SYNTACTIC ANALYSIS OF LR(k) LANGUAGES

 NEWCASTLE UNIUERSITY LIERARY

 NEWCASTLE UNIUERSITY LIERARY

T. ANDERSON

Ph.D. Thesis
January 1972

University of Newcastle upon Tyne

Acknowledgements

I am very grateful for the encouragement of my supervisor, Dr. J. Eve, from whose suggestions and comments this thesis has derived much benefit.

Thanks must also go to my wife, who typed the draft, and Miss H. Bell, who typed the final version of the thesis.

Support for the research described here was received from the Science Research Council. The University of Newcastle upon Tyne aided the completion of the thesis.

Abstract

A method of syntactic analysis, termed $L A(m) L R(k)$, is discussed theoretically. Knuth's LR(k) algorithm is included as the special case $m=k$. A simpler variant, $\operatorname{SLA}(m) L R(k)$ is also described, which in the case $\operatorname{SLA}(k) \operatorname{LR}(0)$ is equivalent to the $\operatorname{SLR}(k)$ algorithm as defined by DeRemer. Both variants have the $L R(k)$ property of immediate detection of syntactic errors.

The case $m=1 k=0$ is examined in detail, when the methods provide a practical parsing technique of greater generality than precedence methods in current use. A formal comparison is made with the weak precedence algorithm.

The implementation of an $\operatorname{SLA}(1) \operatorname{LR}(0)$ parser (SLR) is described, involving numerous space and time optimisations. Of importance is a technique for bypassing unnecessary steps in a syntactic derivation. Direct comparisons are made, primarily with the simple precedence parser of the highly efficient Stanford AlgolW compiler, and confirm the practical feasibility of the SLR parser.

Contents

Chapter 1 Introduction 1
Chapter 2 Theory
Notation 6
Knuth's LR(k) algorithm 9
Table driven parsers 14
LR(k) parsing tables 16
Table sizes 20
LA(m)LR(k) parsing tables 23
SLA(m)LR(k) parsing tables 30
Minimal LR(k) parsing tables 32
The SLR and LALR algorithms 35
Error detection 41
Chapter 3 Precedence
Preliminary 44
Precedence parsers 46
Comparison of SLR and weak precedence 49
Weaker precedence 55
Chapter 4 Practice
Practical considerations 58
SLR parsing 59
Chain productions 63
LR(0) statesets 70
Table compaction 74
Inadequate statesets 82
Parsing tables for PL360 AlgolW and XPL 86
Timing the SLR parser 97
Chapter 5 Conclusion 103
Appendices Appendix 1 108
Appendix 2 119
References 146

Chapter 1

Introduction
In recent years, the problem of analysing the structure of computer programs written in high level programming languages has received considerable attention. Theoretical studies have been concerned mainly with methods of analysis dependent on the use of context free grammars to model the syntax of such languages. Syntactic analysis forms an important component of the process of compilation, and although context free grammars do not in general provide all of the information required for the analysis, they do give a formal specification which has proved extremely useful.

Research has been directed towards methods for constructing, from a given context free grammar, an algorithm capable of analysing any string generated by that grammar. These methods play an essential role in translator writing systems, and a number of existing techniques are discussed in the survey by Feldman and Gries (1968). Most of the methods which have been developed construct left to right analysis algorithms, and fall into two categories, referred to as top-down and bottom-up methods. This dissertation is concerned solely with methods in the latter category.

A few of the methods which have been devised, are capable of constructing analysers for any context free grammar, the best example being that of Earley (1971). For reasons of efficiency it is unfortunately necessary in practice to restrict choice to methods which are only applicable to subsets of the context free grammars.

The work of Floyd (1964) and Irons (1964) on bounded context grammars, and an algorithm due to Earley (1965) which transcended the concept of bounded context, led to the definition of LR(k) grammars by Knuth (1965). Knuth showed that the $L R(k)$ grammars (those analysable from left to right with only k symbols of lookahead) correspond with the deterministic languages of Ginsburg and Greibach (1966). To use the $\operatorname{LR}(k)$ method, a value for k must be chosen, and while $k=0$ does not give a sufficiently general method, the $L R(1)$ grammars appear to be adequate for most programming languages. Restriction to LR(1) grammars also aids a human user of the syntax. Although theoretically efficient, practical $L R(1)$ implementation founders on the magnitude of the tables needed to direct the analyser (while tables are not essential, in their absence the analyser is too slow).

Other theoretical techniques, notably the precedence group of methods, have met with practical success. Floyd (1963) describes an algorithm for operator precedence grammars. The restriction to operator grammars was removed by Wirth and Weber (1966), who defined simple precedence grammars. McKeeman (1966) considered practical ways of extending the generality of simple precedence techniques, while Gries (1968) combined the use of transition matrices with a precedence scheme for operator grammars. These methods are fast and efficient and have received extensive practical use, but they lack the generality of the $L R(k)$ algorithm, as well as being inferior in their error detection abilities.

In Chapter 2 of this dissertation, a generalisation of LR(k) is discussed, called $L A(m) L R(k)$, together with a simpler variant called SLA $(m) L R(k)$. Both have the $L R(k)$ property of immediate detection of syntactic errors, and for $m=k$ they are identical to the $L R(k)$ algorithm.

Methods are described for generating and minimising the size of the tables required by these techniques. Special attention is given to the LA(1)LR(0) and SLA(1)LR(0) algorithms (abbreviated LALR and SLR). Their generality, and the size of tables they require lie between those of $\operatorname{LR}(0)$ and $\operatorname{LR}(1)$.

Chapter 3 demonstrates the usefulness of the notation employed (based on that of Knuth) by making a formal comparison of SLR with precedence methods. This yields a characterisation of the precedence relations, and proves the inclusion of the weak precedence grammars within the SLR grammars, indicating to some extent the scope of the SLR algorithm.

Practical aspects of the $S L R$ method are stressed in Chapter 4. Of importance is the incorporation, within the SLR framework of a technique for bypassing unwanted steps in a syntactic derivation. This increases the speed of analysis, as does a process of eliminating parts of an SLR table which are $\operatorname{LR}(0)$ in behaviour. A number of methods for compacting $S L R$ tables are discussed, and a sequence for applying these methods is suggested. A scheme is described by which semantic routines may augment an $S L R$ analyser, to enable the use of non $S L R$ grammars if required. Experimental evaluations are made of the amount of storage needed for $S L R$ tables, and a comparative sequence of timings made between an SLR analyser and the simple precedence based syntactic analyser of the highly efficient Stanford AlgolW compiler.

The results of these experiments show that the SLR, and hence also LALR, algorithms can be made to compare very favourably with current methods, both in time and space requirements; in view of their greater generality (in accommodating a much larger subset of the context free grammars) and their ability to detect syntactic errors at the earliest possible point in an input string, the SLR and LALR algorithms should substantially replace current methods.

A brief history of the development of the LA(m)LR(k) algorithm follows.

In an attempt to obtain a practical algorithm of the $L R$ type, J. Eve devised a 'modified $L R(1)$ ' algorithm, and encoded (in PL/1 under 0.S. 360) a table constructor program for both this and full LR(1). Results from the programs being encouraging, the author continued this line of investigation, making the generalisation to 'modified $\operatorname{LR}(k)$ ' and implementing a more flexible table constructor (in AlgolW under MTS, see Appendix 2). Examination of table representations and compactions began.

In related work, Korenjak (1969) described the construction of an $L R(1)$ type of processor by means of an ad hoc partitioning of a grammar. A much stronger connection is present in the research described by DeRemer (1969) in his doctoral thesis. He discussed SLR(k) grammars, which were virtually equivalent to our 'modified LR(k)' grammars, although from a very different approach. In addition, he defined a class of grammars which he called LALR(k), but did not specify any algorithm for these. The definition involves an exact knowledge of the possible k symbol lookahead strings at every stage of an analysis.

This exact knowledge can be obtained from an $\operatorname{LR}(k)$ table, which can provide lookahead information for an otherwise $\operatorname{LR}(0)$ algorithm. A generalisation of this procedure would be to use an $L R(m)$ table to extend the lookahead of an otherwise $\operatorname{LR}(\mathrm{k})$ algorithm ($\mathrm{m} \geq \mathrm{k}$); this is the $L A(m) L R(k)$ algorithm. If a simpler alternative is adopted, that of computing the lookahead extension directly from the grammar, then we obtain $\operatorname{SLA}(m) L R(k)$. The case $\operatorname{SLA}(k) L R(0)$ corresponds to $\operatorname{SLR}(k)$.

The terminology $\operatorname{SLR}(k)$ has the disadvantage of indicating a nonexistent connection with $\operatorname{LR}(k)$, the only real link being with $\operatorname{LR}(0)$ independently of the value of k. The same misconception is evident in the phrase 'modified $L R(k)$ '; better would have been ' k modified LR(0)'. Similar comments apply to the term LALR(k).

Typographical Note
Care is needed on occasion in this thesis to distinguish between a subscript numeral 1 (e.g. X_{2}) and a subscript letter 1 (e.g. X_{1}).

Chapter 2

Notation

Let V be a set of symbols. A string on V is a finite sequence of symbols of V,

$$
\left\{x_{i} \in V\right\} \quad 1 \leq i \leq n \quad n \geq 0
$$

Such a string may be represented as $x_{1} x_{2} \ldots x_{n}$. If $n=0$ the sequence is called the empty string, which is represented by Λ.

If $\alpha=x_{1} x_{2} \ldots x_{n}$ is a string (on V), its length n is denoted by $|\alpha|$. Let $\alpha=x_{2} x_{2} \ldots x_{n}, \beta=y_{2} y_{a} \ldots y_{n}$ be strings. Their concatenation $x_{2} x_{2} \ldots x_{n} y_{2} y_{2} \ldots y_{m}$ is denoted by $\alpha \beta$. If A and B are sets of strings then their product $A B$ is the set of strings which consist of a string in A concatenated with a string in B, i.e.

$$
\mathrm{AB}=\{\alpha \beta \mid \alpha \in \mathrm{A}, \beta \in \mathrm{~B}\}
$$

The set of all strings on V is denoted by V^{*}. This is the smallest set which satisfies $V^{*}=V^{*} U\{\Lambda\}$. (V can be rearded as a set of strings, of length ${ }^{?}$, on itself. The lengths of the strings in V^{*} are unbounded, but finite.) V^{+}is the spallest set satisfying $\mathrm{V}^{+}=\mathrm{VV}^{+} \mathrm{U} V$; hence $\mathrm{V}^{+}=\mathrm{V}^{*} \backslash\{\Lambda\}$, and is the set of strings on V which have positive length.

A relation r on a set A is a subset of $A x A$. We write $(x, y) \in r$ as x r y. The equality relation on A will be denoted where necessary by $=_{A}$. If r and s are relations on A we define the relation rs by

```
x rs z iff x r y and y s z for some y \in A
```

The reflexive transitive completion of r is denoted by r^{*} and is the smallest relation satisfying $r^{*}=r r^{*} U^{\prime}={ }_{A}$. The transitive completion
of r is denoted by r^{+}, which is the smallest relation satisfying $\mathrm{r}^{+}=\mathrm{rr}^{+} \mathrm{U}^{\mathrm{r}}$. (If r is irreflexive we have $\mathrm{r}^{+}=\mathrm{r}^{*} \backslash=\mathrm{A}_{\mathrm{A}}$.)

A context free grammar ($C F G$) C is a 4-tuple, $G=\left(V_{N}, V_{T}, S, P\right)$. V_{N} and V_{T} are finite, disjoint sets of symbols; $V_{N} \cap_{V_{T}}=\varnothing$. We now let $V=V_{N} U V_{T}$ which is called the vocabulary of C. The elements of V_{N} are called nonterminals, those of V_{T} are terminals. S is a distinguished member of V_{N} called the principal nonterminal. P is a finite subset of $V_{N} x V^{*}$ whose elements are called the productions of $C_{f} . P$ is used to define the redation \rightarrow on V^{*} as follows. Given $\alpha, \beta \in V^{*}$, we have $\alpha \rightarrow \beta$ iff $\sigma, \tau \in V^{*}$ and $(A, \varphi) \in P$ such that $\alpha=\sigma A \tau$ and $\beta=\sigma \varphi \tau$. This definition ensures that $P \subseteq \rightarrow$, enabling us to denote a production (A, φ) by $A \rightarrow \varphi$. A is called the left hand side (LHS) and φ the right hand side (RHS) of the production $A \rightarrow \varphi$. If $\alpha, \beta \in V^{*}$ and $\alpha \stackrel{*}{\rightarrow} \beta$ then we must have that $\omega_{0}, \ldots, w_{n} \in V^{*}, n \geq 0$ such that

$$
\omega_{0}=\alpha, \underset{n}{\omega_{n}}=\beta \quad \text { and } \quad \omega_{1} \rightarrow \omega_{1+1} 0 \leq i<n
$$

The sequence $\omega_{0}, \ldots, \omega_{n}$ is called a derivation of β from α, and will usually be written as $\omega_{0} \rightarrow \omega_{1} \rightarrow \ldots \rightarrow \omega_{n} . \quad$ If $S \stackrel{*}{\rightarrow} \alpha$, then α is called a sentential form of C; in particular, if $\alpha \in V_{T}^{*}$ it is called a sentence of \mathcal{G}. The language generated by $\mathcal{F}_{\boldsymbol{f}}$ is the set of all sentences of \mathcal{G}, denoted by $L(G)$.

$$
L(G)=\left\{\alpha \in \mathrm{V}_{\mathrm{T}}^{*} \mid \mathrm{S} \stackrel{*}{\rightarrow} \alpha\right\}
$$

If the following condition holds, then G is said to be a reduced CFG.

$$
\forall \mathrm{X} \in \mathrm{~V} \exists \alpha, \beta, \omega \in \mathrm{~V}_{\top}^{*} \text { such that } \mathrm{S} \stackrel{*}{\rightarrow} \alpha \mathrm{X} \beta \stackrel{*}{\rightarrow} \omega
$$

This condition ensures that no member of V (nor of P) is redundant for the purpose of deriving the sentences of C_{6}

A CFG is said to have an endmarker if S occurs in exactly one production, which has the form $S \rightarrow \perp^{m} S^{\prime} i^{n} \quad m, n \geq 0$. $\left(x^{\circ}=\Lambda, x^{m}=x x^{-1} \quad m>0.\right) \quad$ The endmarker $\perp \in V_{T}$ and occurs in no other production. $S^{\prime} \in V_{N}$ and behaves similarly to the principal nonterminal, since in this case

$$
\mathrm{L}\left(\mathbb{C}_{\mathscr{G}}\right)=\left\{\perp^{m} \alpha \perp^{n} \mid \alpha \in \mathrm{V}_{\boldsymbol{T}}^{*}, S^{\prime} \xrightarrow{*} \alpha\right\}
$$

An arbitrary CFG can be amended so as to be reduced, and can be augmented with an endmarker, so we will restrict our attention to such reduced CFGs having endmarkers. They will be referred to simply as grammars.

Consider $\omega \in L\left(C_{f}\right)$. Since $S \xrightarrow{*} \omega$, we know there exists a derivation of ω from S, but this is not usually unique. If we insist that each stage of a derivation, the rightmost nonterminal is replaced, then the derivation is said to be canonical; this implies that each step is of the form

$$
\alpha A \beta \rightarrow \alpha \varphi \beta \quad \text { where } \alpha \in V^{*}, A \rightarrow \varphi, \beta \in V_{T}^{*}
$$

If any sentence of \mathcal{C} has two distinct canonical derivations then \mathbb{O} is ambiguous. We defin a parse to be synonomous with a canonical derivation. The problem of determining, for any string on V_{T}^{*} whether it is a sentence of \mathcal{G}, and if so specifying all parses of that sentence, is called the parsing problem for C_{f}. An algorithm which solves this problem (for C_{f}), is a parser (for G_{f}).

Two general techniques are available, known as top-down and bottom-up parsers respectively. The top-down approach starts with the principal nonterminal and attempts to find a sequence of productions with which to derive the given terminal string. (This does not give the canonical derivation, but this is merely a matter of definition.)

A bottom-up parser adopts the opposite strategy of examining the terminal string and trying to determine the sequence of productions which must hawe been used to derive it. If successful, the canonical derivation is found (in reverse order). The parsing methods described in this dissertation are all of the bottom-up variety; it is for this reason that we make the above definition of a parse.

We will use the following representation for the productions of an arbitrary grammar. Let s be the number of productions in P, then

$$
P=\left\{A_{1} \rightarrow X_{i 2} X_{i z} \cdots X_{i n} \mid 0 \leq i \leq s\right\}
$$

Productions can be referred to by their indices in this scheme, thus the length of the RHS of production i is n_{1}, and therefore $n_{1} \geq 0$ for $0 \leq i \leq s$. For convenience we assume that $A_{0}=S$, the principal nonterminal.

Knuth's LR(k) Algorithm

The methods of this dissertation are based on the bottom-up parsing technique described by Knuth (1965). To facilitate comparison, this section repeats that description. The following definitions are needed.

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{k}}(\alpha)=\left\{\beta \in \mathrm{V}_{\mathrm{T}} *\left|\alpha \xrightarrow{*} \beta,|\beta|<\mathrm{k} \quad \text { or } \quad \alpha \xrightarrow{*} \beta \gamma,|\beta|=\mathrm{k}, \gamma \in \mathrm{~V}^{*}\right\}\right. \\
& H_{k}^{\prime}(\alpha)=\left\{\beta \in H_{k}(\alpha) \mid \text { no step in the derivation of } \beta \text { from } \alpha\right. \text { is } \\
& \text { of the form } A \omega \rightarrow \omega \text { where the leading } \\
& \text { nonterminal is replaced by } \Lambda
\end{aligned}
$$

The fundamental notion of a state is denoted by $[p, j ; \alpha]$, where $0 \leq p \leq s, 0 \leq j \leq n_{p}, \alpha \in V_{T}{ }^{*}$. At any stage of parsing a terminal string, we will be in a stateset \mathcal{S}, which is a set of such states. If $[p, j ; \alpha] \in S$, this indicates that the first j symbols of the RHS of the $p^{\text {th }}$ production have been recognised, and that if the production is completed, it could legitimately be followed by α.

Two weak constraints are imposed on grammars. Firstly, we require that $S^{\prime} \xrightarrow{\leftrightarrows} S^{\prime} \alpha$ is not possible for any $\alpha \in V^{*}$, and secondly that
the $0^{\text {th }}$ production is taken to be $S_{\rightarrow} S^{\prime} \perp^{k}\left(S \rightarrow S^{k} \perp\right.$ if $\left.k=0\right)$; this is normal when considering $\operatorname{LR}(k)$ techniques. Denote the string to be parsed by $x_{1} \ldots x_{m}$, whose last k symbols are \perp^{k}. Let i indicate the first uninspected symbol of this string, and begin parsing with $i=k+1$.

During the parse, a stack of statesets $\mathcal{S}_{0} \mathcal{S}_{1} \ldots \mathcal{S}_{\mathrm{n}}$ is maintained. The initial stateset $\mathscr{S}_{0}=\{[0,0 ; \Lambda]\}$. With the stack as shown, the parser is in stateset $S=\mathcal{S}_{n}$ and proceeds inductively to stateset $\mathcal{S}_{\mathrm{n}+1}$ as follows.

Step 1
Define the closure S^{\prime} of S recursively as the smallest set satisfying,

$$
\begin{aligned}
& S^{\prime}=S \cup\left\{[q, 0 ; \beta] \mid \exists[p, j ; \alpha] \in S^{\prime}, j<n_{p}, X_{p, j+1}=A_{q}\right. \\
&\text { and } \left.\beta \in H_{x}\left(X_{p, j+2} \cdots X_{p n} \alpha\right)\right\}
\end{aligned}
$$

Step 2
Compute the following sets:

$$
\begin{aligned}
& Z=\left\{\beta \mid \exists[p, j ; \alpha] \in S^{\prime}, j<n_{p}, \beta \in H_{k}^{\prime}\left(X_{p, j+1} \cdots X_{p n_{p}} \alpha\right)\right\} \\
& Z_{p}=\left\{\alpha \mid\left[p, n_{p} ; \alpha\right] \in S^{\prime}\right\}, 0 \leq p \leq s
\end{aligned}
$$

We inspect the string $x_{i-k} \ldots x_{1-1}=\omega$. Assuming that the above sets are mutually disjoint, ω must lie in one of them, or the input string is invalid. If $\omega \in Z$, we let $Y=X_{i \neq k}$, increment i by one and continue with Step 3. If $\omega \in Z_{p}$, we decrement n by n_{p},
 Step 3

Compute the next stateset δ_{n+1} as $S_{n+1}=\left\{[p, j+1 ; \alpha] \mid[p, j ; \alpha] \in S_{n}^{\prime} \quad\right.$ and $\left.X_{p, j+1}=Y\right\}$ If $S_{n+1}=\{[0,1 ; \Lambda]\}$ the parse is complete and i should be $m+1$. Otherwise we have completed an inductive step on n, and the algorithm proceeds from Step 1.
(This description is equivalent to Knuth's, except as regards notation.)
The closure operation on statesets specified in Step 1 adds to a stateset states of the form $[q, 0 ; \beta]$. These states represent those productions whose RHS we could begin to recognise when in that stateset.

The string ω is the lookahead string; symbols to the left of ω in the input are regarded as having been read in. The elements of Z are those strings which indicate that no complete applicable RHS has yet been found, and that we must read in another symbol. This is done by adding one to i, and is called a shift operation. Strings in Z_{p} indicate that the RHS of production p has been recognised, a nd that we should remove n_{p} statesets from the stack. The removal of these stack elements is called a reduce p operation. Notice that the use of H_{k}^{\prime} in the definition of Z permits the recognition of RHSs with length 0 .

The stateset δ_{n+1} contains states which represent either a new symbol read in, or the LHS of a production used to reduce the stack. It can be seen that with any stateset S generated by Step 3, a symbol $X \in V$ can be associated, with the property that, if $[p, j ; \alpha] \in S$ then $X_{p J}=X$. This symbol X is called the associated symbol of B. Step 2 of the algorithm determines Y, which is the associated symbol of g_{n+1}. A reduce p operation removes statesets from the stack which havè as their associated symbols the RHS of production p. (The only stateset used in parsing which is not generated by Step 3 is the initial stateset. If necessary, we can regard Λ as an associated symbol for $\left.S_{0}.\right)$

The presence of the k endmarkers at the end of the input string ensures that the input is not exhausted, since they can only be valid lookahead symbols in the case that we are indeed parsing a sentence, and then the algorithm terminates with stateset $\{[0,1 ; \Lambda]\}$.

If in Step 2 we find that ω belongs to more than one of the sets $\mathrm{Z}, \mathrm{Z} \mathrm{Z}_{\mathrm{p}} 0 \leq \mathrm{p} \leq \mathrm{s}$ then the algorithm fails, since it cannot resolve which operation is to be applied to determine Y. If we know that for every stateset which can arise when parsing any sentence generated by \mathcal{G}, application of Steps 1 and 2 gives rise to sets $Z, Z_{p} 0 \leq p \leq s$ which are mutually disjoint, then \mathcal{G} is said to be an $\underline{L R(k)}$ grammar.

A grammar which is $\operatorname{LR}(k)$ must be unambiguous, since the existence of two distincit canonical derivations would ensure the algorithmis failure. An $\operatorname{LR}(k)$ language is a language which can be generated by some $\operatorname{LR}(k)$ grammar.

We now consider a very simple example grammar C_{1}, with productions

0	$S \rightarrow A \perp$
1	$A \rightarrow B d$
2	$A \rightarrow e \mathrm{C}$
$S=3$	$B \rightarrow e$

Observe that this specifies, the principal nonterminal as S, V_{N} and V_{T} (and hence G_{1}).

$$
V_{N}=\{S, A, B\} \quad V_{T}=\{d, e, \perp\} \quad L\left(G_{L}\right)=\{\text { ee } \perp, \text { ed. } \perp\}
$$

Suppose we wish to parse ed \perp, using the $L R(1)$ algorithm.
We have $m=3, \quad i=2, \quad n=0, \quad S_{0}=\{[0,0 ; \Lambda]\}$
$[0,0 ; \Lambda] \in \mathcal{S}_{0}^{\prime}, 0<n_{0}=2, X_{01}=A=A_{1}=A_{z}, H_{2}\left(X_{02}\right)=\{\perp\}$
so we add $[1,0 ; 1]$ and $[2,0 ; \perp]$ to S_{0}^{\prime}
$[1,0 ; \perp] \in S_{0}^{\prime}, 0<n_{1}=2, X_{11}=B=A_{3}, H_{1}\left(X_{12} \perp\right)=\{d\}$
so we add $[3,0 ; d]$ to g_{0}^{\prime}.

Since $X_{21}=e$ and $X_{31}=e$ no further additions are made from $[2,0 ; 1]$ and $[3,0 ; d], 8_{0}^{\prime}$ is completed.
where beneath $[p, j ; \alpha]$ we have written $X_{p, j+1}$.
Clearly $Z=\{e\}$ and $Z_{p}=\varnothing 0 \leq p \leq 3$
Since $i=2, \omega=e$ and $\omega \in Z$. So let $i=3, Y=e \quad n$ becomes 1 and
$S_{n}=\{[2,1 ; \perp],[3,1 ; \mathrm{d}]\}$
$\mathcal{S}_{\mathrm{n}}^{\prime}=\mathcal{S}_{\mathrm{n}}$, and now $\mathrm{Z}=\{\mathrm{e}\}, \mathrm{Z}_{3}=\{\mathrm{d}\}, \mathrm{Z}_{\mathrm{p}}=\emptyset \quad 0 \leq \mathrm{p} \leq 2$
$i=3, \omega=d$ and $\omega \in Z_{3} . n$ is reduced by $n_{3}=1$. So $n=0, Y=A_{3}=B$
n becomes 1 and $\mathrm{S}_{\mathrm{n}}=\{[1,1 ; \perp]\}$ (computed from \mathbb{S}_{0}^{\prime})
$\mathcal{S}_{n}^{\prime}=\mathcal{S}_{\mathrm{n}}, \mathrm{Z}=\{\mathrm{d}\}, \mathrm{Z}_{\mathrm{p}}=\varnothing 0 \leq \mathrm{p} \leq 3$
$i=3, \omega=d, \omega \in Z . \quad$ So let $i=4, Y=d$
n becomes $2 \mathrm{~S}_{\mathrm{n}}=\{[1,2 ; \perp]\} \quad \mathrm{S}_{\mathrm{n}}^{\prime}=\mathrm{S}_{\mathrm{n}}, \mathrm{Z}_{2}=\{\perp\} \quad \mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{a}}=\mathrm{Z}_{3}=\mathrm{Z}=\varnothing$
$i=4, \omega=\perp, \omega \in Z_{1} \quad n$ is reduced by $n_{1}=2$. So $n=0, Y=A_{2}=A$
n becomes $1 \mathcal{g}_{n}=\{[0,1 ; \Lambda]\}$ and the parse is complete with $i=m+1$.
The sequence of reduce operations was reduce 3 , reduce 1 . When taken in reverse order, and preceded by a reduce O (which is always the initial step in a derivation), they specify the parse

$$
\mathrm{S} \rightarrow \mathrm{~A} \perp \rightarrow \mathrm{Bd} \perp \mathrm{ed} \perp
$$

The only other stateset which can arise (when parsing ee \perp) is $S=\{[2,2 ; \perp]\}$, for which $\mathcal{S}^{\prime}=S, Z_{2}=\{\perp\}, \quad Z_{0}=Z_{2}=Z_{3}=Z=\emptyset$.
This shows that G_{1} is $\operatorname{LR}(1)$.
Let C_{1}^{\prime} have productions $S \rightarrow A_{\perp} A \rightarrow e d A \rightarrow e$ and let
$G_{1}^{\prime \prime}$ have productions $S \rightarrow A \perp \perp \quad A \rightarrow B$ ed $A \rightarrow C$ e e $B \rightarrow \Lambda \quad C \rightarrow \Lambda$. Then $L\left(G_{1}\right)_{\perp}=L\left(G_{1}^{\prime}\right) \perp=L\left(G_{1}^{\prime \prime}\right)$, but G_{2}^{\prime} is $L R(0)$ and $G_{1}^{\prime \prime}$ is $L R(2)$. Knuth showed that for any language which has an $L R(k)$ grammar (with endmarker) we can find an $L R(0)$ grammar generating the language.

