformed convolution algorithm 

was implemented using a 3-D New Mersenne Number Transform (3-D NMNT) and  3-

D vector radix fast Hartley transform (3-D VR FHT), with input 3-D volume images of 

size (32×32×32) and (64×64×64) respectively. The implementations were realized in a 

multiprocessor DSP system (the ASP-P15 Quad-DSP card), consisting of 4-SHARC 

DSP processors (ADSP21060), and benchmarked against a single SHARC-DSP 

processor system, to obtain the performance index of more than 16-fold speeding factor. 

The same parallel 3-D filtering algorithm structure exploited in [39, 40] was 

implemented , but, in fast transformed convolution.  

In [43],  a parallel three-dimensional 3-D FIR digital filter algorithms were designed by 

decomposing the 3-D complex design specification into one-dimensional (1-D) complex 

design specifications, that can be regarded as frequency response specifications of 1-D 

FIR filters. Then a set of 1-D FIR filters were designed to approximate them. Finally, 
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combining the resulting 1-D filters gave a linear phase 3-D filter with parallel structure. 

The technique can create linear phase 3-D filters by merely designing 1-D FIR filters. 

Furthermore, the structure of the resulting 3-D filter will have high degree of 

parallelism, modularity and regularity, and is suitable for VLSI implementation and 

parallel signal processing. No performance indices were presented. 

In an article undertaken by Lin et al [44], the research and development of a massively 

parallel three-dimensional (3-D) spatial and FFT convolution architecture was described 

with its programming technology, in construction of parallel video processing 

components, and in development of video processing applications. The implementation 

was carried out using multi-core architectures for video processing. An archetypal 

example of optimizing the parallelism of a video processing application was considered. 

The 3-D convolution algorithm was implemented as either 3-D spatial convolution or 

the 3-D FFT convolution, where, the 3-D volume video input is V having nV number of 

pixels, and the 3-D FIR filter kernel is K having nK number of pixels. Then a spatial 

convolution method required O(nV nK) operations, while the Fast Fourier transform 

(FFT) convolution  perform the 3-D convolution in O(nV log2 nV) steps. Since, nK is 

always greater than log2 nV for long 3-D kernel, then, the Fourier multiplication 

technique should quickly win over spatial multiplication for long FIR kernels. For short 

3-D kernel, however, the inequality formula will be nK < log2 nV, hence, the 

implementation should be carried out using the 3-D spatial convolution.  

In [45] , a massively parallel Correlation Census algorithm was implemented on Altera 

Stratix 1S40 FPGA with real time performances and an output rate up to one hundred 

images per second. The main objective of this algorithm was to search for the 

correspondence between two input images (right and left) taken from two different 

angles to get a "depth map" shape to reconstruct the 3D scene. To compute this 

algorithm, many parallel-pipelined pre-processing stages are needed (means calculus, 

windowed Census transformation, best correspondence searching, and image filtering). 

This real time parallel architecture was developed for the PICAS$O project to achieve 

the calculus of depth map to get (100 FPS) which is needed in many applications such 

as medical surgery, robotics, vehicle driving assistance and many other applications. 

1.3 Research Aims and Objectives 

One and multi dimensional raw data collections introduce noise and artifact need to be 

recovered from degradations by an automated filtering system before further machine 
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analysis. The need for automating wide-ranged filtering applications necessitates the 

design of generic filtering architectures. This would enable the development of  

multidimensional and extensive convolution operators. Consequently, the aim of this 

thesis is to investigate the problem of automated construction of a generic parallel 

filtering system. To achieve this goal, performance-efficient FPGA implementation 

architectures are developed to realize parallel one/multi-dimensional filtering 

algorithms. The proposed generic architectures provide methods of fast FPGA 

prototyping for high performance computations to obtain efficiently implemented 

performance indices of area, speed, dynamic power, throughput and computation rate, 

as a complete package. These parallel filtering algorithms and their automated generic 

architectures tackle the major bottlenecks and limitations of existing multiprocessor 

systems in terms of wordlength, input data segmentation, boundary conditions as well 

as inter-processor communications, in order to support high data throughput real-time 

applications of low-power architectures using a Xilinx Virtex-6 FPGA board.  

1.3.1 Aims  

The aims of this PhD research project are to introduce highly efficient FPGA 

implementations of parallel multi-dimensional data convolution/correlation algorithms 

for the digital filtering applications in 1-D, 2-D and 3-D up to 4-D to provide generic  

architectures with minimum logic area, low dynamic power consumption, fast speed 

and high throughput. The development tool of System Generator within the Xilinx ISE 

design suite are exploited to realize these implementations. VIRTEX-6 family of the 40 

nm FPGA is the hardware platform for the novel instantiation of the parallel multi-

dimensional filtering algorithms. 

As the FPGA is to be the implementation platform from which a range of performance 

parameters for various algorithms will be obtained and compared to other 

implementations. It is essential to highlight various architectural features of FPGAs 

which will give potential implementation advantages. For example, the inherent 

parallelism within the FPGA needs to be analyzed together with its flexible wordlength 

compared to the DSPs sequential processing interprocessor communication and fixed 

wordlength bottlenecks. Moreover, parallel field programming languages are studied to 

exploit the most efficient performance indices. Therefore, parallel multi-dimensional 

data filtering algorithms are studied and adapted to be mapped into parallel generic 

architectures. 
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1.3.2 Objectives  

The objectives of this research project are based on the achievements of the above-

mentioned research aims. Therefore, in Chapter 3, parallel block-filtering architectures 

are studied and developed in 1-D, appropriate for the parallel 1-D raw signal filtering 

algorithm implementations in the Virtex-6 FPGA board. The developed parallel 1-D 

filtering architectures are performance-efficient in the temporal and frequency domain 

to cover the short and long 1-D FIR kernel real-time applications. 

A new and novel parallel multidimensional image filtering architectures are introduced, 

in chapter 4 and 5, and their implementations as a generic architectures are described. 

The parallel 2-D, 3-D and 4-D image filtering algorithms are suitable for the calculation 

of the multidimensional data convolutions/correlations, and their related applications. 

These parallel filtering architectures solve the problems associated with the parallel 

block-filtering algorithms of boundary conditions and overlapping segments, as well as 

the parallel processing stages communication bottleneck. Furthermore, the developed 

parallel architectures are performance-efficient in the spatial and frequency domain to 

cover the short and long multidimensional FIR kernel applications. 

1.4 Contributions per Chapter 

The primary contributions of this research project are: 

1.4.1  Contributions of Chapter 3 

In chapter 3, implementations of the parallel 1-D filtering algorithms are presented and 

mathematically modelled using the 1-D block filtering method. The architectures are 

implemented on FPGA, as parallel temporal and FFT architectures with attractive 

performance indices. Five generic architectures were implemented on Virtex-6 ML605 

board. Also, a complete set of area, speed, power, throughput and computation rate for 

each architecture were obtained.  An example of a practical application of the above 

algorithm is the realization of a cross-correlation function using a parallel 1-D matched 

filter algorithm for real-time speech signature detection. Subsequently, this application 

was mathematically modelled, implemented and analyzed. 

1.4.2 Contributions of Chapter 4 

In chapter 4, parallel 2-D grayscale/colour image filtering algorithms are discussed, 

mathematically modelled and implemented using 2-D input decimation and output 

image was reconstruction by interpolation. The FPGA implementations, as parallel 

spatiotemporal and FFT architectures, were realized. Ten FPGA-based architectures 
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were implemented on Virtex-6 ML605 board. Also, a complete performance indices set 

were obtained for each of the 2-D filtering architectures. A 2-D image generic processor 

were also developed using mutli-MAC FIR units. A 3-D Colour image processor were 

devised to act as an open development 3-D colour filtering engine. A parallel Cross-

correlator engine was also developed as a parallel 2-D matched filter algorithm to locate 

any MRI slice within a MRI data stack library. Twelve 3-D MRI filtering operators, 

edge detection and noise-smoothing, were also developed to improve biomedical 

imaging results.   

1.4.3 Contributions of Chapter 5 

In chapter 5, a novel parallel 3-D grayscale/colour volumetric image-filtering algorithm 

is presented using volume data image segmentation by decimation and output 

reconstruction by interpolation. Eight architectures were developed and implemented on 

Virtex-6 board. Fourteen 3-D MRI filtering operators were also developed and used to 

improve biomedical imaging results. As a practical example of the above architectures, 

a four dimensional coloured MRI (fMRI) filtering processor was realized using 3-D 

spatial architectures. Two examples were realised using the 3-D FFT architectures to 

filter k-space MRI volume data and 3-D cross-correlator.  

1.5 Organization of the Thesis 

The content of the remaining chapters are outlined below: 

Chapter 2 introduces and illustrates the parallelism concept within parallel multi-

dimensional data filtering algorithms and the realization of these parallelism types on 

the FPGA. Therefore, the use of the Xilinx System Generator in the FPGA 

implementation of the multi-dimensional filtering algorithms is discussed, followed by a 

description of the performance related factors is when comparing various 

implementations of parallel algorithms. The chapter also outlines the seven key steps 

involved in the implementation of such parallel filtering algorithms.  

Chapter 3 presents the adaptation of the generalized parallel 1-D speech signal filtering 

algorithms based on the block filtering method. The algorithm layout and mathematical 

model for the general filtering case are given. Furthermore, the implementation of five 

generic architectures on Virtex-6 board are discussed together with their performance 

indices. The chapter ends with a description of the implementation of a real-time speech 

signature detection using parallel1-D cross-correlation architecture.  
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Chapter 4 presents a new generalized parallel gray/colour image filtering algorithms 

based on the input decimation and output interpolation. The algorithm layout and 

mathematical model for the general filtering case are given. The implementation of ten 

generic architectures in Virtex-6 ML605 board is discussed together with their 

performance indices. These generic architectures can be applied as a colour image 

processors. The chapter ends with a description of the implementation of a 2-D cross-

correlation application to target an MRI slice within a library of MRI stack.  

Chapter 5 introduces a novel generalized parallel gray/colour volumetric image 

filtering algorithms based on the input decimation and output interpolation. The 

algorithm layout and mathematical model for the general filtering case are given. The 

implementation of eight FPGA-based architectures in Virtex-6 ML605 board is 

described as well as their performance indices. Three successful applications are 

developed.  

Chapter 6 presents summary of the original contributions, overall conclusions and 

investigates potential research projects for future work in the parallel multi-dimensional 

data filtering algorithms. 
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Chapter 2. Parallelism Analysis in Filtering Algorithms and 

FPGA-Based Architectures  

2.1 Introduction 

An FPGA is a general-purpose integrated circuit that is field “reprogrammed” even after 

it has been deployed into an embedded system. FPGAs have increasingly become to be 

seen as complete systems because of their increased capacity, improved performance, 

inherent parallelism and reconfigurability [16, 17, 46-49]. Consequently, FPGAs are being 

exploited extensively for the hardware realization of modern parallel one and 

multidimensional data filtering algorithm applications in 1-D [26, 27, 33, 50-54], 2-D [3, 

21, 33, 55-61], 3-D [45, 62-68] and 4-D [69-73] such as real-time audio and speech 

filtering, filtering medical imaging, portable image filtering, mobile filtering applications, 

robot vision, satellite data filtering, weather forecasting, seismic data filtering and wireless 

communication system. To mention few in enormous parallel algorithms applications that 

are mainly implemented utilizing FPGA as a reconfigurable hardware platform. 

FPGA is programmed by downloading a configuration program called a bitstream into 

static on-chip random-access memory. Similar to the object code for a microprocessor, 

this bitstream is the product of compilation tools that translate the high-level 

abstractions into low-level and executable equivalent code. Xilinx System Generator 

can compile an FPGA program from a high-level Simulink model. 

FPGA provides an array of configurable resources that can implement a wide range of 

arithmetic and logic functions. These resources include dedicated DSP blocks, 

multipliers, dual port memories, lookup tables (LUTs), registers, tri-state buffers, 

multiplexers, and digital clock managers. In addition, Xilinx FPGAs contain 

sophisticated I/O mechanisms that can handle a wide range of bandwidth and voltage 

requirements. The DSP computing and I/O resources are linked under the control of the 

bitstream by a programmable interconnect architecture that are wired together into 

systems. 

FPGAs are high performance data processing devices. Digital signal processing 

performance is derived from the FPGA’s ability to construct highly parallel 

architectures for processing data. In contrast with a microprocessor or DSP processor, 

where performance is tied to the clock rate at which the processor can run, FPGA 

performance is tied to the amount of parallelism that can be structured in the multi-
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dimensional filtering algorithms. A combination of increasingly high system clock rates 

and a highly-distributed memory architecture empowered the ability to exploit 

parallelism in filtering applications that operate on data streams. For example, the raw 

memory bandwidth of a large FPGA running at a clock rate of 600 MHz can be 

hundreds of terabytes per second. 

When working in System Generator, it is important to keep in mind that an FPGA has 

many degrees of freedom in implementing Parallel multi-dimensional filtering 

algorithms. The freedom also exists to define data path widths throughout the 

architecture, and to employ many individual data processors (e.g., MAC engines and 

FFT) with high abstractions. 

The reminder of this chapter is organised as follows: 

In section 2.2, three different ways in which parallelism, namely temporal, spatial and 

logical, is used in parallel filtering algorithms, are discussed. In section 2.3, the main 

characteristics of FPGA-based implementation of parallel filtering algorithms are 

presented. In section 2.4, the FPGA implementation of parallel digital filtering is 

described. In section 2.5, overall FPGA implementation steps are explained with a flow 

chart. In section 2.6, parallel field programming using XSG tool are discussed. In 

section 2.7, performance factors are described as a complete package when comparing 

various algorithm implementations. Finally, the conclusion of this chapter is presented 

in section 2.8. 

2.2 Parallel Filtering Algorithms 

Parallel one and multi-dimensional filtering algorithms are concurrent computation 

models which tend to be used in applications where there is a demand to process lots of 

information with the sampling rates that can range from kHz as in speech environments, 

right through to MHz, in the case of image processing applications [16]. The design of 

these parallel filtering algorithms to solve a particular problem is strongly influenced by 

the hardware platform and the software development tools. 

Factors that affect the performance of such algorithms on a particular hardware platform 

are dependent on the degree of parallelism and the overhead incurred in scheduling and 

synchronizing the parallel tasks. Parallelism can either intrinsically exist in the filtering 

algorithms or can be introduced by organizing the computation to allow a parallel 
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implementation. Three parallelism types are observed in these filtering algorithms as 

temporal, spatial and logical parallelisms [17]. 

2.2.1 Temporal Parallelism 

The structure of parallel filtering algorithm suggests a separate convolver for each 

filtering operation, as shown in Figure 2.1. This is a pipelined structure in which the 

data are processed in passing through each stage. Each convolver operates and passes 

the result to the next stage. The total filtering time will not be reduced if each successive 

convolver has to wait until the previous convolver completes processing. Nevertheless, 

the throughput can be increased if each convolver operates on an independent part of the 

data. 

 
 

Figure 2.1: A temporal parallelism is exploiting an independent convolver and 

networking using pipeline 

Pipelining an operation can significantly improve the performance of the parallel 

filtering algorithm when a downstream convolver may begin operating before the 

upstream convolver due to the low latency of an operation. Operation latency is the  

time required between the data input and the corresponding output is available. In a 

hardware platform, the total throughput is given by the sum of each convolution stage 

latency. 

2.2.2 Spatial Parallelism 

This type of parallelism, as shown in Figure 2.2, can occur internally within the 

operations level of the parallel algorithm, when many iterative operations are performed 

on a certain data segment. This internal parallelism may be exploited by partitioning the 

data into segments and using separate convolvers to perform the operation on each 

segment. 

For example in video filtering, the image sequence may be partitioned in time by 

assigning successive frames to separate convolvers. The spatial parallelism considerably 
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minimise or even eliminate the communication among convolvers, due to the 

independent data segments, hence, no accessing of shared resources. Consequently, 

each convolver must have some local memory to reduce any delays associated with 

contention for global memory. 

 

 
Figure 2.2: Spatial parallelism is dedicating parallel convolvers for each data 

segment 

2.2.3 Logical Parallelism 

The third form of parallelism which may be exploited in a regular structure where an 

operation or the functional block can be reused and arranged in parallel is illustrated in   

Figure 2.3, (a). A linear convolution algorithms multiplies the data value within a 

window by a coefficients set or kernel. These multiply and accumulate (MAC) blocks 

are repeated many times. This is a classic example of logical parallelism, as illustrated 

in Figure 2.3, (b). 

Data 

Segment 1

Operation 

Convolver 1

Convolver 2

Convolver 3

Convolver 4

Data 

Segment 2

Operation 

Convolver 5

Convolver 6

Convolver 7

Convolver 8

Data 

Segment i

Operation 

Convolver i1

Convolver i2

Convolver i3

Convolver i4



 

18 

 

 
Figure 2.3: Logical parallelism exploits an independent Convolver for each input 

segment as in (a) and a classical example is in (b) 

2.3 FPGA-Based Implementation of Parallel Filtering Algorithms  

An FPGA can readily implement most of the parallelism types [17]. Since FPGAs are 

inherently parallel, then any logic area required by the parallel multi-dimensional 

convolution algorithms can be implemented on FPGA by reconfiguring separate 

hardware architectures for each convolution operation. This permits the FPGA to be a 

reconfigurable device of choice for rapid prototyping and development of such parallel 

filtering algorithms. Moreover, the FPGA has the speed that results from a hardware 

design while retaining the reprogrammable flexibility of software tool.  

Temporal parallelism can be implemented, as a pipelined architecture, by reconfiguring 

a separate convolver for each convolution operation in the pipeline. In this data 

synchronous algorithm, the data is passing from the output of one operation to the input 

of the next. If the data cannot be synchronized, then appropriate buffers may be 

incorporated to manage the variation in the dataflow or access patterns. Spatial 

parallelism may be exploited by reconfiguring multiply copies of the convolution 

hardware and assigning independent input data partitions to each of the copies. These 
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map readily onto the available resources of the FPGA. Logical parallelism is well suited 

to FPGA implementation, and may be accelerated significantly. This accomplished by 

the parallel hardware and unrolling sequentially performed operations. 

The partitioned input data are serially streamed into the parallel multi-dimensional 

filtering stage. This can be realized as the FPGA implementation, especially when 

interfacing directly to a camera or vision system. If all the convolutions/correlations can 

be implemented using a streaming processing, then the implementation of the entire 

filtering algorithm as a single streamed pipeline results in a very efficient on-the-fly 

filtering architecture. The required throughput can usually be achieved by pipelining. 

The ability to significantly exploit the inherent parallelism of the FPGA has 

considerable implications when reconfiguring an embedded architecture for the parallel 

filtering algorithms. Performing multiple serial convolution in parallel enables the clock 

speed to be lowered noticeably. A streamed pipelined architecture implemented on an 

FPGA can often operated at the native input or output clock frequency. This 

corresponds to a reduction in the clock speed of a serial convolver of two magnitude 

orders or more. The dynamic power consumption of this parallel architecture is directly 

related to the clock frequency, thus an observable lower power design is obtained. 

The development of an FPGA-based design for the entire filtering algorithm will allow 

the embedded realization within only one or two chips, depends on FPGA type. 

Consequently, enabling a complete parallel multi-dimensional filtering algorithm to be 

embedded within a sensor or camera. Thus, FPGA-developed architectures can be then 

be embedded within many portable applications.  

2.4 Parallel Digital Filtering using FPGAs  

Before FPGAs, DSP circuits, e.g. DSP and Gate arrays, could be constructed, but with 

less flexibility to run parallel algorithms in software due to fixed wordlenths, e.g. 16 

bits, 24 bits, 32 bits. Operations with shorter wordlengths still required one execution of 

the entire wordlength. On the other hand, FPGAs allow the choice exactly of the 

required wordlength. FPGAs enable configuration of data paths into arbitrary sizes, 

allowing a trade-off between resolution (precision) and parallelism. An additional 

benefit of minimizing precision comes from shorter propagation delays through 

narrower arithmetic units [68]. 
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Note that the general speed-area complexity of an N×N bit multiply is one quarter of the 

general speed-area complexity of a 2N×2N multiplier. Therefore, if using a 16 bit 

processor to solve an 8 bit problem the arithmetic processing silicon is being used at 

25% MAC efficiency. If using a 24 bit processor for an 8 bit problem then the processor 

is being operated at around 11% (1/9th) MAC efficiency. On the other hand, the FPGA 

wordlength is not constrained to the traditional 8, 16 or 32, but can be sized to the 

required arithmetic resolution of 5, 9, 13 or 21. Moreover, the FPGA-based 

implementations exploit the flexibility to change the resolution at different parts of an 

FPGA-based architecture. 

Early gate-arrays were simply arrays of NAND gates. Combinational and sequential 

functions can be implemented by interconnecting the NAND gates. Early gate array 

implementation flow would be designed, simulated/verified using simulators and 

netlisters. Early GAs were usually used to implement some two level logic functions 

such as flip-flops, registers, addition and subtraction functions. Once a layer(s) of metal 

have been laid on a device, the GA cannot be changed, updated or fixed. 

Therefore, digital signal processing moved to FPGAs, so that, the logic specified is 

changeable by “field” reprogrammed interconnection.  FPGAs are carefully balanced 

repository of multi-input logic, flip-flops, multiplexers, memory, arithmetic resources 

and DSP components. 

The modern concept of an FPGA implementation is to interconnect the available logic 

area to implement the algorithm using modern toolsets and design flows. However, new 

issues have emerged:  

 Correct processing of arithmetic operations, i.e. overflow, underflow, saturate. 

 Wordlength specification and the choice between rounding and truncation. 

  Latency or delays used to maintain the synchronization.  

 What clock rate to be used?  

 Does the device place and route?  

 What logic devices should be utilized?  

 To compromise between logic fabric and IPs core utilization. 

 Control over implementation parallelism. 

Therefore, FPGA-based implementations flexibility is accomplished in terms of binary 

arithmetic using finite wordlengths for the required numerical precision. On the other 

hand, an efficient mapping of a parallel multi-dimensional filtering algorithm to FPGA 
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hardware can be achieved by leveraging our knowledge of DSP theory and 

implementation to finite wordlength effects within the targeted FPGA logic area.  

2.5 Overall FPGA Implementation Steps  

Generally, the overall FPGA implementation process of any parallel algorithm [22, 23] 

can be depicted as shown in Figure 2.4. This overall Xilinx ISE design flow is essential 

to FPGA implementation. Parallel algorithm implementation requires several key steps: 

Firstly, creating or adding parallel algorithm design sources in Verilog/VHDL files, 

schematic RTL entry, C/C++ embedded system files, IP core generator files or DSP 

System Generator circuits [74]. 

Secondly, Synthesis is the process of transforming the design sources into architectural 

specific gate level net-lists according to control aspects constraints. The 

interconnectivity is also defined between the building blocks. For interchange between 

different tools, a net-list is often represented using EDIF (electronic design interchange 

format). Thirdly, Timing and I/O constraints; the timing specifications in its basic forms 

define the clock operating frequencies as well as the timing requirements for all the 

main inputs and outputs. Fourthly, a parallel algorithm architecture implementation; the 

implementation process compiles the parallel algorithm architecture through individual 

phases of net-list translation, mapping and place and route. Initially, the net-list is 

mapped onto the target FPGA. In mapping, the logic is partitioned, merged or spilt to be 

fit into the available LUTs on that FPGA.  The place and route phase joins together 

these mapped components and determines the routing required to connect the logic 

blocks memories and I/O.  

Fifthly, the result analysis to verify that the parallel algorithm mapping objectives are 

accomplished. In addition, identify the implementation area that needs to be modified to 

reach an implementation closure. There are two main types of changes to improve the 

parallel algorithm implementation: either alter architecture properties of design 

strategies by modify the design source code or refine design constrains.   

Sixthly, Hardware Debug is the most time consuming stage of the implementation 

cycle. Accordingly, the on-chip debugging must be highly detailed, at-speed internal 

FPGA signal capture and highly accurate viewing of post-place and route parallel 

algorithm implementation.  



 

22 

 

Seventhly, FPGA bit stream is the generation of a programming file that configures the 

FPGA implementation of the parallel algorithm via a parallel cable called JTAG.  

 
Figure 2.4: Overall FPGA implementation flow for Parallel Multi-dimensional 

Data filtering Algorithm 

In the sequel, the overall FPGA implementation flow provides a realization 

methodology in behavioural software and FPGA hardware for the parallel filtering 

algorithm. However, the FPGA implementation closure requires many design 

modification and iteration. In addition, the functionality and performance of the FPGA 

implementation can be verified via simulation at various implementation flow steps. 

2.6 Parallel Field Programming using Xilinx System Generator Tool 

Currently, FPGA goes beyond the low-level line-by-line HDL programming in 

implementing parallel multidimensional filtering algorithms. High-level hardware-

oriented parallel programming methods can structurally bridge this gap [21]. 

At a higher level of abstraction, both parallelism and pipelining are well represented 

using a dataflow graph [17]. The FPGA parallel fabric outcomes in a better fit with 

visual dataflow. Indeed, most of the parallel filtering algorithms, such as signal and 
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image filtering, are often represented graphically by block diagrams. These blocks 

represent basic operations of addition and multiplication as well as complicated 

operations of convolution/correlation and FFT on the streamed data, and connection 

between blocks indicating the flow of data. Dataflow exposes the parallelism within 

multi-dimensional filtering algorithms without indicating the execution order. 

This led to the logical approach of flied programming of the FPGA using dataflow 

languages, such as XSG [22-24, 74, 75]. System Generator is a system-level modelling 

tool that facilitates FPGA hardware design. It extends Simulink in many ways to 

provide a modelling environment that is well suited to hardware design. The tool 

provides high-level abstractions that are automatically compiled into the FPGA. The 

tool also provides access to underlying FPGA resources through low-level abstractions, 

allowing the construction of highly efficient FPGA designs. The design flow, as shown 

in Figure 2.4, involves developing the parallel algorithm within MATLAB, and then 

representing the algorithm graphically within Simulink using Xilinx library-based basic 

blocks.  

