

i

FPGA Implementations for Parallel

Multidimensional Filtering Algorithms

By

Sami Kadhim Hasan

A thesis submitted to the School of Electrical and Electronic Engineering

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Faculty of Science, Agriculture and Engineering

Newcastle University,

June 2013

ii

ABSTRACT

One and multi dimensional raw data collections introduce noise and artifacts, which

need to be recovered from degradations by an automated filtering system before, further

machine analysis. The need for automating wide-ranged filtering applications

necessitates the design of generic filtering architectures, together with the development

of multidimensional and extensive convolution operators. Consequently, the aim of this

thesis is to investigate the problem of automated construction of a generic parallel

filtering system. Serving this goal, performance-efficient FPGA implementation

architectures are developed to realize parallel one/multi-dimensional filtering

algorithms. The proposed generic architectures provide a mechanism for fast FPGA

prototyping of high performance computations to obtain efficiently implemented

performance indices of area, speed, dynamic power, throughput and computation rates,

as a complete package. These parallel filtering algorithms and their automated generic

architectures tackle the major bottlenecks and limitations of existing multiprocessor

systems in wordlength, input data segmentation, boundary conditions as well as inter-

processor communications, in order to support high data throughput real-time

applications of low-power architectures using a Xilinx Virtex-6 FPGA board.

For one-dimensional raw signal filtering case, mathematical model and architectural

development of the generalized parallel 1-D filtering algorithms are presented using the

1-D block filtering method. Five generic architectures are implemented on a Virtex-6

ML605 board, evaluated and compared. A complete set of results on area, speed, power,

throughput and computation rates are obtained and discussed as performance indices for

the 1-D convolution architectures. A successful application of parallel 1-D cross-

correlation is demonstrated.

For two dimensional greyscale/colour image processing cases, new parallel 2-D/3-D

filtering algorithms are presented and mathematically modelled using input decimation

and output image reconstruction by interpolation. Ten generic architectures are

implemented on the Virtex-6 ML605 board, evaluated and compared. Key results on

area, speed, power, throughput and computation rate are obtained and discussed as

performance indices for the 2-D convolution architectures. 2-D image reconfigurable

processors are developed and implemented using single, dual and quad MAC FIR units.

3-D Colour image processors are devised to act as 3-D colour filtering engines. A 2-D

cross-correlator parallel engine is successfully developed as a parallel 2-D matched

filtering algorithm for locating any MRI slice within a MRI data stack library. Twelve

3-D MRI filtering operators are plugged in and adapted to be suitable for biomedical

imaging, including 3-D edge operators and 3-D noise smoothing operators.

Since three dimensional greyscale/colour volumetric image applications are

computationally intensive, a new parallel 3-D/4-D filtering algorithm is presented and

mathematically modelled using volumetric data image segmentation by decimation and

output reconstruction by interpolation, after simultaneously and independently

performing 3-D filtering. Eight generic architectures are developed and implemented on

the Virtex-6 board, including 3-D spatial and FFT convolution architectures. Fourteen

3-D MRI filtering operators are plugged and adapted for this particular biomedical

imaging application, including 3-D edge operators and 3-D noise smoothing operators.

Three successful applications are presented in 4-D colour MRI (fMRI) filtering

processors, k-space MRI volume data filter and 3-D cross-correlator.

iii

To Ali Ibn Abi Talib

For his highly inspirational attitudes

And My Family

For, their support,

Encouragement

And patient all the way

iv

ACKNOWLEDGEMENTS

I wish to express my eternal braise be to mighty ALLAH who empowers me with

mature patient and young strength to complete this research project.

Thanks to IRAQ. It would not have been possible to achieve this doctoral research

project without the kind sponsorship of IRAQI government, represented by his high

Excellency the prime minister “Nuri al-Maliki”, the ministry of higher education and

scientific research Prof. “Ali al-Adeeb”, the president of Al-Nahrain University Prof. “

M. Jabber” as well as the Cultural Attaché prof. “A. al-Baghdadi”. My thanks and

gratitude to the devoted crew of the cultural department in the IRAQI embassy in

LONDON.

I owe my sincere appreciation and deepest respect to my great supervisors Prof. Alex

Yakovlev and Prof. Said Boussakta for their sincere support, helpful advice and honest

guidance throughout this research project.

Prof. Alex Yakovlev provided an ideal framework for this project. His excellent

guidance in the modern methods of low-power hardware research, encouragement,

endless patience, and amazing sense of academic leadership has been inspirational and

essential for the accomplishment of this work.

Prof. Said Boussakta first introduced me to the fascinating field of parallel multi-

dimensional convolutions/correlations algorithms research filed. I was so impressed by

his compelling enthusiasm and sincere interest in Digital signal processing algorithms,

that, before long, I found myself working with him, not only in the algorithmic research

field, but also in the massively parallel architectural research field.

v

Abbreviations and Symbols

A list of the main abbreviations and Symbols that used in this thesis is given below; all

their definitions are given within the text:

Symbol Detail

 One dimension point-by-point complex multiplication

 Two dimensions point-by-point complex multiplication

 Three dimensions point-by-point complex multiplication

* One dimension linear convolution

** Two dimensions linear convolution

*** Three dimensions linear convolution

1-D One dimension

2-D Two dimensions

3-D Three dimensions

4-D Four dimensions

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

VLSI Very Large Scale Integration

BRAM Block random Access Memory; RAMB 18E1s (slice)

DSP DSP 48E1s (slices)

DSPs DSP processors

GAs Gate Arrays

FIR Finite impulse response filter

h(m) FIR filter 1-D impulse response, 1-D kernel

h (m1, m2) FIR filter 2-D impulse response, 2-D kernel

h(m1,m2,m3) FIR filter 3-D impulse response, 3-D kernel

NMNT New Mersenne number transform

ns Nanosecond

ms Millisecond

MRI Magnetic Resonance Imaging

fMRI functional Magnetic Resonance Imaging

x (n) Original audio signal

x (n1, n2) Original 2-D input image

 (n1, n2) Original 3-D colour input image

x(n1,n2,n3) Input 3-D volume data image

 (n1,n2,n3) Input 4-D colour volume data image

y (n) Filtered Output audio signal

y (n1, n2) Filtered output 2-D image

 (n1, n2) Filtered output colour 3-D image

y(n1,n2,n3) Filtered output 3-D image

 (n1,n2,n3) Filtered output 4-D colour volume data image

1-D MAC One dimension Multiply/Accumulate DSP operation

2-D MAC Two dimension Multiply/Accumulate DSP operation

3-D MAC Three dimension Multiply/Accumulate DSP operation

mW Milli Watts

MHz Mega Hertz

vi

Symbol Detail

BPS Block Per Second, 1-D throughput unit

FPS Frame Per Second, 2-D throughput unit

CFPS Colour Frame Per Second, 3-D throughput unit

VPS Volume Per Second, 3-D throughput unit

CVPS Colour Volume Per Second, 4-D throughput unit

GMACPS Giga MAC Per Second, computation rate unit

1-D FFT One Dimension Fast Fourier Transform

2-D FFT Two Dimensions Fast Fourier Transform

3-D FFT Three Dimensions Fast Fourier Transform

RCFFFT row-column-frame FFT

1-D IFFT One Dimension Inverse Fast Fourier Transform

2-D IFFT Two Dimension Inverse Fast Fourier Transform

3-D IFFT Three Dimension Inverse Fast Fourier Transform

XST Xilinx Synthesis Tool

I/O Input/Output

XSG Xilinx System Generator for DSP

ISE Integrated System Environment (Xilinx)

HDL Hardware Design Language

RCF Row-Column-Frame implementation

SDK System Design Kit (Xilinx)

EDIF Electronic Design Interchange Format

pixel 2-D Picture element

voxel 3-D volume element

SRL Shift Register

vii

Table of Contents

ABSTRACT .. ii
ACKNOWLEDGEMENTS ... iv
Abbreviations and Symbols .. v
List of Figures .. xi
List of Tables .. xiii

List of Equations ... xv

Chapter 1. INTRODUCTION ... 1
1.1 Background ... 1
1.2 Related Research Works ... 2

1.2.1 Parallel Field Programming Tools ... 2

1.2.2 Parallel 1-D Signal Filtering Architectures .. 4

1.2.3 Parallel 2-D Image Filtering Architectures .. 5
1.2.4 Parallel 3-D Volumetric Data Image Filtering Architectures 8

1.3 Research Aims and Objectives.. 9
1.3.1 Aims ... 10
1.3.2 Objectives ... 11

1.4 Contributions per Chapter ... 11

1.4.1 Contributions of Chapter 3 ... 11
1.4.2 Contributions of Chapter 4 ... 11

1.4.3 Contributions of Chapter 5 ... 12
1.5 Organization of the Thesis .. 12

Chapter 2. Parallelism Analysis in Filtering Algorithms and FPGA-Based

Architectures ... 14
2.1 Introduction ... 14
2.2 Parallel Filtering Algorithms... 15

2.2.1 Temporal Parallelism ... 16
2.2.2 Spatial Parallelism .. 16
2.2.3 Logical Parallelism .. 17

2.3 FPGA-Based Implementation of Parallel Filtering Algorithms 18
2.4 Parallel Digital Filtering using FPGAs ... 19

2.5 Overall FPGA Implementation Steps.. 21
2.6 Parallel Field Programming using Xilinx System Generator Tool 22
2.7 Performance Indices .. 25

2.7.1 Logic Area Occupation .. 25

2.7.2 Dynamic Power Consumption ... 27
2.7.3 Clock Speed ... 27

2.7.4 Total Throughput ... 27
2.7.5 Computation Rate .. 28

2.8 Conclusion... 28

Chapter 3. Parallel 1-D Filtering Algorithm and its FPGA Implementations 29
3.1 Introduction ... 29

3.2 Research Concepts Definitions ... 30
3.2.1 Theory of Linear Block Filtering Method .. 30
3.2.2 Linear-Phase 1-D FIR Digital Filter .. 31
3.2.3 1-D FFT Convolver Engine ... 31

3.2.4 Total Throughput ... 32
3.2.5 Total Computation Rate ... 33

3.3 The Generalized Parallel 1-D Linear Block Filtering Algorithm 34

viii

3.3.1 Input Segmentation Stage .. 34
3.3.2 Parallel Filtering Stage ... 35

3.3.3 Output Reconstruction Stage ... 36
3.4 Parallel 1-D Temporal Convolver Architectures .. 36

3.4.1 Parallel Single MAC Convolver Architecture ... 38
3.4.2 Parallel Dual MAC Convolver Architecture .. 39

3.4.3 Parallel Quad MAC Convolver Architecture ... 40
3.4.4 Performance Indices of the Three Parallel Multi-MAC Convolver

Architectures ... 41
3.5 Parallel 1-D FFT Convolver Architectures ... 44

3.5.1 Parallel 1-D FFT Convolver Architecture ... 45

3.5.2 Fast Parallel 1-D FFT Convolver Architecture .. 46
3.5.3 Performance Indices of Fast Parallel 1-D FFT Filtering Architecture 48

3.6 1-D Cross-Correlation Application: FPGA Architecture for Parallel 1-D Matched

Filtering Algorithm ... 50
3.7 Conclusion... 51

Chapter 4. Parallel 2-D Greyscale/Colour Image Filtering Algorithm and Its

FPGA Implementations .. 52
4.1 Introduction ... 52

4.2 Research Concepts Definitions ... 53

4.2.1 Linear 2-D Stream Filtering Method ... 53
4.2.2 Linear 2-D Filters ... 54

4.2.3 Spatiotemporal Convolver Engine ... 56
4.2.4 2-D FFT Convolver Engine ... 58

4.2.5 Total 2-D Throughput .. 59
4.2.6 Total Computation Rate ... 60

4.3 The Generalized Parallel 2-D Linear Image Filtering Algorithm 61
4.3.1 Input Decimation by 2 for the 2-D Image Stream Filtering 61
4.3.2 Parallel 2-D Filtering Stage .. 62

4.3.3 Output Interpolation by 2 Reconstruction Stage .. 62
4.4 Parallel 2-D Spatiotemporal Convolver Architectures ... 63

4.4.1 Parallel 2-D Single MAC Convolver Architectures 65
4.4.2 Parallel 2-D Dual MAC Convolver Architectures ... 67
4.4.3 Parallel 2-D Quad MAC Convolver Architectures .. 67
4.4.4 Performance Indices of the Parallel Spatiotemporal Convolver Architectures

 ... 68

4.5 Three Dimensions Application: Parallel Colour MRI Filtering 71

4.6 FPGA Implementation as Indirect Parallel 2-D FFT Filtering Architectures 74
4.6.1 Single 2-D FFT Filtering Unit Implementation ... 75
4.6.2 Single 2-D IFFT Convolution k-Space MRI Unit Implementation 77
4.6.3 Fast Parallel 2-D FFT Filtering Architecture ... 78
4.6.4 Performance Indices of Parallel 2-D FFT Convolution Architectures 79

4.7 Cross-correlator application: FPGA Architecture for Parallel 2-D MRI Matched

Filtering Algorithm ... 83
4.8 Conclusion... 85

Chapter 5. Parallel 3-D Greyscale/Colour Image Filtering Algorithm and Its

FPGA Implementations .. 86
5.1 Introduction ... 86
5.2 Research Concepts Definitions ... 87

5.2.1 Linear 3-D Stream Filtering Method ... 87

ix

5.2.2 Linear 3-D FIR Filters .. 88
5.2.3 3-D spatial Convolver Engine .. 91

5.2.4 3-D FFT Convolver Engine ... 92
5.2.5 Parallel 3-D Convolver Architectures Throughput .. 94
5.2.6 Total Computation Rate ... 94

5.3 The Generalized Parallel 3-D Linear Image Filtering Algorithm 95

5.3.1 Input Decimation by 2 for the 3-D Image Stream Filtering 96
5.3.2 Parallel 3-D Filtering Stage .. 96
5.3.3 3-D Image Reconstruction Output Stage ... 97

5.4 Parallel 3-D Spatial Convolver Architectures ... 97
5.4.1 Parallel 3-D Single MAC Convolver Filter Engines Architectures 99

5.4.2 Parallel 3-D Dual MAC Convolver Filter Engines Architectures 101
5.4.3 Parallel (2×8×3) Quad MAC 2-D Convolver Filter Engine Architecture ... 102

5.4.4 Performance Indices of Parallel 3-D Spatial Convolver Architectures 103

5.5 Four Dimension (4-D) Application: fMRI or 4-D Colour MRI Volume Filtering

 ... 108
5.6 FPGA Implementation as Parallel 3-D FFT Convolver Architectures 113

5.6.1 Single 3-D FFT Convolver Unit Implementation .. 114
5.6.2 Single 3-D IFFT Convolver k-Space MRI Filtering Unit Implementation . 116

5.6.3 Fast Parallel 3-D FFT Convolution Architecture ... 118
5.6.4 Performance Indices of Parallel 3-D FFT Convolver Architectures 120

5.7 3-D Cross-Correlator Application: Parallel 3-D MRI Matched Filtering Algorithm

 ... 124
5.8 Conclusion... 125

Chapter 6. Conclusion and Future Work ... 126
6.1 Introduction ... 126

6.2 Original Contributions .. 126
6.2.1 Parallel 1-D Signal Filtering Architectures .. 126
6.2.2 Parallel 2-D Grayscale/Colour Image Filtering Architectures 127

6.2.3 Parallel 3-D Grayscale/Colour Image Filtering Architectures 128
6.3 Overall Conclusions .. 128

6.3.1 Performance Indices of the Parallel Multi-Dimensional Architectures 129
6.3.2 Parallel 1-D Signal Filtering Architectures .. 129
6.3.3 Parallel 2-D Grayscale/Colour Image Filtering Architectures 130
6.3.4 Parallel 3-D Grayscale/Colour Image Filtering Architectures 131

6.4 Recommendation for Future Work ... 132

APPENDICES ... 134

Appendix A. Architecture 17’s first filtering stage out of eight 134

Appendix B. Logic area occupation of architecture 17 mapped and shown

graphically using Xilinx FPGA Editor Tool ... 135

Appendix C. Architecture 17’s RTL schematic diagram .. 136
List of Publications ... 137

[2] S. Hasan, S. Boussakta, and A. Yakovlev, “High Performance

Implementations of Parallel 3-D fMRI Filtering Algorithm using a Class of Spatial

Convolution Architectures," Paper in preparation .. Error! Bookmark not defined.

[3] S. Hasan, S. Boussakta, and A. Yakovlev, " Performance-Aware

Architectures for Parallel 4-D color fMRI Filtering Algorithm: A Complete

x

Performance Indices Package," Paper in preparationError! Bookmark not

defined.
REFERENCES .. 138

xi

List of Figures

Figure 2.1: A temporal parallelism is exploiting an independent convolver and

networking using pipeline ... 16

Figure 2.2: Spatial parallelism is dedicating parallel convolvers for each data segment 17

Figure 2.3: Logical parallelism exploits an independent Convolver for each input

segment as in (a) and a classical example is in (b) ... 18

Figure 2.4: Overall FPGA implementation flow for Parallel Multi-dimensional Data

filtering Algorithm .. 22

Figure 2.5: Xilinx System Generator tool complete block sets. 24

Figure 3.1: 1-D FFT convolver unit .. 31

Figure 3.2: The Generalized Parallel 1-D Linear block Filtering Algorithm 34

Figure 3.3: Parallel 1-D multi-MAC filtering architecture ... 37

Figure 3.4: Unit 1; 1-D Single MAC convolver implementation 38

Figure 3.5: Unit 2; Implementation of 1-D Dual MAC convolver 39

Figure 3.6: Unit 3; 1-D Quad MAC convolver implementation 41

Figure 3.7: Architecture1’s filtering results of a raw real-time speech (22050 Hz

/1Ch/16 bit) signal at 1-D FIR kernels of 2 coefficients ... 43

Figure 3.8:Architecture2’s filtering results of a raw real-time speech (22050 Hz /1Ch/16

bit) signal at 1-D FIR kernels of 4 coefficients. .. 44

Figure 3.9:Architecture3’s filtering results of a raw real-time speech (22050 Hz /1Ch/16

bit) signal at 1-D FIR kernels of 8 coefficients. .. 44

Figure 3.10: Architecture 4; implementation of fast single 1-D FFT convolver unit 45

Figure 3.11: Implementation of the Block Buffer component .. 46

Figure 3.12: Architecture 5; implementation of Fast Parallel 1-D FFT block Filtering

Algorithm in the Virtex-6 FPGA board .. 48

Figure 3.13: Architecture 5’s filtering results of the noisy real-time speech (22050 Hz/

1Ch/ 16 bit) signal at M= 63/ N=128 ... 50

Figure 3.14: The matched filtering results using architecture 5 at M= 63/ N=128. (a)

Input speech signal, (b) Target input segment, (c) Matching results. 51

Figure 4.1: A single digital image is partitioned into spatial parallelism of pixels for

parallel digital processing. .. 53

Figure 4.2: Logic parallelism; a single spatial parallelism image block is converted into

a temporal parallelism for Stream processing. .. 54

Figure 4.3: Implementation of the Generic 2-D Spatiotemporal Convolver Unit 56

Figure 4.4: Five temporal parallelism copies of a digital image are streamed into a 5×5

FIR filter .. 57

Figure 4.5: 2-D FFT convolver unit .. 58

Figure 4.6: 2-D FFT convolver unit is separable to be implemented as 1-D FFT pair

engine architecture. ... 58

Figure 4.7: The Generalized Parallel 2-D Linear Image Filtering Algorithm 61

xii

Figure 4.8: Spatiotemporal implementation of the Parallel 2-D Convolution Algorithm

 ... 64

Figure 4.9: Unit 4; (2×2) Single MAC Convolver Architecture 65

Figure 4.10: Unit 5; (3×3) Single MAC Convolver Architecture 65

Figure 4.11: Unit 6; (5×5) Single MAC Convolver Architecture 66

Figure 4.12: Row buffer implementation .. 66

Figure 4.13: Unit 7; (2×4) Dual MAC convolver Architecture 67

Figure 4.14: Unit 8; (4×4) Dual MAC convolver Architecture 67

Figure 4.15: Unit 9; (2×8) Quad MAC convolver Architecture 68

Figure 4.16: Unit 10; (8×8) Quad MAC convolver Architecture 68

Figure 4.17: Architecture 13; the implementation of the Fast Single 2-D FFT Filtering

unit on the Virtex-6 FPGA board .. 75

Figure 4.18: transpose unit implementation .. 76

Figure 4.19: Architecture 14; implementation of the Fast Single 2-D IFFT convolution

k-space MRI Filtering unit on the Virtex-6 FPGA board ... 77

Figure 4.20: Architecture 15; implementation of Fast Parallel 2-D FFT convolution

Algorithm on the Virtex-6 FPGA board ... 79

Figure 4.21: The parallel 2-D MRI matched filtering (cross-correlation) example using

architecture 15 ... 85

Figure 5.1:3-D image physical representation. ... 88

Figure 5.2: Generalized 3-D Spatial Convolver Unit implementation 91

Figure 5.3: Fast filtering by 3-D FFT convolver unit ... 92

Figure 5.4: 3-D separable FFT convolver unit .. 93

Figure 5.5: The Generalized Parallel 3-D image Linear Filtering Algorithm................. 95

Figure 5.6: The implementation of the Parallel 3-D Spatial Convolution Algorithm on

the Virtex-6 FPGA board; ML 605 development kit .. 99

Figure 5.7: Unit 7; (2×2×3) Single MAC convolver Architecture 100

Figure 5.8: Unit 8; (3×3×3) Single MAC convolver Architecture 101

Figure 5.9: Unit 9; (2×4×3) Dual MAC convolver Architecture 102

Figure 5.10: Unit 10; (4×4×3) Dual MAC convolver Architecture 102

Figure 5.11: Unit 11; (2×8×3) Quad MAC convolver Architecture 103

Figure 5.12: Architecture 21; the implementation of the Fast Single 3-D FFT

convolution g unit in the Virtex-6 FPGA board.. 114

Figure 5.13: frame-to-frame unit implementation .. 115

Figure 5.14: Architecture 22; an implementation of Fast Single 3-D IFFT convolution k-

space MRI volume data Filtering unit in the Virtex-6 FPGA board 117

Figure 5.15: Architecture 23; an implementation of Fast Parallel 3-D FFT convolution

Algorithm in the Virtex-6 FPGA board .. 119

xiii

List of Tables

Table 1.1: parallel signal processing algorithm implementations in FPGA/ASIC. 3

Table 2.1: Characteristics of the Virex-6 XC6VLX240T development FPGA board 26

Table 3.1: Logic Devices utilization by the three 1-D temporal convolver units 39

Table 3.2: Logic Devices utilization by the three parallel temporal convolver

architectures .. 42

Table 3.3: Performance indices of the parallel 1-D multi-MAC convolver filter

architectures .. 42

Table 3.4: Logic Devices utilization by the parallel 1-D FFT filtering’ architectures ... 49

Table 3.5: Performance indices of the parallel 1-D FFT filtering’ architectures 49

Table 4.1: some of the common edge and noise smoothing FIR filter of 5x5 kernels ... 55

Table 4.2: Logic Devices utilization by the 2-D multi-MAC convolver units 66

Table 4.3: Logic Devices utilization by each of the parallel spatiotemporal filtering

architectures .. 69

Table 4.4: Performance indices of the parallel spatiotemporal filtering architectures ... 69

Table 4.5: Filtering results of 64×64 greyscale MRI using architecture 8 70

Table 4.6: Filtering results for grayscale 64×64 MRI of twelve improved 2-D FIR filter

operators using architecture 8 ... 71

Table 4.7: Filtering results for colour 224×224×3 MRI of twelve developed 2-D FIR

filter operators using architecture 9... 73

Table 4.8: Filtering results for colour 224×224×3 MRI using the parallel spatiotemporal

filtering architectures .. 74

Table 4.9: Logic Devices utilization by architecture 13 ... 80

Table 4.10: Logic Devices utilization by architecture 15 ... 80

Table 4.11: Performance indices of architecture 13.. 81

Table 4.12: Performance indices of architecture 15.. 81

Table 4.13: the filtering results for greyscale (N1×N2) MRI of the generic 2-D FIR

Sharpen operators using architecture 13 ... 82

Table 4.14: the filtering results for greyscale (N1×N2) MRI of the generic 2-D FIR

Sharpen operators using architecture 15 ... 82

Table 4.15: Sharpening results for k-space greyscale (256×256) MRI of the generic 2-D

FIR Sharpen operators using architecture 14 .. 83

Table 5.1: Fourteen generic 3-D edge and noise smoothing filter operators (kernels),

where O.F is Operator Factor .. 90

Table 5.2: Logic Devices utilization by the 3-D spatial convolver units 100

Table 5.3: Logic Devices utilization by each of the five parallel spatial convolver

architectures .. 104

Table 5.4: Performance indices of each of the 3-D MAC FIR filter architectures 104

Table 5.5: The filtering results of greyscale 256×256×20 volume fMRI for fourteen

generic 3-D FIR filter operators using architecture 17 ... 106

xiv

Table 5.6: The filtering results for grayscale 256×256×20 volume fMRI of fourteen

improved 2-D FIR filter operators using architecture 17 .. 107

Table 5.7: Throughput of fMRI (colour MRI) volume using architectures 16 to 20 109

Table 5.8: Filtering results for colour 256×256×3×4 MRI volumetric 109

Table 5.9 : the 4-D filtering results for colour 256×256×3×4 MRI volume of five

generic 3-D FIR noise smoothing filter operators using architecture 17 110

Table 5.10: the 4-D filtering results for colour 256×256×3×20 MRI volume of nine

improved 3-D FIR Edge enhancement filter operators using architecture 17 111

Table 5.11: the 4-D filtering results for colour 256×256×3×20 MRI volume of five

improved 3-D FIR noise smoothing filter operators using architecture 17 112

Table 5.12: Filtering results for 256×256×3×20 colour MRI of the improved 3-D Edge

Enhancement operators using architectures 16, 17, 18, 19and 20. 113

Table 5.13: Logic Devices utilization by architecture 21 ... 120

Table 5.14: Logic Devices utilization by architecture 22 ... 120

Table 5.15: Logic Devices utilization by architecture 23 ... 120

Table 5.16: Performance indices of architecture 21.. 121

Table 5.17: Performance indices of architecture 22.. 121

Table 5.18: Performance indices of architecture 23.. 121

Table 5.19: the filtering results for greyscale (64×64×8) MRI volume data of the generic

3-D FIR Sharpen operators using architecture 21 ... 122

Table 5.20: the sharpening results for k-space greyscale (64×64×8) MRI volume data of

the generic 3-D FIR Sharpen operators using architecture 22 123

Table 5.21: the filtering results for greyscale (64×64×8) MRI volume data of the generic

3-D FIR Sharpen operators using parallel architecture 23 .. 124

xv

List of Equations

(2.1) ... 27

(3.1) ... 31

(3.2) ... 31

(3.3) ... 32

(3.4) ... 32

(3.5) ... 32

(3.6) ... 33

(3.7) ... 33

(3.8) ... 33

(3.9) ... 33

(3.10) ... 34

(3.11) ... 35

(3.12) ... 35

(3.13) ... 35

(3.14) ... 35

(3.15) ... 36

(3.16) ... 36

(3.17) ... 51

(3.18) ... 51

(4.1) ... 54

(4.2) ... 54

(4.3) ... 55

(4.4) ... 59

(4.5) ... 60

(4.6) ... 60

(4.7) ... 60

(4.8) ... 61

(4.9) ... 62

(4.10) ... 62

(4.11) ... 62

(4.12) ... 63

(4.13) ... 63

(4.14) ... 72

(4.15) ... 72

(4.16) ... 72

xvi

(4.17) ... 72

(4.18) ... 81

(4.19) ... 84

(4.20) ... 84

(5.1) ... 89

(5.2) ... 89

(5.3) ... 89

(5.4) ... 94

(5.5) ... 94

(5.6) ... 95

(5.7) ... 96

(5.8) ... 96

(5.9) ... 96

(5.10) ... 97

(5.11) ... 97

(5.12) ... 108

(5.13) ... 108

(5.14) ... 108

(5.15) ... 122

(5.16) ... 125

(5.17) ... 125

1

Chapter 1. INTRODUCTION

1.1 Background

Flynn and Rudd [1] stated in 1996 that “the future is parallel”. Currently, there has been

an increasing interest in the development and use of parallel hardware platforms, e.g.

FPGA, as well as parallel algorithms in one and multi-dimensional processing

applications such as weather forecasting, biomedical imaging and robotic vision

requesting high speed and high throughput rates. One and multi-dimensional digital

convolution and correlation operations are widely used for digital image processing

applications such as image filtering, enhancement and recognition [2-14]. As the

number of arithmetic operations is very large and the demand for real time high

resolution images is ever increasing, this computation requirement becomes extensive

and the need for high-performance parallel image processing algorithms is becoming

more important [15].

Previously, the main hardware platform to realize high performance parallel architecture

was the ASIC. However, with the advances in semiconductor technology the capacity

and performance of FPGAs have improved to such an extent that, together with their

inherent parallelism and reconfigurability, these devices have become a viable

prototyping hardware platforms for the investigation and implementation of high

performance processing algorithm [16, 17]. Subsequently, FPGAs are now used,

extensively, in modern high-performance filtering applications such as medical

imaging, portable image, mobile video applications, satellite data, weather forecasting

and seismic data, to mention few in enormous parallel algorithms applications that are

mainly implemented utilizing FPGA as a reconfigurable hardware platform.

However, as the complexity on FPGAs has increased, several inadequacies in the

software support tools, associated with FPGA realizations are becoming apparent and

need to be addressed [16-20]. First, there is a lack of suitable constructs in Hardware

Design Language (HDL), used in early design phase, to efficiently describe the

structures to implement the parallelism existing in multi-dimensional

convolution/correlation algorithms and their parallel filtering architectures, being

realized in FPGA technology. Second, to facilitate the rapid prototyping of

architectures, an IP library of commonly used cores needs to be developed, which

would also include an efficient mapping strategy for the fundamental blocks onto FPGA

structure. Finally, as the complexity of the systems being implemented on an FPGA

2

device increased, there is a requirement for a concurrent hardware/software system

design flow.

As the application area for parallel processing increases, together with the amount of

data to be processed, there is a growing requirement for the development of highly

efficient FPGA implementations for a family of parallel filtering algorithms, for one and

multi-dimensional applications in FPGA. Some of the related works in this area of

research are outlined in the following section.

1.2 Related Research Works

Although, there are many papers published on parallel processing and implementation, a

few focus specifically on FPGA-based implement parallel filtering algorithms in 1-D, 2-

D, 3-D and 4-D. Nevertheless, the research papers found in the literature can be

classified into the following broad groups:

1.2.1 Parallel Field Programming Tools

FPGA implementation of parallel multidimensional filtering algorithms goes beyond the

low-level line-by-line hardware description language programming [21]. High-level

abstract hardware-oriented parallel programming tools are required to bridge this gap.

Fortunately, the tools for implementing parallel filtering algorithms on FPGA enable

parallel field programming at a higher-level abstraction. A comparison study was

undertaken by Zoss et al [22] of three parallel design flow tools that adopt the modern

specify-explore-refine concept, for the hardware realization of parallel Multi-

dimensional convolution/correlation algorithms developed in the MATLAB /

SIMULINK framework, as shown in Table 1.1.

The specify-explore-refine concept starts with the specification of an executable

floating-point model, design exploration by fixed-point design followed by design space

refinement with parameters influencing the architecture by resource allocation and a

final scheduling. The three hardware generation tool chains are tightly coupled with the

MATLAB/SIMULINK design and simulation tools. In the design flow of Table 1.1(b),

the toolbox needed for the System Generator hardware generation is specific to Xilinx

FPGAs. Both design flows in Table 1.1(a) and (c), however, have no restrictions with

respect to FPGA or ASIC target technologies.

3

Table 1.1: parallel signal processing algorithm implementations in FPGA/ASIC.

Another comparison study [23] was undertaken into software design tools to implement

parallel multi-dimensional convolution/correlation algorithms in FPGAs that accelerate

the migration from traditional software algorithms to faster hardware implementations.

In this study, MATLAB/SIMULINK is suitable for the simulation of parallel multi-

dimensional filtering algorithms that are intended to be implemented on hardware,

because of its timing simulation feature in the time and frequency domains with flexible

presentation formats for easy viewing. This study compared Xilinx System Generator

with Altera DSP Builder for automatically translating Simulink models into

synthesizable hardware descriptions to be used with FPGA implementation tools of ISE

and Quartus II development suite respectively. These tools provide Simulink libraries

including common DSP, arithmetic, bus manipulation, control logic, storage, imaging,

or communication functions. Advanced options such as HDL co-simulation and

hardware-in-the-loop are also supported. HDL co-simulation allows designers to import

legacy or new HDL code, and simulate it directly from the Simulink framework.

Hardware-in-the-loop allows designers to verify designs in hardware directly from

Simulink.

In a study [24] of visual data flow environments, the combination of tools and IP

libraries helps the system designer manage design complexity, provides a flexible

modelling framework, and facilitates migration from algorithms into silicon. In this

study, the System Generator can maintain an abstract development level for modelling

4

and designing parallel multi-dimensional filtering algorithms that map designs into

hardware implementations that are faithful, synthesizable, and efficient without

substantially compromising the quality of either the functional representation or the

performance of the hardware implementation.

1.2.2 Parallel 1-D Signal Filtering Architectures

Parallel 1-D raw signal filtering algorithms have been efficiently implemented as

temporal or FFT convolution/correlation architectures using either DSPs or FPGAs.

In [25] DSPs were exploited. A one dimensional parallel block filter algorithm based on

the overlap-add approach was implemented on multi-DSPs platform in the ASP-PI5

DSP card. An input of length (N = 4035) and a variable length impulse response filter

(m =15, 31, 61) were used; FIR filtering was carried out using the complex Fast Fourier

transform (FFT) transform provided by the DSP library of functions. 1-D filtering

results were obtained using single DSP processor and parallel 4-DSP system. The 4-

parallel DSP system achieved a high speed up factor, close to the number of processors

used. The performance indices of logic area, power consumption and throughput were

not taking into consideration.

In the work undertaken by Hasan et al [26, 27], the performance indices of area, speed

and power consumption are considered as a complete package. A generalized parallel 1-

D signal filtering algorithm is implemented as a parameterized efficient FPGA-based

architecture using Xilinx System Generator. The implemented algorithm is a linear

spectral filter achieved by a parallel FFT/point-by-point complex inner product/ IFFT

convolution unit array. An input of real-time speech (22050 KHz /1Ch/16 bit) sequence

was filtered using a distinctive FIR filter impulse response kernel of (3, 7, 15, 31, 61,

127, 255, 511, 1023 and 2047) coefficients to be individually applied with a FFT/IFFT

N-point (8, 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096) respectively. The

parameterized implementation provides a rapid system-level FPGA prototyping and

operating frequency flexibility. Consequently, the results are readily obtained for two

targeted Virtex-6 FPGA boards, namely xc6vlX240T and xc6vlX130T, with a low total

power consumption (static + dynamic) of 1.6 W and down to 0.99 W, respectively, at a

maximum frequency of up to 216 MHz .

The work outlined in [26] has been cited in research undertaken in two other institutions

[28, 29]. The first was the Microsystems Design Laboratory (MDL), Department of

5

Computer Science and Engineering, The Pennsylvania State University, where

researchers developed efficient FPGA-based implementation for a reconfigurable

Network-on-Chip platform [28]. The second paper will be mentioned in subsection

1.2.3.

The work discussed in [27] was cited by an application [30] of model based

development of the digital part of a RFID transponder with Xilinx System Generator for

Virtex-4 xc4vfx60 FPGA board. The reported approach proved the efficacy of usage of

system-level abstraction of hardware-oriented programming, as an alternative to gate-

level hardware descriptive language, to satisfy the conformant RFID product

development at a minimal development-to-market time.

In the work carried out by Hwang and Ballagh [31] on the implementations of FIR

filters using System Generator, the trade off between filter size and throughput was

discussed by providing the performance results of three 64-tap FIR filters with a varying

number of MAC engines. The performance indices of the occupied slices and speed

were taken into consideration. The operating clock frequency was not particularly

sensitive to the number of MAC-engines employed. A single-MAC architecture has the

drawback that the throughput is inversely proportional to the number of filter taps. The

throughput can be increased dramatically by exploiting parallelism that matches

resource usage and availability to throughput, using System Generator.

1.2.3 Parallel 2-D Image Filtering Architectures

Parallel 2-D image filtering algorithms using spatial or spectral convolution/correlation

architectures were efficiently implemented using either DSPs or FPGAs.

In [32], a 2D parallel block-filtering algorithm was implemented on the ASP-P15 card

of 4-ADSP21060. The 2D algorithm was found to improve the performance of digital

filtering systems by segmenting the 2D input into smaller block sizes, which led to a

highly parallel implementation. The speed up results were presented for three different

input image sizes (128×128), (256×256) and (512×512). Each input was filtered using

fast number theoretic transforms. Only, the speed was considered out of the other

performance indices of area, power consumption and throughput.

A research team led by Bouridane [33] successfully reported an interesting comparison

for multi-processor platform and FPGA implementations of a parallel 2-D FFT single

unit architecture using parameterizable structural of row-column processing. The FFT

6

algorithms were including radix-2, radix-4, split-radix and fast Hartley transform

(FHT). These implementations were carried out under a common parallel architecture in

order to enable the system designers to meet different system requirements.

Parallel 2-D FFT processor implementations were based on different FFT algorithms for

matrix sizes N = 256 and 1024. Speed-up decreased with an increase in the number of

PEs because of the increased delay due to memory conflict [33]. The performance

results of parallel 2-D FFT implementation were subsequently displayed in terms of the

maximum system frequency , chip area and throughput against the number of PEs for

matrix sizes N = 256 and 1024. The chip area requirement and the throughput increased

linearly as the number of PEs increased for all FFT algorithms, while the maximum

system frequency slightly decreased.