Table Driven Prisers

The above flow diagram describes a generalised bottom-up parser which will serve as a basis for all the algorithms discussed here. F is a stack to which n is the pointer; Initial is the first element on this stack. Tha input string is now denoted by I, and i^{\prime} indicates the first unread symbol. The procedure ACTION determines at each stage in the parse what the next operation of the parser should be; procedure NEXT computes the next element to be placed on the stack. The algorithm terminates when Final is first placed on the stack.

W is merely a work variable.
The contents of the flow diagram boxes are written in pseudo Algol, in which the algorithm may be programmed as

$$
\begin{aligned}
& \mathrm{n}:=0 ; \mathrm{i}^{\prime}:=1 ; \quad \mathrm{F}[0]:=\operatorname{Initial} ; \mathrm{W}:=\operatorname{ACTION}(\mathrm{F}, 0, \mathrm{I}, 1) ; \\
& \text { while } \mathrm{W}=\text { reduce } \mathrm{p} \text { or } \mathrm{W}=\text { shift } \text { do }
\end{aligned}
$$

begin if $W=$ shift then

begin $F[n+1]:=\operatorname{NEXT}\left(F, n, I\left[i^{\prime}\right]\right) ; n:=n+1 ; i^{\prime}:=i^{\prime}+1$ end else
begin $n:=\underset{p}{n-n_{p}} ; F[n+1]:=\operatorname{NEXT}\left(F, n, A_{p}\right) ; n:=n+1$ end; $W:=$ if $F[n]=$ Final then success else $\operatorname{ACTION}\left(F, n, I, i^{\prime}\right)$ end;

This algorithm will parse using precedence methods, which are to be discussed later, or it can perform $L R(k)$ parsing if we make the following specification.

Stack elements are statesets, with Initial $=S_{0}$ and Final $=\{[0,1 ; \Lambda]\}$ $i^{\prime}=i-k, A C T I O N$ determines W from $F[n]$ and $I\left[i^{\prime}\right] \ldots I[i-1]$ (the lookahead string), by means of Steps 1 and 2. NEXT computes the next stateset from $F[n]$ and either A_{p} or $I\left[i^{\prime}\right]$ as described in Step 3.

The restriction of the domain of ACTION to 1 stack element and k input symbols, and that of NEXT to 1 stack element and 1 symbol, in the $\operatorname{LR}(k)$ method, together with the fact of there only being a finite number of possible statesets and lookahead strings, enables us to consider computing a table providing the results of ACTION and NEXT for all values of their parameters.

The efficiency of the parser is greatly improved by such a table since the calculation involved in Steps 1, 2 and 3 is replaced by a simple table look-up mechanism. A parser using such techniques is said to be table driven.

LR(k) Parsing Tables
Knuth's algorithm can be modified to produce tables which will drive the above parser, and this was described in detail by Korenjak (1969). We give an alternative description.

Let S be a stateset (for some grammar \mathcal{C}). The β successor of \mathcal{S} is denoted by $\mathcal{S} \beta$ and defined for all $\beta \in V^{*}$ as follows.

$$
\begin{aligned}
& S Y=\left\{[p, j+1 ; \alpha] \mid[p, j ; \alpha] \in \delta^{\prime}, j<n_{p}, X_{p, j+1}=Y\right\} Y \in V \\
& S \Lambda=\mathscr{S} \text { and } S \beta=(g Y) Y \text { where } \beta=Y Y
\end{aligned}
$$

Observe that if g is a stateset which can arise during the parsing of a sentence of \mathcal{G}, then $\exists \alpha \in V^{*}$ such that $S_{=} S_{0} \alpha$ (take α as the sequence of associated symbols of the statesets on the stack when $\delta i s$ first placed on the stack). So we may define the stateset table \mathcal{J} (of \mathcal{C}) as the smallest family of statesets satisfying

$$
J=\left\{S_{0}\right\} \cup\{S X \mid S \in J, Y \in V\}
$$

For any grammar, $\mathcal{S}_{0},\{[0,1 ; \Lambda]\}, \emptyset$ are elements of J. \emptyset has the property $\emptyset Y=\varnothing \forall Y \in V$ and corresponds to the error situation of the input not being a sentence of \mathcal{C}.

I can be formed by the following iterative method. Let T be the statesets $\left\{S_{0}, \ldots, S_{n}\right\}$, of which j have been considered. Initially $\mathrm{n}=\mathrm{j}=0$.

While $\mathbf{j} \leq \mathrm{n}$ perform the following,
Compute \mathcal{S}_{j} ' and from it $\mathcal{S}_{j} Y$ for each $Y \in V$.
If $\mathcal{S}_{j} Y \notin T$ then add $\mathcal{S}_{j} Y$ to T as $\mathcal{S}_{\mathrm{n}+1}$ and increase n by one. Increase \mathbf{j} by one.

On completion of the above we will have $T=J$, and we can use the term stateset j to refer to \mathcal{S}_{j} in the table T.

Corresponding to each stateset \mathcal{S} in J we require a parsing-state $R(8)$ (which should not be confused with the states in a stateset). If $Z, Z_{p} 0 \leq p \leq s$ are as specified in Step 2 of the $L R(k)$ algorithm, then

$$
\begin{aligned}
R(\mathscr{g})= & \left\{(\alpha, \text { reduce } p) \mid \alpha \in Z_{p}\right\} \\
& U\{(\alpha, \text { shift }) \mid \alpha \in Z\} \\
& U\left\{(Y, \text { goto } i) \mid \exists[p, j ; \alpha] \in S^{\prime}, j<n_{p}, Y=X_{p, j+1}, S Y=g_{1}\right\}
\end{aligned}
$$

Shift and reduce type pairs are used to determine ACTION, while those of the goto type determine NEXT. Clearly, the $L R(k)$ parsing table (for \mathcal{C}) is given by

$$
\{R(\mathrm{~g}) \mid \mathrm{g} \in \mathrm{~J}\} .
$$

A stateset g is said to be adequate if the following conditions hold.

$$
\begin{aligned}
(\alpha, \text { shift }),(\beta, \text { reduce } p) & \in R(\delta) \text { must imply } \alpha \neq \beta \\
(\beta, \text { reduce } p),(\beta, \text { reduce } q) & \in R(g) \text { must imply } p=q
\end{aligned}
$$

Any stateset for which one of these conditions does not hold is said to be inadequate. A grammar is $L R(k)$ iff every stateset in \mathcal{J} is adequate. If we have computed the parsing table, we need not retain information about the statesets in J, and they may be discarded.

The $\operatorname{LR}(1)$ stateset table and parsing table for \mathcal{C}_{1} are given as an example.

$$
\begin{aligned}
& S_{0}=\{[0,0 ; \Lambda]\} \quad S_{0} \perp=g_{0} c=S_{0} d=S_{1} \quad S_{0} A=S_{2} \quad S_{0} B=S_{3} \quad g_{0} e=S_{4} \\
& S_{1}=\emptyset \quad S_{2} Y=S_{1} \forall Y \in V \\
& S_{z}=\{[0,1 ; \Lambda]\} \quad S_{z^{\perp}}=g_{5} \quad S_{z} Y=S_{1} \quad \forall Y \in V \backslash\{\perp\} \\
& \mathcal{S}_{3}=\{[1,1 ; 1]\} \quad S_{3} d=\mathcal{S}_{6} \quad f_{3} Y=S_{1} \quad \forall Y \in V \backslash\{d\} \\
& \mathcal{S}_{4}=\left\{[2,1 ; 1]_{\downarrow}[3,1 ; d]\right\}{\underset{4}{e}} e=S_{7} S_{4} Y=\mathcal{S}_{1} \forall Y \in V \backslash\{e\} \\
& \mathcal{S}_{5}=\{[0,2 ; \Lambda]\} \mathcal{S}_{5} Y=S_{1} \forall Y \in V \\
& \mathcal{S}_{6}=\{[1,2 ; 1]\}_{6} Y=S_{1} \forall Y \in V \\
& \mathcal{S}_{7}=\{[2,2 ; 1]\} \mathcal{S}_{7} Y=S_{i} \forall Y \in V \\
& R\left(\mathcal{S}_{0}\right)=\{(e, \text { shift }),(A, \text { goto } 2),(B, \text { goto } 3),(e, \text { goto } 4)\} \\
& R\left(S_{1}\right)=\varnothing \\
& R\left(S_{z}\right)=\{(\perp, \text { shift }),(\perp, \text { goto } 5)\} \\
& R\left(\mathcal{S}_{3}\right)=\{(\mathrm{d}, \text { shift }),(\mathrm{d}, \text { goto } 6)\} \\
& R\left(\mathbb{S}_{4}\right)=\{(\text { d, reduce } 3),(e, \text { shift }),(e, \text { goto } 7)\} \\
& R\left(\mathbb{S}_{5}\right)=\{(\Lambda \text {, reduce } 0)\} \\
& R(\underset{i \in}{\mathcal{S}})=\left\{\left({ }_{\perp}, \text { reduce } 1\right)\right\} \\
& R\left(\mathbb{S}_{7}\right)=\{(\perp, \text { reduce } 2)\}
\end{aligned}
$$

Three of these parsing-states, $R\left(\mathcal{S}_{1}\right), R\left(S_{2}\right)$ and $R\left(S_{5}\right)$ are not used by the parser. \mathcal{S}_{2} is the error stateset and $S_{\&}$ the final stateset; on the se the algorithm halts. $R\left(\mathbb{S}_{3}\right)$ and $R\left(\mathbb{S}_{5}\right)$ are not required, since they merely read the endmarker and recogrise production 0 respectively. If we had defined J by the equation

$$
J=\left\{g_{0}\right\} \cup\{S Y \mid S \neq\{[0,1 ; \Lambda]\}, S \in T, Y \in V\}
$$

statesets having \perp as their associated symbol would have been eliminated, which is convenient in practice.

Suppose (x,goto i) $\in R(\mathcal{S})$ in some $L R(k)$ parsing table with $x \in V_{T} . \quad$ If $k>0$ then

$$
\begin{array}{r}
\left(x \alpha_{1}, \operatorname{shift}\right), \ldots,\left(x \alpha_{n}, \operatorname{shift}\right) \in R(S) \quad \alpha_{j} \in V_{T}^{*},\left|\alpha_{j}\right|=k-1,1 \leq j \leq n \\
n \geq 1(\text { if } k=1 \text { then } n=1)
\end{array}
$$

If $k=0$ we have $(\Lambda$, shift $) \in R(S)$. These entries specify that a shift operation is to be performed apd that the stateset which is next to be entered is S_{1}. A more convenient representation would be to combine the entries as

$$
\begin{array}{cl}
\left(x \alpha_{2}, \operatorname{shift} i\right), \ldots,\left(x \alpha_{n}, \text { shift } i\right) & \text { if } k \geq 1 \\
(x, \operatorname{shift} i) & \text { if } k \leq 1
\end{array}
$$

Certainly this does not reduce the information contained in $R(S)$.
We can formalise this by defining

$$
\begin{aligned}
R^{\prime}(S)= & \left\{(\alpha, \text { reduce } p) \mid \alpha \in Z_{p}\right\} \\
& \cup\left\{\left(\alpha, \text { shift i) } \mid \alpha=x \gamma, \alpha \in Z^{\prime}, S x=\delta_{1}\right\}\right. \\
& \cup\left\{(A, \text { goto } i) \mid \exists[p, j ; \alpha] \in S^{\prime}, j<n_{p}, A=X_{p, j+1}, A \in V_{N}, S A=g_{1}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& z^{\prime}=\left\{\beta \mid \exists[p, j ; \alpha] \in S^{\prime}, j<n_{p}, B=x Y, x=X_{p, j+1}, x \in V_{T},\right. \\
&\text { if } \left.k=0 \text { then } \gamma=\Lambda \text { else } \gamma \in H_{k-1}\left(X_{p, j+b} \cdots X_{p n_{p}} \alpha\right)\right\}
\end{aligned}
$$

In appendix 1 (1.1) we show that when $k \geq 1$ we have $Z^{\prime}=Z$ (defined in Step 2 of the Knuth algorithm). The definition of Z^{\prime} simplifies the calculation of Z (particularly so when $k=1$), and avoids the use of sets $H_{k}^{\prime}(\alpha)$.

Our use of $R^{\prime}(S)$ to provide an alternative (preferable) parsing table indicates the way in which $k=1$ and $k=0$ can be considered as special cases of the $L R(k)$ algorithm. When $k=1$, the (x, shift) and (x,goto i) entries in $R(\$)$ correspond exactly; when $k=0$, because the lookahead is now less than the single terminal used to determine the next stateset, (Λ,shift) corresponds to all the terminal goto entries. Moving to $R^{\prime}(8)$ for an $L R(0)$ parsing table gives shift entries the appearance of being $\operatorname{LR}(1)$ in nature (which they are not - if $k=0$ and R^{\prime} (S$)$ contains shift entries and reduce entries then it is inadequate).

Table Sizes

In this section we discuss the way in which stateset tables increase in size with k. The example grammar already considered gives no indication of this since an $\operatorname{LR}(0)$ table for \mathcal{C}_{2} has the same number of statesets as its $\operatorname{LR}(1)$ table. The grammar \mathcal{C}_{2}, which has productions

0	S	\rightarrow	A \perp
1	A	\rightarrow	a A b
$\mathrm{s}=2$	A	\rightarrow	a

has $\operatorname{LR}(0)$ statesets

$$
\begin{aligned}
& S_{0}=\{[0,0]\} \quad S_{1}=\emptyset \quad S_{3}=\{[0,1]\} \quad S_{3}=\{[1,1],[2,1]\} \quad S_{4}=\{[0,2]\} \\
& S_{5}=\{[1,2]\} \quad S_{6}=\{[1,3]\} \quad \text { (where we abbreviate } \\
& {[p, j ; \Lambda] \text { by }[p, j]), }
\end{aligned}
$$

and $\operatorname{LR}(1)$ statesets

$$
\begin{aligned}
& g_{1}=\{[0,0 ; \Lambda]\} \quad s_{1}=\emptyset \quad f_{3}=\{[0,1 ; \Lambda]\} \quad g_{3}=\{[1,1 ; 1],[2,1 ; 1]\} \\
& \mathcal{S}_{4}=\{[0,2 ; \Lambda]\}{\underset{S}{5}}^{S_{2}}\{[1,2 ; 1]\} \quad \mathrm{S}_{6}=\{[1,3 ; 1]\} \\
& S_{7}=\{[1,1 ; b],[2,1 ; b]\} S_{8}=\{[1,2 ; b]\} \quad S_{9}=\{[1,3 ; b]\}
\end{aligned}
$$

The three additional statesets in the $L R(1)$ table are due to the
 right contextual information. The following lemma shows that this type of behaviour is always the case.

First define $H_{k}(\mathcal{B})$ for a stateset S by

$$
H_{k}(\mathcal{S})=\left\{[p, j ; \alpha] \mid[p, j ; \beta] \in S, \quad \alpha \in H_{k}(\beta)\right\}
$$

Lemma 1

 J_{k}, for the same grammar, where $k \leq m$, is such that

$$
J_{k}=\left\{H_{k}(S) \mid \delta \in \mathbb{N}_{m}\right\}
$$

Let $\delta_{O_{m}} \in T_{m}$ and $\delta_{O_{x}} \in_{k}$ be the respective initial statesets.
Certainly $H_{k}\left(S_{O_{m}}\right)=S_{O_{k}}$.
Suppose $\mathcal{S}_{\mathrm{m}} \in \mathcal{T}_{\mathrm{m}}$ and $\mathrm{S}_{\mathrm{k}} \in \mathcal{T}_{\mathrm{k}}$ with $\mathrm{H}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{m}}\right)=\mathrm{S}_{\mathrm{k}}$.

Now, for any $S \in \mathcal{J}_{\mathrm{m}}, S=S_{\mathrm{O}_{\mathrm{I}}} \alpha$ for some $\alpha \in \mathrm{V}^{*}$, and so

$$
\begin{aligned}
& H_{k}(S)=H_{k}\left(S_{O_{m}} \alpha\right)=S_{O_{k}} \alpha \in J_{k} \\
& \therefore\left\{H_{k}(S) \mid S \in J_{m}\right\} \subseteq \mathcal{J}_{k}
\end{aligned}
$$

Similarly, for any $\mathscr{E} \in \mathcal{J}_{k}, S=\mathcal{S}_{O_{k}} \alpha$ for some $\alpha \in V^{*}$, and so

$$
\begin{aligned}
& S_{i=}^{G_{O k}} \alpha=H_{k}\left(S_{O_{m}} \alpha\right) \text { and } \mathcal{S}_{O_{m}} \alpha \in J_{k} \\
& \therefore \mathcal{J}_{k} \subseteq\left\{H_{k}(\mathscr{S}) \mid S \in J_{k}\right\}
\end{aligned}
$$

and we have our result.
The lemma indicates how an $\operatorname{LR}(k+1)$ table can be considered to be built up from an $\operatorname{LR}(k)$ table, each of the $L R(k)$ statesets being refined, by additional right contextual information, to a number of $\operatorname{LR}(k+1)$ statesets. Also, we see the way in which the increase in the number of statesets can be exponential with k.

The importance of lemma 1 will become apparent in the next section, to which it is basic. A more detailed proof is given in appendix $1(1.2)$.

It is reasonable to ask why we should be concerned with $k>0$ at all since, as already noted, all $L R(k)$ languages are $L R(0)$. The reason is to be found in the size of the $L R(0)$ grammars required and of the transformations needed to produce them. Grammars which arise naturally as models for programming languages are not normally $L R(0)$, and for such grammars even ah LR(1) parsing table is usually prohibitively large. To put this in perspective, a run of a program to generate an LR(1) table for an Algol 60 grammar was terminated when the $10000^{\text {th }}$ parsing-state entry was produced. At this point, over 1200 statesets had been generated.

Recently, Pager (1970) and Aho and Ullman (to be published) have considered ways of reducing the magnitude of $L R(k)$ tables. Pager minimises the number of statesets required, but does not maintain the error detection capabilities of the $\operatorname{LR}(k)$ algorithm (which are to be discussed subsequently); Aho and Ullman are developing a formal treatment of the reduction of $\mathrm{LR}(\mathrm{k})$ tables by such techniques as eliminating unnecessary entries, and merging compatible parsing-states.

An alternative approach, adopted by Korenjak (1969) and DeRemer (1971), is to develop modifications to the original $L R(k)$ algorithm which give rise to smaller tables. Korenjak suggests partitioning the grammar into a number of smaller parts and ustig an $\operatorname{LR}(k)$ subparser for each part; DeRemer extends the capability of an $\operatorname{LR}(0)$ parser to give an algorithm which he calls $\operatorname{SLR}(k)$.

A major drawback to the straightforward $L R(k)$ scheme is that the parameter k performs two functions. It specifies both the amount of right context to be used in the formation of the statesets, and also, the amount of lookahead which will be permitted at parse time. Thus, for the grammar C_{2}, which is not $L R(0)$, we must produce an $L R(1)$ table having three more statesets than are necessary. The reason for the $L R(0)$ table's inadequacy is to be found in $\mathcal{S}_{3}=\{[1,1],[2,1]\}$. Here we have

$$
\begin{aligned}
& \mathbb{S}_{3}^{\prime}=\{[1,1],[2,1],[1,0],[2,0]\}, \\
& R^{\prime}\left(\mathcal{S}_{3}\right)=\{(\Lambda, \text { reduce } 2),(\text { a, shift } 3),(\text { A, goto } 5)\}
\end{aligned}
$$

and cannot tell whether the reduce or shift operation is to be applied. This is rectifipd in the $\operatorname{LR}(1)$ table where

$$
\begin{aligned}
& S_{3}^{\prime}=\{[1,1 ; \perp],[2,1 ; \perp],[1,0 ; b],[2,0 ; b]\}, \\
& R^{\prime}\left(S_{3}\right)=\{(\perp, \text { reduce } 2),(a, \text { shift } 7),(A, \text { goto } 5)\}
\end{aligned}
$$

and for the duplicate state \mathcal{S}_{7},

$$
\begin{aligned}
& \mathscr{S}_{7}^{\prime}=\{[1,1 ; b],[2,1 ; b],[1,0 ; b],[2,0 ; b]\}, \\
& R^{\prime}\left(\mathscr{S}_{7}\right)=\{(b, \text { reduce } 2),(a, \text { shift } 7),(A, \text { goto } 8)\} .
\end{aligned}
$$

It can now be seen that replacing the (Λ, reduce 2) entry in the $\operatorname{LR}(0)$ table by entries (b,reduce 2) and (\perp, reduce 2), would have been sufficient to provide a parser, without incurring the overhead of statesets \mathcal{S}_{7}, S_{8} and \mathscr{S}_{9}. These extra statesets, in fact make no contribution to the resolution of the $\operatorname{LR}(0)$ inadequacy, which is due entirely to the provision of one symbol lookahead for the reduce 2 operation. This observation supgests a parser having an $\operatorname{LR}(0)$ stateset table, but with one symbol of lookahead added subsequently to the parsing table.

In the next section we consider the generalisation of this to the calculation of $L R(k)$ stateset tables from which can be formed m symbol lookahead parsing tables.

LA(m)LR(k) Parsing Tables

Informally, an $\operatorname{LA}(\mathrm{m}) \mathrm{LR}(\mathrm{k})$ parsing table is based on an $\operatorname{LR}(\mathrm{k})$ stateset table, but its m symbol lookahead may be considered to be derived from an $\operatorname{LR}(m)$ stateset table. Because of this, the lookahead is correct in the sense that none of the context is redundant; no better m symbol lookahead information could be used. We will normally require $m \geq k$ when considering $L A(m) L R(k)$ techniques; the situation when $m \leq k$ is equivalent to $\overline{\Delta R(m)}$ by virtue of Temma 1.

We define an equivalence relation \sim on the members of an $\operatorname{LR}(m)$
stateset table by

$$
S_{I} \sim S_{z} \quad \text { iff } \quad H_{k}\left(S_{i}\right)=H_{k}\left(S_{z}\right)
$$

and denote the equivalence classes induced under \sim by B_{o}, \ldots, B_{r} (for consistency, let $S_{0} \in B_{0}$, and then $B_{o}=\left\{S_{o}\right\}$). Take the $L A(m) L R(k)$ parsing states to be specified by

$$
\begin{aligned}
R\left(B_{1}\right)= & \left\{(\alpha, \text { reduce } p) \mid(\alpha, \text { reduce } p) \in R^{\prime}(S), S \in B_{i}\right\} \\
& U\left\{(\alpha, \text { shift } j) \mid(\alpha, \text { shift } 1) \in R^{\prime}(S), g \in B_{i}, S \in B_{j}\right\} \\
& \cup\left\{(A, \text { goto } j) \mid(A, \text { goto } 1) \in R^{\prime}(S), S \in B_{1}, S_{1} \in B_{j}\right\}
\end{aligned}
$$

for $0 \leq i \leq r$. Equivalently, we could form an $L A(m) L R(k)$ stateset table from an $L R(m)$ table by

$$
\mathcal{S}_{1}=\left\{[p, j ; \alpha] \mid[p, j ; \alpha] \in \mathcal{S}, \mathcal{S} \in \mathrm{B}_{i}\right\} 0 \leq i \leq r
$$

and form a parsing table from this almost as though it were an $L R(m)$ stateset table. The only difference is that $S Y$ is no longer necessarily a stateset in the table. There will certainly exist \mathcal{S}_{j} with $\boldsymbol{S}_{j} \sim S Y$, and we can show (using the same argument as lemma 2 below) that it is unique. Hence this S may be taken as the Y successor of S.

Suppose $\mathcal{S}_{1} \sim \mathcal{S}_{2}$. This means that $H_{k}\left(S_{2}\right)=H_{k}\left(\mathcal{S}_{2}\right)=S$ where S is a member of the $L R(k)$ stateset table. We know that $H_{k}\left(S_{1} Y\right)=S Y$ (see lemma 1) and similarly $H_{k}\left(S_{2} Y\right)=S Y$. So $H_{k}\left(S_{2} Y\right)=H_{k}\left(S_{2} Y\right)$ and therefore $\mathcal{S}_{2} Y \sim \mathcal{S}_{2} Y$. This will be needed in the proof of the following lemma.

Lemma 2
If ($x \alpha$,shift i) and ($x \beta$, shift j) are entries in the same $L A(m) L R(k)$ parsing-state, then $i=j$. If (A,goto i) and (A,goto j) are entries in the same $L A(m) L R(k)$ parsing-state, then $i=j$.

```
First, let ( \(x \alpha\), shift \(i),(x \beta, \operatorname{shift} j) \in R\left(B_{1}\right)\)
then \((x \alpha\), shift \(m) \in R^{\prime}\left(\mathcal{S}_{1}\right), \delta_{i} \in B_{i}, S_{i} \in B_{i}\)
and \((x \beta\), shift. \(n) \in R^{\prime}\left(S_{2}\right), S_{2} \in B_{1}, S_{n} \in B_{j}\)
We can deduce \(\mathcal{S}_{1} \sim \mathcal{S}_{2} \therefore \mathcal{S}_{m}=\mathcal{S}_{1} x \sim \mathcal{S}_{2} x=\mathcal{S}_{n}\)
    and \(S_{m} \sim \mathcal{S}_{\mathrm{n}}\) implies \(i=j\).
Similarly, if (A, goto i), (A,goto j) \(\in R\left(B_{1}\right)\)
then (A, goto \(m\) ) \(\in R^{\prime}\left(S_{i}\right), S_{i} \in B_{i}, S_{m} \in B_{i}\)
and (A, goto \(n) \in R^{\prime}\left(g_{2}\right), S_{2} \in B_{1}, S_{n} \in B_{j}\)
We can deduce \(\mathcal{S}_{1} \sim \mathcal{S}_{2} \therefore \mathcal{G}_{\mathbb{L}}=\mathcal{S}_{1} A \sim \mathcal{S}_{2} A=\mathcal{S}_{n}\)
    and \(\mathcal{S}_{\mathrm{m}} \sim \mathcal{S}_{\mathrm{n}}\) implies \(\mathrm{i}=\mathrm{j}\).
```

Thus the goto and shift entries in the $L A(m) L R(k)$ parsing table are as they should be, the next parsint-state for any symbol in V being unique. The underlying reason for lemma 2 is, of course, that the equivalence classes correspond (under H_{k}) precisely to the statesets of the $L R(k)$ table.