The MATLAB/Simulink environment allows signals to be inspected using Scope and 

Display Simulink blocks, and written into the MATLAB workspace for plotting or 

further analysis, using the “To WorkSpace block”. In all cases, signals must be first 

output from the System Generator design via Gateway Out blocks. The System 

Generator also features a logic analyser as a WaveScope block, where signals from 

within the design can be probed. A further option is hardware testing with the 

ChipScope analyser. Using this technique, a special ChipScope block is added to the 

System Generator design, and signals of interest are connected to it. The whole design 

is then synthesised and implemented, and downloaded to the FPGA device. While the 

design operates, the ChipScope block captures signal data from the design running on 

the board, and these are transmitted back to the host PC, where signals can be viewed or 

analysed. 

The Xilinx block set, as shown in Figure 2.5 , is used to implement the parallel 

algorithm for targeting Virtex-6 XC6VLX240T FPGA board. Xilinx Blocks set library 

consists of the following basic groups of blocks:  

 Basic blocks for Multiplexer, Delay …  

 Communication blocks for forward error correction and modulator blocks … 

 Control logic blocks for control circuitry and state machines. 
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 DSP blocks of FFT, CORDIC blocks, Convolutional Encoder… 

 Data type blocks that convert data types, includes gateway in and out. 

 Math Blocks that implement mathematical functions of addition, subtraction …  

 Memory blocks that implement and access RAM, FIFO, shared memory… 

 Utility tools blocks, e.g., System Generator token, resource estimation, HDL co-

simulation, Black block and M-code block that provides interfaces to other 

software tools (e.g., ModelSim, FDATool) 

All the System Generator blocks are parameterised to allow the specification of data 

mathematical representation, type, wordlength, width and the IP core selection … etc. 

The System Generator block sets are specifically targeted the basic and advanced DSP 

features within the Xilinx FPGA boards, resulting in an efficient development, 

implementation and use of resources. System Generator blocks are bit-accurate and 

cycle-accurate. Bit-accurate blocks produce values in Simulink that match 

corresponding values produced in hardware; cycle-accurate blocks produce sampling 

values at corresponding times. 

The Xilinx blocksets map Simulink system parameters into entities and architectures, 

ports, signals and attributes in a hardware model. These mapped parameters are then 

converted into a hierarchical HDL netlist as well as the necessary command files to 

create an IP block netlist, which creates project and script files for HDL simulation, 

synthesis, placement, routing and bit stream generation. 

 
Figure 2.5: Xilinx System Generator tool complete block sets. 
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2.7 Performance Indices 

The performance indices of the parallel filtering architectures are considered as a 

complete set of area, speed, power, throughput and computation rate values using XSG 

to target a Virtex-6 ML605 FPGA board [76]. The area represents the occupied logic 

assets of FFs, LUTs, Slices, DSP and BRAM. The speed relates to the maximum clock 

frequency in (MHz). The power consumption is the dynamic power in (mWatt). The 

throughput is the number of filtered results per unit time and total computation rate is in 

Giga MAC Per Second (GMACPS).  

The area usage, dynamic power consumption and speed are obtained using Xilinx 

Timing Analyzer [74]. The throughput and computation rate are calculated according to 

a 1-D, 2-D and 3-D mathematical model of throughput as defined in subsections 3.2, 4.2 

and 5.2 respectively. Due to the efficient implementation hierarchy of Logic fabric, 

signals, I/O's and hard IPs such as Block RAMs or DSP blocks, the parallel filtering 

architectures occupy proper logic area. Consequently, this area occupation affects the 

performance indices set of speed, power consumption, and throughput.  

2.7.1 Logic Area Occupation 

The logic area usage by the multi-dimensional filtering architecture is indicated by the 

devices utilisation from the fabric and IPs hard cores of DSP and BRAM of the Virtex-6 

FPGA board, as detailed in Table 2.1. The FPGA fabric is the underlying structure of 

the logic device, which consists of FFs, LUTs and Slices. The IPs hard cores are 

DSP48E1 and BRAM 18E1s [16, 17, 47-49].  

The D-type flip-flop (FF) is the smallest storage element. The polarity of the clock 

(rising-edge-triggered or falling-edge-triggered) can be configured, as well as the 

polarity of the clock enable and set/reset signals (active-high or active-low). The total 

number of D-type FFs in the Virtex-6 XC6VLX240T FPGA is 301,440. 

The look-up tables (LUTs) in Virtex-6 FPGAs can be configured as either one 6-input 

LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs) with 

separate outputs but common addresses or logic inputs. Each LUT output can optionally 

be registered in a flip-flop. The n-LUT can implement any possible n-input 

combinational logic function. Each Virtex-6 FPGA slice contains four LUTs and eight 

flip-flops, only some slices can use their LUTs as distributed RAM or SRLs. Each slice 
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has one set of clock, clock enable, and set/reset signals that are common to both logic 

cells. The total number of slices in the Virtex-6 XC6VLX240T FPGA is 37,680. 

Virtex-6 LX240T FPGA has 416 dual-port block RAMs, each storing 36 Kbits. Each 

block RAM has two completely independent ports that share nothing but the stored 

data. Each memory access, read and write, is controlled by the clock. All inputs, data, 

address, clock enables, and write enables are registered. The input address is always 

clocked, retaining data until the next operation. An optional output data pipeline-register 

allows higher clock rates at the cost of an extra cycle of latency. During a write 

operation, the data output can reflect either the previously stored data, the newly written 

data, or remain unchanged. 

Flexible block RAM can be configured as two 18Kb blocks or a single 36Kb block, true 

dual-port, simple dual-port, and FIFO. This offers independent read and write port 

width configuration. Xilinx claim 600MHz operation using optional pipeline capability 

[76]. Built-in cascade logic makes it possible to create a 64kx1 memory from two 32kx1 

block RAM configurations. The aspect ratio may be configured from 32K×1 to 

1024×36 as a full dual port, or as 512×72 simple dual-port.  

Table 2.1: Characteristics of the Virex-6 XC6VLX240T development FPGA board 
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Virtex-6 LX240T FPGA has 768 dedicated DSP 48E1 slices operating at 600 MHz 

clock speed, while retaining system design flexibility. Each DSP48E1 slice 

fundamentally consists of a dedicated 25 × 18 bit two's complement multiplier and a 48-

bit accumulator (cascadable to 96 bits). Each DSP48E1 slice draws a low power 

consumption of only 1.09mW/100MHz at a 38% toggle rate. 

2.7.2 Dynamic Power Consumption 

The dynamic power Pdyn is the dissipated power when the output changes state to charge 

and discharge the programmable interconnection provided for the FPGA 

implementation [16, 77, 78]. This occurs due to, firstly, the switching frequency of the 

logic area array and IOB resources. Particularly, since not every resource is toggling at 

the same frequency, or all the time. Secondly, short-circuit power resulting from the 

current flow through the transistor channels in a logic gate when all are turned on at the 

same time. Thus, the dynamic power is a function of the average number of outputs that 

are changing in each clock cycle τ, the average node capacitance C, supply voltage VDD 

and clock frequency f, this can be stated as; 

           
   ( 2.1) 

2.7.3 Clock Speed  

FPGAs are designed primarily as a synchronous device, thus a clock signal is required. 

Clock rate defines the operating speed of the algorithm implementation and is a figure 

measured in (MHz) that can formally quoted by FPGA vendors to give some notion of 

performance.  The clock rates of the Xilinx Virtex 6 FPGA family is 600MHz [76]. 

Moreover, the inherent FPGA parallelism allows the parallel multi-dimensional data 

filtering architectures to maximize the amount of computation that can be performed in a 

single clock, which improves the performance. Thus, speed is one of the performance 

indices that can be improved by parallelizing the hardware. 

2.7.4 Total Throughput  

Generally, the maximum throughput [20, 79, 80] is the maximum number of filtered 

results per unit time. This can be measured in Block Per Second (BPS) for the parallel 

1-D signal filtering architectures; Frame Per Second (FPS) for the parallel gray image 

filtering architectures; Volume Per Second (VPS) for the parallel 3-D image volumetric 

data filtering architectures. The colour 2-D and 3-D images are measured in CFPS and 

CVPS respectively.  
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Depending on the FIR kernel size, the FPGA-based implementation is realized either by 

MAC convolution or FFT convolution, which affects the throughput mathematical 

model. The total throughputs for both are significantly improved by the use of 

parallelism. 

2.7.5 Computation Rate  

In the parallel 1-D, 2-D, 3-D and 4-D spatial convolution architectures, the total number 

of Multiply/Accumulate operations achieved Per Second (MACPS) can be considered 

as another performance index to indicate the computation rate. The total computation 

rate, measured in Giga MACPS (GMACPS), is directly proportional to the maximum 

operating clock frequency f and MAC operations accomplished by the available levels 

of parallelism for the 1-D, 2-D and  3-D/4-D spatial convolution architectures, as 

mathematically modelled in subsections  3.2.5,  4.2.6 and  5.2.6 respectively. 

2.8 Conclusion 

In this chapter, the suitability of adapting the inherent parallelism within an FPGA to 

realize the hardware architectures to implement parallel mutli-dimensions convolution 

algorithms was discussed. Three forms of parallelisms were observed in these filtering 

algorithms: temporal, spatial and logical parallelisms. This maps efficiently on FPGA-

based architectures, by minimum flexible wordlength sized to the required arithmetic’s 

resolution, which can be changed at different parts of inherent parallelism hardware.  

The overall FPGA implementation process was depicted as a development flow of 

seven key steps. Parallel field programming using Xilinx System Generator was 

discussed as a dataflow graphical programming tool that facilitates FPGA hardware 

design by providing access to underlying FPGA resources. The performance indices of 

the parallel multi-dimensional filtering architectures were introduced as a complete 

package of area, speed, power, throughput and computation rate values when using 

XSG to target a Virtex-6 ML605 FPGA board.  
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Chapter 3. Parallel 1-D Filtering Algorithm and its FPGA 

Implementations 

3.1 Introduction 

Most of real time 1-D filtering applications have a noisy signal to be filtered with high 

computing rates [25, 33, 81-86]. On the other hand, the current DSP computing 

technology has insufficient memory to hold the entire signal to be processed 

simultaneously [16, 17, 46-49, 53, 82, 87]. Thus, to achieve efficient performance 

results, the long real time 1-D signal is segmented so that DSP computing hardware can 

simultaneously and independently processes each segment in parallel. Consequently, in 

this chapter, a parallel solution is proposed for the algorithm level and an intrinsically 

parallel hardware platform is selected for its implementation. Therefore, a parallel 1-D 

linear filtering algorithm is proposed and implemented on a structurally parallel digital 

processing technology of the FPGA.  

The essential characteristics of the filtered signal are stability and linearity in phase, 

hence the processing engine in the filtering algorithm will be a digital FIR filter. 

Applying a parallel 1-D FIR filtering algorithm using FPGA requires the development 

of a generalized mathematical model for the input signal segmentation, parallel digital 

convolution equation and the output filtered signal reconstruction.    

Parallel linear FIR filtering algorithms can be digitally implemented either directly in 

the temporal domain by a MAC FIR engine, as a standard convolution, or indirectly in 

the frequency domain by an FFT convolution. Which convolution type is more 

efficient?  The answer depends on the length of the FIR filter coefficients (kernels) [82]. 

Since the filtering time for standard convolution is directly proportional to the number 

of coefficients for a particular input signal, shorter FIR filter coefficients can be 

efficiently implemented with standard convolution. Longer filter coefficients can be 

efficiently implemented with FFT convolution [82, 88].  

The reminder of this chapter is organised as follows: in section 3.2, the main research 

concepts are defined and mathematically explained. In section 3.3, the generalized parallel 

1-D linear filtering algorithm is presented with its mathematical model using linear 

overlap-add block filtering method. In section 3.4, the three parallel 1-D temporal 

convolver architectures are developed, their performance indices are evaluated as a 

complete set of area, speed, dynamic power consumption, throughput and the 
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computation rate. In section 3.5, two FPGA implementations of 1-D FFT convolution 

are developed. Then, their performance indices are evaluated. In section 3.6, a practical 

example, the realization of 1-D cross-correlation for parallel 1-D match filtering 

algorithm. Finally, the conclusion of this chapter is presented in section 3.7. 

3.2  Research Concepts Definitions 

This section demonstrates the main research concepts on which this chapter is based. 

3.2.1 Theory of Linear Block Filtering Method  

Linear block filtering method is a linear filtering technique for a real-time long 

sequence signal processed on a segment-by-segment basis. In real-time applications, the 

raw input signal is usually very long compared to the FIR filter kernel, e.g. digital 

speech filtering [26, 27, 89], digital music filtering [90], medical acoustic sounds[81] 

...etc. Thus, to be digitally processed, this very long input signal is segmented to a fixed-

length block to occupy part of the already limited memory size of any digital hardware 

systems, such as DSPs or FPGAs.  

There are two well-known block filtering techniques for the linear convolution block 

filtering method, namely the overlap-add method or the overlap-save method. Which 

technique to be used depends on the FIR coefficients (M) index, running from 0 to M-1 

or negative indexes are used respectively.  

The overlap-add technique is based on four fundamental steps. First, decompose the 

input signal length into contiguous blocks of equal length segments.  Second, filter each 

of the blocks individually using the FIR kernel of M coefficients, after (M-1) zero 

padding to the right of each block to allow for the expansion during the convolution.  

Third, overlap the M-1 expansion results in the output filtered blocks to each other. 

Fourth, reconstruct the final output signal by adding these output blocks.  

The key to this technique is how the lengths of these signals are affected by the 

convolution. When a P sample signal is convolved with an M sample filter kernel, the 

output signal will be expanded by M-1 points to the right to be P+M-1 samples long, if 

the filter kernel runs from index 0 to M. However, if negative indexes are used in the 

filter kernel, the expansion will be to the right and left. The overlap-add techniques 

applied in this chapter because of the FIR kernel index is running from 0 to M-1. 
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3.2.2 Linear-Phase 1-D FIR Digital Filter 

The filtering function for a linear 1-D filter is an accumulated sum of point by point 

multiplications of a 1-D FIR coefficients, h(m) of size M, and the sample values of the 

input signal, x(n) of size N1, within the window. The FIR filter interacts with signal 

through a process called linear convolution [46], which is represented by: 

                 ( 3.1) 

where, * is the linear 1-D convolution. This convolution process is formally defined by:  

This linear filtering process is equivalent to performing a 1-D convolution with the 

coefficients flipped left-for-right. Thus, a windowed-base FIR filter can be designed to 

be a linear phase by making its impulse response coefficients have left-right symmetry 

to achieve this flip. Thus, a linear phase 1-D MAC FIR filter can achieve 1-D 

convolution. 

Parallel 1-D convolution audio filtering algorithms use a lowpass linear phase FIR filter, 

which maps well onto either a 1-D multiply-accumulate (MAC) engine or 1-D FFT 

convolution unit. In general, M MAC operations are required to compute an output 

sample for an M-tap filter. The M-tap FIR filter may be implemented on more than one 

unique MAC unit taking into consideration the tradeoffs among filter performance 

indices, such as area, speed, dynamic power and throughput. Hence, three 

configurations are developed for a single MAC, dual MAC and quad MAC FIR units, 

which are shown in Figure 3.4, Figure 3.5 and Figure 3.6 respectively.  

3.2.3 1-D FFT Convolver Engine  

1-D Convolution in the time domain, as stated in ( 3.2), corresponds to multiplication of 

the two spectra of the 1-D FIR filter and the raw input signal. Multiplication costs less 

logic area in digital implementation than convolution. This Fourier property enables 1-

D FFT convolution to be utilized in linear signal filtering, as shown in Figure 3.1. 

 
Figure 3.1: 1-D FFT convolver unit      
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The FFT converts the input segment and the FIR kernel into the real and imaginary 

parts of the frequency response. The frequency spectrum of the output segment Y(k) is 

then found by multiplying the FIR kernel frequency response H(k) by the spectrum of 

the input segment X(k). Since, these spectra consist of real and imaginary parts, then a 

complex multiplication is carried out in rectangular form as  follows;  

                               ( 3.3) 

 

                              ( 3.4) 

The complex multiplication of the above two equations can be built up from four real 

multiplications and two real additions [16, 91].  

The number of complex multiplications and additions required for a radix-2 1-D FFT 

algorithm of length N1 are (
  

 
) log2 N1 and N1 log2 N1, respectively. Therefore, the FFT 

reduces the computational complexity from O (N1M) to O (N1 log2 N1). This 

considerable gain in computation, particularly for a thousand long FIR kernel, justifies 

the hardware implementation of the FFT over the direct MAC FIR filter. 

3.2.4 Total Throughput   

Generally, the maximum throughput [20, 79, 80] is the maximum clock frequency 

divided by one sample block, measured in BPS, at a filtering rate of one sample per 

clock cycle.  The throughput of the parallel 1-D MAC FIR filtering architecture is 

limited by the 1-D MAC FIR operation for a particular signal, which can be mitigated 

by parallelism. Thus, the total throughput is directly proportional to the levels of 

parallelism and limited by the 1-D MAC FIR engine throughput     . The effective 

levels of parallelism are the number of parallel 1-D direct convolver filters (α1) and the 

number of multi-MAC engines (α2) per 1-D convolver unit. Then, the total throughput µ 

can be formulated as: 

where, N1 is the size of the input signal’s block.  

The 1-D MAC FIR unit throughput      is directly proportional to the clock speed f and 

limited by the 1-D FIR coefficients (M) which can be partitioned to be processed by 

multi-MAC engines. Then      can be stated as: 

  
    

  
    ( 3.5) 
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     ( 3.6) 

Thus, the total throughput for the parallel 1-D MAC FIR filtering architecture can be 

defined as:  

  
     

   
 

( 3.7) 

where, 
  

  

 

  
  is one sample block at a filtering rate of one sample per clock cycle. α1 is 

the number of input signal partitioned sub-blocks, here, α1=4, then, one sample block 

length, 
  

  
 

      

 
       samples per one input block for a real-time (22050 KHz 

/1Ch/16 bit) speech signal. α2 is the degree of parallelism inside the 1-D temporal 

convolver unit, using single, dual or quad MAC engines, then, α2 = 1, 2 or 4 

respectively. 

For a parallel 1-D FFT filtering architecture, a one sample block time is  
  

  
 log2 

  

  
. 

Because a single FFT convolution unit in the parallel FFT algorithm performs the 

convolution ( 3.2) using ( 3.8) in O (
  

  
 log2 

  

  
) steps [44], where, N1 is the length of the 

real-time (22050 KHz /1Ch/16 bit) speech signal. While, temporal convolution requires 

O (
  

  

 

  
) operations, this implies a gain, since (

 

  
) > log2 (

  

  
) at M > 64 to apply the 

FFT convolution: 

                       ( 3.8) 

Where, F
-1

, F and × are the Fourier transform, the inverse Fourier transform, and 

pointwise complex multiplication, respectively.  

Thus, the overall throughput µ of the parallel FFT block filtering architecture of α1 

parallel processing stages and maximum clock frequency f (MHz) can be formulated as: 

  
 

  
  

      
  
  

 
( 3.9) 

3.2.5 Total Computation Rate 

The total number of MACPS can be considered as another performance index to 

indicate the computation rate for each one of the three 1-D direct convolution 

architectures. Where, the total computation rate γ, measured in Giga MACPS 

(GMACPS), is directly proportional to the maximum operating clock frequency f , the 
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number (α1)  of parallel 1-D direct convolver stages and the number (α2)  of parallel 

MAC engines per 1-D direct convolver, thus  

          ( 3.10) 

3.3 The Generalized Parallel 1-D Linear Block Filtering Algorithm 

The generalized parallel 1-D filtering algorithm, as shown in Figure 3.2, is presented for 

the overlap-add block filtering method. This linear block filtering algorithm consists of 

three stages: serial to parallel input stage, parallel filtering processing stage and parallel 

to serial output stage.  

 
Segmentation length: 0 ≤ p≤ K-1, where, K= 

                 

                      
 , Filtered output length: u=P+M-1 

 

Figure 3.2: The Generalized Parallel 1-D Linear block Filtering Algorithm 

The three stages are implemented on the Virtex-6 ML605 development board using 

XSG. The mathematical model of these three stages are developed and expressed in the 

following sections. 

3.3.1 Input Segmentation Stage 

The input signal segmentation of Figure 3.2 equally divides a long input sequence x(n) 

of size P into non-overlapping subsections ( x0(p), x1(p), x2(p), ...., xk-1(p)) each of size 
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 . Thus, the generalized mathematical formula that model the input segmentation 

stage can be expressed as: 

                
 

 
                

 

 
              

 

 
     ( 3.11) 

This can be expressed in a closed form as:  

                
 

 
                                

 

 
  

   

   

 
( 3.12) 

where n is the input size of 0 ≤ n ≤ P-1. Each term in the right hand side of ( 3.11) and 

( 3.12) is a separate segment of the input signal, x(n), to be independently filtered by a 

separate 1-D convolution unit (convolver) in the Virtex-6 board.     

3.3.2 Parallel Filtering Stage 

In Figure 3.2, the parallel filtering stage is implemented as an array of parallel 1-D 

convolution units (convolver). The filtering sub-signal yr can be represented in the time 

domain as the linear convolution of the sub-segment xr sequences over the FIR impulse 

response h(m) sequence, as: 

                          

   

   

 

( 3.13) 

                                         

The resultant filtering is the sum of all the parallel sub-filters, and can be formally, 

expressed as: 

y u        n    p         n 

p  

n 0

 

   

  0

 

( 3.14) 

 

where,           is the final output length, k is the number of segments and p 

is the segment length. The filtering stage is computationally intensive. Thus, the number 

of segments (k) and the impulse response size h(m) have to be optimized so that the 

number of the 1-D convolver units is minimum to achieve the required level of 

performance [72].    
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3.3.3 Output Reconstruction Stage 

In Figure 3.2, the pipelined output y(u) is reconstructed  from the parallel filtered sub 

outputs ( y0(n), y1(n), ..., yk-1(n)) of the parallel 1-D convolution units, by an adder tree.  

Thus, the 1-D output formula is: 

This can be expressed in a closed form as: 

                
 

 
                               

   

 

 
( 3.16) 

Each term in the right hand side of ( 3.15) and ( 3.16) is an output of a separate 1-D 

convolver. These sub-outputs are overlapped by the size of the impulse response filter 

length (M-1), which is added to the next block to reconstruct the final filtered output. 

The generalized parallel 1-D linear block filtering algorithm can be realized in hardware 

as either a temporal convolution in the time domain by MAC FIR filters or, indirectly in 

a spectral domain by an existing fast transform, that depends on the filter kernel length. 

The parallel algorithm can directly be implemented faster by the MAC FIR convolution 

for the FIR kernel length shorter than (64)[82], and the filtering time is proportional to 

the kernel length. However, longer filter kernels can efficiently be implemented faster 

with the spectral convolution. With an FFT convolution, the filter kernel can be made as 

long as necessary for the application and the hardware platforms can handle. The 

temporal filtering is presented in subsection 3.4, and the spectral filtering is presented in 

subsection 3.5.  

3.4 Parallel 1-D Temporal Convolver Architectures 

The generalized parallel 1-D linear filtering algorithm can be realized by temporal 

convolution using MAC FIR filter units as shown in the general MAC FIR architecture 

of Figure 3.3. Consequently, the real-time 1-D filtering applications in which the FIR 

kernel length shorter than 64 coefficients can be achieved without the need to pad zeros 

to the input segments, since the 1-D FIR kernels are stored in the multi-MAC engines. 

In the input stage, the 1-D signal data samples, length P, of a real-time (22050 KHz 

/1Ch/16 bit) speech signal are equally segmented into four blocks x0, x1, x2 and x3. Each 

block is simultaneously and independently streamed into the 1-D multi-MAC convolver 

engine, as shown in Figure 3.3.  

                
 

 
                

 

 
              

 

 
   

( 3.15) 
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The 1-D filtering stage of this generic architecture can be realized by more than one 

unique implementation depending on the parallelism style inside the MAC FIR engine, 

in addition to the main parallelism of four parallel data paths. This inside parallelism 

style is either a single, dual and quad MAC FIR units in the processing stage, which is 

shown in Figure 3.4, Figure 3.5 and Figure 3.6 respectively.  

 
Input signal x(n) length:  0 ≤ n ≤ P-1,   

  

 
  and  section length:           

Figure 3.3: Parallel 1-D multi-MAC filtering architecture 

The output stage is a parallel to serial pipelined process of reconstruction, recording and 

displaying the filtered real-time speech output. The speech reconstruction is achieved 

using three pipelined adders tree. The pipelining of the adder tree is sized according to 

the overlap-add technique, as shown in Figure 3.3. The final reconstructed output is 

connected to a gateway-out block to convert the fixed point filtered samples to floating 

point numerical representation used by Simulink blocks for recording as a WAV file 

and displaying the filtered real-time speech signals. Consequently, the parallel 1-D 

filtering algorithm can be implemented by three temporal architectures according to the 

hardware structure of their 1-D convolver engine. The input stage and the output stage 

are the same for the three architectures, thus its convolver engine will characterize each 

architecture. 
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3.4.1 Parallel Single MAC Convolver Architecture  

Figure 3.4 shows unit1, a single MAC convolver of architecture1. This parallel 

architecture is an implementation for the parallel linear FIR filtering algorithm of Figure 

3.3. Unit 1 consists of input buffering components, the single MAC FIR engine, control 

circuitry, and filtered output buffer.  