The FPGA-based implementations of the parallel 2-D FFT algorithms, targeted on

Virtex-2000E FPGA, presented a low-cost solution for 2-D FFT with real-time

performance [33]. In addition, the FPGA implementation compared favourably in terms

of area and area/speed ratio with multi-processor implementation. The throughput was

stable at 35 FPS for 512 × 512 image. The performance indices that were taken into

consideration are occupied slices, speed, throughput and the power consumption that

was inferred from the area occupation.

In [34] a parallel 2-D Image filtering algorithm was implemented on a Xilinx

XC4VSX35 FPGA board using a spatiotemporal convolution implementation, suitable

for portable image processing applications. The system reduces the power consumption

while still maintaining video rate operation. This paper describes how splitting the data

stream into multiple processing pipelines can reduce power consumption in contrast to

the traditional spatial (pipeline) parallel processing technique. Real-time image

processing system functions (3×3 Sobel filters and 3×3 anisotropic diffusion) were

implemented to show the principle of the technique. A relation was observed between

the frame processing time achieved and the consumed power when processing the

images without any partitioning, partitioning into three and 6 partitions respectively.

The effect of this image partitioning technique was strongest when faster processing

times were required. Particularly, when real time image smoothing were using the

anisotropic diffusion algorithm, which required large number of iterations to process

one frame. For example, if 100 iterations were required and each iterative sub frame

processed at 0.6 ms, a total frame time will takes 60 ms with a final video rate of 15Hz,

7

running one partition at 300 MHz, or three partitions at 100Mhz. The resultant

difference in power consumption is 261mW. In the case of smaller iterations the

background power consumption of the FPGA dominates. The performance indices gave

increasing benefits with shorter processing times, and up to 45% drop in the power

consumption. The performance indices did not take into considerations the throughput.

In [21, 35], nine parallel 2-D grayscale MRI spatial convolution algorithms were

developed as one generic architecture, targeted on two Virtex-6 FPGA boards, namely,

xc6vlX240T and xc6vlX130T. This generic architecture was used as “ bulge and

develop” processor to improve the nine MRI image filtering operators for generating

enhanced MRI scans filtering results without significantly affecting the developed

performance indices of high throughput and low power consumption at maximum

operating frequency.

This approach of development, improvement and implementation was accomplished

using Xilinx System Generator. Where, a single generic architecture was efficiently

prototyped to achieve high filtering performance of (11230 FPS) throughput for 64×64

MRI grayscale scan, minimum total power consumption of 0.86 Watt with a junction

temperature of 52°C and a maximum frequency of up to (230 MHz). The improved

generic architecture provides visibility enhancement within the filtered MRI scan to aid

the physician in detecting brain diseases, e.g., trauma or intracranial haemorrhage. The

high filtering throughput is feasibly nominee the nine parallel MRI filtering algorithms

for applications such as real-time MRI potential future applications.

The research work described in [21] was cited in four interesting and related research

papers in parallel 2-D image filtering algorithms which are FPGA- based

implementation using Xilinx system generator. The first paper [29] was gesture

recognition application using field programmable gate arrays, the performance indices

of its architecture was only the logic area occupation. The second paper [36] was

teaching and research program in FPGA based Digital Signal Processing using Xilinx

System Generator, the implementation of various designs was carried out on a Xilinx

Spartan-3E FPGA, no performance indices were mentioned. The third paper [37] was a

VLSI Implementation of an Edge detection system for images, its implementation was

developed in Spartan 3A DSP FPGA, the performance relates only to the logic area

occupation. The fourth paper [38] was an efficient FPGA implementation of MRI image

filtering and tumour characterization using Xilinx System Generator, six (3×3) edge

8

detection, Gaussian blur, thresholding & edge sharpening algorithms were implemented

on a Spartan 3E starter kit (XC3S500E-FG320), the performance indices considered

were only the logic area occupation and clock speed of 50 MHz .

1.2.4 Parallel 3-D Volumetric Data Image Filtering Architectures

Parallel 3-D raw volume image filtering algorithms were efficiently implemented as 3-

D spatial or 3-D spectral convolutions /correlations architectures using either multi-

DSPs platform or FPGAs boards.

In the research papers [39, 40], a parallel 3-D spatial convolution algorithm was

implemented on a multiprocessor DSP system (the ASP-P15 Quad-DSP card),

consisting of 4-SHARC DSP processors (ADSP21060), and benchmarked against a

single SHARC-DSP processor system, to obtain the performance index of more than 5-

fold speed up factor. This method is suitable for high resolution / high speed 3-D image

and video processing. The proposed 3-D parallel filtering algorithm eliminates the

overlapping segments overhead in the block-filtering method, and the boundary

conditions in parallel filtering applications. When the system impulse response is large,

the overall memory distribution of the parallel system was enhanced by segmenting

both the 3-D input data and the impulse response of the system into smaller independent

subsections that can be simultaneously processed. The input 3-D volume image was of

size (64×64×64).

In the research papers [41, 42], a parallel 3-D fast transformed convolution algorithm

was implemented using a 3-D New Mersenne Number Transform (3-D NMNT) and 3-

D vector radix fast Hartley transform (3-D VR FHT), with input 3-D volume images of

size (32×32×32) and (64×64×64) respectively. The implementations were realized in a

multiprocessor DSP system (the ASP-P15 Quad-DSP card), consisting of 4-SHARC

DSP processors (ADSP21060), and benchmarked against a single SHARC-DSP

processor system, to obtain the performance index of more than 16-fold speeding factor.

The same parallel 3-D filtering algorithm structure exploited in [39, 40] was

implemented , but, in fast transformed convolution.

In [43], a parallel three-dimensional 3-D FIR digital filter algorithms were designed by

decomposing the 3-D complex design specification into one-dimensional (1-D) complex

design specifications, that can be regarded as frequency response specifications of 1-D

FIR filters. Then a set of 1-D FIR filters were designed to approximate them. Finally,

9

combining the resulting 1-D filters gave a linear phase 3-D filter with parallel structure.

The technique can create linear phase 3-D filters by merely designing 1-D FIR filters.

Furthermore, the structure of the resulting 3-D filter will have high degree of

parallelism, modularity and regularity, and is suitable for VLSI implementation and

parallel signal processing. No performance indices were presented.

In an article undertaken by Lin et al [44], the research and development of a massively

parallel three-dimensional (3-D) spatial and FFT convolution architecture was described

with its programming technology, in construction of parallel video processing

components, and in development of video processing applications. The implementation

was carried out using multi-core architectures for video processing. An archetypal

example of optimizing the parallelism of a video processing application was considered.

The 3-D convolution algorithm was implemented as either 3-D spatial convolution or

the 3-D FFT convolution, where, the 3-D volume video input is V having nV number of

pixels, and the 3-D FIR filter kernel is K having nK number of pixels. Then a spatial

convolution method required O(nV nK) operations, while the Fast Fourier transform

(FFT) convolution perform the 3-D convolution in O(nV log2 nV) steps. Since, nK is

always greater than log2 nV for long 3-D kernel, then, the Fourier multiplication

technique should quickly win over spatial multiplication for long FIR kernels. For short

3-D kernel, however, the inequality formula will be nK < log2 nV, hence, the

implementation should be carried out using the 3-D spatial convolution.

In [45] , a massively parallel Correlation Census algorithm was implemented on Altera

Stratix 1S40 FPGA with real time performances and an output rate up to one hundred

images per second. The main objective of this algorithm was to search for the

correspondence between two input images (right and left) taken from two different

angles to get a "depth map" shape to reconstruct the 3D scene. To compute this

algorithm, many parallel-pipelined pre-processing stages are needed (means calculus,

windowed Census transformation, best correspondence searching, and image filtering).

This real time parallel architecture was developed for the PICAS$O project to achieve

the calculus of depth map to get (100 FPS) which is needed in many applications such

as medical surgery, robotics, vehicle driving assistance and many other applications.

1.3 Research Aims and Objectives

One and multi dimensional raw data collections introduce noise and artifact need to be

recovered from degradations by an automated filtering system before further machine

10

analysis. The need for automating wide-ranged filtering applications necessitates the

design of generic filtering architectures. This would enable the development of

multidimensional and extensive convolution operators. Consequently, the aim of this

thesis is to investigate the problem of automated construction of a generic parallel

filtering system. To achieve this goal, performance-efficient FPGA implementation

architectures are developed to realize parallel one/multi-dimensional filtering

algorithms. The proposed generic architectures provide methods of fast FPGA

prototyping for high performance computations to obtain efficiently implemented

performance indices of area, speed, dynamic power, throughput and computation rate,

as a complete package. These parallel filtering algorithms and their automated generic

architectures tackle the major bottlenecks and limitations of existing multiprocessor

systems in terms of wordlength, input data segmentation, boundary conditions as well

as inter-processor communications, in order to support high data throughput real-time

applications of low-power architectures using a Xilinx Virtex-6 FPGA board.

1.3.1 Aims

The aims of this PhD research project are to introduce highly efficient FPGA

implementations of parallel multi-dimensional data convolution/correlation algorithms

for the digital filtering applications in 1-D, 2-D and 3-D up to 4-D to provide generic

architectures with minimum logic area, low dynamic power consumption, fast speed

and high throughput. The development tool of System Generator within the Xilinx ISE

design suite are exploited to realize these implementations. VIRTEX-6 family of the 40

nm FPGA is the hardware platform for the novel instantiation of the parallel multi-

dimensional filtering algorithms.

As the FPGA is to be the implementation platform from which a range of performance

parameters for various algorithms will be obtained and compared to other

implementations. It is essential to highlight various architectural features of FPGAs

which will give potential implementation advantages. For example, the inherent

parallelism within the FPGA needs to be analyzed together with its flexible wordlength

compared to the DSPs sequential processing interprocessor communication and fixed

wordlength bottlenecks. Moreover, parallel field programming languages are studied to

exploit the most efficient performance indices. Therefore, parallel multi-dimensional

data filtering algorithms are studied and adapted to be mapped into parallel generic

architectures.

11

1.3.2 Objectives

The objectives of this research project are based on the achievements of the above-

mentioned research aims. Therefore, in Chapter 3, parallel block-filtering architectures

are studied and developed in 1-D, appropriate for the parallel 1-D raw signal filtering

algorithm implementations in the Virtex-6 FPGA board. The developed parallel 1-D

filtering architectures are performance-efficient in the temporal and frequency domain

to cover the short and long 1-D FIR kernel real-time applications.

A new and novel parallel multidimensional image filtering architectures are introduced,

in chapter 4 and 5, and their implementations as a generic architectures are described.

The parallel 2-D, 3-D and 4-D image filtering algorithms are suitable for the calculation

of the multidimensional data convolutions/correlations, and their related applications.

These parallel filtering architectures solve the problems associated with the parallel

block-filtering algorithms of boundary conditions and overlapping segments, as well as

the parallel processing stages communication bottleneck. Furthermore, the developed

parallel architectures are performance-efficient in the spatial and frequency domain to

cover the short and long multidimensional FIR kernel applications.

1.4 Contributions per Chapter

The primary contributions of this research project are:

1.4.1 Contributions of Chapter 3

In chapter 3, implementations of the parallel 1-D filtering algorithms are presented and

mathematically modelled using the 1-D block filtering method. The architectures are

implemented on FPGA, as parallel temporal and FFT architectures with attractive

performance indices. Five generic architectures were implemented on Virtex-6 ML605

board. Also, a complete set of area, speed, power, throughput and computation rate for

each architecture were obtained. An example of a practical application of the above

algorithm is the realization of a cross-correlation function using a parallel 1-D matched

filter algorithm for real-time speech signature detection. Subsequently, this application

was mathematically modelled, implemented and analyzed.

1.4.2 Contributions of Chapter 4

In chapter 4, parallel 2-D grayscale/colour image filtering algorithms are discussed,

mathematically modelled and implemented using 2-D input decimation and output

image was reconstruction by interpolation. The FPGA implementations, as parallel

spatiotemporal and FFT architectures, were realized. Ten FPGA-based architectures

12

were implemented on Virtex-6 ML605 board. Also, a complete performance indices set

were obtained for each of the 2-D filtering architectures. A 2-D image generic processor

were also developed using mutli-MAC FIR units. A 3-D Colour image processor were

devised to act as an open development 3-D colour filtering engine. A parallel Cross-

correlator engine was also developed as a parallel 2-D matched filter algorithm to locate

any MRI slice within a MRI data stack library. Twelve 3-D MRI filtering operators,

edge detection and noise-smoothing, were also developed to improve biomedical

imaging results.

1.4.3 Contributions of Chapter 5

In chapter 5, a novel parallel 3-D grayscale/colour volumetric image-filtering algorithm

is presented using volume data image segmentation by decimation and output

reconstruction by interpolation. Eight architectures were developed and implemented on

Virtex-6 board. Fourteen 3-D MRI filtering operators were also developed and used to

improve biomedical imaging results. As a practical example of the above architectures,

a four dimensional coloured MRI (fMRI) filtering processor was realized using 3-D

spatial architectures. Two examples were realised using the 3-D FFT architectures to

filter k-space MRI volume data and 3-D cross-correlator.

1.5 Organization of the Thesis

The content of the remaining chapters are outlined below:

Chapter 2 introduces and illustrates the parallelism concept within parallel multi-

dimensional data filtering algorithms and the realization of these parallelism types on

the FPGA. Therefore, the use of the Xilinx System Generator in the FPGA

implementation of the multi-dimensional filtering algorithms is discussed, followed by a

description of the performance related factors is when comparing various

implementations of parallel algorithms. The chapter also outlines the seven key steps

involved in the implementation of such parallel filtering algorithms.

Chapter 3 presents the adaptation of the generalized parallel 1-D speech signal filtering

algorithms based on the block filtering method. The algorithm layout and mathematical

model for the general filtering case are given. Furthermore, the implementation of five

generic architectures on Virtex-6 board are discussed together with their performance

indices. The chapter ends with a description of the implementation of a real-time speech

signature detection using parallel1-D cross-correlation architecture.

13

Chapter 4 presents a new generalized parallel gray/colour image filtering algorithms

based on the input decimation and output interpolation. The algorithm layout and

mathematical model for the general filtering case are given. The implementation of ten

generic architectures in Virtex-6 ML605 board is discussed together with their

performance indices. These generic architectures can be applied as a colour image

processors. The chapter ends with a description of the implementation of a 2-D cross-

correlation application to target an MRI slice within a library of MRI stack.

Chapter 5 introduces a novel generalized parallel gray/colour volumetric image

filtering algorithms based on the input decimation and output interpolation. The

algorithm layout and mathematical model for the general filtering case are given. The

implementation of eight FPGA-based architectures in Virtex-6 ML605 board is

described as well as their performance indices. Three successful applications are

developed.

Chapter 6 presents summary of the original contributions, overall conclusions and

investigates potential research projects for future work in the parallel multi-dimensional

data filtering algorithms.

14

Chapter 2. Parallelism Analysis in Filtering Algorithms and

FPGA-Based Architectures

2.1 Introduction

An FPGA is a general-purpose integrated circuit that is field “reprogrammed” even after

it has been deployed into an embedded system. FPGAs have increasingly become to be

seen as complete systems because of their increased capacity, improved performance,

inherent parallelism and reconfigurability [16, 17, 46-49]. Consequently, FPGAs are being

exploited extensively for the hardware realization of modern parallel one and

multidimensional data filtering algorithm applications in 1-D [26, 27, 33, 50-54], 2-D [3,

21, 33, 55-61], 3-D [45, 62-68] and 4-D [69-73] such as real-time audio and speech

filtering, filtering medical imaging, portable image filtering, mobile filtering applications,

robot vision, satellite data filtering, weather forecasting, seismic data filtering and wireless

communication system. To mention few in enormous parallel algorithms applications that

are mainly implemented utilizing FPGA as a reconfigurable hardware platform.

FPGA is programmed by downloading a configuration program called a bitstream into

static on-chip random-access memory. Similar to the object code for a microprocessor,

this bitstream is the product of compilation tools that translate the high-level

abstractions into low-level and executable equivalent code. Xilinx System Generator

can compile an FPGA program from a high-level Simulink model.

FPGA provides an array of configurable resources that can implement a wide range of

arithmetic and logic functions. These resources include dedicated DSP blocks,

multipliers, dual port memories, lookup tables (LUTs), registers, tri-state buffers,

multiplexers, and digital clock managers. In addition, Xilinx FPGAs contain

sophisticated I/O mechanisms that can handle a wide range of bandwidth and voltage

requirements. The DSP computing and I/O resources are linked under the control of the

bitstream by a programmable interconnect architecture that are wired together into

systems.

FPGAs are high performance data processing devices. Digital signal processing

performance is derived from the FPGA’s ability to construct highly parallel

architectures for processing data. In contrast with a microprocessor or DSP processor,

where performance is tied to the clock rate at which the processor can run, FPGA

performance is tied to the amount of parallelism that can be structured in the multi-

15

dimensional filtering algorithms. A combination of increasingly high system clock rates

and a highly-distributed memory architecture empowered the ability to exploit

parallelism in filtering applications that operate on data streams. For example, the raw

memory bandwidth of a large FPGA running at a clock rate of 600 MHz can be

hundreds of terabytes per second.

When working in System Generator, it is important to keep in mind that an FPGA has

many degrees of freedom in implementing Parallel multi-dimensional filtering

algorithms. The freedom also exists to define data path widths throughout the

architecture, and to employ many individual data processors (e.g., MAC engines and

FFT) with high abstractions.

The reminder of this chapter is organised as follows:

In section 2.2, three different ways in which parallelism, namely temporal, spatial and

logical, is used in parallel filtering algorithms, are discussed. In section 2.3, the main

characteristics of FPGA-based implementation of parallel filtering algorithms are

presented. In section 2.4, the FPGA implementation of parallel digital filtering is

described. In section 2.5, overall FPGA implementation steps are explained with a flow

chart. In section 2.6, parallel field programming using XSG tool are discussed. In

section 2.7, performance factors are described as a complete package when comparing

various algorithm implementations. Finally, the conclusion of this chapter is presented

in section 2.8.

2.2 Parallel Filtering Algorithms

Parallel one and multi-dimensional filtering algorithms are concurrent computation

models which tend to be used in applications where there is a demand to process lots of

information with the sampling rates that can range from kHz as in speech environments,

right through to MHz, in the case of image processing applications [16]. The design of

these parallel filtering algorithms to solve a particular problem is strongly influenced by

the hardware platform and the software development tools.

Factors that affect the performance of such algorithms on a particular hardware platform

are dependent on the degree of parallelism and the overhead incurred in scheduling and

synchronizing the parallel tasks. Parallelism can either intrinsically exist in the filtering

algorithms or can be introduced by organizing the computation to allow a parallel

16

implementation. Three parallelism types are observed in these filtering algorithms as

temporal, spatial and logical parallelisms [17].

2.2.1 Temporal Parallelism

The structure of parallel filtering algorithm suggests a separate convolver for each

filtering operation, as shown in Figure 2.1. This is a pipelined structure in which the

data are processed in passing through each stage. Each convolver operates and passes

the result to the next stage. The total filtering time will not be reduced if each successive

convolver has to wait until the previous convolver completes processing. Nevertheless,

the throughput can be increased if each convolver operates on an independent part of the

data.

Figure 2.1: A temporal parallelism is exploiting an independent convolver and

networking using pipeline

Pipelining an operation can significantly improve the performance of the parallel

filtering algorithm when a downstream convolver may begin operating before the

upstream convolver due to the low latency of an operation. Operation latency is the

time required between the data input and the corresponding output is available. In a

hardware platform, the total throughput is given by the sum of each convolution stage

latency.

2.2.2 Spatial Parallelism

This type of parallelism, as shown in Figure 2.2, can occur internally within the

operations level of the parallel algorithm, when many iterative operations are performed

on a certain data segment. This internal parallelism may be exploited by partitioning the

data into segments and using separate convolvers to perform the operation on each

segment.

For example in video filtering, the image sequence may be partitioned in time by

assigning successive frames to separate convolvers. The spatial parallelism considerably

Convolver 1

Operation

1

Convolver 2

Operation

2

Convolver 3

Operation

3

Convolver 4

Operation

4

17

minimise or even eliminate the communication among convolvers, due to the

independent data segments, hence, no accessing of shared resources. Consequently,

each convolver must have some local memory to reduce any delays associated with

contention for global memory.

Figure 2.2: Spatial parallelism is dedicating parallel convolvers for each data

segment

2.2.3 Logical Parallelism

The third form of parallelism which may be exploited in a regular structure where an

operation or the functional block can be reused and arranged in parallel is illustrated in

Figure 2.3, (a). A linear convolution algorithms multiplies the data value within a

window by a coefficients set or kernel. These multiply and accumulate (MAC) blocks

are repeated many times. This is a classic example of logical parallelism, as illustrated

in Figure 2.3, (b).

Data

Segment 1

Operation

Convolver 1

Convolver 2

Convolver 3

Convolver 4

Data

Segment 2

Operation

Convolver 5

Convolver 6

Convolver 7

Convolver 8

Data

Segment i

Operation

Convolver i1

Convolver i2

Convolver i3

Convolver i4

18

Figure 2.3: Logical parallelism exploits an independent Convolver for each input

segment as in (a) and a classical example is in (b)

2.3 FPGA-Based Implementation of Parallel Filtering Algorithms

An FPGA can readily implement most of the parallelism types [17]. Since FPGAs are

inherently parallel, then any logic area required by the parallel multi-dimensional

convolution algorithms can be implemented on FPGA by reconfiguring separate

hardware architectures for each convolution operation. This permits the FPGA to be a

reconfigurable device of choice for rapid prototyping and development of such parallel

filtering algorithms. Moreover, the FPGA has the speed that results from a hardware

design while retaining the reprogrammable flexibility of software tool.

Temporal parallelism can be implemented, as a pipelined architecture, by reconfiguring

a separate convolver for each convolution operation in the pipeline. In this data

synchronous algorithm, the data is passing from the output of one operation to the input

of the next. If the data cannot be synchronized, then appropriate buffers may be

incorporated to manage the variation in the dataflow or access patterns. Spatial

parallelism may be exploited by reconfiguring multiply copies of the convolution

hardware and assigning independent input data partitions to each of the copies. These

Convolver 1

Operation

Convolver 2

Operation

Convolver 3

Operation

Convolver 4

Operation

MAC

engine

MAC

engine

MAC

engine

MAC

engine

MAC

engine

MAC

engine

MAC

engine

MAC

engine

MAC

engine

FIR
 kernel

W
indow

 data value

Filtered output

a b

19

map readily onto the available resources of the FPGA. Logical parallelism is well suited

to FPGA implementation, and may be accelerated significantly. This accomplished by

the parallel hardware and unrolling sequentially performed operations.

The partitioned input data are serially streamed into the parallel multi-dimensional

filtering stage. This can be realized as the FPGA implementation, especially when

interfacing directly to a camera or vision system. If all the convolutions/correlations can

be implemented using a streaming processing, then the implementation of the entire

filtering algorithm as a single streamed pipeline results in a very efficient on-the-fly

filtering architecture. The required throughput can usually be achieved by pipelining.

The ability to significantly exploit the inherent parallelism of the FPGA has

considerable implications when reconfiguring an embedded architecture for the parallel

filtering algorithms. Performing multiple serial convolution in parallel enables the clock

speed to be lowered noticeably. A streamed pipelined architecture implemented on an

FPGA can often operated at the native input or output clock frequency. This

corresponds to a reduction in the clock speed of a serial convolver of two magnitude

orders or more. The dynamic power consumption of this parallel architecture is directly

related to the clock frequency, thus an observable lower power design is obtained.

The development of an FPGA-based design for the entire filtering algorithm will allow

the embedded realization within only one or two chips, depends on FPGA type.

Consequently, enabling a complete parallel multi-dimensional filtering algorithm to be

embedded within a sensor or camera. Thus, FPGA-developed architectures can be then

be embedded within many portable applications.

2.4 Parallel Digital Filtering using FPGAs

Before FPGAs, DSP circuits, e.g. DSP and Gate arrays, could be constructed, but with

less flexibility to run parallel algorithms in software due to fixed wordlenths, e.g. 16

bits, 24 bits, 32 bits. Operations with shorter wordlengths still required one execution of

the entire wordlength. On the other hand, FPGAs allow the choice exactly of the

required wordlength. FPGAs enable configuration of data paths into arbitrary sizes,

allowing a trade-off between resolution (precision) and parallelism. An additional

benefit of minimizing precision comes from shorter propagation delays through

narrower arithmetic units [68].

20

Note that the general speed-area complexity of an N×N bit multiply is one quarter of the

general speed-area complexity of a 2N×2N multiplier. Therefore, if using a 16 bit

processor to solve an 8 bit problem the arithmetic processing silicon is being used at

25% MAC efficiency. If using a 24 bit processor for an 8 bit problem then the processor

is being operated at around 11% (1/9th) MAC efficiency. On the other hand, the FPGA

wordlength is not constrained to the traditional 8, 16 or 32, but can be sized to the

required arithmetic resolution of 5, 9, 13 or 21. Moreover, the FPGA-based

implementations exploit the flexibility to change the resolution at different parts of an

FPGA-based architecture.

Early gate-arrays were simply arrays of NAND gates. Combinational and sequential

functions can be implemented by interconnecting the NAND gates. Early gate array

implementation flow would be designed, simulated/verified using simulators and

netlisters. Early GAs were usually used to implement some two level logic functions

such as flip-flops, registers, addition and subtraction functions. Once a layer(s) of metal

have been laid on a device, the GA cannot be changed, updated or fixed.

Therefore, digital signal processing moved to FPGAs, so that, the logic specified is

changeable by “field” reprogrammed interconnection. FPGAs are carefully balanced

repository of multi-input logic, flip-flops, multiplexers, memory, arithmetic resources

and DSP components.

The modern concept of an FPGA implementation is to interconnect the available logic

area to implement the algorithm using modern toolsets and design flows. However, new

issues have emerged:

 Correct processing of arithmetic operations, i.e. overflow, underflow, saturate.

 Wordlength specification and the choice between rounding and truncation.

 Latency or delays used to maintain the synchronization.

 What clock rate to be used?

 Does the device place and route?

 What logic devices should be utilized?

 To compromise between logic fabric and IPs core utilization.

 Control over implementation parallelism.

Therefore, FPGA-based implementations flexibility is accomplished in terms of binary

arithmetic using finite wordlengths for the required numerical precision. On the other

hand, an efficient mapping of a parallel multi-dimensional filtering algorithm to FPGA

21

hardware can be achieved by leveraging our knowledge of DSP theory and

implementation to finite wordlength effects within the targeted FPGA logic area.

2.5 Overall FPGA Implementation Steps

Generally, the overall FPGA implementation process of any parallel algorithm [22, 23]

can be depicted as shown in Figure 2.4. This overall Xilinx ISE design flow is essential

to FPGA implementation. Parallel algorithm implementation requires several key steps:

Firstly, creating or adding parallel algorithm design sources in Verilog/VHDL files,

schematic RTL entry, C/C++ embedded system files, IP core generator files or DSP

System Generator circuits [74].

Secondly, Synthesis is the process of transforming the design sources into architectural

specific gate level net-lists according to control aspects constraints. The

interconnectivity is also defined between the building blocks. For interchange between

different tools, a net-list is often represented using EDIF (electronic design interchange

format). Thirdly, Timing and I/O constraints; the timing specifications in its basic forms

define the clock operating frequencies as well as the timing requirements for all the

main inputs and outputs. Fourthly, a parallel algorithm architecture implementation; the

implementation process compiles the parallel algorithm architecture through individual

phases of net-list translation, mapping and place and route. Initially, the net-list is

mapped onto the target FPGA. In mapping, the logic is partitioned, merged or spilt to be

fit into the available LUTs on that FPGA. The place and route phase joins together

these mapped components and determines the routing required to connect the logic

blocks memories and I/O.

Fifthly, the result analysis to verify that the parallel algorithm mapping objectives are

accomplished. In addition, identify the implementation area that needs to be modified to

reach an implementation closure. There are two main types of changes to improve the

parallel algorithm implementation: either alter architecture properties of design

strategies by modify the design source code or refine design constrains.

Sixthly, Hardware Debug is the most time consuming stage of the implementation

cycle. Accordingly, the on-chip debugging must be highly detailed, at-speed internal

FPGA signal capture and highly accurate viewing of post-place and route parallel

algorithm implementation.

22

Seventhly, FPGA bit stream is the generation of a programming file that configures the

FPGA implementation of the parallel algorithm via a parallel cable called JTAG.

Figure 2.4: Overall FPGA implementation flow for Parallel Multi-dimensional

Data filtering Algorithm

In the sequel, the overall FPGA implementation flow provides a realization

methodology in behavioural software and FPGA hardware for the parallel filtering

algorithm. However, the FPGA implementation closure requires many design

modification and iteration. In addition, the functionality and performance of the FPGA

implementation can be verified via simulation at various implementation flow steps.

2.6 Parallel Field Programming using Xilinx System Generator Tool

Currently, FPGA goes beyond the low-level line-by-line HDL programming in

implementing parallel multidimensional filtering algorithms. High-level hardware-

oriented parallel programming methods can structurally bridge this gap [21].

At a higher level of abstraction, both parallelism and pipelining are well represented

using a dataflow graph [17]. The FPGA parallel fabric outcomes in a better fit with

visual dataflow. Indeed, most of the parallel filtering algorithms, such as signal and

Design

Creation

Synthesis

Timing & I/O

Constrains

Implementation

Result

Analysis

On-Chip Debug

FPGA

Bit Stream

Modify

Design

Embedded

Processor

DSP

IP

Behavioural and

functional simulation

Parallel Multi-dimensions

 Data Filtering Algorithms

Parallel

Programming

Gate level

simulation

Timing

simulation

23

image filtering, are often represented graphically by block diagrams. These blocks

represent basic operations of addition and multiplication as well as complicated

operations of convolution/correlation and FFT on the streamed data, and connection

between blocks indicating the flow of data. Dataflow exposes the parallelism within

multi-dimensional filtering algorithms without indicating the execution order.

This led to the logical approach of flied programming of the FPGA using dataflow

languages, such as XSG [22-24, 74, 75]. System Generator is a system-level modelling

tool that facilitates FPGA hardware design. It extends Simulink in many ways to

provide a modelling environment that is well suited to hardware design. The tool

provides high-level abstractions that are automatically compiled into the FPGA. The

tool also provides access to underlying FPGA resources through low-level abstractions,

allowing the construction of highly efficient FPGA designs. The design flow, as shown

in Figure 2.4, involves developing the parallel algorithm within MATLAB, and then

representing the algorithm graphically within Simulink using Xilinx library-based basic

blocks.

The MATLAB/Simulink environment allows signals to be inspected using Scope and

Display Simulink blocks, and written into the MATLAB workspace for plotting or

further analysis, using the “To WorkSpace block”. In all cases, signals must be first

output from the System Generator design via Gateway Out blocks. The System

Generator also features a logic analyser as a WaveScope block, where signals from

within the design can be probed. A further option is hardware testing with the

ChipScope analyser. Using this technique, a special ChipScope block is added to the

System Generator design, and signals of interest are connected to it. The whole design

is then synthesised and implemented, and downloaded to the FPGA device. While the

design operates, the ChipScope block captures signal data from the design running on

the board, and these are transmitted back to the host PC, where signals can be viewed or

analysed.

The Xilinx block set, as shown in Figure 2.5 , is used to implement the parallel

algorithm for targeting Virtex-6 XC6VLX240T FPGA board. Xilinx Blocks set library

consists of the following basic groups of blocks:

 Basic blocks for Multiplexer, Delay …

 Communication blocks for forward error correction and modulator blocks …

 Control logic blocks for control circuitry and state machines.

24

 DSP blocks of FFT, CORDIC blocks, Convolutional Encoder…

 Data type blocks that convert data types, includes gateway in and out.

 Math Blocks that implement mathematical functions of addition, subtraction …

 Memory blocks that implement and access RAM, FIFO, shared memory…

 Utility tools blocks, e.g., System Generator token, resource estimation, HDL co-

simulation, Black block and M-code block that provides interfaces to other

software tools (e.g., ModelSim, FDATool)

All the System Generator blocks are parameterised to allow the specification of data

mathematical representation, type, wordlength, width and the IP core selection … etc.

The System Generator block sets are specifically targeted the basic and advanced DSP

features within the Xilinx FPGA boards, resulting in an efficient development,

implementation and use of resources. System Generator blocks are bit-accurate and

cycle-accurate. Bit-accurate blocks produce values in Simulink that match

corresponding values produced in hardware; cycle-accurate blocks produce sampling

values at corresponding times.

The Xilinx blocksets map Simulink system parameters into entities and architectures,

ports, signals and attributes in a hardware model. These mapped parameters are then

converted into a hierarchical HDL netlist as well as the necessary command files to

create an IP block netlist, which creates project and script files for HDL simulation,

synthesis, placement, routing and bit stream generation.

Figure 2.5: Xilinx System Generator tool complete block sets.

25

2.7 Performance Indices

The performance indices of the parallel filtering architectures are considered as a

complete set of area, speed, power, throughput and computation rate values using XSG

to target a Virtex-6 ML605 FPGA board [76]. The area represents the occupied logic

assets of FFs, LUTs, Slices, DSP and BRAM. The speed relates to the maximum clock

frequency in (MHz). The power consumption is the dynamic power in (mWatt). The

throughput is the number of filtered results per unit time and total computation rate is in

Giga MAC Per Second (GMACPS).

The area usage, dynamic power consumption and speed are obtained using Xilinx

Timing Analyzer [74]. The throughput and computation rate are calculated according to

a 1-D, 2-D and 3-D mathematical model of throughput as defined in subsections 3.2, 4.2

and 5.2 respectively. Due to the efficient implementation hierarchy of Logic fabric,

signals, I/O's and hard IPs such as Block RAMs or DSP blocks, the parallel filtering

architectures occupy proper logic area. Consequently, this area occupation affects the

performance indices set of speed, power consumption, and throughput.

2.7.1 Logic Area Occupation

The logic area usage by the multi-dimensional filtering architecture is indicated by the

devices utilisation from the fabric and IPs hard cores of DSP and BRAM of the Virtex-6

FPGA board, as detailed in Table 2.1. The FPGA fabric is the underlying structure of

the logic device, which consists of FFs, LUTs and Slices. The IPs hard cores are

DSP48E1 and BRAM 18E1s [16, 17, 47-49].

The D-type flip-flop (FF) is the smallest storage element. The polarity of the clock

(rising-edge-triggered or falling-edge-triggered) can be configured, as well as the

polarity of the clock enable and set/reset signals (active-high or active-low). The total

number of D-type FFs in the Virtex-6 XC6VLX240T FPGA is 301,440.

The look-up tables (LUTs) in Virtex-6 FPGAs can be configured as either one 6-input

LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs) with

separate outputs but common addresses or logic inputs. Each LUT output can optionally

be registered in a flip-flop. The n-LUT can implement any possible n-input

combinational logic function. Each Virtex-6 FPGA slice contains four LUTs and eight

flip-flops, only some slices can use their LUTs as distributed RAM or SRLs. Each slice

26

has one set of clock, clock enable, and set/reset signals that are common to both logic

cells. The total number of slices in the Virtex-6 XC6VLX240T FPGA is 37,680.

Virtex-6 LX240T FPGA has 416 dual-port block RAMs, each storing 36 Kbits. Each

block RAM has two completely independent ports that share nothing but the stored

data. Each memory access, read and write, is controlled by the clock. All inputs, data,

address, clock enables, and write enables are registered. The input address is always

clocked, retaining data until the next operation. An optional output data pipeline-register

allows higher clock rates at the cost of an extra cycle of latency. During a write

operation, the data output can reflect either the previously stored data, the newly written

data, or remain unchanged.

Flexible block RAM can be configured as two 18Kb blocks or a single 36Kb block, true

dual-port, simple dual-port, and FIFO. This offers independent read and write port

width configuration. Xilinx claim 600MHz operation using optional pipeline capability

[76]. Built-in cascade logic makes it possible to create a 64kx1 memory from two 32kx1

block RAM configurations. The aspect ratio may be configured from 32K×1 to

1024×36 as a full dual port, or as 512×72 simple dual-port.

Table 2.1: Characteristics of the Virex-6 XC6VLX240T development FPGA board

27

Virtex-6 LX240T FPGA has 768 dedicated DSP 48E1 slices operating at 600 MHz

clock speed, while retaining system design flexibility. Each DSP48E1 slice

fundamentally consists of a dedicated 25 × 18 bit two's complement multiplier and a 48-

bit accumulator (cascadable to 96 bits). Each DSP48E1 slice draws a low power

consumption of only 1.09mW/100MHz at a 38% toggle rate.

2.7.2 Dynamic Power Consumption

The dynamic power Pdyn is the dissipated power when the output changes state to charge

and discharge the programmable interconnection provided for the FPGA

implementation [16, 77, 78]. This occurs due to, firstly, the switching frequency of the

logic area array and IOB resources. Particularly, since not every resource is toggling at

the same frequency, or all the time. Secondly, short-circuit power resulting from the

current flow through the transistor channels in a logic gate when all are turned on at the

same time. Thus, the dynamic power is a function of the average number of outputs that

are changing in each clock cycle τ, the average node capacitance C, supply voltage VDD

and clock frequency f, this can be stated as;

 (2.1)

2.7.3 Clock Speed

FPGAs are designed primarily as a synchronous device, thus a clock signal is required.