If the condtions

$$
\begin{aligned}
& (\alpha, \text { shift } j),(\beta, \text { reduce } p) \in R\left(B_{i}\right) \text { must imply } \alpha \neq \beta \\
& (\beta, \text { reduce } p),(\beta, \text { reduce } q) \in R\left(B_{i}\right) \text { must imply } p=q
\end{aligned}
$$

hold for $0 \leq i \leq r$, then the grammar in question is said to be $\operatorname{LA}(m) L R(k)$. Clearly, if a grammar is $\operatorname{LR}(k)$ it will al so be $L A(m) L R(k)$ for any $m \geq k$. We have that

$$
\operatorname{LA}(k) \operatorname{LR}(k)=\operatorname{LR}(k) \subseteq \operatorname{LA}(m) \operatorname{LR}(k) \subseteq \operatorname{LR}(m)=\operatorname{LA}(m) \operatorname{LR}(m)
$$

where the inclusions are strict if $m>k$ (we use $L A(m) L R(k)$ here as an abbreviation for the class of grammars which are $L A(m) L R(k))$.

Despite the above definition, it is not necessary to form an $\operatorname{LR}(m)$ table as a first step in computing an $L A(m) L R(k)$ parsing table. We now give two algorithms of a more practical nature.

The first of these behaves initially like an $L R(m)$ stateset algorithm, except that a newly generated stateset is only added to the table if no equivalent (under ~) stateset is already in the table. If there is such an equivalent stateset in the table and it does not contain the new stateset, then the two are merged, to form their union, which replaces the equivalent stateset. When all statesets have been considered we return to those members of the table which were merged. Their successor statesets are recomputed and if necessary merged with their original versions. This is continued until no merged stateset has not subsequently had its successor statesets recomputed. We can specify this more precisely as:

Let T be initialised as $\left\{\mathscr{S}_{0}\right\}$, with \mathscr{S}_{0} marked, and let $n=0$.
Repeat the following until no stateset in T remains marked.
Set j to 0 .

While $j \leq n$ perform the following.
If \mathscr{S}_{j} is marked, first remove the mark, then compute S_{j}^{\prime} (as an $L R(m)$ closure), and from \mathcal{S}_{j}^{\prime} compute $\mathcal{S}_{j} Y \forall Y \in V$. If $\exists \mathcal{S}_{i} \in T$ with $\mathcal{S}_{i} \sim \mathcal{S}_{j} Y$ and $\mathcal{S}_{i} \notin \mathcal{S}_{j} Y$, then replace \mathcal{S}_{i} by $\mathcal{S}_{1} \cup S_{j} Y$ and mark this new S_{i}.
If $\nexists S_{i} \in T$ with $S_{i} \sim S_{j} Y$, then add $S_{j} Y$ to T as \mathcal{S}_{n+1}, mark $\mathcal{S}_{\mathrm{n}+1}$, and increase n by one. Increase j by one.

On completion, T is the $L A(m) L R(k)$ stateset table.

A mark on a stateset indicates that further computation is required for that stateset. The first run of j from 0 to n corresponds to the initial formation of the table; only during this stage can we have $\nexists g_{1} \in T$ with $g_{1} \sim S_{j} Y$. Termination is assured since merging enlarges a stateset, and there are only a finite number of states (and thus a finite number of statesets).

The first stage of this $L A(1) L R(0)$ algorithm applied to G yields
$\mathcal{S}_{0}=\{[0,0 ; \Lambda]\} \mathcal{S}_{1}=\emptyset \quad \mathcal{S}_{2}=\{[0,1 ; \Lambda]\} \mathcal{S}_{3}=\{[1,1 ; 1],[2,1 ; 1],[1,1 ; b],[2,1 ; b]\}$
$S_{4}=\{[0,2 ; \Lambda]\} S_{5}=\left\{[1,2 ; 1] S_{6}=\{[1,3 ; 1]\}\right.$
with \mathcal{F}_{3} marked due to $\{[1,1 ; b],[2,1 ; b]\}$ having been merged in. Recomputing successor statesets for \mathcal{S}_{3} merges (and marks) S_{5} to $\{[1,2 ; \perp],[1,2 ; b]\}$.

Recomputing successor statesets for ${\underset{S}{5}}^{f} \operatorname{merges}{\underset{S}{6}}^{f}$ to $\{[1,3 ; 1],[1,3 ; b]\}$. The only successor stateset to g_{g} is \emptyset so we are done. The parsing table is

$$
\begin{aligned}
& R^{\prime}\left(S_{0}\right)=\{(a, \text { shift } 3),(A, \text { goto } 2)\} \\
& R^{\prime}\left(S_{3}\right)=\{(\perp, \text { reduce } 2),(b, \text { reduce } 2),(a, \text { shift } 3),(A, \text { goto } 5)\} \\
& R^{\prime}\left(\mathbb{S}_{5}\right)=\{(b, \text { shift } 6)\} \\
& R^{\prime}\left(\mathscr{S}_{6}\right)=\{(\perp, \text { reduce } 1),(b, \text { reduce } 1)\} \\
&\left(\mathbb{S}_{1}, \mathcal{S}_{Z} \text { and } S_{4} \text { being irrelevant to this table }\right) .
\end{aligned}
$$

The second method begins with an $L R(k)$ stateset table and extends the lookahead string of each state to m symbol strings. Suppose $[p, j ; \alpha] \in \mathcal{S}_{2}^{\prime}$ where \mathcal{S}_{1} is a member of an $\operatorname{LR}(k)$ stateset table. We wish to determine those strings of length m, which begin with α and can validly follow the occurrences of production p to which $[p, j ; \alpha]$ refers. Denote this set of strings by $R_{m}\left([p, j ; \alpha], \mathcal{S}_{1}\right)$. Let S_{z} be any stateset for which $S_{2} Y=S_{1}$ where Y is the associated symbol of S_{1}; such statesets are called predecessors of \mathcal{F}_{2}. If $\mathrm{j}>0$ then clearly
$R_{m}\left([p, j ; \alpha], \mathcal{S}_{1}\right)=\left\{\alpha^{\prime} \in R_{k}\left([p, j-1 ; \alpha], \mathcal{S}_{2}\right) \mid \mathcal{S}_{2}\right.$ is a predecessor of $\left.\mathcal{S}_{1}\right\}$. If $j=0$ then we are interested in those members of δ_{1}^{\prime} which caused us to begin the recognition of production p.

$$
\begin{aligned}
& \beta^{\prime} \in R_{\mathrm{m}}\left([q, 1 ; \beta], S_{1}\right), \alpha^{\prime}=\alpha \vee \text { for some } \gamma \in \mathbb{V}_{\underset{T}{*}]} \\
& \mathrm{R}_{\mathrm{m}}\left([0,0 ; \Lambda], \mathcal{S}_{\mathrm{O}}\right) \text { is taken to be }\{\Lambda\} \text { as a special case (instead of } \emptyset \text {). }
\end{aligned}
$$

These equations admit the possibility of circularity, i.e. the evaluation of $R_{m}([p, j ; \alpha], g)$ invoking its own re-evaluation. In these circumstances, to obtain a finite algorithm, we instead re-evaluate $R_{m-1}([p, j ; \alpha], S)$ (taking $\left.R_{o}([p, j ; \alpha], S)=\{\Lambda\}\right)$, and delete any strings of length less than m which remain in the final version of $R_{i}([p, j ; \alpha], g)$. The problem is eliminated for the purposes of definition, by saying that these sets are the smallest such that the equations hold. An $n^{\text {th }}$ predecessor of a stateset S is any predecessor of an $n-1{ }^{\text {th }}$ predecessor of $\mathcal{S}(\mathrm{n} \geq 1)$ and the $0^{\text {th }}$ predecessor of \mathcal{S} is \mathcal{S} itself. We can now combine the above equations and define $R_{n}\left([p, j ; \alpha], s_{2}\right)$ as the smallest set satisfying

$$
\begin{align*}
& R_{m}\left([p, j ; \alpha], g_{i}\right)=\left\{\alpha^{\prime} \mid[q, 1 ; \beta] \in S_{z}^{\prime}, X_{Q, 1+1}=A_{p}, \alpha^{\prime} \in H_{i}\left(X_{q, 1+2} \ldots X_{q n} B^{\prime}\right),\right. \\
& \beta^{\prime} \in \mathrm{R}_{\mathrm{z}}\left([\mathrm{q}, 1 ; \beta], S_{a}\right), \alpha^{\prime}=\alpha \gamma \text { some } \gamma \in \mathrm{V}_{\mathrm{T}}^{*} \text {, } \\
& \mathcal{S}_{z} \text { is a } j^{\text {th }} \text { predecessor of } \mathcal{S}_{1}
\end{align*}
$$

If we replace $[p, j ; \alpha] \in \mathcal{S}$ by the members of

$$
\left\{\left[p, j ; \alpha^{\prime}\right] \mid \alpha^{\prime} \in R_{m}([p, j ; \alpha], \mathscr{S})\right\}
$$

for every state in an $\operatorname{LR}(k)$ stateset table then we have an $\operatorname{LA}(m) \operatorname{LR}(k)$ table from which the parsing table can be formed.

As an example of this method consider G_{2} with an extra endmarker ($0^{\text {th }}$ production $S \rightarrow A_{\perp} \mathcal{L}$). This adds an irrelevant stateset $\underset{7}{f}=\{[0,3]\}$ to the $\operatorname{LR}(0)$ stateset table. We can now compute $R_{a}\left([1,3], S_{6}\right)$.
\mathscr{S}_{5} is the only predecessor of $\frac{\mathcal{S}}{6}$
\mathbb{S}_{3} is the only predecessor of \mathbb{S}_{5}
S_{0} and S_{3} are the predecessors of S_{3}
So the $3^{\text {rd }}$ predecessors of \mathcal{S}_{6} are \mathcal{S}_{0} and S_{3}
$R_{2}\left([1,3], \mathscr{S}_{6}\right)=R_{2}\left([1,0], S_{0}\right) \cup R_{3}\left([1,0], S_{3}\right)$
$[0,0] \in S_{0}$ and $X_{01}=A=A_{1}$ so we need $H_{2}\left(X_{02} X_{03} \beta\right), \beta \in R_{2}\left([0,0], S_{0}\right)=\{\Lambda\}$ thus $H_{a}\left(X_{02} X_{03} \beta\right)=\left\{L_{1 \perp}\right\}=R_{2}\left([1,0], S_{0}\right)$.
$[1,1] \in \mathcal{S}_{3}$ and $X_{12}=A=A_{1}$ so we need $H_{2}\left(X_{2 \beta} \beta\right), \beta \in R_{2}\left([1,1], S_{3}\right)$
$R_{2}\left([1,1], S_{3}\right)=R_{2}\left([1,0], S_{0}\right) \cup R_{2}\left([1,0], S_{3}\right)$
$R_{2}\left([1,0], \mathcal{S}_{0}\right)=\left\{\left\{_{1 \perp}\right\}\right.$ already computed.
$R_{Z}\left([1,0], S_{3}\right)$ is a re-evaluation, we compute $R_{1}\left([1,0], S_{3}\right)=H_{1}\left(X_{13} \beta\right)$
$\beta \in R_{2}\left([1,1], S_{3}\right)=R_{2}\left([1,0], S_{0}\right) \cup R_{2}\left([1,0], S_{3}\right)$
$R_{1}\left([1,0], \delta_{0}\right)=\{1\}$
$R_{2}\left([1,0], S_{3}\right)$ is a re-evaluation, it is taken to be $\{\Lambda\}$.
This yields approximations to $R_{1}\left([1,1], \mathbb{S}_{3}\right)$ as $\{\perp, \Lambda\}$

$$
\begin{aligned}
& R_{1}\left([1,0], S_{3}\right) \text { as }\{b\} \\
& R_{a}\left([1,1], S_{3}\right) \text { as }\{\perp \perp, b\}
\end{aligned}
$$

Finally $R_{a}\left([1,0], \mathcal{S}_{3}\right)=\left\{b_{\perp}, b b\right\}$
and $R_{a}\left([1,3], \mathscr{S}_{6}\right)=\{1 \perp, b \perp, b b\}$.
(This example is complicated by the method having to cater for the possibility of $X_{13} \stackrel{*}{\rightarrow}$.)

A 2 symbol lookahead parsing-state for $\underset{\sigma}{S}$ would thus be $\{(\perp \perp$, reduce 1$),(b \perp$, reduce 1$),(b b$, reduce 1$)\}$

The calculation of an $L A(m) L R(k)$ parsing table by either of these methods requires less work than a full $\operatorname{LR}(\mathrm{m})$ calculation, but both are more complicated than the original algorithm. The second is the more complex of the two, since in one sense, everything is worked out backwards. This may be alleviated to some extent by processing statesets in the order in which they are generated. The advantage of the second method is indicated in the next section where a simpler means of deriving m symbol lookahead is described.

SLA(m)LR(k) Parsing Tables

An $L R(k)$ stateset table is again used as a basis for the method. For each $[p, j ; \alpha] \in \mathscr{S}$ in this table, we compute a set of m symbol lookahead strings, which contains $R_{\|}([p, j ; \alpha], \mathcal{S})$ of the previous section. The additional strings, which are invalid and not required, do not necessarily prevent the resolution of inadequacies in the $\operatorname{LR}(k)$ table.

Define $F_{m}(Y)$, the m terminal follow set of $Y \in V$ by
$F_{\mathrm{m}}(\mathrm{Y})=\left\{\beta \in \mathrm{V}_{\mathrm{T}}^{*}| | \beta \mid=\mathrm{m}, \mathrm{S}^{\mathrm{H}} \alpha \mathrm{Y} \beta \omega\right.$ for some $\left.\alpha, \omega \in \mathrm{V}^{*}\right\}$
An equivalent formulation is that $F_{m}(Y)$ is the smallest set satisfying

$F_{m}(S)$ is taken to be $\{\Lambda\}$ as a special case (instead of \varnothing).
To obtain a finite algorithm from this equation, if any $F_{m}(Y)$ is required to be re-evaluated, instead compute $F_{m_{-2}}(Y)$, taking $F_{o}(Y)=\{\Lambda\}$ and delete any strings of length less than m which remain in the final version of $\mathrm{F}_{\mathrm{m}}(\mathrm{Y})$.

If we replace $[p, j ; \alpha]$ by the members of

$$
\left\{[p, j ; \alpha \beta] \mid \alpha \beta \in F_{m}\left(A_{p}\right)\right\}
$$

for every state in an $\operatorname{LR}(k)$ stateset table, the result is an SLA(m)LR(k) stateset table from which the corresponding parsing table can be calculated. If for every stateset S in the $\operatorname{SLA}(m) L R(k)$ table, the conditions

$$
\begin{aligned}
& (\alpha, \text { shift } j),(\beta, \text { reduce } p) \in R^{\prime}(S) \text { must imply } \alpha \neq \beta \\
& (\beta, \text { reduce } p),(\beta, \text { reduce } q) \in R^{\prime}(S) \text { must imply } p=q
\end{aligned}
$$

hold, then the grammar in question is said to be $\operatorname{SLA}(\mathrm{m}) \operatorname{LR}(\mathrm{k})$.
Our example is agein G_{a} with an extra endmarker.

$$
\begin{aligned}
& \mathrm{F}_{2}(\mathrm{~S})=\{\Lambda\} \\
& \mathrm{F}_{2}(\mathrm{~A})= \mathrm{H}_{2}\left(\mathrm{X}_{\left.\mathrm{O}_{2} X_{\mathrm{O}_{3}} \alpha\right) \cup \mathrm{H}_{2}\left(\mathrm{X}_{23} \beta\right) \text { with } \alpha \in \mathrm{F}_{2}(\mathrm{~S}), \beta \in \mathrm{F}_{2}(\mathrm{~A})}\right. \\
& \mathrm{F}_{2}(\mathrm{~A}) \text { is a re-evaluation, we compute } \mathrm{F}_{2}(\mathrm{~A}) \\
& \mathrm{F}_{1}(\mathrm{~A})= \\
& H_{1}\left(X_{\mathrm{O}_{2} \mathrm{X}_{3}} \alpha\right) \cup \mathrm{H}_{1}\left(\mathrm{X}_{13} \beta\right), \alpha \in \mathrm{F}_{1}(\mathrm{~S}), \beta \in \mathrm{F}_{1}(\mathrm{~A}) \\
& \mathrm{F}_{1}(\mathrm{~A}) \text { is a re-evaluation, and is taken to be }\{\Lambda\} .
\end{aligned}
$$

This yields an approximation to $\mathrm{F}_{1}(\mathrm{~A})=\{\perp, \mathrm{b}\}$
from which we deduce $\mathrm{F}_{2}(\mathrm{~A})=\{1 \perp, \mathrm{~b} \perp, \mathrm{bb}\}$.
The simple 2 symbol lookahead extensions of $\underset{3}{S}, \underset{6}{\mathcal{S}}, \underset{6}{S}$ are

$$
\begin{aligned}
& \mathscr{S}_{3}=\left\{\left[1,1 ;\left\{\perp \perp, b_{\perp}, b b\right\}\right],\left[2,1 ;\left\{\perp \perp, b_{\perp}, b b\right\}\right]\right\} \\
& \mathscr{S}_{5}=\left\{\left[1,2 ;\left\{\perp \perp, b_{\perp}, b b\right\}\right]\right\} \quad g_{6}=\{[1,3 ;\{1 \perp, b \perp, b b\}]\}
\end{aligned}
$$

where $\left[p, j ;\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right]$ abbreviates $\left[p, j ; \alpha_{1}\right], \ldots,\left[p, j ; \alpha_{n}\right]$.
It should be clear that the calculation of an $\operatorname{SLA}(m) L R(k)$ table requires less work than that of an $\operatorname{LA}(m) L R(k)$ table by either of the methods of the previous section. An LR(1) calculation is a part of all three, but the provision of m symbol lookahead in the $\operatorname{SLA}(m) L R(k)$ case is independent of any stateset table; it depends directly on the grammar, a major simplification. The $L A(m) L R(k)$ table may be regarded either as a coarse version of an $\operatorname{LR}(m)$ table, or as a refined $\operatorname{LR}(k)$ table. The $S L A(m) L R(k)$ table is merely a conveniently computed approximation to the $L A(m) L R(k)$ table, and for this reason we regard the $L A(m) L R(k)$ table as the more funadmental of the two.

We have that

$$
\operatorname{SLA}(k) \operatorname{LR}(k)=\operatorname{LR}(k) \subseteq \operatorname{SLA}(m) \operatorname{LR}(k) \subseteq \operatorname{LA}(m) \operatorname{LR}(k)
$$

where the inclusions are strict if $m>k$.
The $\operatorname{SLA}(m) \operatorname{LR}(k)$ and $\operatorname{LA}(m) \operatorname{LR}(k)$ techniques may be combined, as is now described. We first compute the $L R(k)$ stateset and parsing tables. If any stateset is inadequate, its lookahead is extended to mambols using the $S L A(m) L R(k)$ method, and its parsing-state recalculated.

If the stateset is still inadequate, then the lookahead is refined using the second $L A(m) L R(k)$ method, which can be applied to individual statesets. Hopefully this will resolve the inadequacy (of this, and possibly other statesets). The combination of these two techniques gives a method which yields a table having no inadequate statesets for any LA(m)LR(k) grammar, with the possibility of a large economy of effort over a full LA(m)LR(k) computation.

Referring to the $L R(0)$ table for G_{2}, only $\operatorname{SLA}(1) L R(0)$ need be applied to S_{3} to produce a useable parsing table, with

$$
R^{\prime}\left(\mathscr{S}_{3}\right)=\{(\perp, \text { reduce } 2),(b, \text { reduce } 2),(a, \text { shift } 3),(A, \text { goto } 3)\}
$$

Minimal LR(k) Parsing Tables

To determine' a method of constructing $L R(k)$ tables which are minimal in some sense, we compare the original $\operatorname{LR}(k)$ table constructor with the first of the two $L A(m) L R(k)$ techniques in the case $L A(k) L R(0)$. By either of these methods, statesets $\int_{j} Y$ are constructed, and must be dealt with. Full $L R(k)$ adds $S_{j} Y$ as a new stateset unless it already exists as \mathscr{S}_{i}. LA $(k) L R(0)$ only requires that a stateset \mathcal{S}_{i} with $S_{i} \sim S_{j} Y$
$\left(H_{o}\left(S_{i}\right)=H_{o}\left(S_{j} Y\right)\right)$ exist, and if so, replaces S_{i} by $S_{i} \cup S_{j} Y$. It is this merging of the statesets \mathscr{S}_{i} and $\mathscr{S}_{\mathcal{S}} Y$ which provides an $\operatorname{LR}(0)$ sized stateset table, but which also can create an inadequate stateset (if the grammar is not $L A(k) L R(0))$. The methods may be considered as two extremes; $L R(k)$ which never merges, and $L A(k) L R(0)$ which always does so. An ideal technique would be to merge whenever the merged stateset will not subsequently result in the production of an inadequate stateset.

If we have $\mathcal{S}_{1} \sim \mathcal{S}_{j} Y$ and either $\mathcal{S}_{1} \subseteq \mathcal{S}_{j} Y$ or $\mathcal{S}_{1} \supseteq \mathcal{S}_{j} Y$, clearly merging does not introduce a new stateset and should therefore take place. Conversely, if $\mathscr{S}_{1} \cup \mathbb{S}_{j} Y$ is itself inadequate, then the merge should be avoided. If neither of these conditions apply, it would theoretically be possible to test $\mathscr{S}_{i} \cup \mathcal{S}_{j} Y$ by continuing as for full $\operatorname{LR}(k)$, and if no inadequate statesets were produced then the merge could be made.

A better solution (though still expensive computationally for a non $\mathrm{LA}(\mathrm{k}) \mathrm{LR}(0)$ grammar), would be a backtrack algorithm, which merges if $\mathcal{S}_{i} \sim \mathcal{S}_{\mathfrak{J}} \mathrm{Y}$, but is able to back up and split the statesets if their merge resulted in an inadequate stateset being generated. An outline of such an algorithm is given in appendix 1 (1.3).

The minimisation resulting from the above technique is concerned with the use of right contextual information in the creation of the statisets in the stateset table. It can be viewed as producing an $\operatorname{LA}(k) L R(m)$ table over which m varies between O and k, taking the least value consistent with the non-production of inadequate statesets. The table produced is not optimal since the order in which statesets are merged can affect the final size of the table. The simplest situation in which this can be seen is as follows:

$$
\begin{aligned}
& f_{1}=\left\{\left[p, n_{p} ; x\right],\left[q, n_{q} ; z\right]\right\} \quad \mathscr{S}_{z}=\left\{\left[p, n_{p} ; y\right],\left[q, n_{q} ; x\right]\right\} \\
& S_{3}=\left\{\left[p, n_{p} ; x\right],\left[q, n_{q} ; y\right]\right\} \quad f_{4}=\left\{\left[p, n_{p} ; y\right],\left[q, n_{q} ; z\right]\right\}
\end{aligned}
$$

Here $\mathscr{S}_{1} \sim \mathscr{S}_{2} \sim \mathcal{S}_{3} \sim \mathscr{S}_{4}$, but $\mathscr{S}_{1} \cup \mathscr{S}_{2}, \mathscr{S}_{2} \cup \mathcal{S}_{3}$ and $\mathscr{S}_{3} \cup \mathcal{S}_{4}$ are inadequate. If we merge ${\underset{I}{I}}^{f}$ and $\underset{4}{\mathscr{S}}$ no further merging is possible, leaving three statesets, but if we merge \mathcal{S}_{1} and \mathscr{S}_{3} we may also merge \mathcal{S}_{2} and \mathcal{S}_{4} leaving only the two statesets,

$$
\begin{aligned}
& \mathbb{S}_{2} \cup \mathscr{S}_{3}=\left\{\left[\mathrm{p}, \mathrm{n}_{\mathrm{p}} ; \mathrm{x}\right],\left[\mathrm{q}, \mathrm{n}_{\mathrm{q}} ;\{\mathrm{y}, \mathrm{z}\}\right]\right\} \\
& {\underset{z}{z}}^{\mathcal{S}_{4}}=\left\{\left[\mathrm{p}, \mathrm{n}_{\mathrm{p}} ; \mathrm{y}\right],\left[\mathrm{q}, \mathrm{n}_{\mathrm{q}} ;\{\mathrm{x}, \mathrm{z}\}\right]\right\} .
\end{aligned}
$$

An algorithm could, in principle, be devised which tried all sequences of attempted merges, and produced an optimal $\operatorname{LR}(\mathrm{k})$ stateset table.

A more elementary minimisation can be applied to the lookahead strings in the parsing-states produced by any of the preceding methods. Suppose 8 is an adequate stateset; we can minimise the lookahead strings in R^{\prime} (\&) independently of any other parsing-state as follows.

Let $(\gamma$, reduce $p) \in R^{\prime}(\mathbb{g})$. Replace this by (α, reduce p) where

$$
\gamma=\alpha \beta,\left(\alpha \beta^{\prime}, \text { reduce } q\right) \in R^{\prime}(\mathscr{S}) \text { implies } p=q, \nexists\left(\alpha \beta^{\prime}, \text { shift } i\right) \in R^{\prime}(S)
$$

Similarly ($\mathrm{x} \gamma$, shift i) can be replaced by ($\mathrm{x} \alpha$, shift i) where

$$
Y=\alpha \beta, \nexists\left(\mathrm{x} \alpha \beta^{\prime}, \text { reduce } \mathrm{p}\right) \in \mathrm{R}^{\prime}(\mathrm{g}) . \quad\left(\beta, \beta^{\prime} \in \mathrm{V}_{\mathrm{T}}^{*}\right)
$$

When all such replacements have been made, further minimisation is still possible if we are prepared to order the entries of $\mathrm{R}^{\prime}(\mathcal{S})$. Thus, for example, if when parsing we inspect all the reduce type of lookahead strings first, the shift entries need only be of the form (x,shift i) (which corresponds neatly with the goto entries). Alternatively, a set of reduce p entries can all be replaced by (Λ, reduce p) if this is regarded as the last entry to be inspected.

This type of minimisation is concerned with the second use of right contextual information, that of providing the lookahead strings on which parsing decisions are made. It produces a parsing table for which the length of the lookahead strings varies from parsing-state to parsingstate, and for example, can convert an $\operatorname{LA}(m) L R(k)$ table to an $\operatorname{LR}(k)$ table if the grammar is in fact LR(k).