Input buffering components consist of an addressable shift register (ASR) and a single 

port RAM. The ASR and RAM act as the input sample buffer and filter coefficients 

storage respectively. The ASR address port runs M times faster than the data port. The 

RAM is configured to use block memory. The multiply-accumulate engine is 

implemented using a dedicated DSP 48E1s multiplier block and accumulator block. A 

single counter  implements the control circuitry as a free running counter from 0 to M-1, 

and then repeats. A capture register act as the filtered output buffer, required for 

streaming operation, since the MAC engine reloads its accumulator with an incoming 

sample after computing the last partial product for an output sample.                                                   

 
Figure 3.4: Unit 1; 1-D Single MAC convolver implementation  

A counter generates the RAM and ASR addresses. For every new input sample, the 

accumulator block is reset to its current input, and the capture register latches the MAC 

engine output. This occurs when a comparator generates the reset and enables pulses for 

the accumulator and capture register.  The pulse is asserted when the address is zero and 

is delayed to account for pipeline stages. Pipeline registers r0, r1 and r2 are included to 

increase performance. Upon reset, the accumulator re-initializes to its current input 

value rather than zero, which allows the MAC engine to stream data without stalling for 

one sample period.  
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As shown in Table 3.1, the single MAC 1-D convolver occupies less logic area than 

either the dual MAC 1-D or the quad MAC 1-D convolver. Unit 1of the single MAC 1-

D convolver occupies less logic area than unit 2 by (27%) FFs, (31%) LUTs, (20%) 

slices, (100%) dedicated DSP 48E1s multiplier and RAMB 18E1s block memory. In 

addition, compared to unit 3, unit 1 occupies less logic area by (52%) FFs, (59%) LUTs, 

(48%) slices, (200%) dedicated DSP 48E1s multiplier/ RAMB 18E1s block memory.   

Table 3.1: Logic Devices utilization by the three 1-D temporal convolver units 

 Single MAC 1-D  

convolver unit 

Dual MAC 1-D  

convolver unit 

Quad MAC 1-D  

convolver unit 

 Unit 1 Unit 2 Unit 3 

FFs 146 201 302 

LUTs 90 130 221 

Slices 158 198 302 

DSP 48E1s 1 2 4 

RAMB 18E1s 1 2 4 

3.4.2 Parallel Dual MAC Convolver Architecture  

Figure 3.5 shows unit 2, a dual MAC convolver engine of architecture 2. This parallel 

architecture is another implementation for the parallel linear FIR filtering algorithm of 

Figure 3.3 .  

 
Figure 3.5: Unit 2; Implementation of 1-D Dual MAC convolver  

Unit 2 of the dual MAC 1-D convolver consists of cascaded buffering components, 

parallel coefficients block RAMs pair, control circuitry and a dual MAC FIR engine. 

X

Z-1

Z-1

Z-1

X Z-1

Z-1

Z-1

+ Z-1Z-1

Z-1

Filtered

Samples+

Address 

Control

 Unit

Comparator

Zero 

 Samples 

Buffer

 Samples 

Buffer

Z-1

Coef(1:Length(coef)/2))

Coef(length(coef)/2) 

+1: Length(coef))

Z-1

reset

Enable

Dual MAC engine 
Input Samples

Output Samples

d

Enable



 

40 

 

Two ASRs are cascaded to form the sample input buffer.  ASR2 is enabled when the 

last element of ASR1 is addressed to ensure that the sample data is correctly propagated 

between ASRs.  The filter coefficients are equally stored in two block RAMs. RAM1 

stores the first half of the coefficients and RAM2 stores the remaining coefficients, as 

shown in Figure 3.5. Both RAMs and ASR pairs share the same address sequence 

generated by the counter. The sequence counts from 0 to (
  

 
   , and then repeats. A 

delayed reset/enable pulse generated by the comparator drives the enable port of ASR2.  

Block d delays the signal, and is parameterized with the appropriate latency of 

 
            

 
    using the coefficient array length. The filter reduces the number of 

MAC operations required to compute the sum of products by distributing the workload 

between 2 parallel multipliers.  The products are added and the sum is accumulated.  

3.4.3 Parallel Quad MAC Convolver Architecture  

Figure 3.6 shows unit 3, a quad Mac convolver of architecture 3. This parallel 

architecture is a third implementation for the parallel linear FIR filtering algorithm of 

Figure 3.3. Unit 3 consists of four cascaded buffering components, four parallel 

coefficients block RAMs, control circuitry and a parallel MAC FIR engine.  

Four ASRs are cascaded to form the sample input buffers.  ASR2, ASR3 and ASR4 are 

enabled when the last element of ASR1 is addressed to ensure that the sample data is 

correctly propagated between ASRs.  The filter coefficients are equally stored in four 

block RAMs, each of the RAMs storing a quarter of the coefficients, as shown in Figure 

3.4. Both RAMs and ASRs blocks share the same address sequence generated by the 

counter. The sequence counts from 0 to  
  

 
   , and then repeats. A delayed enable 

pulse generated by the comparator drives the enable port of ASR2, ASR3 and ASR4.  

Block d delays the signal, and is parameterized with the appropriate latency of 

 
            

 
     using the coefficient array length. The filter reduces the number of 

MAC operations required to compute the sum of products by distributing the workload 

between four parallel multipliers.  The products are added in an adder tree, and the sum 

is accumulated.  Although the positioning of the adder tree and accumulator are 

interchangeable, placing the adder tree before the accumulator results in a resource 

optimized implementation. 
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Figure 3.6: Unit 3; 1-D Quad MAC convolver implementation 

3.4.4 Performance Indices of the Three Parallel Multi-MAC Convolver Architectures 

The performance indices of the three 1-D temporal convolver architectures are 

considered as a complete set of area, speed, power, throughput and computation rate 

performance parameters using XSG to target a Virtex-6 ML605 board. The minimized 

utilized area of the three architectures, as shown in Table 3.2, are due to the efficient 

implementation hierarchy of logic fabric, signals, I/O's and hard IPs such as Block 

RAMs or DSP blocks. These three architectures occupy proper logic area of FFs, LUTs 

and slices. Where, architecture 3 and 2 are occupying, in average, more than double and 

less than 1.5 logic area that of architecture 1 respectively. Additionally, architecture 3 

and 2 are respectively using four and two times the number of multipliers / block RAMs 

Hard IPs for its MAC engines than that of architecture 1. Consequently, this area 

occupation affects the performance indices of speed, power consumption, throughput 

and computation rate as shown in Table 3.3. 

Several observations can be made from Table 3.3. Firstly, the operating clock frequency 

is particularly insensitive to the number of MAC convolver engines for the three 

architectures, and principally operating around the maximum frequency of 225 MHz 
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[31]. Secondly, the dynamic power consumption at (40 nm) junction temperature of 

54°C decreases, monotonically, from 12mW, 18mWand 24mW down to 5mW, 8mW 

and 13mW for architectures 1, 2 and 3 respectively as the  MAC FIR coefficients length 

descends from 64 to 2 coefficients. Thirdly, due to parallelism style, the highest 

throughput is achieved by architecture 3, almost double and four times that of 

architecture 2 and 1 respectively. As may be predicted by ( 3.7), where, the architecture 

throughput is a function of the maximum operating frequency and the one input sample 

block. Fourthly, the highest computation rate is accomplished by architecture 3, double 

and four times greater than that of architecture 2 and 1 respectively; this is predicted 

from ( 3.10), the computation rate is affected by the two levels of parallelism inside the 

MAC engines and the concurrent filtering stages. 

Table 3.2: Logic Devices utilization by the three parallel temporal convolver 

architectures 

 Architecture 1 
(Single MAC convolvers) 

Architecture 2 
(Dual MAC convolvers) 

Architecture 3 
(Quad MAC convolvers) 

 FIR impulse Response  length 

 2 3 5 7 15 31 63 4 8 16 32 64 8 16 32 64 

FFs 444 496 501 513 518 523 528 675 703 708 713 734 1092 1017 1112 1129 

LUTs 283 318 334 341 362 391 414 509 524 541 549 557 911 919 929 974 

Slices 151 158 162 175 184 186 243 262 268 272 275 291 381 390 396 409 

DSP 

 48E1s 
4 4 4 4 4 4 4 8 8 8 8 8 16 16 16 16 

RAMB 

18E1s 
4 4 4 4 4 4 4 8 8 8 8 8 16 16 16 16 

 

Table 3.3: Performance indices of the parallel 1-D multi-MAC convolver filter 

architectures 

FIR 

Filter 

kernel 

(M) 

Maximum Clock 

Frequency  (MHz) 

Dynamic 

Power  (mWatt) 

Throughput 

  (BPS) 

computation rate 

(GMACPS) 
Arcit 

1 

Arcit 

2 

Arcit 

3 

Arcit 

1 

Arcit 

2 

Arcit 

3 

Arcit 

1 

Arcit 

2 

Arcit 

3 

Arcit 

1 

Arcit 

2 

Arcit 

3 

2 225   5   4090   0.9   

3 225   5   2726   0.9   

4  225   8   4090     

5 225   5   1636   0.9   

7 225   6   1168      

8  225 223  9 13  2045 4090 0.9 1.8 3.6 

15 224   7   618      

16  222 225  13 17  1022 2045 0.9 1.8 3.6 

31 225   9   264      

32  225 225  15 19  511 1022 0.9 1.8 3.6 

63 223   12   130      

64  224 222  18 24  256 511 0.9 1.8 3.6 
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For comparison purposes, Hwang and Ballagh [31] carried out a research work on the 

implementations of FIR filters using System Generator, the trade off between filter size 

and throughput was discussed by providing the performance results of three 64-tap FIR 

filters with a varying number of MAC engines. The performance indices of the occupied 

slices and speed were taken into consideration. The operating clock frequency was not 

particularly sensitive to the number of MAC-engines employed. A single-MAC 

architecture has the drawback that the throughput is inversely proportional to the 

number of filter taps. The throughput can be increased dramatically by exploiting 

parallelism that matches resource usage and availability to throughput, using System 

Generator. 

In one dimensional filtering , the linear phase FIR filter, as defined in subsection  3.2.2, 

can be designed as a low-pass window-base FIR, using Xilinx FDATool block, for filter 

design and analysis tool. The three implementations of the parallel temporal filtering 

algorithm are developed as “plug and filter” architectures. The 1-D FIR filter can be 

plugged and developed to filter an input signal. The filtering results produced using 

architectures 1, 2 and 3 are shown in Figure 3.7, Figure 3.8 and Figure 3.9 respectively.  

 
Figure 3.7: Architecture1’s filtering results of a raw real-time speech (22050 Hz 

/1Ch/16 bit) signal at 1-D FIR kernels of 2 coefficients  

At the top of each figure, the speech signatures of the noisy real-time speech (22050 Hz 

/1Ch/16 bit) signal to be compared with the filtering results. Figure 3.7 shows 

Architecture1 filtering results for 1-D single MAC FIR kernels at 2 coefficients. Figure 

3.8 shows Architecture 2 filtering results of 1-D dual MAC FIR kernels that can be 

divided by two and more than one coefficient per MAC engine at 4 coefficients. Figure 
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3.9 shows Architecture3 filtering results using quad MAC FIR kernels that can be 

divided by four and more than one coefficient per MAC engine at 8 coefficients. All the 

filtered speech signals are enhanced. 

 
Figure 3.8:Architecture2’s filtering results of a raw real-time speech (22050 Hz 

/1Ch/16 bit) signal at 1-D FIR kernels of 4 coefficients.  

 
Figure 3.9:Architecture3’s filtering results of a raw real-time speech (22050 Hz 

/1Ch/16 bit) signal at 1-D FIR kernels of 8 coefficients.  

3.5 Parallel 1-D FFT Convolver Architectures 

To cover the real-time linear 1-D filtering applications [26, 27, 81, 92] in which the FIR 

kernel length is longer than 64 coefficients, the parallel 1-D filtering algorithm’s FPGA 

implementation can be efficiently captured by more than one fast parallel 1-D FFT 

filtering architecture, depending on the abstraction level of the implementation and the 

optimization approach for the performance efficient indices. Consequently, two generic 
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architectures are developed to implement in Virtex-6 board; the single 1-D FFT filtering 

unit (convolver engine) and the parallel 1-D FFT block filtering algorithm. They are 

described in subsections 3.5.1 and 3.5.2 respectively. 

3.5.1 Parallel 1-D FFT Convolver Architecture  

Architecture 4, as shown in Figure 3.10, realizes a single 1-D FFT convolver unit 

achieving high-speed filtering performance by utilizing the FFT convolution’s principle; 

convolution in the time domain corresponds to multiplication in the frequency domain 

[25]. This architecture consists of input, filtering and output stages.   

 
Figure 3.10: Architecture 4; implementation of fast single 1-D FFT convolver unit  

Within the input stage the 1-D signal and the 1-D FIR filter are streamed, and  zero 

padded to be equal in size to the N-point of the FFT. Both streams are block buffered to 

be processed in the filtering stage. The block buffer, as shown in Figure 3.11, can be 

implemented as a dual port RAM and addressing control circuit. 

The dual port RAM, RAMB18E1s, has two independent sets of ports for simultaneous 

reading and writing. Independent address, data, and write enable ports allow shared 

access to a single memory space. Hence, each port set has one output port and three 

input ports for address, input data, and write enable. When the RAM word depth is 

longer than the input segment, then the RAM's trailing words are set to zero. Thus, this 

block buffer can accomplish the zero padding function without using extra hardware.  
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Since, N=p+M-1, then, by setting the RAM depth to N and the buffer depth to p, the 

dual port Ram also accomplishes the zero padding function.  

 
Figure 3.11: Implementation of the Block Buffer component  

The RAM’s addressing control circuit is an up counter to the RAM depth size compared 

against the buffered block size. This address generation is used when writing data 

samples and the reading of the stored samples data.  

The 1-D filtering stage is a temporal to spectral transformation structure, as explained in 

subsection 3.2.3. This transformation structure consists of a 1-D FFT, a complex 

multiplier and a 1-D IFFT blocks. The 1-D FFT can be realizes by Xilinx FFT v7_0 

blocks to produce the complex X(k1). Similarly, 1-D FFT calculates the 1-D FIR filter’s 

frequency spectrum, that is the real and imaginary parts of H(k1) . Since, these spectra 

consist of real and imaginary parts, then, a frequency domain multiplication is carried 

out in rectangular form according to ( 3.3) and ( 3.4) Using Xilinx complex multiplier 

block, these two frequency spectra are point-by-point multiplied to produce Y(k1), which 

represents the 1-D FFT of the filtered image. To transform back into the time domain, 

the inverse Fourier transform of Y(k1) is calculated by taking the 1-D inverse FFT.  

In the output stage, the two streams of the filtered signal is summed to produce the 1-D 

filtered signal y(n1). The final reconstructed output is connected to a gateway-out block, 

which provides the conversion from the fixed point format which is used by the FPGA 

to floating point numerical representation used by Simulink blocks for displaying the 

filtered MRI. 

3.5.2 Fast Parallel 1-D FFT Convolver Architecture 

Architecture 5, as shown in Figure 3.12, implements a parallel 1-D FFT convolver 

structure using the overlap-add block filtering technique as defined in sub-section 3.2.1. 

In the input stage, the 1-D signal data samples, length P, of the real-time speech signal 

(22050 Hz /1Ch/16 bit) are equally segmented into four blocks x0, x1, x2 and x3, and 
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each block divided into p length sub-blocks is stored in a block buffer. A fifth block 

buffer is used to store the FIR impulse response of M coefficients.  

The filtering stage is a parallel structured of 1-D FFT convolver array of the single FFT 

convolvers as shown in Figure 3.10. The FFTs N-point size must be long enough that 

circular convolution does not take place. This means that the N-point FFT should be the 

same length as the output segment, N=p+M-1. For instance, if the filter kernel contains 

255 coefficients and each input segment contains 258 points, making output segment 

(255+258-1= 512) points long. This calls for 512-point FFTs to be used. That means the 

filter kernel must be padded with (512-255=257) zeros to bring it to a total length of 

512 points. Likewise, each of input segments must be padded with (512-258=254) 

zeros. Each block of x(n) and h(m) padded with M-1 zeros and  p-1 zeros respectively.  

After zero padding, the FIR impulse response coefficient and the speech signal blocks 

are simultaneously frequency transformed via the real inputs of five parallel Xilinx FFT 

v7_0 blocks, and setting the imaginary input to zero. Each FFT outputs a frequency 

spectrum of two parts, real and imaginary. Subsequently, a parallel point-by-point 

complex multiplication is performed. 

The Inverse FFT is then synchronized by the data available (dv) output of the FFT block 

to find the sub-output segment from its frequency spectrum.  The real and imaginary 

parts of the multiplication result bit streams are bit manipulated first, then, fed to four 

Xilinx Inverse FFT v7_0 blocks; so that each filtered sub-speech sequence can be 

transformed back to the time domain. The input frequency signals must be first scaled 

by  
 

 
  using Shift block to perform (log2N) bit right shift. Then, the bit growth within 

the resultant scaled frequency sequences is converted back to the normalized 16-bit 

word-length with a binary point inserted at the 15-bit by a Convert block.  

The output stage is a parallel to serial pipelined process of reconstruction, recording and 

displaying filtered output. The reconstruction is achieved using three pipelined adder 

trees. The pipelining of the adder tree is sized according to the overlap-add technique, as 

shown in Figure 3.12. The final output is connected to a gateway-out block to convert 

the fixed point format to a floating point  for recording as a WAV file and displaying. 
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Figure 3.12: Architecture 5; implementation of Fast Parallel 1-D FFT block 

Filtering Algorithm in the Virtex-6 FPGA board 

3.5.3 Performance Indices of Fast Parallel 1-D FFT Filtering Architecture 

Fast 1-D FFT filtering architecture results are presented as area occupation and 

performance indices of the two architectures are indicated in Table 3.4 and Table 3.5, 

while the filtered outputs depicted in Figure 3.13 using architecture 5. For the same 

input signal, the two main variables that have affected the results are the FIR filter 

kernel length and the size of the N-point FFT/IFFT. Hence, comparative evaluation 

results for two FPGA implementation architectures are obtained for a distinctive linear 

phase FIR impulse response at lengths 3, 7, 15, 31, 61, 127, 255, 511, 1023 and 2047 

coefficients, to be individually applied to an 8, 16, 32, 64, 128, 256, 512, 1024, 2048 

and 4096 N-point FFT/IFFT, respectively. Area wise, architecture 4 and 5 logic area 

occupations are summarized in Table 3.4, which shows that architecture 4 was 

occupying, in average, less logic devices of (37%) FFs, (40%) LUTs, (339%) slices, 

(14%) DSPs and, in average, (34%) block RAMs than architecture 5. Due to that 

architecture 4 is a single convolver unit implementation compared to the parallel 

structure of the 1-D FFT convolution units in architecture 5.   
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Several observations can be made from the results in Table 3.5, which presents three 

performance indices of frequency, dynamic power and throughput. Firstly, the 

frequency and power was improved using architecture 4, compared to those of 

architecture 5 within all the (h(m), N-point FFT  ) pairs. Secondly, architecture 5’s 

throughput outperformed that of architecture 4, in average, by four-fold within all the 

(h(m), N-point FFT  ) pairs. Thirdly, the first performance index, in Table 3.5, is 

maximum clock frequency are steadily rising up, for both architectures, as the (h(m),  N-

point FFT  ) pairs descending. Fourthly, the power consumption is monotonically 

decreases, for both architectures, as the (h(n), N-point FFT) pairs descending.  

Table 3.4: Logic Devices utilization by the parallel 1-D FFT filtering’ architectures  

FFT  

N-point 

Architecture 4 Architecture 5 

FFs LUTs Slices 
DSP 

48E1s 

RAMB 

18E1s 
FFs LUTs Slices 

DSP 

48E1s 

RAMB 

18E1s 

8 3407 2010 677 18 8 9166 4852 1931 107 23 

16 4420 2736 1002 18 8 11641 6226 2742 125 23 

32 6258 3961 1316 27 8 16645 9628 3916 170 23 

64 7502 4842 1746 27 8 20161 11430 4575 188 23 

128 9586 6440 1970 36 8 25903 15762 6148 251 23 

256 11036 8062 2374 36 5 29581 19128 7190 269 23 

512 13036 10603 3422 52 5 35293 24975 8895 367 23 

1024 72341 77413 3296 52 14 39245 28021 9844 385 37 

2048 17182 11976 3563 70 32 47286 32365 11642 475 87 

4096 18912 14366 4137 74 66 51899 35874 12491 511 174 

Table 3.5: Performance indices of the parallel 1-D FFT filtering’ architectures 

FIR 
Filter 

impulse 
response  

(M) 

FFT 
N-

point 
Size 
(N) 

 

Maximum clock 

frequency (MHz) 

Dynamic Power  

(mWatt) 

Throughput 

(BPS) 

Archit. 
4 

Archit. 
5 

Archit. 
4 

Archit. 
5 

Archit. 
4 

Archit. 
5 

3 8 277 243 15 36 150 599 

7 16 248 225 19 45 135 555 

15 32 239 211 23 69 130 520 
31 64 226 201 29 78 123 495 

63 128 217 193 31 88 118 476 
127 256 208 184 37 103 113 454 

255 512 199 176 42 120 108 434 

511 1024 187 165 43 127 101 407 
1023 2048 165 152 58 172 88 375 

2047 4096 154 139 78 233 83 343 

For comparison purposes, a parallel 1-D block filter algorithm based on the overlap-add 

approach was implemented on multi-DSPs platform in the ASP-PI5 DSP card [25]. An 

input of length (N = 4035) and a variable length impulse response filter (m =15, 31, 61) 

were used; FIR filtering was carried out using the complex Fast Fourier transform (FFT) 

transform provided by the DSP library of functions. 1-D filtering results were obtained 

using single DSP processor and parallel 4-DSP system. The 4-parallel DSP system 
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achieved a high speed up factor, close to the number of processors used. The 

performance indices of logic area, power consumption and throughput were not taking 

into consideration.  

The linear phase FIR filter kernels, as defined in subsection  3.2.2, are designed greater 

than 60 up to 2047 coefficients using the Xilinx FDATool block. A sample of the 

filtering results is shown in Figure 3.13  using architecture 5 at M= 63/ N=128.  The 

filtered speech signals are enhanced and slightly longer by M-1 points. 

 
Figure 3.13: Architecture 5’s filtering results of the noisy real-time speech (22050 

Hz/ 1Ch/ 16 bit) signal at M= 63/ N=128 

3.6  1-D Cross-Correlation Application: FPGA Architecture for Parallel 1-D 

Matched Filtering Algorithm 

Detection of a known waveform in a noisy signal is the fundamental problem in signal 

analysis of, including but not limited to, medical acoustic sound [81] and echo location 

systems[93].  Correlation is the optimal technique for detecting a known waveform in a 

noisy signal which called matched filtering. That is, the peak is higher above the noise 

using correlation than can be produced by any other linear system. The filter kernel of 

the matched filter is the target signal being detected, except it has been flipped left-for-

right. This flip is required to perform correlation using convolution, making it extremely 

slow to execute. Then, speed improvement can be implemented using parallel FFT 

convolution of architecture 5 to assure high throughput. 

Therefore, architecture 5 can be effectively modified for parallel matched filtering to 

detect a known segment x(m) within the 1-D noisy input signal x(n). Where, the FIR 

impulse response coefficients of the filter are replaced by the samples of the target input 

segment to be detected. Except, the target segment x(m) has been flipped left-for-right 

to implement its reversed-time version x(-m).  For example, when x(n) and x(m), are 

convolved to produce y(u), the equation will be as: 
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y u       n    p    n     

p  

n 0

   

  0

 

( 3.17) 

In comparison, the correlation z(u) of x(n) and x(m) can be obtained by convolution as:  

          n    p    n      

p  

n 0

   

  0

 

( 3.18) 

The matched filter output signal, as shown in Figure 3.14 has a far higher peak than the 

residue noise in the input signal, provided by any other linear filter. The amplitude of 

each point in the output signal is a measure of how well the filter kernel matches the 

corresponding section of the input segment. Consequently, the output of a matched filter 

does not necessarily look like the signal being detected.   

 
Figure 3.14: The matched filtering results using architecture 5 at M= 63/ N=128. 

(a) Input speech signal, (b) Target input segment, (c) Matching results. 

3.7 Conclusion 

A generic parallel hardware versions of the parallel 1-D convolution-filtering algorithm 

were developed for the multi-MAC FIR and FFT convolution, to cover the entire range 

of  linear FIR filter length of 3, 7, 15, 31, 61, 127, 255, 511, 1023, 2047, ... coefficients. 

The filtering methods were based on the overlap-add block filtering. Then, FPGA-based 

implementations of five generic architectures on Virtex-6 ML605 board were 

developed. The performance indices for the five architectures were evaluated as a 

complete package of area, speed, power and throughput using XSG to target a Virtex-6 

ML605 board. A practical example was developed, implemented and analysed to realize 

cross-correlation as a parallel 1-D matched filter algorithm for real-time speech 

signature detection using architecture 5.  
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Chapter 4. Parallel 2-D Greyscale/Colour Image Filtering 

Algorithm and Its FPGA Implementations  

4.1 Introduction 

Digital image processing frequently exploits convolution and correlation functions to 

achieve  linear 2-D image filtering algorithmic applications, for example, in mobile phones 

[94], consumer electronics such as digital cameras [95], medical imaging [21, 35, 96, 97], 

brain-computer interface [98], computer vision [99] and  satellite images enhancement 

[100]. The demands for linear 2-D image filtering have inevitably increased in these recent 

applications for noise reduction, edge extraction, similarity detection and enhancement [35, 

97, 101]. However, most of the digital image filtering systems have an inherently 

bottlenecked when intensive processing of the  large 2-D images input with the extensive 

range of the linear 2-D image filtering kernels is required, due to the lack of memory 

capacity, data communication overhead and intensive computational power [15, 32], all 

of which slows down these filtering algorithms. 