Clock rate defines the operating speed of the algorithm implementation and is a figure

measured in (MHz) that can formally quoted by FPGA vendors to give some notion of

performance. The clock rates of the Xilinx Virtex 6 FPGA family is 600MHz [76].

Moreover, the inherent FPGA parallelism allows the parallel multi-dimensional data

filtering architectures to maximize the amount of computation that can be performed in a

single clock, which improves the performance. Thus, speed is one of the performance

indices that can be improved by parallelizing the hardware.

2.7.4 Total Throughput

Generally, the maximum throughput [20, 79, 80] is the maximum number of filtered

results per unit time. This can be measured in Block Per Second (BPS) for the parallel

1-D signal filtering architectures; Frame Per Second (FPS) for the parallel gray image

filtering architectures; Volume Per Second (VPS) for the parallel 3-D image volumetric

data filtering architectures. The colour 2-D and 3-D images are measured in CFPS and

CVPS respectively.

28

Depending on the FIR kernel size, the FPGA-based implementation is realized either by

MAC convolution or FFT convolution, which affects the throughput mathematical

model. The total throughputs for both are significantly improved by the use of

parallelism.

2.7.5 Computation Rate

In the parallel 1-D, 2-D, 3-D and 4-D spatial convolution architectures, the total number

of Multiply/Accumulate operations achieved Per Second (MACPS) can be considered

as another performance index to indicate the computation rate. The total computation

rate, measured in Giga MACPS (GMACPS), is directly proportional to the maximum

operating clock frequency f and MAC operations accomplished by the available levels

of parallelism for the 1-D, 2-D and 3-D/4-D spatial convolution architectures, as

mathematically modelled in subsections 3.2.5, 4.2.6 and 5.2.6 respectively.

2.8 Conclusion

In this chapter, the suitability of adapting the inherent parallelism within an FPGA to

realize the hardware architectures to implement parallel mutli-dimensions convolution

algorithms was discussed. Three forms of parallelisms were observed in these filtering

algorithms: temporal, spatial and logical parallelisms. This maps efficiently on FPGA-

based architectures, by minimum flexible wordlength sized to the required arithmetic’s

resolution, which can be changed at different parts of inherent parallelism hardware.

The overall FPGA implementation process was depicted as a development flow of

seven key steps. Parallel field programming using Xilinx System Generator was

discussed as a dataflow graphical programming tool that facilitates FPGA hardware

design by providing access to underlying FPGA resources. The performance indices of

the parallel multi-dimensional filtering architectures were introduced as a complete

package of area, speed, power, throughput and computation rate values when using

XSG to target a Virtex-6 ML605 FPGA board.

29

Chapter 3. Parallel 1-D Filtering Algorithm and its FPGA

Implementations

3.1 Introduction

Most of real time 1-D filtering applications have a noisy signal to be filtered with high

computing rates [25, 33, 81-86]. On the other hand, the current DSP computing

technology has insufficient memory to hold the entire signal to be processed

simultaneously [16, 17, 46-49, 53, 82, 87]. Thus, to achieve efficient performance

results, the long real time 1-D signal is segmented so that DSP computing hardware can

simultaneously and independently processes each segment in parallel. Consequently, in

this chapter, a parallel solution is proposed for the algorithm level and an intrinsically

parallel hardware platform is selected for its implementation. Therefore, a parallel 1-D

linear filtering algorithm is proposed and implemented on a structurally parallel digital

processing technology of the FPGA.

The essential characteristics of the filtered signal are stability and linearity in phase,

hence the processing engine in the filtering algorithm will be a digital FIR filter.

Applying a parallel 1-D FIR filtering algorithm using FPGA requires the development

of a generalized mathematical model for the input signal segmentation, parallel digital

convolution equation and the output filtered signal reconstruction.

Parallel linear FIR filtering algorithms can be digitally implemented either directly in

the temporal domain by a MAC FIR engine, as a standard convolution, or indirectly in

the frequency domain by an FFT convolution. Which convolution type is more

efficient? The answer depends on the length of the FIR filter coefficients (kernels) [82].

Since the filtering time for standard convolution is directly proportional to the number

of coefficients for a particular input signal, shorter FIR filter coefficients can be

efficiently implemented with standard convolution. Longer filter coefficients can be

efficiently implemented with FFT convolution [82, 88].

The reminder of this chapter is organised as follows: in section 3.2, the main research

concepts are defined and mathematically explained. In section 3.3, the generalized parallel

1-D linear filtering algorithm is presented with its mathematical model using linear

overlap-add block filtering method. In section 3.4, the three parallel 1-D temporal

convolver architectures are developed, their performance indices are evaluated as a

complete set of area, speed, dynamic power consumption, throughput and the

30

computation rate. In section 3.5, two FPGA implementations of 1-D FFT convolution

are developed. Then, their performance indices are evaluated. In section 3.6, a practical

example, the realization of 1-D cross-correlation for parallel 1-D match filtering

algorithm. Finally, the conclusion of this chapter is presented in section 3.7.

3.2 Research Concepts Definitions

This section demonstrates the main research concepts on which this chapter is based.

3.2.1 Theory of Linear Block Filtering Method

Linear block filtering method is a linear filtering technique for a real-time long

sequence signal processed on a segment-by-segment basis. In real-time applications, the

raw input signal is usually very long compared to the FIR filter kernel, e.g. digital

speech filtering [26, 27, 89], digital music filtering [90], medical acoustic sounds[81]

...etc. Thus, to be digitally processed, this very long input signal is segmented to a fixed-

length block to occupy part of the already limited memory size of any digital hardware

systems, such as DSPs or FPGAs.

There are two well-known block filtering techniques for the linear convolution block

filtering method, namely the overlap-add method or the overlap-save method. Which

technique to be used depends on the FIR coefficients (M) index, running from 0 to M-1

or negative indexes are used respectively.

The overlap-add technique is based on four fundamental steps. First, decompose the

input signal length into contiguous blocks of equal length segments. Second, filter each

of the blocks individually using the FIR kernel of M coefficients, after (M-1) zero

padding to the right of each block to allow for the expansion during the convolution.

Third, overlap the M-1 expansion results in the output filtered blocks to each other.

Fourth, reconstruct the final output signal by adding these output blocks.

The key to this technique is how the lengths of these signals are affected by the

convolution. When a P sample signal is convolved with an M sample filter kernel, the

output signal will be expanded by M-1 points to the right to be P+M-1 samples long, if

the filter kernel runs from index 0 to M. However, if negative indexes are used in the

filter kernel, the expansion will be to the right and left. The overlap-add techniques

applied in this chapter because of the FIR kernel index is running from 0 to M-1.

31

3.2.2 Linear-Phase 1-D FIR Digital Filter

The filtering function for a linear 1-D filter is an accumulated sum of point by point

multiplications of a 1-D FIR coefficients, h(m) of size M, and the sample values of the

input signal, x(n) of size N1, within the window. The FIR filter interacts with signal

through a process called linear convolution [46], which is represented by:

 (3.1)

where, * is the linear 1-D convolution. This convolution process is formally defined by:

This linear filtering process is equivalent to performing a 1-D convolution with the

coefficients flipped left-for-right. Thus, a windowed-base FIR filter can be designed to

be a linear phase by making its impulse response coefficients have left-right symmetry

to achieve this flip. Thus, a linear phase 1-D MAC FIR filter can achieve 1-D

convolution.

Parallel 1-D convolution audio filtering algorithms use a lowpass linear phase FIR filter,

which maps well onto either a 1-D multiply-accumulate (MAC) engine or 1-D FFT

convolution unit. In general, M MAC operations are required to compute an output

sample for an M-tap filter. The M-tap FIR filter may be implemented on more than one

unique MAC unit taking into consideration the tradeoffs among filter performance

indices, such as area, speed, dynamic power and throughput. Hence, three

configurations are developed for a single MAC, dual MAC and quad MAC FIR units,

which are shown in Figure 3.4, Figure 3.5 and Figure 3.6 respectively.

3.2.3 1-D FFT Convolver Engine

1-D Convolution in the time domain, as stated in (3.2), corresponds to multiplication of

the two spectra of the 1-D FIR filter and the raw input signal. Multiplication costs less

logic area in digital implementation than convolution. This Fourier property enables 1-

D FFT convolution to be utilized in linear signal filtering, as shown in Figure 3.1.

Figure 3.1: 1-D FFT convolver unit

1-D IFFTX

1-D FFTFIR Impulse

 Response

H(k)

Y(k)

h(m)

1-D FFTInput Noisy

 Signal

x(n) X(k)

 Filtered

Output

Signal

y(n)

(3.2)

32

The FFT converts the input segment and the FIR kernel into the real and imaginary

parts of the frequency response. The frequency spectrum of the output segment Y(k) is

then found by multiplying the FIR kernel frequency response H(k) by the spectrum of

the input segment X(k). Since, these spectra consist of real and imaginary parts, then a

complex multiplication is carried out in rectangular form as follows;

 (3.3)

 (3.4)

The complex multiplication of the above two equations can be built up from four real

multiplications and two real additions [16, 91].

The number of complex multiplications and additions required for a radix-2 1-D FFT

algorithm of length N1 are (

) log2 N1 and N1 log2 N1, respectively. Therefore, the FFT

reduces the computational complexity from O (N1M) to O (N1 log2 N1). This

considerable gain in computation, particularly for a thousand long FIR kernel, justifies

the hardware implementation of the FFT over the direct MAC FIR filter.

3.2.4 Total Throughput

Generally, the maximum throughput [20, 79, 80] is the maximum clock frequency

divided by one sample block, measured in BPS, at a filtering rate of one sample per

clock cycle. The throughput of the parallel 1-D MAC FIR filtering architecture is

limited by the 1-D MAC FIR operation for a particular signal, which can be mitigated

by parallelism. Thus, the total throughput is directly proportional to the levels of

parallelism and limited by the 1-D MAC FIR engine throughput . The effective

levels of parallelism are the number of parallel 1-D direct convolver filters (α1) and the

number of multi-MAC engines (α2) per 1-D convolver unit. Then, the total throughput µ

can be formulated as:

where, N1 is the size of the input signal’s block.

The 1-D MAC FIR unit throughput is directly proportional to the clock speed f and

limited by the 1-D FIR coefficients (M) which can be partitioned to be processed by

multi-MAC engines. Then can be stated as:

 (3.5)

33

 (3.6)

Thus, the total throughput for the parallel 1-D MAC FIR filtering architecture can be

defined as:

(3.7)

where,

 is one sample block at a filtering rate of one sample per clock cycle. α1 is

the number of input signal partitioned sub-blocks, here, α1=4, then, one sample block

length,

 samples per one input block for a real-time (22050 KHz

/1Ch/16 bit) speech signal. α2 is the degree of parallelism inside the 1-D temporal

convolver unit, using single, dual or quad MAC engines, then, α2 = 1, 2 or 4

respectively.

For a parallel 1-D FFT filtering architecture, a one sample block time is

 log2

.

Because a single FFT convolution unit in the parallel FFT algorithm performs the

convolution (3.2) using (3.8) in O (

 log2

) steps [44], where, N1 is the length of the

real-time (22050 KHz /1Ch/16 bit) speech signal. While, temporal convolution requires

O (

) operations, this implies a gain, since (

) > log2 (

) at M > 64 to apply the

FFT convolution:

 (3.8)

Where, F
-1

, F and × are the Fourier transform, the inverse Fourier transform, and

pointwise complex multiplication, respectively.

Thus, the overall throughput µ of the parallel FFT block filtering architecture of α1

parallel processing stages and maximum clock frequency f (MHz) can be formulated as:

(3.9)

3.2.5 Total Computation Rate

The total number of MACPS can be considered as another performance index to

indicate the computation rate for each one of the three 1-D direct convolution

architectures. Where, the total computation rate γ, measured in Giga MACPS

(GMACPS), is directly proportional to the maximum operating clock frequency f , the

34

number (α1) of parallel 1-D direct convolver stages and the number (α2) of parallel

MAC engines per 1-D direct convolver, thus

 (3.10)

3.3 The Generalized Parallel 1-D Linear Block Filtering Algorithm

The generalized parallel 1-D filtering algorithm, as shown in Figure 3.2, is presented for

the overlap-add block filtering method. This linear block filtering algorithm consists of

three stages: serial to parallel input stage, parallel filtering processing stage and parallel

to serial output stage.

Segmentation length: 0 ≤ p≤ K-1, where, K=

 , Filtered output length: u=P+M-1

Figure 3.2: The Generalized Parallel 1-D Linear block Filtering Algorithm

The three stages are implemented on the Virtex-6 ML605 development board using

XSG. The mathematical model of these three stages are developed and expressed in the

following sections.

3.3.1 Input Segmentation Stage

The input signal segmentation of Figure 3.2 equally divides a long input sequence x(n)

of size P into non-overlapping subsections (x0(p), x1(p), x2(p),, xk-1(p)) each of size

35

 . Thus, the generalized mathematical formula that model the input segmentation

stage can be expressed as:

 (3.11)

This can be expressed in a closed form as:

(3.12)

where n is the input size of 0 ≤ n ≤ P-1. Each term in the right hand side of (3.11) and

(3.12) is a separate segment of the input signal, x(n), to be independently filtered by a

separate 1-D convolution unit (convolver) in the Virtex-6 board.

3.3.2 Parallel Filtering Stage

In Figure 3.2, the parallel filtering stage is implemented as an array of parallel 1-D

convolution units (convolver). The filtering sub-signal yr can be represented in the time

domain as the linear convolution of the sub-segment xr sequences over the FIR impulse

response h(m) sequence, as:

(3.13)

The resultant filtering is the sum of all the parallel sub-filters, and can be formally,

expressed as:

y u n p n

p

n 0

 0

(3.14)

where, is the final output length, k is the number of segments and p

is the segment length. The filtering stage is computationally intensive. Thus, the number

of segments (k) and the impulse response size h(m) have to be optimized so that the

number of the 1-D convolver units is minimum to achieve the required level of

performance [72].

36

3.3.3 Output Reconstruction Stage

In Figure 3.2, the pipelined output y(u) is reconstructed from the parallel filtered sub

outputs (y0(n), y1(n), ..., yk-1(n)) of the parallel 1-D convolution units, by an adder tree.

Thus, the 1-D output formula is:

This can be expressed in a closed form as:

(3.16)

Each term in the right hand side of (3.15) and (3.16) is an output of a separate 1-D

convolver. These sub-outputs are overlapped by the size of the impulse response filter

length (M-1), which is added to the next block to reconstruct the final filtered output.

The generalized parallel 1-D linear block filtering algorithm can be realized in hardware

as either a temporal convolution in the time domain by MAC FIR filters or, indirectly in

a spectral domain by an existing fast transform, that depends on the filter kernel length.

The parallel algorithm can directly be implemented faster by the MAC FIR convolution

for the FIR kernel length shorter than (64)[82], and the filtering time is proportional to

the kernel length. However, longer filter kernels can efficiently be implemented faster

with the spectral convolution. With an FFT convolution, the filter kernel can be made as

long as necessary for the application and the hardware platforms can handle. The

temporal filtering is presented in subsection 3.4, and the spectral filtering is presented in

subsection 3.5.

3.4 Parallel 1-D Temporal Convolver Architectures

The generalized parallel 1-D linear filtering algorithm can be realized by temporal

convolution using MAC FIR filter units as shown in the general MAC FIR architecture

of Figure 3.3. Consequently, the real-time 1-D filtering applications in which the FIR

kernel length shorter than 64 coefficients can be achieved without the need to pad zeros

to the input segments, since the 1-D FIR kernels are stored in the multi-MAC engines.

In the input stage, the 1-D signal data samples, length P, of a real-time (22050 KHz

/1Ch/16 bit) speech signal are equally segmented into four blocks x0, x1, x2 and x3. Each

block is simultaneously and independently streamed into the 1-D multi-MAC convolver

engine, as shown in Figure 3.3.

(3.15)

37

The 1-D filtering stage of this generic architecture can be realized by more than one

unique implementation depending on the parallelism style inside the MAC FIR engine,

in addition to the main parallelism of four parallel data paths. This inside parallelism

style is either a single, dual and quad MAC FIR units in the processing stage, which is

shown in Figure 3.4, Figure 3.5 and Figure 3.6 respectively.

Input signal x(n) length: 0 ≤ n ≤ P-1,

 and section length:

Figure 3.3: Parallel 1-D multi-MAC filtering architecture

The output stage is a parallel to serial pipelined process of reconstruction, recording and

displaying the filtered real-time speech output. The speech reconstruction is achieved

using three pipelined adders tree. The pipelining of the adder tree is sized according to

the overlap-add technique, as shown in Figure 3.3. The final reconstructed output is

connected to a gateway-out block to convert the fixed point filtered samples to floating

point numerical representation used by Simulink blocks for recording as a WAV file

and displaying the filtered real-time speech signals. Consequently, the parallel 1-D

filtering algorithm can be implemented by three temporal architectures according to the

hardware structure of their 1-D convolver engine. The input stage and the output stage

are the same for the three architectures, thus its convolver engine will characterize each

architecture.

Temporal Convolver

Engine

Original Audio Signal, x(n)

Filtered Audio Signal, y(n)

x(n)

y(n)

x0

x2

x3

x1

Σ

Z-1(p+K)

Z-1(p+2K)

Z-1(p+(k-1)K)

Σ

Σ

y0

y1

y2

y3

Input Segmentation Output reconstruction1-D Filtering Stage

Temporal Convolver

Engine

Temporal Convolver

Engine

Temporal Convolver

Engine
x(p)

x(p+K)

x(p+2K)

x(p+(k-1)K)

38

3.4.1 Parallel Single MAC Convolver Architecture

Figure 3.4 shows unit1, a single MAC convolver of architecture1. This parallel

architecture is an implementation for the parallel linear FIR filtering algorithm of Figure

3.3. Unit 1 consists of input buffering components, the single MAC FIR engine, control

circuitry, and filtered output buffer.

Input buffering components consist of an addressable shift register (ASR) and a single

port RAM. The ASR and RAM act as the input sample buffer and filter coefficients

storage respectively. The ASR address port runs M times faster than the data port. The

RAM is configured to use block memory. The multiply-accumulate engine is

implemented using a dedicated DSP 48E1s multiplier block and accumulator block. A

single counter implements the control circuitry as a free running counter from 0 to M-1,

and then repeats. A capture register act as the filtered output buffer, required for

streaming operation, since the MAC engine reloads its accumulator with an incoming

sample after computing the last partial product for an output sample.

Figure 3.4: Unit 1; 1-D Single MAC convolver implementation

A counter generates the RAM and ASR addresses. For every new input sample, the

accumulator block is reset to its current input, and the capture register latches the MAC

engine output. This occurs when a comparator generates the reset and enables pulses for

the accumulator and capture register. The pulse is asserted when the address is zero and

is delayed to account for pipeline stages. Pipeline registers r0, r1 and r2 are included to

increase performance. Upon reset, the accumulator re-initializes to its current input

value rather than zero, which allows the MAC engine to stream data without stalling for

one sample period.

MAC FIR

Coefficient

RAM

Address

 Control

Unit

Samples

Buffer

X +

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Filtered

Samples

Comparator

Single MAC engine

reset

Enable

Zero

 Address

Input Samples

Output Samples
r0

r1

r2

39

As shown in Table 3.1, the single MAC 1-D convolver occupies less logic area than

either the dual MAC 1-D or the quad MAC 1-D convolver. Unit 1of the single MAC 1-

D convolver occupies less logic area than unit 2 by (27%) FFs, (31%) LUTs, (20%)

slices, (100%) dedicated DSP 48E1s multiplier and RAMB 18E1s block memory. In

addition, compared to unit 3, unit 1 occupies less logic area by (52%) FFs, (59%) LUTs,

(48%) slices, (200%) dedicated DSP 48E1s multiplier/ RAMB 18E1s block memory.

Table 3.1: Logic Devices utilization by the three 1-D temporal convolver units

 Single MAC 1-D

convolver unit

Dual MAC 1-D

convolver unit

Quad MAC 1-D

convolver unit

 Unit 1 Unit 2 Unit 3

FFs 146 201 302

LUTs 90 130 221

Slices 158 198 302

DSP 48E1s 1 2 4

RAMB 18E1s 1 2 4

3.4.2 Parallel Dual MAC Convolver Architecture

Figure 3.5 shows unit 2, a dual MAC convolver engine of architecture 2. This parallel

architecture is another implementation for the parallel linear FIR filtering algorithm of

Figure 3.3 .

Figure 3.5: Unit 2; Implementation of 1-D Dual MAC convolver

Unit 2 of the dual MAC 1-D convolver consists of cascaded buffering components,

parallel coefficients block RAMs pair, control circuitry and a dual MAC FIR engine.

X

Z-1

Z-1

Z-1

X Z-1

Z-1

Z-1

+ Z-1Z-1

Z-1

Filtered

Samples+

Address

Control

 Unit

Comparator

Zero

 Samples

Buffer

 Samples

Buffer

Z-1

Coef(1:Length(coef)/2))

Coef(length(coef)/2)

+1: Length(coef))

Z-1

reset

Enable

Dual MAC engine
Input Samples

Output Samples

d

Enable

40

Two ASRs are cascaded to form the sample input buffer. ASR2 is enabled when the

last element of ASR1 is addressed to ensure that the sample data is correctly propagated

between ASRs. The filter coefficients are equally stored in two block RAMs. RAM1

stores the first half of the coefficients and RAM2 stores the remaining coefficients, as

shown in Figure 3.5. Both RAMs and ASR pairs share the same address sequence

generated by the counter. The sequence counts from 0 to (

 , and then repeats. A

delayed reset/enable pulse generated by the comparator drives the enable port of ASR2.

Block d delays the signal, and is parameterized with the appropriate latency of

 using the coefficient array length. The filter reduces the number of

MAC operations required to compute the sum of products by distributing the workload

between 2 parallel multipliers. The products are added and the sum is accumulated.

3.4.3 Parallel Quad MAC Convolver Architecture

Figure 3.6 shows unit 3, a quad Mac convolver of architecture 3. This parallel

architecture is a third implementation for the parallel linear FIR filtering algorithm of

Figure 3.3. Unit 3 consists of four cascaded buffering components, four parallel

coefficients block RAMs, control circuitry and a parallel MAC FIR engine.

Four ASRs are cascaded to form the sample input buffers. ASR2, ASR3 and ASR4 are

enabled when the last element of ASR1 is addressed to ensure that the sample data is

correctly propagated between ASRs. The filter coefficients are equally stored in four

block RAMs, each of the RAMs storing a quarter of the coefficients, as shown in Figure

3.4. Both RAMs and ASRs blocks share the same address sequence generated by the

counter. The sequence counts from 0 to

 , and then repeats. A delayed enable

pulse generated by the comparator drives the enable port of ASR2, ASR3 and ASR4.

Block d delays the signal, and is parameterized with the appropriate latency of

 using the coefficient array length. The filter reduces the number of

MAC operations required to compute the sum of products by distributing the workload

between four parallel multipliers. The products are added in an adder tree, and the sum

is accumulated. Although the positioning of the adder tree and accumulator are

interchangeable, placing the adder tree before the accumulator results in a resource

optimized implementation.

41

Figure 3.6: Unit 3; 1-D Quad MAC convolver implementation

3.4.4 Performance Indices of the Three Parallel Multi-MAC Convolver Architectures

The performance indices of the three 1-D temporal convolver architectures are

considered as a complete set of area, speed, power, throughput and computation rate

performance parameters using XSG to target a Virtex-6 ML605 board. The minimized

utilized area of the three architectures, as shown in Table 3.2, are due to the efficient

implementation hierarchy of logic fabric, signals, I/O's and hard IPs such as Block

RAMs or DSP blocks. These three architectures occupy proper logic area of FFs, LUTs

and slices. Where, architecture 3 and 2 are occupying, in average, more than double and

less than 1.5 logic area that of architecture 1 respectively. Additionally, architecture 3

and 2 are respectively using four and two times the number of multipliers / block RAMs

Hard IPs for its MAC engines than that of architecture 1. Consequently, this area

occupation affects the performance indices of speed, power consumption, throughput

and computation rate as shown in Table 3.3.

Several observations can be made from Table 3.3. Firstly, the operating clock frequency

is particularly insensitive to the number of MAC convolver engines for the three

architectures, and principally operating around the maximum frequency of 225 MHz

X
Z

-1

Z
-1

Z
-1

X Z
-1

Z
-1

Z
-1

X Z
-1

Z
-1

Z
-1

X Z
-1

Z
-1

Z
-1

+

+ Z
-1

Z
-1

Z
-1

Filtered

Samples

+

+

Coef((¾)*Length(coef)) +

1:Length(coef))

Address

Control

 Unit

Comparator

Zero

 Samples

Buffer

 Samples

Buffer

 Samples

Buffer

 Samples

Buffer

Z
-1

Coef(1:Length(coef)/4))

Coef(Length(coef)/4) +

1:Length(coef)/2))

Coef(Length(coef)/2) +

1:(¾)*Length(coef))

Z
-1

Z
-1

Z
-1

Quad MAC engine

reset

Enable

Output Samples

Input Samples

d

42

[31]. Secondly, the dynamic power consumption at (40 nm) junction temperature of

54°C decreases, monotonically, from 12mW, 18mWand 24mW down to 5mW, 8mW

and 13mW for architectures 1, 2 and 3 respectively as the MAC FIR coefficients length

descends from 64 to 2 coefficients. Thirdly, due to parallelism style, the highest

throughput is achieved by architecture 3, almost double and four times that of

architecture 2 and 1 respectively. As may be predicted by (3.7), where, the architecture

throughput is a function of the maximum operating frequency and the one input sample

block. Fourthly, the highest computation rate is accomplished by architecture 3, double

and four times greater than that of architecture 2 and 1 respectively; this is predicted

from (3.10), the computation rate is affected by the two levels of parallelism inside the

MAC engines and the concurrent filtering stages.

Table 3.2: Logic Devices utilization by the three parallel temporal convolver

architectures

 Architecture 1
(Single MAC convolvers)

Architecture 2
(Dual MAC convolvers)

Architecture 3
(Quad MAC convolvers)

 FIR impulse Response length

 2 3 5 7 15 31 63 4 8 16 32 64 8 16 32 64

FFs 444 496 501 513 518 523 528 675 703 708 713 734 1092 1017 1112 1129

LUTs 283 318 334 341 362 391 414 509 524 541 549 557 911 919 929 974

Slices 151 158 162 175 184 186 243 262 268 272 275 291 381 390 396 409

DSP

 48E1s
4 4 4 4 4 4 4 8 8 8 8 8 16 16 16 16

RAMB

18E1s
4 4 4 4 4 4 4 8 8 8 8 8 16 16 16 16

Table 3.3: Performance indices of the parallel 1-D multi-MAC convolver filter

architectures

FIR

Filter

kernel

(M)

Maximum Clock

Frequency (MHz)

Dynamic

Power (mWatt)

Throughput

 (BPS)

computation rate

(GMACPS)
Arcit

1

Arcit

2

Arcit

3

Arcit

1

Arcit

2

Arcit

3

Arcit

1

Arcit

2

Arcit

3

Arcit

1

Arcit

2

Arcit

3

2 225 5 4090 0.9

3 225 5 2726 0.9

4 225 8 4090

5 225 5 1636 0.9

7 225 6 1168

8 225 223 9 13 2045 4090 0.9 1.8 3.6

15 224 7 618

16 222 225 13 17 1022 2045 0.9 1.8 3.6

31 225 9 264

32 225 225 15 19 511 1022 0.9 1.8 3.6

63 223 12 130

64 224 222 18 24 256 511 0.9 1.8 3.6

43

For comparison purposes, Hwang and Ballagh [31] carried out a research work on the

implementations of FIR filters using System Generator, the trade off between filter size

and throughput was discussed by providing the performance results of three 64-tap FIR

filters with a varying number of MAC engines. The performance indices of the occupied

slices and speed were taken into consideration. The operating clock frequency was not

particularly sensitive to the number of MAC-engines employed. A single-MAC

architecture has the drawback that the throughput is inversely proportional to the

number of filter taps. The throughput can be increased dramatically by exploiting

parallelism that matches resource usage and availability to throughput, using System

Generator.

In one dimensional filtering , the linear phase FIR filter, as defined in subsection 3.2.2,

can be designed as a low-pass window-base FIR, using Xilinx FDATool block, for filter

design and analysis tool. The three implementations of the parallel temporal filtering

algorithm are developed as “plug and filter” architectures. The 1-D FIR filter can be

plugged and developed to filter an input signal. The filtering results produced using

architectures 1, 2 and 3 are shown in Figure 3.7, Figure 3.8 and Figure 3.9 respectively.

Figure 3.7: Architecture1’s filtering results of a raw real-time speech (22050 Hz

/1Ch/16 bit) signal at 1-D FIR kernels of 2 coefficients

At the top of each figure, the speech signatures of the noisy real-time speech (22050 Hz

/1Ch/16 bit) signal to be compared with the filtering results. Figure 3.7 shows

Architecture1 filtering results for 1-D single MAC FIR kernels at 2 coefficients. Figure

3.8 shows Architecture 2 filtering results of 1-D dual MAC FIR kernels that can be

divided by two and more than one coefficient per MAC engine at 4 coefficients. Figure

44

3.9 shows Architecture3 filtering results using quad MAC FIR kernels that can be

divided by four and more than one coefficient per MAC engine at 8 coefficients. All the

filtered speech signals are enhanced.

Figure 3.8:Architecture2’s filtering results of a raw real-time speech (22050 Hz

/1Ch/16 bit) signal at 1-D FIR kernels of 4 coefficients.

Figure 3.9:Architecture3’s filtering results of a raw real-time speech (22050 Hz

/1Ch/16 bit) signal at 1-D FIR kernels of 8 coefficients.

3.5 Parallel 1-D FFT Convolver Architectures

To cover the real-time linear 1-D filtering applications [26, 27, 81, 92] in which the FIR

kernel length is longer than 64 coefficients, the parallel 1-D filtering algorithm’s FPGA

implementation can be efficiently captured by more than one fast parallel 1-D FFT

filtering architecture, depending on the abstraction level of the implementation and the

optimization approach for the performance efficient indices. Consequently, two generic

45

architectures are developed to implement in Virtex-6 board; the single 1-D FFT filtering

unit (convolver engine) and the parallel 1-D FFT block filtering algorithm. They are

described in subsections 3.5.1 and 3.5.2 respectively.

3.5.1 Parallel 1-D FFT Convolver Architecture

Architecture 4, as shown in Figure 3.10, realizes a single 1-D FFT convolver unit

achieving high-speed filtering performance by utilizing the FFT convolution’s principle;

convolution in the time domain corresponds to multiplication in the frequency domain

[25]. This architecture consists of input, filtering and output stages.

Figure 3.10: Architecture 4; implementation of fast single 1-D FFT convolver unit

Within the input stage the 1-D signal and the 1-D FIR filter are streamed, and zero

padded to be equal in size to the N-point of the FFT. Both streams are block buffered to

be processed in the filtering stage. The block buffer, as shown in Figure 3.11, can be

implemented as a dual port RAM and addressing control circuit.

The dual port RAM, RAMB18E1s, has two independent sets of ports for simultaneous

reading and writing. Independent address, data, and write enable ports allow shared

access to a single memory space. Hence, each port set has one output port and three

input ports for address, input data, and write enable. When the RAM word depth is

longer than the input segment, then the RAM's trailing words are set to zero. Thus, this

block buffer can accomplish the zero padding function without using extra hardware.

1-D Fast

 Fourier Transform

1-D Inverse Fast

 Fourier Transform

FFT

FFT

Σ

IFFT
Complex

 Multiplier
X

r

i

r

i

i

r

Input stage Filtering stage Output stage

X
r

i

i

FIR Impulse Response, h(m)

Original Audio Signal, x(n)

Filtered Audio Signal, y(u) Block Buffer

Zero Padding

 Block Buffer

Zero Padding

46

Since, N=p+M-1, then, by setting the RAM depth to N and the buffer depth to p, the

dual port Ram also accomplishes the zero padding function.

Figure 3.11: Implementation of the Block Buffer component

The RAM’s addressing control circuit is an up counter to the RAM depth size compared

against the buffered block size. This address generation is used when writing data

samples and the reading of the stored samples data.

The 1-D filtering stage is a temporal to spectral transformation structure, as explained in

subsection 3.2.3. This transformation structure consists of a 1-D FFT, a complex

multiplier and a 1-D IFFT blocks. The 1-D FFT can be realizes by Xilinx FFT v7_0

blocks to produce the complex X(k1). Similarly, 1-D FFT calculates the 1-D FIR filter’s

frequency spectrum, that is the real and imaginary parts of H(k1) . Since, these spectra

consist of real and imaginary parts, then, a frequency domain multiplication is carried

out in rectangular form according to (3.3) and (3.4) Using Xilinx complex multiplier

block, these two frequency spectra are point-by-point multiplied to produce Y(k1), which

represents the 1-D FFT of the filtered image. To transform back into the time domain,

the inverse Fourier transform of Y(k1) is calculated by taking the 1-D inverse FFT.

In the output stage, the two streams of the filtered signal is summed to produce the 1-D

filtered signal y(n1). The final reconstructed output is connected to a gateway-out block,

which provides the conversion from the fixed point format which is used by the FPGA

to floating point numerical representation used by Simulink blocks for displaying the

filtered MRI.

3.5.2 Fast Parallel 1-D FFT Convolver Architecture

Architecture 5, as shown in Figure 3.12, implements a parallel 1-D FFT convolver

structure using the overlap-add block filtering technique as defined in sub-section 3.2.1.

In the input stage, the 1-D signal data samples, length P, of the real-time speech signal

(22050 Hz /1Ch/16 bit) are equally segmented into four blocks x0, x1, x2 and x3, and

1

o

Terminator

a

b
a = b

Relational

d qz
-1

Register

addra

dina

wea

addrb

dinb

web

A

B

Dual Port RAM

load

din
++

Counter1

0
127

1

0

1

i

UFix_7_0

UFix_7_0

UFix_7_0

Bool

UFix_7_0

Bool

Bool

Fix_16_15

Fix_16_15 Fix_16_15

47

each block divided into p length sub-blocks is stored in a block buffer. A fifth block

buffer is used to store the FIR impulse response of M coefficients.

The filtering stage is a parallel structured of 1-D FFT convolver array of the single FFT

convolvers as shown in Figure 3.10. The FFTs N-point size must be long enough that

circular convolution does not take place. This means that the N-point FFT should be the

same length as the output segment, N=p+M-1. For instance, if the filter kernel contains

255 coefficients and each input segment contains 258 points, making output segment

(255+258-1= 512) points long. This calls for 512-point FFTs to be used. That means the

filter kernel must be padded with (512-255=257) zeros to bring it to a total length of

512 points. Likewise, each of input segments must be padded with (512-258=254)

zeros. Each block of x(n) and h(m) padded with M-1 zeros and p-1 zeros respectively.

After zero padding, the FIR impulse response coefficient and the speech signal blocks

are simultaneously frequency transformed via the real inputs of five parallel Xilinx FFT

v7_0 blocks, and setting the imaginary input to zero. Each FFT outputs a frequency

spectrum of two parts, real and imaginary. Subsequently, a parallel point-by-point

complex multiplication is performed.

The Inverse FFT is then synchronized by the data available (dv) output of the FFT block

to find the sub-output segment from its frequency spectrum. The real and imaginary

parts of the multiplication result bit streams are bit manipulated first, then, fed to four

Xilinx Inverse FFT v7_0 blocks; so that each filtered sub-speech sequence can be

transformed back to the time domain. The input frequency signals must be first scaled

by

 using Shift block to perform (log2N) bit right shift. Then, the bit growth within

the resultant scaled frequency sequences is converted back to the normalized 16-bit

word-length with a binary point inserted at the 15-bit by a Convert block.

The output stage is a parallel to serial pipelined process of reconstruction, recording and

displaying filtered output. The reconstruction is achieved using three pipelined adder

trees. The pipelining of the adder tree is sized according to the overlap-add technique, as

shown in Figure 3.12. The final output is connected to a gateway-out block to convert

the fixed point format to a floating point for recording as a WAV file and displaying.

48

Figure 3.12: Architecture 5; implementation of Fast Parallel 1-D FFT block

Filtering Algorithm in the Virtex-6 FPGA board

3.5.3 Performance Indices of Fast Parallel 1-D FFT Filtering Architecture

Fast 1-D FFT filtering architecture results are presented as area occupation and

performance indices of the two architectures are indicated in Table 3.4 and Table 3.5,

while the filtered outputs depicted in Figure 3.13 using architecture 5. For the same

input signal, the two main variables that have affected the results are the FIR filter

kernel length and the size of the N-point FFT/IFFT. Hence, comparative evaluation

results for two FPGA implementation architectures are obtained for a distinctive linear

phase FIR impulse response at lengths 3, 7, 15, 31, 61, 127, 255, 511, 1023 and 2047

coefficients, to be individually applied to an 8, 16, 32, 64, 128, 256, 512, 1024, 2048

and 4096 N-point FFT/IFFT, respectively. Area wise, architecture 4 and 5 logic area

occupations are summarized in Table 3.4, which shows that architecture 4 was

occupying, in average, less logic devices of (37%) FFs, (40%) LUTs, (339%) slices,

(14%) DSPs and, in average, (34%) block RAMs than architecture 5. Due to that

architecture 4 is a single convolver unit implementation compared to the parallel

structure of the 1-D FFT convolution units in architecture 5.