As a straightforward example, in the $L A(1) L R(0)$ table for G_{2}, the parsing-state $R^{\prime}\left(S_{G}\right)$ can be minimised to $\{(\Lambda$, reduce 1$)\}$. The SLR and LAL Algorithms

Some comments from a practical viewpoint are now appropriate. It has already been mentioned that for programming language grammars, any value of k other than O results in $\operatorname{LR}(k)$ parsing tables of excessive size, and that such grammars are rarely $L R(0)$. Also ruled out are the $L A(m) L R(k)$ and $\operatorname{SLA}(m) L R(k)$ tables except as the special cases $L A(k) L R(0)$ and SLA(k)LR(0). DeRemer (1969) independently defined these particular versions as LALR(k) and SLR(k) respectively, and discussed an algorithm for constructing $\operatorname{SLR}(k)$ parsers. (To be precise, an $\operatorname{SLR}(k)$ parser as defined by DeRemer is equivalent to an $\operatorname{SLA}(k) L R(0)$ parsing table for which the lookahead strings have been minimised.) His approach is based on a finite state machine which can be derived from Knuth's first method for testing whether a grammar is $\operatorname{LR}(k)$ (with $k=0$). This dissertation parallels Knuth's second method, described earlier in this chapter, and should clarify the understanding of these algorithms and their connection with LR(k).

DeRemer also discussed an algorithm termed $L(m) R(k)$ which utilises m symbols of the left context of a stateset together with k symbols of lookahead for the resolution of inadequacies. It would be possible to define a similar generalisation of this, as $L B(1) L A(m) L R(k)$ which would consist of an $L R(k)$ stateset table with some statesets split on the basis of the 1 symbols of left context, and the lookahead of m symbols computed for each stateset. $L(m) R(k)$ would, in fact, correspond to

We further wish to restrict attention to a lookahead of only one symbol. This is done partly because of the benefits of simplification which result. Also, a one symbol lookahead is normally sufficient for programming language grammars. When this is not the case, minor grammatical changes or utilisation of a lexical pre-scan will usually remove the problem.

This leaves us the algorithms $\operatorname{LR}(0), \operatorname{SLA}(1) \operatorname{LR}(0), \operatorname{LA}(1) \operatorname{LR}(0)$ and minimal LR(1). LR(0) is insufficiantly general for our purposes, and minimal LR(1) can only be useful on non $\operatorname{LA}(1) \operatorname{LR}(0)$ grammars, for which it will be computationally expensive and produce tables larger than LA(1)LR(0). As candidates for current practical use, we are left with only $\operatorname{SLA}(1) \operatorname{LR}(0)$ and $L A(1) L R(0)$. For convenience, and following DeRemer, we abbreviate these as $\underline{S L R}$ and LALR respectively. We have

$$
\operatorname{LR}(0) \subset S L R \subset \operatorname{LALR} \subset \operatorname{LR}(1)
$$

To exhibit these inclusions, we consider the grammars

	C^{\prime}		C_{1}		C_{3}
0	$\mathrm{S} \rightarrow \mathrm{A} \stackrel{1}{ }$	0	$S \rightarrow$ A \downarrow	0	$\mathrm{S} \rightarrow \mathrm{A}$ ค
1	$A \rightarrow \mathrm{ed}$	1	$A \rightarrow B d$	1	$A \rightarrow B d$
$\mathrm{s}=2$	$A \rightarrow \mathrm{e}$	2	$A \rightarrow \mathrm{e}$	2	$A \rightarrow$ e Be
		$s=3$	$B \rightarrow e$	$\mathrm{s}=3$	$B \rightarrow e$

Their LR(0) stateset and parsing tables will be specified by printing for each stateset \mathcal{E}, its number, associated symbol and members, a comma, the additional members of its closure and the entries in the corresponding parsing-state $R^{\prime}(\S)$. The error stateset is omitted in each case, as are the two irrelevant parsing-states.

$$
\begin{aligned}
& \text { First for } \mathcal{G}_{2}^{\prime} \text {. } \\
& 0 \Lambda \underset{\mathrm{~A}}{[0,0]} \underset{\mathrm{e}}{[1,0]} \underset{\mathrm{e}}{[2,0]} \quad(\mathrm{e}, \operatorname{shift} 3)(\mathrm{A}, \text { goto } 1) \\
& 1 \text { A }[0,1] \\
& 2 \perp[0,2] \\
& 3 \text { e } \underset{d}{[1,1]} \underset{e}{[2,1]} \\
& \text { (d,shift 4) (e, shift 5) } \\
& 4 \text { d }[1,2] \\
& \text { (} \Lambda \text {, reduce } 1 \text {) } \\
& 5 \text { e [2, 2] } \\
& \text { (} \Lambda \text {, reduce 2) }
\end{aligned}
$$

Although after the parser has read the first e it is unaware of which production RHS is actually present, no reduction is called for and it can continue to read either the d or the e which determines the production uniquely. $C_{f_{2}^{\prime}}^{\prime}$ is $\operatorname{LR}(0)$.

```
\(0 \wedge \underset{\mathrm{~A}}{[0,0]} \underset{\mathrm{B}}{[1,0]} \underset{\mathrm{e}}{[2,0]} \underset{\mathrm{e}}{[3,0]} \quad(\mathrm{e}, \operatorname{shift} 3)(\mathrm{A}\), goto 1\()(\mathrm{B}\), goto 4)
1 A \([0,1]\)
\(2 \perp[0,2]\)
3 e \([2,1][3,1] \quad(\Lambda\),reduce 3\()(e\), shift 6)
4 B \([1,1] \quad\) (d, shift 5)
5 d \([1,2]\)
( \(\Lambda\), reduce 1 )
6 e [2,2]
( \(\Lambda\), reduce 2)
```

With \mathcal{C}_{1}, when the parser has read the first e it must decide whether a reduce 3 is called for, and cannot determine this from 0 symbol lookahead. Since $F_{1}(B)=\{d\}$ we can add 1 symbol lookahead to the parsing-state of S_{3}, indicating that the reduce 3 should only be performed if the next symbol is d (and hence we are recognising production 1). The new parsing-state is $\{(d$, reduce 3$),(e$, shift 6$)\}, \mathscr{C}_{2}$ is SLR .

0	Λ	$\begin{gathered} {[0,0]} \\ \mathrm{A} \end{gathered} \underset{\mathrm{~B}}{[1,0]} \underset{\mathrm{e}}{[2,0]}$	$\begin{gathered} {[3,0]} \\ \mathrm{e} \end{gathered}$	(e,shift 3) (A,goto 1) (B,goto 4)
1	A	$\left[\begin{array}{c} 0,1] \\ \perp \end{array}\right.$		
2	\perp	[0,2]		
3	e	$\underset{\mathrm{B}}{[2,1]}\left[\begin{array}{c} {[3,1],} \\ \mathrm{e} \\ {[3,0]} \end{array}\right.$		(, reduce 3) (e,shift 7) (B, goto 6)
4	B	$\begin{gathered} {[1,1]} \\ \mathrm{d} \end{gathered}$		(d,shift 5)
5	d	$[1,2]$		(Λ, reduce 1)
6	B	$\underset{\mathrm{e}}{[2,2]}$		(e,shift 9)
7	e	$[3,1]$		(Λ, reduce 3)
8		$[2,3]$		(Λ, reduce 2)

The SLR technique fails with G_{3} because $e \in F_{1}(B)=\{d, e\}$ due to the use of B in production 2. $R^{\prime}\left(\mathscr{S}_{3}\right)$ becomes

$$
\{(\text { d, reduce } 3),(e, \text { reduce } 3),(e, \operatorname{shift} 7),(B, \text { goto } 6)\}
$$

To remove the spurious (e, reduce 3), it is necessary to compute $R_{2}\left([3,1], f_{3}\right)=\{d\}$, and we have that \mathcal{C}_{3} is LALR.

For completeness we construct a grammar \mathcal{C}_{4} which is $L R(1)$ but not LALR.
This requires that at least two $L R(1)$ statesets combine to form an inadequate stateset at the $\operatorname{LR}(0)$ level. Denote two such $\operatorname{LR}(1)$ statesets by S_{1} and S_{a}. Suppose that after the application of LALR, the inadequacy in $\mathcal{S}_{2} \cup \mathcal{S}_{a}$ is (e, reduce p), (e, reduce q). If this is removed by $\operatorname{LR}(1)$ we will have, say $\left[p, n_{p} ; e\right] \in S_{1}$ and $\left[q, n_{q} ; e\right] \in \mathcal{S}_{2}$. We have assumed $S_{2} \sim S_{2}$ so we need $\left[p, n_{p} ; d\right] \in S_{z}$ and $\left[q, n_{q} ; c\right] \in S_{1}$. Further, we know that $X_{p n}{ }_{p}=X_{q n_{q}}$ (associated symbol of S_{1} and S_{z}), $d, e \in F_{1}\left(A_{p}\right)$ and $c, e \in F_{2}\left(A_{q}\right)$. If we take $A_{p}=B, A_{q}=C, n_{p}=n_{q}=1, X_{p 1}=e$ then G_{4} could have the form

$0 \mathrm{~S} \rightarrow \mathrm{~A}$ +	$3 \mathrm{~A} \rightarrow \gamma \mathrm{C}$ e
$1 \mathrm{~A} \rightarrow \alpha \mathrm{Be}$	$4 \mathrm{~A} \rightarrow \delta \mathrm{Cc}$
$2 \mathrm{~A} \rightarrow \mathrm{BBC}$	$5 \mathrm{~B} \rightarrow$

Then $\alpha \neq \gamma$ to avoid ambiguity; $\alpha=\delta$ since these will be the associated symbols of statesets on the stack when we are in \mathcal{S}_{1}, similarly $\beta=\gamma$. So we take $\alpha=\delta=c$ and $\beta=\gamma=d$ to give f_{4} as

$0 \mathrm{~S} \rightarrow \mathrm{~A}$	$3 \mathrm{~A} \rightarrow \mathrm{~d} \mathrm{C}$ e
$1 \mathrm{~A} \rightarrow \mathrm{c}$ B e	$4 \mathrm{~A} \rightarrow \mathrm{CCC}$
$2 \mathrm{~A} \rightarrow \mathrm{dBC}$	$5 \mathrm{~B} \rightarrow \mathrm{e}$

The $L R(0)$ tables for G_{4} are,

We see that S_{8} is inadequate. Since $F_{i}(B)=R_{1}\left([j, 1], S_{\varepsilon}\right)=\{d, e\}$ and $F_{1}(C)=R_{1}\left([6,1], S_{8}\right)=\{e, c\}$, both SLR and LALR yield

$$
\{(d, \text { reduce } 5),(e, \text { reduce } 5),(e, \text { reduce } 6),(c, \text { resice } 6)\}
$$

as parsing-state for \mathcal{S}_{8}, which remains inadequate. Full $\operatorname{LR}(1)$ analysis gives two versions of \mathcal{S}_{8}, i.e.

$$
\mathcal{S}_{8}=\{[5,1 ; e],[6,1 ; c]\} \quad \mathcal{S}_{14}=\{[5,1 ; d],[6,1 ; e]\}
$$

$R^{\prime}\left(\mathscr{S}_{8}\right)=\{($ e, reduce 5$),(\mathrm{c}$, reduce 6$)\} R^{\prime}\left(\mathscr{S}_{14}\right)=\{($ d, reduce 5$),($ e, reduce 6$)\}$ The entry (e,shift 8) in $\mathrm{R}^{\prime}\left(\delta_{9}\right)$ is replaced by (e, shift 14).

The only lookahead strings affected by moving upwards from $L R(0)$ in these examples, have been those in reduce entries. This must always be the case and is due to the mechanism of the shift operation. Since a single symbol is read and inspected during a shift (even by $\operatorname{LR}(0)$), provision of one symbol lookahead leaves these entries unchanged. The way in which reduce entries are modified is now described.

Consider $(\Lambda$, reduce $p) \in R^{\prime}(\mathscr{S})$ in an $\operatorname{LR}(0)$ table. This is equivalent to $\left\{(x, r e d u c e p) \mid x \in V_{T}\right\}$ although the symbols are not examined. It is replaced by $\left\{(x\right.$, reduce $\left.p) \mid x \in F_{1}\left(A_{p}\right)\right\}$ under $S L R$, which is in turn replaced by $\left\{(x\right.$, reduce $\left.p) \mid x \in R_{1}\left(\left[p, n_{p}\right], S\right)\right\}$ under LALR. Application of LR(1) may split S into a number of statesets, each having (x, reduce p) entries, but with x a member of some subset of $R_{2}\left(\left[p, n_{p}\right], \mathscr{S}\right)$. The union of these subsets over all the versions of S will be $R_{1}\left(\left[p, n_{p}\right], S\right)$. Observe the successive refinement of the lookahead as evidenced by

$$
V_{T} \supseteq F_{1}\left(A_{p}\right) \supseteq R_{2}\left(\left[p, n_{p}\right], \mathscr{S}\right) \supseteq \text { subset of } R_{1}\left(\left[p_{p} n_{p}\right], \mathscr{S}\right)
$$

The proximity of the SLR and LALR methods to $L R(1)$ indicated by these comments may explain why they are so successful in handing grammars which require one symbol of lookahead.

Error Detection

By our definition, a parser for \mathcal{G} must be able to determine if a string β is not a sentence of \mathcal{G}, since this is equivalent to saying β has no canonical derivations. An $L R(k)$ parser has the additional capability of being able to locate the first symbol of β which is in error, i.e. the earliest point at which the symbols to the left do not begin any sentence of G.

If $\beta=\alpha_{x} \omega$ and $\exists \omega^{\prime}$ such that $\alpha \omega^{\prime} \in L\left(f_{f}\right)$ and $\nexists \omega^{\prime \prime}$ such that $\alpha_{x} \omega^{\prime \prime} \in L(\mathcal{G})$ then x is the first erroneous symbol of β. As soon as the $\operatorname{LR}(k)$ parser inspects x, the error is detected. Thus, when $k \geq 1$, a shift operation is performed and x is detected as the new $k^{\text {th }}$ symbol of lookahead (we assume the first k symbols of the input are valid). There are then exactly k terminal symbols up to and including \mathbf{x} which have not yet been read by the parser. $L R(0)$ parsers perform no lookahead and because of this, errors can only be detected during shift operations. In this case x is detected as being invalid as soon as it is read.

The LR(k) parser's ability to perform this error location is inherent in the provision of the lookahead strings. In any stateset the lookahead strings constitute exactly those k symbol strings which can validly be encountered next in the input. An $\mathrm{LR}(0)$ parser, having no lookahead, must rely on the knowledge of which terminal symbols are $X_{p, j+1}$ for some $[p, j]$ in its current stateset.

Now consider an $L A(m) L R(k)$ parser. When in a stateset g, the parser has m symbol lookahead strings, say $\alpha_{1}, \ldots, \alpha_{n}$ with which it compares the actual lookahead $\beta=x_{3} \ldots x_{m}$. If $\beta=\alpha_{i}$ for some $1 \leq i \leq n$, then an operation is determined, which the parser performs. It is possible, however, that an $\operatorname{LR}(m)$ parser would have detected an error, since that parser would be in a refinement of \mathcal{S} which does not necessarily have α_{1} as a lookahead string. If $\beta \neq \alpha_{1}, 1 \leq i \leq n$ then the $\operatorname{LA}(m) \operatorname{LR}(k)$ parser does
detect an error, and if x_{r} is the first symbol of β which causes $\beta \neq \alpha_{i}, 1 \leq i \leq n$ then $k \leq r \leq m(1 \leq r \leq m$ if $k=0)$ is ensured by the $L R(k)$ error detection capabilities of the parser. Unfortunately, this does not necessarily locate the first invalid symol, which could be any of $x_{k}, \ldots, x_{r}\left(x_{1}, \ldots, x_{r}\right.$ if $\left.k=0\right)$. If $r>k(r>1$ if $k=0)$ and we require the parser to locate the error, it must continue parsing by performing any operation which las an $r-1$ symbol lookahead equal to $x_{2} \ldots x_{r-1}$. Eventually an error will be detected with $r=k$ which locates the first invalid symbol.

An $\operatorname{SLA}(m) L R(k)$ parser behaves similarly, and will detect errors no earlier than $L A(m) L R(k)$ and no later than $L R(k)$. Notice that $S L R$ and LALR do locate the error when it is detected, but this may not be as soon as LR(1). This is again due to the special behaviour of $\operatorname{LR}(0)$. Minimisation of the lookahead strings of any parser can degrade its error detection, possibly down to that of an $L R(0)$ parser.

It should be clear that all the parsing algorithms discussed in this chapter have at least the error detection capability of an $L R(0)$ parser, which ensures that they all detect an erroneous symbol, at the latest, when it is read. This feature is of practical importance when a parser is used in a compiler for a programming language; early detection is an aid to good error recovery, and the location of the first incorrect symbol is of obvious value to the programmer.

	grammar	\mathcal{G}_{5},
	$0 \quad \mathrm{~S} \rightarrow$	$\mathrm{A} \perp \perp$
	$1 \mathrm{~A} \rightarrow$	d B e e
	$2 \mathrm{~A} \rightarrow$	e B d d
	$3 \mathrm{~B} \rightarrow$	d C
	$s=4 \mathrm{C} \rightarrow$	d

gives an example of an $L A(2) L R(0)$ parser's inability to locate a detected error.

A part of the $L A(2) L R(0)$ tables for G_{5} is,

$1 \mathrm{~d}[1,1 ; 1 \perp],[3,0 ; \mathrm{ee}] \quad$ (dd, shift 2) (B, goto 6)

3 d $[4,1 ; \mathrm{ee}][4,1 ; \mathrm{dd}]$ (dd,reduce 4) (ee,reduce 4)
4 e $[2,1 ; \perp \perp],[3,0 ; d d] \quad$ (dd, shift 2) (B, goto 8)
$L\left(C_{S_{5}}\right)=\{$ dddee $\perp \perp$, edddd $\perp \perp\}$

Take as input to be parsed the string dddde $\perp \perp$, the first invalid symbol of which is the last d. The parser will detect an error when in S_{3} with de as lookahead and cannot as yet determine that it is the d which is invalid.

Chapter 3

Preliminary

Before embarking on the main purpose of this chapter, which is a comparison of precedence methods with the SLR parsing algorithm, we digress to state (and prove) a necessary condition for a grammar to be LR(1). The condition is somewhat elementary, but provides a demonstration of the utility of the $[p, j ; \alpha]$ notation for obtaining formal results in the area of $L R(k)$ methods.

We repeat the conditions which must be satisfied by an $\operatorname{LR}(1)$ grammar. For each stateset \mathcal{S} in the $L R(1)$ stateset table of the grammar we require that

$$
\begin{aligned}
& (x, \text { reduce } p),(y, \text { shift } i) \in R^{\prime}(S) \text { must imply } x \neq y \\
& (x, \text { reduce } p),(x, \text { reduce } q) \in R^{\prime}(\mathscr{S}) \text { must imply } p=q
\end{aligned}
$$

Directly applied to \mathcal{S}, the conditions may be restated as

$$
\begin{gathered}
{\left[p, n_{p} ; x\right],[q, 1 ; \alpha] \in{g^{\prime}}^{\prime}, l<n_{q}, X_{q, 1+1}=y \text { must imply } x \neq y} \\
{\left[p, n_{p} ; x\right],\left[q, n_{q} ; x\right] \in \delta^{\prime} \text { must imply } p=q}
\end{gathered}
$$

and these are of course equivalent to

$$
Z \cap Z_{p}=\varnothing \quad \text { and } \quad \underset{p}{Z} \cap Z_{q}=\varnothing \quad \text { if } \quad p \neq q
$$

where the sets Z and Z are defined for each stateset S as described in the previous chapter.

The disadvantage of the above conditions is that they apply to the (closure of the) statesets, and are not directly in terms of the grammar. There are two other criteria by which a grammar may be said to be LR(1).

The first is the intuitive definition applied to the sentences of the grammar; that they can all be parsed by scanning once from left to right, only looking one symbol ahead of the RHS to be reduced at any point in the parse. Thus, if the input string has been reduced to the sentential form $X_{1} \ldots X_{n} x \omega$ with $x d \in V_{T}^{*}$, and the correct parsing action is a reduce p on the symbols $X_{n \rightarrow p_{p}} \cdots X_{n}$, then this must be the case for any sentential form $X_{2} \ldots X_{n} \times \omega^{\prime}$ with $\omega^{\prime} \in V_{T}^{*}$. The second is Knuth's first method for testing a grammar, already mentioned in connection with DeRemer's work. This test involves the construction of an extended right regular grammar from the original grammar, which is closely related to the $\operatorname{LR}(1)$ stateset table and can be checked in a similar fashion (a grammar is extended right regular if $j<n_{p}$ implies that $X_{p j} \in V_{T}$).

The provision of necessary, and if possible sufficient, conditions for $L R(1)$ expressed in terms of the grammar would aid in the writing (and perhaps the testing) of $\operatorname{LR}(1)$ grammars. We now establish a necessary condition; if a grammar is $\operatorname{LR}(1)$, then for each $A \in V_{N}$ such that $A \nrightarrow \Lambda$, we must have $H_{1}(A) \cap F_{1}(A)=\emptyset$.

```
For, suppose \(A \ddagger \Lambda\) and \(x \in H_{i}(A) \cap F_{i}(A)\).
Since \(x \in F_{1}(A)\) we can find a stateset \(\delta\) with,
    \([p, j ; \alpha] \in S^{\prime}, X_{p, j+1}=A\) and \(H_{1}\left(X_{p, j+a} \cdots X_{p n} \alpha\right)=x\)
Since \(x \in H_{1}(A), \exists[q, 0 ; \beta] \in g^{\prime}\) with \(X_{q 1}=x\),
    and so \((x\), shift \(i) \in R^{\prime}(\mathscr{S})\).
Also \(A \leftrightarrows\) and we can find \(A_{r}\) such that
    \(A \xrightarrow{*} \mathrm{~A}_{\mathrm{r}} \rightarrow \Lambda\) and \([r, 0 ; x] \in S^{\prime}\).
Since \(\mathrm{n}_{\mathrm{r}}=0,(\mathrm{x}\), reduce r\() \in \mathrm{R}^{\prime}(\mathbb{S})\).
Hence \(S\) is inadequate, the grammar is not \(\operatorname{LR}(1)\) and we have our
result.
```

The above is a formalisation of the following argument.

$$
\begin{aligned}
& x \in F_{2}(A) \text { implies } S \xrightarrow{*} \alpha A x \beta, x \in H_{1}(A) \text { implies } A \xrightarrow{*} x \gamma . \\
& \text { If also } A \xrightarrow{\ddagger} \Lambda \text { then } S \xrightarrow{*} \alpha x \gamma x \beta \text { and } S \stackrel{*}{\rightarrow} \alpha_{x \beta} \\
& \text { By examining only } \alpha_{x}, \text { a parser cannot determine whether } x \text { should } \\
& \text { be read, or a reduction made to } \alpha A x .
\end{aligned}
$$

Precedence Parsers

The precedence methods with which we shall be mostly concerned are known as simple precedence and weak precedence. The operation of these parsers is determined by precedence relations, which are defined to be relations on V, specified by

$$
\begin{aligned}
& \doteq=\left\{(X, Y) \mid \exists \mathrm{A} \rightarrow \alpha \mathrm{XY} \omega \in \mathrm{P}, \alpha, \omega \in \mathrm{~V}^{*}\right\} \\
& <\cdot=\left\{(\mathrm{X}, \mathrm{Y}) \mid \exists \mathrm{A} \rightarrow \alpha \mathrm{XB} \omega \in \mathrm{P}, \mathrm{~B} \xrightarrow{\ddagger} \mathrm{Y} \beta, \alpha, \beta, \omega \in \mathrm{~V}^{*}\right\} \\
& \cdot>=\left\{(\mathrm{X}, \mathrm{Y}) \mid \exists \mathrm{A} \rightarrow \alpha \mathrm{BC} \omega \in \mathrm{P}, \mathrm{~B} \xrightarrow{ \pm} \beta \mathrm{X}, \mathrm{C} \stackrel{*}{\rightarrow} \mathrm{Y} \gamma, \alpha, \beta, \gamma, \omega \in \mathrm{~V}^{*}\right\} \\
& \mathrm{S}=\left\{(\mathrm{X}, \mathrm{Y}) \mid \exists \mathrm{A} \rightarrow \alpha \mathrm{XB} \omega \in \mathrm{P}, \mathrm{~B} \xrightarrow{*} \mathrm{Y} \beta, \alpha, \beta, \omega \in \mathrm{~V}^{*}\right\}
\end{aligned}
$$

The sets first(X) and last(X) are defined for $X \in V$ by

$$
\begin{aligned}
& \text { first }(X)=\left\{Y \in V \mid X \xrightarrow{+} \mathrm{Y} \alpha, \alpha \in \mathrm{~V}^{*}\right\} \\
& \operatorname{last}(\mathrm{X})=\left\{\mathrm{Y} \in \mathrm{~V} \mid \mathrm{X}^{\rightarrow} \alpha \mathrm{Y}, \alpha \in \mathrm{~V}^{*}\right\}
\end{aligned}
$$

(clearly we have first $(x)=\operatorname{last}(x)=\emptyset$ if $x \in V_{T}$). As immediate consequences of these definitions, we can state,

```
X\doteqY iff \exists A > <XYw
X<`Y iff \existsA}
X > Y iff \exists A -> |BC\omega, X G last(B), and either Y = C or Y f first(C)
X S.Y iff }\exists\textrm{A}->\alphaXB\omega,\mathrm{ and either }Y=B\mathrm{ or }Y\in\operatorname{first(B)
    iff }X\doteqY\mathrm{ or X <- Y
```

A grammar is said to be Λ-free if $\nexists A \rightarrow \Lambda$ in P i.e. $n_{p}>0,0 \leq p \leq s$. A grammar is said to be a simple precedence grammar if
(i) it is Λ-free
(ii) $s \cdot$ and $>$ are disjoint
(iii) $<$ and \doteq are disjoint
(iv) $A_{p} \rightarrow \alpha$ and $\underset{q}{A} \rightarrow \alpha$ implies $p=q$

Simple precedence grammars, and a solution to the parsing problem for them, were first described by Wirth and Weber (1966).

A grammar is said to be a weak precedence grammar if
(i) it is Λ-free
(ii) s. and $>$ are disjoint
$\left(\right.$ iii) ${ }^{\prime} \mathrm{A} \rightarrow \alpha \mathrm{XY} \beta$ and $\mathrm{B} \rightarrow \mathrm{Y} \beta$ implies $\mathrm{X} \not \& \cdot \mathrm{~B}$
(iv) $\underset{p}{A} \rightarrow \alpha$ and $\underset{q}{ } \rightarrow \alpha$ implies $p=q$

Notice that if $<\cap \cap=\emptyset, A \rightarrow \alpha X Y \beta, B \rightarrow Y \beta$ then we have $X \doteq Y$, which implies $X \not \subset \cdot Y$, which implies $X \not \subset \cdot B$. So (iii)' can be deduced from (iii), showing that any simple precedence grammar is also a weak precedence grammar. Further, if $\doteq \cap .>=\emptyset, A \rightarrow \alpha X Y \beta, B \rightarrow Y \beta$ then we have $X \doteq Y$, which implies $X \cdot \ngtr Y$, which implies $X \cdot \neq B$. The original definition by Ichbiah and Morse (1970) required that

$$
A \rightarrow \alpha X Y \beta \text { and } B \rightarrow Y \beta \text { implies } X \cdot \ngtr B
$$

holds for a weak precedence grammar. We have shown that this can be deduced from (ii) and thus the apparently less restrictive definition given here coincides with that of Ichbiah and Morse.