To resolve these bottlenecks, the large 2-D input data is decimated into independent 

sub-data input that can be simultaneously processed in parallel. Consequently, a parallel 

2-D image filtering algorithm is proposed which decimates the large 2-D image, 

independently filtering in parallel, without the need for the communication among 

processing stages, then interpolating to reconstruct the filtered image.  

To automate [34, 35, 102-107] the proposed parallel 2-D image filtering algorithm, the 

FPGA [101, 102, 105, 108] is exploited for its intrinsic parallelism of logic area and IP 

cores to achieve the required level of performance for many digital image processing 

applications. The main concern with the FPGA is the overall performance indices of area, 

speed, dynamic power consumption and throughput [16-18]. Thus, a new generic parallel 2-

D filtering algorithm is presented, mathematically modelled, implemented for both 

spatiotemporal and spectral architectures and their complete performance indices package 

are evaluated. 

This chapter is organised in eight sections. In section 4.2, the main research concepts are 

defined and mathematically explained. In section 4.3, the generalized parallel 2-D linear 

image filtering algorithm is presented, and the mathematically modelled. In section 4.4, 

seven parallel spatiotemporal filtering architectures are developed. Then, their 

performance indices are tabulated, analysed and discussed as a complete set of area, 
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speed, dynamic power consumption and throughput as well as the computation rate. In 

section 4.5, a successful application of 3-D colour MRI slice filtering using the seven 

generic architectures is developed. In section 4.6, three FPGA implementations as 

parallel generic FFT architectures are developed and their performance indices are 

evaluated as a complete set of area, speed, dynamic power consumption and throughput. 

In section 4.7, the implementation of a 2-D cross-correlation function is realized for 

parallel 2-D MRI match filtering algorithm. Finally, the conclusion of this chapter is 

presented in section 4.8. 

4.2 Research Concepts Definitions 

This section introduces the main research concepts on which this chapter is based. 

4.2.1 Linear 2-D Stream Filtering Method 

One of the common bottlenecks within image filtering is the time and memory 

bandwidth required to read the image from memory and write the filtered image to 

memory. Stream filtering [103, 109] can overcome this bottleneck in two steps of 

parallelism [34, 107]. Firstly, spatial parallelism may be exploited by splitting the image 

into blocks of rows, columns or squares, as illustrated in Figure 4.1. 

 
Figure 4.1: A single digital image is partitioned into spatial parallelism of pixels for 

parallel digital processing. 

Secondly, convert spatially partitioned blocks into temporal parallelism, as illustrated in 

Figure 4.2. The image is often streamed at a rate of one pixel per clock cycle. The 

parallel filtering operations are performed on-the-fly for the pixels using an independent 

2-D FIR filters on each partition block. Architectures 6, 7, 8, 9, 10, 11, 12, 13, 14 and 

15 are developed to achieve the linear image filtering based on these two levels of 

parallelism. Thus, the linear 2-D stream filtering method exploits, as much processing 

should be performed on the streamed pixels as passing through the FPGA. 

  

Image Row Partitioning Image Column Partitioning Image Block Partitioning
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Figure 4.2: Logic parallelism; a single spatial parallelism image block is converted 

into a temporal parallelism for Stream processing.  

4.2.2 Linear 2-D Filters  

The image filtering function for the linear 2-D filter is an operator of accumulated sum 

of point by point multiplications of the 2-D FIR coefficients, h(m1,m2) of size (M1×M2), 

and the pixel values of the digital image, x(n1,n2) of size (N1×N2) , within the window 

[17]. This 2-D FIR filter interacts with its 2-D input through a process called linear 2-D 

convolution: 

                            ( 4.1) 

Where ** is the 2-D convolution operation. Linear 2-D filtering is equivalent to 

performing a 2-D image convolution in time domain with the 2-D matrix h(m1,m2) 

flipped left-for-right and top-for-bottom, thus the above equation can formally stated as: 

                   

    

    

    

    

               
( 4.2) 

Since the filtering operations of the linear FIR filter is designed to have symmetrical 

coefficients around the vertical and horizontal axes, then these flips are already 

achieved. Thus, the 2-D convolution can be achieved by 2-D FIR filter with coefficients 

symmetry in both dimensions. 

The 2-D FIR impulse coefficients are sometimes called the filter kernel or weights. The 

kernel’s values and size determine the filtering operations and the convolution 

implementation domain [82].  Some of the common filtering operations are edge 

detection and noise smoothing depending on the following weights sum equation: 
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( 4.3) 

The coefficients sum is zero for the edge detection filters, or one for noise smoothing 

filters.  So that, the edge filtering response is zero for the regions of uniform pixel value, 

While, the noise smoothing output values are not different from the input in uniform 

regions of the image. The edge detection can be enhanced by summing weights up to 

one, therefore, the edge filter is called edge enhancement filter.  

Some of the common generic edge filters are Edge, Sobel, Laplacian and Prewitt, and 

for the noise smoothing filters, Sharpen, Gaussian, Smooth and Blur, as shown in Table 

4.1 for the (5×5) operators. These 2-D filters will be implemented and applied to the 

biomedical imaging of Magnetic Resonant Imaging (MRI) as a “plug and filter” 

operator using the developed FPGA-based architectures. This 2-D image processor can 

be realized in the spatiotemporal domain, as in architectures 6, 7, 8, 9, 10, 11 and 12 or 

the frequency domain as in architecture 13, 14 and 15. 

Table 4.1: some of the common edge and noise smoothing FIR filter of 5x5 kernels 

2-D FIR Filter 5x5 kernel 2-D FIR Filter 5x5 kernel 
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The filter kernel size (M1×M2) determines the proper convolution implementation for 

the linear filter to be in the spatiotemporal or frequency [17, 82, 110]. Spatiotemporal or 

direct convolution is more important of these two, since images have their information 

encoded in the spatiotemporal domain rather than the frequency domain. However, 
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direct convolution has an execution time proportional to (N1×N2×M1×M2) for an 

(N1×N2) image convolved with an (M1×M2) kernel. Consequently, the execution time 

for direct convolution depends very strongly on the size of the kernel used for a 

particular input image. While, the frequency or a radix-2 FFT convolution is effectively 

filtering a particular image in (N1N2 log2 N1N2) steps. By comparison, (M1×M2) is 

always greater than (log2 N1N2)  for a filter kernel of  thousands of coefficients [17, 82]. 

Consequently, the 2-D linear convolution of ( 4.2) can be efficiently implemented 

directly in the time domain, or from their effects in the frequency domain. For filter 

kernels shorter than about 10×10, the spatiotemporal convolution is implemented as 

2×2, 3×3, 5×5, 2×4, 4×4, 2×8 and 8×8 kernels. While, the FFT convolution is 

implemented for the longer filter kernels of 15×15, 31×31, 63×63, 127×127 and 

255×255. 

4.2.3 Spatiotemporal Convolver Engine  

The generic 2-D spatiotemporal convolver engine is a (M1×M2) MAC FIR digital filter. 

That consists of three stages: spatial to temporal parallelism, M1 spatiotemporal 

convolver units and sub-filtered merging stages, as shown in Figure 4.3.  

  
Figure 4.3: Implementation of the Generic 2-D Spatiotemporal Convolver Unit  

The spatial partitioned block of a digital image is sequentially streamed into (M1-1) row 

buffers to be filtered in parallel using the M1 spatiotemporal convolver units. Each row 

buffer effectively delays the input by one row of N1 pixels, where N1 is the image width. 

An adder tree merges the sub-filtered streams. The resulting pixel values, after applying 

the 2-D image filter, can be negative or larger than 255. Thus, the resulting pixel values 
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are conditioned by taking the absolute value from the negative results, restrict the bit 

growth to 8 bits and truncate pixel values larger than 255 to 255 by streaming into an 

absolute unit and Xilinx convert block respectively. The conditioned pixels are 

multiplied by a constant ratio factor as per the 2-D operator matrix. For example, as 

shown in Table 4.1, the sharpen operator have a normalization factor of (1/16) to ensure 

that the low spatial frequencies are not amplified. 

This linear image filtering considers two inputs of a 2-D filter matrix, and a 2-D image 

matrix. Where, the two matrices move over every element of the other matrix. 

Logically, there are two implementation strategies: either by scanning, where the 2-D 

filter matrix scans the 2-D image matrix, or by streaming, where the 2-D image matrix 

streams into the 2-D filter matrix.  For example, consider a 5×5 window filter, each 

output filter is a function of the twenty-five pixel values within the window. Without 

stream filtering, twenty-five pixels must be read, a pixel at each clock cycle, for each 

window position and each pixel must be read twenty five times as the window is 

scanned through the image.  

 
 Figure 4.4: Five temporal parallelism copies of a digital image are streamed into a 

5×5 FIR filter  

A 5×5 filter kernel spans five image rows, the current row and four previous rows. 

Alternatively, the stream filtering stores the 5×5 filter kernel in a spatiotemporal 

convolution engine, and streams five temporal parallel copies of the digital image into 

five multi-MAC convolvers. The first temporal pixel copy is streamed into the first FIR 
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engine of h(1,5) row of the 2-D operator matrix. Each next temporal pixels copy is 

delayed by one row of N1 pixels, then, streamed into the next row of the 2-D operator 

matrix, as shown in Figure 4.4. The spatiotemporal convolver are of three parallel types 

single, dual and quad MAC, as will be explained in subsection  4.4. 

4.2.4 2-D FFT Convolver Engine  

2-D Convolution in the time domain, as stated in ( 4.2), corresponds to complex 

multiplication of 2-D FIR filter and digital 2-D image spectra, according to the circular 

convolution property of the FFT [16, 17, 82], as shown in Figure 4.5. Multiplication 

costs less logic area in digital implementation than convolution. This Fourier image 

analysis property[17, 46, 82], then, enables 2-D FFT convolution to be utilized in linear 

image filtering.  

 

Figure 4.5:   2-D FFT convolver unit     

The 2-D FFT in Figure 4.5 calculates the Fourier transform of a 2-D FIR filter and a 2-

D digital image. Since the Fourier transform is inherently separable [17, 87], then the 2-

D FFT can be reduced to a 1-D FFT pair, which is called row-column FFT [33]. 

Therefore, the 2-D FFT can be calculated by taking the 1-D FFT of each row, followed 

by the 1-D FFT of each column, as shown in Figure 4.6. Since, the Fourier transform is  

 
Figure 4.6: 2-D FFT convolver unit is separable to be implemented as 1-D FFT 

pair engine architecture. 
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each column of the intermediate image. The resulting real and imaginary parts are the 

image's 2-D frequency spectrum, X(k1,k2).  

Similarly, 1-D FFT pair calculates the 2-D FIR filter’s 2-D frequency spectrum, 

H(k1,k2). These two frequency spectra are point-by-point multiplied to produce Y(k1,k2), 

which represents the 2-D FFT of the filtered image. To transform back into the time 

domain as y(n1,n2), the inverse Fourier transform of Y(k1,k2) is calculated by taking the 

1-D inverse FFT of each column, followed by the 1-D inverse FFT of each row.  

The number of complex multiplications and additions required for a radix-2 1-D FFT 

algorithm of length N1 is (
  

 
) log2 N1 and N1 log2 N1, respectively. Thus, the number of 

complex multiplications and additions needed for the row-column FFT that employs 

such a 1-D FFT are   (
    

 
) log2 N1N2 and N1N2 log2 N1N2, respectively. Therefore, the 

row-column FFT reduces the computational complexity from O (N
4
) to O (N

2
 log2 N

2
). 

This considerable gain in computation justifies the hardware implementation of the row-

column FFT over the 2-D DFT [55, 111]. 

4.2.5 Total 2-D Throughput   

The total throughput µ of the parallel 2-D MAC FIR filtering architecture is measured 

by frame per second (FPS). Generally, the maximum throughput is the maximum 

operating clock frequency divided by one frame [20, 79, 80] at a filtering rate of one 

pixel operation per clock cycle. However, the throughput of the parallel 2-D MAC FIR 

filtering architecture is limited by the large input image and 2-D MAC FIR operation, 

which can be mitigated by parallelism. Thus, the total throughput is directly 

proportional to the operating frequency and the levels of parallelism, and inversely 

proportional to the size of the input image and the 2-D MAC FIR matrix. 

The levels of parallelism is the 2-D image input decimation by α1 and the number of 

multi-MAC engines α2 per convolver unit. Then, the total throughput µ can be 

formulated as: 

Where, N1×N2 is the input image frame dimensions.  

  
    

     
    ( 4.4) 
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The 2-D MAC FIR engine throughput      is directly proportional to the clock speed f 

and limited by the 2-D FIR coefficients (M1×M2) which can be distributed to be 

processed by multi-MAC engines. Then      can be stated as: 

      
 

     

     ( 4.5) 

Thus, the total throughput for the parallel 2-D MAC FIR filtering architectures can be 

calculated as:  

  
     

        
 

( 4.6) 

where, 
    

  

    

  
  is equivalent to one frame at a filtering rate of one pixel operation per 

clock cycle. α1 = 2×2, α2 = 1, 2 or 4 depending on the degree of parallelism inside the 2-

D spatiotemporal convolver using single MAC, dual MAC or quad MAC engine. 

For the parallel 2-D FFT filtering architectures, one frame time is  
    

  
      

    

  
 

because the single 2-D FFT unit performs the 2-D convolution in   
    

  
     

    

  
   

steps [44], while the spatiotemporal convolution requires O(
    

  

    

  
) steps.  

Thus, the overall throughput µ of the parallel 2-D FFT convolution architecture for 2-D 

image input decimated by 2 and maximum clock frequency f (MHz) can be formulated 

as: 

  
 

     
  

    
     
  

 
( 4.7) 

The throughput for the parallel 2-D convolution architectures depends only on the 

image size for the FFT convolution, while spatiotemporal convolution depends on both 

the image and the kernel size.  

4.2.6 Total Computation Rate 

The total number of MACPS can be considered as another performance index to 

indicate the computation rate for each one of the seven spatiotemporal convolution 

architectures developed. The total computation rate γ, measured in GMACPS, is directly 

proportional to the levels of parallelism and the maximum clock frequency f. The level 

of parallelism is the number of parallel 2-D spatiotemporal convolver stages (α1) and the 

number of MAC engines (α2) per multi-MAC and the number of multi-MAC convolvers 

α3 per 2-D spatiotemporal convolver. Thus, the computation rate can be formulated as;  
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             ( 4.8) 

4.3 The Generalized Parallel 2-D Linear Image Filtering Algorithm 

The generalized parallel 2-D filtering algorithm, as shown in Figure 4.7, for the linear 

image stream filtering method is implemented for both the spatiotemporal and frequency 

convolvers. The spatiotemporal convolver is developed in the FPGA as architectures 6, 

7, 8, 9, 10, 11 and 12. In addition to, the frequency or 2-D FFT convolver is realized as 

architectures 13, 14 and 15. This parallel filtering algorithm consists of three stages: 

input decimation stage, parallel sub-filtering processing stage and parallel to serial 

interpolation output stage. The three stages are implemented on the Virtex-6 ML605 

FPGA board using XSG. The mathematical model of these three stages for the stream 

filtering method are presented in the following subsections. 

 

Figure 4.7: The Generalized Parallel 2-D Linear Image Filtering Algorithm 

4.3.1 Input Decimation by 2 for the 2-D Image Stream Filtering 

The input grayscale image x(n1,n2) of size (N1×N2) is decimated by 2 in the two 

dimensions producing (2
2
=4) sub-image blocks of size  

  

 
 
  

 
  for each 2-D image 

input, as shown in Figure 4.7.  The resultant 2-D sub-image blocks are defined as: 
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      n1  n2  

      n1  n2    

      n1    n2  

      n1    n2    

 

( 4.9) 

The decimated blocks of the input 2-D image are realized by a left shift and decimation 

in two dimensions, which are indicated in Figure 4.7 by LS(n1)/LS(n2) and      / 

      respectively. These four 2-D sub-images are not overlapped, and have exactly 

the same pixels as the original 2-D image, hence, the decimation process did not lose or 

reduce any pixel of the original 2-D image. Thus, these four 2-D sub-images can be 

filtered simultaneously and independently within the 2-D processing stage. 

4.3.2 Parallel 2-D Filtering Stage 

The 2-D processing is achieved by convolving the sub-images given by ( 4.10) with the 

2-D FIR kernel h(m1,m2). This linear 2-D filtering can be realized by either 

spatiotemporal or FFT convolution, and  expressed by: 

   
  

 
 
  

 
     

  

 
 
  

 
           ,                                    r=0,1,...3 ( 4.10) 

where,    is the 2-D convolution operation. Equation ( 4.10) describes the filtering 

process shown in Figure 4.7, which is computationally intensive. Thus, a parallel array 

of independent 2-D convolution units can be used to produce a filtered 2-D image, 

speeding up the filtering rate, increasing the throughput and carrying out real time 

processing of large input image sizes. That can be detailed by the following parallel 

linear convolutions: 

           

 

                           

  
 

  

    

  
 

  

    
 

             

 

  0

           

( 4.11) 

Where,        
  

 
 

  

 
   and        

  

 
 

  

 
    are the output 

dimensions of each sub-image.  

4.3.3 Output Interpolation by 2 Reconstruction Stage 

Four filtered streams of 2-D sub-image are produced by the parallel filtering stage. The 

resultant filtered outputs, y0, y1, y2 and y3, are uniquely decimated by 2 sub-images as: 
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( 4.12) 

The reconstruction of the final output y(n1,n2) is obtained by interpolations,      / 

     in the two dimensions, and right shift of RS(n1)/RS(n2) the filtered sub-images 

y0, y1, y2 and y3 given by ( 4.12) and can be seen in Figure 4.7. Therefore, the resultant 

filtered output can be reconstructed as shown below: 

                     

                     

                    

                    

 

( 4.13) 

Where, j:i:k is the same as [j, j+i, j+2i, ..., k], and represents the two operations of right 

shift and interpolation by 2.  

The generalized parallel 2-D linear stream-filtering algorithm can be realized in more 

than one unique architecture, as either a 2-D spatiotemporal convolution in the time 

domain, or a 2-D FFT convolution in the frequency domain, depending on the filter 

kernel length. Where, the parallel algorithm can directly be implemented faster by the 

MAC FIR convolution for the 2-D FIR kernel shorter than (10×10) [82], the filtering 

time is proportional to the kernel length. However, longer filter kernels can efficiently 

be implemented faster with the 2-D FFT convolution, with very little penalty in filtering 

time. With 2-D FFT convolution, the filter kernel have no limits to exploit the 

appropriate size according to the application. The spatiotemporal and spectral image 

filtering is presented in subsection 4.4 and subsection 4.6 respectively.  

4.4 Parallel 2-D Spatiotemporal Convolver Architectures 

The generalized parallel 2-D linear image filtering algorithm of Figure 4.7 can be 

efficiently realized by 2-D spatiotemporal convolution using multi-MAC FIR filter units 

as shown in Figure 4.8. Consequently, the 2-D image filtering applications [21, 35, 38, 

109] in which the 2-D FIR kernel length shorter than (10×10) coefficients can be 

achieved using the 2-D stream filtering as defined in sub-sections 4.2.1, 4.2.2 and 4.2.3. 

In the input stage, four spatially partitioned sub-image blocks, as shown in Figure 4.8, 



 

64 

 

of size (
  

 
 
  

 
   The parallel filtering operations are performed on-the-fly using an 

independent 2-D convolver engine for the pixel streams. The 2-D convolver engine is a 

(M1×M2) MAC FIR digital filter. The filter kernel of (M1×M2) coefficients are stored in 

the 2-D FIR filter, thus, there is no need for separate decimation.  

The temporal partitioned digital image is sequentially streamed into (M1-1) row buffers 

to be filtered in parallel using the M1 convolver units, this constitutes the 2-D (M1×M2) 

convolver engine. The spatiotemporal convolver architectures are of three parallelism 

type using single, dual and quad MAC units, as will be explained in subsection 4.4.1, 

4.4.2 and 4.4.3  respectively. The reconstruction of the final output y(n1,n2) is obtained 

by interpolations,      /      , and right shift of RS(n1)/RS(n2) the sub-images as 

described abstractly in ( 4.13) and shown graphically in Figure 4.8.  

 

 
Figure 4.8: Spatiotemporal implementation of the Parallel 2-D Convolution 

Algorithm  

The parallel 2-D spatiotemporal convolution-filtering algorithm can be implemented by 

three parallel types of architectures according to the hardware structure of their 2-D 

convolver engine. The input decimated by 2 stage and the output interpolated by 2 stage 

are the same for all the seven architectures, the following architectures will be 

distinguished by their 2-D MAC engine structure. Thus, the general architecture, shown 
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in Figure 4.8, can have more than one unique hardware version, as explained in the 

following subsections. 

4.4.1 Parallel 2-D Single MAC Convolver Architectures  

The spatiotemporal convolution architectures use 2-D single MAC convolver filter 

Units of size (2×2), (3×3) and (5×5), as architecture 6, 7 and 8 respectively. Figure 4.9, 

Figure 4.10 and Figure 4.11 show (2×2), (3×3) and (5×5) single MAC 2-D direct 

convolver as unit 4, unit 5 and unit 6 respectively. These units realize the 2-D FIR 

operator of the filtering stage for the parallel linear image stream filtering algorithm of 

Figure 4.8. The row buffer can be implemented by a single Port RAM block with an up 

counter, as address generator, limited to the image width N1, as shown in Figure 4.12.  

 
Figure 4.9: Unit 4; (2×2) Single MAC Convolver Architecture 

 
Figure 4.10: Unit 5; (3×3) Single MAC Convolver Architecture 
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Figure 4.11: Unit 6; (5×5) Single MAC Convolver Architecture 

 
Figure 4.12: Row buffer implementation 

The Xilinx Slice block is parameterized to slice off the first top bit from the MSB of 

each input data sample. The output data type is unsigned one bit, either zero or one, 

with its binary point at zero. Thus, the multiplexer will select the d0 input for positive 

sample and d1 for negative samples after processing by a negate block. 

As configured and shown in Table 4.2, unit 4 occupies less logic area than unit 5 by 

(33%) FFs, (26%) LUTs, (50%) slices, (33%) dedicated DSP 48E1s multiplier, and 

(40%) RAMB 18E1s block memory. In addition, compared to unit 6, unit 4 occupies 

less logic area by (66%) FFs, (65%) LUTs, (68%) slices, (60%) dedicated DSP 48E1s 

multiplier, and (67%) RAMB 18E1s block memory.  
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4.4.2 Parallel 2-D Dual MAC Convolver Architectures   

The parallel spatiotemporal convolution-filtering algorithm of Figure 4.8 can be realized 

by another FPGA-based architecture using the 2-D dual MAC convolver filter units of 

size (2×4) and (4×4). Figure 4.13 and Figure 4.14 show (2×4) and (4×4) dual MAC 

operators for the spatiotemporal convolver architecture as unit 7 and unit 8 respectively. 

As shown in Table 4.2, unit 7 occupies almost half the logic area of unit 8. 

 

Figure 4.13: Unit 7; (2×4) Dual MAC convolver Architecture 

 
Figure 4.14: Unit 8; (4×4) Dual MAC convolver Architecture 
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Figure 4.15: Unit 9; (2×8) Quad MAC convolver Architecture 

 
Figure 4.16: Unit 10; (8×8) Quad MAC convolver Architecture 
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largest for architecture 12; the seven architectures can be categorized by the area 

occupation starting from the smallest as architecture 6, 9, 11, 10, 7, 8 to the largest as 

architecture 12. Consequently, this area occupation affects the performance indices set 

of speed, power consumption, throughput and computation rate as shown in Table 4.4.  

Table 4.3: Logic Devices utilization by each of the parallel spatiotemporal filtering 

architectures 

 
Archit. 

6 

Archit. 

7 

Archit. 

8 

Archit. 

9 

Archit. 

10 

Archit. 

11 

Archit. 

12 

 2-D FIR filter kernel (M1×M2) 

 2×2 3×3 5×5 2×4 4×4 2×8 8×8 

FFs 688 1 632 1 705 872 1 624 1 272 4 684 

LUTs 442 1 132 1 108 588 1 170 947 3 722 

Slices 205 441 502 283 520 426 1 421 

DSP 48E1s 8 12 20 16 32 32 128 

RAMB 18E1s 12 20 36 20 44 36 156 

Several observations may be made from Table  4.4  performance indices. Firstly, the 

operating clock frequency is particularly insensitive to the occupied logic area [31] by 

the seven architectures, and principally operating around the indicated 214 MHz 

maximum frequency. Secondly, the dynamic power consumption at (40 nm) junction 

temperature of 54°C is monotonically decreases from 140mW for architecture 12, 

46mW for architecture 10, 39mW for architecture 11, 27mW for architecture 8, 24mW 

for architecture 9, 21mW for architecture 7 down to 14mW for architecture 6. Thirdly, 

the highest throughput, in filtering a grayscale MRI slices, is achieved by architectures 

6, 9 and 11, which is almost 2.25, 6, 2 and 4 times than that of architectures 7, 8, 10 and 

12 respectively. 

Table 4.4: Performance indices of the parallel spatiotemporal filtering 

architectures 

 
Archit. 

6 

Archit. 

7 

Archit. 

8 

Archit. 

9 

Archit. 

10 

Archit. 

11 

Archit. 