Original Audio Signal, x(n)

Filtered Audio Signal, y(n)

y0

y1

y2

y3

h(m)

x0

x2

x3

x1

Σ

Zero

Padding

Zero

Padding

Zero

Padding

Zero

Padding

Zero

Padding

Z-1(p+K)

Z-1(p+2K)

Z-1(p+(k-1)K)

Σ

Σ

Input Segmentation Output reconstruction1-D Filtering Stage

Block buffer

Block buffer

Block buffer

Block buffer

FFT

FFT

Σ

IFFT
Complex

 Multiplier
X

r

i

r

i

i

r

X
r

i

FFT

Σ

IFFT
Complex

 Multiplier
X

r

r

i

i

X
r

i

ri

FFT

Σ

IFFT
Complex

 Multiplier
X

r

r

i

i

X
r

i

ri

FFT

Σ

IFFT
Complex

 Multiplier
X

r

r

i

i

X
r

i

ri

i

i

i

i

y(n)

FIR Impulse

 Response

Block buffer

49

Several observations can be made from the results in Table 3.5, which presents three

performance indices of frequency, dynamic power and throughput. Firstly, the

frequency and power was improved using architecture 4, compared to those of

architecture 5 within all the (h(m), N-point FFT) pairs. Secondly, architecture 5’s

throughput outperformed that of architecture 4, in average, by four-fold within all the

(h(m), N-point FFT) pairs. Thirdly, the first performance index, in Table 3.5, is

maximum clock frequency are steadily rising up, for both architectures, as the (h(m), N-

point FFT) pairs descending. Fourthly, the power consumption is monotonically

decreases, for both architectures, as the (h(n), N-point FFT) pairs descending.

Table 3.4: Logic Devices utilization by the parallel 1-D FFT filtering’ architectures

FFT

N-point

Architecture 4 Architecture 5

FFs LUTs Slices
DSP

48E1s

RAMB

18E1s
FFs LUTs Slices

DSP

48E1s

RAMB

18E1s

8 3407 2010 677 18 8 9166 4852 1931 107 23

16 4420 2736 1002 18 8 11641 6226 2742 125 23

32 6258 3961 1316 27 8 16645 9628 3916 170 23

64 7502 4842 1746 27 8 20161 11430 4575 188 23

128 9586 6440 1970 36 8 25903 15762 6148 251 23

256 11036 8062 2374 36 5 29581 19128 7190 269 23

512 13036 10603 3422 52 5 35293 24975 8895 367 23

1024 72341 77413 3296 52 14 39245 28021 9844 385 37

2048 17182 11976 3563 70 32 47286 32365 11642 475 87

4096 18912 14366 4137 74 66 51899 35874 12491 511 174

Table 3.5: Performance indices of the parallel 1-D FFT filtering’ architectures

FIR
Filter

impulse
response

(M)

FFT
N-

point
Size
(N)

Maximum clock

frequency (MHz)

Dynamic Power

(mWatt)

Throughput

(BPS)

Archit.
4

Archit.
5

Archit.
4

Archit.
5

Archit.
4

Archit.
5

3 8 277 243 15 36 150 599

7 16 248 225 19 45 135 555

15 32 239 211 23 69 130 520
31 64 226 201 29 78 123 495

63 128 217 193 31 88 118 476
127 256 208 184 37 103 113 454

255 512 199 176 42 120 108 434

511 1024 187 165 43 127 101 407
1023 2048 165 152 58 172 88 375

2047 4096 154 139 78 233 83 343

For comparison purposes, a parallel 1-D block filter algorithm based on the overlap-add

approach was implemented on multi-DSPs platform in the ASP-PI5 DSP card [25]. An

input of length (N = 4035) and a variable length impulse response filter (m =15, 31, 61)

were used; FIR filtering was carried out using the complex Fast Fourier transform (FFT)

transform provided by the DSP library of functions. 1-D filtering results were obtained

using single DSP processor and parallel 4-DSP system. The 4-parallel DSP system

50

achieved a high speed up factor, close to the number of processors used. The

performance indices of logic area, power consumption and throughput were not taking

into consideration.

The linear phase FIR filter kernels, as defined in subsection 3.2.2, are designed greater

than 60 up to 2047 coefficients using the Xilinx FDATool block. A sample of the

filtering results is shown in Figure 3.13 using architecture 5 at M= 63/ N=128. The

filtered speech signals are enhanced and slightly longer by M-1 points.

Figure 3.13: Architecture 5’s filtering results of the noisy real-time speech (22050

Hz/ 1Ch/ 16 bit) signal at M= 63/ N=128

3.6 1-D Cross-Correlation Application: FPGA Architecture for Parallel 1-D

Matched Filtering Algorithm

Detection of a known waveform in a noisy signal is the fundamental problem in signal

analysis of, including but not limited to, medical acoustic sound [81] and echo location

systems[93]. Correlation is the optimal technique for detecting a known waveform in a

noisy signal which called matched filtering. That is, the peak is higher above the noise

using correlation than can be produced by any other linear system. The filter kernel of

the matched filter is the target signal being detected, except it has been flipped left-for-

right. This flip is required to perform correlation using convolution, making it extremely

slow to execute. Then, speed improvement can be implemented using parallel FFT

convolution of architecture 5 to assure high throughput.

Therefore, architecture 5 can be effectively modified for parallel matched filtering to

detect a known segment x(m) within the 1-D noisy input signal x(n). Where, the FIR

impulse response coefficients of the filter are replaced by the samples of the target input

segment to be detected. Except, the target segment x(m) has been flipped left-for-right

to implement its reversed-time version x(-m). For example, when x(n) and x(m), are

convolved to produce y(u), the equation will be as:

51

y u n p n

p

n 0

 0

(3.17)

In comparison, the correlation z(u) of x(n) and x(m) can be obtained by convolution as:

 n p n

p

n 0

 0

(3.18)

The matched filter output signal, as shown in Figure 3.14 has a far higher peak than the

residue noise in the input signal, provided by any other linear filter. The amplitude of

each point in the output signal is a measure of how well the filter kernel matches the

corresponding section of the input segment. Consequently, the output of a matched filter

does not necessarily look like the signal being detected.

Figure 3.14: The matched filtering results using architecture 5 at M= 63/ N=128.

(a) Input speech signal, (b) Target input segment, (c) Matching results.

3.7 Conclusion

A generic parallel hardware versions of the parallel 1-D convolution-filtering algorithm

were developed for the multi-MAC FIR and FFT convolution, to cover the entire range

of linear FIR filter length of 3, 7, 15, 31, 61, 127, 255, 511, 1023, 2047, ... coefficients.

The filtering methods were based on the overlap-add block filtering. Then, FPGA-based

implementations of five generic architectures on Virtex-6 ML605 board were

developed. The performance indices for the five architectures were evaluated as a

complete package of area, speed, power and throughput using XSG to target a Virtex-6

ML605 board. A practical example was developed, implemented and analysed to realize

cross-correlation as a parallel 1-D matched filter algorithm for real-time speech

signature detection using architecture 5.

52

Chapter 4. Parallel 2-D Greyscale/Colour Image Filtering

Algorithm and Its FPGA Implementations

4.1 Introduction

Digital image processing frequently exploits convolution and correlation functions to

achieve linear 2-D image filtering algorithmic applications, for example, in mobile phones

[94], consumer electronics such as digital cameras [95], medical imaging [21, 35, 96, 97],

brain-computer interface [98], computer vision [99] and satellite images enhancement

[100]. The demands for linear 2-D image filtering have inevitably increased in these recent

applications for noise reduction, edge extraction, similarity detection and enhancement [35,

97, 101]. However, most of the digital image filtering systems have an inherently

bottlenecked when intensive processing of the large 2-D images input with the extensive

range of the linear 2-D image filtering kernels is required, due to the lack of memory

capacity, data communication overhead and intensive computational power [15, 32], all

of which slows down these filtering algorithms.

To resolve these bottlenecks, the large 2-D input data is decimated into independent

sub-data input that can be simultaneously processed in parallel. Consequently, a parallel

2-D image filtering algorithm is proposed which decimates the large 2-D image,

independently filtering in parallel, without the need for the communication among

processing stages, then interpolating to reconstruct the filtered image.

To automate [34, 35, 102-107] the proposed parallel 2-D image filtering algorithm, the

FPGA [101, 102, 105, 108] is exploited for its intrinsic parallelism of logic area and IP

cores to achieve the required level of performance for many digital image processing

applications. The main concern with the FPGA is the overall performance indices of area,

speed, dynamic power consumption and throughput [16-18]. Thus, a new generic parallel 2-

D filtering algorithm is presented, mathematically modelled, implemented for both

spatiotemporal and spectral architectures and their complete performance indices package

are evaluated.

This chapter is organised in eight sections. In section 4.2, the main research concepts are

defined and mathematically explained. In section 4.3, the generalized parallel 2-D linear

image filtering algorithm is presented, and the mathematically modelled. In section 4.4,

seven parallel spatiotemporal filtering architectures are developed. Then, their

performance indices are tabulated, analysed and discussed as a complete set of area,

53

speed, dynamic power consumption and throughput as well as the computation rate. In

section 4.5, a successful application of 3-D colour MRI slice filtering using the seven

generic architectures is developed. In section 4.6, three FPGA implementations as

parallel generic FFT architectures are developed and their performance indices are

evaluated as a complete set of area, speed, dynamic power consumption and throughput.

In section 4.7, the implementation of a 2-D cross-correlation function is realized for

parallel 2-D MRI match filtering algorithm. Finally, the conclusion of this chapter is

presented in section 4.8.

4.2 Research Concepts Definitions

This section introduces the main research concepts on which this chapter is based.

4.2.1 Linear 2-D Stream Filtering Method

One of the common bottlenecks within image filtering is the time and memory

bandwidth required to read the image from memory and write the filtered image to

memory. Stream filtering [103, 109] can overcome this bottleneck in two steps of

parallelism [34, 107]. Firstly, spatial parallelism may be exploited by splitting the image

into blocks of rows, columns or squares, as illustrated in Figure 4.1.

Figure 4.1: A single digital image is partitioned into spatial parallelism of pixels for

parallel digital processing.

Secondly, convert spatially partitioned blocks into temporal parallelism, as illustrated in

Figure 4.2. The image is often streamed at a rate of one pixel per clock cycle. The

parallel filtering operations are performed on-the-fly for the pixels using an independent

2-D FIR filters on each partition block. Architectures 6, 7, 8, 9, 10, 11, 12, 13, 14 and

15 are developed to achieve the linear image filtering based on these two levels of

parallelism. Thus, the linear 2-D stream filtering method exploits, as much processing

should be performed on the streamed pixels as passing through the FPGA.

Image Row Partitioning Image Column Partitioning Image Block Partitioning

54

Figure 4.2: Logic parallelism; a single spatial parallelism image block is converted

into a temporal parallelism for Stream processing.

4.2.2 Linear 2-D Filters

The image filtering function for the linear 2-D filter is an operator of accumulated sum

of point by point multiplications of the 2-D FIR coefficients, h(m1,m2) of size (M1×M2),

and the pixel values of the digital image, x(n1,n2) of size (N1×N2) , within the window

[17]. This 2-D FIR filter interacts with its 2-D input through a process called linear 2-D

convolution:

 (4.1)

Where ** is the 2-D convolution operation. Linear 2-D filtering is equivalent to

performing a 2-D image convolution in time domain with the 2-D matrix h(m1,m2)

flipped left-for-right and top-for-bottom, thus the above equation can formally stated as:

(4.2)

Since the filtering operations of the linear FIR filter is designed to have symmetrical

coefficients around the vertical and horizontal axes, then these flips are already

achieved. Thus, the 2-D convolution can be achieved by 2-D FIR filter with coefficients

symmetry in both dimensions.

The 2-D FIR impulse coefficients are sometimes called the filter kernel or weights. The

kernel’s values and size determine the filtering operations and the convolution

implementation domain [82]. Some of the common filtering operations are edge

detection and noise smoothing depending on the following weights sum equation:

Column

0 1 2 3 4 5 M

N

0

1

2

3

4

5

.....

Row

Row Row Row Row Row

Time

0

0 0 0 0 0 0

1

1 1 1 1 1 12

2

2 2 2 2 2.....M M M M M M

..... N 0

55

(4.3)

The coefficients sum is zero for the edge detection filters, or one for noise smoothing

filters. So that, the edge filtering response is zero for the regions of uniform pixel value,

While, the noise smoothing output values are not different from the input in uniform

regions of the image. The edge detection can be enhanced by summing weights up to

one, therefore, the edge filter is called edge enhancement filter.

Some of the common generic edge filters are Edge, Sobel, Laplacian and Prewitt, and

for the noise smoothing filters, Sharpen, Gaussian, Smooth and Blur, as shown in Table

4.1 for the (5×5) operators. These 2-D filters will be implemented and applied to the

biomedical imaging of Magnetic Resonant Imaging (MRI) as a “plug and filter”

operator using the developed FPGA-based architectures. This 2-D image processor can

be realized in the spatiotemporal domain, as in architectures 6, 7, 8, 9, 10, 11 and 12 or

the frequency domain as in architecture 13, 14 and 15.

Table 4.1: some of the common edge and noise smoothing FIR filter of 5x5 kernels

2-D FIR Filter 5x5 kernel 2-D FIR Filter 5x5 kernel

EdgeXY

Laplacian

D.F=

EdgeX

 PrewittX

EdgeY

Blur

D.F=

SobelXY

Smooth

D.F=

SobelX

Sharpen

D.F=

SobelY

Gaussian

D.F=

The filter kernel size (M1×M2) determines the proper convolution implementation for

the linear filter to be in the spatiotemporal or frequency [17, 82, 110]. Spatiotemporal or

direct convolution is more important of these two, since images have their information

encoded in the spatiotemporal domain rather than the frequency domain. However,

56

direct convolution has an execution time proportional to (N1×N2×M1×M2) for an

(N1×N2) image convolved with an (M1×M2) kernel. Consequently, the execution time

for direct convolution depends very strongly on the size of the kernel used for a

particular input image. While, the frequency or a radix-2 FFT convolution is effectively

filtering a particular image in (N1N2 log2 N1N2) steps. By comparison, (M1×M2) is

always greater than (log2 N1N2) for a filter kernel of thousands of coefficients [17, 82].

Consequently, the 2-D linear convolution of (4.2) can be efficiently implemented

directly in the time domain, or from their effects in the frequency domain. For filter

kernels shorter than about 10×10, the spatiotemporal convolution is implemented as

2×2, 3×3, 5×5, 2×4, 4×4, 2×8 and 8×8 kernels. While, the FFT convolution is

implemented for the longer filter kernels of 15×15, 31×31, 63×63, 127×127 and

255×255.

4.2.3 Spatiotemporal Convolver Engine

The generic 2-D spatiotemporal convolver engine is a (M1×M2) MAC FIR digital filter.

That consists of three stages: spatial to temporal parallelism, M1 spatiotemporal

convolver units and sub-filtered merging stages, as shown in Figure 4.3.

Figure 4.3: Implementation of the Generic 2-D Spatiotemporal Convolver Unit

The spatial partitioned block of a digital image is sequentially streamed into (M1-1) row

buffers to be filtered in parallel using the M1 spatiotemporal convolver units. Each row

buffer effectively delays the input by one row of N1 pixels, where N1 is the image width.

An adder tree merges the sub-filtered streams. The resulting pixel values, after applying

the 2-D image filter, can be negative or larger than 255. Thus, the resulting pixel values

Σ

Σ

Σ
Σ

xr(n1, n2)

Filtering Stage streamed Input Stage Output Stage

reshaping

xr (p)
Spatiotemporal

Convolver, h(1,m2)

Spatiotemporal

Convolver, h(2,m2)

Spatiotemporal

Convolver, h(3,m2)

Spatiotemporal

Convolver, h(4,m2)

Spatiotemporal

Convolver, h(m1,m2)

 Row Buffer

 Row Buffer

 Row Buffer

 Row Buffer

yr(n1, n2)

reshaping

yr (p)

Absolute Unit converter

Operator factor

57

are conditioned by taking the absolute value from the negative results, restrict the bit

growth to 8 bits and truncate pixel values larger than 255 to 255 by streaming into an

absolute unit and Xilinx convert block respectively. The conditioned pixels are

multiplied by a constant ratio factor as per the 2-D operator matrix. For example, as

shown in Table 4.1, the sharpen operator have a normalization factor of (1/16) to ensure

that the low spatial frequencies are not amplified.

This linear image filtering considers two inputs of a 2-D filter matrix, and a 2-D image

matrix. Where, the two matrices move over every element of the other matrix.

Logically, there are two implementation strategies: either by scanning, where the 2-D

filter matrix scans the 2-D image matrix, or by streaming, where the 2-D image matrix

streams into the 2-D filter matrix. For example, consider a 5×5 window filter, each

output filter is a function of the twenty-five pixel values within the window. Without

stream filtering, twenty-five pixels must be read, a pixel at each clock cycle, for each

window position and each pixel must be read twenty five times as the window is

scanned through the image.

 Figure 4.4: Five temporal parallelism copies of a digital image are streamed into a

5×5 FIR filter

A 5×5 filter kernel spans five image rows, the current row and four previous rows.

Alternatively, the stream filtering stores the 5×5 filter kernel in a spatiotemporal

convolution engine, and streams five temporal parallel copies of the digital image into

five multi-MAC convolvers. The first temporal pixel copy is streamed into the first FIR

Time

..... Row 0Row 1Row 2Row N

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

.....

.....

.....

.....

.....

N

N

N

N

N

0123.....N0123.....N0123.....N0123.....N

0123.....N0123.....N0123.....N0123.....N

0123.....N0123.....N0123.....N0123.....N

0123.....N0123.....N0123.....N0123.....N

0123.....N0123.....N0123.....N0123.....N

5×5 FIR filter h(m1,m2)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1)

(4,1)

(5,1)

(3,2)

(4,2)

(5,2)

(3,3)

(4,3)

(5,3)

(3,4)

(4,4)

(5,4)

(3,5)

(4,5)

(5,5)

x(n1, n2) reshaping

x(p), input stream

 row buffer

 row buffer

 row buffer

 row buffer

input stream

1-D Convolver, h(5,5)

1-D Convolver, h(4,5)

1-D Convolver, h(3,5)

1-D Convolver, h(2,5)

1-D Convolver, h(1,5)

58

engine of h(1,5) row of the 2-D operator matrix. Each next temporal pixels copy is

delayed by one row of N1 pixels, then, streamed into the next row of the 2-D operator

matrix, as shown in Figure 4.4. The spatiotemporal convolver are of three parallel types

single, dual and quad MAC, as will be explained in subsection 4.4.

4.2.4 2-D FFT Convolver Engine

2-D Convolution in the time domain, as stated in (4.2), corresponds to complex

multiplication of 2-D FIR filter and digital 2-D image spectra, according to the circular

convolution property of the FFT [16, 17, 82], as shown in Figure 4.5. Multiplication

costs less logic area in digital implementation than convolution. This Fourier image

analysis property[17, 46, 82], then, enables 2-D FFT convolution to be utilized in linear

image filtering.

Figure 4.5: 2-D FFT convolver unit

The 2-D FFT in Figure 4.5 calculates the Fourier transform of a 2-D FIR filter and a 2-

D digital image. Since the Fourier transform is inherently separable [17, 87], then the 2-

D FFT can be reduced to a 1-D FFT pair, which is called row-column FFT [33].

Therefore, the 2-D FFT can be calculated by taking the 1-D FFT of each row, followed

by the 1-D FFT of each column, as shown in Figure 4.6. Since, the Fourier transform is

Figure 4.6: 2-D FFT convolver unit is separable to be implemented as 1-D FFT

pair engine architecture.

complex value in the frequency domain, the image will be transformed into an

intermediate image of real array and imaginary array. Next, 1-D FFT is repeated on

2-D IFFT

2-D FFT2-D FIR

 Filter

H(k1,k2)

Y(k1,k2)

h(m1,m2)

2-D FFT2-D Digital

 Image

x(n1,n2)

X(k1,k2)

2-D Filtered

Image

y(n1,n2)

 is the 2-D convolution property of the FFT

1-D IFFT

1-D FFT

2-D FIR

 Filter

H(k1,k2)

Y(k1,k2)

h(m1,m2)

1-D FFT
2-D Digital

 Image

x(n1,n2)

X(k1,k2)

2-D Filtered

Image

y(n1,n2)

1-D FFT

1-D FFT

1-D IFFT

Zero

Padding

59

each column of the intermediate image. The resulting real and imaginary parts are the

image's 2-D frequency spectrum, X(k1,k2).

Similarly, 1-D FFT pair calculates the 2-D FIR filter’s 2-D frequency spectrum,

H(k1,k2). These two frequency spectra are point-by-point multiplied to produce Y(k1,k2),

which represents the 2-D FFT of the filtered image. To transform back into the time

domain as y(n1,n2), the inverse Fourier transform of Y(k1,k2) is calculated by taking the

1-D inverse FFT of each column, followed by the 1-D inverse FFT of each row.

The number of complex multiplications and additions required for a radix-2 1-D FFT

algorithm of length N1 is (

) log2 N1 and N1 log2 N1, respectively. Thus, the number of

complex multiplications and additions needed for the row-column FFT that employs

such a 1-D FFT are (

) log2 N1N2 and N1N2 log2 N1N2, respectively. Therefore, the

row-column FFT reduces the computational complexity from O (N
4
) to O (N

2
 log2 N

2
).

This considerable gain in computation justifies the hardware implementation of the row-

column FFT over the 2-D DFT [55, 111].

4.2.5 Total 2-D Throughput

The total throughput µ of the parallel 2-D MAC FIR filtering architecture is measured

by frame per second (FPS). Generally, the maximum throughput is the maximum

operating clock frequency divided by one frame [20, 79, 80] at a filtering rate of one

pixel operation per clock cycle. However, the throughput of the parallel 2-D MAC FIR

filtering architecture is limited by the large input image and 2-D MAC FIR operation,

which can be mitigated by parallelism. Thus, the total throughput is directly

proportional to the operating frequency and the levels of parallelism, and inversely

proportional to the size of the input image and the 2-D MAC FIR matrix.

The levels of parallelism is the 2-D image input decimation by α1 and the number of

multi-MAC engines α2 per convolver unit. Then, the total throughput µ can be

formulated as:

Where, N1×N2 is the input image frame dimensions.

 (4.4)

60

The 2-D MAC FIR engine throughput is directly proportional to the clock speed f

and limited by the 2-D FIR coefficients (M1×M2) which can be distributed to be

processed by multi-MAC engines. Then can be stated as:

 (4.5)

Thus, the total throughput for the parallel 2-D MAC FIR filtering architectures can be

calculated as:

(4.6)

where,

 is equivalent to one frame at a filtering rate of one pixel operation per

clock cycle. α1 = 2×2, α2 = 1, 2 or 4 depending on the degree of parallelism inside the 2-

D spatiotemporal convolver using single MAC, dual MAC or quad MAC engine.

For the parallel 2-D FFT filtering architectures, one frame time is

because the single 2-D FFT unit performs the 2-D convolution in

steps [44], while the spatiotemporal convolution requires O(

) steps.

Thus, the overall throughput µ of the parallel 2-D FFT convolution architecture for 2-D

image input decimated by 2 and maximum clock frequency f (MHz) can be formulated

as:

(4.7)

The throughput for the parallel 2-D convolution architectures depends only on the

image size for the FFT convolution, while spatiotemporal convolution depends on both

the image and the kernel size.

4.2.6 Total Computation Rate

The total number of MACPS can be considered as another performance index to

indicate the computation rate for each one of the seven spatiotemporal convolution

architectures developed. The total computation rate γ, measured in GMACPS, is directly

proportional to the levels of parallelism and the maximum clock frequency f. The level

of parallelism is the number of parallel 2-D spatiotemporal convolver stages (α1) and the

number of MAC engines (α2) per multi-MAC and the number of multi-MAC convolvers

α3 per 2-D spatiotemporal convolver. Thus, the computation rate can be formulated as;

61

 (4.8)

4.3 The Generalized Parallel 2-D Linear Image Filtering Algorithm

The generalized parallel 2-D filtering algorithm, as shown in Figure 4.7, for the linear

image stream filtering method is implemented for both the spatiotemporal and frequency

convolvers. The spatiotemporal convolver is developed in the FPGA as architectures 6,

7, 8, 9, 10, 11 and 12. In addition to, the frequency or 2-D FFT convolver is realized as

architectures 13, 14 and 15. This parallel filtering algorithm consists of three stages:

input decimation stage, parallel sub-filtering processing stage and parallel to serial

interpolation output stage. The three stages are implemented on the Virtex-6 ML605

FPGA board using XSG. The mathematical model of these three stages for the stream

filtering method are presented in the following subsections.

Figure 4.7: The Generalized Parallel 2-D Linear Image Filtering Algorithm

4.3.1 Input Decimation by 2 for the 2-D Image Stream Filtering

The input grayscale image x(n1,n2) of size (N1×N2) is decimated by 2 in the two

dimensions producing (2
2
=4) sub-image blocks of size

 for each 2-D image

input, as shown in Figure 4.7. The resultant 2-D sub-image blocks are defined as:

Input stage Filtering stage Output stage

x(n1, n2) y(n1, n2)

x3(n1/2 , n2/2)

ΣΣ

n2↑2

n1↑2

RS(n1)

RS(n2)

n2↑2

n2↑2

n2↑2

n1↑2

RS(n2)

Σ

n2↓2n1↓2

LS(n1)

LS(n2)

n2↓2

n2↓2

n2↓2

n1↓2

LS(n2)

nx↓2

LS(nx)

ny↑2

RS(ny)

Decimation in x

Left Shift or Advance in the nx direction

Interpolation in y

Right Shift or Delay in the ny direction

2-D FIR Filter,

h(m1,m2)

h(m1,m2)

2-D Convolver

 engine

2-D Convolver

 engine

2-D Convolver

 engine

2-D Convolver

 engine

x2(n1/2 , n2/2)

x1(n1/2 , n2/2)

x0(n1/2 , n2/2)

y1(n1/2 , n2/2)

y3(n1/2 , n2/2)

y2(n1/2 , n2/2)

y0(n1/2 , n2/2)

h

h

h

62

 n1 n2

 n1 n2

 n1 n2

 n1 n2

(4.9)

The decimated blocks of the input 2-D image are realized by a left shift and decimation

in two dimensions, which are indicated in Figure 4.7 by LS(n1)/LS(n2) and /

 respectively. These four 2-D sub-images are not overlapped, and have exactly

the same pixels as the original 2-D image, hence, the decimation process did not lose or

reduce any pixel of the original 2-D image. Thus, these four 2-D sub-images can be

filtered simultaneously and independently within the 2-D processing stage.

4.3.2 Parallel 2-D Filtering Stage

The 2-D processing is achieved by convolving the sub-images given by (4.10) with the

2-D FIR kernel h(m1,m2). This linear 2-D filtering can be realized by either

spatiotemporal or FFT convolution, and expressed by:

 , r=0,1,...3 (4.10)

where, is the 2-D convolution operation. Equation (4.10) describes the filtering

process shown in Figure 4.7, which is computationally intensive. Thus, a parallel array

of independent 2-D convolution units can be used to produce a filtered 2-D image,

speeding up the filtering rate, increasing the throughput and carrying out real time

processing of large input image sizes. That can be detailed by the following parallel

linear convolutions:

 0

(4.11)

Where,

 and

 are the output

dimensions of each sub-image.

4.3.3 Output Interpolation by 2 Reconstruction Stage

Four filtered streams of 2-D sub-image are produced by the parallel filtering stage. The

resultant filtered outputs, y0, y1, y2 and y3, are uniquely decimated by 2 sub-images as:

63

(4.12)

The reconstruction of the final output y(n1,n2) is obtained by interpolations, /

 in the two dimensions, and right shift of RS(n1)/RS(n2) the filtered sub-images

y0, y1, y2 and y3 given by (4.12) and can be seen in Figure 4.7. Therefore, the resultant

filtered output can be reconstructed as shown below:

(4.13)

Where, j:i:k is the same as [j, j+i, j+2i, ..., k], and represents the two operations of right

shift and interpolation by 2.

The generalized parallel 2-D linear stream-filtering algorithm can be realized in more

than one unique architecture, as either a 2-D spatiotemporal convolution in the time

domain, or a 2-D FFT convolution in the frequency domain, depending on the filter

kernel length. Where, the parallel algorithm can directly be implemented faster by the

MAC FIR convolution for the 2-D FIR kernel shorter than (10×10) [82], the filtering

time is proportional to the kernel length. However, longer filter kernels can efficiently

be implemented faster with the 2-D FFT convolution, with very little penalty in filtering

time. With 2-D FFT convolution, the filter kernel have no limits to exploit the

appropriate size according to the application. The spatiotemporal and spectral image

filtering is presented in subsection 4.4 and subsection 4.6 respectively.

4.4 Parallel 2-D Spatiotemporal Convolver Architectures

The generalized parallel 2-D linear image filtering algorithm of Figure 4.7 can be

efficiently realized by 2-D spatiotemporal convolution using multi-MAC FIR filter units

as shown in Figure 4.8. Consequently, the 2-D image filtering applications [21, 35, 38,

109] in which the 2-D FIR kernel length shorter than (10×10) coefficients can be

achieved using the 2-D stream filtering as defined in sub-sections 4.2.1, 4.2.2 and 4.2.3.

In the input stage, four spatially partitioned sub-image blocks, as shown in Figure 4.8,

64

of size (

 The parallel filtering operations are performed on-the-fly using an

independent 2-D convolver engine for the pixel streams. The 2-D convolver engine is a

(M1×M2) MAC FIR digital filter. The filter kernel of (M1×M2) coefficients are stored in

the 2-D FIR filter, thus, there is no need for separate decimation.

The temporal partitioned digital image is sequentially streamed into (M1-1) row buffers

to be filtered in parallel using the M1 convolver units, this constitutes the 2-D (M1×M2)

convolver engine. The spatiotemporal convolver architectures are of three parallelism

type using single, dual and quad MAC units, as will be explained in subsection 4.4.1,

4.4.2 and 4.4.3 respectively. The reconstruction of the final output y(n1,n2) is obtained

by interpolations, / , and right shift of RS(n1)/RS(n2) the sub-images as

described abstractly in (4.13) and shown graphically in Figure 4.8.

Figure 4.8: Spatiotemporal implementation of the Parallel 2-D Convolution

Algorithm

The parallel 2-D spatiotemporal convolution-filtering algorithm can be implemented by

three parallel types of architectures according to the hardware structure of their 2-D

convolver engine. The input decimated by 2 stage and the output interpolated by 2 stage

are the same for all the seven architectures, the following architectures will be

distinguished by their 2-D MAC engine structure. Thus, the general architecture, shown

 Spatiotemporal

Convolver, h(m1,m2)

ΣΣ

Input stage Filtering stage Output stage

x(n1, n2) y(n1, n2)

x2

x3

n2↓2n1↓2

n2↑2

n1↑2

RS(n1)

RS(n2)

LS(n1)

LS(n2)

n2↓2

n2↓2

n2↓2

n1↓2

LS(n2)

n2↑2

n2↑2

n2↑2

n1↑2

RS(n2)

Σ

nx↓2

LS(nx)

ny↑2

RS(ny)

Decimation in x

Left Shift or Advance

 in the nx direction

Interpolation in y

Right Shift or Delay

in the ny direction

x1

x0

y2

y3

y1

y0

Spatiotemporal

Convolver, h(m1,m2)

Spatiotemporal

Convolver, h(m1,m2)

SpatiotemporalCo

nvolver, h(m1,m2)

65

in Figure 4.8, can have more than one unique hardware version, as explained in the

following subsections.

4.4.1 Parallel 2-D Single MAC Convolver Architectures

The spatiotemporal convolution architectures use 2-D single MAC convolver filter

Units of size (2×2), (3×3) and (5×5), as architecture 6, 7 and 8 respectively. Figure 4.9,

Figure 4.10 and Figure 4.11 show (2×2), (3×3) and (5×5) single MAC 2-D direct

convolver as unit 4, unit 5 and unit 6 respectively. These units realize the 2-D FIR

operator of the filtering stage for the parallel linear image stream filtering algorithm of

Figure 4.8. The row buffer can be implemented by a single Port RAM block with an up

counter, as address generator, limited to the image width N1, as shown in Figure 4.12.

Figure 4.9: Unit 4; (2×2) Single MAC Convolver Architecture

Figure 4.10: Unit 5; (3×3) Single MAC Convolver Architecture

xr(n1, n2)

reshaping
xr (p)

 Single MAC

Convolver, h(1,2)

 Single MAC

Convolver, h(2,2)
 Row Buffer

Σ

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

Σ

xr(n1, n2)

reshaping
xr (p) Single MAC

Convolver, h(1,3)

Single MAC

Convolver, h(2,3)

 Single MAC

Convolver, h(3,3)

 Row Buffer

 Row Buffer

Σ

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

66

Figure 4.11: Unit 6; (5×5) Single MAC Convolver Architecture

Figure 4.12: Row buffer implementation

The Xilinx Slice block is parameterized to slice off the first top bit from the MSB of

each input data sample. The output data type is unsigned one bit, either zero or one,

with its binary point at zero. Thus, the multiplexer will select the d0 input for positive

sample and d1 for negative samples after processing by a negate block.

As configured and shown in Table 4.2, unit 4 occupies less logic area than unit 5 by

(33%) FFs, (26%) LUTs, (50%) slices, (33%) dedicated DSP 48E1s multiplier, and

(40%) RAMB 18E1s block memory. In addition, compared to unit 6, unit 4 occupies

less logic area by (66%) FFs, (65%) LUTs, (68%) slices, (60%) dedicated DSP 48E1s

multiplier, and (67%) RAMB 18E1s block memory.

Table 4.2: Logic Devices utilization by the 2-D multi-MAC convolver units

2-D Single MAC

convolver units

2-D Dual MAC

convolver units

2-D Quad MAC

convolver units

Unit 4

2×2

Unit 5

3×3

Unit 6

5×5

Unit 7

2×4

Unit 8

4×4

Unit 9

2×8

Unit 10

8×8

FFs 182 271 536 256 471 370 1 022

LUTs 125 167 355 178 337 273 807

Slices 46 92 144 73 123 111 272

DSP 48E1s 2 3 5 4 8 8 24

RAMB 18E1s 3 5 9 5 11 9 27

Σ

xr(n1, n2)

reshaping
xr (p)

 Single MAC

Convolver, h(3,5)

 Single MAC

Convolver, h(4,5)

 Single MAC

Convolver, h(5,5)

 Row Buffer

 Row Buffer

Σ

Σ

 Single MAC

Convolver, h(1,5)

 Single MAC

Convolver, h(2,5)

 Row Buffer

 Row Buffer

Σ

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

67

4.4.2 Parallel 2-D Dual MAC Convolver Architectures

The parallel spatiotemporal convolution-filtering algorithm of Figure 4.8 can be realized

by another FPGA-based architecture using the 2-D dual MAC convolver filter units of

size (2×4) and (4×4). Figure 4.13 and Figure 4.14 show (2×4) and (4×4) dual MAC

operators for the spatiotemporal convolver architecture as unit 7 and unit 8 respectively.

As shown in Table 4.2, unit 7 occupies almost half the logic area of unit 8.

Figure 4.13: Unit 7; (2×4) Dual MAC convolver Architecture

Figure 4.14: Unit 8; (4×4) Dual MAC convolver Architecture

4.4.3 Parallel 2-D Quad MAC Convolver Architectures

A third type of FPGA-based architectures for the parallel 2-D spatiotemporal

convolution-filtering algorithm can be realized using 2-D quad MAC convolver filter

units of size (2×8) and (8×8) , shown in Figure 4.15 and Figure 4.16, as unit 9 and unit

10 respectively. These units realize the 2-D MAC FIR operator of the filtering stage for

the parallel linear image stream filtering algorithm of Figure 4.8. As shown in Table

4.2, unit 9 occupies almost one-third the logic area unit 10.

xr(n1, n2)

reshaping

xr (p)
 Dual MAC

Convolver, h(1,4)

 Dual MAC

 Convolver, h(2,4)
 Row Buffer

Σ

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

Σ

Σ

 Dual MAC

Convolver, h(1,4)

 Row Buffer

Σ

 Dual MAC

Convolver, h(2,4)

 Dual MAC

Convolver, h(3,4)

 Dual MAC

Convolver, h(4,4)
 Row Buffer

 Row Buffer

xr(n1, n2)

reshaping

xr (p)

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

68

Figure 4.15: Unit 9; (2×8) Quad MAC convolver Architecture

Figure 4.16: Unit 10; (8×8) Quad MAC convolver Architecture

4.4.4 Performance Indices of the Parallel Spatiotemporal Convolver Architectures

The performance indices of the seven 2-D spatiotemporal convolver architectures are

considered as a complete set of area, speed, power, throughput and computation rate

parameters using XSG to target the Virtex-6 ML605 board. The minimized utilized area

of the seven architectures, as shown in Table 4.3, is due to the efficient implementation

hierarchy of logic fabric, signals, I/O's and hard IPs such as Block RAMs or DSP

blocks. These seven architectures are occupying proper logic area of FFs, LUTs, slices,

DSP blocks and Block RAMs with the least area occupation for architecture 6 and the

xr(n1, n2)

reshaping
xr (p) Quad MAC

 Convolver, h(1,8)

 Quad MAC

 Convolver, h(2,8)
 Row Buffer

Σ

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

Σ

Σ

Σ

Σ

Σ

Σ

xr(n1, n2)

reshaping

xr (p)
 Quad MAC

 Convolver, h(1,8)

 Quad MAC

 Convolver, h(2,8)
 Row Buffer

Σ

 Quad MAC

 Convolver, h(3,8)

 Quad MAC

 Convolver, h(4,8)

 Quad MAC

Convolver, h(5,8)

 Quad MAC

 Convolver, h(6,8)

 Quad MAC

 Convolver, h(7,8)

 Quad MAC

 Convolver, h(8,8)

 Row Buffer

 Row Buffer

 Row Buffer

 Row Buffer

 Row Buffer

 Row Buffer

yr(n1, n2)

reshaping

yr (p)

Absolute

Unit
converter

Operator

factor

69

largest for architecture 12; the seven architectures can be categorized by the area

occupation starting from the smallest as architecture 6, 9, 11, 10, 7, 8 to the largest as

architecture 12. Consequently, this area occupation affects the performance indices set

of speed, power consumption, throughput and computation rate as shown in Table 4.4.