When discussing precedence grammars, we usually take as $0^{\text {th }}$ production, $S \rightarrow \perp S^{\prime} \perp$, and let this override the $L R(1)$ convention if both apply.

The general bottom-up algorithm described in chapter 2 can perform weak precedence parsing with the following specification.

$$
\begin{aligned}
& \text { Stack elements are symbols of } V \text {, with Initial }=\text { Final }=1 . \\
& \text { ACTION }\left(F, n, I, i^{\prime}\right) \text { yields, } \\
& \quad \text { shift }-\underline{\text { if } F[n] \leq I\left[i^{\prime}\right] \text { and }\left(I\left[i^{\prime}\right] \neq \perp \text { or } n=1\right)} \\
& \text { reduce } p-\text { if } F[n]>I\left[i^{\prime}\right] \text { and } F\left[n-n_{p}+1\right] \ldots P[n]=X_{p 1} \ldots X_{p n}^{p} \\
& \text { and } F\left[n-n_{p}\right] \leq A_{p}
\end{aligned}
$$

 error - otherwise
 $\operatorname{NEXT}(\mathrm{F}, \mathrm{n}, \mathrm{X})=\mathrm{X}$

This parser will also parse sentences of simple precedence grammars, and for such a grammar, the determination that ACTION should yield reduce p can be made more efficient by observing that $F\left[n_{p} n_{p}\right] \leqslant A_{p}$ above implies $F\left[n_{p}\right]<\cdot \underset{p}{ }\left[n_{p}+1\right]$, which for a simple precedence grammar implies $F\left[n-n_{p}\right] \neq F\left[n-n_{p}+1\right]$. By scanning down F for the first $<\cdot$ relation, the value of n_{p} can be evaluated. The test for $n=1$ when we have $F[n] \leq \cdot \perp$ amounts to a check for $\perp S^{\prime}$ on the stack. A practical implementation of this algorithm would be driven by a precomputed table of the precedence relations.

It can now be seen that (ii) ensures that the parser can decide whether to read the next symbol or perform a reduction, and that (iv) and (iii)' (or (iii)) ensure that the production to be used for a reduction can be determined by inspection of the parser's stack. Condition (i) is required because the precedence relations are defined on V. It is possible to relax this condition, but then the relations must be defined on $V \backslash\{A \mid A \rightarrow \Lambda\}$, and are slightly more complex. This will not be pursued here, but is discussed further by Gray and Harrison (1969).

Comparison of SLR and Weak Precedence

A bottom-up parser performs two distinct functions; the location of the right most symbol of the RHS which must be reduced next, and the determination of which production should be used for that reduction. The $S L R$ method uses the information inherent in the current stateset S to achieve this. The symbols to be read are those terminals which are $X_{p, j+1}$ for some state $[p, j ; \alpha]$ in S^{\prime}, while terminals x with $[q, n ; x] \in g_{q}^{\prime}$ indicate that a reduction is necessary, and in fact identify the production to be used as the $q^{\text {th }}$. The stateset S corresponds to a set of occurrences of its associated symbol on the RHSs of the productions of the grammar.

The only contextual information available to the weak precedence parser is the current symbol, X say; in SLR terms this corresponds to all occurrences of X in the production RHSs. Terminals in $F_{1}(X)$ are split into two disjoint sets by $\leq \cdot$ and $\cdot>$, those which must be read, and those which signal a reduction respectively. The production to be used in a reduction must be determined by inspecting the parser's stack. The conditions for a weak precedence grammar ensure that the longest RHS which matches the top of the stack may be used, since no other valid matich can then be found.

Error detection by a weak precedence parser is inferior to that of SLR, since invalid symbols can be read, and the error only discovered later when no production RHS matches the stack. This can be seen by considering a weak precedence parser for C_{j} (with extra leading endmarker) applied to the string \perp eeee \perp. The error remains undetected until a reduction is attempted, then since e $\$ \cdot A$, none can be made.

Grammars which describe programming languages usually require substantial modification before the weak precedence conditions are satisfied, and although this can often be done without altering the language, the phrase structure imposed by the original grammar is invariably corrupted.

These disadvantages also apply to the simple precedence algorithm, even more modifications being needed to comply with the stricter conditions in this case. Despite these drawbacks, the simple precedence method has been utilised very successfully, for example, in the PL360 and Algol W compilers.

We next wish to show that any weak precedence grammar is also an SLR grammar, the proof of which is roughly based on the above discussion. First, since $5 \cdot$ corresponds to the shift entries in the SLR parsing-states, and $\cdot>$ to the reduce entries, the absence of shift - reduce clashes can be argued from $\leq \cdot \cap \cdot>=\varnothing$. Secondly, if weak precedence can determine from the stack which production to use in a reduction, the SLR method (knowing which completed productions are on the stack) must also be able to deduce the correct reduction. This argument will now be presented more rigorously.

The following lemma establishes formally the connection between the precedence relations and the states in the SLR statesets.

Lemma 3

Let S be a stateset, with associated symbol Y, and suppose
$[p, j ; \alpha] \in S^{\prime}$.
a) If $0<j<\mathrm{n}_{\mathrm{p}}$ then $\mathrm{Y} \doteq \mathrm{X}_{\mathrm{p}, \mathrm{j}+1}$
b) If $0=j<\mathrm{n}_{\mathrm{p}}$ then $\mathrm{Y} \leqslant \cdot \mathrm{A}_{\mathrm{p}}$
c) If $j=n_{p}, \alpha=x \beta$ and the grammar is i-free then $Y \cdot>x$

These results are now established.
a) If $0<j<n_{p}$, we have $A_{p} \rightarrow X_{p 1} \ldots X_{p, j-1} Y X_{p, j+1} \cdots X_{p n_{p}}$ and so $Y \doteq X_{p, j+1}$
b) If $0=j<n_{p}$, we can find $[q, 1 ; \gamma] \in \delta$ with $0<1<n_{q}$ and a sequence of productions

$$
A_{q_{i}} \rightarrow X_{q_{1}, 1} \alpha_{i} n_{q_{i}}>0 \quad 1 \leq i \leq r \quad r \geq 0
$$

with $X_{q, 1+1}=A_{q_{2}} \quad X_{q_{1}}=A_{q_{1+1}} \quad 1 \leq i \leq r \quad$ and $A_{q_{r+1}}=A_{p}$
(These productions correspond to the sequence of states $\left[q_{i}, 0 ; \gamma_{i}\right] \in g^{\prime} \quad 1 \leq i \leq r$ which is responsible for the inclusion of $[p, 0 ; \alpha]$ in S^{\prime})

Then we have $A_{q} \rightarrow X_{q 1} \ldots X_{q, 1 \rightarrow 1} Y_{q, 1+1} \cdots X_{q n q}$ and $X_{q, 1+1} \stackrel{*}{\rightarrow} A_{p} \alpha_{r} \ldots \alpha_{1}$ and so $Y \leq A_{p}$
c) If $j=n_{p}, \alpha=x \beta$ and the grammar is Λ-free, we can find a stateset S_{i} with $[q, 1 ; \gamma] \in S_{1}^{\prime} 0 \leqslant 1<n_{q}-1$, and a sequence of productions

$$
\begin{aligned}
& A_{q_{1}} \rightarrow \alpha_{1} X_{q_{1} n_{q_{i}}} \quad n_{q_{1}}>0 \quad 1 \leq i \leqslant r \quad r \geq 0 \\
& \text { with } X_{q, 1+1}=A_{q 1} \quad x \in H_{1}\left(X_{q, 1+2} \ldots X_{q-1} y\right) \\
& X_{q_{1}{ }^{n} q_{i}}=A_{q_{i+1}} \quad 1 \leq i \leq r \quad \text { and } A_{q} \quad=A_{p+1}
\end{aligned}
$$

(These productions correspond to the sequence of states and statesets $\left[q_{1}, 0 ; x \beta\right] \in \mathcal{S}_{i}^{\prime}, 1 \leq i \leq r+1$ where we have $\left[q_{i}, n_{q_{i}}-1 ; x \beta\right] \in \mathscr{G}_{i+1}^{\prime}$ and \mathcal{S}_{1} is an $n_{q_{i}}-1^{\text {th }}$ predecessor of $S_{i+1}^{1} .\left[q_{r+1}, 0 ; x \beta\right]=[p, 0 ; x \beta] \in S_{r+1}^{\prime}$ and S_{r+1} is an $n_{p}^{\text {th }}$ predecessor of \mathcal{S}. This sequence is one which ensures $\left.\left[p, n_{p} ; x \beta\right] \in \mathcal{S}\right)$
Since the grammar is Λ-free, $n_{p}>0$ and $x \in H_{1}\left(X_{q, i+z}\right)$.
Then we have $A_{q} \rightarrow X_{q 1} \cdots X_{q, 1+1} X_{q, 1+2} \cdots X_{q n}$,

Corollary

Let $[p, j ; \alpha] \in \Im^{\prime}$, whose associated symbol is Y.
If $0=j<n_{p}$ then $Y<\cdot X_{p I}$, and thus if $0 \leq j<n_{p}$ then $Y \leq \cdot X_{p, j+1}$.
Follows immediately from b) and a) above.
The following statements also hold for any stateset table.
If $Y \doteq X$ then \exists a stateset \mathbb{S} with associated symbol Y and
$[p, j ; \alpha] \in \mathcal{S}, \quad 0<j<n_{p}, X_{p, j+1}=X$.
If $\mathrm{Y}<\mathrm{X}$ then \exists a stateset \mathcal{S} with associated symbol Y and $[p, 0 ; \alpha] \in S^{\prime}, X_{p 1}=X$.
If $Y>x \in V_{T}$ then \exists a stateset S with associated symbol Y and $\left[p, n_{p} ; x_{B}\right] \in \mathscr{S}$ (if S is not $\left.\operatorname{LR}(0)\right)$.
These can all be deduced from the definitions of the precedence relations.

Now suppose that $[p, j ; \alpha],[q, 1 ; \beta]$ are members of the closure of some stateset s^{\prime}, with $0 \leq j \leq 1$. By considering the associated symbols of the $0^{\text {th }}, 1^{\text {st }}, \ldots, j-1{ }^{\text {th }}$ predecessors of \mathscr{F}, we can see that $X_{p j}=X_{q 1}, X_{p, 1-1}=X_{q, 1-1}, \cdots, X_{p 1}=X_{q, 1-1+1}$. When the parser is in stateset $\mathcal{G}, X_{p 1} \ldots X_{p j}=X_{q, 1-j+1} \ldots X_{q 1}$ will be the associated symbols of the statesets on the top of the stack. This result may be regarded as an extension of the associated symbol concept, and in conjunction with lemma 3 enables us to prove the following theorem.

Theorem

Weak precedence grammars are SLR grammars.
Let f_{f} be any grammar which is not SLR. We wish to show that \hat{g}
is not a weak precedence grammar. Consider the SLR stateset
table for \mathcal{G}. This contains at least one inadequate stateset.
Let S be such a stateset. The inadequacy may be
a) shift - reduce p or b) reduce p - reduce q $p \neq q$
a) Suppose (x, shift i) and (x, reduce $p) \in R^{\prime}(\mathbb{S})$.

Then $\exists\left[p, n_{p} ; x\right] \in g^{\prime}$. We must take C_{f} to be Λ-free, so

```
\(n_{p}>0, X_{p n_{p}}\) is the associated symbol of \(S\) and by lemma 3,
    \(X_{p n} \quad .>x\)
Also \(\exists^{p}[q, j ; \alpha] \in S^{\prime}, j<n_{q}\) and \(X_{q, j+1}=x\). Then by the
corollary to lemma \(3, X_{p n} \leq . x\)
```

Hence \mathcal{G} is not a weak precedence grammar.
b) Suppose (x, reduce p) and (x, reduce q) $\in R^{\prime}(\delta), p \neq q$.

Then $\exists\left[p, n_{p} ; x\right],\left[q, n_{q} ; x\right] \in S^{\prime}$, and we must take $n_{p}, n_{q}>0$.
If $n_{p}=n_{q}$ then $X_{p 1} \ldots X_{p_{n}}=X_{q 1} \ldots X_{q_{n}}$ and therefore
G. is not a weak precedence grammar.

If $n_{p} \neq \mathrm{n}_{\mathrm{q}}$ then take $0<\mathrm{n}_{\mathrm{p}}<\mathrm{n}_{\mathrm{q}}$. We may write
$A_{q} \rightarrow X_{q 1} \cdots X_{q, n_{q}} X_{p 1} X_{p 1} \cdots X_{p n} \quad$ and $A_{p} \rightarrow X_{p 1} \cdots X_{p n}$
Let \mathcal{S}_{1} be an n_{p} th predecessor of S. Then $[p, 0 ; x] \in \mathcal{S}_{1}^{\prime}$
and $\left[q, n_{q}-n_{p} ; x\right] \in \mathcal{F}_{q}$. Since $n_{q}-n_{p}>0, X_{q, n_{q}-n_{p}}$ is the associated symbol of S_{1}. By lemma $3, X_{Q, n_{q} \rightarrow n_{p}} \leq A_{p}$ and therefore \mathcal{G} is not a weak precedence grammar.

In both cases we have deduced that G_{f} is not a weak precedence grammar, which gives us our result.

The proof of case b) of the theorem shows that for a weak precedence grammar a parsing-state cannot contain two distinct reduce entries, since the information that both reductions were on the same terminal was not used.

For simple precedence grammars a stronger result of a similar nature can be obtained. Let \mathcal{S} be a stateset with $[p, j ; \alpha],[q, 1 ; \beta] \in \mathcal{S}$ and $j \neq 1$. Then $\mathcal{S} \neq S_{o}$ and we may take $0<j<1$. Since $X_{p 1} \ldots X_{p j}=X_{q, 1-j+1} \ldots X_{q 1}$ we have $A_{q} \rightarrow X_{q 1} \ldots X_{q, 1-j} X_{p 1} \ldots X_{p j} X_{q, 1+1} \ldots$ $X_{q n_{q}} \quad$ Thus $X_{q, 1-j} \doteq X_{p 1}$. If \mathcal{S}_{1} is a $j^{\text {th }}$ predecessor of S, then $[q, 1-j ; \beta] \in \mathcal{S}_{1}$ and $[p, 0 ; \alpha] \in \mathcal{S}_{1}^{\prime}$. The associated symbol of \mathcal{S}_{1} is therefore $X_{q, 1-j}$ and so by the corollary to lemma $3, X_{q, 1-j}<X_{p i}$.

We have shown that, if for a grammar the precedence relations <and \doteq are disjoint (condition (iii) for simple precedence), then for any stateset \mathcal{S} with $[p, j ; \alpha],[q, 1 ; \beta] \in \mathscr{\delta}$ we must have $j=1$. The presence of two reduce entries in a parsing-state for such a grammar would imply that the respective productions had identical RHSs.

Weaker Precedence

This section describes a modification of the weak precedence method which removes two anomalies in the description given here. First, since the parser checks $F\left[n-n_{p}\right] \leq \cdot A_{p}$ for a reduce p operation, it is possible to change condition (iv) to

$$
\begin{aligned}
(i v)^{\prime} & A_{p} \rightarrow \alpha, A_{q} \rightarrow \alpha \text { implies either } p=q \text { or } \\
& \left.\rightarrow X \in V \mid X \leq A_{p} \text { and } X \leq \cdot A_{q}\right\}=\emptyset
\end{aligned}
$$

Second, it can be seen that the weak precedence algorithm, after inspecting a terminal symbol which indicates that a reduce is required, proceeds to ignore that symbol for the purpose of deciding which production to use. A more uniform criterion for ACTION to yield a reduce p operation would be,

$$
\begin{aligned}
F[n] \cdot>I\left[i^{\prime}\right] & \text { and } F\left[n-n_{p}+1\right] \ldots F[n]=X_{p 1} \ldots X_{p n} \text { and } F\left[n-n_{p}\right] \leq \cdot A_{p} \\
& \text { and }\left(A_{p} \cdot>I\left[i^{\prime}\right] \text { or } A_{p} \leq I\left[i^{\prime}\right]\right)
\end{aligned}
$$

This gives a more powerful parser, and permits a further weakening of the conditions imposed on a grammar, which we define to be a weaker precedence grammar if

$$
\begin{aligned}
& \text { (i) It is } \Lambda \text {-free } \\
& \text { (ii) } \leq \cdot \text { and } \cdot>\text { are disjoint } \\
& \text { (iii) } \\
& (\text { iv })^{\prime \prime} A_{p} \rightarrow \alpha X Y B, B \rightarrow Y \beta \text { implies either } X \notin \cdot B \text { or } F_{q}(A) \cap F_{2}(B)=\varnothing \\
&
\end{aligned}
$$

Conditions (iii)" and (iv)" have been simplified by the use of $\left\{x \in V_{T} \mid A \leq \cdot x\right.$ or $\left.A \cdot>x\right\}=F_{1}(A)$, which holds for Λ-free grammars.

The proof of case b) of the theorem may be modified to show that the weaker precedence grammars are included in the SLR grammars. Two changes are required in case b), namely the observation that $x \in F_{z}\left(A_{p}\right) \cap F_{I}\left(A_{q}\right)$ for both parts, and when $n_{p}=n_{q}$, the consideration of any $n_{p}^{\text {th }}$ predecessor of \mathcal{F}; if \mathcal{S}_{1} is such a predecessor with associated symbol X, then since $[p, 0 ; x],[q, 0 ; x] \in S_{1}^{\prime}$ we may deduce by lemma 3 that $X \leq \cdot A_{p}$ and $X \leq \cdot A_{q}$. Examples to show that the inclusion is strict are easily found.

Weaker precedence grammars are also included in the mixed strategy precedence of degree (1,$1 ; 1,1$) grammars as defined by McKeeman, Horning and Wortman (1970).

An SLR parsing table can be used to construct a table which drives a precedence type of parser, by combining the entries of parsing-states whose corresponding statesets have the same associated symbol. The shift and goto entries must be altered to refer to the merged parsing-states, i.e. for (A,goto i), i must designate the unique merged parsing-stage corresponding to A. The effect of this merging is to remove from the parsing table any contextual information other than the current symbol.

By merging $L R(0)$ statesets on associated symbol as they are produced by an $L R(0)$ stateset computation, and using $F_{1}\left(A_{p}\right)$ to add lookahead to $\left[p, n_{p}\right]$ states, the same table can be constructed more efficiently. Notice that merging an $\operatorname{LR}(1)$ table on associated symbol would result in an identical table to the above.

The resulting parser does not have the error detection capability of an $L R(0)$ parser, and when a reduce p operation is called for, it must verify that the RHS of production p is represented by the top of the stack. In view of this verification, we permit the resolution of (x, reduce p), (x, reduce q) inadequacies on the same basis as weaker precedence; for production p to be used we require $X_{p 1} \ldots X_{p n}$ represented on the stack, and the associated symbol of $F\left[n_{p-n}^{p n}\right]^{p}$ must be $\leq \cdot A_{p}$.

The class of grammars which can be parsed by the above, informally described, precedence-SLR method may be termed PLR. In appendix 1 (1.4) we show that a Λ-free grammar is PLR iff it is weaker precedence. Essentially this is because the technique used for reductions is defined to be equivalent, and $\leq \cdot \cap \cdot>=\emptyset$ iff there are no shift-reduce inadequacies in the PLR table (in fact the PLR table corresponds to a tabulation of \leq. and $\cdot>$). As a consequence of this result, it should be clear that the PLR method is merely a more costly version of weaker precedence, and should not be considered for practical use.

The preceding discussion of simple, weak and weaker precedence within the framework of the $S L R$ parsing algorithm is intended to indicate the ways in which SLR can be regarded as an extension of the precedence methods. The inclusion results and the characterisation of \leq and $\cdot>$ in terms of the $S L R$ stateset table provide an aid to the understanding of the SLR parser.

Other parsing methods which may be considered with advantage from an SLR viewpoint are described by Hext and Roberts (1970) (Domolki's algorithm) and Lynch (1968) (ICOR grammars). Connections with the augmented operator techniques of Gries (1968) are discussed by Anderson, Eve and Horning (1971). Finally, the SLR algorithm may itself be considered as a special case of Korenjak's method, by constructing LR(1) subparsers for all nonterminals in a grammar.

Chapter 4

Practical Considerations

Chapter 4 is concerned with the practical implementation of the SLR parsing algorithm, and in this first section we attempt to justify our concentration on LR techniques in general and the SLR method in particular.

Techniques are available for the construction, from an arbitrary grammar, of a parser for the sentences of that grammar. However, Earley (1970) reports that to parse an input string of length n, his method may require time proportional to n^{3}, and space proportional to n^{2} (the time bound is reduced to n^{2} for unambiguous grammars). Since these are currently the best results for the parsing of arbitrary grammars, we restrict our attention to less general methods having time and space requirements that are linearly proportional to the length of the input.

Because of the reduced generality of such methods, a grammar may need substantial modification before it is acceptable. This is the case with the predictive top-down analysers, which only work for the $\mathrm{LL}(\mathrm{k})$ grammars as defined by Lewis and Stearns (1968). The precedence methods also require the transformation of most grammars, although McKeeman, Horning and Wortman claim that this can often be done for the mixed strategy precedence method of degree (2,$1 ; 1,1$) without destroying the grammar's usefulness as a syntactic reference. The inferior error detection capability of precedence methods is an added disadvantage.

In contrast, we claim that a programming language grammar, which has been made unambiguous, will usually be LR(1), and further, that few if any changes will be needed for it to be LALR or even SLR. All the LR methods can locate the first erroneous symbol of an invalid string, and they utilise time and space at most in linear proportion to the length of the input. For programming languages this space requirement
is somewhat misleading, since it is normally possible to ensure that the space needed for the stack (which is variable), is very small compared with the space occupied by the parser itself (with its tables). We consider only the LALR and SLR methods because of the magnitude of $\operatorname{LR}(1)$ tables. The selection of SLR for discussion and implementation is merely for convenience, in description and computation. In any case, much of what is said can be seen to apply equally to the LALR algorithm.

While the above does not present a conclusive argument, the points which are made serve as motivation (if one is needed) for what follows.

SLR Parsing

We give a compact description of the formation of SLR tables, omitting some of the complexity which was required in Chapter 2. The notation used here (for convenience) conflicts slightly with that chapter, but the description is essentially equivalent.

For SLR, a state is an ordered pair $[p, j]$, which indicates that j symbols of production p have been recognised (recall $A_{p} \rightarrow X_{p I} \ldots X_{p a}$). At any stage during the parse of a sentence, the status of the parser can be represented by a set δ of such states, called a stateset. The closure of \mathscr{S}, denoted by \mathcal{S}^{\prime}, is formed by adding to \mathcal{S} states indicating those productions which at this stage in the parse we could begin to recognise, and is the smallest set satisfying,

$$
S^{\prime}=S \cup\left\{[q, 0] \mid \exists[p, j] \in S^{\prime}, j<n_{p}, X_{p, j+1}=A_{q}\right\}
$$

If the next symbol encountered is $Y \in V$, the new status of the parser is represented by $S Y$, the Y successor of S.

$$
S Y=\left\{[p, j+1] \mid[p, j] \in S^{\prime}, j<n_{p}, X_{p, j+1}=Y\right\}
$$

Initially the status of the parser is represented by $\delta_{0}=\{[0,0]\}$. The stateset table J, containing all statesets which can occur during parsing is given by

$$
\mathcal{T}=\left\{S_{0}\right\} \cup\{S Y \mid S \in T, S \neq\{[0,1]\}, Y \in V, S Y \neq \emptyset\}
$$

whose members are indexed, i.e. we refer to the $i{ }^{\text {th }}$ member of \mathcal{J} as S_{i}. Corresponding to the $i^{\text {th }}$ member of J, a parsing-state $R\left(S_{i}\right)$ specifying the parser's operation is computed by

$$
\begin{aligned}
R\left(\mathcal{S}_{i}\right)= & \left\{(x, \text { reduce } p) \mid\left[p, n_{p}\right] \in \mathcal{S}_{1}^{\prime}, x \in F_{i}\left(A_{D}\right)\right\} \\
& \cup\left\{(Y, \text { shift } 1) \mid[p, j] \in \mathcal{S}_{i}^{\prime}, j<n_{p}, X_{p, j+1}=Y, S_{1}=\mathcal{S}_{1} Y\right\}
\end{aligned}
$$

Finally, the parsing table is $\{R(\mathcal{S}) \mid S \in I\}$
Throughout this chapter, we will use the grammar G_{G} as an example, the productions of which are

In the $S L R$ parsing table for G_{G}, we represent an entry (Y, shift 1) by 1 in the column headed Y, and an (x, reduce p) entry by $-p$ in the column headed x .

Stateset and parsing tables for G_{6}

The operation of the SLR parser is described by the following flow diagram and equivalent pseudo Algol, in which:

F is a stack, to which n is the pointer.
I denotes the input string, and indicates the first unread symbol.

The stack elements are integers which index the stateset table (0 and 1 corresponding to the initial and final
statesets).
$\operatorname{ACTION}(1, X, o p, W)$ inspects the parsing-state $R\left(\boldsymbol{g}_{1}\right)$ to assign values to op and W .

If $(X$, shift $j) \in R\left(\mathcal{S}_{1}\right)$ then op: shift $W:=j$.
If $(X$, reduce $p) \in R\left(S_{1}\right)$ then op: geduce $W:=p$.
Otherwise op:= error.
The variables op and W are work variables; op indicates the type of operation the parser must perform next, while W specifies either the index of a new stateset, or a production number.


```
\(\mathrm{F}[0]:=\mathrm{n}:=0 ; \quad \mathrm{i}:=1 ; \operatorname{ACTION}(\mathrm{F}[0], \mathrm{I}[1], \mathrm{op}, \mathrm{W})\);
while \(F[n] \neq 1\) and op \(\neq\) error do
    begin if \(o p=\) shift then \(i:=i+1\) else
        begin \(n:=n-n_{w} ; \operatorname{ACTION}\left(F[n], A_{w}, o p, W\right)\) end;
\(\mathrm{n}:=\mathrm{n}+1\);
\(\mathrm{F}[\mathrm{n}]:=\mathrm{W} ; \operatorname{ACTION}(\mathrm{F}[\mathrm{n}], \mathrm{I}[\mathrm{i}], \mathrm{op}, \mathrm{W})\)
end;
```

Differences between this section and Chapter 2 include the use of an $L R(0)$ stateset table to produce an $S L R$ parsing table (using the sets $F_{i}\left(A_{p}\right)$ for reduce p entries), the omission of the error stateset \varnothing and statesets having \perp as associated symbol. The procedure ACTION now incorporates NEXT, and is simplified by the replacement of (A, goto j) by (A,shift j). For notational convenience we omit the 'from $\mathrm{R}^{\prime}(\mathcal{S})$ and i^{\prime}.