12 

 2-D FIR filter kernel (M1×M2) 

 2×2 3×3 5×5 2×4 4×4 2×8 8×8 
Maximum Clock 

Frequency  (MHz) 
215 214 216 215 213 214 213 

Dynamic Power  

(mWatt) 
14 21 27 24 46 39 140 

Throughput  (FPS), 

64×64 MRI 
54 931 24 414 8 789 54 931 27 465 54 931 13 732 

Throughput  (FPS), 

1024×1024 

MRI 
214 95 34 214 107 214 53 

computation rate 

(GMACPS) 

1.8 2.7 4.5 3.6 7.2 7.2 28.8 
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According to ( 4.6), where the one frame time is inversely proportional to the size of the 

filtered image frame, thus, the throughput was significantly affected as the MRI size 

goes from 64×64 to 1024×1024 for the same 2-D kernel size. Although, the lowest 

throughput of (34 FPS) achieved by architecture 8 is still within the real-time 

performance of (30 FPS) frame rate [17, 112]. Consequently, the seven parallel 

spatiotemporal convolution architectures are evidently suitable for real-time 

applications [21, 34, 35, 38, 97-99, 102-104, 106, 108, 109, 111, 113, 114]. Fourthly, 

according to ( 4.8), the highest computation rate is accomplished by architecture 12, due 

to the three levels of parallelism. That is double than that of architecture 10 and 11. For 

the remaining implementations, that are (4), (3), (5) and (8) times than that of 

architecture 9, 8, 7 and 6 respectively.   

The seven parallel spatiotemporal convolution architectures are developed as “plug and 

filter” architectures. Thus, twelve generic 2-D FIR filters can be used in the 

development of edge detection and noise smoothing for the biomedical imaging of 

64×64 greyscale MRI, then, improved as shown in Table 4.5 and Table 4.6 respectively. 

Table 4.5: Filtering results of 64×64 greyscale MRI using architecture 8 
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The MRI filtered images in Table 4.5 show the effect of the twelve generic 2-D filtering 

operators, eight edge detection operators and four noise smoothing operators. The eight 

edge detection operators are EdgeXY, EdgeX, EdgeY, SobelXY, SobelX SobelY, 

Laplacian and PrewittX. The four noise-smoothing operators used are Blur, Smooth, 

Sharpen and Gaussian. The Edge operators detect the changes or differences in the pixel 

value at the edges of regions, the contrast between the region and the background or 

between two regions. Thus, the Edge operators are differencing filters, which make 

them sensitive to noise, as in the first eight operators of Table 4.5, which act as low pass 

filters except the Laplacian filter. This high pass filter can be used to detect edges of all 

orientations, but is very sensitive to noise.   

Table 4.6: Filtering results for grayscale 64×64 MRI of twelve improved 2-D FIR 

filter operators using architecture 8 

2-D FIR 

 Filter 
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5x5 kernel 
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 64×64 MRI 
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4.5 Three Dimensions Application: Parallel Colour MRI Filtering  

The greyscale MRI pixels are represented by a scalar value between zero and (255). The 

logical extension to the grayscale 2-D MRI is the Colour 3-D MRI or functional MRI 

(fMRI). The colour 3-D MRI pixels are represented by a vector of components rather 
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than a scalar.  Then, colour 3-D MRI or fMRI is represented as a vector-base image of 

(N1×N2×3) size, as following: 

          

         
         

         
  

( 4.14) 

Where, x1(n1,n2), x2(n1,n2) and x3(n1,n2) are the MRI three colour components of red, 

green and blue of size (N1×N2) each. The 3-D colour MRI or fMRI is typically 

represented by a three-dimensional vector of eight bits per component, resulting in a 24-

bit colour system. The 3-D colour MRI filtering involves the 2-D convolution of the raw 

colour MRI  (n1,n2) with a 2-D FIR operator h(m1,m2) to produce the three components 

filtered colour output  (n1,n2), given by, 

 

         
         

         
   

         
         

         
                                                

( 4.15) 

where,    is the 2-D convolution, which can be expressed as: 

                                  

    

    

    

    

 

( 4.16) 

For the real-time 3-D colour MRI filtering [104, 112], the parallel 2-D linear image 

filtering algorithm, as shown in Figure 4.7, and its FPGA implementation on Figure 4.8, 

is preferred for its faster filtering speed, high computation rate and higher throughput 

with low dynamic power consumption and small logic area occupation. Consequently, 

the parallel 2-D spatiotemporal convolver architectures 6, 7, 8, 9, 10, 11and 12 can be 

utilized as FPGA implementation for the parallel 3-D colour MRI filtering applications. 

This parallel colour MRI convolution algorithm can be represented as follows: 
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( 4.17) 

The performance indices of the seven architectures for the colour MRI filtering are the 

same as those indices for the greyscale MRI, as shown in Table 4.3 for the logic area 

occupation, and Table 4.4  for the maximum clock frequency, dynamic power  

consumption and the computation rate. However, the total throughput (FPS) is less due 

to the three frames of red, green and blue that constitutes the 3-D colour MRI. Thus, the 

total throughput for the parallel colour 3D MRI filtering is 1494, 664, 239, 1494, 747, 
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1494 and 373 using architectures  6, 7, 8, 9, 10, 11 and 12 respectively for an input 

colour MRI of (224×224×3) size. 

The colour MRI filtered results using architecture 8 are shown in Table 4.7. Twelve 2-D 

FIR filters can be used in the development of edge detection and noise smoothing of the 

biomedical imaging of 224×224×3 colour MRI slice. These twelve MRI filtering 

operators are improved for the suitability of this particular biomedical imaging. The 

MRI filtering results are achieved by modifying the generic twelve 2-D FIR filters of 

Table 4.1 according to a heuristic  criteria: If the sum of the (M1×M2) elements is larger 

than the generic 2-D filter by 1 or more, then, the filtering result will be a brighter MRI. 

This criterion is applied to the MRI results of EdgeXY, EdgeX, EdgeY, SobelXY, 

SobelX, SobelY, Laplacian, PrewittX, Blur and Sharp operators.  

Table 4.7: Filtering results for colour 224×224×3 MRI of twelve developed 2-D FIR 

filter operators using architecture 9 
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Conversely, a darker MRI will be obtained if the sum of (M1×M2) elements is smaller 

than the generic 2-D filter, as with the MRI results of Smooth and Gaussian. If the 

(M1×M2) elements sum is zero, the resulting MRI is not necessarily completely black, 

but it will be very dark, this is the case with the generic 2-D operators of EdgeXY, 
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EdgeX, EdgeY, SobelXY, SobelX, SobelY, Laplacian, PrewittX. If the 2-D operator 

elements sum is 1, then, the resulting MRI will have the same brightness as the original 

MRI slice, this last criterion is applicable to all the twelve 2-D operators. As a 

comparison of filtering results, the seven architectures are used, as shown in  Table 4.8, 

to  process  the  same  colour  MRI  using  the  (M1×M2)  2-D FIR  operators  of 

architectures 6, 7, 8, 9, 10, 11 and 12. The filtered MRIs are brightened due to the sum 

of the (M1×M2) elements being larger than the identity 2-D filter by 1. 

Table 4.8: Filtering results for colour 224×224×3 MRI using the parallel 

spatiotemporal filtering architectures 
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The filtering results within the above tables show the edge filtering, noise smoothing 

and edge enhancement for diverse regions of the colour MRI that can be used by the 

physician  to noninvasively depict areas of the brain for investigating either the human 

brain prior to neurosurgery or the brain functional activities in detail that are used for 

specific tasks. Thus, architecture 6, 7, 8, 9, 10, 11 and 12 can be plugged and used to 

develop filters for many colour MRI or fMRI, current and future potential practical 

applications; these include, reading of brain states [113], intracranial Hemorrhage 

annotation [96],  brain–computer interfaces [98, 114] and communicating with locked-

in patients [115]. 

4.6 FPGA Implementation as Indirect Parallel 2-D FFT Filtering Architectures 

The parallel 2-D image filtering algorithms can process the 2-D image filtering 

applications [55] [32, 33] in which the 2-D FIR kernel length is longer than (10×10) 
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coefficients [82] [88, 92]. The FPGA implementation of this type of algorithm can be 

efficiently captured by more than one fast parallel 2-D FFT filtering architecture, 

depending on the 2-D image segmentation, FPGA memory and accordingly the degree 

of parallelism in the filtering stage. Consequently, two efficient hardware architectures 

are developed; single 2-D FFT convolution architecture and parallel 2-D FFT 

convolution architecture. The first approach is described in subsection 4.6.1 and 4.6.2 as 

architectures 13, and 14, respectively. The second approach is described in subsection 

4.6.3 as architecture 15.  

4.6.1 Single 2-D FFT Filtering Unit Implementation 

The 2-D FFT convolver engine shown in Figure 4.6 can be realized as a single 2-D FFT 

convolution architecture, shown in Figure 4.17. This architecture consists of input, 

filtering and output stages.  Within the input stage the 2-D MRI and the 2-D FIR 

operator are streamed using the linear 2-D Stream Filtering Method, as explained in 

subsection 4.2.1. The temporal stream of the 2-D FIR operator is zero padded to be 

equal in size to the 2-D MRI. Both streams are row buffered to be processed in the 

filtering stage. The row buffer component is implemented as shown in Figure 4.12. 

 

Figure 4.17: Architecture 13; the implementation of the Fast Single 2-D FFT 

Filtering unit on the Virtex-6 FPGA board 

The 2-D filtering stage is a spatiotemporal to frequency transformation structure, as 

explained in subsection 4.2.4. This structure is consists of 2-D FFT, complex multiplier 

and 2-D IFFT components. The 2-D FFT consists of two Xilinx FFT v7_0 blocks and 

two transpose unit structure, as shown in Figure 4.17. The transpose unit can be realized 

as in Figure 4.18.  Where, the transformed 2-D matrix is first inputted via port A of a 
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dual port RAM, and then accessed in port B by two address control circuitries. The 

writing address circuitry is an up counter from zero to (N1×N2-1) to store the image 

stream row by row. While, reading address circuitry is a combination of two up counter 

to generate the transpose 2-D matrix out of port B column by column.  

The two 2-D matrices of the FIR coefficients and the MRI are simultaneously frequency 

transformed via the real inputs of two parallel Xilinx FFT v7_0 blocks, and setting the 

imaginary input to zero. Each FFT outputs frequency spectrum in, real and imaginary 

parts. Thus, the image will be transformed into an intermediate image of real array and 

imaginary array. Subsequently, two transpose units are used. Next, 1-D FFT is repeated 

on each column of the intermediate image. The resulting real and imaginary parts are 

the image's 2-D frequency spectrum, X(k1,k2).  

 
Figure 4.18: transpose unit implementation 

Similarly, 1-D FFT pair calculate the 2-D FIR operator’s 2-D frequency spectrum, 

H(k1,k2). Using Xilinx complex multiplier block, these two frequency spectra are point-

by-point multiplied to produce Y(k1,k2), which represents the 2-D FFT of the filtered 

image. To transform back into the time domain, the inverse Fourier transform of 

Y(k1,k2) is calculated by taking the 1-D inverse FFT of each column, followed by two 

transpose units to arrange the two filtered image components, then the 1-D inverse FFT 

of each row is processed.  
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In the output stage, the two streams of the filtered MRI are conditioned by an absolute 

unit first, and then summed to produce the 2-D filtered MRI y(n1,n2). The final 

reconstructed output is connected to a gateway-out block, which provides the 

conversion from the fixed point format which is used by the FPGA to floating point 

numerical representation used by Simulink blocks for displaying the filtered MRI. 

4.6.2 Single 2-D IFFT Convolution k-Space MRI Unit Implementation 

MRI slice visualization is achieved by reconstructing the image from k-space MRI data 

[116-118]. The MRI machine collects data in the frequency domain which is known as 

the k-space. This real-time data needs to be filtered first to create the digital 2-D MRI 

that can be accurately inspected. This filtering can efficiently be processed using 2-D 

IFFT convolution algorithm. Due to the k-space MRI data being collected as 2-D 

frequency data, then the 2-D IFFT part of architecture 14, as shown in Figure 4.19, can 

be used for filtering and visualization. Where, the two frequency inputs X(K1,K2) and 

H(K1,K2) are point-by-point complex multiplied.  

 

Figure 4.19: Architecture 14; implementation of the Fast Single 2-D IFFT 

convolution k-space MRI Filtering unit on the Virtex-6 FPGA board 

Then, the resultant real and imaginary 2-D filtered MRI has to be transferred back to the 

spatiotemporal domain by 2-D IFFT and conditioned to be visualized as a digital 2-D 

MRI image. The FPGA implementation details are as explained in the previous 

subsection of 4.6.2. 
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4.6.3 Fast Parallel 2-D FFT Filtering Architecture 

The memory limitation of any digital signal processor to store the input images of larger 

sizes necessitates the segmentation of the 2-D input image into independent 2-D sub-

images. Consequently, a parallel fast convolution algorithm has to be developed to 

simultaneously process these sub-images. Thus, the generalized parallel 2-D filtering 

algorithm of Figure 4.7 may be realized in hardware as architecture 15, shown in Figure 

4.20.  This architecture consists of input, filtering and output stages. The input 

decimated by 2 stage and the output interpolated by 2 stage are as described in 

subsection 4.3.1 and 4.3.3 respectively. The main difference is in the filtering stage 

which in this case based on the convolution property of the 2-D FFT.  

The input MRI is decimated by 2 to produce four independent sub-MRI blocks x0, x1, x2 

and x3. These sub-images and the 2-D FIR operator are converted from spatial 

parallelism to temporal streams as described in subsection 4.2.1. Each stream is row 

buffered before being processed within the filtering stage. Due to the independency of 

the four decimated sub-streams, the fast 2-D filtering stage is carried out simultaneously 

using parallel 2-D FFT convolution array. Consequently, there are no internal 

communications in the convolution-filtering array due to the elimination of boundary 

conditions.  

The filtering stage consists of four parallel 2-D Fast Fourier Transforms (FFT) 

convolution structure. Each 2-D FFT convolution structure is fast single 2-D FFT 

convolution sub-architecture, as described in subsection 4.6.1, where, 2-D spatial 

convolution is achieved by parallel complex multiplication. The four sub-MRI pixels 

streams and the 2-D FIR operator are frequency transformed by 2-D FFT, complex 

multiplied and spatially transformed by 2-D inverse FFT. The resultant filtered sub-

MRIs have two components; real and imaginary. Each component is conditioned by an 

absolute unit and summed to produce four decimated by 2 filtered sub-images of  y0, y1, 

y2 and y3, as shown in Figure 4.20. 

The final filtered 2-D MRI is reconstructed from the four sub-MRI using interpolation 

by 2.  This output signal is connected to a gateway-out block, which provides the 

conversion from the FPGA-used fixed point format to floating point numerical 

representation used by Simulink blocks for displaying the filtered 2-D MRI. 
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Figure 4.20: Architecture 15; implementation of Fast Parallel 2-D FFT convolution 

Algorithm on the Virtex-6 FPGA board 

4.6.4 Performance Indices of Parallel 2-D FFT Convolution Architectures 

The fast 2-D FFT convolution architectures results are presented as logic devices 

utilization tables, performance indices tables and 2-D MRI filtered images tables. The 

performance indices of three 2-D FFT convolver architectures are considered as a 
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complete set of area, speed, power and throughput using XSG to target the Virtex-6 

ML605 board.  

The three main variables that affect the 2-D image filtering results are the image size, 2-

D FIR operator size and accordingly the size of the N-point FFT/IFFT. Hence, 

comparative evaluation results of the three FPGA implementation architectures are 

obtained for greyscale MRI slices of 32×32, 64×64, 128×128, 256×256 and 512×512 

size and distinctive 2-D FIR operator of 15×15, 31×31, 63×63,127×127 and 256×256 

coefficients, to be individually applied with a (32, 64, 128 and 256) N-point FFT/IFFT. 

Accordingly, the area occupation, performance indices and selected filtered outputs of 

the two architectures 13 and 15 are indicated in Table  4.9, Table  4.10, Table  4.11, Table 

 4.12, Table  4.13 and Table 4.14 respectively. Moreover, the performance indices of 

architecture 14 are compared to that of architecture 13, and the filtering results are 

presented in Table 4.15 for two k-space MRI slices. 

Table 4.9: Logic Devices utilization by architecture 13  

 

Greyscale 

MRI size 

(N1×N2) 

2-D FIR 

kernel 

(M1×M2) 

FFT 

N-

point 
FFs LUTs Slices 

DSP 

48E1s 

RAMB 

18E1s 

32×32 15×15 32 8826 4837 1844 96 16 

64×64 31×31 64 10609 5830 2065 108 31 

128×128 63×63 128 13343 7533 2900 148 84 

256×256 127×127 256 15315 9087 3568 160 148 

Table 4.10: Logic Devices utilization by architecture 15 

Grayscale 

MRI size 

(N1×N2) 

2-D FIR 

kernel 

(M1×M2) 

FFT 

N-

point 
FFs LUTs Slices 

DSP 

48E1s 

RAMB 

18E1s 

64×64 15×15 32 35174 19366 7555 384 64 

128×128 31×31 64 42299 22970 9203 432 124 

256×256 63×63 128 53208 30123 11643 592 336 

The minimized logic area of the two architectures, as indicated in Table 4.9 and Table 

4.10, are occupying proper logic area of FFs, LUTs, slices, DSP blocks and Block 

RAMs. Where, the single architecture 13 was on average occupying less than one-third 

logic fabric, one-quarter of DSP blocks and half BRAMs than that of the parallel 

architecture 15. Consequently, this area occupation affects the performance indices set 

of speed, power consumption and throughput as indicated in Table 4.11 and Table 4.12. 

These tables present three performance indices of frequency, power and throughput.  

Several observations can be made from these results. Firstly, the maximum clock 

frequency is steadily speeding up [33] as the MRI size, 2-D operator size and FFT N-
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point are decreasing. Secondly, the power consumption monotonically decreases as the 

MRI size, 2-D operator size and FFT N-point are decreasing. Thirdly, architecture 13 

outperformed architecture 15 in maximum clock frequency and power consumption. 

Fourthly, architecture 15’s throughput outperforms that of architecture 13, on average, 

by four times within all the corresponding MRI size, 2-D operator size and FFT N-

point.  

Architecture 14 utilized 2-D IFFT part of architecture 13 to filter real-time k-space MRI 

data. Architecture 14 occupied less logic area than architecture 13 by (31%) FFs, (5%) 

LUTs, (17%) slices, (75%) dedicated DSP 48E1s multiplier, and (14%) RAMB 18E1s 

block memory. Consequently, architecture 14 consumes less dynamic power of 108 

mW at maximum clock frequency of 190 MHz . 

Table 4.11: Performance indices of architecture 13 

Grayscale 

MRI size 

(N1×N2) 

2-D FIR 

kernel 

(M1×M2) 

FFT 

N-

point 

length 

Maximum 

clock 

frequency 

(MHz) 

Dynamic 

Power  

(mWatt) 

Throughput 

(FPS) 

32×32 15×15 32 260 59 25391 

64×64 31×31 64 244 82 4964 

128×128 63×63 128 229 121 998 

256×256 127×127 256 203 282 193 

Table 4.12: Performance indices of architecture 15 

Grayscale 

MRI size 

(N1×N2) 

2-D FIR 

kernel 

(M1×M2) 

FFT 

N-

point 

length 

Maximum 

clock 

frequency 

(MHz) 

Dynamic 

Power  

(mWatt) 

Throughput 

(FPS) 

64×64 15×15 32 229 255 22363 

128×128 31×31 64 211 354 4292 

256×256 63×63 128 190 499 828 

In 2-D MRI filtering, an (N1×N2) image can be enhanced by convolving the original 

image with a 2-D sharpening operator of (M1×M2) kernel. A generic sharpening 

operator consists of (M1×M2) coefficients of (-1), except the central element (m) to be 

calculated by the following equation: 

                    ( 4.18) 

All elements are divided by an operator factor (s = M1×M2) to ensure that the low 

spatial frequency is not amplified. The 2-D MRI filtering results are shown in Table 

4.13 and Table 4.14  using architecture 13 and 15 respectively. The size of the original 

greyscale MRI is of 64×64, 128×128, 256×256 and 512×512 to be edge sharpened 

using a sharpen operator of 15×15, 31×31, 63×63 and 127×127 kernels respectively. 

The sharpen operator is a noise smoothing operators and Edge filtering without the 
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strong sensitivity to noise to prevent the output value being different from the input in 

uniform regions of the MRI.  

Architecture 15 can filter MRI slices of double size than that filtered using architecture 

13, due to the input MRI’s decimation by 2. Then, the 2-D operator kernel and the N-

size FFT has half the value of that used in architecture 13 for the same MRI size. The 

filtered MRIs are slightly larger by M-1 pixels with the new two dimensions of (N1+M1-

1) × (N2+M2-1).  

Table 4.13: the filtering results for greyscale (N1×N2) MRI of the generic 2-D FIR 

Sharpen operators using architecture 13 

Grayscale 

MRI size 

(N1×N2) 

2-D Sharpen 

kernel 

(M1×M2) 

FFT 
N-point 

Size 

Original 

(N1×N2) 

MRI 

Filtered 

MRI 

64×64 31×31 64 

  

128×128 63×63 128 

  

256×256 127×127 256 

  
 

Table 4.14: the filtering results for greyscale (N1×N2) MRI of the generic 2-D FIR 

Sharpen operators using architecture 15 

Grayscale 

MRI size 

(N1×N2) 

2-D Sharpen 

 kernel 

(M1×M2) 

FFT 
N-point 

Size 

Original 

(N1×N2) 

MRI 

Filtered 

(N1×N2) 

MRI 

128×128 31×31 64 

  

256×256 63×63 128 

  

512×512 127×127 256 
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Architecture 14 was used to filter and visualize 2-D k-space MRI data input. This k-

space data are generally obtained after processing data produced by an MRI machine. 

Architecture 14, when processing the real-time collected MRI data, was producing a 

sagittal view of a human head as shown in Table 4.15, where the original slice number 

48 and slice 58, as shown on the top of the filtered results, are filtered and visualized out 

of a (256×256×99) k-space MRI volume data stack of slices. Because of the way the 

data were collected there is some spatial aliasing in the reconstructed image for the 

Sharpen operator’s kernel below 127× 127 coefficients. 

Table 4.15: Sharpening results for k-space greyscale (256×256) MRI of the generic 

2-D FIR Sharpen operators using architecture 14 

Sharpen 

kernel 

(M1×M2) 

  

Sharpen 

kernel 

(M1×M2) 

  

3×3 

  

31×31 

  

7×7 

  

63×63 

  

15×15 

  

127×127 

  

4.7 Cross-correlator application: FPGA Architecture for Parallel 2-D MRI 

Matched Filtering Algorithm 

The detection of a targeted MRI slice from a MRI stack library is presented for its 

diagnosis applicability importance to facilitate the similarity access of a particular case 

from a pre-stored bank of images [119-121]. This similarity measure can be achieved by 

cross-correlation function [111], or referred to as 2-D image match filter. To perform 

cross-correlation by using convolution, the target image needs to be reversed to counter-

act the reversal that occurs during convolution. Thus, the 2-D MRI match filtering can 

be implemented using either architecture 13 or 15. To convert the target MRI slice into 

a 2-D match filtering operator, the targeted MRI slice must be rotated (180
0
), which is 

the same as being flipped left-for right  and then flipped top-for-bottom.  
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Therefore, architecture 13 and architecture 15 can effectively be modified to be the 

implementation of the single correlator engine unit and the parallel 2-D MRI matched 

filtering algorithm respectively, to detect a targeted MRI slice h(m1,m2) within a MRI 

stack library x(n1,n2); where, the FIR impulse response coefficients of the filter are 

replaced by the samples of the target MRI slice input to be detected. Except, the target 

MRI slice has been flipped left-for right and then flipped top-for-bottom to implement 

its reversed-time version h(-m1,-m2).  For example, when x(n1,n2)  and h(m1,m2), are 

convolved to produce y(u) using architecture 15, the equation will be as: 

                               

    

    

    

    

 

   

  0

 

( 4.19) 

Where, r=0, 1...3 are the parallel processing stages. In comparison, the correlation z(u) 

of x(n1,n2) and h(m1,m2) can be obtained by convolution of x(n1,n2) and h(-m1,-m2) as 

follows:  

                                     

    

    

    

    

 

   

  0

 

( 4.20) 

That is, flipping left-for right in the N1 dimension and then flipped top-for-bottom in the 

N2 dimension is accomplished by reversing the sign of the time index. Accordingly, the 

parallel 2-D convolution described in ( 4.10) and ( 4.11) may be modified to perform 

parallel 2-D correlation filtering using ( 4.20). 

Architecture 15 can be exploited to implement the parallel 2-D cross-correlation 

algorithm as the parallel 2-D MRI matched filter architecture with higher throughput. In 

the input stage, the original (512×512) MRI library is decimated by 2 to be divided into 

four (256×256) sub-MRI libraries, while the targeted MRI is of size (85×79). Hence, the 

N-point FFT/IFFT size is parameterized to be equal to 256, and, the targeted MRI slice 

must be zero padded to the size of (256×2562) pixels.  

The implementation of the parallel 2-D MRI match filtering algorithm is realized as 

architecture 15. The value of each pixel in the final correlated image is a measure of 

how well the target MRI slice matches the searched MRI library at that point. In this 

particular example, simply locating the brightest pixel in the final correlated MRI would 

specify the detected coordinates of the targeted MRI, as shown in Figure 4.21. The peak 

in the pixels values is separated from the 2-D cross-correlation output by thresholding. 
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For this example the thresholding level was 248,  and all the pixels value below that 

level is set to zero, hence the black colour background. 

  

 
Figure 4.21: The parallel 2-D MRI matched filtering (cross-correlation) example 

using architecture 15 

4.8 Conclusion 

A parallel 2-D filtering algorithm was presented and mathematically modelled, to cover 

the extensive range of the linear 2-D image filtering and the 2-D image modality, in 

particular large MRI slice size. Then, a generic parallel hardware version of this parallel 

filtering algorithm was implemented on Virtex-6 FPGA board for the spatiotemporal 

MAC FIR and FFT convolution. The wide-ranged linear 2-D FIR kernels was split into 

two ranges. Firstly, those shorter than about 10×10, the spatiotemporal convolution was 

developed. Secondly, the FFT convolution was developed for the longer filter kernels. 

Ten generic architectures were devised. The performance indices for the ten 

architectures were considered as a complete set of area, speed, power and throughput. 