Table 4.3: Logic Devices utilization by each of the parallel spatiotemporal filtering

architectures

Archit.

6

Archit.

7

Archit.

8

Archit.

9

Archit.

10

Archit.

11

Archit.

12

 2-D FIR filter kernel (M1×M2)

 2×2 3×3 5×5 2×4 4×4 2×8 8×8

FFs 688 1 632 1 705 872 1 624 1 272 4 684

LUTs 442 1 132 1 108 588 1 170 947 3 722

Slices 205 441 502 283 520 426 1 421

DSP 48E1s 8 12 20 16 32 32 128

RAMB 18E1s 12 20 36 20 44 36 156

Several observations may be made from Table 4.4 performance indices. Firstly, the

operating clock frequency is particularly insensitive to the occupied logic area [31] by

the seven architectures, and principally operating around the indicated 214 MHz

maximum frequency. Secondly, the dynamic power consumption at (40 nm) junction

temperature of 54°C is monotonically decreases from 140mW for architecture 12,

46mW for architecture 10, 39mW for architecture 11, 27mW for architecture 8, 24mW

for architecture 9, 21mW for architecture 7 down to 14mW for architecture 6. Thirdly,

the highest throughput, in filtering a grayscale MRI slices, is achieved by architectures

6, 9 and 11, which is almost 2.25, 6, 2 and 4 times than that of architectures 7, 8, 10 and

12 respectively.

Table 4.4: Performance indices of the parallel spatiotemporal filtering

architectures

Archit.

6

Archit.

7

Archit.

8

Archit.

9

Archit.

10

Archit.

11

Archit.

12

 2-D FIR filter kernel (M1×M2)

 2×2 3×3 5×5 2×4 4×4 2×8 8×8
Maximum Clock

Frequency (MHz)
215 214 216 215 213 214 213

Dynamic Power

(mWatt)
14 21 27 24 46 39 140

Throughput (FPS),

64×64 MRI
54 931 24 414 8 789 54 931 27 465 54 931 13 732

Throughput (FPS),

1024×1024

MRI
214 95 34 214 107 214 53

computation rate

(GMACPS)

1.8 2.7 4.5 3.6 7.2 7.2 28.8

70

According to (4.6), where the one frame time is inversely proportional to the size of the

filtered image frame, thus, the throughput was significantly affected as the MRI size

goes from 64×64 to 1024×1024 for the same 2-D kernel size. Although, the lowest

throughput of (34 FPS) achieved by architecture 8 is still within the real-time

performance of (30 FPS) frame rate [17, 112]. Consequently, the seven parallel

spatiotemporal convolution architectures are evidently suitable for real-time

applications [21, 34, 35, 38, 97-99, 102-104, 106, 108, 109, 111, 113, 114]. Fourthly,

according to (4.8), the highest computation rate is accomplished by architecture 12, due

to the three levels of parallelism. That is double than that of architecture 10 and 11. For

the remaining implementations, that are (4), (3), (5) and (8) times than that of

architecture 9, 8, 7 and 6 respectively.

The seven parallel spatiotemporal convolution architectures are developed as “plug and

filter” architectures. Thus, twelve generic 2-D FIR filters can be used in the

development of edge detection and noise smoothing for the biomedical imaging of

64×64 greyscale MRI, then, improved as shown in Table 4.5 and Table 4.6 respectively.

Table 4.5: Filtering results of 64×64 greyscale MRI using architecture 8

2-D FIR

Filter

Generic

5x5 kernel

Filtered

64×64 MRI

2-D FIR

Filter

Generic

5x5 kernel

Filtered

64×64 MRI

Identity

Identity

EdgeXY

Laplacian

D.F=

EdgeX

PrewittX

EdgeY

Blur

D.F=

SobelXY

Smooth

D.F=

SobelX

Sharpen

D.F=

SobelY

Gaussian

D.F=

71

The MRI filtered images in Table 4.5 show the effect of the twelve generic 2-D filtering

operators, eight edge detection operators and four noise smoothing operators. The eight

edge detection operators are EdgeXY, EdgeX, EdgeY, SobelXY, SobelX SobelY,

Laplacian and PrewittX. The four noise-smoothing operators used are Blur, Smooth,

Sharpen and Gaussian. The Edge operators detect the changes or differences in the pixel

value at the edges of regions, the contrast between the region and the background or

between two regions. Thus, the Edge operators are differencing filters, which make

them sensitive to noise, as in the first eight operators of Table 4.5, which act as low pass

filters except the Laplacian filter. This high pass filter can be used to detect edges of all

orientations, but is very sensitive to noise.

Table 4.6: Filtering results for grayscale 64×64 MRI of twelve improved 2-D FIR

filter operators using architecture 8

2-D FIR

 Filter

 Improved

5x5 kernel

Filtered

 64×64 MRI

2-D FIR

 Filter

 Improved

5x5 kernel

Filtered

 64×64 MRI

Identity

Identity

EdgeXY

D.F=

Laplacian

EdgeX

PrewittX

D.F=

EdgeY

Blur

D.F=

SobelXY

Smooth

D.F=

SobelX

D.F=

Sharpen

D.F=

SobelY

D.F=

Gaussian

D.F=

4.5 Three Dimensions Application: Parallel Colour MRI Filtering

The greyscale MRI pixels are represented by a scalar value between zero and (255). The

logical extension to the grayscale 2-D MRI is the Colour 3-D MRI or functional MRI

(fMRI). The colour 3-D MRI pixels are represented by a vector of components rather

72

than a scalar. Then, colour 3-D MRI or fMRI is represented as a vector-base image of

(N1×N2×3) size, as following:

(4.14)

Where, x1(n1,n2), x2(n1,n2) and x3(n1,n2) are the MRI three colour components of red,

green and blue of size (N1×N2) each. The 3-D colour MRI or fMRI is typically

represented by a three-dimensional vector of eight bits per component, resulting in a 24-

bit colour system. The 3-D colour MRI filtering involves the 2-D convolution of the raw

colour MRI (n1,n2) with a 2-D FIR operator h(m1,m2) to produce the three components

filtered colour output (n1,n2), given by,

(4.15)

where, is the 2-D convolution, which can be expressed as:

(4.16)

For the real-time 3-D colour MRI filtering [104, 112], the parallel 2-D linear image

filtering algorithm, as shown in Figure 4.7, and its FPGA implementation on Figure 4.8,

is preferred for its faster filtering speed, high computation rate and higher throughput

with low dynamic power consumption and small logic area occupation. Consequently,

the parallel 2-D spatiotemporal convolver architectures 6, 7, 8, 9, 10, 11and 12 can be

utilized as FPGA implementation for the parallel 3-D colour MRI filtering applications.

This parallel colour MRI convolution algorithm can be represented as follows:

 0

(4.17)

The performance indices of the seven architectures for the colour MRI filtering are the

same as those indices for the greyscale MRI, as shown in Table 4.3 for the logic area

occupation, and Table 4.4 for the maximum clock frequency, dynamic power

consumption and the computation rate. However, the total throughput (FPS) is less due

to the three frames of red, green and blue that constitutes the 3-D colour MRI. Thus, the

total throughput for the parallel colour 3D MRI filtering is 1494, 664, 239, 1494, 747,

73

1494 and 373 using architectures 6, 7, 8, 9, 10, 11 and 12 respectively for an input

colour MRI of (224×224×3) size.

The colour MRI filtered results using architecture 8 are shown in Table 4.7. Twelve 2-D

FIR filters can be used in the development of edge detection and noise smoothing of the

biomedical imaging of 224×224×3 colour MRI slice. These twelve MRI filtering

operators are improved for the suitability of this particular biomedical imaging. The

MRI filtering results are achieved by modifying the generic twelve 2-D FIR filters of

Table 4.1 according to a heuristic criteria: If the sum of the (M1×M2) elements is larger

than the generic 2-D filter by 1 or more, then, the filtering result will be a brighter MRI.

This criterion is applied to the MRI results of EdgeXY, EdgeX, EdgeY, SobelXY,

SobelX, SobelY, Laplacian, PrewittX, Blur and Sharp operators.

Table 4.7: Filtering results for colour 224×224×3 MRI of twelve developed 2-D FIR

filter operators using architecture 9

2-D FIR

Filter

Generic

5x5 kernel

Filtered

Colour MRI

2-D FIR

Filter

Generic

5x5 kernel

Filtered

Colour MRI

Identity

Identity

EdgeXY

D.F=

Laplacian

EdgeX

PrewittX

D.F=

EdgeY

Blur

D.F=

SobelXY

Smooth

D.F=

SobelX

D.F=

Sharpen

D.F=

SobelY

D.F=

Gaussian

D.F=

Conversely, a darker MRI will be obtained if the sum of (M1×M2) elements is smaller

than the generic 2-D filter, as with the MRI results of Smooth and Gaussian. If the

(M1×M2) elements sum is zero, the resulting MRI is not necessarily completely black,

but it will be very dark, this is the case with the generic 2-D operators of EdgeXY,

74

EdgeX, EdgeY, SobelXY, SobelX, SobelY, Laplacian, PrewittX. If the 2-D operator

elements sum is 1, then, the resulting MRI will have the same brightness as the original

MRI slice, this last criterion is applicable to all the twelve 2-D operators. As a

comparison of filtering results, the seven architectures are used, as shown in Table 4.8,

to process the same colour MRI using the (M1×M2) 2-D FIR operators of

architectures 6, 7, 8, 9, 10, 11 and 12. The filtered MRIs are brightened due to the sum

of the (M1×M2) elements being larger than the identity 2-D filter by 1.

Table 4.8: Filtering results for colour 224×224×3 MRI using the parallel

spatiotemporal filtering architectures

2-D FIR

Filter

Generic

(M1×M2) kernel

Filtered

Colour MRI

2-D FIR

Filter

Generic

(M1×M2) kernel

Filtered

Colour MRI

Identity

2×4

Brightener

2×2

Brightener

4×4

Brightener

3×3

Brightener

2×8

Brightener

5×5

Brightener

8×8

Brightener

The filtering results within the above tables show the edge filtering, noise smoothing

and edge enhancement for diverse regions of the colour MRI that can be used by the

physician to noninvasively depict areas of the brain for investigating either the human

brain prior to neurosurgery or the brain functional activities in detail that are used for

specific tasks. Thus, architecture 6, 7, 8, 9, 10, 11 and 12 can be plugged and used to

develop filters for many colour MRI or fMRI, current and future potential practical

applications; these include, reading of brain states [113], intracranial Hemorrhage

annotation [96], brain–computer interfaces [98, 114] and communicating with locked-

in patients [115].

4.6 FPGA Implementation as Indirect Parallel 2-D FFT Filtering Architectures

The parallel 2-D image filtering algorithms can process the 2-D image filtering

applications [55] [32, 33] in which the 2-D FIR kernel length is longer than (10×10)

75

coefficients [82] [88, 92]. The FPGA implementation of this type of algorithm can be

efficiently captured by more than one fast parallel 2-D FFT filtering architecture,

depending on the 2-D image segmentation, FPGA memory and accordingly the degree

of parallelism in the filtering stage. Consequently, two efficient hardware architectures

are developed; single 2-D FFT convolution architecture and parallel 2-D FFT

convolution architecture. The first approach is described in subsection 4.6.1 and 4.6.2 as

architectures 13, and 14, respectively. The second approach is described in subsection

4.6.3 as architecture 15.

4.6.1 Single 2-D FFT Filtering Unit Implementation

The 2-D FFT convolver engine shown in Figure 4.6 can be realized as a single 2-D FFT

convolution architecture, shown in Figure 4.17. This architecture consists of input,

filtering and output stages. Within the input stage the 2-D MRI and the 2-D FIR

operator are streamed using the linear 2-D Stream Filtering Method, as explained in

subsection 4.2.1. The temporal stream of the 2-D FIR operator is zero padded to be

equal in size to the 2-D MRI. Both streams are row buffered to be processed in the

filtering stage. The row buffer component is implemented as shown in Figure 4.12.

Figure 4.17: Architecture 13; the implementation of the Fast Single 2-D FFT

Filtering unit on the Virtex-6 FPGA board

The 2-D filtering stage is a spatiotemporal to frequency transformation structure, as

explained in subsection 4.2.4. This structure is consists of 2-D FFT, complex multiplier

and 2-D IFFT components. The 2-D FFT consists of two Xilinx FFT v7_0 blocks and

two transpose unit structure, as shown in Figure 4.17. The transpose unit can be realized

as in Figure 4.18. Where, the transformed 2-D matrix is first inputted via port A of a

2-D Fast Fourier Transform

2-D Inverse Fast Fourier Transform

2-D FIR

 Operator

h(m1,m2)

FFT FFT
Transpose

 unit
 Row Buffer

Zero

Padding

 Row Buffer

Original

 MRI,

 x(n1,n2)

Transpose

 unit

Filtered MRI,

 y(n1,n2)

FFT FFT
Transpose

unit

Transpose

 unit

Σ

IFFT IFFT
Transpose

 unit

Transpose

 unit

Complex

 Multiplier
X

r

i

r

r r

r

i

i

i

i
i

r
Absolute

 unit

Absolute

 unit

Input stage Filtering stage Output stage

X
r

i

i

76

dual port RAM, and then accessed in port B by two address control circuitries. The

writing address circuitry is an up counter from zero to (N1×N2-1) to store the image

stream row by row. While, reading address circuitry is a combination of two up counter

to generate the transpose 2-D matrix out of port B column by column.

The two 2-D matrices of the FIR coefficients and the MRI are simultaneously frequency

transformed via the real inputs of two parallel Xilinx FFT v7_0 blocks, and setting the

imaginary input to zero. Each FFT outputs frequency spectrum in, real and imaginary

parts. Thus, the image will be transformed into an intermediate image of real array and

imaginary array. Subsequently, two transpose units are used. Next, 1-D FFT is repeated

on each column of the intermediate image. The resulting real and imaginary parts are

the image's 2-D frequency spectrum, X(k1,k2).

Figure 4.18: transpose unit implementation

Similarly, 1-D FFT pair calculate the 2-D FIR operator’s 2-D frequency spectrum,

H(k1,k2). Using Xilinx complex multiplier block, these two frequency spectra are point-

by-point multiplied to produce Y(k1,k2), which represents the 2-D FFT of the filtered

image. To transform back into the time domain, the inverse Fourier transform of

Y(k1,k2) is calculated by taking the 1-D inverse FFT of each column, followed by two

transpose units to arrange the two filtered image components, then the 1-D inverse FFT

of each row is processed.

77

In the output stage, the two streams of the filtered MRI are conditioned by an absolute

unit first, and then summed to produce the 2-D filtered MRI y(n1,n2). The final

reconstructed output is connected to a gateway-out block, which provides the

conversion from the fixed point format which is used by the FPGA to floating point

numerical representation used by Simulink blocks for displaying the filtered MRI.

4.6.2 Single 2-D IFFT Convolution k-Space MRI Unit Implementation

MRI slice visualization is achieved by reconstructing the image from k-space MRI data

[116-118]. The MRI machine collects data in the frequency domain which is known as

the k-space. This real-time data needs to be filtered first to create the digital 2-D MRI

that can be accurately inspected. This filtering can efficiently be processed using 2-D

IFFT convolution algorithm. Due to the k-space MRI data being collected as 2-D

frequency data, then the 2-D IFFT part of architecture 14, as shown in Figure 4.19, can

be used for filtering and visualization. Where, the two frequency inputs X(K1,K2) and

H(K1,K2) are point-by-point complex multiplied.

Figure 4.19: Architecture 14; implementation of the Fast Single 2-D IFFT

convolution k-space MRI Filtering unit on the Virtex-6 FPGA board

Then, the resultant real and imaginary 2-D filtered MRI has to be transferred back to the

spatiotemporal domain by 2-D IFFT and conditioned to be visualized as a digital 2-D

MRI image. The FPGA implementation details are as explained in the previous

subsection of 4.6.2.

2-D Inverse Fast Fourier Transform

2-D FIR Operator

H(K1,K2)

Original K-space

 MRI, X(K1,K2)

Filtered MRI,

 y(n1,n2)

Σ

IFFT IFFT
Transpose

 unit

Transpose

 unit

Complex

 Multiplier XX
r

i

r

r

i

i
i

Absolute

 unit

Absolute

 unit

r

i
r

i

78

4.6.3 Fast Parallel 2-D FFT Filtering Architecture

The memory limitation of any digital signal processor to store the input images of larger

sizes necessitates the segmentation of the 2-D input image into independent 2-D sub-

images. Consequently, a parallel fast convolution algorithm has to be developed to

simultaneously process these sub-images. Thus, the generalized parallel 2-D filtering

algorithm of Figure 4.7 may be realized in hardware as architecture 15, shown in Figure

4.20. This architecture consists of input, filtering and output stages. The input

decimated by 2 stage and the output interpolated by 2 stage are as described in

subsection 4.3.1 and 4.3.3 respectively. The main difference is in the filtering stage

which in this case based on the convolution property of the 2-D FFT.

The input MRI is decimated by 2 to produce four independent sub-MRI blocks x0, x1, x2

and x3. These sub-images and the 2-D FIR operator are converted from spatial

parallelism to temporal streams as described in subsection 4.2.1. Each stream is row

buffered before being processed within the filtering stage. Due to the independency of

the four decimated sub-streams, the fast 2-D filtering stage is carried out simultaneously

using parallel 2-D FFT convolution array. Consequently, there are no internal

communications in the convolution-filtering array due to the elimination of boundary

conditions.

The filtering stage consists of four parallel 2-D Fast Fourier Transforms (FFT)

convolution structure. Each 2-D FFT convolution structure is fast single 2-D FFT

convolution sub-architecture, as described in subsection 4.6.1, where, 2-D spatial

convolution is achieved by parallel complex multiplication. The four sub-MRI pixels

streams and the 2-D FIR operator are frequency transformed by 2-D FFT, complex

multiplied and spatially transformed by 2-D inverse FFT. The resultant filtered sub-

MRIs have two components; real and imaginary. Each component is conditioned by an

absolute unit and summed to produce four decimated by 2 filtered sub-images of y0, y1,

y2 and y3, as shown in Figure 4.20.

The final filtered 2-D MRI is reconstructed from the four sub-MRI using interpolation

by 2. This output signal is connected to a gateway-out block, which provides the

conversion from the FPGA-used fixed point format to floating point numerical

representation used by Simulink blocks for displaying the filtered 2-D MRI.

79

Figure 4.20: Architecture 15; implementation of Fast Parallel 2-D FFT convolution

Algorithm on the Virtex-6 FPGA board

4.6.4 Performance Indices of Parallel 2-D FFT Convolution Architectures

The fast 2-D FFT convolution architectures results are presented as logic devices

utilization tables, performance indices tables and 2-D MRI filtered images tables. The

performance indices of three 2-D FFT convolver architectures are considered as a

2-D FIR

 Operator

h(m1,m2)

 Row

 Buffer

Zero

Padding

 Row

 Buffer

Filtered MRI,

 y(n1,n2)

Σ
Complex

 Multiplier XX
r

i i

r
Absolute

 unit

Absolute

 unit

Input stage Filtering stage Output stage

 Row

 Buffer

Original

 MRI,

 x(n1,n2)

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX

r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

r
i

r

i

i

r

r

i

x0

x1

x2

x3

n2↓2n1↓2

LS(n1)

LS(n2)

n2↓2

n2↓2

n2↓2

n1↓2

LS(n2)

ΣΣ

y0

y1

y2

y3
n2↑2

n1↑2

RS(n1)

RS(n2)

n2↑2

n2↑2

n2↑2

n1↑2

RS(n2)

Σ

FFT FFT
Transpose

unit

Transpose

 unit

r r

i

i

2-D FFT
r

i

2-D FFT

2-D IFFT

2-D IFFT

2-D IFFT

2-D IFFT

2-D FFT
r

i

2-D FFT
r

i

2-D FFT
r

i

2-D FFT
r

i

IFFT IFFT
Transpose

unit

Transpose

 unit

r r

i

i

2-D IFFT
r

i

nx↓2

LS(nx)

ny↑2

RS(ny)

Decimation in x

Left Shift or Advance in the nx direction

Interpolation in y

Right Shift or Delay in the ny direction

r

r

r

r

i

i

i

i

i

i

i

i

80

complete set of area, speed, power and throughput using XSG to target the Virtex-6

ML605 board.

The three main variables that affect the 2-D image filtering results are the image size, 2-

D FIR operator size and accordingly the size of the N-point FFT/IFFT. Hence,

comparative evaluation results of the three FPGA implementation architectures are

obtained for greyscale MRI slices of 32×32, 64×64, 128×128, 256×256 and 512×512

size and distinctive 2-D FIR operator of 15×15, 31×31, 63×63,127×127 and 256×256

coefficients, to be individually applied with a (32, 64, 128 and 256) N-point FFT/IFFT.

Accordingly, the area occupation, performance indices and selected filtered outputs of

the two architectures 13 and 15 are indicated in Table 4.9, Table 4.10, Table 4.11, Table

 4.12, Table 4.13 and Table 4.14 respectively. Moreover, the performance indices of

architecture 14 are compared to that of architecture 13, and the filtering results are

presented in Table 4.15 for two k-space MRI slices.

Table 4.9: Logic Devices utilization by architecture 13

Greyscale

MRI size

(N1×N2)

2-D FIR

kernel

(M1×M2)

FFT

N-

point
FFs LUTs Slices

DSP

48E1s

RAMB

18E1s

32×32 15×15 32 8826 4837 1844 96 16

64×64 31×31 64 10609 5830 2065 108 31

128×128 63×63 128 13343 7533 2900 148 84

256×256 127×127 256 15315 9087 3568 160 148

Table 4.10: Logic Devices utilization by architecture 15

Grayscale

MRI size

(N1×N2)

2-D FIR

kernel

(M1×M2)

FFT

N-

point
FFs LUTs Slices

DSP

48E1s

RAMB

18E1s

64×64 15×15 32 35174 19366 7555 384 64

128×128 31×31 64 42299 22970 9203 432 124

256×256 63×63 128 53208 30123 11643 592 336

The minimized logic area of the two architectures, as indicated in Table 4.9 and Table

4.10, are occupying proper logic area of FFs, LUTs, slices, DSP blocks and Block

RAMs. Where, the single architecture 13 was on average occupying less than one-third

logic fabric, one-quarter of DSP blocks and half BRAMs than that of the parallel

architecture 15. Consequently, this area occupation affects the performance indices set

of speed, power consumption and throughput as indicated in Table 4.11 and Table 4.12.

These tables present three performance indices of frequency, power and throughput.

Several observations can be made from these results. Firstly, the maximum clock

frequency is steadily speeding up [33] as the MRI size, 2-D operator size and FFT N-

81

point are decreasing. Secondly, the power consumption monotonically decreases as the

MRI size, 2-D operator size and FFT N-point are decreasing. Thirdly, architecture 13

outperformed architecture 15 in maximum clock frequency and power consumption.

Fourthly, architecture 15’s throughput outperforms that of architecture 13, on average,

by four times within all the corresponding MRI size, 2-D operator size and FFT N-

point.

Architecture 14 utilized 2-D IFFT part of architecture 13 to filter real-time k-space MRI

data. Architecture 14 occupied less logic area than architecture 13 by (31%) FFs, (5%)

LUTs, (17%) slices, (75%) dedicated DSP 48E1s multiplier, and (14%) RAMB 18E1s

block memory. Consequently, architecture 14 consumes less dynamic power of 108

mW at maximum clock frequency of 190 MHz .

Table 4.11: Performance indices of architecture 13

Grayscale

MRI size

(N1×N2)

2-D FIR

kernel

(M1×M2)

FFT

N-

point

length

Maximum

clock

frequency

(MHz)

Dynamic

Power

(mWatt)

Throughput

(FPS)

32×32 15×15 32 260 59 25391

64×64 31×31 64 244 82 4964

128×128 63×63 128 229 121 998

256×256 127×127 256 203 282 193

Table 4.12: Performance indices of architecture 15

Grayscale

MRI size

(N1×N2)

2-D FIR

kernel

(M1×M2)

FFT

N-

point

length

Maximum

clock

frequency

(MHz)

Dynamic

Power

(mWatt)

Throughput

(FPS)

64×64 15×15 32 229 255 22363

128×128 31×31 64 211 354 4292

256×256 63×63 128 190 499 828

In 2-D MRI filtering, an (N1×N2) image can be enhanced by convolving the original

image with a 2-D sharpening operator of (M1×M2) kernel. A generic sharpening

operator consists of (M1×M2) coefficients of (-1), except the central element (m) to be

calculated by the following equation:

 (4.18)

All elements are divided by an operator factor (s = M1×M2) to ensure that the low

spatial frequency is not amplified. The 2-D MRI filtering results are shown in Table

4.13 and Table 4.14 using architecture 13 and 15 respectively. The size of the original

greyscale MRI is of 64×64, 128×128, 256×256 and 512×512 to be edge sharpened

using a sharpen operator of 15×15, 31×31, 63×63 and 127×127 kernels respectively.

The sharpen operator is a noise smoothing operators and Edge filtering without the

82

strong sensitivity to noise to prevent the output value being different from the input in

uniform regions of the MRI.

Architecture 15 can filter MRI slices of double size than that filtered using architecture

13, due to the input MRI’s decimation by 2. Then, the 2-D operator kernel and the N-

size FFT has half the value of that used in architecture 13 for the same MRI size. The

filtered MRIs are slightly larger by M-1 pixels with the new two dimensions of (N1+M1-

1) × (N2+M2-1).

Table 4.13: the filtering results for greyscale (N1×N2) MRI of the generic 2-D FIR

Sharpen operators using architecture 13

Grayscale

MRI size

(N1×N2)

2-D Sharpen

kernel

(M1×M2)

FFT
N-point

Size

Original

(N1×N2)

MRI

Filtered

MRI

64×64 31×31 64

128×128 63×63 128

256×256 127×127 256

Table 4.14: the filtering results for greyscale (N1×N2) MRI of the generic 2-D FIR

Sharpen operators using architecture 15

Grayscale

MRI size

(N1×N2)

2-D Sharpen

 kernel

(M1×M2)

FFT
N-point

Size

Original

(N1×N2)

MRI

Filtered

(N1×N2)

MRI

128×128 31×31 64

256×256 63×63 128

512×512 127×127 256

83

Architecture 14 was used to filter and visualize 2-D k-space MRI data input. This k-

space data are generally obtained after processing data produced by an MRI machine.

Architecture 14, when processing the real-time collected MRI data, was producing a

sagittal view of a human head as shown in Table 4.15, where the original slice number

48 and slice 58, as shown on the top of the filtered results, are filtered and visualized out

of a (256×256×99) k-space MRI volume data stack of slices. Because of the way the

data were collected there is some spatial aliasing in the reconstructed image for the

Sharpen operator’s kernel below 127× 127 coefficients.

Table 4.15: Sharpening results for k-space greyscale (256×256) MRI of the generic

2-D FIR Sharpen operators using architecture 14

Sharpen

kernel

(M1×M2)

Sharpen

kernel

(M1×M2)

3×3

31×31

7×7

63×63

15×15

127×127

4.7 Cross-correlator application: FPGA Architecture for Parallel 2-D MRI

Matched Filtering Algorithm

The detection of a targeted MRI slice from a MRI stack library is presented for its

diagnosis applicability importance to facilitate the similarity access of a particular case

from a pre-stored bank of images [119-121]. This similarity measure can be achieved by

cross-correlation function [111], or referred to as 2-D image match filter. To perform

cross-correlation by using convolution, the target image needs to be reversed to counter-

act the reversal that occurs during convolution. Thus, the 2-D MRI match filtering can

be implemented using either architecture 13 or 15. To convert the target MRI slice into

a 2-D match filtering operator, the targeted MRI slice must be rotated (180
0
), which is

the same as being flipped left-for right and then flipped top-for-bottom.

84

Therefore, architecture 13 and architecture 15 can effectively be modified to be the

implementation of the single correlator engine unit and the parallel 2-D MRI matched

filtering algorithm respectively, to detect a targeted MRI slice h(m1,m2) within a MRI

stack library x(n1,n2); where, the FIR impulse response coefficients of the filter are

replaced by the samples of the target MRI slice input to be detected. Except, the target

MRI slice has been flipped left-for right and then flipped top-for-bottom to implement

its reversed-time version h(-m1,-m2). For example, when x(n1,n2) and h(m1,m2), are

convolved to produce y(u) using architecture 15, the equation will be as:

 0

(4.19)

Where, r=0, 1...3 are the parallel processing stages. In comparison, the correlation z(u)

of x(n1,n2) and h(m1,m2) can be obtained by convolution of x(n1,n2) and h(-m1,-m2) as

follows:

 0

(4.20)

That is, flipping left-for right in the N1 dimension and then flipped top-for-bottom in the

N2 dimension is accomplished by reversing the sign of the time index. Accordingly, the

parallel 2-D convolution described in (4.10) and (4.11) may be modified to perform

parallel 2-D correlation filtering using (4.20).

Architecture 15 can be exploited to implement the parallel 2-D cross-correlation

algorithm as the parallel 2-D MRI matched filter architecture with higher throughput. In

the input stage, the original (512×512) MRI library is decimated by 2 to be divided into

four (256×256) sub-MRI libraries, while the targeted MRI is of size (85×79). Hence, the

N-point FFT/IFFT size is parameterized to be equal to 256, and, the targeted MRI slice

must be zero padded to the size of (256×2562) pixels.

The implementation of the parallel 2-D MRI match filtering algorithm is realized as

architecture 15. The value of each pixel in the final correlated image is a measure of

how well the target MRI slice matches the searched MRI library at that point. In this

particular example, simply locating the brightest pixel in the final correlated MRI would

specify the detected coordinates of the targeted MRI, as shown in Figure 4.21. The peak

in the pixels values is separated from the 2-D cross-correlation output by thresholding.

85

For this example the thresholding level was 248, and all the pixels value below that

level is set to zero, hence the black colour background.

Figure 4.21: The parallel 2-D MRI matched filtering (cross-correlation) example

using architecture 15

4.8 Conclusion

A parallel 2-D filtering algorithm was presented and mathematically modelled, to cover

the extensive range of the linear 2-D image filtering and the 2-D image modality, in

particular large MRI slice size. Then, a generic parallel hardware version of this parallel

filtering algorithm was implemented on Virtex-6 FPGA board for the spatiotemporal

MAC FIR and FFT convolution. The wide-ranged linear 2-D FIR kernels was split into

two ranges. Firstly, those shorter than about 10×10, the spatiotemporal convolution was

developed. Secondly, the FFT convolution was developed for the longer filter kernels.

Ten generic architectures were devised. The performance indices for the ten

architectures were considered as a complete set of area, speed, power and throughput.

The superiority of the developed architectures were indicated by the minimized utilized

area, high throughput, stable maximum clock frequency and low dynamic power

consumption. Three successful applications on medical image filtering and detection

were presented to demonstrate the high performance of the parallel 2-D convolution

architectures.

MRI rotate (1800)

Architecture 15

86

Chapter 5. Parallel 3-D Greyscale/Colour Image Filtering

Algorithm and Its FPGA Implementations

5.1 Introduction

Three dimensional volumetric greyscale/colour image acquisition by means of various

imaging modalities introduces degradation that affects the image quality [19, 114]. Such

multi-dimensional image degradations include digitization noise, artifacts introduced

during collection, video sequence motion blur, modality-inherent low contrast and three

dimensional image transmission through noisy communication channels. Improving the

three dimensional image quality is of utmost importance to help the end-user understand

image better and allow the subsequent multi-dimensional image processing and analysis

operations to benefit from such enhancement.

Thus, multi-dimensional image quality enhancement through noise suppression,

blur/degradation removal and edge/contrast enhancement necessitate the proposal of

multi-dimensional image filtering algorithm. This, however, requires a huge amount of

volumetric image data and intensive computations to be performed to produce multi-

dimensional filtering under strict time conditions. Consequently, this demand for high

processing power in multi-dimensional applications cannot be achieved using sequential

processing system only, but by a parallelized processing system. Practically, there are a

large number of applications embracing parallel filtering to accomplish satisfactory

throughput in reasonable time, for example robot vision [122, 123], medical image

processing [124], weather forecasting [71], seismic data processing [125], video coding

and processing [44, 67, 79] and wireless communication system [52].

Therefore, the aim of this chapter is to develop a performance-efficient parallel three

dimensional greyscale/colour image filtering algorithm that exploits the

multidimensional FIR filter kernels, increases the throughput by volumetric image

decimation, and then reduces the processing time and the overhead of overlapping

segments/ boundary conditions in the block filtering algorithm. The proposed parallel

algorithm relieves the huge volume input size restriction covering the full range of the

FIR filter kernels. The mathematical model for the parallel volume algorithm is

presented and eight new generic architectures are implemented on Virtex-6

development board. New applications for four dimensions MRI (fMRI) volume data,

real-time k-space MRI volume data and 3-D MRI cross-correlation are successfully

87

developed and the performance indices results as a complete set of area, speed, dynamic

power and throughput are evaluated

The outline of this chapter is organised as follows: In section 5.2, the main research

concepts are defined and mathematically explained. In section 5.3, a generalized parallel

3-D linear image filtering algorithm is presented and mathematically modelled. In

section 5.4, five parallel 3-D spatial convolution architectures are developed, and their

performance indices are evaluated as a complete set of area, speed, dynamic power

consumption and throughput as well as the computation rate. In section 5.5, a successful

application of four dimensions colour MRI slice filtering using the five parallel MAC

architectures is developed, analysed and discussed. In section 5.6, three generic FFT

architectures are developed, then, their performance indices are evaluated as a complete

set of area, speed, dynamic power consumption and throughput. In section 5.7, another

successful application of 3-D cross-correlation is realized for parallel 3-D MRI match

filtering algorithm. Finally, the conclusion of this chapter is presented in section 5.8.

5.2 Research Concepts Definitions

This section presents the main research concepts on which this chapter is based.

5.2.1 Linear 3-D Stream Filtering Method

A 3-D image volume can be considered as 3-D matrix x(n1,n2,n3) of size (N1×N2×N3).

Where, n1, n2 and n3 are the row, column and slice (image frame) coordinates

respectively, as shown in Figure 5.1. Each voxel has a 3-D size of (dN1×dN2×dN3)

pixels. For example, the 3-D MRI volume is formed as a series of 2-D MRI slices. The

2-D MRI slices are obtained along the N1-N2 object plane, and then the MRI detector is

moved along the N3-axis to acquire a new MRI slice. Usually voxel values are

represented with 8-bit accuracy. This means their values range from zero (black) to

255(white), with intermediate values representing shades of gray. A typical 3-D MRI

volume of 20 slices of 256×256 pixels sums up to a total of 10.4 megabits. Thus, a 3-D

image involves a large amount of data, which requires a huge storage capacity and

reasonable speed to handle.

Linear stream 3-D image filtering is a logical extension of the linear stream 2-D image

filtering. Nonetheless, the third dimension introduces a significant increase in the

algorithm computation requirements which necessitates the need for a computationally

efficient solution. 3-D Stream filtering can overcome this bottleneck in four steps to

convert from spatial to temporal parallelism. Firstly, decimate the 3-D image volume

88

into 3-D volumetric sub-image. Secondly, decompose the decimated 3-D sub-images

into frames of 2-D slices. Thirdly, partition each 2-D slice into blocks of rows. Fourthly,

convert spatially partitioned blocks of 2-D slices into temporal parallelism.

Figure 5.1:3-D image physical representation.

An image is often streamed at a rate of one pixel per clock cycle. The parallel 3-D

filtering operations are performed on the fly in parallel for the pixels using a separate

3-D FIR filter on each partition block. Architectures 16, 17, 18, 19, 20, 21, 22 and 23

are implemented to achieve these four levels of parallelism. Thus, a linear 3-D stream

filtering method exploits as much processing as required on the streamed pixels as

passing through the FPGA.

5.2.2 Linear 3-D FIR Filters

The 3-D FIR filters [43, 126, 127] are neighbourhood-based operators on three

dimensional kernels. That is the intensity of each voxel is enhanced according to the

intensities of the neighbouring voxels based on the 3-D kernel size. A 3-D FIR filter is

an operator of three 2-D consecutive MAC FIR operators. These operators map a 3-D

image into a filtered 3-D image by a 3-D accumulated sum of point by point

multiplication of a 3-D FIR impulse response coefficients, h(m1,m2,m3), and the voxel

values of the 3-D image, x(n1,n2,n3), within the 3-D window [19]. This 3-D FIR filter

interacts with its 3-D image input through a linear 3-D convolution process:

N3

N1
N2

N3 slice

dN2

dN1

dN3

89

 (5.1)

Where, *** is the linear 3-D convolution operation, h(m1,m2,m3) is the 3-D operator of

size (M1×M2×M3) and x(n1,n2,n3) of size (N1×N2×N3). Linear 3-D filtering is equivalent

to performing a 3-D convolution in the spatial domain with the kernel flipped left-for-

right, top-for-bottom and frame-for-frame, h(-m1,-m2,-m3), thus the above equation can

formally stated as:

(5.2)

Since the linear 3-D FIR filters can be designed to have symmetrical coefficients around

the vertical, horizontal and the frame axes, then these flips are already achieved. Thus,

the 3-D convolution can be achieved by 3-D FIR filter of coefficients’ symmetry in the

three dimensions.