Chain Productions

Grammars for programming languages often include productions which have no semantic significance for compilation. By this we mean that a reduction involving such a production invokes no special semantic routine, and need not affect the output of the parser. (We have ignored this aspect of parsing, and in the main will continue to do so.) These productions commonly occur in connection with the generation of arithmetic expressions, and are mainly of the form $A_{p} \rightarrow A_{d}$. When a production of no semantic significance has a RHS of length one, it is possible for the parser to omit any reduction involving that production, since a reduction of length one does not change the size of the stack. The omission of all such reductions can result in a large increase in parsing speed. This can be achieved within the SLR framework, as is now described.

We say that the $p^{\text {th }}$ production is a chain production iff it has no semantic significance and $n_{p}=1$, and write $A_{p} \subset X_{p 1}$ (analagously to $\left.A_{p} \rightarrow \mathbf{X}_{p 1}\right)$. In G_{6} we let productions $1,2,4$ and 6 be chain productions. The chain $E \subseteq T \subseteq P$ so formed is typical of the situation in programming languages, as for example Algol W where a variable can be parsed as an expression only by means of 12 chain productions.

To modify the SLR table constructor so that the parser can bypass chain productions, it is necessary to replace SY by the chained $\underline{Y \text { successor }}$ of \mathscr{S}, denoted by \mathbb{S}_{Y}.

$$
\begin{aligned}
& \mathcal{S}_{Y}=\left\{[p, j+1] \mid[p, j] \in \mathscr{S}^{\prime}, j<n_{p}, X_{D, j+1} \varrho^{*} Y\right. \\
&\left.p^{\text {th }} \text { production not a chain production }\right\}
\end{aligned}
$$

This definition is a generalisation of Y successor, since in the absence of chain productions we have $\mathcal{S} Y=\mathcal{S}_{\mathbf{Y}}$. The tables which result from the use of this generalisation will be termed SLRC tables.

An alternative means of computing S_{Y} is provided by the following equations.

Let $W_{Y}=S Y \cup\left\{[p, j] \in S X \mid[q, 1] \in W_{Y}, A_{q}=X\right.$,
$q^{\text {th }}$ production is a chain production $\}$
then $W_{Y}=\left\{[p, j+1] \mid[p, j] \in \mathcal{S}^{\prime}, j<n_{p}, X_{p, j+1} \mathbb{c}^{*} Y\right\}$
so $S_{Y}=\left\{[p, j] \in W_{Y} \mid p^{\text {th }}\right.$ production is not a chain production $\}$
Consider stateset $\mathscr{S}=\mathscr{S}_{G}=\{[3,2]\}$ for grammar \mathscr{C}_{6}. We have

Y
id
(
E
T $\{[4,1][7,1]\}\{[4,1][7,1][3,3][5,1]\}$
$\mathrm{P}\{[6,1]\} \quad\{[6,1][4,1][7,1][3,3][5,1]\}\{[7,1][3,3][5,1]\}$
δ_{Y}
$\{[9,1]\}$
$\{[8,1]\}$
$\{[3,3][5,1]\}$
$\{[7,1][3,3][5,1]\}$
S_{T} and S_{P} are of interest here. In W_{T} we include the members of $S E$ because $[4,1] \in S T$. In W_{P} we include the members of ST because $[6,1] \in S P$. Then, since $[4,1] \in W_{P}$, we also include the members of $S E$. States $[4,1]$ and $[6,1]$ are deleted to form S_{T} and S_{P}, since productions 4 and 6 are chain productions.

We discuss the differences between the SLRC and SLR tables for \mathcal{C}_{6}, in an attempt to indicate the effects of utilising chained successor statesets. To aid in this comparison, the statesets in the SLRC table have been numbered in correspondence with their SLR counterparts, with the result that this numbering is not consecutive.

First consider $R\left(S_{0}\right)$. The SLR entries (D, shift 1), (A, shift 2), (C,shift 3) occur in the SLRC parsing table as (D, shift 1), (A, shift 1), (C,shift 1). This results from the elimination of statesets 2 and 3 , which in the SLR table contained reduce entries for productions 1 and 2 respectively. Since these are chain productions, the SLRC parser can ignore the reductions, and when in $R\left(\mathscr{S}_{0}\right)$ will regard A and C as being implicitly reduced to D. The parsing-state entries correspond to this implicit reduction having been made.
$R\left(\mathcal{S}_{25}\right)$ exhibits the same behaviour, for the same reasons, (A,shift 2), (C,shift 3) being replaced by (A,shift 26), (C,shift 26). The elimination of \mathcal{S}_{12}, which like S_{2} and \mathcal{S}_{3} only performsa chain reduction (on production 6), affects the entries on P in S_{6}, S_{12}, S_{16}. These are changed to correspond to the respective entries for T.

SLR statesets S_{8}, \mathcal{S}_{9} and \mathcal{S}_{10} are involved in a more complicated transformation. Because some, but not all, entries in δ_{10} specify chain reductions, \mathcal{S}_{10} cannot be eliminated, and instead is amended as follows. The chain reduce 4 entries are replaced by the corresponding entries from S_{g}, since production 4 reduces a T to an E, and $S_{B} E=S_{9}$. In particular, the (), reduce 4) entry is deleted.

Similar comments apply when we consider statesets $\mathcal{S}_{1 \bar{E}}, \mathcal{S}_{18}$ and \mathcal{S}_{20}. Since $\mathcal{S}_{12} E=S_{18}$, chain reduce 4 entries in S_{10} must be replaced by the corresponding entries from S_{18}. These amendments to S_{10} are incompatible with those described previously, since in this case the (else, reduce 4) and (1, reduce 4) entries are deleted. In consequence, a new stateset appears in the SLRC tables, and is referred to as S_{10}. For a programming language having a grammar which defines arithmetic expressions in the usual way, the replication of statesets, in the way \mathcal{S}_{10} is duplicated, is a prominent feature of the SLRC tables for the grammar. The elimination of statesets occurs less often, so that in a practical situation an SLRC table usually contains many more statesets than the SLR table for the same grammar. However, this is more than offset by the increased speed of the SLRC parser.

If all replications of the same stateset are merged back to a single stateset, chain reductions are still avoided, but at the expense of the parser's LR(0) error detection capability. The stack must then be checked whenever a reduce operation is performed.

Alternatively, chain reductions may be partially avoided, by using a modification of \mathscr{S}_{Y}. This modified \mathcal{S}_{Y} is computed (in Q) by

$$
\begin{aligned}
& Q:=S Y ; \\
& \text { while } \forall[q, l] \in Q, q \text { is a chain production do } \\
& Q:=\left\{[p, j] \in S X \mid[q, l] \in Q, X=A_{q}\right\}
\end{aligned}
$$

The tables which result from using this modification will be termed SLRPC tables. Statesets are eliminated from an SLR table, but none are replicated. (It is therefore possible to produce SLRPC tables directly from SLR tables.) The parser's $L R(0)$ error detection capability is maintained but some chain reductions will still be performed.

A number of complications arise in both the SLRC and SLRPC methods, and are now discussed.

More than one final stateset can be created by these algorithms. If no chain production has X_{01} as its LHS then this anomaly does not occur.

In the $S L R C$ tables for C_{G}, the entries in S_{0} and S_{25} for D are never used, and can be deleted. In general, if all productions of which a nonterminal A is the LHS are chain productions, then all entries for A may be deleted from an SLRC table. Any statesets which are only accessed from these entries can also be deleted.

There is a slight degradation of error detection in going from SLR to SLRPC to SLRC parsers, similar to that resulting from lookahead minimisation; namely that error detection may be deferred until after the stack is reduced, but before the next input symbol is read. This means, as already noted, that the $L R(0)$ detection capability is maintained.

The concept of an associated symbol for SLRC and SLRPC statesets is less simple than for SLR statesets. A generalisation of the original definition must be made. Let S be any member of a stateset table, other than S_{0}. Then the set

$$
\left\{Y \in V \mid \forall[p, j] \in \mathcal{S} X_{p J} \underline{c}^{*} Y\right\}
$$

is not empty, and may be regarded as an associated symbol set for δ.
An important point, which must be made, is that the SLRC and SLRPC methods are not strictly parsing algorithms within our definition, although we will continue to refer to them as such. This is because they do not determine the canonical derivation for a sentence; rather they determine what Gray and Harrison call a sparse parse
i.e. a specification of a parse from which reductions by a subset of the productions have been omitted (in our case, the chain productions).

One consequence is that the sentences of some grammars which are not SLR can be 'parsed' by means of the SLRC or SLRPC algorithms.

Since only a sparse parse is to be determined, in certain circumstances additional right context may be examined before an essential reduction is called for. Grammar \mathcal{C}_{4} (constructed in Chapter 2), which is $\operatorname{LR}(1)$ but not LALR, is an SLRC grammar if productions 5 and 6 are chain productions. Perhaps more surprising is the existence of SLRC grammars which are not $L R(1)$, or even unambiguous. Consider G_{7} which has productions

$$
\begin{array}{ll}
0 & S \rightarrow A \perp \\
1 & A \rightarrow C \\
2 & A \rightarrow B \\
S=3 & B \rightarrow C
\end{array}
$$

Although clearly ambiguous, if productions 1,2 and 3 are chain productions, then C_{γ} is SLRC. The sentence c \perp has a unique (trivial) sparse parse. In appendix 1 (1.5) we establish theorem A, which states that a A-free SLR grammar is an SLRC grammar, for any set of chain productions. The Λ-free premise of theorem A cannot be removed, as is shown by C_{8}, with productions

0	$S \rightarrow A_{1}$	3	$A \rightarrow L d$
1	$A \rightarrow B L$	4	$B \rightarrow e$
2	$A \rightarrow C$ d	5	$C \rightarrow e$
		$s=6$	$L \rightarrow \Lambda$

$\Gamma_{f_{8}}$ is SLR, but not SLRC if productions 4 and 5 are chain productions.
(Stateset and parsing tables for $C_{h_{7}}$ and $C_{f_{8}}$ are exhibited in appendix 2.)

The difficulty arises from the combination of an empty RHS with the inaccuracy of the SLR method's lookahead calculation. If any SLR grammar is not SLRC, the inadequacies must involve the reduction of empty RHSs. A rudimentary refinement of the lookahead for such a reduction, local to the stateset in question, will be sufficient to remove the inadequacy. The proof of theorem A indicates that the corresponding result for LALRC grammars (defined analagously to SLRC), is not complicated by Λ; that an LALR grammar is LALRC.

LR(0) Statesets

Technically, an SLR stateset is said to be $\operatorname{LR}(0)$ if it is adequate without any provision of lookahead, in which case either all the corresponding parsing-state entries are shifts, or all are reduce entries for the same production. If all are shifts, the input must still be inspected to determine the next stateset, and for this reason we shall regard an SLR stateset as having the LR(0) property only if all entries are reduce p for some unique p. In such circumstances the parser's next operation may be considered independent of the lookahead symbol. Statesets which are $L R(0)$ by this definition can be eliminated from the SLR stateset table at the cost of introducing a new type of parsingstate entry. Their elimination increases the speed of the parser as well as reducing the size of the stateset table.

Suppose an SLR stateset \mathcal{S}_{i} is $\operatorname{LR}(0)$. Then $\mathcal{S}_{i}=\left\{\left[p, n_{p}\right]\right\}$ for some p, and $R\left(S_{1}\right)=\left\{(x\right.$, reduce $\left.p) \mid x \in F_{1}\left(A_{p}\right)\right\}$. Minimisation of the lookahead converts these to the single entry (Λ, reduce p). Now consider a stateset S, whose parsing-state contains an entry (X, shift i). Since the parser's action in \mathcal{S}_{1} is known to be unique and independent of the lookahead, this entry could be altered to (X,'shift i, and then reduce p^{\prime}). The shift portion of this operation involves stacking i.

Since n_{p} must be positive, the reduce p will immediately remove i, and so the actual value stacked is immaterial. If $X \in V_{N}$ the entry can be just (X, reduce p), if reduce operations on nonterminals increment the stack pointer. The new type of entry is needed when $X \in V_{T}$ and is written (X, scan reduce p). The scan indicates that X must be read from the input, and the stack pointer incremented, before the reduction takes place.

ACTION is modified to yield op $=$ scanreduce and $W=p$ for such an entry. We again specify an SLR (and SLRC, SLRPC) parsing algorithm by means of a pseudo Algol description and corresponding flow diagram.

In the absence of scan reduce and nonterminal reduce entries this parser is in fact equivalent to that given earlier in this chapter.

```
\(\mathrm{F}[0]:=\mathrm{n}:=0 ; \mathrm{i}:=1 ; \operatorname{ACTION}(\mathrm{F}[0], \mathrm{I}[1], \mathrm{op}, \mathrm{W}) ;\)
while \(F[n] \neq 1\) and op \(\neq\) error do
begin if op \(\neq\) reduce then
    begin \(i:=i+1 ; n:=n+1\) end;
while op \(\neq\) shift do
    begin \(n:=n-n_{w}\);
    \(\operatorname{ACTION}\left(F[n], A_{w}, o p, W\right) ; n:=n+1\)
    end;
\(\mathrm{F}[\mathrm{n}]:=\mathrm{W} ; \operatorname{ACTION}(\mathrm{F}[\mathrm{n}], \mathrm{I}[\mathrm{i}], \mathrm{op}, \mathrm{W} \cdot)\)
end;
```


Elimination of $L R(0)$ statesets affects the parser's error detection in the same way as the elimination of statesets by SLRPC techniques. The number of statesets which are $L R(0)$ is in practice much greater than the number eliminated by SLRPC.

The SLRC tables for Γ_{6}, with $\operatorname{LR}(0)$ statesets eliminated, provide an example. Scan reduce p entries in the parsing table are represented by *p in the appropriate columns. The original (SLR) stateset numbering is retained.

Table Compaction

For the purpose of driving the parser, it is only necessary to retain the parsing table; the stateset table may be discarded. To represent economically the information contained in a parsing table, a number of compaction techniques are available. Initially we consider these techniques independently of each other.

Conditions may be postulated under which parsing-states can be merged, by combining their entries and changing references to the component parsing-states to refer to their combination. Sufficient conditions for two parsing-states to be merged, without detriment to the parser's error detection are now given.

1) Nonterminal entries must not conflict.
2) The terminal shift (and scan reduce) entries must be identical.
3) Terminal reduce entries must not conflict.
4) The set of productions used in terminal reductions must be identical.
(The entries of two parsing-states conflict if for some symbol in V they contain distinct entries.)

All syntactic errors are detected by the parser on terminal symbols, so parsing-states are only accessed with valid nonterminals. Thus the addition of nonconflicting nonterminal entries does not alter the parser's behaviour. Similarly we may add an (x, reduce p) entry to a parsing-state if there is already in the parsing-state a (y, reduce p) entry for some $y\left(x, y \in V_{T}\right)$, and no entry for x (compare lookahead minimisation).

Two parsing-states satisfying the above conditions can therefore have entries added to make them identical, when clearly they can be merged. Such a merge would eliminate a parsing-state and economise on any common entries. Unfortunately, for parsing tables derived from LR(0) stateset tables, if $R\left(S_{i}\right)$ and $R\left(S_{j}\right)$ satisfy these conditions, we must have $i=j$; hence no merging is allowed in the tables with which we are here concerned. Substantiation of this remark is deferred to appendix 1 (1.6).

Parsing tables can conveniently be regarded as transition matrices, with rows indexed by parsing-state number and columns indexed by symbol. An element of such a matrix may be blank, corresponding to an error, or else indicates a type of operation (shift, scan reduce, reduce) and the number of either a parsing-state or a production. It may be possible to reduce the number of bits required to encode an element of the matrix. If within each row (or each column) the range of the entries is small then an economy can be made by the following means. Let the entries in the row (column) be a_{i} for $1 \leq i \leq n$ say. We evaluate $c=\min _{i}\left(a_{i}\right)-1$, and then the entries can be stored as $a_{1}-c$. The value of c for each row (column) must also be recorded.

To decrease the range of entries in a row (column) we may reorder parsing-states and productions. Indeed, for $S L R$, by reordering parsingstates, we can ensure that the shift entries in a column form a sequence of consecutive integers; a consequence of the fact that all references to a particular parsing-state must lie in one column of the matrix, namely, the column indexed by the parsing-state's associated symbol. Different constants can be kept for the different types of entry, e.g. one constant could apply to reduce (and scan reduce) entries and another to shift entries. Reduce entries should then be handled by row, since the number of different production numbers used in a parsing-state is likely to be small.

Applied to the SLRC parsing table (with $L R(0)$ statesets eliminated) for G_{6}, this technique can be used to reduce the size of the matrix entries from 7 bits to 4 bits (including 2 bits which indicate the type of operation) and thus reduce an overall requirement of 2394 bits to 1535 bits.

To represent a matrix in computer memory it must be linearised, and we can take advantage of the indirection involved in such a linearisation to overlay rows (parsing-states) of the matrix. The conditions for such overlaying are as for the merging of parsing-states, but now, by partitioning the matrix into a terminal section and a nonterminal section, conditions 2) to 4) may be applied to the terminal submatrix, and (independently) condition 1) to the nonterminal submatrix. For SLR, conditions 2) to 4) imply that the two parsing-states have identical terminal entries, which means that determination of the optimum overlay is trivial for the terminal submatrix. The problem of determining the optimum solution for the nonterminals is combinatorial in nature, as is indicated by an example.

A
B
C

1 (shift, a)
2 (shift,b) (shift, c)

3
(shift, d) (shift,e)

4 (shift,f)

We can overlay 1 with 4 and are done, but better would be 1 with 3 and 2 with 4. (This example is similar to that given in Chapter 2 on the merging of statesets.) In general, more overlaying of nonterminal rows than terminal rows can take place, a consequence of the less stringent condition imposed.

After overlaying the rows of the SLRC parsing table (with LR(0) statesets eliminated) for C_{6}, we obtain the following terminal and nonterminal submatrices, and associated indirection table.

Nonterminal Submatrix

	D	A	C	E	T	P	B	L
1	1	1	1	9	10	10	7	-10
2	-13	-13	13	18	10	10^{\prime}		
3		19			21	21		
4						-7		

Indirection Table

Parsing-state

| 0 | 1 | 4 | 5 | 6 | 7 | 9 | 10 | 12 | 14 | 15 | 16 | 17 | 18 | 10 | 19 | 21 | 25 |
| :--- |
| 1 | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 4 | 8 | 9 | 4 | 4 | 10 | 11 | 12 | 13 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 3 | 0 | 3 | 4 | 0 | 0 | 1 | 0 | 2 |

An entry of O in the indirection table is used to indicate that the corresponding row does not contain any entries. By renumbering the parsing-states it is possible to eliminate these entries from the nonterminal portion of the indirection table. If overlaying is not performed, then this renumbering makes a large saving on the nonterminal submatrix.

Direct representation of the parsing table as a matrix is very costly in space. Since the matrix is usually sparse, an obvious saving can be achieved with the following scheme.

The parsing table entries are stoped in two vectors named SYM and ACT. Elements of SYM are symbols and those of ACT are their corresponding parsing operations, thus (SYM(i), ACT(i)) forms a parsing table entry. The entries of parsing-state j are located by accessing a vector called STATE with j, to obtain an index and a length. The index specifies the location, in $S Y M$ and $A C T$, of the first entry in parsing-state j, while the length gives the number of entries in the parsing-state. All entries of a parsing-state are placed consecutively in $S Y M, A C T$, following the first. This representation of the parsing table will be referred to as a list representation, as opposed to a direct matrix representation.

To aid in further compactions, we partition SYM and therefore ACT, into a terminal and a nonterminal part, accessed via two vectors called TSTATE and NSTATE. With a terminal lookahead symbol, in parsing-state j, we obtain from $\operatorname{TSTATE}(j)$ an index to TSYM and TACT, the terminal parts of SYM and ACT; similarly, for a nonterminal symbol we obtain from NSTATE (j) an index to NSYM and NACT.

The constraints we impose on these vectors, as a consequence of the above construction, are that,
if $\operatorname{TSTATE}(\mathrm{j})=(\mathrm{ptr}, \mathrm{len})$ then

$$
(T S Y M(p t r), T A C T(p t r)), \ldots,(T S Y M(p t r+l e n-1), T A C T(p t r+l e n-1))
$$

must be the terminal entries of $R\left(g_{j}\right)$,
and if $\operatorname{NSTATE}(j)=\left(p t r^{\prime}\right.$, len' $)$ then
(NSYM $\left.\left(p t r^{\prime}\right), \operatorname{NACT}\left(p t r^{\prime}\right)\right), \ldots,\left(\operatorname{NSYM}\left(p t r^{\prime}+l e n^{\prime}-1\right), \operatorname{NACT}\left(p t r^{\prime}+1 e n^{\prime}-1\right)\right)$ must be the nonterminal entries of $R\left(S_{j}\right)$.

The possibility then arises of overlapping rows of the parsing table having common subsets of entries. This will reduce the lengths of TSYM, TACT and NSYM, NACT. The problem of performing this overlapping optimally, subject to the above constraints is combinatorial and nontrivial. (The constraints can be weakened to correspond with conditions 1) to 4) for mergeability.) Special cases such as rows having only one entry, identical entries or included entries assist in obtaining worthwhile compactions by heuristic methods.

If overlapping is not performed, then the length entries in TSTATE and NSTATE are not essential; they can be deduced from the index entries.

The list representation of the SLRC parsing table (with LR(0) statesets eliminated) for \mathcal{C}_{G} is now given.

TSYM and TACT

NSYM and NACT

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | ---: |
| symbol | | | | | | | | | | | | | | | | | | |
| operation | D | A | C | B | E | T | P | E | T | P | A | T | P | P | L | D | A | C |
| 1 | 1 | 1 | 7 | 9 | 10 | 10 | 18 | 10^{\prime} | 10^{\prime} | 19 | 21 | 21 | -7 | -10 | -13 | -13 | -13 | |

Overlapping of rows leaves NSYM,NACT unaffected in this case (since all nonterminal entries are distinct) but reduces TSYM, TACT by almost 50%.

TSYM and TACT

In the list representation economies can be made by lookahead minimisation. If a parsing-state contains a terminal reduce p entry, then all terminal reduce p entries in the parsing-state may be replaced by a single (Λ, reduce p) entry, which is regarded as a default entry for the parsing-state, to be used only as a last resort (recall that (Λ, reduce p) is equivalent to (x , reduce p) $\forall \mathrm{x} \in \mathrm{V}_{\mathrm{T}}$). To ensure this, we position the (Λ, reduce p) entry last in the sequence of entries in TSYM, TACT corresponding to the parsing-state.

Since we can add nonconflicting nonterminal entries to a parsingstate, we can have a default nonterminal entry for the most frequently occurring operation on a nonterminal in the parsing-state. This is only relevant to SLRC and SLRPC tables, since for an SLR parsing-state, all operations on nonterminals are distinct. An alternative technique is to associate with each nonterminal symbol a default operation (a default on columns as opposed to rows of the matrix). It is then possible to delete from NSMM,NACT all entries consisting of a nonterminal and its default operation.

If the parser does not find an entry for a nonterminal symbol, this can only have occurred due to that entry having been deleted, so the parser can take the default operation for the nonterminal symbol.

Notice that the use of default entries necessitates the adjustment of the length components in TSTATE and NSTATE.

When there are fewer entries, on average, in a column than in a row of the parsing table, it may be advantageous to use an inverted list representation in which the roles of STATE and SYM are interchanged. SYM is then accessed with the current symbol to give an index and length, the index referring to STATE and ACT. ACT(i) specifies the parsing operation to be performed if the parser is in parsing-state STATE(i). Thus the parsing table can be represented by columns instead of rows.

The method of reducing the size of the individual parsing table entries described earlier also applies to the list representation, but the savings are not so great.

Use of a list representation, while yielding a large economy of storage, has serious implications for the speed of the parser. The parsing table is examined by the procedure ACTION, and if a matrix representation is used, ACTION inspects only the single entry of the matrix located by the current symbol and parsing-state number. With the list representation, ACTION must search the entries for the current parsing-state until either the current symbol is found, or the sequence of entries is exhausted. Clearly this search will result in some deterioration of the speed of the parser. The time taken for the search can be made more acceptable on modern computers by the use of hardware implemented searching instructions, such as are available on the IBM 360, PDP 10 and Univac 1108.

Reducing the size of the parsing table entries also results in a degradation of the parser's speed, because it is then necessary to compute the operation required after an entry has been accessed.

Inadequate Statesets

Programming languages are not necessarily strictly context free, and because of this, a CFG constructed to represent the syntax of such a language will often be ambiguous. Context sensitivity is then restored by means of semantic routines which remove the ambiguities inherent in the grammar.

This provides an example of a situation for which modifications to a grammar in order to obtain a version which is SLR may not always be the best solution to the problem of parsing sentences in the language. It may be more expedient to produce an inadequate SLR parsing table for an otherwise convenient grammar, and use semantic routines to resolve inadequacies as they arise.

We now describe a scheme for incorporating this technique into an SLR parser, given in terms of the list representation discussed in the previous section.

If a parsing-state is inadequate, then for some symbol $x \in V_{T}$, the parsing-state contains more than one entry. All the entries on x (in the parsing-state) are replaced in TSYM,TACT by a single entry (x,multiple z). The value of z must specify, by some means, the set of parsing operations which were replaced. One method is for z to prescribe an index and a length, the length being the number of operations, and the index locating the first of them in a supplementary vector which we will refer to as SUPTACT. The operations, of which at most one can be a shift (or scan reduce), are stored sequentially in SUPTACT, with any shift (or scan reduce) operation being placed last. Among the reduce operations the ordering is irrelevant. Here we are assuming that semantic routines are only called when reductions are performed, and that at most one reduction can be applicable at any point in a parse.

For an entry (x, multiple z), the procedure ACTION uses z to compute the appropriate index and length, and records these in two variables $z p$ and $z c$. It then assigns to op and W from SUPTACT(zp), and in fact we must have op:= reduce.

Before applying any reduce operation, the parser calls a semantic routine to determine whether the reduction is semantically valid, and only if this is the case is the reduction performed. If the reduction is not valid, the parser calls ACTION in an endeavour to obtain an alternative operation, indicating that an operation from SUPTACT is required by giving a negative parsing-state number as a parameter.

In these circumstances, ACTION inspects the value of zc.

```
If zc = 1 then op is returned as error.
If zc>1 then the counter zc is decremented by one,
                                    the pointer zp is incremented by one,
                                    op and W are returned from SUPTACT(zp).
```

Because of the possibility of an adequate reduce operation being rejected on semantic grounds, ACTION sets zc to 1 whenever it returns an adequate reduce or scan reduce operation (from TACT).