The superiority of the developed architectures were indicated by the minimized utilized 

area, high throughput, stable maximum clock frequency and low dynamic power 

consumption. Three successful applications on medical image filtering and detection 

were presented to demonstrate the high performance of the parallel 2-D convolution 

architectures.  

  

MRI rotate  (1800 )

Architecture 15



 

86 

 

Chapter 5. Parallel 3-D Greyscale/Colour Image Filtering 

Algorithm and Its FPGA Implementations  

5.1 Introduction 

Three dimensional volumetric greyscale/colour image acquisition by means of various 

imaging modalities introduces degradation that affects the image quality [19, 114]. Such 

multi-dimensional image degradations include digitization noise, artifacts introduced 

during collection, video sequence motion blur, modality-inherent low contrast and three 

dimensional image transmission through noisy communication channels. Improving the 

three dimensional image quality is of utmost importance to help the end-user understand 

image better and allow the subsequent multi-dimensional image processing and analysis 

operations to benefit from such enhancement.  

Thus, multi-dimensional image quality enhancement through noise suppression, 

blur/degradation removal and edge/contrast enhancement necessitate the proposal of 

multi-dimensional image filtering algorithm. This, however, requires a huge amount of 

volumetric image data and intensive computations to be performed to produce multi-

dimensional filtering under strict time conditions. Consequently, this demand for high 

processing power in multi-dimensional applications cannot be achieved using sequential 

processing system only, but by a parallelized processing system. Practically, there are a 

large number of applications embracing parallel filtering to accomplish satisfactory 

throughput in reasonable time, for example robot vision [122, 123], medical image 

processing [124], weather forecasting [71], seismic data processing [125], video coding 

and processing [44, 67, 79]  and wireless communication system [52].     

Therefore, the aim of this chapter is to develop a performance-efficient parallel three 

dimensional greyscale/colour image filtering algorithm that exploits the 

multidimensional FIR filter kernels, increases the throughput by volumetric image 

decimation, and then reduces the processing time and the overhead of overlapping 

segments/ boundary conditions in the block filtering algorithm. The proposed parallel 

algorithm relieves the huge volume input size restriction covering the full range of the 

FIR filter kernels. The mathematical model for the parallel volume algorithm is 

presented and eight new generic architectures are implemented on Virtex-6 

development board. New applications for four dimensions MRI (fMRI) volume data, 

real-time k-space MRI volume data and 3-D MRI cross-correlation are successfully 
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developed and the performance indices results as a complete set of area, speed, dynamic 

power and throughput are evaluated 

The outline of this  chapter is organised as follows: In section 5.2, the main research 

concepts are defined and mathematically explained. In section 5.3, a generalized parallel 

3-D linear image filtering algorithm is presented and mathematically modelled. In 

section 5.4, five parallel 3-D spatial convolution architectures are developed, and their 

performance indices are evaluated as a complete set of area, speed, dynamic power 

consumption and throughput as well as the computation rate. In section 5.5, a successful 

application of four dimensions colour MRI slice filtering using the five parallel MAC 

architectures is developed, analysed and discussed. In section 5.6, three generic FFT 

architectures are developed, then, their performance indices are evaluated as a complete 

set of area, speed, dynamic power consumption and throughput. In section 5.7, another 

successful application of 3-D cross-correlation is realized for parallel 3-D MRI match 

filtering algorithm. Finally, the conclusion of this chapter is presented in section 5.8. 

5.2 Research Concepts Definitions 

This section presents the main research concepts on which this chapter is based. 

5.2.1 Linear 3-D Stream Filtering Method 

A 3-D image volume can be considered as 3-D matrix x(n1,n2,n3) of size (N1×N2×N3). 

Where, n1, n2 and n3 are the row, column and slice (image frame) coordinates 

respectively, as shown in Figure 5.1. Each voxel has a 3-D size of (dN1×dN2×dN3) 

pixels. For example, the 3-D MRI volume is formed as a series of 2-D MRI slices. The 

2-D MRI slices are obtained along the N1-N2 object plane, and then the MRI detector is 

moved along the N3-axis to acquire a new MRI slice. Usually voxel values are 

represented with 8-bit accuracy. This means their values range from zero (black) to 

255(white), with intermediate values representing shades of gray. A typical 3-D MRI 

volume of 20 slices of 256×256 pixels sums up to a total of 10.4 megabits. Thus, a 3-D 

image involves a large amount of data, which requires a huge storage capacity and 

reasonable speed to handle. 

Linear stream 3-D image filtering is a logical extension of the linear stream 2-D image 

filtering. Nonetheless, the third dimension introduces a significant increase in the 

algorithm computation requirements which necessitates the need for a computationally 

efficient solution. 3-D Stream filtering can overcome this bottleneck in four steps to 

convert from spatial to temporal parallelism. Firstly, decimate the 3-D image volume 
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into 3-D volumetric sub-image. Secondly, decompose the decimated 3-D sub-images 

into frames of 2-D slices. Thirdly, partition each 2-D slice into blocks of rows. Fourthly, 

convert spatially partitioned blocks of 2-D slices into temporal parallelism.  

 
Figure 5.1:3-D image physical representation. 

An image is often streamed at a rate of one pixel per clock cycle. The parallel 3-D 

filtering operations are performed on the fly in parallel for the pixels using a separate   

3-D FIR filter on each partition block. Architectures 16, 17, 18, 19, 20, 21, 22 and 23 

are implemented to achieve these four levels of parallelism. Thus, a linear 3-D stream 

filtering method exploits as much processing as required on the streamed pixels as 

passing through the FPGA.  

5.2.2 Linear 3-D FIR Filters  

The 3-D FIR filters [43, 126, 127] are neighbourhood-based operators on three 

dimensional kernels. That is the intensity of each voxel is enhanced according to the 

intensities of the neighbouring voxels based on the 3-D kernel size. A 3-D FIR filter is 

an operator of three 2-D consecutive MAC FIR operators. These operators map a 3-D 

image into a filtered 3-D image by a 3-D accumulated sum of point by point 

multiplication of  a 3-D FIR impulse response coefficients, h(m1,m2,m3), and the voxel 

values of the 3-D image, x(n1,n2,n3), within the 3-D window [19]. This 3-D FIR filter 

interacts with its 3-D image input through a linear 3-D convolution process: 

N3

N1
N2

N3 slice

dN2

dN1

dN3
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                                      ( 5.1) 

Where, *** is the linear 3-D convolution operation, h(m1,m2,m3) is the 3-D operator of 

size (M1×M2×M3) and x(n1,n2,n3) of size (N1×N2×N3). Linear 3-D filtering is equivalent 

to performing a 3-D convolution in the spatial domain with the kernel flipped left-for-

right, top-for-bottom and frame-for-frame, h(-m1,-m2,-m3), thus the above equation can 

formally stated as: 

                          

    

    

    

    

    

    

                     
( 5.2) 

Since the linear 3-D FIR filters can be designed to have symmetrical coefficients around 

the vertical, horizontal and the frame axes, then these flips are already achieved. Thus, 

the 3-D convolution can be achieved by 3-D FIR filter of coefficients’ symmetry in the 

three dimensions.  

The values and size of the 3-D FIR impulse coefficients determine the filtering 

operations and the convolution implementation domain [19, 44, 82, 128].  Some of the 

common filtering operations are edge detection and noise smoothing depending on the 

following weights sum equation: 

                
 
 
 

    

    

    

    

    

    

 

( 5.3) 

The coefficients sum is zero or one for the 3-D edge detection filters or 3-D noise 

smoothing filters respectively. Some of the common generic 3-D edge filters are Edge, 

Sobel, Laplacian and Prewitt, and for the noise smoothing filters, Sharpen, Gaussian, 

Smooth and Blur, as shown in Table 5.1. These 3-D filters will be implemented and 

applied to the biomedical imaging of Magnetic Resonant Imaging (MRI) as a “plug and 

develop” filtering processor. These 3-D image operators are realized in the spatial 

domain as architectures 16, 17, 18, 19 and 20, or in the frequency domain as 

architectures 21, 22 and 23. 

A 3-D filter operator size (M1×M2×3) determines the proper convolution 

implementation for the linear 3-D filter to be in the spatial or frequency domain. A 

spatial convolution is more important of these two, since volumetric images have their 

information encoded in the spatial domain rather than the frequency domain [82]. 

Where, the 3-D volume image input is x having nx number of pixels, and a 3-D FIR 
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filter kernel is h having nh number of elements. Then the straight spatial convolution 

method required O(nx nh) operations, while a FFT convolution  perform the 3-D 

convolution in O(nx log2 nx) steps [44]. Since, nh is always greater than log2 nx for long 

3-D kernel, then, the Fourier multiplication technique should quickly win over spatial 

multiplication for long FIR kernels. For short 3-D kernel, however, the inequality 

formula will be nh < log2 nx, hence, the implementation should be carried out using the 

3-D spatial convolution. Consequently, for filter kernels shorter than about 10×10×3, 

the direct convolution can be implemented, but not limited to, as 2×2×3, 3×3×3, 2×4×3, 

4×4×3 and 2×8×3 kernel architectures, where M3=3. While, the FFT convolution can be 

implemented for longer filter kernels of size 7×7×3, 15×15×3, 31×31×3 up to size that 

satisfies the application suitability and hardware memory limitation. 

Table 5.1: Fourteen generic 3-D edge and noise smoothing filter operators 

(kernels), where O.F is Operator Factor 

3-D FIR Filter 3×3×3 kernel 

EdgeXY  
    
    
   

   
     
     
     

   
   
    
   

  

EdgeX  
     
   
   

   
    
   
    

   
    
   
   

  

EdgeY  
    
    
   

   
   
     
   

   
   
    
   

  

SobelXY  
      
    
   

   
     
    
   

   
     
    
   

  

SobelX  
    
    
    

   
    
    
    

   
    
    
    

  

SobelY  
    
   
      

   
   
   
      

   
    
   
      

  

Laplacian  
   
    
   

   
    
     
    

   
   
    
   

  

PrewittX  
   
    
   

   
    
    
    

   
   
    
   

  

PrewittY  
   
   
    

   
   
   
      

   
   
   
    

  

Blur 

O.F=
 

 
 

 
   
    
   

   
   
   
   

   
   
    
   

  

Smooth 

O.F=
 

 
 

 
    
    
   

   
   
   
   

   
    
    
   

  

Sharpen 

O.F=
 

  
 

 
      
      
      

   
      
      
      

   
      
      
      

  

Gaussian 

O.F=
 

  
 

 
   
   
   

   
   
   
   

   
   
   
   

  

Moving Average 

O.F=
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5.2.3 3-D spatial Convolver Engine  

The generalized 3-D spatial convolver engine is a (M1×M2×3) MAC FIR digital filter. 

Thus, this 3-D convolver engine can be realized using three (M1×M2) spatiotemporal 

convolver units and sub-filtered merging stages, as shown in Figure 5.2. Each of the 

three (M1×M2) convolvers consists of M1 multi-MAC convolver units. 

The spatial partitioned block of the 3-D sub-image is sequentially streamed into three 

M1-1 row buffers to be filtered in parallel using three M1 multi-MAC convolver units. 

Each row buffer effectively delays the input by one row of N1 pixels, where N1 is the 3-

D image’s frame width. An adder tree merges the sub-filtered streams. The resulting 

pixel values, after applying the image filter, can be negative or larger than 255. Thus, 

the resulting pixel values are streamed into an absolute unit and Xilinx convert block to 

take the absolute value from the negative and truncate pixel values larger than 255 to 

255 respectively, then, narrow the bit growth to 8 bits.  

  
Figure 5.2: Generalized 3-D Spatial Convolver Unit implementation 
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Consider a 3×3×3 window filter, each output filter is a function of the twenty-seven 

pixel values within the window. Without 3-D stream filtering, twenty-seven pixels must 

be read, a pixel at each clock cycle, for each window position and each pixel must be 

read twenty seven times as the window is scanned through the image. A 3×3×3 filter 

kernel spans three image voxels, the current voxel and two previous voxels. 

Alternatively, the 3-D stream filtering stores the 3×3×3 filter kernel into a 3-D MAC 

FIR engine, and simultaneously stream nine temporal parallelism copies of the 3-D 

image into nine multi-MAC convolver engines, as generalized in Figure 5.2.  

Each three multi-MAC convolver units constitute one of three frames that constitutes 

the 3-D spatial convolver engine of the 3-D filtering operator. The 3-D spatial convolver 

is of three-parallelism type: single, dual and quad MAC, as will be explained in 

subsections 4.45.4. 

5.2.4 3-D FFT Convolver Engine  

The 3-D spatial convolution, as stated in ( 5.2), corresponds to complex multiplication of 

the 3-D FIR filter spectrum and the digital 3-D image spectrum, according to the 3-D 

circular convolution property of the FFT [39, 41]. This Fourier 3-D image analysis 

property enables the 3-D FFT convolution to be exploited in linear 3-D image filtering, 

as shown in Figure 5.3. 

The 3-D FFT in the above figure computes the Fourier transform of a 3-D FIR filter 

H(k1,k2,k3) and a 3-D digital image X(k1,k2,k3) , point-by-point multiplied to produce the 

3-D filtered image spectrum Y(k1,k2,k3). Then, 3-D Inverse FFT computes the spatial 

filtered 3-D image y(n1,n2,n3). Since, the Fourier Transform is inherently separable[19], 

the computation of the 3-D FFT can be split into the computation of 1-D FFT along 

rows, columns and frames respectively, as in Figure 5.4. This decomposed 3-D FFT is 

called row-column-frame FFT (RCFFFT). 

 
Figure 5.3:   Fast filtering by 3-D FFT convolver unit       

3-D IFFT

3-D FFT3-D FIR

 Filter 

H(k1,k2,k3)

Y(k1,k2,k3)

h(m1,m2,m3)
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 is the 3-D convolution property of the FFT   
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The Fourier transform is a complex value in the frequency domain, and then the 3-D 

image will be transformed into an intermediate 3-D image of a real array and an 

imaginary array. Next, 1-D FFT is repeated along each column of the intermediate 3-D 

image. Then, the 1-D FFT is computed along each frame. The resulting real and 

imaginary parts are the 3-D image spectrum, X(k1,k2,k3). Similarly, 1-D FFT triplet 

computed by the 3-D FIR filter spectrum, H(k1,k2,k3). These two frequency spectra are 

point-by-point multiplied to produce the 3-D filtered image spectrum Y(k1,k2,k3). To 

transform back into the spatial domain, the inverse Fourier transform of Y(k1,k2,k3) is 

calculated by taking the 1-D inverse FFT along frames, followed by the 1-D inverse 

FFT long columns, then along the rows respectively. 

 
Figure 5.4: 3-D separable FFT convolver unit  

The number of complex multiplications and additions required for a radix-2 1-D FFT 

algorithm of length N are 
 

 
log2 N and N log2 N, respectively. Thus, the number of 

complex multiplications and additions needed for the row-column-frame FFT 

(RCFFFT) that employs such a 1-D FFT are  
      

 
 log2 N1N2N3 and N1N2N3 log2 

N1N2N3, respectively. Therefore, the RCFFFT reduces the computational complexity 

from O (N
6
) to O (N

3
 log2 N

3
). This considerable gain in computation justifies the 

hardware implementation of the row-column-frame FFT [19].       
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5.2.5 Parallel 3-D Convolver Architectures Throughput   

The total throughput µ of the parallel 3-D convolver architectures is measured in a VPS 

[20, 79, 80]. As a logical extension from the 2-D throughput, the maximum throughput 

is the maximum operating clock frequency divided by one 3-D volumetric data. 

However, the throughput of the parallel 3-D spatial convolver architectures is limited by 

the large input 3-D image and 3-D MAC FIR operation, which can be mitigated by 

parallelism. Thus, the total throughput is directly proportional to the operating 

frequency, and inversely proportional to the size of the input 3-D image and the 3-D 

FIR matrix. 

The levels of parallelism are the number α1 of parallel 3-D spatial convolver filters and 

the number α2 refers to the type of MAC engines utilized by the 3-D convolver unit. 

Thus, the total throughput for the parallel 3-D spatial convolver architectures can be 

abstracted as:  

  
     

            
 

( 5.4) 

where, 
      

  

      

  
  is equivalent to one volume time. α1 = 8 for input 3-D image 

decimation by 2. α2 = 1, 2 or 4 using single, dual or quad MAC engine respectively. 

For the parallel 3-D FFT convolution architectures, the one volumetric data time is 

(
      

  
 log2 

      

  
), since the single 3-D FFT convolution unit performs the 3-D FFT 

function by O (N1N2N3 log2 N1N2N3) steps compared to O (N1N2N3 M1M2M3) steps of the 

3-D spatial convolution [44].   

Thus, the overall throughput µ of the parallel 3-D FFT convolution architecture of 

parallel processing stages and maximum clock frequency f can be formulated as: 

  
 

      
  

    
      

  

 
( 5.5) 

5.2.6 Total Computation Rate  

The total number of MACPS can be considered as another performance index to 

indicate the computation rate for each one of the five direct architectures. The total 

computation rate γ, measured in Giga MACPS (GMACPS), is directly proportional to 

the number of MAC engines and the maximum clock frequency f.  The number of MAC 

engines is equal to the multiplication of α1, α2, α3 and α4, where, α1 and α2 as stated in 
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subsection 5.2.5, α3 is the number of the parallel spatiotemporal convolver units per 3-D 

convolver, and, α4 is the number of multi-MAC convolver per 2-D direct convolver. 

Then, the computation rate can be formulated as; 

                ( 5.6) 

5.3 The Generalized Parallel 3-D Linear Image Filtering Algorithm 

The generalized parallel 3-D filtering algorithm, as shown in Figure 5.5, for the 3-D 

image filtering method is presented using the 3-D stream filtering. Generally, this linear 

3-D image stream filtering algorithm consists of three stages: 3-D input decimation 

stage, parallel 3-D sub-filtering processing stage and a parallel 3-D interpolation output 

stage. The three stages are implemented on the Virtex-6 ML605 development board 

using XSG. The mathematical model of these three stages for the 3-D stream method is 

presented in the following sub-sections.  

 

Figure 5.5: The Generalized Parallel 3-D image Linear Filtering Algorithm 
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5.3.1 Input Decimation by 2 for the 3-D Image Stream Filtering 

The input digital image x(n1,n2,n3) of size (N1×N2×N3) is decimated by 2 in the three 

dimensions producing (2
3
=8) sub-image blocks of size  

  

 
 
  

 
 
  

 
  for each 3-D image 

input, as shown in Figure 5.5.  These eight 3-D sub-images are not overlapped, and have 

exactly the same pixels as the 3-D image, hence, the decimation process does not lose or 

reduce any pixel of the original 3-D image. Thus, these eight 3-D sub-images can be 

filtered simultaneously and independently. The resultant 3-D sub-image blocks are 

defined as: 

      n1  n2  n3  

      n1  n2    n3  

      n1  n2  n3    

      n1  n2    n3    

      n1    n2  n3  

      n1    n2    n3  

      n1    n2  n3    

      n1    n2    n3    

 

( 5.7) 

The decimated blocks of the input 3-D image are realized by a left shift and decimation 

in the three dimensions, hence are indicated in Figure 5.5 by LS(n1)/LS(n2)/ LS(n3) and 

     /      /       respectively. The resultant down-sampled blocks of the input  

3-D image are distinctive and not overlapped, thus, they can be sub-filtered 

simultaneously and independently in parallel within the 3-D processing stage. 

5.3.2 Parallel 3-D Filtering Stage  

The 3-D processing stage in the parallel 3-D image filtering algorithm is a linear 3-D 

filtering of the 3-D sub-image given by ( 5.7) using eight parallel 3-D convolution 

engines. Each 3-D convolution engine is independently dedicated to one of the eight 

decimated 3-D sub-images. The linear 3-D filtering can be achieved by either spatial 

convolution or FFT convolution. This can be expressed by the parallel 3-D convolution 

equation: 

                
  

 
 
  

 
 
  

 
               ,                                    r=0,1,...7 ( 5.8) 

where,     is the 3-D convolution operation. The resultant filtering can be expressed as 

the parallel 3-D convolution equation: 

              

 

                                    

  
 

  

    

  
 

  

    

  
 

  

    
 

 

 

  0

 

( 5.9) 
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The above equation describes the filtering stage of Figure 5.5, which is computationally 

intensive. An array of independent parallel 3-D convolution units achieve the filtered 3-

D image to speed up the filtering rate, increase the throughput and carry out real time 

performance for large input 3-D image size. 

5.3.3 3-D Image Reconstruction Output Stage 

The resultant sub-filtered outputs are eight unique 3-D sub-images of y0, y1… and y7 that 

are decimated by 2, and they can be represented by the following set of equations: 

                  

                    

                    

                      

                    

                      

                      

                        

 

( 5.10) 

Thus, the reconstruction of the final output y(n1,n2,  ) is obtained by two operations: 

interpolation by 2 and a right shift (or delay), given by                 and 

RS(n1)/ RS(n2)/RS(n3) in the three dimensions n1, n2 and n3 respectively, of the eight 

filtered 3-D sub-images. Which can be mathematically modelled by ( 5.11), as follows: 

                            

                                    

                                        

                            

                              

                                          

                                    

                                        

 

( 5.11) 

Where, j:i:k is the same as [j, j+i, j+2i, ..., k], and represents the two operations of right 

shift and interpolation by 2. 

The generalized parallel 3-D linear stream-filtering algorithm can be realized in 

hardware architecture (s), as either a 3-D spatial convolution or a 3-D FFT convolution. 

That depends on the 3-D FIR operator size[44]. The spatial and spectral 3-D image 

filtering implementations are presented in subsections 5.4 and 5.5 respectively.  

5.4 Parallel 3-D Spatial Convolver Architectures 

The generalized parallel 3-D linear image filtering algorithm of Figure 5.5 can be 

realized by 3-D spatial convolution units using 3-D MAC FIR filter as shown in Figure 

5.6. Consequently, the real-time 3-D image filtering applications in which the 3-D FIR 
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kernel length shorter than (10×10×3) coefficients can be achieved  using the linear 3-D 

stream filtering technique, linear 3-D FIR filters and 3-D spatial convolver engines as 

defined in sub-sections 5.2.1, 5.2.2 and 5.2.3 respectively.  

In the input stage, the input 3-D image,  x(n1,n2,n3) of size (N1×N2×N3) is decimated by 

2 in the three dimensions producing eight 3-D sub-image blocks of size  
  

 
 
  

 
 
  

 
 , 

designated as  x0, x1… x7, as shown in Figure 5.6.  

In the processing stage, the parallel filtering operations are performed on-the-fly using 

eight independent 3-D convolver engines on each decimated block stream. The 3-D 

convolver engine is a (M1×M2×3) MAC FIR digital filter. The filter kernel of 

(M1×M2×3) coefficients is stored in 3-D FIR operator. The spatial partitioned block of 

the 3-D sub-image is sequentially streamed into M1-1 row buffers to be filtered in 

parallel using M2 multi-MAC convolver units, this constitutes one of the three frames of 

(M1×M2) of the 3-D convolver engine. The 3-D convolver engines are of three 

parallelism types, single MAC, dual MAC and quad MAC, as will be explained in 

subsection 5.4.1, 5.4.2 and 5.4.3 respectively.  

In the output stage as shown in Figure 5.6, the 3-D image y(n1,n2,n3) is reconstructed out 

of the eight decimated 3-D sub-images   (n1,n2,n3) by interpolations of      ,      

and     , and right shifts or delays of RS(n1), RS(n2) and RS(n3) , both in the three 

dimensions n1, n2 and n3 respectively.  

The parallel 3-D spatial convolution-filtering algorithm can be implemented by more 

than one unique FPGA-based architecture according to the MAC FIR hardware 

structure of the 3-D spatial convolver engine. The MAC FIR hardware structure can be 

of single MAC, dual MAC or quad MAC. Architectures 16 and 17 use a 3-D single 

MAC convolver unit, architectures 18 and 19 use a 3-D dual MAC convolver unit. 

While, the 3-D quad MAC convolver unit is implemented on architecture 20. The input 

decimated by 2 stage and the output interpolated by 2 stage are the same for all the five 

spatial architectures. 

The decimated blocks of the input 3-D image are realized by left shift and decimation in 

the three dimensions using the Shift block and Down Sampling block from the XSG 

blocksets library. The reconstruction of the final output y(n1,n2,  ) is obtained by two 

operations: Interpolation by 2 and right shift (or delay) of the eight sub-filtered 3-D 
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images. These two operations can be realized from the XSG blocksets library by the Up 

Sampling block and the Shift block or Delay block respectively. 

 
Figure 5.6: The implementation of the Parallel 3-D Spatial Convolution Algorithm 

on the Virtex-6 FPGA board; ML 605 development kit 

Therefore, the following architectures can be distinguished by the 3-D MAC engine 

structure. Thus, the general architecture, shown in Figure 5.6, can have more than one 

unique hardware version, as explained in the following subsections. 

5.4.1 Parallel 3-D Single MAC Convolver Filter Engines Architectures  

3-D spatial convolver of the filtering stage, shown in Figure 5.6, can be realized using a 

3-D single MAC convolver Units of size (2×2×3) and (3×3×3) as parallel architectures 

16 and 17 respectively. Figure 5.7 and Figure 5.8 shows (2×2×3) and (3×3×3) as unit 7 

and unit 8 respectively.  
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Figure 5.7: Unit 7; (2×2×3) Single MAC convolver Architecture 

Thus, the (3×3×3) single MAC engine consists of three of unit 8, as implemented on 

Appendix A. The logic area occupied by architecture 17 is mapped in Appendix B using 

Xilinx FPGA editor Tool. The schematic RTL diagram is graphically depicted in 

Appendix C. As configured and shown in Table 5.2, unit 7 occupies less logic area than 

unit 8 by (39%) FFs, (44%) LUTs, (40%) slices, (33%) dedicated DSP 48E1s 

multiplier, and (40%) RAMB 18E1s block memory.  