The values and size of the 3-D FIR impulse coefficients determine the filtering

operations and the convolution implementation domain [19, 44, 82, 128]. Some of the

common filtering operations are edge detection and noise smoothing depending on the

following weights sum equation:

(5.3)

The coefficients sum is zero or one for the 3-D edge detection filters or 3-D noise

smoothing filters respectively. Some of the common generic 3-D edge filters are Edge,

Sobel, Laplacian and Prewitt, and for the noise smoothing filters, Sharpen, Gaussian,

Smooth and Blur, as shown in Table 5.1. These 3-D filters will be implemented and

applied to the biomedical imaging of Magnetic Resonant Imaging (MRI) as a “plug and

develop” filtering processor. These 3-D image operators are realized in the spatial

domain as architectures 16, 17, 18, 19 and 20, or in the frequency domain as

architectures 21, 22 and 23.

A 3-D filter operator size (M1×M2×3) determines the proper convolution

implementation for the linear 3-D filter to be in the spatial or frequency domain. A

spatial convolution is more important of these two, since volumetric images have their

information encoded in the spatial domain rather than the frequency domain [82].

Where, the 3-D volume image input is x having nx number of pixels, and a 3-D FIR

90

filter kernel is h having nh number of elements. Then the straight spatial convolution

method required O(nx nh) operations, while a FFT convolution perform the 3-D

convolution in O(nx log2 nx) steps [44]. Since, nh is always greater than log2 nx for long

3-D kernel, then, the Fourier multiplication technique should quickly win over spatial

multiplication for long FIR kernels. For short 3-D kernel, however, the inequality

formula will be nh < log2 nx, hence, the implementation should be carried out using the

3-D spatial convolution. Consequently, for filter kernels shorter than about 10×10×3,

the direct convolution can be implemented, but not limited to, as 2×2×3, 3×3×3, 2×4×3,

4×4×3 and 2×8×3 kernel architectures, where M3=3. While, the FFT convolution can be

implemented for longer filter kernels of size 7×7×3, 15×15×3, 31×31×3 up to size that

satisfies the application suitability and hardware memory limitation.

Table 5.1: Fourteen generic 3-D edge and noise smoothing filter operators

(kernels), where O.F is Operator Factor

3-D FIR Filter 3×3×3 kernel

EdgeXY

EdgeX

EdgeY

SobelXY

SobelX

SobelY

Laplacian

PrewittX

PrewittY

Blur

O.F=

Smooth

O.F=

Sharpen

O.F=

Gaussian

O.F=

Moving Average

O.F=

91

5.2.3 3-D spatial Convolver Engine

The generalized 3-D spatial convolver engine is a (M1×M2×3) MAC FIR digital filter.

Thus, this 3-D convolver engine can be realized using three (M1×M2) spatiotemporal

convolver units and sub-filtered merging stages, as shown in Figure 5.2. Each of the

three (M1×M2) convolvers consists of M1 multi-MAC convolver units.

The spatial partitioned block of the 3-D sub-image is sequentially streamed into three

M1-1 row buffers to be filtered in parallel using three M1 multi-MAC convolver units.

Each row buffer effectively delays the input by one row of N1 pixels, where N1 is the 3-

D image’s frame width. An adder tree merges the sub-filtered streams. The resulting

pixel values, after applying the image filter, can be negative or larger than 255. Thus,

the resulting pixel values are streamed into an absolute unit and Xilinx convert block to

take the absolute value from the negative and truncate pixel values larger than 255 to

255 respectively, then, narrow the bit growth to 8 bits.

Figure 5.2: Generalized 3-D Spatial Convolver Unit implementation

Σ

Σ

Filtering Stage streamed Input Stage Output Stage

reshaping
xr (p)

Multi-MAC Convolver

Engine, h(1,m2,1)

Multi-MAC Convolver

Engine, h(2,m2,1)

Multi-MAC Convolver

Engine, h(m1,m2,1)

 Row Buffer

 Row Buffer

reshaping

yr (p)

Absolute Unit converter

Operator factor

Σ

Σ

Σ

Multi-MAC Convolver

Engine, h(1,m2,2)

Multi-MAC Convolver

Engine, h(2,m2,2)

Multi-MAC Convolver

Engine, h(m1,m2,2)

 Row Buffer

 Row Buffer

Σ

Σ

Multi-MAC Convolver

Engine, h(1,m2,3)

Multi-MAC Convolver

Engine, h(2,m2,3)

Multi-MAC Convolver

Engine, h(m1,m2,3)

 Row Buffer

 Row Buffer

Σ

xr(n1,n2,n3)

yr(n1,n2,n3)

92

Consider a 3×3×3 window filter, each output filter is a function of the twenty-seven

pixel values within the window. Without 3-D stream filtering, twenty-seven pixels must

be read, a pixel at each clock cycle, for each window position and each pixel must be

read twenty seven times as the window is scanned through the image. A 3×3×3 filter

kernel spans three image voxels, the current voxel and two previous voxels.

Alternatively, the 3-D stream filtering stores the 3×3×3 filter kernel into a 3-D MAC

FIR engine, and simultaneously stream nine temporal parallelism copies of the 3-D

image into nine multi-MAC convolver engines, as generalized in Figure 5.2.

Each three multi-MAC convolver units constitute one of three frames that constitutes

the 3-D spatial convolver engine of the 3-D filtering operator. The 3-D spatial convolver

is of three-parallelism type: single, dual and quad MAC, as will be explained in

subsections 4.45.4.

5.2.4 3-D FFT Convolver Engine

The 3-D spatial convolution, as stated in (5.2), corresponds to complex multiplication of

the 3-D FIR filter spectrum and the digital 3-D image spectrum, according to the 3-D

circular convolution property of the FFT [39, 41]. This Fourier 3-D image analysis

property enables the 3-D FFT convolution to be exploited in linear 3-D image filtering,

as shown in Figure 5.3.

The 3-D FFT in the above figure computes the Fourier transform of a 3-D FIR filter

H(k1,k2,k3) and a 3-D digital image X(k1,k2,k3) , point-by-point multiplied to produce the

3-D filtered image spectrum Y(k1,k2,k3). Then, 3-D Inverse FFT computes the spatial

filtered 3-D image y(n1,n2,n3). Since, the Fourier Transform is inherently separable[19],

the computation of the 3-D FFT can be split into the computation of 1-D FFT along

rows, columns and frames respectively, as in Figure 5.4. This decomposed 3-D FFT is

called row-column-frame FFT (RCFFFT).

Figure 5.3: Fast filtering by 3-D FFT convolver unit

3-D IFFT

3-D FFT3-D FIR

 Filter

H(k1,k2,k3)

Y(k1,k2,k3)

h(m1,m2,m3)

3-D FFT3-D Digital

 Image

x(n1,n2,n3) X(k1,k2,k3)

3-D Filtered

Image

y(n1,n2,n3)

 is the 3-D convolution property of the FFT

93

The Fourier transform is a complex value in the frequency domain, and then the 3-D

image will be transformed into an intermediate 3-D image of a real array and an

imaginary array. Next, 1-D FFT is repeated along each column of the intermediate 3-D

image. Then, the 1-D FFT is computed along each frame. The resulting real and

imaginary parts are the 3-D image spectrum, X(k1,k2,k3). Similarly, 1-D FFT triplet

computed by the 3-D FIR filter spectrum, H(k1,k2,k3). These two frequency spectra are

point-by-point multiplied to produce the 3-D filtered image spectrum Y(k1,k2,k3). To

transform back into the spatial domain, the inverse Fourier transform of Y(k1,k2,k3) is

calculated by taking the 1-D inverse FFT along frames, followed by the 1-D inverse

FFT long columns, then along the rows respectively.

Figure 5.4: 3-D separable FFT convolver unit

The number of complex multiplications and additions required for a radix-2 1-D FFT

algorithm of length N are

log2 N and N log2 N, respectively. Thus, the number of

complex multiplications and additions needed for the row-column-frame FFT

(RCFFFT) that employs such a 1-D FFT are

 log2 N1N2N3 and N1N2N3 log2

N1N2N3, respectively. Therefore, the RCFFFT reduces the computational complexity

from O (N
6
) to O (N

3
 log2 N

3
). This considerable gain in computation justifies the

hardware implementation of the row-column-frame FFT [19].

1-D FFT

3-D FIR

 Filter

h(m1,m2,m3)

1-D FFT

3-D Digital

 Image

x(n1,n2,n3)

3-D Filtered

Image

y(n1,n2,n3)

1-D FFT

1-D FFT

Zero

Padding

H(k1,k2,k3)

Y(k1,k2,k3)

X(k1,k2,k3)

Transpose

 unit

Transpose

 unit

Frame

To

Frame
1-D FFT

Frame

To

Frame
1-D FFT

Zero

Padding

1-D IFFT1-D IFFT

1-D IFFT

Transpose

 unit

Inverse

Frame

To

Frame

94

5.2.5 Parallel 3-D Convolver Architectures Throughput

The total throughput µ of the parallel 3-D convolver architectures is measured in a VPS

[20, 79, 80]. As a logical extension from the 2-D throughput, the maximum throughput

is the maximum operating clock frequency divided by one 3-D volumetric data.

However, the throughput of the parallel 3-D spatial convolver architectures is limited by

the large input 3-D image and 3-D MAC FIR operation, which can be mitigated by

parallelism. Thus, the total throughput is directly proportional to the operating

frequency, and inversely proportional to the size of the input 3-D image and the 3-D

FIR matrix.

The levels of parallelism are the number α1 of parallel 3-D spatial convolver filters and

the number α2 refers to the type of MAC engines utilized by the 3-D convolver unit.

Thus, the total throughput for the parallel 3-D spatial convolver architectures can be

abstracted as:

(5.4)

where,

 is equivalent to one volume time. α1 = 8 for input 3-D image

decimation by 2. α2 = 1, 2 or 4 using single, dual or quad MAC engine respectively.

For the parallel 3-D FFT convolution architectures, the one volumetric data time is

(

 log2

), since the single 3-D FFT convolution unit performs the 3-D FFT

function by O (N1N2N3 log2 N1N2N3) steps compared to O (N1N2N3 M1M2M3) steps of the

3-D spatial convolution [44].

Thus, the overall throughput µ of the parallel 3-D FFT convolution architecture of

parallel processing stages and maximum clock frequency f can be formulated as:

(5.5)

5.2.6 Total Computation Rate

The total number of MACPS can be considered as another performance index to

indicate the computation rate for each one of the five direct architectures. The total

computation rate γ, measured in Giga MACPS (GMACPS), is directly proportional to

the number of MAC engines and the maximum clock frequency f. The number of MAC

engines is equal to the multiplication of α1, α2, α3 and α4, where, α1 and α2 as stated in

95

subsection 5.2.5, α3 is the number of the parallel spatiotemporal convolver units per 3-D

convolver, and, α4 is the number of multi-MAC convolver per 2-D direct convolver.

Then, the computation rate can be formulated as;

 (5.6)

5.3 The Generalized Parallel 3-D Linear Image Filtering Algorithm

The generalized parallel 3-D filtering algorithm, as shown in Figure 5.5, for the 3-D

image filtering method is presented using the 3-D stream filtering. Generally, this linear

3-D image stream filtering algorithm consists of three stages: 3-D input decimation

stage, parallel 3-D sub-filtering processing stage and a parallel 3-D interpolation output

stage. The three stages are implemented on the Virtex-6 ML605 development board

using XSG. The mathematical model of these three stages for the 3-D stream method is

presented in the following sub-sections.

Figure 5.5: The Generalized Parallel 3-D image Linear Filtering Algorithm

ΣΣ

n2↑2

n1↑2

RS(n1)

RS(n2)

n2↑2

n2↑2

n2↑2

n1↑2

RS(n2)

Σ

n2↓2n1↓2

LS(n2)

LS(n3)

n3↓2

n3↓2

n3↓2

n2↓2

LS(n3)

nx↓2

LS(nx)

ny↑2

RS(ny)

Decimation by 2 in x

Left Shift or Advance in the nx direction

Interpolation by 2 in y

Right Shift or Delay in the ny direction

n3↓2

LS(n1)

n2↓2

n2↓2

n1↓2

LS(n2)

LS(n3)

n3↓2

n3↓2

LS(n3)

n3↓2

n3↓2

x(n1,n2,n3)

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2 Σ

Σ

Σ

Σ

RS(n3)

RS(n3)

RS(n3)

RS(n3)

y(n1,n2,n3)

x7

x6

x5

x4

x3

x2

x1

x0

y7

y6

y5

y4

y3

y2

y1

y0

3-D FIR Filter

h(m1,m2,m3)

h(m1,m2,m3)

3-D Convolver engine

h

3-D Convolver engine

h

3-D Convolver engine

h

3-D Convolver engine

h

3-D Convolver engine

h

3-D Convolver engine

h

3-D Convolver engine

h

3-D Convolver engine

96

5.3.1 Input Decimation by 2 for the 3-D Image Stream Filtering

The input digital image x(n1,n2,n3) of size (N1×N2×N3) is decimated by 2 in the three

dimensions producing (2
3
=8) sub-image blocks of size

 for each 3-D image

input, as shown in Figure 5.5. These eight 3-D sub-images are not overlapped, and have

exactly the same pixels as the 3-D image, hence, the decimation process does not lose or

reduce any pixel of the original 3-D image. Thus, these eight 3-D sub-images can be

filtered simultaneously and independently. The resultant 3-D sub-image blocks are

defined as:

 n1 n2 n3

 n1 n2 n3

 n1 n2 n3

 n1 n2 n3

 n1 n2 n3

 n1 n2 n3

 n1 n2 n3

 n1 n2 n3

(5.7)

The decimated blocks of the input 3-D image are realized by a left shift and decimation

in the three dimensions, hence are indicated in Figure 5.5 by LS(n1)/LS(n2)/ LS(n3) and

 / / respectively. The resultant down-sampled blocks of the input

3-D image are distinctive and not overlapped, thus, they can be sub-filtered

simultaneously and independently in parallel within the 3-D processing stage.

5.3.2 Parallel 3-D Filtering Stage

The 3-D processing stage in the parallel 3-D image filtering algorithm is a linear 3-D

filtering of the 3-D sub-image given by (5.7) using eight parallel 3-D convolution

engines. Each 3-D convolution engine is independently dedicated to one of the eight

decimated 3-D sub-images. The linear 3-D filtering can be achieved by either spatial

convolution or FFT convolution. This can be expressed by the parallel 3-D convolution

equation:

 , r=0,1,...7 (5.8)

where, is the 3-D convolution operation. The resultant filtering can be expressed as

the parallel 3-D convolution equation:

 0

(5.9)

97

The above equation describes the filtering stage of Figure 5.5, which is computationally

intensive. An array of independent parallel 3-D convolution units achieve the filtered 3-

D image to speed up the filtering rate, increase the throughput and carry out real time

performance for large input 3-D image size.

5.3.3 3-D Image Reconstruction Output Stage

The resultant sub-filtered outputs are eight unique 3-D sub-images of y0, y1… and y7 that

are decimated by 2, and they can be represented by the following set of equations:

(5.10)

Thus, the reconstruction of the final output y(n1,n2,) is obtained by two operations:

interpolation by 2 and a right shift (or delay), given by and

RS(n1)/ RS(n2)/RS(n3) in the three dimensions n1, n2 and n3 respectively, of the eight

filtered 3-D sub-images. Which can be mathematically modelled by (5.11), as follows:

(5.11)

Where, j:i:k is the same as [j, j+i, j+2i, ..., k], and represents the two operations of right

shift and interpolation by 2.

The generalized parallel 3-D linear stream-filtering algorithm can be realized in

hardware architecture (s), as either a 3-D spatial convolution or a 3-D FFT convolution.

That depends on the 3-D FIR operator size[44]. The spatial and spectral 3-D image

filtering implementations are presented in subsections 5.4 and 5.5 respectively.

5.4 Parallel 3-D Spatial Convolver Architectures

The generalized parallel 3-D linear image filtering algorithm of Figure 5.5 can be

realized by 3-D spatial convolution units using 3-D MAC FIR filter as shown in Figure

5.6. Consequently, the real-time 3-D image filtering applications in which the 3-D FIR

98

kernel length shorter than (10×10×3) coefficients can be achieved using the linear 3-D

stream filtering technique, linear 3-D FIR filters and 3-D spatial convolver engines as

defined in sub-sections 5.2.1, 5.2.2 and 5.2.3 respectively.

In the input stage, the input 3-D image, x(n1,n2,n3) of size (N1×N2×N3) is decimated by

2 in the three dimensions producing eight 3-D sub-image blocks of size

 ,

designated as x0, x1… x7, as shown in Figure 5.6.

In the processing stage, the parallel filtering operations are performed on-the-fly using

eight independent 3-D convolver engines on each decimated block stream. The 3-D

convolver engine is a (M1×M2×3) MAC FIR digital filter. The filter kernel of

(M1×M2×3) coefficients is stored in 3-D FIR operator. The spatial partitioned block of

the 3-D sub-image is sequentially streamed into M1-1 row buffers to be filtered in

parallel using M2 multi-MAC convolver units, this constitutes one of the three frames of

(M1×M2) of the 3-D convolver engine. The 3-D convolver engines are of three

parallelism types, single MAC, dual MAC and quad MAC, as will be explained in

subsection 5.4.1, 5.4.2 and 5.4.3 respectively.

In the output stage as shown in Figure 5.6, the 3-D image y(n1,n2,n3) is reconstructed out

of the eight decimated 3-D sub-images (n1,n2,n3) by interpolations of ,

and , and right shifts or delays of RS(n1), RS(n2) and RS(n3) , both in the three

dimensions n1, n2 and n3 respectively.

The parallel 3-D spatial convolution-filtering algorithm can be implemented by more

than one unique FPGA-based architecture according to the MAC FIR hardware

structure of the 3-D spatial convolver engine. The MAC FIR hardware structure can be

of single MAC, dual MAC or quad MAC. Architectures 16 and 17 use a 3-D single

MAC convolver unit, architectures 18 and 19 use a 3-D dual MAC convolver unit.

While, the 3-D quad MAC convolver unit is implemented on architecture 20. The input

decimated by 2 stage and the output interpolated by 2 stage are the same for all the five

spatial architectures.

The decimated blocks of the input 3-D image are realized by left shift and decimation in

the three dimensions using the Shift block and Down Sampling block from the XSG

blocksets library. The reconstruction of the final output y(n1,n2,) is obtained by two

operations: Interpolation by 2 and right shift (or delay) of the eight sub-filtered 3-D

99

images. These two operations can be realized from the XSG blocksets library by the Up

Sampling block and the Shift block or Delay block respectively.

Figure 5.6: The implementation of the Parallel 3-D Spatial Convolution Algorithm

on the Virtex-6 FPGA board; ML 605 development kit

Therefore, the following architectures can be distinguished by the 3-D MAC engine

structure. Thus, the general architecture, shown in Figure 5.6, can have more than one

unique hardware version, as explained in the following subsections.

5.4.1 Parallel 3-D Single MAC Convolver Filter Engines Architectures

3-D spatial convolver of the filtering stage, shown in Figure 5.6, can be realized using a

3-D single MAC convolver Units of size (2×2×3) and (3×3×3) as parallel architectures

16 and 17 respectively. Figure 5.7 and Figure 5.8 shows (2×2×3) and (3×3×3) as unit 7

and unit 8 respectively.

3-D Spatial Convolver

unit, h(m1,m2,3)

Input stage Filtering stage Output stage

n2↓2n1↓2

LS(n2)

LS(n3)

n3↓2

n3↓2

n3↓2

n2↓2

LS(n3)

nx↓2

LS(nx)

Decimation in x

Left Shift or Advance in the nx direction

n3↓2

LS(n1)

n2↓2

n2↓2

n1↓2

LS(n2)

LS(n3)

n3↓2

n3↓2

LS(n3)

n3↓2

n3↓2

x(n1,n2,n3)

x7

x6

x5

x4

x3

x2

x1

x0
ΣΣ

n2↑2

n1↑2

RS(n1)

RS(n2)

n2↑2

n2↑2

n2↑2

n1↑2

RS(n2)

Σ

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2 Σ

Σ

Σ

Σ

RS(n3)

RS(n3)

RS(n3)

RS(n3)

y(n1,n2,n3)

y7

y6

y5

y4

y3

y2

y1

y0

ny↑2

RS(ny)

Interpolation in y

Right Shift or Delay in the ny direction

3-D Spatial Convolver

unit, h(m1,m2,3)

3-D Spatial Convolver

unit, h(m1,m2,3)

3-D Spatial Convolver

unit, h(m1,m2,3)

3-D Spatial Convolver

unit, h(m1,m2,3)

3-D Spatial Convolver

unit, h(m1,m2,3)

3-D Spatial Convolver

unit, h(m1,m2,3)

3-D Spatial Convolver

unit, h(m1,m2,3)

100

Figure 5.7: Unit 7; (2×2×3) Single MAC convolver Architecture

Thus, the (3×3×3) single MAC engine consists of three of unit 8, as implemented on

Appendix A. The logic area occupied by architecture 17 is mapped in Appendix B using

Xilinx FPGA editor Tool. The schematic RTL diagram is graphically depicted in

Appendix C. As configured and shown in Table 5.2, unit 7 occupies less logic area than

unit 8 by (39%) FFs, (44%) LUTs, (40%) slices, (33%) dedicated DSP 48E1s

multiplier, and (40%) RAMB 18E1s block memory.

Table 5.2: Logic Devices utilization by the 3-D spatial convolver units

 3-D Single MAC

convolver units

3-D Dual MAC

convolver units

3-D Quad MAC

convolver unit

Unit 7

2×2×3

Unit 8

3×3×3

Unit 9

2×4×3

Unit 10

4×4×3

Unit 11

2×8×3

FFs 477 775 686 1 326 1 022

LUTs 296 526 491 988 807

Slices 139 228 200 384 272

DSP 48E1s 6 9 12 24 24

RAMB 18E1s 9 15 15 33 27

Σ

reshaping
xr (p)

Single MAC Convolver,

Engine, h(2,2,1)
 Row Buffer

reshaping

yr (p)

Absolute Unit converter

Operator factor

Σ

Σ

Single MAC Convolver,

Engine, h(1,2,2)

Single MAC Convolver,

Engine, h(2,2,2)
 Row Buffer

Σ

Single MAC Convolver,

Engine, h(1,2,3)

Single MAC Convolver,

Engine, h(2,22,3)
 Row Buffer

Σ

xr(n1,n2,n3)

yr(n1,n2,n3)MAC FIR

Coefficient

RAM

Address

Control

Unit

Samples

Buffer

X +

Z-1

Z-1Z-1

Z-1

Z-1

Z-1

Filtered

Samples

Comparator

reset

Enable

Zero

Address

r0

r1

r2

h(2,2,1)

101

Figure 5.8: Unit 8; (3×3×3) Single MAC convolver Architecture

5.4.2 Parallel 3-D Dual MAC Convolver Filter Engines Architectures

The 3-D spatial convolver unit, shown in Figure 5.6, can be realized using 3-D dual

MAC operator Units of size (2×4×3) and (4×4×3) as in architectures 18 and 19. Figure

5.9 and Figure 5.10 shows (2×4×3) and (4×3×3) as unit 9 and unit 10 respectively.

As configured and shown in Table 5.2, unit 9 occupies less logic area than unit 10 by

(48%) FFs, (50%) LUTs, (48%) slices, (50%) the dedicated DSP 48E1s multiplier, and

(45%) the RAMB 18E1s block memory. By comparing the logic area occupation of the

single MAC and dual MAC units’ architectures, the highest logic area occupation is in

unit 10 and descending to unit 8, unit 9 down to the lowest in unit 7.

Σ

Σ

reshaping
xr (p)

Single MAC Convolver,

Engine, h(1,3,1)

Single MAC Convolver,

Engine, h(2,3,1)

Single MAC Convolver,

Engine, h(3,3,1)

 Row Buffer

 Row Buffer

reshaping

yr (p)

Absolute Unit converter

Operator factor

Σ

Σ

Σ

Single MAC Convolver,

Engine, h(1,3,2)

Single MAC Convolver,

Engine, h(2,3,2)

Single MAC Convolver,

Engine, h(3,3,2)

 Row Buffer

 Row Buffer

Σ

Σ

Single MAC Convolver,

Engine, h(1,3,3)

Single MAC Convolver,

Engine, h(2,3,3)

Single MAC Convolver,

Engine, h(3,3,3)

 Row Buffer

 Row Buffer

Σ

xr(n1,n2,n3)

yr(n1,n2,n3)

102

Figure 5.9: Unit 9; (2×4×3) Dual MAC convolver Architecture

Figure 5.10: Unit 10; (4×4×3) Dual MAC convolver Architecture

5.4.3 Parallel (2×8×3) Quad MAC 2-D Convolver Filter Engine Architecture

Architecture 20 is distinguished by using (2×8×3) quad MAC 3-D direct convolver

engine, unit 11, to implement its 3-D FIR filter operator, as shown in Figure 5.11.

Σ

reshaping
xr (p)

Dual MAC Convolver

Engine, h(2,4,1)
 Row Buffer

Σ

Σ

Dual MAC Convolver

Engine, h(1,4,2)

Dual MAC Convolver

Engine, h(2,4,2)
 Row Buffer

Σ

Dual MAC Convolver

Engine, h(1,4,3)

Dual MAC Convolver

Engine, h(2,4,3)
 Row Buffer

Σ

xr(n1,n2,n3)

X

Z
-1

Z-1

Z
-1

X Z
-1

Z
-1

Z-1

+ Z-1Z-1

Z-1

Filtered

Samples+

Address

Control

Unit

Comparator

Zero

Samples

Buffer

Samples

Buffer

Z
-1

Coef(1:Length(coef)/2))

Coef(length(coef)/2)

+1: Length(coef))

Z
-1

reset

Enable

d

Enable

reshaping

yr (p)

Absolute

Unit
converter

Operator

 factor

yr(n1,n2,n3)

Σ

Σ

reshaping
xr (p)

 Dual MAC Convolver

Engine, h(1,4,1)

Dual MAC Convolver

Engine, h(2,4,1)
 Row Buffer

reshaping

yr (p)

Absolute Unit converter

Operator factor

Σ

Σxr(n1,n2,n3)

yr(n1,n2,n3)
Σ

Dual MAC Convolver

Engine, h(3,4,1)

Dual MAC Convolver

Engine, h(4,4,1)
 Row Buffer

 Row Buffer

Σ

Σ

Dual MAC Convolver

Engine, h(1,4,2)

Dual MAC Convolver

Engine, h(2,4,2)
 Row Buffer

Σ

Dual MAC Convolver

Engine, h(3,4,2)

Dual MAC Convolver

Engine, h(4,4,2)
 Row Buffer

 Row Buffer

Σ

Σ

Dual MAC Convolver

Engine, h(1,4,3)

Dual MAC Convolver

Engine, h(2,4,3)
 Row Buffer

Σ

Dual MAC Convolver

Engine, h(3,4,3)

Dual MAC Convolver

Engine, h(4,4,3)
 Row Buffer

 Row Buffer

103

As configured and shown in Table 5.2, unit 11 occupies less logic area than unit 10 by

(23%) FFs, (18%) LUTs, (29%) slices, with the same number of dedicated DSP 48E1s

multipliers, and (18%) less RAMB 18E1s block memory. Moreover by comparing the

logic area occupation of the single MAC, dual MAC and quad MAC unit architectures,

the logic area occupation ascending from the lowest in unit 7, unit 9, unit 8, unit 11 and

up to highest in unit 10.

Figure 5.11: Unit 11; (2×8×3) Quad MAC convolver Architecture

5.4.4 Performance Indices of Parallel 3-D Spatial Convolver Architectures

The performance indices of the five parallel spatial convolver architectures are

considered as a complete set of area, speed, power, throughput and computation rate

using XSG to target a Virtex-6 ML605 board. The minimized utilized area of the five

architectures, as shown in Table 5.3, are due to the efficient implementation hierarchy

of logic fabric, signals, I/O's and hard IPs such as Block RAMs or DSP blocks, and

occupying proper resources of FFs, LUTs and slices.

The highest logic area utilization is in Architecture 19, occupying only (3%) FFs, (4%)

LUTs, (10%) Slices, (25%) dedicated DSP 48E1s and (31%) RAMB 18E1s block

memory of the available logic assets of the targeted Virtex-6 XC6VLX240T

development FPGA board, while the lowest logic area utilization of architecture 16

Σ

reshaping

xr (p)

Quad MAC Convolver

Engine, h(2,8,1)
 Row Buffer

Σ

Σ

Quad MAC Convolver

Engine, h(1,8,2)

Quad MAC Convolver

Engine, h(2,8,2)
 Row Buffer

Σ

Quad MAC Convolver

Engine, h(1,8,3)

Quad MAC Convolver

Engine, h(2,8,3)
 Row Buffer

Σ

xr(n1,n2,n3)

X

Z-1

Z-1

Z-1

X Z-1

Z-1

Z-1

X Z-1

Z-1

Z-1

X Z-1

Z-1

Z-1

+

+ Z-1Z-1

Z-1

Filtered

Samples

+

+

Coef((¾)*Length(coef)) +

1:Length(coef))

Address

Control

Unit

Comparator

Zero

Samples

Buffer

Samples

Buffer

Samples

Buffer

Samples

Buffer

Z
-1

Coef(1:Length(coef)/4))

Coef(Length(coef)/4) +

1:Length(coef)/2))

Coef(Length(coef)/2) +

1:(¾)*Length(coef))

Z-1

Z-1

Z-1

reset

Enable

d

reshaping

yr (p)

Absolute

Unit
converter

Operator

 factor

yr(n1,n2,n3)

104

occupies one third the logic area and one quarter the Hard IPs of architecture 19.

Moreover by comparing the logic area occupation of the 3-D single, dual and quad

MAC architectures, the logic area occupation ascending from the lowest in architectures

16, 18, 17, 20 and up to the highest in architecture 19. Consequently, this area

occupation affects the performance indices set of power consumption, throughput and

computation rate as shown in Table 5.4. Where, the speed is the maximum clock

frequency, the power consumption is the dynamic power, the total throughput and

computation rate are both affected by the degree of parallelism, that is, the internal

parallelism style of the 3-D spatial convolver engines as well as the overall

architecture’s parallelism, as defined in subsections 5.2.5 and 5.6 respectively.

Table 5.3: Logic Devices utilization by each of the five parallel spatial convolver

architectures

Archit.

16

Archit.

17

Archit.

18

Archit.

19

Archit.

20

 3-D FIR filter kernel (M1×M2× M3)

 2×2×3 3×3×3 2×4×3 4×4×3 2×8×3

FFs 3 992 7 464 5 424 10 520 8 112

LUTs 2 625 5 390 3 825 7 641 6 392

Slices 1 082 1 972 1 494 3 421 2 404

DSP 48E1s 48 72 96 192 192

RAMB 18E1s 72 120 120 264 216

Several observations can be made from Table 5.4. Firstly, the operating clock frequency

is particularly insensitive to the occupied logic area by the five architectures because of

pipelining, and principally operating around the indicated 200 MHz maximum

frequency [31]. Secondly, the dynamic power consumption at (40 nm) junction

temperature of 54°C decreases, monotonically, from 259 mW, 212 mW, 120 mW, 97

mW down to 64mW for architectures 19, 20, 18, 17 and 16 respectively. Thus, the

power consumption improved more than 4-fold. Thirdly, the highest throughput is

achieved by architecture 16, 18 and 20 almost (2.25) and (4) times that of architecture

17 and 19 respectively, that is, according to (5.4), where, the throughput of the parallel

3-D spatial convolver architectures is limited by the large input 3-D image and 3-D

MAC FIR operation. Thus for the same 3-D FIR filter kernels, the throughput for the

greyscale 256×256×20 MRI filtering is higher than that for greyscale 1024×1024×20

MRI by more than 16-fold. Fourthly, according to (5.6), the highest computation rate is

accomplished by architecture 19 and 20, due to the four levels of parallelism. That is

double, more than (2.5) and triple than that of architectures 18, 17 and 16 respectively.

Table 5.4: Performance indices of each of the 3-D MAC FIR filter architectures

105

Archit.

16

Archit.

17

Archit.

18

Archit.

19

Archit.

20

 3-D FIR filter kernel (M1×M2× M3)

 2×2×3 3×3×3 2×4×3 4×4×3 2×8×3

Maximum Clock Frequency

(MHz)
205 203 205 201 205

Dynamic Power (mWatt) 64 97 120 259 212

Throughput (VPS)

greyscale 256×256×20 MRI
104 46 104 51 104

Throughput (VPS)

greyscale 1024×1024×20 MRI
7 3 7 3 7

computation rate (GMACPS) 10.8 16.2 21.6 43.2 43.2

The five implementations of the parallel 3-D spatial convolution algorithm are designed

as “plug and develop” architectures. Thus, fourteen generic (3×3×3) FIR filters are

plugged into 3-D edge detection and 3-D noise smoothing circuits, then, improved their

suitability for this particular biomedical imaging application of greyscale 256×256×20

volume MRI, as shown in Table 5.5 and Table 5.6 respectively using Architecture 17.

The 3-D MRI filtered images of Table 5.5 show fourteen generic (3×3×3) filtering

operators, nine edge and five noise smoothing. The 3-D Edge operators detect the

changes or differences in voxel value at the edges of volume. Thus, the 3-D Edge

operators are differencing filters, which make them sensitive to noise, as in the first nine

operators of Table 5.5, which act as low pass filters except the Laplacian filter. This

high pass filter can be used to detect edges of all orientations. The five noise smoothing

operators prevent the output value being different from the input in uniform regions of

the 3-D MRI volume.

Table 5.6 shows the improvement in each of the 3-D edge filtering operators by

designing the corresponding Edge enhancement operator. While, the five noise

smoothing operators are heuristically improved by incrementing the coefficients

operator’s value to be 2. The 3-D filtering result is to be the same brightness as the

original MRI, but sharper.

106

Table 5.5: The filtering results of greyscale 256×256×20 volume fMRI for fourteen

generic 3-D FIR filter operators using architecture 17

3-D FIR

Filter
3×3×3 kernel

EdgeXY

EdgeX

EdgeY

SobelXY

SobelX

SobelY

Laplacian

PrewittX

PrewittY

Blur

O.F=

Smooth

O.F=

Sharpen

O.F=

Gaussian

O.F=

Moving

Average

O.F=

107

Table 5.6: The filtering results for grayscale 256×256×20 volume fMRI of fourteen

improved 2-D FIR filter operators using architecture 17

3-D FIR

Filter
3×3×3 kernel

EdgeXY

O.F=

EdgeX

O.F=

EdgeY

O.F=

SobelXY

SobelX

SobelY

Laplacian

O.F=

PrewittX

O.F=

PrewittY

O.F=

Blur

O.F=

Smooth

O.F=

Sharpen

O.F=

Gaussian

O.F=

Moving

Average

O.F=

108

5.5 Four Dimension (4-D) Application: fMRI or 4-D Colour MRI Volume Filtering

Colour 4-D MRI volume is a multispectral image where each voxel is represented by a

quad-tuple. Thus, the 4-D colour MRI volume is a 4-D matrix of size (N1×N2×N3×N4).

Where, the fourth dimension takes the values of 0, 1 and 2 for the red, green and blue

MRI components respectively. Then, fMRI or 4-D colour MRI is represented as a

vector-base image (n1,n2,n3) of (N1×N2×N3×3) size,

(5.12)

where, x1(n1,n2,n3), x2(n1,n2,n3) and x3(n1,n2,n3) are the MRI components of red, green

and blue of size (N1×N2×N3) each. Colour 4-D MRI or fMRI is typically represented by

a four-dimensional vector of eight bits per component, resulting in a 32-bit colour

system. 4-D colour MRI filtering involves the 3-D convolution of each component (red,

green and blue) of (n1,n2,n3) with a 3-D FIR operator h(m1,m2,m3) of (M1×M2×3) size

to produce the three component filtered output (n1,n2, n3), given by,

(5.13)

where, is the 3-D convolution, which can be expressed in details as:

(5.14)

The real-time 4-D colour MRI volume filtering of the above equation can be

implemented using the 3-D implementations of architectures 16, 17, 18, 19 and 20, due

to their quicker filtering speed, high computation rate and higher throughput at low

dynamic power consumption and small logic area occupation, as shown in Table 5.3

and Table 5.4. Thus, the performance indices of the five architectures for the colour 4-D

MRI volume filtering are the same as those indices for the greyscale 3-D MRI volume.

However, the total throughput is less by a factor of three times, as shown in Table 5.7,

because of the three frames of red, green and blue that constitutes each colour MRI slice

of the fMRI. Using architecture 17 as a four dimensions colour image reconfigurable

processor to “plug and filter” the 4-D colour MRIs or fMRIs are shown in Table 5.8 and

Table 5.9. Then, these fourteen 3-D MRI filtering operators are used to improve their

suitability for this particular biomedical imaging application, as shown in Table 5.10

and Table 5.11. All the filtering results tables are obtained using Architecture 17.

109

Table 5.7: Throughput of fMRI (colour MRI) volume using architectures 16 to 20

Archit.

16

Archit.

17

Archit.

18

Archit.

19

Archit.

20

 3-D FIR filter kernel (M1×M2× M3)

 2×2×3 3×3×3 2×4×3 4×4×3 2×8×3

Throughput (VPS)

colour 256×256×20×3 MRI
35 15 35 17 35

Throughput (VPS)

colour 1024×1024×20×3 MRI
2 1 2 1 2

Table 5.8: Filtering results for colour 256×256×3×4 MRI volumetric

3-D FIR

Filter
Generic 3×3×3 kernel

EdgeXY

EdgeX

EdgeY

SobelXY

SobelX

SobelY

Laplacian

PrewittX

PrewittY

110

Table 5.9 : the 4-D filtering results for colour 256×256×3×4 MRI volume of five

generic 3-D FIR noise smoothing filter operators using architecture 17

3-D FIR

Filter
Generic 3×3×3 kernel

Blur

O.F=

Smooth

O.F=

Sharpen

O.F=

Gaussian

O.F=

Moving

Average

O.F=

The improvement in each of the 3-D edge-filtering operators is achieved by designing

the corresponding 3-D Edge enhancement operators. The 3-D Edge enhancement works

as a sharpening operation by boosting the high frequency content of the 4-D MRI.