This SLR parser is described by the following pseudo Algol. The specification of the algorithm has been simplified by regarding zp and $z c$ as own variables of the procedure ACTION.

```
    F[0]:= n:= 0; i:= 1; ACTION(F[0],I[1],op,W);
    while }\textrm{F}[\textrm{n}]\not=1\mathrm{ and op }\not=\mathrm{ error do
        begin if op }\not=\mathrm{ reduce then
            begin i:= i+1; n:= n+1 end;
                while op }\not=\mathrm{ shift and op }\not=\mathrm{ error do
                if reduce W is semantically invalid then
            begin ACTION (-1,I[i],op,W);
            if op }\not=\mathrm{ reduce and op }\not=\mathrm{ error then
                    begin i:= i+1; n:= n+1 end
            end
                else begin n:= n-nw;
                            ACTION(F[n], Aw,op,W); n:= n+1
                    end;
            if op }\not=\mathrm{ error then
            begin F[n]:=W; ACTION(F[n],I[i],op,W) end
        end;
```

 If SUPTACT contains no shift or scan reduce operations, the conditional
 statement following \(\operatorname{ACTION}(-1, I[i], o p, W)\) may be omitted.
 It can be important to compact inadequate parsing-states, since they may contain a large number of entries, as for example, in connection with the association of type information with identifiers in Algol like programming languages.

For this reason we would normally overlap the elements of the vector SUPTACT. The compaction techniques described in the previous section apply to both adequate and inadequate parsing-states. In particular, a multiple entry will often be the default operation for an inadequate parsing-state.

A useful modification can be made to the criteria for parsing-state merging. Conditions 1) to 4) given in the previous section do not seem appropriate for inadequate parsing-states, which already contain conflicting terminal entries. We therefore suggest the following conditions for two inadequate parsing-states to be mergeable.

1) Nonterminal entries must not conflict.
2) The terminal shift (and scan reduce) entries must be identical.
3) The adequate terminal reduce entries must be identical.
4) The multiple entries must be on the same set of terminals.
5) The inadequate entries in one parsing-state must be a subset of those in the other.

These conditions do permit merging of inadequate parsing-states in SLR tables, and ensure that a set of reductions require resolution by semantic means after merging only if their resolution was necessary before merging.

Parsing Tables for PL360 AlgolW and XPL
Programs were written to generate list representations of SLR, SLRPC and SLRC parsing tables, and applied to grammars for the programming languages PL360, AlgolW and XPL. These languages are described by Wirth (1968), Wirth and Hoare (1966) and McKeeman, Horning and Wortman (1970) respectively.

In each case, the syntax employed was a version intended for use in a compiler for the language. For PL360 and AlgolW this was available from the source listings of the two compilers (which are written in PL360). In all, three grammars for AlgolW were analysed, and are here designated AlgolW1, AlgolW2 and AlgolW3. AlgolW2 represents the current compiler syntax, and was used to implement a replacement SLR parser for the compiler, as is described in the next section. AlgolW1 is an older version of the syntax, which in conjunction with the PL360 grammar, was the basis for most of the decisions presented here. AlgolW3 is an extension and modification of the basic AlgolW syntax; its ambiguity and some eccentricities of a simple precedence nature have been removed, and a number of language extensions incorporated. Tables were constructed for XPL to enable a comparison to be made with the results obtained by Lalonde (1971) from his LALR parsing table constructor.

In addition, sufficient information was available to determine, for each syntax, those productions which should be considered as chain productions (one semantic routine of XPL was ignored to complete the chain for arithmetic expressions).

Uncompacted lists were produced initially, and measurements made to indicate the effectiveness of the various compaction techniques. From this empirical evidence, a sequence of compactions was chosen which should be capable of producing an economic list representation. Before describing this selection of compaction methods, we discuss informally the interactions which take place between the different methods.

For a matrix representation, the only interaction is between overlaying of rows and reducing the number of bits needed to represent an element of the matrix. If both techniques are to be employed, the reduction can with advantage be performed first, when the resulting smaller entries may assist in obtaining additional overlaying. If overlaying is not performed, the renumbering of rows to economise on empty nonterminal rows becomes very important; this renumbering may be incompatible with that required to reduce the size of elements of the matrix.

In a list representation, we have the possibility of incompatability between the use of default entries and overlapping, where an instance of one may prevent an instance of the other (since a default entry must occur last). If a nonterminal default is taken by symbol (i.e. column) then incompatability can only arise if overlapping is performed under the nonconfliction criterion. Again, reduction of the size of entries should be done before overlapping, which may be aided by the reduction.

The three algorithms, $S L R, S L R P C$ and $S L R C$ were regarded as requiring individual evaluation, and were applied to each grammar. The decision to use a list representation stems from both the sparseness (5% to 15%) and the magnitude (up to 70000 elements) of the matrices required for a full matrix representation. Other techniques are of course available for representing sparse matrices, the list representation we have described was chosen as being relatively economic and convenient. The inverted form of list representation was not used, since columns contained more entries than rows.

The merging of inadequate statesets was done in an ad hoc fashion; any two mergeable statesets were merged, and this was continued until no further merging was possible. Inadequate entries were then replaced by multiple entries, the inadequate entries corresponding to a given multiple entry being placed in SUPTACT. Overlapping in SUPTACT was performed by an elementary sorting technique, which produced excellent economies, and is described in more detail in Appendix 2.

The techniques of $\operatorname{LR}(0)$ stateset elimination and terminal default entries are closely related (both depend on lookahead minimisation). They produce major savings of terminal entries (between 50% and 70%) and increase the speed of parsing by removing parsing-states and reducing the length of rows contained in TSYM, TACT. It was decided to apply these techniques fully before attempting any other compactions. In view of this decision, it would be permissable to modify the constructor algorithm so as to suppress the production of $\operatorname{LR}(0)$ statesets.

Having utilised terminal defaults we consider default entries for the nonterminals. Taking a default action for each nonterminal symbol reduced the total number of nonterminal entries by about 65% for SLRC tables, and about 90% for $S L R$ tables; sufficient to justify full use of the technique. Overlapping of nonterminal entries was not attempted since it was determined that few entries could be saved from NSYM,NACT (overlapping by nonconfliction yields no additional benefits in a list representation).

The method of reducing the size of entries was not applied, since only a slight economy could be achieved, and only at the expense of convenience of access. This omission allowed parsing-states to be renumbered to eliminate elements of NSTATE with length components equal to zero i.e. those corresponding to parsing-states having only default entries for nonterminals.

All the compaction techniques applied so far were fairly simple to implement. The final compaction, a heuristic for overlapping terminal entries was more complicated.

Considerable economy was still possible by overlapping in TSYM, TACT, and much of this could be obtained simply by overlaying identical terminal rows. As noted earlier, the determination of the optimum overlap is distinctly nontrivial, particularly in the presence of default terminal entries, which must occur last in a row of entries.

A first attempt at a heuristic method, which overlapped pairs of parsing-states having most elements in common, and performed well for SLR parsing tables, was found to be unacceptable when applied to SLRC tables. This was a consequence of the replication of statesets in SLRC tables, which results in sequences of parsing-states whose sets of terminal entries form a sequence of nested inclusions. Clearly if $A \subset B \subset \ldots \subset D$ we need only store the members of D, in some order. To cater for this situation, the following algorithm was used.

We initially exclude terminal rows consisting of a single entry, and all but one of a set of identical terminal rows.
i) Overlap inclusion sequences of length greater than two (largest first).
ii) Overlap pairwise from the remaining parsing-states (largest first).
iii) Overlap (optimally) those rows excluded initially.

A more detailed description of the algorithm is given in appendix 2.

The grammars for which measurements were made, and parsing tables produced, are characterised in the following table.

| Grammar | \mathcal{C}_{6} | PL360 | AlgolW1 | AlgolW2 | AlgolW3 | XPL |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Terminals | 11 | 62 | 58 | 62 | 71 | 42 |
| Nonterminals | 9 | 62 | 84 | 72 | 61 | 49 |
| Productions | 15 | 151 | 203 | 191 | 178 | 109 |
| Chain productions | | | | | | |
| Average length of | | | | | | |
| production RHS | | | | | | |

The effects of the various compactions as applied to the SLR, SLRPC and SLRC parsing tables for these grammars are recorded in the following tables.

Grammar	C_{6}	PL360	AlgolW1	AlgolW2	AlgolW3	XPL
	151	1179	2108	2161	2145	1107
SLRR	160	1269	2375	2434	2229	1182
SLRC	171	1624	5191	5523	5344	1980

Storage requirements (in bytes) of the compacted tables (for the IBM 360, the encoding is described in the next section)

Grammar	G_{6}	PL360	Algolw1	Algolw2	Algolv3	XPL
Statesets	27	224	341	330	328	183
Terminal entries	64	1230	4397	4513	4507	1178
Nonterminal entries	18	280	1493	1552	1202	395
Inadequate statesets	0	3	7	7	0	0
Inadequate entries	-	148	993	810	-	-
Multiple entries	-	68	179	204	-	-
Parsing-states removed by merging	-	0	4	4	-	-
Entries saved	-	-	117	133	-	-
LR(0) statesets removed	10	136	170	166	146	84
Entries saved	28	763	2183	2445	2382	636
Default entries: Terminal entries saved	7	96	392	332	682	179
Nonterminal entries removed	12	235	1389	1424	1082	339
NSTATE entries saved by renumbering	11	57	111	100	121	60
Overlapped entries: Terminal entries saved Inadequate entries saved	10	117 142	581 967	674 792	1109	210

[^0]| Grammar | $\mathcal{C}_{\text {S }}$ | PL360 | AlgolW1 | Algolw2 | AlgolW3 | XPL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Statesets | 24 | 219 | 330 | 319 | 323 | 175 |
| Terminal entries | 57 | 1218 | 4199 | 4316 | 4418 | 1095 |
| Nonterminal entries | 18 | 280 | 1493 | 1552 | 1202 | 395 |
| Inadequate statesets | 0 | 3 | 7 | 7 | 0 | 0 |
| Inadequate entries | - | 148 | 993 | 810 | - | - |
| Multiple entries | - | 68 | 179 | 204 | - | - |
| Parsing-states removed by merging | - | 0 | 4 | 4 | - | - |
| Entries saved | - | - | 117 | 133 | - | - |
| LR(0) statesets removed | 7 | 131 | 159 | 155 | 141 | 76 |
| Entries saved | 21 | 751 | 1985 | 2248 | 2293 | 553 |
| Default entries: | | . | | | | |
| Terminal
 entries saved | 7 | 96 | 392 | 332 | 682 | 179 |
| Nonterminal entries removed | 9 | 226 | 1300 | 1338 | 1059 | 325 |
| NSTATE entries saved by renumbering | 11 | 57 | 111 | 100 | 121 | 60 |
| Overlapped entries:
 Terminal | | | | | | |
| entries saved Inadequate | 10 | 96 | 581 | 669 | 1104 | 199 |
| entries saved | - | 142 | 967 | 792 | - | - |

Grammar G_{G} PL360 AlgolW1 AlgolW2 AlgolW3 XPL

Statesets	25	237	471	469	519	223
Terminal entries	59	1411	6699	7483	7907	1570
Nonterminal entries	18	320	1707	1566	1208	437
Inadequate statesets	0	3	7	7	0	0
Inadequate entries	-	148	993	810	-	-
Multiple entries	-	68	179	204	-	-
Parsing-states removed by merging	-	0	4	4	-	-
Entries saved	-	-	117	133	-	-
LR(0) statesets removed	7	131	159	155	141	76
Entries saved	21	751	1985	2248	2293	553
Default entries: Terminal						
entries saved	5	158	1141	1430	1644	226
Nonterminal entries removed	7	247	1177	1022	781	273
NSTATE entries saved by renumbering	12	76	251	249	316	108
Overlapped entries: Terminal						
entries saved	13	139	1825	2129	3008	487
Inadequate entries saved	-	142	967	792	-	-

[^1]| Grammar | 6_{8} | PL360 | Algolw1 | AlgolW2 | AlgolW3 | XPL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TSTATE | 17 | 88 | 167 | 160 | 182 | 99 |
| NSTATE | 6 | 31 | 56 | 60 | 61 | 39 |
| TSYM, TACT | 19 | 174 | 310 | 323 | 334 | 153 |
| NSYM, NACT | 6 | 45 | 104 | 128 | 120 | 56 |
| SUPTACT | - | 6 | 26 | 18 | - | - |
| TSTATE | 17 | 88 | 167 | 160 | 182 | 99 |
| NSTATE | 6 | 31 | 56 | 60 | 61 | 39 |
| TSYM, TACT | 19 | 195 | 310 | 328 | 339 | 164 |
| NSYM, NACT | 9 | 54 | 193 | 214 | 143 | 70 |
| SUPTACT | - | 6 | 26 | 18 | - | - |
| TSTATE | 18 | 106 | 308 | 310 | 378 | 147 |
| NSTATE | 6 | 30 | 57 | 61 | 62 | 39 |
| TSYM, TACT | 20 | 283 | 817 | 937 | 962 | 304 |
| NSYM,NACT | 11 | 73 | 530 | 534 | 427 | 164 |
| SUPTACT | - | 6 | 26 | 18 | - | - |
| NDEF | 8 | 61 | 83 | 71 | 60 | 48 |
| LHS, RHS | 14 | 150 | 202 | 190 | 177 | 108 |

Number of elements in the compacted list representation data structures. NDEF(i) specifies the default operation for the nonterminal i. LHS(i) specifies the nonterminal on the LHS of production i. RHS (i) specifies the length of the RHS of production i. (A_{0} and n_{0}, the LHS and length of the RHS of production 0 are never used by the parser.)

We draw attention to the high proportion of parsing-states (over 80% for SLR and over 85% for SLRC) which for nonterminals have either no entries or only default entries. A contributory factor is the proportion of $\operatorname{LR}(0)$ statesets; over 50% for SLR and over 35% for SLRC.

The results for SLRPC data structures are very similar to those for SLR. Indeed, just after the elimination of $L R(0)$ statesets the SLRPC tables contain exactly the same number of entries as the equivalent SLR tables. Fewer nonterminals have default operations in the SLRPC case which results in NSYM, NACT showing an increase. Changes in TSYM,TACT are due to differing overlapping, and because the RHS of only one chain production in AlgolW is a terminal, the effects for that language are slight.

The proximity between the figures for AlgolW2 and AlgolW3 is coincidental; language extensions and the elimination of ambiguities required an additional 600 bytes of storage. This excess was more than regained by the removal of productions which were only introduced to avoid precedence conflicts, and by the convenient use of an empty RHS. Since the AlgolW3 grammar is the only grammar not specifically designed for use by a precedence parser, this improvement was very welcome.

Although the selection of compaction methods was made mainly from results obtained for $\operatorname{PL} 360$ and AlgolW1, and cannot be an optimal technique, it proved extremely effective in producing economic representations of parsing tables. We illustrate this with the SLR results for the AlgolW3 grammar, for which a list representation of 5700 entries (equivalent to a matrix representation of over 43000 entries) is reduced to merely 454 entries.

We can compare our results with the number of entries in the matrix used by a simple precedence parser, for each of the grammars.

Grammar	G_{G}	PL360	AlgolW1	AlgolW2	AlgolW3	XPL
Precedence matrix	220	7688	8236	8308	9372	3822

The comparison is superficial, since these values are for an uncompacted precedence matrix, such entries can be encoded in 2 bits, and furthermore, an encoding of the grammar must also be stored. As an indication of what has proved acceptable in practice for storing parsing tables we quote the 'storage requirements of the simple precedence parser for AlgolW2 (6730 bytes) and of the mixed strategy precedence parser for XPL (2962 bytes).

Lalonde describes a parsing table constructor based on DeRemer's work, for LA(k)LR(0) grammars. When applied to XPL (with $k=1$), he reports that LALR tables requiring 1250 bytes were generated. Because of the different theoretical approach adopted by DeRemer, the data structures utilised differ from those described here, and require a more complex parsing routine.

Timing the SLR Parser

To enable timings of the SLR parser to be made, an encoding of the compacted list representation, and of the SLR parser was designed for the IBM 360.

The Stanford written AlgolW compiler was chosen as the vehicle for these timings. It is a fast, three pass compiler, producing efficient object code for a language which is a substantial extension of Algol 60. The second pass utilises a simple precedence parser embodying a mechanism for bypassing chain reductions. Designed and implemented by S. Graham, no description of the mechanism is as yet published. Since the compiler is written in PL 360 , it was relatively easy to replace the existing parser and its tables by an SLR parser. Because of the ambiguity of the AlgolW2 grammar used by the compiler, it was necessary to program (in PL360) the modified SLR parser given on page 84 , which utilises multiple entries (as well as scan reduce entries and reduce entries on nonterminals).

The programs which construct the compacted tables were modified to output their results as initialised PL360 arrays in a format which we now describe. (The word length of the IBM 360 is 32 (4 bytes each of 8 bits).)

TSTATE and NSTATE are recorded as half word arrays. Each half word contains two fields, one of 10 bits for the index, and one of 5 bits for the length. The high order bit is not needed, and can be set to zero for ease of accessing.

TSYM and NSYM contain byte entries which represent symbols of the grammar.

Because of addressing considerations, SUPTACT, NDEF, TACT and NACT are combined into a single half word array, ACT. Entries in ACT represent one of four types of parsing operation, the type being specified by the high order bits.

1. Multiple entry. Bit $15=1$ (can only occur in TACT) Comprises two fields, one of 10 bits for the index, and one of 5 bits for the length.
2. Reduce entry. Bit $15=0$, bit $14,13=1$

Comprises two fields, one of 8 bits specifying a production, and one of 5 bits specifying the length of the production RHS.
3. Scan reduce entry. Bits $15,14=0$, bit $13=1$ (can only occur in TACT and SUPTACT - for AlgolW2 only occurs in TACT)

Except for bit 14, the format is identical to that of a reduce entry.
4. Shift entry. Bits $15,14,13=0$

One 13 bit field specifying a parsing-state.

A byte array LHS contains the LHS of each production. We have avoided using a separate array to indicate the length of production RHSs by including this information in each reduce and scan reduce entry. For each production, a byte array SEMANTIC is used to specify a semantic rule number to be applied whenever a reduction by that production is made. A rule number of zero indicates that no semantic action is required.

This encoding, designed for the 360 , with AlgolW2 in mind, imposes various restrictions e.g. the number of productions in a grammar must be less than 256. Clearly these restrictions can be eased at the expense of additional storage. All are met by the SLR, SLRPC and SLRC data structures for AlgolW2.

360 data structures for AlgolW2, SLR - 2161 bytes

These data structures are interrogated by the procedure ACTION, which is in fact written into the parser as inline code. To search a subvector of TSYM or NSYM for the current symbol, the translate and test instruction (TRT) of the 360 is used. By means of this instruction it is possible to search a vector for any of a set of values marked in a second vector. The first vector can be the subvector of TSYM or NSYM, while the second represents the symbols of the grammar, and in which the current symbol is marked.

Since the principal nonterminal A_{0} does not occur in NSYM, the entry of the second vector corresponding to A_{0} can remain permanently marked. Terminal default entries in TSYM, TACT can then have their symbol component (in TSYM) encoded as A_{0}. Since A_{0} will only occur last in a vector of terminals being searched, default entries will have the required property of only being selected if the current symbol is not found.

To obtain the required timings, it was only necessary to interface the SLR parser with the first pass (lexical analysis) of the AlgolW compiler. However, it proved possible to interface with both the error recovery routines of the syntax phase, and the third pass (code generation), and thus produce a fully working compiler.

Timings were made of the syntax phase of the compiler, using several AlgolW programs as input, for each of the following. six parsers.

SLR	The AlgolW2 SLR parser.
SLRPC	The AlgolW2 SLRPC parser.
SLRC	The AlgolW2 SLRC parser.
SLRC ${ }^{\prime}$	An SLRC parser for Algolw2 with one less chain
	production (a semantic routine was stipulated which splits the 12 step derivation for an
	expression).
SP	The AlgolW2 simple precedence parser with the
	elimination of chain derivations suppressed.
SPC	The existing AlgolW2 simple precedence parser.

These timings were obtained on an IBM 360/67, under the Michigan Terminal System (MTS). Over all the tested programs, the performance ranking of the parsers was substantially uniform. Results for five of these programs are now given; times are quoted in seconds, and are not more accurate than ± 0.01 seconds.

Differences between the simple precedence and SLR algorithms in the above table are sufficiently small for us to regard them as being roughly equivalent in terms of parsing speed (the SP parser is approximately 3% faster than the $S L R$ parser, while the SPC parser is only 1% faster than the SLRC parser). However, timing results given by Lalonde (1971) show that his LALR parser runs about 40% faster than the mixed strategy precedence parser with which he makes comparison (MSP). Since this implementation of LALR searches vectors by means of software, the apparent discrepancy deserves comment.

An important distinction between the MSP and SP parsers is to be found in the methods by which they determine the production to use when a reduction is required. MSP must search through the productions whose final symbol matches the stack top, while $S P$ uses a hashing function based on production length as well as final symbol. This is known to be very efficient, and largely negates a potential advantage of the SLR method, namely the a priori knowledge of which production to use whenever a reduce operation is specified.

The precedence matrix employed by MSP has 2 bit entries which must be unpacked, a penalty avoided in SP by the use of one byte for each entry in the matrix (an additional cost of 3800 bytes). Also, the use of the TRT instruction for searching vectors, although advantageous, is far from ideal. Overheads incurred tend to nullify the benefits when the vectors to be searched are short.

Time - space trading is evident in the figures for the four variants of the SLR algorithm (the tables for the SLRC' parser occupy 4412 bytes). In particular, SLRPC gives a substantial improvement in speed over the ordinary SLR parser, for only a modest space premium. The SLRC' and SLRC versions are less economical of storage, but yield valuable increases in parsing speed.

To evaluate more precisely the effects of chain elimination, measurements were taken of the number of reduce operations performed by the SLR parsers for each of the test programs. On average, for every 1000 input symbols, the following number of reductions were made.

SLR
Chain reductions
Other reductions
---:
1201

The preponderance of chain reductions performed by the SLR parser reflects the frequency with which expressions occur in the AlgolW language. The need for bypassing such reductions when parsing is clearly indicated.

Chapter 5

Conclusion

The definition of $L A(m) L R(k)$ grammars is instructive from a theoretical viewpoint, since it points out the dual role of the parameter k in the $L R(k)$ method. In the $L A(m) L R(k)$ formulation we see that k controls the amount of right contextual information which is to be retained directly in the statesets (and therefore affects the number of statesets), while m specifies the amount of lookahead that the parser inspects to determine its next parsing operation. To accommodate every grammar whose sentences can all be parsed using only k symbols of lookahead, both parameters must equal k, and this gives $L A(k) \operatorname{LR}(k)$ which is identical to $\operatorname{LR}(k)$.

Separation of the two functions of the lookahead parameter adds flexibility to the $L R(k)$ method, and permits an algorithm intermediate to $\operatorname{LR}(0)$ and $L R(1)$. This algorithm, $L A(1) \operatorname{LR}(0)$ or LALR, has an $\operatorname{LR}(0)$ stateset table, but utilises 1 symbol lookahead when parsing. If the complex (order of $\operatorname{LR}(1)$) calculation of this lookahead is simplified by computing an approximate version directly from the grammar, then we obtain SLA(1)LR(0) or SLR. The classes of grammars accepted satisfy the inclusions

$$
L R(0) \subset S L R \subset \operatorname{LALR} \subset \operatorname{LR}(1)
$$

The $[p, j ; \alpha]$ notation for a state, as used by Knuth (1965), provided a useful formalism which aided in deriving theoretical results, i.e. the development of $\operatorname{LA}(\mathrm{m}) \operatorname{LR}(k)$ and of $S L R C$, and the formal comparison and inclusion result for weak precedence and SLR.

Parsing table compaction techniques were very successful in decreasing the stor age requirements of the SLR parser, achieving $80-90 \%$ reductions on the full list representation. The sequence of compactions suggested is not optimal, and some bias may have been introduced in that most of the grammars involved were designed for use by precedence parsers. However, the results for AlgolW3 indicate that removal of simple precedence features from a grammar may improve storage requirements.

Timing figures for SLR show that, despite the overhead of searching vectors (incurred as a consequence of the list representation of the tables), the algorithm remains comparable in speed with an efficient simple precedence implementation. Also demonstrated is the benefit available from bypassing chain reductions. These comprise around 70% of all reductions made in parsing AlgolW2 programs; their elimination increases parsing speed by almost 50%. Since the syntax phase of the AlgolW compiler occupies about 40% of the total compilation time, this represents an increase of 15% in the speed of compilation.

In summary, our examination of the SLR algorithm confirms that its storage requirements can be made acceptable for practical implementation, and that its generality is adequate to encompass most programming language grammars. Unlike the widely used precedence methods, very little modification of an unambiguous grammar is needed for the SLR algorithm. SLR retains the LR property of immediate detection of syntactic errors; a further advantage over precedence, which is of potential benefit for the provision of error diagnostics and error recovery routines. A further consequence of this property is that the SLR parser's stack always represents the prefix of a sentential form (if α is the string represented by the stack, then $\exists \beta \in V_{T}$, such that ∞ is a string in some canonical derivation). The integrity of the stack may simplify the design of related sections of a compiler.

These comments also apply to the LALR algorithm, which has greater generality and requires less storage than $S L R$, but involves a more complex calculation to produce its parsing tables.

To give an indication of the CPU time required for the production of parsing tables, we give the figures for AlgolW2. On an IBM 360/67, SLR tables required $1 \frac{1}{2}$ minutes and SLRC tables $3 \frac{1}{2}$ minutes. Since the table constructor is written in $A l g o l W$, and was designed for flexibility rather than speed, a recoding could be expected to reduce these times by a factor of 2 or more (c.f. DeRemer (1971) - SLR tables for Algol 60 required 1 minute on a 360/40).

Syntactic problems have been considered here virtually in isolation from considerations of semantics or lexical analysis. The LR methods are amenable to the incorporation of these aspects of compilation. Issues raised by translation are discussed by DeRemer (1969) where the simple Polish transduction grammars of Lewis and Stearns (1968) feature prominently.

Further optimisations of parsing speed are possible. By using a mixed matrix-list representation, a renumbering of the parsing-states could ensure that parsing-states having many entries were represented in a matrix, while those with few entries were stored as vectors. The nonterminal tables for the SLRC method tend to be suitable for such a scheme. Another possibility is the sorting of elements of vectors in the list representation by some estimate of their frequency of occurrence (during parsing). Most commonly encountered entries would then be examined first when vectors are searched. Sophisticated strategies would be required for the overlapping of ordered vectors. Sorting could be done after overlapping, but to much less advantage.

Other avenues for further investigation include

1. Modification of Theorem A to prove LALR \subset LALRC (major difficulty is notational).
2. Consideration of $\operatorname{LR}(1)$ storage requirements, in view of the success of the compaction techniques (stateset merging is then possible, and overlapping would yield increased savings).
3. Evaluation in practical terms of the increased generality of LALR and LALRC over SLR and SLRC (requires an environment having a translator writing or similar system; J. Horning at Toronto has found that while a majority of practical grammars are SLR, a few do require LALR).
4. Structure preserving grammatical transformations which yield SLR or LALR grammars (Graham (1970) gives these for simple precedence and $L R(1)$ grammars).

APPENDICES

There are two appendices, the first of which consists mainly of proofs omitted from the main text. The second provides some details of the author's implementation of an SLR parsing table constructor, and also gives examples of the output from that implementation.