Table 5.2: Logic Devices utilization by the 3-D spatial convolver units 

 3-D Single MAC  

convolver units 

3-D Dual MAC  

convolver units 

3-D Quad MAC  

convolver unit 

Unit 7 

2×2×3 

Unit 8 

3×3×3 

Unit 9 

2×4×3 

Unit 10 

4×4×3 

Unit 11 

2×8×3 

FFs 477 775 686 1 326 1 022 

LUTs 296 526 491 988 807 

Slices 139 228 200 384 272 

DSP 48E1s 6 9 12 24 24 

RAMB 18E1s 9 15 15 33 27 
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Figure 5.8: Unit 8; (3×3×3) Single MAC convolver Architecture 

5.4.2 Parallel 3-D Dual MAC Convolver Filter Engines Architectures  

The 3-D spatial convolver unit, shown in Figure 5.6, can be realized using 3-D dual 

MAC operator Units of size (2×4×3) and (4×4×3) as in architectures 18 and 19. Figure 

5.9 and Figure 5.10 shows (2×4×3) and (4×3×3) as unit 9 and unit 10 respectively.  

As configured and shown in Table 5.2, unit 9 occupies less logic area than unit 10 by 

(48%) FFs, (50%) LUTs, (48%) slices, (50%) the dedicated DSP 48E1s multiplier, and 

(45%) the RAMB 18E1s block memory. By comparing the logic area occupation of the 

single MAC and dual MAC units’ architectures, the highest logic area occupation is in 

unit 10 and descending to unit 8, unit 9 down to the lowest in unit 7.  
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Figure 5.9: Unit 9; (2×4×3) Dual MAC convolver Architecture 

 
Figure 5.10: Unit 10; (4×4×3) Dual MAC convolver Architecture 

5.4.3 Parallel (2×8×3) Quad MAC 2-D Convolver Filter Engine Architecture  

Architecture 20 is distinguished by using (2×8×3) quad MAC 3-D direct convolver 

engine, unit 11, to implement its 3-D FIR filter operator, as shown in Figure 5.11.  
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As configured and shown in Table 5.2, unit 11 occupies less logic area than unit 10 by 

(23%) FFs, (18%) LUTs, (29%) slices, with the same number of dedicated DSP 48E1s 

multipliers, and (18%) less RAMB 18E1s block memory. Moreover by comparing the 

logic area occupation of the single MAC, dual MAC and quad MAC unit architectures, 

the logic area occupation ascending from the lowest in unit 7, unit 9, unit 8, unit 11 and 

up to highest in unit 10.  

 
Figure 5.11: Unit 11; (2×8×3) Quad MAC convolver Architecture 

5.4.4 Performance Indices of Parallel 3-D Spatial Convolver Architectures 

The performance indices of the five parallel spatial convolver architectures are 

considered as a complete set of area, speed, power, throughput and computation rate 

using XSG to target a Virtex-6 ML605 board. The minimized utilized area of the five 

architectures, as shown in Table 5.3, are due to the efficient implementation hierarchy 

of logic fabric, signals, I/O's and hard IPs such as Block RAMs or DSP blocks, and 

occupying proper resources of FFs, LUTs and slices.   
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occupies one third the logic area and one quarter the Hard IPs of architecture 19. 

Moreover by comparing the logic area occupation of the 3-D single, dual and quad 

MAC architectures, the logic area occupation ascending from the lowest in architectures 

16, 18, 17, 20 and up to the highest in architecture 19. Consequently, this area 

occupation affects the performance indices set of power consumption, throughput and 

computation rate as shown in Table 5.4. Where, the speed is the maximum clock 

frequency, the power consumption is the dynamic power, the total throughput and 

computation rate are both affected by the degree of parallelism, that is, the internal 

parallelism style of the 3-D spatial convolver engines as well as the overall 

architecture’s parallelism, as defined in subsections 5.2.5 and 5.6 respectively.    

Table 5.3: Logic Devices utilization by each of the five parallel spatial convolver 

architectures 

 
Archit. 

16 

Archit. 

17 

Archit. 

18 

Archit. 

19 

Archit. 

20 

 3-D FIR filter kernel (M1×M2× M3) 

 2×2×3 3×3×3 2×4×3 4×4×3 2×8×3 

FFs 3 992 7 464 5 424 10 520 8 112 

LUTs 2 625 5 390 3 825 7 641 6 392 

Slices 1 082 1 972 1 494 3 421 2 404 

DSP 48E1s 48 72 96 192 192 

RAMB 18E1s 72 120 120 264 216 

Several observations can be made from Table  5.4. Firstly, the operating clock frequency 

is particularly insensitive to the occupied logic area by the five architectures because of 

pipelining, and principally operating around the indicated 200 MHz maximum 

frequency [31]. Secondly, the dynamic power consumption at (40 nm) junction 

temperature of 54°C decreases, monotonically, from 259 mW, 212 mW, 120 mW, 97 

mW down to 64mW  for architectures 19, 20, 18, 17 and 16 respectively. Thus, the 

power consumption improved more than 4-fold. Thirdly, the highest throughput is 

achieved by architecture 16, 18 and 20 almost (2.25) and (4) times that of architecture 

17 and 19 respectively, that is, according to ( 5.4), where, the throughput of the parallel 

3-D spatial convolver architectures is limited by the large input 3-D image and 3-D 

MAC FIR operation. Thus for the same 3-D FIR filter kernels, the throughput for the 

greyscale 256×256×20 MRI filtering is higher than that for greyscale 1024×1024×20 

MRI by more than 16-fold. Fourthly, according to ( 5.6), the highest computation rate is 

accomplished by architecture 19 and 20, due to the four levels of parallelism. That is 

double, more than (2.5) and triple than that of architectures 18, 17 and 16 respectively. 

Table 5.4: Performance indices of each of the 3-D MAC FIR filter architectures 
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Archit. 

16 

Archit. 

17 

Archit. 

18 

Archit. 

19 

Archit. 

20 

 3-D FIR filter kernel (M1×M2× M3) 

 2×2×3 3×3×3 2×4×3 4×4×3 2×8×3 

Maximum Clock Frequency  

(MHz) 
205 203 205 201 205 

Dynamic Power  (mWatt) 64 97 120 259 212 

Throughput  (VPS) 

greyscale 256×256×20 MRI 
104 46 104 51 104 

Throughput  (VPS) 

greyscale 1024×1024×20 MRI 
7 3 7 3 7 

computation rate (GMACPS) 10.8 16.2 21.6 43.2 43.2 

 

The five implementations of the parallel 3-D spatial convolution algorithm are designed 

as “plug and develop” architectures. Thus, fourteen generic (3×3×3) FIR filters are 

plugged into 3-D edge detection and 3-D noise smoothing circuits, then, improved their 

suitability for this particular biomedical imaging application of greyscale 256×256×20 

volume MRI, as shown in Table 5.5 and Table 5.6 respectively using Architecture 17.  

The 3-D MRI filtered images of Table 5.5 show fourteen generic (3×3×3) filtering 

operators, nine edge and five noise smoothing. The 3-D Edge operators detect the 

changes or differences in voxel value at the edges of volume. Thus, the 3-D Edge 

operators are differencing filters, which make them sensitive to noise, as in the first nine 

operators of Table 5.5, which act as low pass filters except the Laplacian filter. This 

high pass filter can be used to detect edges of all orientations. The five noise smoothing 

operators prevent the output value being different from the input in uniform regions of 

the 3-D MRI volume. 

Table 5.6 shows the improvement in each of the 3-D edge filtering operators by 

designing the corresponding Edge enhancement operator. While, the five noise 

smoothing operators are heuristically improved by incrementing the coefficients 

operator’s value to be 2. The 3-D filtering result is to be the same brightness as the 

original MRI, but sharper.  
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Table 5.5: The filtering results of greyscale 256×256×20 volume fMRI for fourteen 

generic 3-D FIR filter operators using architecture 17 
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Table 5.6: The filtering results for grayscale 256×256×20 volume fMRI of fourteen 

improved 2-D FIR filter operators using architecture 17 
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5.5 Four Dimension (4-D) Application: fMRI or 4-D Colour MRI Volume Filtering  

Colour 4-D MRI volume is a multispectral image where each voxel is represented by a 

quad-tuple. Thus, the 4-D colour MRI volume is a 4-D matrix of size (N1×N2×N3×N4). 

Where, the fourth dimension takes the values of 0, 1 and 2 for the red, green and blue 

MRI components respectively. Then, fMRI or 4-D colour MRI is represented as a 

vector-base image (n1,n2,n3) of (N1×N2×N3×3) size,  

             

            
            

            
  

( 5.12) 

where, x1(n1,n2,n3), x2(n1,n2,n3) and x3(n1,n2,n3) are the MRI components of red, green 

and blue of size (N1×N2×N3) each. Colour 4-D MRI or fMRI is typically represented by 

a four-dimensional vector of eight bits per component, resulting in a 32-bit colour 

system. 4-D colour MRI filtering involves the 3-D convolution of each component (red, 

green and blue) of  (n1,n2,n3) with a 3-D FIR operator h(m1,m2,m3) of (M1×M2×3) size 

to produce the three component filtered output  (n1,n2, n3), given by, 

 

            
            

            
   

            
            

            
                

( 5.13) 

where,     is the 3-D convolution, which can be expressed in details as: 

                                               

    

    

    

    

    

    

 

( 5.14) 

The real-time 4-D colour MRI volume filtering of the above equation can be 

implemented using the 3-D implementations of architectures 16, 17, 18, 19 and 20, due 

to their quicker filtering speed, high computation rate and higher throughput at low 

dynamic power consumption and small logic area occupation, as shown in Table 5.3 

and Table 5.4. Thus, the performance indices of the five architectures for the colour 4-D 

MRI volume filtering are the same as those indices for the greyscale 3-D MRI volume. 

However, the total throughput is less by a factor of three times, as shown in Table 5.7, 

because of the three frames of red, green and blue that constitutes each colour MRI slice 

of the fMRI. Using architecture 17 as a four dimensions colour image reconfigurable 

processor to “plug and filter” the 4-D colour MRIs or fMRIs are shown in Table 5.8 and 

Table 5.9. Then, these fourteen 3-D MRI filtering operators are used to improve their 

suitability for this particular biomedical imaging application, as shown in Table 5.10 

and Table 5.11. All the filtering results tables are obtained using Architecture 17. 
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Table 5.7: Throughput of fMRI (colour MRI) volume using architectures 16 to 20  

 
Archit. 

16 

Archit. 

17 

Archit. 

18 

Archit. 

19 

Archit. 

20 

 3-D FIR filter kernel (M1×M2× M3) 

 2×2×3 3×3×3 2×4×3 4×4×3 2×8×3 

Throughput  (VPS) 

colour 256×256×20×3 MRI 
35 15 35 17 35 

Throughput  (VPS) 

colour 1024×1024×20×3 MRI 
2 1 2 1 2 

 

Table 5.8: Filtering results for colour 256×256×3×4 MRI volumetric  
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Table 5.9 : the 4-D filtering results for colour 256×256×3×4 MRI volume of five 

generic 3-D FIR noise smoothing filter operators using architecture 17 

3-D FIR 

Filter 
Generic 3×3×3 kernel 
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The improvement in each of the 3-D edge-filtering operators is achieved by designing 

the corresponding 3-D Edge enhancement operators. The 3-D Edge enhancement works 

as a sharpening operation by boosting the high frequency content of the 4-D MRI. 

While, the five 3-D noise smoothing operators are heuristically improved for the colour 

4-D MRI suitability by incrementing the operator’s coefficients sum value to be 2. The 

4-D filtering result is to be the same brightness as the original MRI, but sharper.  
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Table 5.10: the 4-D filtering results for colour 256×256×3×20 MRI volume of nine 

improved 3-D FIR Edge enhancement filter operators using architecture 17 
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Table 5.11: the 4-D filtering results for colour 256×256×3×20 MRI volume of five 

improved 3-D FIR noise smoothing filter operators using architecture 17 

2-D FIR 

Filter 
Developed 3×3×3 kernel 
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As a comparison of the filtering results, the five architectures are used, as shown in 

Table 5.12, to process the same colour 4-D MRI volume using the (M1×M2×M3) 3-D 

FIR operators of architectures 18, 19, 20, 21 and 22. The filtered 4-D MRI volume are 

identically 4-D edge enhanced and brightened due to the sum of the (M1×M2×M3) 

elements equal to 2. Therefore, these parallel 3-D spatial convolution architectures can 

be utilized as colour image reconfigurable processors acting as open development 

multidimensional filtering engines. 
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Table 5.12: Filtering results for 256×256×3×20 colour MRI of the improved 3-D 

Edge Enhancement operators using architectures 16, 17, 18, 19and 20. 

3-D Operator 

(M1×M2×3) 

 

 
  
  

  
  
  

  
   
  

  

 

 
   
   
   

  
   
   
   

  
    
   
   

  

 

 
  
  

  
  

  

 
  
  

  
  

  

 
   
  

  
  

  
 

 

  
  

  
  

  
  

  
  

  

  
  

  
  

  
  

  
  

  

   
  

  
  

  
  

  
  

  

 

 
        
        

                         

 
        
        

  

 
         
        

  
 

 

The 4-D filtering results within the above tables show the 4-D edge filtering, 4-D noise 

smoothing and 4-D edge enhancement for diverse regions of a 76-year-old patient with 

brain dementia. The filtered fMRI or colour 4-D MRI volume can be used by the 

physician  to noninvasively depict areas of the brain for investigation prior to 

neurosurgery and the brain functional activities in detail that are used for specific tasks 

[98, 104, 113, 114, 129].  

5.6 FPGA Implementation as Parallel 3-D FFT Convolver Architectures 

The parallel 3-D FFT convolution-filtering algorithms can be applied in the 3-D image 

filtering applications in which the 3-D FIR kernel length is longer than (10×10×3) 

coefficients, as had been shown in subsections 5.2.4 and 5.2.5. This 3-D FFT 

algorithms’ FPGA implementation can be efficiently realized by more than one of the  

fast parallel 3-D FFT filtering architectures, depending on the 3-D image segmentation, 

FPGA memory and accordingly the parallelism of the filtering stage. Consequently, two 

efficient hardware architectures are developed; single 3-D FFT convolver architecture 

and parallel 3-D FFT convolver architecture. The first approach is described in 

subsection 5.6.1  as architecture 21, and in subsection 5.6.2 as a new application for a 
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real-time k-space application as architecture 22. The second approach is described in 

subsection 5.6.3 as architecture 23.  

5.6.1 Single 3-D FFT Convolver Unit Implementation 

The 3-D FFT convolver engine unit of Figure 5.5 can be realized as a single 3-D FFT 

convolver architecture as shown in Figure 5.12. This architecture consists of input, 

filtering and output stages.  Within the input stage, the 3-D MRI and the 3-D FIR 

operators are streamed using the linear 3-D Stream Filtering Method, as explained in 

subsection 5.2.1. The temporal stream of the 3-D FIR operator is zero padded to be 

equal in size to the 3-D MRI. Both streams are row buffered to be processed in the 

filtering stage. The row buffer component is implemented as shown in Figure 4.12. 

 
 

Figure 5.12: Architecture 21; the implementation of the Fast Single 3-D FFT 

convolution g unit in the Virtex-6 FPGA board 

The 3-D filtering stage is a spatial to frequency transformation structure, as explained in 

subsection 5.2.4. This frequency transformation structure consists of a 3-D FFT, a 

complex multiplier and a 3-D IFFT. The 3-D FFT consists of three Xilinx FFT v7_0 

blocks, two transpose unit and two frame-to-frame structures. The transpose units are 

realized as shown in Figure 4.18, and explained in subsection 4.6.1. The frame-to-frame 

units can be realized as shown in Figure 5.13, where, the 2-D frequency transformed 3-

D volume is first stored via port A of a dual port RAM, and then accessed in port B by 

two address control circuitry. 

FFT FFT
Transpose

 unit 
 Row Buffer

Zero 

Padding

 Row Buffer

Transpose

 unit 

FFT FFT
Transpose 

unit 

Transpose

 unit 

r

r

i

i

Input stage Filtering stage Output stage

3-D Inverse Fast Fourier Transform

Filtered 

3-D MRI,

 y(n1,n2,n3)

Σ

IFFT IFFT
Complex

 Multiplier XX

r
i

r

r i

i
i

Absolute

 unit

Absolute

 unit
r

i
r

i
IFFT

i

i

r

r

r

i

3-D FIR  Operator,

H(k1,k2,k3)  

Original K-space

 MRI,  X(k1,k2,k3)

Frame

To 

Frame

Frame

To 

Frame
FFT

r Frame

To 

Frame

Frame

To 

Frame
FFT

3-D  Fast Fourier Transform

r

r

r

r

r

i

i

i

i

i

i

Transpose

 unit 

Transpose

 unit 

Inverse 

Frame

To 

Frame

Inverse 

Frame

To 

Frame



 

115 

 

 
Figure 5.13: frame-to-frame unit implementation 

The writing address circuitry is an up counter from zero to (N1×N2×N3-1) to store the 3-

D image stream row by row. While the reading address circuitry is a combination of 

two up counters to generate the 3-D volume out of port B row by row for a transformed 

frame by using a frame-to-frame transformation algorithm, as shown in following 

pseudo-code,  

% frame to frame transformation algorithm 

R=row; C=column; F=frame; 

Mri_volume=1:R*C*F; 

z1=1; 

 % frame to frame transformation 

 for j=1:R*C 

     for i=j:R*C:R*C*F      

     transformed_ mri_volume (z1,1)=mri_volume(i,1); 

     z1=z1+1; 

     end   

 end 
 

The two 3-D matrices of the FIR coefficients and the MRI are simultaneously frequency 

transformed via the real inputs of three Xilinx FFT v7_0 blocks, and setting the 

imaginary input to zero. Each FFT outputs a frequency spectrum of real and imaginary 

parts. Thus, the image will be transformed into an intermediate image of real array and 

imaginary array. Subsequently, two transpose units are used, then, 1-D FFT is repeated 

on each column of the intermediate image. Next, two frame-to-frame units are used so 

that the third dimension is transformed to the frequency domain. The resulting two parts 

of real and imaginary are the 3-D image frequency spectrum, X(k1,k2,k3). Similarly, 1-D 
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FFT triplet compute the 3-D FIR operator frequency spectrum, H(k1,k2,k3). Using Xilinx 

complex multiplier block, these two frequency spectra are point-by-point multiplied to 

produce Y(k1,k2,k3), which represents the 3-D FFT of the filtered image. To transform 

back into the spatial domain, the inverse Fourier transform of Y(k1,k2,k3) is computed by 

taking the 1-D inverse FFT of each transformed frame. Then, two inverse frame-to-

frame units are used to transform back the volume to the previous frame-to-frame 

format, followed by two transpose units to arrange the two filtered image components, 

then the third 1-D inverse FFT of each row is processed. The inverse frame-to-frame 

transformation algorithm is illustrated by the following pseudo-code, 

% inverse frame to frame transformation algorithm 

 

   R=row; C=column; F=frame; 

 Mri_volume=1:R*C*F; 

 z1=1;  

 for j=1:F 

   for i=j: F: R*C*F  

   inverse_transf._ mri_volume (z1,1)= transformed_mri_volume(i,1);     

   z1=z1+1;  

   end 

 end 
             

In the output stage, the two streams of the filtered MRI are conditioned, first, by the 

absolute unit, and then summed to produce the 3-D filtered MRI y(n1,n2,n3). The final 

reconstructed output is connected to a gateway-out block, which provides the 

conversion from the fixed point format which is used by the FPGA to floating point 

numerical representation used by Simulink blocks for displaying the filtered MRI. 

5.6.2 Single 3-D IFFT Convolver k-Space MRI Filtering Unit Implementation 

The 3-D MRI data volume or fMRI are collected from the MRI machine in the 

frequency volume distributed within a k-space [116-118]. Noise and artifacts for 

various sources often corrupt these frequency volume data. Thus, the filtering of this 

raw frequency data can vastly improve 3-D MRI visualization. This filtering can 

efficiently be achieved using a single 3-D IFFT convolution algorithm. An FPGA 

implementation of a single 3-D IFFT convolver-filtering unit is shown in Figure 5.14. 

Where, the two frequency inputs; the original k-space 3-D MRI data X(k1,k2,k3) and the 

3-D FIR operator kernel H(k1,k2,k3) are point-by-point complex multiplied to produce 

Y(k1,k2,k3) as the 3-D FFT of the filtered 3-D image. Then, the resultant real and 

imaginary 3-D filtered MRI has to be transformed back into the spatial domain by a 3-D 
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IFFT. The inverse Fourier transform of Y(k1,k2,k3) is computed by taking the 1-D 

inverse FFT row by row. Then, two transpose units are used to precede the second 1-D 

IFFT, followed by two frame-to-frame units to prepare the third dimension to be 

transformed back by the third 1-D inverse FFT. The final filtering results are obtained 

by inverse frame to frame units to transform the 3-D MRI volume to the original row-

column-frame format. 

 
Figure 5.14: Architecture 22; an implementation of Fast Single 3-D IFFT 

convolution k-space MRI volume data Filtering unit in the Virtex-6 FPGA board 

In the output stage, the two streams of the filtered 3-D MRI are conditioned, first, by an 

absolute unit, and then summed to produce the 3-D filtered MRI y(n1,n2,n3). The final 

reconstructed output is connected to a gateway-out block, which provides the 

conversion from the fixed-point format, used by the FPGA, to floating-point numerical 

representation used by Simulink blocks for displaying the filtered 3-D MRI.  
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5.6.3 Fast Parallel 3-D FFT Convolution Architecture 

Currently, most of the 3-D image processors are limited by the memory restriction to 

handle the huge 3-D image volume data [40, 42, 112, 123, 128, 130]. To resolve this 

hardware limitation necessitates that the 3-D input image is segmented into independent 

3-D sub-images. Consequently, a parallel fast convolution algorithm has to be devised 

to simultaneously process these 3-D sub-images. Thus, the generalized parallel 3-D 

filtering algorithm of Figure 5.5 may be realized in hardware as architecture 23, shown 

in Figure 5.15.  This architecture consists of input, filtering and output stages. The input 

decimated by 2 stage and the output interpolated by 2 stage are as described in 

subsection 5.3.1and 5.3.3 respectively. The main difference is in the filtering stage 

which in this case is based on the convolution property of the 3-D FFT. 

The input 3-D MRI is decimated by 2 to produce eight independent sub-MRI blocks x0, 

x1… x7. These 3-D sub-images and the 3-D FIR operator are converted from spatial 

parallelism to temporal streams as described in subsection 5.2.1. Each stream is row 

buffered before being processed within the filtering stage. Due to the independency of 

the eight decimated sub-streams, the fast 3-D filtering stage is carried out 

simultaneously using parallel 3-D FFT convolvers array. Consequently, there are no 

internal communications in the convolution-filtering array due to boundary conditions 

as with the block filtering method [41].  

The filtering stage consists of eight parallel 3-D Fast Fourier Transforms (FFT) 

convolution structure. Each 3-D FFT convolution structure is a fast single 3-D FFT 

convolution sub-architecture, as described in subsection 5.6.1, where the spatial 3-D 

filtering convolution is achieved by parallel complex multiplication. The eight sub-MRI 

pixels streams and the 3-D FIR operator are frequency transformed by 3-D FFT, 

complex multiplied and spatially transformed by 3-D inverse FFT. The resultant filtered 

sub-MRI has two components of real and imaginary. Each component is conditioned by 

an absolute unit and summed to produce eight decimated by 2 filtered sub-mages of  y0, 

y1… y8, as shown in Figure 5.15. The final filtered 3-D MRI is reconstructed from the 

eight 3-D sub-MRI using interpolation by 2.  This output signal is connected to a 

gateway-out block for the fixed-point to floating-point conversion of   the filtered 3-D 

MRI so that it can be by displaying via Simulink blocks. 
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Figure 5.15: Architecture 23; an implementation of Fast Parallel 3-D FFT 

convolution Algorithm in the Virtex-6 FPGA board 
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5.6.4 Performance Indices of Parallel 3-D FFT Convolver Architectures 

The performance indices of three 3-D FFT convolver architectures are considered as a 

complete set of area, speed, power and throughput using XSG to target a Virtex-6 

ML605 board. The results are presented into logic devices utilization tables, 

performance indices tables and 3-D MRI volume data filtered image tables. 

 The main variables that affected the 3-D image filtering results are the 3-D image size, 

3-D FIR operator size and accordingly the size of N-point FFT/IFFT triplet. Hence, 

comparative evaluation results for the three FPGA implementation architectures are 

obtained for grayscale 3-D MRI volume data of (32×32×8) and 64×64×8) size and 

distinctive 3-D FIR operator of  (7×7×3), (15×15×3) and (31×31×3) coefficients, to be 

individually applied with a (16, 32 and 64) N-point FFT/IFFT triplet. Accordingly, the 

area occupation, performance indices and 3-D MRI filtered outputs of the two 

architectures are shown in Table 5.13, Table 5.14, Table 5.19 , Table 5.16, Table 5.17 

and Table 5.20 respectively. These two architectures  occupy proper logic area of FFs, 

LUTs, slices, DSP blocks and Block RAMs, so that, architecture 22 was in average 

occupying less logic fabric than one-third and half DSP blocks/BRAMs than that 

architecture 21. Moreover, the area occupation, performance indices and 3-D MRI 

filtered outputs of architecture 23 are presented in Table 5.15, Table 5.18 and Table 

5.21 respectively. 