While, the five 3-D noise smoothing operators are heuristically improved for the colour

4-D MRI suitability by incrementing the operator’s coefficients sum value to be 2. The

4-D filtering result is to be the same brightness as the original MRI, but sharper.

111

Table 5.10: the 4-D filtering results for colour 256×256×3×20 MRI volume of nine

improved 3-D FIR Edge enhancement filter operators using architecture 17

2-D FIR

Filter
Developed 3×3×3 kernel

EdgeXY

O.F=

EdgeX

O.F=

EdgeY

O.F=

SobelXY

SobelX

SobelY

Laplacian

O.F=

PrewittX

O.F=

PrewittY

O.F=

112

Table 5.11: the 4-D filtering results for colour 256×256×3×20 MRI volume of five

improved 3-D FIR noise smoothing filter operators using architecture 17

2-D FIR

Filter
Developed 3×3×3 kernel

Blur

O.F=

Smooth

O.F=

Sharpen

O.F=

Gaussian

O.F=

Moving

Average

O.F=

As a comparison of the filtering results, the five architectures are used, as shown in

Table 5.12, to process the same colour 4-D MRI volume using the (M1×M2×M3) 3-D

FIR operators of architectures 18, 19, 20, 21 and 22. The filtered 4-D MRI volume are

identically 4-D edge enhanced and brightened due to the sum of the (M1×M2×M3)

elements equal to 2. Therefore, these parallel 3-D spatial convolution architectures can

be utilized as colour image reconfigurable processors acting as open development

multidimensional filtering engines.

113

Table 5.12: Filtering results for 256×256×3×20 colour MRI of the improved 3-D

Edge Enhancement operators using architectures 16, 17, 18, 19and 20.

3-D Operator

(M1×M2×3)

The 4-D filtering results within the above tables show the 4-D edge filtering, 4-D noise

smoothing and 4-D edge enhancement for diverse regions of a 76-year-old patient with

brain dementia. The filtered fMRI or colour 4-D MRI volume can be used by the

physician to noninvasively depict areas of the brain for investigation prior to

neurosurgery and the brain functional activities in detail that are used for specific tasks

[98, 104, 113, 114, 129].

5.6 FPGA Implementation as Parallel 3-D FFT Convolver Architectures

The parallel 3-D FFT convolution-filtering algorithms can be applied in the 3-D image

filtering applications in which the 3-D FIR kernel length is longer than (10×10×3)

coefficients, as had been shown in subsections 5.2.4 and 5.2.5. This 3-D FFT

algorithms’ FPGA implementation can be efficiently realized by more than one of the

fast parallel 3-D FFT filtering architectures, depending on the 3-D image segmentation,

FPGA memory and accordingly the parallelism of the filtering stage. Consequently, two

efficient hardware architectures are developed; single 3-D FFT convolver architecture

and parallel 3-D FFT convolver architecture. The first approach is described in

subsection 5.6.1 as architecture 21, and in subsection 5.6.2 as a new application for a

114

real-time k-space application as architecture 22. The second approach is described in

subsection 5.6.3 as architecture 23.

5.6.1 Single 3-D FFT Convolver Unit Implementation

The 3-D FFT convolver engine unit of Figure 5.5 can be realized as a single 3-D FFT

convolver architecture as shown in Figure 5.12. This architecture consists of input,

filtering and output stages. Within the input stage, the 3-D MRI and the 3-D FIR

operators are streamed using the linear 3-D Stream Filtering Method, as explained in

subsection 5.2.1. The temporal stream of the 3-D FIR operator is zero padded to be

equal in size to the 3-D MRI. Both streams are row buffered to be processed in the

filtering stage. The row buffer component is implemented as shown in Figure 4.12.

Figure 5.12: Architecture 21; the implementation of the Fast Single 3-D FFT

convolution g unit in the Virtex-6 FPGA board

The 3-D filtering stage is a spatial to frequency transformation structure, as explained in

subsection 5.2.4. This frequency transformation structure consists of a 3-D FFT, a

complex multiplier and a 3-D IFFT. The 3-D FFT consists of three Xilinx FFT v7_0

blocks, two transpose unit and two frame-to-frame structures. The transpose units are

realized as shown in Figure 4.18, and explained in subsection 4.6.1. The frame-to-frame

units can be realized as shown in Figure 5.13, where, the 2-D frequency transformed 3-

D volume is first stored via port A of a dual port RAM, and then accessed in port B by

two address control circuitry.

FFT FFT
Transpose

 unit
 Row Buffer

Zero

Padding

 Row Buffer

Transpose

 unit

FFT FFT
Transpose

unit

Transpose

 unit

r

r

i

i

Input stage Filtering stage Output stage

3-D Inverse Fast Fourier Transform

Filtered

3-D MRI,

 y(n1,n2,n3)

Σ

IFFT IFFT
Complex

 Multiplier XX

r
i

r

r i

i
i

Absolute

 unit

Absolute

 unit
r

i
r

i
IFFT

i

i

r

r

r

i

3-D FIR Operator,

H(k1,k2,k3)

Original K-space

 MRI, X(k1,k2,k3)

Frame

To

Frame

Frame

To

Frame
FFT

r Frame

To

Frame

Frame

To

Frame
FFT

3-D Fast Fourier Transform

r

r

r

r

r

i

i

i

i

i

i

Transpose

 unit

Transpose

 unit

Inverse

Frame

To

Frame

Inverse

Frame

To

Frame

115

Figure 5.13: frame-to-frame unit implementation

The writing address circuitry is an up counter from zero to (N1×N2×N3-1) to store the 3-

D image stream row by row. While the reading address circuitry is a combination of

two up counters to generate the 3-D volume out of port B row by row for a transformed

frame by using a frame-to-frame transformation algorithm, as shown in following

pseudo-code,

% frame to frame transformation algorithm

R=row; C=column; F=frame;

Mri_volume=1:R*C*F;

z1=1;

 % frame to frame transformation

 for j=1:R*C

 for i=j:R*C:R*C*F

 transformed_ mri_volume (z1,1)=mri_volume(i,1);

 z1=z1+1;

 end

 end

The two 3-D matrices of the FIR coefficients and the MRI are simultaneously frequency

transformed via the real inputs of three Xilinx FFT v7_0 blocks, and setting the

imaginary input to zero. Each FFT outputs a frequency spectrum of real and imaginary

parts. Thus, the image will be transformed into an intermediate image of real array and

imaginary array. Subsequently, two transpose units are used, then, 1-D FFT is repeated

on each column of the intermediate image. Next, two frame-to-frame units are used so

that the third dimension is transformed to the frequency domain. The resulting two parts

of real and imaginary are the 3-D image frequency spectrum, X(k1,k2,k3). Similarly, 1-D

2

frame_out1

1

frame_out

0

web

1

wea

524287

Terminator2

d qz
-1

Register6

d qz
-1

Register5

d qz
-1

Register4

d

en
qz

-1

Register3

d qz
-1

Register2

d

en
qz

-1

Register1

addra

dina

wea

addrb

dinb

web

A

B

Dual Port RAM3

en++

Counter8

++

Counter2

++

Counter1

a

b
a > b
z

-1

++

Cnt

a

b

en

a + b
z

-1

Add1 1

2

dv

1

frame_in

Bool

BoolBool

UFix_19_0

UFix_22_0

Bool

Fix_41_31
Fix_41_31

Bool

UFix_16_0

UFix_19_0

UFix_19_0

Fix_41_31

UFix_19_0

Fix_41_31
Fix_41_31

Bool UFix_19_0 UFix_19_0

116

FFT triplet compute the 3-D FIR operator frequency spectrum, H(k1,k2,k3). Using Xilinx

complex multiplier block, these two frequency spectra are point-by-point multiplied to

produce Y(k1,k2,k3), which represents the 3-D FFT of the filtered image. To transform

back into the spatial domain, the inverse Fourier transform of Y(k1,k2,k3) is computed by

taking the 1-D inverse FFT of each transformed frame. Then, two inverse frame-to-

frame units are used to transform back the volume to the previous frame-to-frame

format, followed by two transpose units to arrange the two filtered image components,

then the third 1-D inverse FFT of each row is processed. The inverse frame-to-frame

transformation algorithm is illustrated by the following pseudo-code,

% inverse frame to frame transformation algorithm

 R=row; C=column; F=frame;

 Mri_volume=1:R*C*F;

 z1=1;

 for j=1:F

 for i=j: F: R*C*F

 inverse_transf._ mri_volume (z1,1)= transformed_mri_volume(i,1);

 z1=z1+1;

 end

 end

In the output stage, the two streams of the filtered MRI are conditioned, first, by the

absolute unit, and then summed to produce the 3-D filtered MRI y(n1,n2,n3). The final

reconstructed output is connected to a gateway-out block, which provides the

conversion from the fixed point format which is used by the FPGA to floating point

numerical representation used by Simulink blocks for displaying the filtered MRI.

5.6.2 Single 3-D IFFT Convolver k-Space MRI Filtering Unit Implementation

The 3-D MRI data volume or fMRI are collected from the MRI machine in the

frequency volume distributed within a k-space [116-118]. Noise and artifacts for

various sources often corrupt these frequency volume data. Thus, the filtering of this

raw frequency data can vastly improve 3-D MRI visualization. This filtering can

efficiently be achieved using a single 3-D IFFT convolution algorithm. An FPGA

implementation of a single 3-D IFFT convolver-filtering unit is shown in Figure 5.14.

Where, the two frequency inputs; the original k-space 3-D MRI data X(k1,k2,k3) and the

3-D FIR operator kernel H(k1,k2,k3) are point-by-point complex multiplied to produce

Y(k1,k2,k3) as the 3-D FFT of the filtered 3-D image. Then, the resultant real and

imaginary 3-D filtered MRI has to be transformed back into the spatial domain by a 3-D

117

IFFT. The inverse Fourier transform of Y(k1,k2,k3) is computed by taking the 1-D

inverse FFT row by row. Then, two transpose units are used to precede the second 1-D

IFFT, followed by two frame-to-frame units to prepare the third dimension to be

transformed back by the third 1-D inverse FFT. The final filtering results are obtained

by inverse frame to frame units to transform the 3-D MRI volume to the original row-

column-frame format.

Figure 5.14: Architecture 22; an implementation of Fast Single 3-D IFFT

convolution k-space MRI volume data Filtering unit in the Virtex-6 FPGA board

In the output stage, the two streams of the filtered 3-D MRI are conditioned, first, by an

absolute unit, and then summed to produce the 3-D filtered MRI y(n1,n2,n3). The final

reconstructed output is connected to a gateway-out block, which provides the

conversion from the fixed-point format, used by the FPGA, to floating-point numerical

representation used by Simulink blocks for displaying the filtered 3-D MRI.

3-D Inverse Fast Fourier Transform

3-D FIR

 Operator,

H(k1,k2,k3)

Original

K-space

 MRI,

 X(k1,k2,k3)

Filtered

3-D MRI,

 y(n1,n2,n3)

Σ

IFFT IFFT
Transpose

 unit

Transpose

 unit

Complex

 Multiplier XX

r

i

r

r i

i i

Absolute

 unit

Absolute

 unit

r

r

i

Frame

To

Frame
IFFT

i

i

r

r

r

i

 Frame

To

Frame

Inverse

Frame

To

Frame

Inverse

Frame

To

Frame

i

118

5.6.3 Fast Parallel 3-D FFT Convolution Architecture

Currently, most of the 3-D image processors are limited by the memory restriction to

handle the huge 3-D image volume data [40, 42, 112, 123, 128, 130]. To resolve this

hardware limitation necessitates that the 3-D input image is segmented into independent

3-D sub-images. Consequently, a parallel fast convolution algorithm has to be devised

to simultaneously process these 3-D sub-images. Thus, the generalized parallel 3-D

filtering algorithm of Figure 5.5 may be realized in hardware as architecture 23, shown

in Figure 5.15. This architecture consists of input, filtering and output stages. The input

decimated by 2 stage and the output interpolated by 2 stage are as described in

subsection 5.3.1and 5.3.3 respectively. The main difference is in the filtering stage

which in this case is based on the convolution property of the 3-D FFT.

The input 3-D MRI is decimated by 2 to produce eight independent sub-MRI blocks x0,

x1… x7. These 3-D sub-images and the 3-D FIR operator are converted from spatial

parallelism to temporal streams as described in subsection 5.2.1. Each stream is row

buffered before being processed within the filtering stage. Due to the independency of

the eight decimated sub-streams, the fast 3-D filtering stage is carried out

simultaneously using parallel 3-D FFT convolvers array. Consequently, there are no

internal communications in the convolution-filtering array due to boundary conditions

as with the block filtering method [41].

The filtering stage consists of eight parallel 3-D Fast Fourier Transforms (FFT)

convolution structure. Each 3-D FFT convolution structure is a fast single 3-D FFT

convolution sub-architecture, as described in subsection 5.6.1, where the spatial 3-D

filtering convolution is achieved by parallel complex multiplication. The eight sub-MRI

pixels streams and the 3-D FIR operator are frequency transformed by 3-D FFT,

complex multiplied and spatially transformed by 3-D inverse FFT. The resultant filtered

sub-MRI has two components of real and imaginary. Each component is conditioned by

an absolute unit and summed to produce eight decimated by 2 filtered sub-mages of y0,

y1… y8, as shown in Figure 5.15. The final filtered 3-D MRI is reconstructed from the

eight 3-D sub-MRI using interpolation by 2. This output signal is connected to a

gateway-out block for the fixed-point to floating-point conversion of the filtered 3-D

MRI so that it can be by displaying via Simulink blocks.

119

Figure 5.15: Architecture 23; an implementation of Fast Parallel 3-D FFT

convolution Algorithm in the Virtex-6 FPGA board

Input stage Filtering stage Output stage

n2↓2n1↓2

LS(n2)

LS(n3)

n3↓2

n3↓2

n3↓2

n2↓2

LS(n3)

n3↓2

LS(n1)

n2↓2

n2↓2

n1↓2

LS(n2)

LS(n3)

n3↓2

n3↓2

LS(n3)

n3↓2

n3↓2

x(n1,n2,n3)

x7

x6

x5

x4

x3

x2

x1

x0

ΣΣ

n2↑2

n1↑2

RS(n1)

RS(n2)

n2↑2

n2↑2

n2↑2

n1↑2

RS(n2)

Σ

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2

n3↑2 Σ

Σ

Σ

Σ

RS(n3)

RS(n3)

RS(n3)

RS(n3)

y(n1,n2,n3)

y7

y6

y5

y4

y3

y2

y1

y0

 Row

 Buffer

Zero

Padding

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i i

r
Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX

r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

r
i

i

i

r

r

i

3-D FFT

3-D IFFT

3-D IFFT

3-D IFFT

3-D IFFT

3-D FFT
r

i

3-D FFT
r

i

3-D FFT
r

i

3-D FFT
r

i

r

r

r

r

i

i

i

i

i

i

i

i

3-D FIR

 Operator,

H(k1,k2,k3)

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX

r

i

Absolute

 unit

Absolute

 unit

 Row

 Buffer

Σ
Complex

 Multiplier XX
r

i

Absolute

 unit

Absolute

 unit

r

i

i

r

r

i

3-D IFFT

3-D IFFT

3-D IFFT

3-D IFFT

3-D FFT
r

i

3-D FFT
r

i

3-D FFT
r

i

3-D FFT
r

i

r

r

r

r

i

i

i

i

i

i

i

i

i

r

r

3-D Fast Fourier Transform

FFT FFT
Transpose

unit

Transpose

 unit

r

i

r
i

r Frame

To

Frame

Frame

To

Frame
FFT

r

r

i

i

i

3-D FFT
r

i

3-D Inverse Fast Fourier Transform

r

i

3-D IFFT
r

i

 IFFT IFFT

r

r i

i

r

i
IFFT

i

i

r

r

r

i

Transpose

 unit

Transpose

 unit

Inverse

Frame

To

Frame

Inverse

Frame

To

Frame

120

5.6.4 Performance Indices of Parallel 3-D FFT Convolver Architectures

The performance indices of three 3-D FFT convolver architectures are considered as a

complete set of area, speed, power and throughput using XSG to target a Virtex-6

ML605 board. The results are presented into logic devices utilization tables,

performance indices tables and 3-D MRI volume data filtered image tables.

 The main variables that affected the 3-D image filtering results are the 3-D image size,

3-D FIR operator size and accordingly the size of N-point FFT/IFFT triplet. Hence,

comparative evaluation results for the three FPGA implementation architectures are

obtained for grayscale 3-D MRI volume data of (32×32×8) and 64×64×8) size and

distinctive 3-D FIR operator of (7×7×3), (15×15×3) and (31×31×3) coefficients, to be

individually applied with a (16, 32 and 64) N-point FFT/IFFT triplet. Accordingly, the

area occupation, performance indices and 3-D MRI filtered outputs of the two

architectures are shown in Table 5.13, Table 5.14, Table 5.19 , Table 5.16, Table 5.17

and Table 5.20 respectively. These two architectures occupy proper logic area of FFs,

LUTs, slices, DSP blocks and Block RAMs, so that, architecture 22 was in average

occupying less logic fabric than one-third and half DSP blocks/BRAMs than that

architecture 21. Moreover, the area occupation, performance indices and 3-D MRI

filtered outputs of architecture 23 are presented in Table 5.15, Table 5.18 and Table

5.21 respectively.

Table 5.13: Logic Devices utilization by architecture 21

Greyscale

MRI size

(N1×N2×N3)

3-D FIR

kernel

(M1×M2×M3)

FFT

N-

point
FFs LUTs Slices

DSP

48E1s

RAMB

18E1s

32×32×8 15×15×3 32 12733 7347 2529 120 75

64×64×8 31×31×3 64 14437 8414 3090 126 116

Table 5.14: Logic Devices utilization by architecture 22

Greyscale

MRI size

(N1×N2×N3)

3-D FIR

kernel

(M1×M2×M3)

FFT

N-

point
FFs LUTs Slices

DSP

48E1s

RAMB

18E1s

32×32×8 15×15×3 32 9323 5534 1690 67 36

64×64×8 31×31×3 64 10417 6557 2269 67 64

Table 5.15: Logic Devices utilization by architecture 23

Greyscale

MRI size

(N1×N2×N3)

3-D FIR

kernel

(M1×M2×M3)

FFT

N-

point
FFs LUTs Slices

DSP

48E1s

RAMB

18E1s

32×32×8 7×7×3 16 94249 55913 20371 544 616

121

The performance indices set of speed, power consumption and throughput as shown in

Table 5.16 and Table 5.17. Several observations can be made from the tables. Firstly,

the maximum clock frequency is steadily increasing [33] as the 3D MRI data volume

size, 3-D operator size and FFT N-point triplet are decreasing. Secondly, the power

consumption is monotonically decreases as the 3-D MRI volume data size, 3-D operator

size and FFT triplet N-point are decreasing. Thirdly, architecture 22 outperformed

architecture 21 in maximum clock frequency and power consumption. Fourthly,

architecture 22’s throughput outperformed that of architecture 21, in average, by two-

folds within all the corresponding 3-D MRI volume data size, 3-D operator size and

FFT triplet N-point.

Table 5.16: Performance indices of architecture 21

Grayscale MRI

size

(N1×N2×N3)

3-D FIR

kernel

(M1×M2×M3)

FFT

N-

point

length

Maximum

clock

frequency

 (MHz)

Dynamic

Power

(mWatt)

Throughput

(VPS)

32×32×8 15×15×3 32 233 243 2 188

64×64×8 31×31×3 64 214 496 435

Table 5.17: Performance indices of architecture 22

Grayscale

MRI size

(N1×N2×N3)

3-D FIR

kernel

(M1×M2×M3)

FFT

N-point

length

Maximum

clock

frequency

(MHz)

Dynamic

Power

(mWatt)

Throughput

(VPS)

32×32×8 15×15×3 32 248 112 4 647

64×64×8 31×31×3 64 221 249 899

Table 5.18: Performance indices of architecture 23

Grayscale

MRI size

(N1×N2×N3)

3-D FIR

kernel

(M1×M2×M3)

FFT

N-point

length

Maximum

clock

frequency

(MHz)

Dynamic

Power

(mWatt)

Throughput

(VPS)

32×32×8 7×7×3 16 211 842 20 605

Architecture 23 is the parallel version to filter 3-D MRI data volume using architecture

21 as the 3-D convolver engine. Thus, architecture 21 occupied less logic area than

architecture 25 by (13%) FFs and LUTs, (12%) slices, (22%) dedicated DSP 48E1s

multiplier, and (13%) RAMB 18E1s block memory. Consequently, architecture 23 was

consuming dynamic power of 842 mW to produce more than nine-folds increase in

filtering throughput at a maximum clock frequency of 211 MHz . Thus, the parallelisms

in the algorithm side and the implementation resulted in architecture 23 to have the

highest throughput.

122

In three dimensions MRI filtering, an original 3-D volume image can be enhanced by

convolving with a 3-D sharpening operator of (M1×M2×3) kernel. A three frame generic

sharpening operator consists of (M1×M2×3) coefficients of (-1), except the central

element (m) of the central frame which have the following value:

 (5.15)

All elements to be divided by an operator factor (s = M1×M2×3) to ensure that the low

spatial frequency is not amplified. The 3-D MRI volume data filtering results using

architecture 21 and 22 respectively are shown in Table 5.19 and Table 5.20. The 3-D

sharpen operator is a noise smoothing operator and Edge filtering to prevent the output

value being different from the input in uniform regions of the MRI.

Table 5.19: the filtering results for greyscale (64×64×8) MRI volume data of the

generic 3-D FIR Sharpen operators using architecture 21

3-D

Sharpen

Kernel
(M1×M2×3)

3×3×3

7×7×3

15×15×3

31×31×3

123

Architecture 22 was used to filter and visualize 3D (64×64×99) k-Space MRI volume

data input, producing a sagittal view of a human head as shown in Table 5.20. Where

the original four slices of number 61 to 64, as shown on the top of the filtered results,

are filtered and visualized out of a k-space MRI volume data stack of slices. Because of

the way the data was collected there is some spatial aliasing in the reconstructed image

for the Sharpen operator’s kernel below 31× 31×3 coefficients.

Table 5.20: the sharpening results for k-space greyscale (64×64×8) MRI volume

data of the generic 3-D FIR Sharpen operators using architecture 22

3-D

Sharpen

Kernel
(M1×M2×3)

3×3×3

7×7×3

15×15×3

31×31×3

Architecture 23 can filter 3-D MRI volume data of double size than that filtered using

architecture 21, due to the input 3-D MRI volume’s decimation by 2. Then, the 3-D

operator‘s kernel and the N-size FFT triplet has consequently half the value of that used

in architecture 21 for the same MRI volume size. The filtered MRIs are slightly larger

by (M1-1×M2-1×M3-1) pixels with the filtered (N1+M1-1) × (N2+M2-1) × (N3+M3-1)

image.

124

Table 5.21: the filtering results for greyscale (64×64×8) MRI volume data of the

generic 3-D FIR Sharpen operators using parallel architecture 23

3-D

Sharpen

Kernel
(M1×M2×3)

3×3×3

7×7×3

15×15×3

5.7 3-D Cross-Correlator Application: Parallel 3-D MRI Matched Filtering

Algorithm

The 3-D FFT convolution can be used to evaluate the 3-D correlation of two 3-D

images [19]. The detection of a targeted 3-D MRI volume from a 3-D MRI volume data

library is presented for its diagnostic importance to access a particular part in the 3-D

MRI volume. This similarity measure can be achieved by 3-D cross-correlation (3-D

image match filter). To perform 3-D cross-correlation by using 3-D convolution, the

target 3-D image needs to be reversed to counter-act the reversal that occurs during

convolution. Thus, the 3-D MRI match filtering can be implemented using either

architectures 21 or 23. To convert the target 3-D MRI slice into a 3-D match filtering

operator, the targeted 3-D MRI volume flipped left-for right, top-for-bottom and frame-

for-frame.

Therefore, architecture 21 and architecture 23 can be effectively used to be the

implementation of the single 3-D correlator engine unit and the parallel 3-D MRI

matched filtering algorithm respectively, to detect a targeted 3-D MRI volume

125

h(m1,m2,m3) within a 3-D MRI volume data library x(n1,n2,n3). Where, the 3-D FIR

kernel is replaced by the target 3-D MRI volume input to be detected. Except, the target

3-D MRI volume has to be flipped, in three directions, left-for right, top-for-bottom and

frame-for-frame to implement its reversed-time version h(-m1,-m2,-m3). For example,

when x(n1,n2,n3) and h(m1,m2,m3), are convolved to produce yr(n1,n2,n3) using

architecture 23, the equation will be as:

 0

(5.16)

where, r=0, 1...7 are the parallel processing stages. In comparison, the correlation z(u)

of x(n1,n2,n3) and h(m1,m2,m3) can be obtained by convolution of x(n1,n2,n3) and h(-m1,-

m2,-m3) as following:

 0

(5.17)

That is, flipping left-for right in the N1 dimension, flipping top-for-bottom in the N2

dimension and flipping frame-for-frame in the N3 dimension are accomplished by

reversing the sign of the time index. Accordingly, the parallel 3-D filtering described in

(5.16) may be modified to perform parallel 3-D correlation filtering using (5.17).

5.8 Conclusion

A generalized parallel three/multi-dimensional image filtering algorithm was presented

and implemented on Virtex-6 FPGA board. Eight generic architectures were developed,

five as 3-D spatial convolution architectures, and three as 3-D FFT convolution

architectures. The mathematical model of this parallel 3-D filtering algorithm was

presented. Moreover, the mathematical model of the 3-D throughput was derived for the

spatial and the frequency architectures. The performance indices of all the eight

architectures were evaluated as a complete performance indices set of area, speed,

dynamic power, throughput and the computation rate. Three successful applications

were developed as four dimensions coloured MRI (fMRI) filtering processors, filter k-

space MRI volume data and 3-D cross-correlator.

126

Chapter 6. Conclusion and Future Work

6.1 Introduction

This research project was characterised by the adaptation of powerful parallel multi-

dimensional data filtering algorithms and their highly efficient FPGA-based

implementations, to be exploited for the linear filtering in 1-D, 2-D, 3-D and 4-D for

computationally intensive applications of digital speech filtering, biomedical imaging

filtration of greyscale MRI and multi-dimensional colour fMRI. The proposed parallel

1-D signal filtering algorithms were based on the well-known block filtering method.

While, the proposed 2-D, 3-D and 4-D filtering algorithms were concurrently structured

as the multi-dimension data segmentation by decimation and output reconstruction by

interpolation.

Twenty-three generic architectures were designed to efficiently realise the parallel

multi-dimensional data convolution/correlation algorithms in the time and frequency

domains, depending on the multi-dimensional filter’s kernel size. These parallel multi-

dimensional architectures were structured as 1-D, 2-D, 3-D and 4-D spatial and FFT

convolver engines. The FPGA implementations aim at achieving highly efficient

performance indices as a complete set of area, speed, dynamic power, throughput and

the computation rate. The implementations’ performance indices were obtained using

the available logic assets of the targeted Virex-6 XC6VLX240T development FPGA

board. Furthermore, their efficiency is demonstrated by the performance indices results

comparison that highlights the superiority of the hardware versions of the proposed

parallel multi-dimensional data filtering algorithms.

6.2 Original Contributions

The overall contributions that have been achieved and presented within this thesis are

summarised by a short list for each chapter.

6.2.1 Parallel 1-D Signal Filtering Architectures

In chapter 3, parallel one dimension filtering algorithm was proposed and

mathematically modelled using the overlap-add block filtering method. This parallel

algorithm was implemented on the FPGA, as parallel temporal and spectral

architectures, which achieved a set of values for the high performance indices. Five

parallel architectures were developed based on three 1-D temporal convolvers and one

1-D FFT convolver engines, as follows:

127

 The mathematical model of the input, processing and the output stages of the

parallel 1-D linear filtering algorithm is presented.

 A generalized parallel hardware versions for the 1-D linear filtering algorithm

are developed for the multi-MAC FIR convolution and FFT convolution, to

cover the entire range of linear FIR filter length of 2, 3, 4, 5, 7, 8, 15, 16, 31, 32,

63, 64, 127, 255, 511, 1023, 2047, ... coefficients.

 Five FPGA-based architectures on Virtex-6 ML605 board are developed

 Three new temporal convolver engines are developed and implemented using

single MAC, dual MAC and quad MAC units respectively

 Single 1-D FFT filtering algorithm and parallel 1-D FFT filtering algorithm are

implemented using the linear overlap-add block filtering method.

 A successful application of cross-correlation using FFT convolution is realized.

 The complete set of area, speed, power, throughput and computation rate in this

chapter are compared and discussed as the performance indices for the five

architectures.

6.2.2 Parallel 2-D Grayscale/Colour Image Filtering Architectures

In chapter 4, parallel two/three dimensions filtering algorithm was proposed and

mathematically modelled using image segmentation by decimation and output

reconstruction by interpolation. This parallel algorithm was implemented on Virtex-6

FPGA as parallel spatiotemporal and spectral architectures which achieved a highly

performance indices results. These parallel architectures were ten, based on three 2-D

spatiotemporal convolvers and one 2-D FFT convolver engines, as follows:

 A generalized parallel 2-D image filtering algorithm is presented with its

mathematical model.

 To cover the entire range of linear 2-D image filtering, a generic parallel

hardware versions of the 2-D linear image filtering algorithm are developed for

the multi-MAC FIR and FFT convolution.

 Ten generic architectures of 2-D image processors on Virtex-6 ML605 board are

implemented. Their complete performance indices set are evaluated.

 Architectures (6, 7 and 8), architectures (9 and 10) and Architectures (11 and 12)

are implemented using single, dual and quad MAC convolver engines

respectively.

 3-D Colour image processor is devised to act as an open development 3-D

colour filtering engines using Architectures 6, 7, 8, 9, 10, 11 and 12.

128

 Architectures (13 and 15) are implemented to capture the single 2-D FFT

convolver unit and the parallel 2-D FFT convolution algorithm respectively.

 Architecture 14 is particularly developed to deal with real-time k-space MRI

data.

 Cross-correlator parallel engine is successfully developed as a parallel 2-D

matched filter algorithm to map a parallel 2-D cross-correlation algorithm to

locate any MRI slice within a MRI data stack library.

6.2.3 Parallel 3-D Grayscale/Colour Image Filtering Architectures

In chapter 5, parallel 2-D/3-D convolution algorithm was proposed and mathematically

modelled using volumetric data image segmentation by decimation and output

reconstruction by interpolation. Then, FPGA implemented, as parallel spatial and

spectral architectures, were achieved with a set of highly performance indices results.

These parallel architectures were eight, based on three 3-D spatial convolvers and one

3-D FFT convolver engines, as follows:

 A generalized parallel three dimensional grayscale/colour image filtering

algorithm is proposed and mathematically modelled.

 The parallel multi-dimensional image filtering algorithm is successfully

implemented on eight generic architectures.

 The performance indices of the eight architectures are evaluated as a complete

set of area, speed, dynamic power, throughput and, additionally, the computation

rate for the spatial architectures.

 The five implementations of the parallel 3-D spatial convolution algorithm are

devised as “plug and develop” architectures to filter a 3-D volume data.

 Fourteen 3-D MRI filtering operators, edge and noise smoothing, are plugged

and developed to improve the suitability for biomedical imaging.

 Three successful applications are developed as 4-D coloured MRI (fMRI)

filtering processors, filter k-space MRI volume data and 3-D cross-correlator.

6.3 Overall Conclusions

The overall conclusions that summarize the achievements in proposing the parallel

multi-dimensional data filtering algorithms and the implementation of the twenty-three

FPGA-based architectures were highly demonstrated by the efficient performance

indices.

129

6.3.1 Performance Indices of the Parallel Multi-Dimensional Architectures

In chapter 2, the main aspects of parallelism in the parallel multi-dimensional data

filtering algorithms and their realization using the inherent parallelism of the FPGA that

improves the performance efficiency indices in term of area, speed, power and

throughput. As summarised below:

1. The implementation suitability of the inherently parallel FPGA to map into

hardware architectures for the parallel mutli-dimensions filtering algorithms was

presented

2. Parallelism either existed intrinsically in the parallel multi-dimensional filtering

algorithms or could be introduced by organizing the computation to allow a

parallel implementation. Three parallelisms were observed in these filtering

algorithms: temporal, spatial and logical parallelisms.

3. Parallel streaming processing can be efficiently realized in the FPGA.

4. The FPGA-based implementation was characterized by the flexibility to adjust

the wordlength size to achieve the necessary arithmetic resolution, which can be

changed at different parts of the inherent parallelism hardware.

5. FPGAs enable the configuration of data paths into arbitrary wordlength sizes,

allowing a trade-off between precision and parallelism. An additional benefit of

minimizing precision comes from shorter propagation delays through narrower

arithmetic units.

6. The overall FPGA implementation process was depicted as a development flow

of seven key steps.

7. Parallel Field Programming using Xilinx System Generator was discussed as a

dataflow graphical programming tool that facilitates FPGA hardware design by

providing access to underlying FPGA resources.

8. The performance indices of the parallel multi-dimensional data filtering

architectures were considered as a complete set of area, speed, power,

throughput and computation rate values using XSG to target a Virtex-6 ML605

FPGA board.

9. The area occupation, dynamic power consumption and speed were obtained using

Xilinx Timing Analyzer. The throughput and computation rate were calculated

according to a 1-D, 2-D and 3-D mathematical model.

6.3.2 Parallel 1-D Signal Filtering Architectures

In chapter 3, the generalized parallel 1-D data convolution/correlation algorithms were

adapted, mathematically modelled, implemented, analysed and discussed. This can be

summarised as follows:

1. The mathematical model of the input, processing and the output stages of the

parallel 1-D filtering algorithm was mathematically presented.

2. A generalized parallel hardware versions of the parallel 1-D convolution-

filtering algorithm was developed for the temporal and FFT convolution, to

130

cover the whole range of linear FIR filter lengths of 3, 7, 15, 31, 61, 127, 255,

511, 1023, 2047, ... coefficients. The filtering methods were based on the

overlap-add block filtering.

3. Five FPGA-based architectures were realized on Virtex-6 ML605 board, three

for the temporal convolution and two for the FFT convolution.

4. A successful applications was presented to realize cross-correlation as a parallel

1-D matched filter algorithm for real-time speech signature detection.

5. The performance indices for the six architectures were considered as a complete

set of area, speed, power and throughput.

6. The three temporal architectures had high throughput, stable maximum clock

frequency and low dynamic power consumption with a distinctive computation

rate.

7. The highest throughput, computation rate and the lowest dynamic power

consumption was achieved by architecture 3 and 1 respectively.

8. The three implementations of the parallel 1-D MAC convolution algorithm were

developed as “plug and filter” architectures.

9. Architecture 5’s throughput outperformed, in average, by four-fold than that of

architecture 4, due to the embedded parallelism.

6.3.3 Parallel 2-D Grayscale/Colour Image Filtering Architectures

In chapter 4, the generalized parallel 2-D image convolution/correlation algorithms

were adapted, mathematically modelled, implemented, analysed and discussed, and

applied to the biomedical imaging of grayscale/colour MRI (fMRI). This can be

summarised as follows:

1. To cover the extensive range of linear 2-D Image filtering and the 2-D image, in

particular large MRI slice size, generalized parallel hardware versions of the 2-D

convolution algorithm was devised, analysed and implemented on Virtex-6

development board for the spatiotemporal and FFT convolution.

2. For the linear FIR filters’ kernel shorter than about 10×10, the spatiotemporal

convolution was developed for 2×2, 3×3, 5×5, 2×4, 4×4, 2×8 and 8×8 kernels.

Beyond these kernels, FFT convolution was developed for the longer filter

kernel sizes of 15×15, 31×31, 63×63, 127×127 and 255×255. The filtered MRI

slice was of different sizes from 64×64, 128×128 and 256×256 up to 512×512

pixels. The MRI data input was either digital image or real-time k-space data.

3. The parallel 2-D filtering algorithm was devised by decimating the 2-D input

data into independent sub-data that can be simultaneously processed in parallel

without the need for processing stage data communication, the final filtered

result was reconstructed by 2-D interpolation and right shift. The mathematical

model was presented.

4. Ten FPGA-based architectures were developed, seven for spatiotemporal

convolution and three for the FFT convolution.

131

5. Architectures (6, 7 and 8), architectures (9 and 10) and architectures (11 and 12)

were implemented to realize the spatiotemporal convolution, while, architectures

(13 and 15) were realized as the FFT convolution.

6. The performance indices for the ten architectures were evaluated as a complete

set.

7. The superiority of the developed architectures were indicated by the minimized

utilized area, high throughput, stable maximum clock frequency and low

dynamic power consumption. These FPGA-architectures were strongly

exploited as a “plug and develop” reconfigurable image processor.

8. Twelve improved 2-D FIR filters were plugged and developed to filter for edge

detection and noise smoothing of the biomedical imaging of garyscale and

colour MRI data.

9. Three successful applications on medical image filtering and detection were

presented to illustrate the superiority and high performance of the parallel 2-D

convolution algorithm. These three applications were 3-D colour MRI (fMRI)

filtering, real-time k-space MRI data visualization and detection of a MRI slice

within a MRI data stack library.

6.3.4 Parallel 3-D Grayscale/Colour Image Filtering Architectures

In chapter 5, a generalized parallel three/multi-dimensional image filtering algorithm

was proposed and implemented on Virtex-6 development board. This new parallel

algorithm eliminates the overhead associated with the overlapping segments in the

block filtering method and the boundary conditions in the parallel filtering

implementation. Moreover, the normal large size restriction of multi-dimensional input

data was overcome by decimation into smaller, manageable and independent mutli-

dimensions sub-images. This can be summarised as follows:

1. The proposed parallel algorithm’s mathematical model was derived.

2. This parallel algorithm was successfully implemented on eight hardware

architectures to cover the wide-ranging 3-D FIR kernels, five as 3-D spatial

convolution architectures, and three as 3-D FFT convolution architectures.

These 3-D architectures were found to be highly parallel and superior in utilising

the inherent parallelism advantages of the FPGA.

3. The performance indices of all the eight architectures were evaluated as a

complete set of area, speed, dynamic power, throughput and the computation

rate. Noteworthy improvements had been achieved in decreasing power

consumption and increasing throughput of more than 4-fold and 16-fold

respectively.

4. The massive parallelism filtering implementations were demonstrated by

minimum logic area occupation, low dynamic power consumption and high

throughput at maximum clock frequency.

132

5. The five implementations of the parallel 3-D spatial convolution algorithm were

devised as “plug and develop” architectures to filter a 3-D grayscale/colour

volumetric data.

6. Fourteen 3-D MRI filtering operators were plugged and developed to be

improved for their suitability to biomedical imaging applications.

7. Three successful applications were presented, one for the spatial architectures as

four dimension coloured MRI (fMRI) filtering processors, and two for the 3-D

FFT architectures to filter k-space MRI volume data and 3-D cross-correlator.

6.4 Recommendation for Future Work

Based on the experience and knowledge acquired during this research project, the

recommendation for future research projects can be suggested as a complete automated

filtering system. The VLSI implementation of all the twenty-three architectures as a

complete parallel multi-dimensional data filtering set is highly recommended, based on

input segmentation, parallel independent multi-dimensional filtering and output

reconstruction. This multi-dimensional filtering automation system can be

parameterized in the following aspects: firstly, the dimension of the input data; is it 1-D,

2-D, 3-D or 4-D? Secondly, the application type: is it biomedical imaging, seismic data,

marketing data stream …etc? Thirdly, filtering type method: Is it spatial or spectral

filtering? based on the linear filter length. Fourthly, performance indices optimized to

be high throughput, low power, high speed, low area occupation.

IP hard cores of performance-aware fast switching circuitries may control the data

routing and the I/O interface of this complete real time firmware filtering system. The

performance–aware optimization is application dependent to be concerned with low-

power consumption, high filtering rate and/or high throughput. This research extension

may lead to new and novel VLSI generic architectures for on-the-fly parallel

multidimensional data processing, aiming at higher data routing rate and optimum

memory layout in order to solve the bottleneck of multi-dimensional data processing

with normal large input size, memory limitation and multi-dimensional

convolver/correlator engines.

One of the recent techniques in low power VLSI is to tolerate the computation’s

accuracy for the power consumption that can be effectively utilized to trade off power

and quality for error-resilient DSP systems [131]. Low power is an imperative

requirement for portable multimedia devices employing various signal processing

algorithms and architectures. In most multimedia applications, human beings can gather

133

useful information from slightly erroneous outputs. Therefore, we do not need to

produce exactly correct numerical outputs.

Finally, the investigation is always in pursuit of new and novel reconfigurable parallel

hardware that can be field developed by exploiting parallel programming tools in

accelerating applications in major areas of video processing using reconfigurable VLSI

architectures. Video processing is highly amenable to parallel processing,

computationally intensive and often has accompanying real-time or super-real-time

requirements, which broadly encompasses compression, filtering enhancement,

analysis, and synthesis of digital video. Consequently, the research and development of

massively parallel architectures and programming technology in the construction and

development of parallel multi-dimensional data processing components and

applications, is highly recommended. For example, surveillance and monitoring systems

need to robustly analyze video from multiple cameras in real time to automatically

detect and signal unusual events. Beyond today’s known applications, the continued

growth of functionality and speed of video processing systems will likely further enable

novel applications.

134

APPENDICES

Appendix A. Architecture 17’s first filtering stage out of eight

z
-1

r9

z
-2

r8

z
-1

z
-1

r6

z
-1

r5

z
-2

r4

z
-1

r35

z
-2

r34

z
-1

z
-1

r32

z
-1

r31

z
-2

r30

z
-1

z
-1

z
-1

r28

z
-1

z
-1

r26

z
-1

r25

z
-2

r24

z
-1

r23

z
-2

r22

z
-1

z
-1

r20

z
-1

r2

z
-1

r19

z
-2

r18

z
-1

z
-1

r16

z
-1

z
-1

r14

z
-1

r13

z
-2

r12

z
-1

z
-1

r10

z
-1

r1

z
-2

r0

Origional_MRI_stack1

filtered_MRI_scan1

 I
n

fMRI Gateway In

z-128

Virtex2 Line Buffer6

z-128

Virtex2 Line Buffer5

z-128

Virtex2 Line Buffer4

z-128

Virtex2 Line Buffer3

z-128

Virtex2 Line Buffer2

z-128

Virtex2 Line Buffer1

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

a

b
a = b
z

-3

d
q

z
-1 Register16

d qz
-1

Register1

a

b

(ab)z
-2

Mult8

a

b

(ab)z
-2

Mult7

a

b

(ab)z
-2

Mult6

a

b

(ab)z
-2

Mult5

a

b

(ab)z
-2

Mult4

a

b

(ab)z
-2

Mult3

a

b

(ab)z
-2

Mult2

a

b

(ab)z
-2

Mult1

a

b

(ab)z
-2

Mult

 O

u
t

Gateway Out

16

z
-1

16

z
-1

16

z
-1

16

z
-1

16

z
-1

16

z
-1

16

z
-1

16

z
-1

16

z
-1

out

Counter8

out

Counter7

out

Counter6

out

Counter5

out

Counter4

out

Counter3

out

Counter2

out

Counter1

out

Counter

c
a

s
t

z
-1

Convert1

0

0

0

0

0

0

0

0

0

addr z
-1

Coefficient

ROM8

addr z
-1

Coefficient

ROM7

addr z
-1

Coefficient

ROM6

addr z
-1

Coefficient

ROM5

addr z
-1

Coefficient

ROM4

addr z
-1

Coefficient

ROM3

addr z
-1

Coefficient

ROM2

addr z
-1

Coefficient

ROM1

addr z
-1

Coefficient

ROM

d

en

qz
-1

Capture

Register8

d

en

qz
-1

Capture

Register7

d

en

qz
-1

Capture

Register6

d

en

qz
-1

Capture

Register5

d

en

qz
-1

Capture

Register4

d

en

qz
-1

Capture

Register3

d

en

qz
-1

Capture

Register2

d

en

qz
-1

Capture

Register1

d

en

qz
-1

Capture

Register

z
-3

x 0.01852
CMult1

a

b
a + b

z
-1

AddSub7

a

b
a + b

z
-1

AddSub6

a

b
a + b

z
-1

AddSub5

a

b
a + b

z
-1

AddSub4

a

b
a + b

z
-1

AddSub3

a

b
a + b
z

-1

AddSub2

a

b
a + b

z
-1

AddSub13

a

b
a + b

z
-1

AddSub1

b

rst

+=b

Accumulator8

b

rst

+=b

Accumulator7

b

rst

+=b

Accumulator6

b

rst

+=b

Accumulator5

b

rst

+=b

Accumulator4

b

rst

+=b

Accumulator3

b

rst

+=b

Accumulator2

b

rst

+=b

Accumulator1

b

rst

+=b

Accumulator

d

addr
q

ASR8

d

addr
q

ASR7

d

addr
q

ASR6

d

addr
q

ASR5

d

addr
q

ASR4

d

addr
q

ASR3

d

addr
q

ASR2

d

addr
q

ASR1

d

addr
q

ASR

In
1

O
u
t1

ABS2

Sy stem

Generator

135

Appendix B. Logic area occupation of architecture 17 mapped and

shown graphically using Xilinx FPGA Editor Tool

136

Appendix C. Architecture 17’s RTL schematic diagram

 (1) (2)

1) Shows the entire RTL schematic diagram

2) Shows partially enlarged RTL schematic diagram

137

List of Publications

Journal Publications

[1] S. Hasan, S. Boussakta, and A. Yakovlev, "FPGA-Based Architecture for a

Generalized Parallel 2-D MRI Filtering Algorithm," American Journal of

Engineering and Applied Sciences, vol. 4, pp. 566-575, 2012.

Conference publications

 [1] S. Hasan, S. Boussakta, and A. Yakovlev, "Improved parameterized efficient

FPGA implementations of parallel 1-D filtering algorithms using Xilinx System

Generator," in Signal Processing and Information Technology (ISSPIT), 2010

IEEE International Symposium on, 2010, pp. 382-387.

[2] S. Hasan, S. Boussakta, and A. Yakovlev, "Parameterized FPGA-based

architecture for parallel 1-D filtering algorithms," in Systems, Signal Processing

and their Applications (WOSSPA), 2011 7th International Workshop on, 2011,

pp. 171-174.

[3] S. Hasan, A. Yakovlev, and S. Boussakta, "Performance efficient FPGA

implementation of parallel 2-D MRI image filtering algorithms using Xilinx

system generator," in Communication Systems Networks and Digital Signal

Processing (CSNDSP), 2010 7th International Symposium on, 2010, pp. 765-

769.

138

REFERENCES

[1] J. F. Michael and W. R. Kevin, "Parallel architectures," ACM Comput. Surv.,

vol. 28, pp. 67-70, 1996.

[2] Z. Wang, M. Gao, X. Fu, and C. Jiang, "Design of Real-time Convolution

Processor and its Application in Radar Echo Signal Simulator," in International

Conference on Computer Science and Information Technology, ICCSIT '08,

2008, pp. 162-166.

[3] I. S. Uzun, A. Amira, and F. Bensaali, "A reconfigurable coprocessor for high-

resolution image filtering in real time," in 10th IEEE International Conference

on Electronics, Circuits and Systems, ICECS 2003, pp. 192-195 Vol.1.

[4] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E.

Cosatto, and H. P. Graf, "A Massively Parallel Coprocessor for Convolutional

Neural Networks," in 20th IEEE International Conference on Application-

specific Systems, Architectures and Processors, ASAP 2009, pp. 53-60.

[5] L. M. Russo, E. C. Pedrino, E. Kato, and V. O. Roda, "Image convolution

processing: A GPU versus FPGA comparison," in 2012 VIII Southern

Conference on Programmable Logic (SPL) pp. 1-6.

[6] N. K. Ratha, A. K. Jain, and D. T. Rover, "Convolution on Splash 2," in 1995

IEEE Symposium on FPGAs for Custom Computing Machines, pp. 204-213.

[7] H. Pei-Yung, W. Hwa, C. Ying-Pei, and C. Sao-Jie, "Real-time implementation

of noise-immune gradient-based edge detection," in International Symposium on

Signals, Circuits and Systems, ISSCS 2005 pp. 633-636 Vol. 2.

[8] A. Nieto, V. M. Brea, and D. L. Vilarino, "FPGA-accelerated retinal vessel-tree

extraction," in International Conference on Field Programmable Logic and

Applications, FPL 2009 pp. 485-488.

[9] J. Y. Mori, C. Sanchez-Ferreira, Mu, x00F, D. M. oz, C. H. Llanos, and P.

Berger, "An unified approach for convolution-based image filtering on

reconfigurable systems," in 2011 VII Southern Conference on Programmable

Logic (SPL) pp. 63-68.

[10] P. Longa, A. Miri, and M. Bolic, "A Flexible Design of Filterbank Architectures

for Discrete Wavelet Transforms," in IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP 2007, pp. III-1441-III-1444.

[11] P. Y. Hsiao, C. H. Chen, H. Wen, and S. J. Chen, "Real-time realisation of

noise-immune gradient-based edge detector," Computers and Digital

Techniques, IEE Proceedings -, vol. 153, pp. 261-269, 2006.

[12] N. Farrugia, F. Mamalet, S. Roux, Y. Fan, and M. Paindavoine, "Fast and

Robust Face Detection on a Parallel Optimized Architecture Implemented on

FPGA," Circuits and Systems for Video Technology, IEEE Transactions on, vol.

19, pp. 597-602, 2009.

[13] N. Farrugia, F. Mamalet, S. Roux, Y. Fan, and M. Paindavoine, "A Parallel Face

Detection System Implemented on FPGA," in IEEE International Symposium on

Circuits and Systems, ISCAS 2007, pp. 3704-3707.

[14] A. S. Dawood, S. J. Visser, and J. A. Williams, "Reconfigurable FPGAS for real

time image processing in space," in 14th International Conference on Digital

Signal Processing, DSP 2002, pp. 845-848 vol.2.

[15] S. Boussakta, "A novel method for parallel image processing applications,"

Journal of Systems Architecture, vol. 45, pp. 825-839, 1999.

[16] Roger Woods, Jhon McAllister, Y. Yi, and G. Lightbody, FPGA-based

implementation of Signal Processing Systems: Join Wiley & Sons Ltd, 2008.

[17] D. G. Bailey, Design for Embedded Image Processing on FPGA: Join Wiley &

sons Pte Ltd, 2011.

139

[18] J. L. Semmelow, Biosignal and Biomedical Image Processing: Marcel Dekker,

Inc., 2004.

[19] N. Nikolaidis and I. Pitas, 3-D Image Processing Algorithms: Join Wiley &

sons, Inc., 2001.

[20] R. Miller and L. Boxer, Algorithms Sequential and Parallel: A Unified

Approach, 2nd ed.: Charles River Media Computer Engineering, 2005.

[21] S. Hasan, A. Yakovlev, and S. Boussakta, "Performance efficient FPGA

implementation of parallel 2-D MRI image filtering algorithms using Xilinx

system generator," in 7th International Symposium on Communication Systems

Networks and Digital Signal Processing (CSNDSP 2010) pp. 765-769.

[22] R. Zoss, A. Habegger, V. Bandi, J. Goette, and M. Jacomet, "Comparing Signal

Processing Hardware-Synthesis Methods Based on the Matlab Tool-Chain," in

2011 Sixth IEEE International Symposium on Electronic Design, Test and

Application (DELTA), pp. 281-286.

[23] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, "Features, Design

Tools, and Application Domains of FPGAs," Industrial Electronics, IEEE

Transactions on, vol. 54, pp. 1810-1823, 2007.

[24] H. James, M. Brent, S. Nabeel, and D. S. Jeffrey, "System Level Tools for DSP

in FPGAs," in the 11th International Conference on Field-Programmable Logic

and Applications, 2001.

[25] M. Aziz, S. Boussakta, and D. C. McLernon, "Parallelisation of the 1-D block

filter algorithm to run on multiple DSPs," in 9th International Conference on

Electronics, Circuits and Systems, 2002, pp. 943-946

[26] S. Hasan, S. Boussakta, and A. Yakovlev, "Parameterized FPGA-based

architecture for parallel 1-D filtering algorithms," in 7th International Workshop

on Systems, Signal Processing and their Applications (WOSSPA 2011), pp. 171-

174.

[27] S. Hasan, S. Boussakta, and A. Yakovlev, "Improved parameterized efficient

FPGA implementations of parallel 1-D filtering algorithms using Xilinx System

Generator," in IEEE International Symposium on Signal Processing and

Information Technology (ISSPIT 2010), pp. 382-387.

[28] P. Sungho, Y. C. P. Cho, K. M. Irick, and V. Narayanan, "A reconfigurable

platform for the design and verification of domain-specific accelerators," in

2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC),

pp. 108-113.

[29] S. M. A. Raj, G. Sreelatha, and M. H. Supriya, "Gesture recognition using field

programmable gate arrays," in 2012 International Conference on Devices,

Circuits and Systems (ICDCS) pp. 72-75.

[30] V. R. Pamula, W. Strauss, and J. Bernhard, "Model Based Development of the

Digital Part of a RFID Transponder with Xilinx System Generator for a FPGA

Platform," in 2012 Fourth International EURASIP Workshop on RFID

Technology (EURASIP RFID), pp. 124-127.

[31] J. Hwang and J. Ballagh, "Building custom FIR filters using system generator,"

in 12th International Conference on Field-Programmable Logic and

Applications, FPL 2002, pp. 1101-1104.

[32] M. Aziz, S. Boussakta, and D. C. McLernon, "High performance 2D parallel

block-filtering system for real-time imaging applications using the Sharc

ADSP21060," Real-Time Imaging, vol. 9, pp. 151-161, 2003.

[33] I. S. Uzun, A. Amira, and A. Bouridane, "FPGA implementations of fast Fourier

transforms for real-time signal and image processing," Vision, Image and Signal

Processing, IEE Proceedings -, vol. 152, pp. 283-296, 2005.

140

[34] W. Atabany and P. Degenaar, "Parallelism to reduce power consumption on

FPGA spatiotemporal image processing," in IEEE International Symposium on

Circuits and Systems, (ISCAS 2008), pp. 1476-1479.

[35] S. Hasan, S. Boussakta, and A. Yakovlev, "FPGA-Based Architecture for a

Generalized Parallel 2-D MRI Filtering Algorithm," American Journal of

Engineering and Applied Sciences, vol. 4, pp. 566-575, 2012.

[36] S. Athar, M. A. Siddiqi, and S. Masud, "Teaching and research in FPGA based

Digital Signal Processing using Xilinx System Generator," in IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP

2012) pp. 2765-2768.

[37] T. Mahalakshmi and R. Muthaiah, "Vlsi Implementation of Edge Detection for

Images," Research Journal of Applied Sciences, Engineering and Technology,

vol. 4, pp. 5474-5479, 2012.

[38] S. Allin Christe, Vignesh, M. and Kandaswamy, A., "An efficient FPGA

implementation of MRI image filtering and tumour characterization using Xilinx

System Generator," International Journal of VLSI design & Communication

Systems (VLSICS), vol. Vol.2, pp. 96-109, 2011.

[39] M. Aziz and S. Boussakta, "Efficient 3-D parallel fir filtering algorithm," in 15th

European Signal Processing Conference, EUSIPCO 2007, pp. 1064-1067.

[40] M. Aziz, S. Boussakta, and D. C. McLernon, "Three-dimensional digital

filtering algorithm for parallel DSP implementation," in International

Conference on Image Processing, ICIP 2003 pp. II-579-82 vol.3.

[41] M. Aziz, S. Boussakta, and D. C. McLernon, "A high performance 3-D parallel

filtering algorithm using the vector radix fast Hartley transform," in Proceedings

of the Fourth International Conference on Parallel and Distributed Computing,

Applications and Technologies, PDCAT'2003, pp. 715-719.

[42] M. Aziz, D. C. McLernon, and S. Boussakta, "The implementation of a new 3-D

parallel filtering algorithm on the SHARC ADSP21060 platform," in

International Conference on Visual Information Engineering, VIE 2003, pp.

270-273.

[43] T. B. Deng, "Decomposition-based design of linear phase 3-D digital filters,"

Signal Processing, vol. 54, pp. 119-128, 1996.

[44] D. Lin, H. Xiaohuang, N. Quang, J. Blackburn, C. Rodrigues, T. Huang, M. N.

Do, S. J. Patel, and W. M. W. Hwu, "The parallelization of video processing,"

Signal Processing Magazine, IEEE, vol. 26, pp. 103-112, 2009.

[45] A. Naoulou, J. L. Boizard, J. Y. Fourniols, and M. Devy, "A 3D real-time vision

system based on passive stereovision algorithms: Application to laparoscopic

surgical manipulations," in 2nd Information and Communication Technologies,

ICTTA '06, pp. 1068-1073.

[46] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate

Arrays, Third Edition ed., 2007.

[47] C. Maxfield, FPGAs World Class Designs: Newnespress/ Elsevier, 2009.

[48] C. Maxfield, The Design Warrior's Guide to FPGAs: newnespress/ Elsevier,

2004.

[49] I. Grout, Digital Systems Design with FPGAs and CPLDs: newnespress/

Elsevier, 2008.

[50] G. Goavec-Merou, Y. Yakoubi, R. Couturier, M. Lenczner, J. M. Friedt, and F.

Wang, "FPGA Implementation of Diffusive Realization for a Distributed

Control Operator," in First Workshop on Hardware and Software

Implementation and Control of Distributed MEMS (DMEMS 2010), pp. 50-55.

[51] N. Viscogliosi, J. Riendeau, P. Bérard, M. A. Tétrault, R. Lefebvre, R. Lecomte,

and R. Fontaine, "Real time implementation of a wiener filter based crystal

141

identification algorithm," IEEE Transactions on Nuclear Science, vol. 55, pp.

925-929, 2008.

[52] T. F. Neves, M. F. Caetano, and J. L. Bordim, "An Energy-Optimum and

Communication-Time Efficient Protocol for Allocation, Scheduling and Routing

in Wireless Networks," in 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), pp.

848-854.

[53] W. G. Gardner, "Efficient convolution without input-output delay," AES:

Journal of the Audio Engineering Society, vol. 43, pp. 127-136, 1995.

[54] R. Mahesh and A. P. Vinod, "New Reconfigurable Architectures for

Implementing FIR Filters With Low Complexity," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 29, pp. 275-288,

2010.

[55] L. R. Johnson and A. K. Jain, "An Efficient Two-Dimensional FFT Algorithm,"

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-3,

pp. 698-701, 1981.

[56] S. K. Madishetty, A. Madanayake, R. J. Cintra, V. S. Dimitrov, and D. H.

Mugler, "VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet

Filters Using Algebraic Integers," Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. PP, pp. 1-1, 2012.

[57] S. Nedunuri, J. Y. Cheung, and P. Nedunuri, "Design of Low Memory Usage

Discrete Wavelet Transform on FPGA Using Novel Diagonal Scan," in

International Symposium on Parallel Computing in Electrical Engineering,

PAR ELEC 2006 pp. 192-197.

[58] L. Xuguang, Z. Nanning, and L. Yuehu, "Low-power and high-speed VLSI

architecture for lifting-based forward and inverse wavelet transform," Consumer

Electronics, IEEE Transactions on, vol. 51, pp. 379-385, 2005.

[59] M. Ye, W. H. Zhou, and W. K. Gu, "FPGA based real-time image filtering and

edge detection," Chinese Journal of Sensors and Actuators, vol. 20, pp. 623-627,

2007.

[60] J. A. Webb, "Steps toward architecture-independent image processing,"

Computer, vol. 25, pp. 21-31, 1992.

[61] K. S. Reddy and B. M. Bhaskara, "Noval approach image processing algorithms

on hardware implementation for surveillance systems," International Journal of

Science & Technology, vol. 1, 2011.

[62] S. Haoyu, H. Fang, M. Kodialam, and T. V. Lakshman, "IPv6 Lookups using

Distributed and Load Balanced Bloom Filters for 100Gbps Core Router Line

Cards," in IEEE INFOCOM 2009, pp. 2518-2526.

[63] E. A. Rivera-Juarico, J. M. Ramirez-Cortes, V. Alarcon-Aquino, and J.

Escamilla-Ambrosio, "Design and implementation of the discrete wavelet

transform on an FPGA platform to process data sets of up to three dimensions,"

in 2012 22nd International Conference on Electrical Communications and

Computers (CONIELECOMP) pp. 333-338.

[64] B. Das and S. Banerjee, "A memory efficient 3-D DWT architecture," in 16th

International Conference onVLSI Design, 2003, pp. 208-213.

[65] S. Ferrari and N. A. Borghese, "Portable modular system for automatic

acquisition of 3D objects," Conference Record - IEEE Instrumentation and

Measurement Technology Conference, vol. 3, pp. 1823-1827, 1999.

[66] H. Scherl, M. Kowarschik, H. G. Hofmann, B. Keck, and J. Hornegger,

"Evaluation of state-of-the-art hardware architectures for fast cone-beam CT

reconstruction," Parallel Computing, vol. 38, pp. 111-124, 2012.

142

[67] P. Pahalawatta and K. Stec, "A subjective comparison of depth image based

rendering and frame compatible stereo for low bit rate 3D video coding," in

2012 Signal & Information Processing Association Annual Summit and

Conference (APSIPA ASC), pp. 1-7.

[68] M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, and D.

DiSabello, "Achieving High Performance with FPGA-Based Computing,"

Computer, vol. 40, pp. 50-57, 2007.

[69] P. Naik, M. Wedel, L. Bacon, A. Bodapati, E. Bradlow, W. Kamakura, J.

Kreulen, P. Lenk, D. M. Madigan, and A. Montgomery, "Challenges and

opportunities in high-dimensional choice data analyses," Marketing Letters, vol.

19, pp. 201-213, 2008.

[70] S. Masuno, T. Maruyama, Y. Yamaguchi, and A. Konagaya, "Multidimensional

dynamic programming for homology search," in 2005 International Conference

on Field Programmable Logic and Applications pp. 173-178.

[71] M. Sheliga, N. L. Passos, and S. Edwin Hsing-Mean, "Fully parallel

hardware/software codesign for multi-dimensional DSP applications," in Fourth

International Workshop on Hardware/Software Co-Design, Codes/CASHE '96

pp. 18-25.

[72] X. Li and G. Qian, "Block size considerations for multidimensional convolution

and correlation," Signal Processing, IEEE Transactions on, vol. 40, pp. 1271-

1273, 1992.

[73] R. Agarwal and C. Burrus, "Fast one-dimensional digital convolution by

multidimensional techniques," Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 22, pp. 1-10, 1974.

[74] Xilinx. (2013). System Generator for DSP user guides,

available:http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2

/sysgen_user.pdf.

[75] V. Singh, A. Root, E. Hemphill, N. Shirazi, and J. Hwang, "Accelerating bit

error rate testing using a system level design tool," in 11th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, FCCM 2003

pp. 62-68.

[76] Xilinx. (2012). Virtex-6 FPGA Family Overview, Xilinx documentation ,

available:http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf.

[77] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, "A 90-nm Low-Power

FPGA for Battery-Powered Applications," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 26, pp. 296-300,

2007.

[78] A. Yakovlev, "Energy-modulated computing," in Design, Automation & Test in

Europe Conference & Exhibition (DATE 2011), pp. 1-6.

[79] M. B. Abdelhalim and A. E. Salama, "Implementation of 3D-DCT based video

encoder/decoder system," in International Symposium on Signals, Circuits and

Systems, SCS 2003. , pp. 389-392 vol.2.

[80] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen, M. J.

G. Bekooij, B. D. Theelen, and M. R. Mousavi, "Throughput Analysis of

Synchronous Data Flow Graphs," in Sixth International Conference on

Application of Concurrency to System Design, ACSD 2006, pp. 25-36.

[81] A. Marshall and S. Boussakta, "Signal analysis of medical acoustic sounds with

applications to chest medicine," Journal of the Franklin Institute, vol. 344, pp.

230-242, 2007.

[82] S. W. Smith, The Scientist & Engineer's Guide to Digital Signal Processing:

California Technical Publishing, 1997.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/sysgen_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/sysgen_user.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

143

[83] O. Nibouche, S. Boussakta, and M. Darnell, "A New Architecture For Radix-2

New Mersenne Number Transform," in IEEE International Conference

onCommunications, ICC '06 pp. 3219-3222.

[84] O. Nibouche, S. Boussakta, and M. Darnell, "Pipeline Architectures for Radix-2

New Mersenne Number Transform," Circuits and Systems I: Regular Papers,

IEEE Transactions on, vol. 56, pp. 1668-1680, 2009.

[85] L. Litwin, "FIR and IIR digital filters," Potentials, IEEE, vol. 19, pp. 28-31,

2000.

[86] K. S. a. J. K. Hammond, Fundamentals of Signal Processing for Sound and

Vibration Engineers: John Wiley & Sons Ltd, 2008.

[87] Z. Hussain, Digital Image Processing: practical applications of parallel

processing techniques: Ellise Horwood Ltd, 1991.

[88] E. Battenberg and R. Avižienis, "Implementing real-time partitioned convolution

algorithms on convolutional operating systems " in Proc. of the 14th Int.

Conference on Digital Audio Effects (DAFx-11),, Paris, France,, 2011, pp. 1-8.

[89] K. Suresh and T. V. Sreenivas, "Linear filtering in DCT IV/DST IV and

MDCT/MDST domain," Signal Processing, vol. 89, pp. 1081-1089, 2009.

[90] J. R. Mohammed and G. Singh, "Real-Time Implementation of New Adaptive

Beamformer Sensor Array For Speech Enhancement in Hearing Aid," in 3rd

International Conference on Intelligent Sensors, Sensor Networks and

Information, ISSNIP 2007, pp. 607-611.

[91] G. Lightbody, R. Woods, and R. Walke, "Design of a parameterizable silicon

intellectual property core for QR-based RLS filtering," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 11, pp. 659-678, 2003.

[92] F. a. V. Wefers, M. , "Optimal filter partition for efficient convolution with short

input/output delay," in Proc. of the 14th Int. Conference on Digital Audio Effects

(DAFx-11), 2011, pp. 155-161.

[93] L. K. Patton and B. D. Rigling, "Autocorrelation Constraints in Radar

Waveform Optimization for Detection," Aerospace and Electronic Systems,

IEEE Transactions on, vol. 48, pp. 951-968, 2012.

[94] R. S. Deepthi and S. Sankaraiah, "Implementation of mobile platform using Qt

and OpenCV for image processing applications," in IEEE Conference on Open

Systems (ICOS), 2011, pp. 284-289.

[95] J. Du, W. Zhang, S. Fu, P. Bian, X. Ning, and Z. Wang, "Inspection and

Orientation Model of Digital Camera," in Second International Conference on

Information and Computing Science, ICIC '09, 2009, pp. 61-64.

[96] M. F. A. F. a. S.-C. H. Tong Hau Lee, "Intracranial Hemorrhage Annotation for

CT Brain Images," International Journal on Advanced Science, Engineering and

Information Technology, vol. 1, pp. 2088-5334, 2011.

[97] D. C. C. Wang, A. H. Vagnucci, and C. C. Li, "Digital image enhancement: A

survey," Computer Vision, Graphics, and Image Processing, vol. 24, pp. 363-

381, 1983.

[98] L. Haifang, Q. Xiaoyan, C. Junjie, and X. Jie, "The study of data analysis

methods based on FMRI brain-computer interface," in IEEE Fifth International

Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA

2010), pp. 989-993.

[99] A. T. Moreo, P. N. Lorente, F. S. Valles, J. S. Muro, and C. F. Andrés,

"Experiences on developing computer vision hardware algorithms using Xilinx

system generator," Microprocessors and Microsystems, vol. 29, pp. 411-419,

2005.

144

[100] B. Attachoo and P. Pattanasethanon, "A new approach for colored satellite

image enhancement," in IEEE International Conference on Robotics and

Biomimetics, ROBIO 2009, pp. 1365-1370.

[101] A. Ahmad, A. Amira, H. Rabah, and Y. Berviller, "Medical image denoising on

field programmable gate array using finite Radon transform," Signal Processing,

IET, vol. 6, pp. 862-870, 2012.

[102] M. F. Bin Othman, N. Abdullah, and N. A. Bin Ahmad Rusli, "An overview of

MRI brain classification using FPGA implementation," in IEEE Symposium on

Industrial Electronics & Applications (ISIEA 2010) pp. 623-628.

[103] Moctezuma, J. C. , S. nchez, R. and, and S. lvarez, "Architecture for filtering

images using Xilinx system generator," in 2nd WSEAS International Conference

on Computer Engineering and Applications, Acapulco, Mexico, 2008.

[104] R. C. Decharms, "Applications of real-time fMRI," Nature Reviews

Neuroscience, vol. 9, pp. 720-729, Sep 2008.

[105] K. T. Gribbon, D. G. Bailey, and A. Bainbridge-Smith, "Development Issues in

Using FPGAs for Image Processing," in Proceedings of Image and Vision

Computing Hamilton, New Zealand, , 2007, pp. pp. 217–222.

[106] C. T. G. Johnston, K. T. and Bailey, D. G., "Implementing Image Processing

Algorithms on FPGAs," in Proceedings of the Eleventh Electronics New

Zealand Confe ence, ENZCon’04 Palmerston North, 2004, pp. 118-123.

[107] A. Downton and D. Crookes, "Parallel architectures for image processing,"

Electronics & Communication Engineering Journal, vol. 10, pp. 139-151, 1998.

[108] V. a. R. Elamaran, G., "FPGA implementation of point processes using Xilinx

System Generator," Journal of Theoretical and Applied Information Technology

vol. Vol. 41. , pp. pp 201 - 206, 2012.

[109] H. F. Ladgham A, Sakly A, Mtibaa A (2012) Real Time Implementation of

Detection of Bacteria in Microscopic Images Using System Generator, "Real

Time Implementation of Detection of Bacteria in Microscopic Images Using

System Generator," J Biosens Bioelectron, vol. 3, p. 127, 2012.

[110] G. Papari and N. Petkov, "Edge and line oriented contour detection: State of the

art," Image and Vision Computing, vol. 29, pp. 79-103, 2011.

[111] L. Chang-song and J. Sheng-Zhen, "The Implement of High Speed Correlation

Tracking Algorithm Based on FPGA in Space Solar Telescope," in 8th

International Conference on Signal Processing 2006.

[112] I. Yasri, N. H. Hamid, and N. B. Z. Ali, "VLSI based edge detection hardware

accelerator for real time video segmentation system," in 2012 4th International

Conference on Intelligent and Advanced Systems (ICIAS) 2012, pp. 719-724.

[113] K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, "Identifying natural

images from human brain activity," Nature, vol. 452, pp. 352-U7, Mar 20 2008.

[114] R. Sitaram, N. Weiskopf, A. Caria, R. Veit, M. Erb, and N. Birbaumer, "fMRI

Brain-Computer Interfaces," Signal Processing Magazine, IEEE, vol. 25, pp. 95-

106, 2008.

[115] N. Neumann and A. Kubler, "Training locked-in patients: a challenge for the use

of brain-computer interfaces," Neural Systems and Rehabilitation Engineering,

IEEE Transactions on, vol. 11, pp. 169-172, 2003.

[116] J. Fessler, "Model-Based Image Reconstruction for MRI," Signal Processing

Magazine, IEEE, vol. 27, pp. 81-89, 2010.

[117] J. A. Fessler, S. Lee, V. T. Olafsson, H. R. Shi, and D. C. Noll, "Toeplitz-Based

Iterative Image Reconstruction for MRI With Correction for Magnetic Field

Inhomogeneity," Signal Processing, IEEE Transactions on, vol. 53, pp. 3393-

3402, 2005.

145

[118] J. Song and Q. H. Liu, "An Efficient MR Image Reconstruction Method for

Arbitrary K-space Trajectories Without Density Compensation," in 28th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, EMBS '06 2006, pp. 3767-3770.

[119] E. Corona, S. Mitra, and M. Wilson, "A fast algorithm for registration of

individual frames and information recovery in fluorescein angiography video

image analysis," in Fifth IEEE Southwest Symposium on Image Analysis and

Interpretation 2002, pp. 265-268.

[120] O. A. Elsayed, "Optimized algorithms for real time medical image registration,"

in 4th European Education and Research Conference (EDERC 2010) pp. 121-

124.

[121] E. E. Konofagou, W. Manning, K. Kissinger, and S. D. Solomon, "Myocardial

elastography - comparison to results using MR cardiac tagging," in 2003 IEEE

Symposium on Ultrasonics pp. 130-133 Vol.1.

[122] Y. Ping, X. De, Z. Zhengtao, C. Guodong, and T. Min, "A vision system with

multiple cameras designed for humanoid robots to play table tennis," in 2011

IEEE Conference on Automation Science and Engineering (CASE), pp. 737-742.

[123] L. Jian, A. Xiangjing, Y. Lei, and H. Hangen, "A Reconfigurable Parallel

Architecture for Image Computing," in The Sixth World Congress on Intelligent

Control and Automation, WCICA 2006 pp. 10491-10495.

[124] Z. Hui, G. Zi, X. Mingxin, T. Zhiwei, and H. Guangshu, "A Reconfigurable

System-on-chip Architecture for Medical Imaging: Preliminary Results," in 27th

Annual International Conference of the Engineering in Medicine and Biology

Society, IEEE-EMBS 2005, pp. 1747-1749.

[125] K. E. Jordan, D. A. Yuen, D. M. Reuteler, S. Zhang, and R. Haimes, "Parallel

interactive visualization of 3D mantle convection," Computational Science &

Engineering, IEEE, vol. 3, pp. 29-37, 1996.

[126] V. Rajaravivarma, P. K. Rajan, and H. C. Reddy, "Design of multidimensional

FIR digital filters using the symmetrical decomposition technique," Signal

Processing, IEEE Transactions on, vol. 42, pp. 164-174, 1994.

[127] E. Catmull and A. R. Smith, "3-D transformations of images in scanline order,"

Comput Graphics (ACM), vol. 14, pp. 279-285, 1980.

[128] H. Sungsoo, Z. Zhiyuan, K. Mueller, and S. Matej, "Efficiently GPU-

accelerating long kernel convolutions in 3-D DIRECT TOF PET reconstruction

via a kernel decomposition scheme," in 2010 IEEE Nuclear Science Symposium

Conference Record (NSS/MIC), pp. 2866-2867.

[129] D. Y. v. C. F. Kruggel, and X. Descombes, "Comparison of Filtering Methods

for fMRI Datasets," NeuroImage vol. 10, pp. 530–543, 1999.

[130] Y. Kobayashi, M. Hariyama, and M. Kameyama, "Optimal Periodic Memory

Allocation for Image Processing With Multiple Windows," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 17, pp. 403-416, 2009.

[131] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, "Low-Power Digital

Signal Processing Using Approximate Adders," Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 32, pp. 124-137,

2013.