Table 5.13: Logic Devices utilization by architecture 21 

Greyscale 

MRI size 

(N1×N2×N3) 

3-D FIR 

kernel 

(M1×M2×M3) 

FFT 

N-

point 
FFs LUTs Slices 

DSP 

48E1s 

RAMB 

18E1s 

32×32×8 15×15×3 32 12733 7347 2529 120 75 

64×64×8 31×31×3 64 14437 8414 3090 126 116 

Table 5.14: Logic Devices utilization by architecture 22 

Greyscale 

MRI size 

(N1×N2×N3) 

3-D FIR 

kernel 

(M1×M2×M3) 

FFT 

N-

point 
FFs LUTs Slices 

DSP 

48E1s 

RAMB 

18E1s 

32×32×8 15×15×3 32 9323 5534 1690 67 36 

64×64×8 31×31×3 64 10417 6557 2269 67 64 

Table 5.15: Logic Devices utilization by architecture 23 

Greyscale 

MRI size 

(N1×N2×N3) 

3-D FIR 

kernel 

(M1×M2×M3) 

FFT 

N-

point 
FFs LUTs Slices 

DSP 

48E1s 

RAMB 

18E1s 

32×32×8 7×7×3 16 94249 55913 20371 544 616 
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The performance indices set of speed, power consumption and throughput as shown in 

Table 5.16 and Table 5.17. Several observations can be made from the tables. Firstly, 

the maximum clock frequency is steadily increasing [33] as the 3D MRI data volume 

size, 3-D operator size and FFT N-point triplet are decreasing. Secondly, the power 

consumption is monotonically decreases as the 3-D MRI volume data size, 3-D operator 

size and FFT triplet N-point are decreasing. Thirdly, architecture 22 outperformed 

architecture 21 in maximum clock frequency and power consumption. Fourthly, 

architecture 22’s throughput outperformed that of architecture 21, in average, by two-

folds within all the corresponding 3-D MRI volume data size, 3-D operator size and 

FFT triplet N-point.  

Table 5.16: Performance indices of architecture 21 

Grayscale MRI 

size 

(N1×N2×N3) 

3-D FIR 

kernel 

(M1×M2×M3) 

FFT 

N-

point 

length 

Maximum  

clock 

frequency 

 (MHz) 

Dynamic  

Power  

(mWatt) 

Throughput 

 

(VPS) 

32×32×8 15×15×3 32 233 243 2 188 

64×64×8 31×31×3 64 214 496 435 

Table 5.17: Performance indices of architecture 22 

Grayscale 

MRI size 

(N1×N2×N3) 

3-D FIR 

kernel 

(M1×M2×M3) 

FFT 

N-point 

length 

Maximum 

clock 

frequency 

(MHz) 

Dynamic 

Power  

(mWatt) 

Throughput 

 

(VPS) 

32×32×8 15×15×3 32 248 112 4 647 

64×64×8 31×31×3 64 221 249 899 

Table 5.18: Performance indices of architecture 23 

Grayscale 

MRI size 

(N1×N2×N3) 

3-D FIR 

kernel 

(M1×M2×M3) 

FFT 

N-point 

length 

Maximum 

clock 

frequency 

(MHz) 

Dynamic 

Power  

(mWatt) 

Throughput 

 

(VPS) 

32×32×8 7×7×3 16 211 842 20 605 

 

Architecture 23 is the parallel version to filter 3-D MRI data volume using  architecture 

21 as the 3-D convolver engine. Thus, architecture 21 occupied less logic area than 

architecture 25 by (13%) FFs and LUTs, (12%) slices, (22%) dedicated DSP 48E1s 

multiplier, and (13%) RAMB 18E1s block memory. Consequently, architecture 23 was 

consuming dynamic power of 842 mW to produce more than nine-folds increase in 

filtering throughput at a maximum clock frequency of 211 MHz . Thus, the parallelisms 

in the algorithm side and the implementation resulted in architecture 23 to have the 

highest throughput. 
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In three dimensions MRI filtering, an original 3-D volume image can be enhanced by 

convolving with a 3-D sharpening operator of (M1×M2×3) kernel. A three frame generic 

sharpening operator consists of (M1×M2×3) coefficients of (-1), except the central 

element (m) of the central frame which have the following value: 

                      ( 5.15) 

All elements to be divided by an operator factor (s = M1×M2×3) to ensure that the low 

spatial frequency is not amplified. The 3-D MRI volume data filtering results using 

architecture 21 and 22 respectively are shown in Table 5.19 and Table 5.20. The 3-D 

sharpen operator is a noise smoothing operator and Edge filtering to prevent the output 

value being different from the input in uniform regions of the MRI. 

Table 5.19: the filtering results for greyscale (64×64×8) MRI volume data of the 

generic 3-D FIR Sharpen operators using architecture 21 

3-D 

Sharpen 

Kernel 
(M1×M2×3) 

  
  

3×3×3 

  
  

7×7×3 

  
  

15×15×3 

  
  

31×31×3 
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Architecture 22 was used to filter and visualize 3D (64×64×99) k-Space MRI volume 

data input, producing a sagittal view of a human head as shown in Table 5.20. Where 

the original four slices of number 61 to 64, as shown on the top of the filtered results, 

are filtered and visualized out of a k-space MRI volume data stack of slices. Because of 

the way the data was collected there is some spatial aliasing in the reconstructed image 

for the Sharpen operator’s kernel below 31× 31×3 coefficients.  

Table 5.20: the sharpening results for k-space greyscale (64×64×8) MRI volume 

data of the generic 3-D FIR Sharpen operators using architecture 22 

3-D 

Sharpen 

Kernel 
(M1×M2×3) 

  
  

3×3×3 

  
  

7×7×3 

  
  

15×15×3 

  
  

31×31×3 

  
  

Architecture 23 can filter 3-D MRI volume data of double size than that filtered using 

architecture 21, due to the input 3-D MRI volume’s decimation by 2. Then, the 3-D 

operator‘s kernel and the N-size FFT triplet has consequently half the value of that used 

in architecture 21 for the same MRI volume size. The filtered MRIs are slightly larger 

by (M1-1×M2-1×M3-1) pixels with the filtered (N1+M1-1) × (N2+M2-1) × (N3+M3-1) 

image.  
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Table 5.21: the filtering results for greyscale (64×64×8) MRI volume data of the 

generic 3-D FIR Sharpen operators using parallel architecture 23 

3-D 

Sharpen 

Kernel 
(M1×M2×3) 

  
  

3×3×3 

  
  

7×7×3 

  
  

15×15×3 

  
  

 

5.7 3-D Cross-Correlator Application: Parallel 3-D MRI Matched Filtering 

Algorithm 

The 3-D FFT convolution can be used to evaluate the 3-D correlation of two 3-D 

images [19]. The detection of a targeted 3-D MRI volume from a 3-D MRI volume data 

library is presented for its diagnostic importance to access a particular part in the 3-D 

MRI volume. This similarity measure can be achieved by 3-D cross-correlation (3-D 

image match filter). To perform 3-D cross-correlation by using 3-D convolution, the 

target 3-D image needs to be reversed to counter-act the reversal that occurs during 

convolution. Thus, the 3-D MRI match filtering can be implemented using either 

architectures 21 or 23. To convert the target 3-D MRI slice into a 3-D match filtering 

operator, the targeted 3-D MRI volume flipped left-for right, top-for-bottom and frame-

for-frame.  

Therefore, architecture 21 and architecture 23 can be effectively used to be the 

implementation of the single 3-D correlator engine unit and the parallel 3-D MRI 

matched filtering algorithm respectively, to detect a targeted 3-D MRI volume 
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h(m1,m2,m3) within a 3-D MRI volume data library x(n1,n2,n3). Where, the 3-D FIR 

kernel is replaced by the target 3-D MRI volume input to be detected. Except, the target 

3-D MRI volume has to be  flipped, in three directions, left-for right, top-for-bottom and 

frame-for-frame to implement its reversed-time version h(-m1,-m2,-m3).  For example, 

when x(n1,n2,n3) and h(m1,m2,m3), are convolved to produce yr(n1,n2,n3) using 

architecture 23, the equation will be as: 

              

 

                                     

  
 

  

    

  
 

  

    

  
 

  

    
 

 

 

  0

 

( 5.16) 

  

where, r=0, 1...7 are the parallel processing stages. In comparison, the correlation z(u) 

of x(n1,n2,n3) and h(m1,m2,m3) can be obtained by convolution of x(n1,n2,n3) and h(-m1,-

m2,-m3) as following:  

              

 

                                              

  
 

  

    

  
 

  

    

  
 

  

    
 

 

 

  0

 

( 5.17) 

That is, flipping left-for right in the N1 dimension, flipping top-for-bottom in the N2 

dimension and flipping frame-for-frame in the N3 dimension are accomplished by 

reversing the sign of the time index. Accordingly, the parallel 3-D filtering described in 

( 5.16) may be modified to perform parallel 3-D correlation filtering using ( 5.17). 

5.8 Conclusion  

A generalized parallel three/multi-dimensional image filtering algorithm was presented 

and implemented on Virtex-6 FPGA board. Eight generic architectures were developed, 

five as 3-D spatial convolution architectures, and three as 3-D FFT convolution 

architectures. The mathematical model of this parallel 3-D filtering algorithm was 

presented. Moreover, the mathematical model of the 3-D throughput was derived for the 

spatial and the frequency architectures. The performance indices of all the eight 

architectures were evaluated as a complete performance indices set of area, speed, 

dynamic power, throughput and the computation rate. Three successful applications 

were developed as four dimensions coloured MRI (fMRI) filtering processors, filter k-

space MRI volume data and 3-D cross-correlator.  
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Chapter 6. Conclusion and Future Work 

6.1 Introduction 

This research project was characterised by the adaptation of powerful parallel multi-

dimensional data filtering algorithms and their highly efficient FPGA-based 

implementations, to be exploited for the linear filtering in 1-D, 2-D, 3-D and 4-D for 

computationally intensive applications of digital speech filtering, biomedical imaging 

filtration of greyscale MRI and multi-dimensional colour fMRI. The proposed parallel 

1-D signal filtering algorithms were based on the well-known block filtering method. 

While, the proposed 2-D, 3-D and 4-D filtering algorithms were concurrently structured 

as the multi-dimension data segmentation by decimation and output reconstruction by 

interpolation.  

Twenty-three generic architectures were designed to efficiently realise the parallel 

multi-dimensional data convolution/correlation algorithms in the time and frequency 

domains, depending on the multi-dimensional filter’s kernel size. These parallel multi-

dimensional architectures were structured as 1-D, 2-D, 3-D and 4-D spatial and FFT 

convolver engines. The FPGA implementations aim at achieving highly efficient 

performance indices as a complete set of area, speed, dynamic power, throughput and 

the computation rate. The implementations’ performance indices were obtained using 

the available logic assets of the targeted Virex-6 XC6VLX240T development FPGA 

board. Furthermore, their efficiency is demonstrated by the performance indices results 

comparison that highlights the superiority of the hardware versions of the proposed 

parallel multi-dimensional data filtering algorithms. 

6.2 Original Contributions 

The overall contributions that have been achieved and presented within this thesis are 

summarised by a short list for each chapter. 

6.2.1 Parallel 1-D Signal Filtering Architectures 

In chapter 3, parallel one dimension filtering algorithm was proposed and 

mathematically modelled using the overlap-add block filtering method. This parallel 

algorithm was implemented on the FPGA, as parallel temporal and spectral 

architectures, which achieved a set of values for the high performance indices. Five 

parallel architectures were developed based on three 1-D temporal convolvers and one 

1-D FFT convolver engines, as follows: 
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 The mathematical model of the input, processing and the output stages of the 

parallel 1-D linear filtering algorithm is presented. 

 A generalized parallel hardware versions for the 1-D linear filtering algorithm 

are developed for the multi-MAC FIR convolution and FFT convolution, to 

cover the entire range of  linear FIR filter length of 2, 3, 4, 5, 7, 8, 15, 16, 31, 32, 

63, 64, 127, 255, 511, 1023, 2047, ... coefficients.  

 Five FPGA-based architectures on Virtex-6 ML605 board are developed 

 Three new temporal convolver engines are developed and implemented using 

single MAC, dual MAC and quad MAC units respectively 

 Single 1-D FFT filtering algorithm and parallel 1-D FFT filtering algorithm are 

implemented using the linear overlap-add block filtering method.  

 A successful application of cross-correlation using FFT convolution is realized. 

 The complete set of area, speed, power, throughput and computation rate in this 

chapter are compared and discussed as the performance indices for the five 

architectures.   

6.2.2 Parallel 2-D Grayscale/Colour Image Filtering Architectures 

In chapter 4, parallel two/three dimensions filtering algorithm was proposed and 

mathematically modelled using image segmentation by decimation and output 

reconstruction by interpolation. This parallel algorithm was implemented on Virtex-6 

FPGA as parallel spatiotemporal and spectral architectures which achieved a highly 

performance indices results. These parallel architectures were ten, based on three 2-D 

spatiotemporal convolvers and one 2-D FFT convolver engines, as follows: 

 A generalized parallel 2-D image filtering algorithm is presented with its 

mathematical model.  

 To cover the entire range of linear 2-D image filtering, a generic parallel 

hardware versions of the 2-D linear image filtering algorithm are developed for 

the multi-MAC FIR and FFT convolution.  

 Ten generic architectures of 2-D image processors on Virtex-6 ML605 board are 

implemented. Their complete performance indices  set  are evaluated. 

 Architectures (6, 7 and 8), architectures (9 and 10) and Architectures (11 and 12) 

are implemented using single, dual and quad MAC convolver engines 

respectively.  

 3-D Colour image processor is devised to act as an open development 3-D 

colour filtering engines using Architectures 6, 7, 8, 9, 10, 11 and 12. 
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 Architectures (13 and 15) are implemented to capture the single 2-D FFT 

convolver unit and the parallel 2-D FFT convolution algorithm respectively.  

  Architecture 14 is particularly developed to deal with real-time k-space MRI 

data. 

 Cross-correlator parallel engine is successfully developed as a parallel 2-D 

matched filter algorithm to map a parallel 2-D cross-correlation algorithm to 

locate any MRI slice within a MRI data stack library.  

6.2.3 Parallel 3-D Grayscale/Colour Image Filtering Architectures 

In chapter 5, parallel 2-D/3-D convolution algorithm was proposed and mathematically 

modelled using volumetric data image segmentation by decimation and output 

reconstruction by interpolation. Then, FPGA implemented, as parallel spatial and 

spectral architectures, were achieved with a set of highly performance indices results. 

These parallel architectures were eight, based on three 3-D spatial convolvers and one 

3-D FFT convolver engines, as follows: 

 A generalized parallel three dimensional grayscale/colour image filtering 

algorithm is proposed and mathematically modelled.  

 The parallel multi-dimensional image filtering algorithm is successfully 

implemented on eight generic architectures.  

 The performance indices of the eight architectures are evaluated as a complete 

set of area, speed, dynamic power, throughput and, additionally, the computation 

rate for the spatial architectures.  

 The five implementations of the parallel 3-D spatial convolution algorithm are 

devised as “plug and develop” architectures to filter a 3-D volume data.  

 Fourteen 3-D MRI filtering operators, edge and noise smoothing,   are plugged 

and developed to improve the suitability for biomedical imaging.  

 Three successful applications are developed as 4-D coloured MRI (fMRI) 

filtering processors, filter k-space MRI volume data and 3-D cross-correlator.  

6.3 Overall Conclusions 

The overall conclusions that summarize the achievements in proposing the parallel 

multi-dimensional data filtering algorithms and the implementation of the twenty-three 

FPGA-based architectures were highly demonstrated by the efficient performance 

indices. 
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6.3.1 Performance Indices of the Parallel Multi-Dimensional Architectures 

In chapter 2, the main aspects of parallelism in the parallel multi-dimensional data 

filtering algorithms and their realization using the inherent parallelism of the FPGA that 

improves the performance efficiency indices in term of area, speed, power and 

throughput. As summarised below: 

1. The implementation suitability of the inherently parallel FPGA to map into 

hardware architectures for the parallel mutli-dimensions filtering algorithms was 

presented  

2. Parallelism either existed intrinsically in the parallel multi-dimensional filtering 

algorithms or could be introduced by organizing the computation to allow a 

parallel implementation. Three parallelisms were observed in these filtering 

algorithms: temporal, spatial and logical parallelisms. 

3. Parallel streaming processing can be efficiently realized in the FPGA.  

4. The FPGA-based implementation was characterized by the flexibility to adjust 

the wordlength size to achieve the necessary arithmetic resolution, which can be 

changed at different parts of the inherent parallelism hardware.  

5. FPGAs enable the configuration of data paths into arbitrary wordlength sizes, 

allowing a trade-off between precision and parallelism. An additional benefit of 

minimizing precision comes from shorter propagation delays through narrower 

arithmetic units. 

6. The overall FPGA implementation process was depicted as a development flow 

of seven key steps. 

7. Parallel Field Programming using Xilinx System Generator was discussed as a 

dataflow graphical programming tool that facilitates FPGA hardware design by 

providing access to underlying FPGA resources.  

8. The performance indices of the parallel multi-dimensional data filtering 

architectures were considered as a complete set of area, speed, power, 

throughput and computation rate values using XSG to target a Virtex-6 ML605 

FPGA board.  

9. The area occupation, dynamic power consumption and speed were obtained using 

Xilinx Timing Analyzer. The throughput and computation rate were calculated 

according to a 1-D, 2-D and 3-D mathematical model.  

6.3.2 Parallel 1-D Signal Filtering Architectures 

In chapter 3, the generalized parallel 1-D data convolution/correlation algorithms were 

adapted, mathematically modelled, implemented, analysed and discussed. This can be 

summarised as follows: 

1. The mathematical model of the input, processing and the output stages of the 

parallel 1-D filtering algorithm was mathematically presented. 

2.  A generalized parallel hardware versions of the parallel 1-D convolution-

filtering algorithm was developed for the temporal and FFT convolution, to 
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cover the whole range of  linear FIR filter lengths of 3, 7, 15, 31, 61, 127, 255, 

511, 1023, 2047, ... coefficients. The filtering methods were based on the 

overlap-add block filtering.  

3. Five FPGA-based architectures were realized on Virtex-6 ML605 board, three 

for the temporal convolution and two for the FFT convolution.  

4. A successful applications was presented to realize cross-correlation as a parallel 

1-D matched filter algorithm for real-time speech signature detection.  

5. The performance indices for the six architectures were considered as a complete 

set of area, speed, power and throughput.  

6. The three temporal architectures had high throughput, stable maximum clock 

frequency and low dynamic power consumption with a distinctive computation 

rate.  

7. The highest throughput, computation rate and the lowest dynamic power 

consumption was achieved by architecture 3 and 1 respectively.  

8. The three implementations of the parallel 1-D MAC convolution algorithm were 

developed as “plug and filter” architectures.  

9. Architecture 5’s throughput outperformed, in average, by four-fold than that of 

architecture 4, due to the embedded parallelism. 

6.3.3 Parallel 2-D Grayscale/Colour Image Filtering Architectures 

In chapter 4, the generalized parallel 2-D image convolution/correlation algorithms 

were adapted, mathematically modelled, implemented, analysed and discussed, and 

applied to the biomedical imaging of grayscale/colour MRI (fMRI). This can be 

summarised as follows: 

1. To cover the extensive range of linear 2-D Image filtering and the 2-D image, in 

particular large MRI slice size, generalized parallel hardware versions of the 2-D 

convolution algorithm was devised, analysed and implemented on Virtex-6 

development board for the spatiotemporal and FFT convolution.  

2. For the linear FIR filters’ kernel shorter than about 10×10, the spatiotemporal 

convolution was developed for 2×2, 3×3, 5×5, 2×4, 4×4, 2×8 and 8×8 kernels. 

Beyond these kernels, FFT convolution was developed for the longer filter 

kernel sizes of 15×15, 31×31, 63×63, 127×127 and 255×255. The filtered MRI 

slice was of different sizes from 64×64, 128×128 and 256×256 up to 512×512 

pixels. The MRI data input was either digital image or real-time k-space data. 

3. The parallel 2-D filtering algorithm was devised by decimating the 2-D input 

data into independent sub-data that can be simultaneously processed in parallel 

without the need for processing stage data communication, the final filtered 

result was reconstructed by 2-D interpolation and right shift. The mathematical 

model was presented.  

4. Ten FPGA-based architectures were developed, seven for spatiotemporal 

convolution and three for the FFT convolution. 
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5. Architectures (6, 7 and 8), architectures (9 and 10) and architectures (11 and 12) 

were implemented to realize the spatiotemporal convolution, while, architectures 

(13 and 15) were realized as the FFT convolution.  

6. The performance indices for the ten architectures were evaluated as a complete 

set.  

7. The superiority of the developed architectures were indicated by the minimized 

utilized area, high throughput, stable maximum clock frequency and low 

dynamic power consumption. These FPGA-architectures were strongly 

exploited as a “plug and develop” reconfigurable image processor.  

8. Twelve improved 2-D FIR filters were plugged and developed to filter for edge 

detection and noise smoothing of the biomedical imaging of garyscale and 

colour MRI data.  

9. Three successful applications on medical image filtering and detection were 

presented to illustrate the superiority and high performance of the parallel 2-D 

convolution algorithm. These three applications were 3-D colour MRI (fMRI) 

filtering, real-time k-space MRI data visualization and detection of a MRI slice 

within a MRI data stack library. 

6.3.4 Parallel 3-D Grayscale/Colour Image Filtering Architectures 

In chapter 5, a generalized parallel three/multi-dimensional image filtering algorithm 

was proposed and implemented on Virtex-6 development board. This new parallel 

algorithm eliminates the overhead associated with the overlapping segments in the 

block filtering method and the boundary conditions in the parallel filtering 

implementation. Moreover, the normal large size restriction of multi-dimensional input 

data was overcome by decimation into smaller, manageable and independent mutli-

dimensions sub-images. This can be summarised as follows: 

1. The proposed parallel algorithm’s mathematical model was derived.  

2. This parallel algorithm was successfully implemented on eight hardware 

architectures to cover the wide-ranging 3-D FIR kernels, five as 3-D spatial 

convolution architectures, and three as 3-D FFT convolution architectures. 

These 3-D architectures were found to be highly parallel and superior in utilising 

the inherent parallelism advantages of the FPGA.  

3. The performance indices of all the eight architectures were evaluated as a 

complete set of area, speed, dynamic power, throughput and the computation 

rate. Noteworthy improvements had been achieved in decreasing power 

consumption and increasing throughput of more than 4-fold and 16-fold 

respectively. 

4. The massive parallelism filtering implementations were demonstrated by 

minimum logic area occupation, low dynamic power consumption and high 

throughput at maximum clock frequency. 
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5. The five implementations of the parallel 3-D spatial convolution algorithm were 

devised as “plug and develop” architectures to filter a 3-D grayscale/colour 

volumetric data.  

6. Fourteen 3-D MRI filtering operators were plugged and developed to be 

improved for their suitability to biomedical imaging applications.  

7. Three successful applications were presented, one for the spatial architectures as 

four dimension coloured MRI (fMRI) filtering processors, and two for the 3-D 

FFT architectures to filter k-space MRI volume data and 3-D cross-correlator.  

6.4 Recommendation for Future Work 

Based on the experience and knowledge acquired during this research project, the 

recommendation for future research projects can be suggested as a complete automated 

filtering system. The VLSI implementation of all the twenty-three architectures as a 

complete parallel multi-dimensional data filtering set is highly recommended, based on 

input segmentation, parallel independent multi-dimensional filtering and output 

reconstruction. This multi-dimensional filtering automation system can be 

parameterized in the following aspects: firstly, the dimension of the input data; is it 1-D, 

2-D, 3-D or 4-D? Secondly, the application type: is it biomedical imaging, seismic data, 

marketing data stream …etc? Thirdly, filtering type method: Is it spatial or spectral 

filtering?  based on the linear filter length. Fourthly, performance indices optimized to 

be high throughput, low power, high speed, low area occupation.  

IP hard cores of performance-aware fast switching circuitries may control the data 

routing and the I/O interface of this complete real time firmware filtering system. The 

performance–aware optimization is application dependent to be concerned with low-

power consumption, high filtering rate and/or high throughput.  This research extension 

may lead to new and novel VLSI generic architectures for on-the-fly parallel 

multidimensional data processing, aiming at higher data routing rate and optimum 

memory layout in order to solve the bottleneck of multi-dimensional data processing 

with normal large input size, memory limitation and multi-dimensional 

convolver/correlator engines. 

One of the recent techniques in low power VLSI is to tolerate the computation’s 

accuracy for the power consumption that can be effectively utilized to trade off power 

and quality for error-resilient DSP systems [131]. Low power is an imperative 

requirement for portable multimedia devices employing various signal processing 

algorithms and architectures. In most multimedia applications, human beings can gather 
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useful information from slightly erroneous outputs. Therefore, we do not need to 

produce exactly correct numerical outputs.  

Finally, the investigation is always in pursuit of new and novel reconfigurable parallel 

hardware that can be field developed by exploiting parallel programming tools in 

accelerating applications in major areas of video processing using reconfigurable VLSI 

architectures. Video processing is highly amenable to parallel processing, 

computationally intensive and often has accompanying real-time or super-real-time 

requirements, which broadly encompasses compression, filtering enhancement, 

analysis, and synthesis of digital video. Consequently, the research and development of 

massively parallel architectures and programming technology in the construction and 

development of parallel multi-dimensional data processing components and 

applications, is highly recommended. For example, surveillance and monitoring systems 

need to robustly analyze video from multiple cameras in real time to automatically 

detect and signal unusual events. Beyond today’s known applications, the continued 

growth of functionality and speed of video processing systems will likely further enable 

novel applications.  
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APPENDICES 

Appendix A. Architecture 17’s first filtering stage out of eight  
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Appendix B.   Logic area occupation of architecture 17 mapped and 

shown graphically using Xilinx FPGA Editor Tool 
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Appendix C. Architecture 17’s RTL schematic diagram  

 (1)                       (2)                                                                                                                                                                                                                                        

 
1) Shows the entire RTL schematic diagram 

2) Shows partially enlarged RTL schematic diagram      
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