Appendix 1

1.1

We show that $Z=Z^{\prime}$ for $k \geq 1$. The reason is to be found in the calculation of \mathcal{S}^{\prime} from \mathcal{S}, which adds to g^{\prime} states $[q, 0 ; \beta]$
corresponding to any $[p, j ; \alpha] \in g^{\prime}$ with $A_{q}=X_{p, j+1} \in V_{N}$. Clearly $Z^{\prime} \subseteq Z$, we need only prove $Z \subseteq Z^{\prime}$.
Let $\omega \in Z$. Then $\exists[p, j ; \alpha] \in \delta^{\prime}$ with $\left.j<n_{p}, \omega \in{\underset{k}{\prime}}_{H_{p, j+2}^{\prime}} X_{p n_{p}} \alpha\right)$. $|\omega|=k \geq 1$ and so $\omega=x \delta, x \in V_{T},|\delta|=k-1$.

If $X_{p, j+1} \in V_{T}$, then $X=X_{p, j+1}$ and so $\omega \in Z^{\prime}$.
Otherwise, because $\left.x \delta \in{\underset{k}{\prime}}_{H_{p, j+1}}^{X_{p}} \ldots X_{p n} \alpha\right)$, we can find a sequence of productions,

By virtue of this sequence,

$$
\left[q_{1}, 0 ; \beta\right] \in g^{\prime} \forall \beta \in H_{k}\left(\alpha_{i-1} \ldots \alpha_{1} X_{p, j+2} \cdots X_{p n}^{p} \alpha\right) \quad 1 \leq i \leq r
$$

Since $\left[q_{r}, 0 ; \beta\right] \in \delta^{\prime} \forall \beta \in H_{k}\left(\alpha_{r-1} \ldots \alpha_{2} X_{p, j+2} \ldots X_{p n} \alpha\right)$ and $0<n_{q_{r}}, X_{q_{r}} \in V_{T}$ we have that

$$
\begin{aligned}
& X_{q_{r}, 1} \gamma \in Z^{\prime} \forall \gamma \in{\underset{k-1}{ }{ }_{r}\left(\alpha_{r} \ldots \alpha_{i} X_{p, j+2} \ldots X_{p n} \alpha\right)}_{\text {and so } x \delta=\omega \in Z^{\prime} .} .
\end{aligned}
$$

$$
\text { Thus } \mathrm{Z} \subseteq \mathrm{Z}^{\prime}
$$

$$
\begin{aligned}
& \mathrm{A}_{q_{i}} \rightarrow \mathrm{X}_{q_{i}, 1} \alpha_{i} \quad \mathrm{n}_{q_{1}}>0 \quad 1 \leq i \leq r \quad r \geq 1 \\
& \text { with } X_{p, j+1}=A_{q_{1}} \quad X_{q_{1}, 1}=A_{q_{1+1}} \quad 1 \leq i<r \text { and } X_{q_{r}, 1}=x \\
& \text { and such that } \delta \in \operatorname{H}_{x \rightarrow 1}\left(\alpha_{r} \ldots \alpha_{1} X_{p, j+2} \cdots X_{p n} \alpha\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The sets } Z \text { and } Z^{\prime} \text { are defined for an } L R(k) \text { stateset } S \text { by, } \\
& Z=\left\{\beta \mid \exists[p, j ; \alpha] \in G^{\prime}, j<{\underset{p}{p}}, \beta \in H_{k}^{\prime}\left(X_{p, j+1} \ldots X_{p=p} \alpha\right)\right\} \\
& Z^{\prime}=\left\{\beta \mid \exists[p, j ; \alpha] \in S^{\prime}, j<n_{p}, \beta=x \gamma, x=X_{p, j+1} \in^{p} V_{T}\right. \text {, } \\
& \left.\gamma \in \underset{k-1}{H_{p, j+2}}\left(X_{p,} X_{p} \alpha\right)\right\}
\end{aligned}
$$

In the proof of lemma 1, we claim that if S and S_{k} are respectively $L R(m)$ and $L R(k)$ statesets (for the same grammar), with $H_{k}\left(S_{m}\right)=S_{k}$, then $H_{k}\left(\mathcal{S}_{m}^{\prime}\right)=\mathcal{S}_{k}^{\prime}$. This will now be justified.

Suppose $[q, 0 ; \gamma] \in S_{k}^{\prime}$ (and $[q, 0 ; \gamma] \notin S_{k}$). Then we can find $[p, j ; \beta] \in S_{k}$ with $0 \leq j<n_{p}$ and a sequence of productions

$$
\begin{aligned}
& \begin{array}{l}
A_{q_{1}} \rightarrow X_{q_{1}, 1} \alpha_{1} \underset{q_{1}}{ }>0 \quad 1 \leq i \leq r \quad r \geq 0 \\
\text { with } X_{p, j+1}=A_{q_{1}} X_{q_{1}, 1}=A_{q_{1+1}} \quad 1 \leq i \leq r \text { and } A_{q_{r+1}}=A_{q}
\end{array}
\end{aligned}
$$

Also $\exists[p, j ; \alpha] \in g_{m}$ with $\beta \in H_{k}(\alpha)$, hence $\gamma \in H_{k}\left(\alpha_{r} \ldots \alpha_{1} X_{p, j+2} \cdots X_{p n} \alpha\right)$.

Because of the above sequence of productions,

$$
[q, 0 ; \sigma] \in S_{m}^{\prime} \forall \sigma \in H_{m}\left(\alpha_{r} \ldots \alpha_{1} X_{p, j+2} \cdots X_{p n} \alpha\right)
$$

So we can find $[q, 0 ; \delta] \in S_{k}^{\prime}$ with $\gamma \in H_{k}(\delta)$.
Thus $[q, 0 ; Y] \in H_{k}\left(S_{m}^{\prime}\right)$ and we have $S_{k}^{\prime} \subseteq H_{k}\left(S_{m}^{\prime}\right)$.

$$
\text { Conversely, suppose }[q, 0 ; \gamma] \in \underset{k}{H_{m}}\left(\delta_{m}^{\prime}\right)\left(\text { and }[q, 0 ; \gamma] \notin \delta_{k}\right)
$$

Then $\exists[q, 0 ; \delta] \in \mathcal{S}_{\mathrm{m}}^{\prime}$ with $\gamma \in \mathrm{H}_{\mathrm{k}}(\delta)$. We can find $[\mathrm{p}, \mathrm{j} ; \alpha] \in \mathrm{S}_{\mathrm{m}}$ with $0 \leq j<n_{p}$ and a sequence of productions,

$$
\begin{aligned}
& A_{q_{i}} \rightarrow X_{q_{i}, 1}^{\alpha_{i}} n_{q_{i}}>0 \quad 1 \leq i \leq r \quad r \geq 0 \\
& \text { with } X_{p, j+1}=A_{q_{1}} X_{q_{i}, 1}=A_{q_{i+1}} \quad 1 \leq i \leq r \quad \text { and } A_{q}=A_{q} \\
& \text { and such that } \delta \in H_{q}\left(\alpha_{r} \ldots \alpha_{i} X_{p, j+2} \cdots X_{p n} \alpha\right) .
\end{aligned}
$$

Also $\exists[p, j ; \beta] \in \delta_{k}$ with $\beta \in H_{k}(\alpha)$.
Because of the above sequence of productions,

$$
\begin{aligned}
& {[q, 0 ; \sigma] \in \mathscr{S}_{k}^{\prime} \forall \sigma \in H_{k}\left(\alpha_{r} \ldots \alpha_{1} X_{p, j+2} \cdots X_{p n} \beta\right)} \\
& =H_{k}\left(\alpha_{r} \ldots \alpha_{1} X_{p, j+2} \cdots X_{p p_{p}} \alpha\right)
\end{aligned}
$$

Thus $[q, 0 ; Y] \in S_{k}^{\prime}$ and we have $H_{k}\left(S_{k}^{\prime}\right) \subseteq \delta_{k}^{\prime}$.

$$
\text { Hence } H_{k}\left(S_{m}^{\prime}\right)=S_{k}^{\prime}
$$

Next we give an outline of a minimal LR(k) backtracking algorithm. This has not been implemented and should only be regarded as indicating that such a technique is theoretically possible. The method used is a modification of the first LA(k)LR(0) algorithm, where if two statesets are combined and generate an inadequate stateset, sufficient information is retained to permit their separation. M is a matrix, whose elements are statesets, which are all initially set to \emptyset. We denote by 8 the contents of $M[i, j]$ where j is a maximum such that $M[i, j] \neq \emptyset$ (if no such j then $S_{i}=\varnothing$). All non void entries in the $i^{\text {th }}$ row of M will be different k symbol lookahead refinements of the same LR(0) stateset, \mathcal{S}_{1} being the most recent version. At any stage in the computation a variable t indicates how many rows of M are in use, and $\left\{\mathcal{S}_{1} \mid 1 \leq i \leq t\right\}$ is the current table of statesets. An attempt is made to combine a generated stateset $S Y$ with each S_{1} such that $S_{1} \sim S Y$ (under H_{0}). Only if no attempt succeeds is t incremented and $S Y$ inserted as a new stateset δ_{t}. TEST is a recursive boolean procedure with three parameters, a stateset \mathscr{S}, and integers n and 1 . TEST returns false if $\&$ generates any inadequate statesets, but otherwise returns true and updates M with all statesets generated by 8 . n specifies a row, and 1 a column of M (1 indicates the depth of recursion). In the following pseudo Algol description, efficiency is sacrificed in the hope of reducing obscurity.

```
boolean procedure TEST (S,n,l); value S,n,l; stateset &; integer n.l;
if S is inadequate then TEST:= false else
    begin M[n,1]:= S;
```



```
    begin i:= 1; while i s t do
    if S }\mp@subsup{S}{1}{}~SY and TEST(S S U SY,i,l+1) then i:= t+2 else i:= i+1
    if i = t+1 then
        begin t:= t+1; if not TEST(SY,t,l+1) then
        begin for i:= 1 step 1 until t do M[i,1]:= \emptyset;
                t:= t-1; TEST:= false; goto EXIT
                end
            end
        end;
    for i:= 1 step 1 until t do if M[i,1] # \emptyset then
        begin M[i,l-1]:= M[i,l];M[i,l]:= \emptyset end;
    TEST:= true;
EXIT : end TEST;
```



```
    comment minimal LR(k) machine is in M[1,1] ... M[1,t];;
```

To prove that a Λ-free grammar is PLR iff it is weaker precedence, we show that a grammar which is not PLR is not weaker precedence, and that a Λ-free grammar which is not weaker precedence is not PLR.

First suppose G is not PLR. Then we can find a stateset with either a) a shift - reduce p inadequacy or b) a reduce p reduce q inadequacy which cannot be resolved by examining the stack.
a) If the stateset's associated symbol is Y, and the inadequate lookahead symbol is x we can deduce both $\mathrm{Y} \leqslant \cdot \mathrm{x}$ and $\mathrm{Y} \cdot>\mathrm{x}$ by applying lemma 3 to the SLR statesets which contributed the inadequacy causing states.

Thus G is not weaker precedence.
b) If the inadequate lookahead symbol is x, then $x \in F_{1}\left(A_{p}\right) \cap F_{1}\left(A_{q}\right)$. If $n_{p}=n_{q}$ and the inadequacy cannot always be resolved, then we must have $A_{p} \rightarrow \alpha, A_{q} \rightarrow \alpha$ and X such that $X \leq A_{p}, X \leq A_{q}$. Then \mathcal{C} is not weaker precedence.

If $\mathrm{n}_{\mathrm{p}} \neq \mathrm{n}_{\mathrm{q}}$, say $\mathrm{n}_{\mathrm{p}}<\mathrm{n}_{\mathrm{q}}$, and the inadequacy cannot always be resolved, we must have $A_{q} \rightarrow \alpha X Y B, A_{p} \rightarrow Y \beta$ and $X \leq \cdot A_{p}$.

Then G is not weaker precedence.

Now suppose \mathcal{G} is Λ-free, but not weaker precedence. One of conditions (ii), (iii)", (iv)" does not hold.

If $Y \leq X$ and $Y \cdot>X$ then since $X \xrightarrow{*} x y$ with $x \in V_{T}$ we have $Y \leq \cdot x$ and $Y \cdot>x$. Consider the PLR stateset δ with associated symbol Y. Then $[p, j ; \alpha] \in S \quad 0 \leq j<n_{p} \quad X_{p, j+1}=x \quad$ and $\left[q, n_{q} ; x\right] \in S ;$ ie. shift - reduce q inadequacy,
so \mathcal{G} is not PLR.
If $A_{D} \rightarrow \alpha X Y \beta, A \rightarrow Y \beta, X \leq A_{q} \rightarrow$ and $x \in F_{i}\left(A_{p}\right) \cap F_{i}\left(A_{q}\right)$, then consider the stateset \mathcal{S} with associated symbol the final symbol of $Y \beta$. $\left[p, n_{p} ; x\right],\left[q, n_{q} ; x\right] \in S$, and if the stack top represents $\alpha X Y \beta$ the inadequacy cannot be resolved.

So \mathcal{G} is not PLR.
If $\underset{p}{A} \rightarrow \alpha, A_{q} \rightarrow \alpha, x \in F_{i}\left(A_{p}\right) \cap F_{i}\left(A_{q}\right)$ and $X \leq A_{p}, X \leq A_{q}$ then consider the stateset \mathcal{S} with associated symbol the final symbol of $\alpha .\left[p, n_{p} ; x\right],\left[q, n_{q} ; x\right] \in S$ and if the stack top represents $X \alpha$, the inadequacy cannot be resolved.

So G is not PLR.
This completes the proof.
In this section we establish, as theorem A, the result that any SLR grammar which is Λ-free is an SLRC grammar (for any set of chain productions). The following lemma is central to the proof of this theorem.

Lemma A

Let \mathcal{G} be SLR, and \mathcal{S} an SLR stateset.
If $[p, j-1],[q, 1-1] \in S^{\prime}$, and $X_{p j}=B_{m} \rightarrow \ldots \rightarrow B_{i}=Y$
$Y_{q 1}=C_{n} \rightarrow \ldots \rightarrow C_{i}=Y$ and $A_{q} \neq B_{i} \quad m \geq i \geq 1 \quad A_{p} \neq C_{i}$
$n \geq i \geq 1$ and $\quad F_{1}\left(X_{p J}\right) \cap F_{i}\left(X_{q 1}\right) \neq \emptyset$, then
$X_{p j}=X_{q 1}$.
Let $y \in F_{1}\left(X_{p j}\right) \cap F_{i}\left(X_{q 1}\right)$. Then $y \in F_{i}\left(B_{i}\right) \quad m \geq i \geq 1$,
$y \in F_{i}\left(C_{i}\right) n \geq i \geq 1$. Take $n \geq m$. Determine r such that
$\forall i<r$ we have $B_{i}=C_{1}$ and either $B_{r} \neq C_{r}$ or $r=m$.
If $\mathrm{B}_{\mathrm{r}} \neq \mathrm{C}_{\mathrm{r}}$, then $\mathrm{r}>1$ so let $\mathrm{B}_{\mathrm{r}}=\mathrm{A}_{\mathrm{D},} \rightarrow \mathrm{X}_{\mathrm{DI} / 1}=\mathrm{B}_{\mathrm{r}}$ _ $\mathrm{C}_{\mathrm{r}}=\mathrm{A}_{\mathrm{q}}, \rightarrow \mathrm{X}_{\mathrm{q} / 1}=\mathrm{C}_{\mathrm{r}-1}$.
We have $\left[p^{\prime}, 0\right],\left[q^{\prime}, 0\right] \in \delta^{\prime}$, so $\left[p^{\prime} 1\right]$, $\left[q^{\prime}, 1\right] \in g B_{r-1}$.
Since $p^{\prime} \neq q^{\prime}, n_{p \prime}=n_{q},=1, \quad y \in F_{i}\left(A_{p},\right) \cap F_{i}\left(A_{q},\right)$ the
stateset $\mathscr{S}_{r_{\perp} \mathcal{L}}$ is inadequate - a contradiction.
So $\mathrm{B}_{\mathrm{r}}=\mathrm{C}_{\mathrm{r}}$ and $\mathrm{r}=\mathrm{m}$. If $\mathrm{n}>\mathrm{m}$, $\operatorname{let} \mathrm{C}_{\mathrm{m}+1}=\mathrm{A}_{\mathrm{q}}, \rightarrow \mathrm{X}_{\mathrm{q}, 1}=\mathrm{C}_{\mathrm{I}}=\mathrm{B}_{\mathrm{q}}$.
We have $\left[q^{\prime}, 0\right] \in \mathcal{S}^{\prime}$, so $\left[q^{\prime}, 1\right],[p, j] \in \mathcal{S}_{m}$.
Since $n_{q},=1, y \in F_{i}\left(A_{q},\right)$ we have $a\left(y\right.$, reduce $\left.q^{\prime}\right)$ entry.
Also, $y \in F_{1}\left(X_{p j}\right)$ so
if $j<n_{p}$ we either have a (y, shift) entry or a (y, reduce p^{\prime})
entry with $\mathrm{n}_{\mathrm{p}},=0$, so $\mathrm{p}^{\prime} \neq \mathrm{q}^{\prime}$.
if $j=n_{p}$ we have a (y, reduce p) entry, and $p \neq q^{\prime}$ since $A_{D} \neq C_{D+1}$.
In either case $\mathscr{S} \mathrm{B}_{\mathrm{m}}$ is inadequate - a contradication.
Thus $r=m=n$, and hence $X_{p j}=X_{q 1}$.

Theorem A

Let \mathcal{G} be an SLR, N-free grammar. Then \mathcal{G} is SLRC.
For suppose \exists an inadequate SLRC stateset S say. Extending the chained successor notation, we have $S=\mathcal{S}_{0 Y_{1}} \ldots Y_{\text {l }}$ (with $m \geq 1$ since \mathcal{G} is SLR). Let \mathcal{S}_{i} denote $\mathscr{S}_{\sigma} Y_{1} \ldots Y_{1} 0 \leq i \leq m$.

We can find two sequences of states,
$\left[p_{1}, j_{1}\right],\left[q_{1}, l_{i}\right] 0 \leq i \leq m$ with the following properties.

1) $\left[p_{i}, j_{1}\right],\left[q_{1}, l_{i}\right] \in \mathcal{S}_{1} \quad 0 \leq i \leq m$
2) For $0 \leq i<m, \quad j_{1}<n_{p_{1}}$ and

$$
\text { either }\left[p_{1}, j_{1}+1\right]=\left[p_{1+1}, j_{1+1}\right]
$$

$$
\text { or }\left[p_{i+1}, 0\right] \in S_{1}^{\prime}, j_{1+1}=1 \text { as a result }
$$

$$
\text { of } X_{p_{1}, J_{1}+1} \xrightarrow{*} A_{p_{1+1}} \alpha
$$

$$
\text { Thus }\left[p_{1+1}, j_{i+1}^{1}-1\right]^{1+1} \epsilon_{i}^{\prime}
$$

$$
l_{1}<n_{q_{1}} \text { and }
$$

$$
\operatorname{similarly}\left[q_{1+1}, l_{1+1}-1\right] \in S_{1}^{\prime}
$$

3) $\left[p_{m}, j_{m}\right]$ introduces (or is equal to) a state

$$
\left[p, n_{p}\right] \in S_{p}^{\prime}, x \in F_{i}\left(A_{p}\right)
$$

$$
\left[q_{m}, l_{m}\right] \text { introduces (or is equal to) a state }
$$

$$
[q, 1] \in g_{u^{\prime}}^{\prime}
$$

$$
\text { with either } 1<n_{q}, x=X_{q, 1+1}
$$

$$
\text { or } l=n_{q}, x \in F_{2}\left(A_{q}\right), p \neq q \text {. }
$$

Since $X_{p_{1}, j_{1}+1}{ }^{*} Y_{1+1} \alpha$ and $X_{q_{1}, 1_{1}+1} \stackrel{*}{3} F_{1+1} B$ for some $\alpha, \Xi \in V^{*}$, we have $F_{1}\left(X_{p_{1} j_{1}}\right) \cap F_{1}\left(X_{q_{1} 1_{1}}\right) \neq \emptyset \quad 1 \leq i<m$
Since C_{f} is Λ-free, $n_{p}>0$ and we have $\left[p, n_{p}\right] \in \mathcal{S}_{1}$, so
$\left[p_{m}, j_{m}\right]=\left[p, n_{p}\right]$.
$\therefore x \in F_{1}\left(A_{p_{m}}\right)$ and so $x \in P_{1}\left(X_{p_{m}}\right)$.
If $l=n_{q}$ we similarly deduce $x \in F_{i}\left(X_{q}\right.$, .

Thus, $F_{1}\left(X_{p_{1} j_{1}}\right) \cap F_{i}\left(X_{q_{1}}\right) \neq \varnothing, X_{p_{1} J_{1}} c^{*} Y_{1}, X_{Q_{1} 1_{1}} c^{*} Y_{1}$, and
$A_{p_{1}}, A_{q_{1}}$ cannot occur in these chains since (by virtue of
$\left.\left[p_{1}, j_{1}\right],\left[q_{1}, l_{i}\right] \in S_{1}\right) p_{i}$ and q_{1} do not designate chain
productions, all for $1 \leq i \leq m$.
By induction on i we can show
$\left[p_{m}, j_{m}\right],\left[q_{m}, l_{m}\right] \in \&_{0} X_{p_{2} j_{2}} \ldots X_{p_{m} j_{m}}$
Clearly $\left[p_{0}, j_{0}\right],\left[q_{0}, l_{0}\right]=[0,0] \in \delta_{0}$.
Assume, with $1 \leq i \leq m$, that

$$
\left[p_{1-1}, j_{1-1}\right],\left[q_{1-1}, l_{1-1}\right] \in \delta_{0} X_{p_{1} j_{1}} \ldots X_{p_{1} 1^{j} j_{1-1}}
$$

This is an SLR stateset.
Also $\quad\left[p_{1}, j_{1}-1\right],\left[q_{1}, l_{1}-1\right] \in\left(\mathcal{S}_{0} X_{p_{1} j_{1}} \ldots X_{p_{1-1} j_{1-1}}\right)$
The conditions of lemma A are all satisfied, and so $X_{p_{1} J_{1}}=X_{q_{1} 1_{1}}$. Then $\left[p_{i}, j_{1}\right],\left[q_{1}, l_{1}\right] \in g_{0} X_{p_{1} j_{1}} \ldots X_{p_{1} j_{1}}$, completing an inductive step.

From $\left[p_{m}, j_{m}\right],\left[q_{m}, l_{m}\right] \in \delta_{o X_{p_{1} j_{1}}} \ldots X_{p_{E} j_{m}}$ we deduce that $\left[p, n_{p}\right],[q, 1] \in\left(\mathcal{E}_{0} X_{p_{1} j_{1}} \ldots X_{p_{m} j_{m}}\right)^{\prime}$ which contradicts \mathcal{C}_{g} being SLR, since $S_{0} X_{p_{1} y_{1}} \ldots X_{p_{m} j_{m}}$ would be inadequate. This gives us our result.

The final result of this appendix shows that SLR parsing-states cannot be merged under the criteria given in Chapter 4.

Let $R\left(\mathbb{8}_{1}\right)$ and $R\left(\mathbb{S}_{\mathrm{r}}\right)$ be SLR (or LALR) parsing-states such that
(1) their nonterminal entries do not conflict,
(2) their terminal shift entries are identical,
(3) the productions used for reductions in each are the same.

Then we can show $\mathbf{l}=\mathbf{r}$.
For suppose $[p, j] \in \mathbb{S}_{1}$.
If $j=n_{p}$ then we will have reduce p entries in $R\left(S_{1}\right)$ and so (by (3)) also in $R\left(\mathcal{S}_{\mathrm{r}}\right)$. Hence $\left[\mathrm{p}, \mathrm{n}_{\mathrm{p}}\right] \in \mathrm{g}_{\mathrm{r}}$.

If $j<n_{p}$ then consider $X_{p, j+1}$.
If $X_{p, j+1}=x \in V_{T}$ then (x, shift $\left.t\right) \in R\left(g_{1}\right)$ for some t. By (2), (x, shift $t) \in R\left(\mathcal{S}_{\mathbf{r}}\right)$ also. Since $[p, j+1] \in \mathcal{S}_{t}$ we deduce $[p, j] \in S_{r}$.

Otherwise $X_{p, j+1} \in V_{N}$. We can find a sequence of productions

with $X_{p, j+1}=A_{q_{1}} \quad X_{q_{1}, 1}=A_{q_{1+1}} \quad 1 \leq i<m$
$\left[q_{1}, 0\right] \in \delta_{1}^{\prime} \quad 1 \leq i \leq m$
and either $A_{q_{1}} \rightarrow \Lambda$ or $A_{q_{1}} \rightarrow x_{i}, x \in V_{T}$.
If $A_{q} \rightarrow \Lambda$ then we will have reduce q_{1} entries in $R\left(S_{1}\right)$ and so (by (3)) also in $R\left(\delta_{r}\right)$. Hence $\left[q_{i}, 0\right] \in \delta_{r}^{\prime}$.

If $A_{q_{n}} \rightarrow x \alpha_{i}$ then (x,shift $\left.t\right) \in R\left(S_{1}\right)$ for some t. By (2), $(x$, shift $t) \in R\left(S_{r}\right)$ also. Since $\left[q_{i}, 1\right] \in S_{t}$ we deduce $\left[q_{m}, 0\right] \in \mathcal{S}_{r}^{\prime}$.

Now suppose $\left[q_{1}, 0\right] \in g_{r}^{\prime}$ for some i with $1<i \leqslant m$.
Since $\left(A_{q_{1}}\right.$, shift $\left.t\right) \in R\left(\boldsymbol{S}_{1}\right)$ for some t_{1}, by (1) the entry on $A_{q_{1}}$ in $R(\underset{r}{ })$ must also be ($A_{q_{1}}$, shift $\left.t_{1}\right)$, and since $\left[q_{1,2}, 1\right] \in \delta_{t_{1}}$ and $A_{q_{1}}=X_{q_{i-1},}$, we deduce $\left[q_{q_{2}}, 0\right] \in \delta_{r}^{\prime}$. By induction we deduce $\left[q_{2}, 0\right] \in \mathcal{S}_{r}^{\prime}$ and then consider ($A_{q_{1}}$, shift $\left.t\right) \in R\left(\mathcal{S}_{1}\right)$ for some t. By (1) the entry on $A_{q_{2}}$ in $R\left(\mathcal{S}_{\mathrm{r}}\right)$ must also be $\left(A_{q_{1}}\right.$, shift $\left.t\right)$, and since $[p, j+1] \in S_{t}$ and $A_{q_{1}}=X_{p, j+1}$ we deduce $[p, j] \in g_{r}$.
Thus in all cases $[p, j] \in \mathcal{S}_{r}$. Therefore $S_{1} \subseteq S_{r}$ and by symmetry $S_{1}=S_{r}$. Hence $1=r$.

Appendix 2

A parsing table constructor was implemented as a suite of four programs, written in AlgolW, and run under the Michigan Terminal System on the IBM 360/67 at Newcastle. These programs, named SLRIN, SLR, SLRED and SLROUP, accomplish the following tasks (in addition to serving as the test programs 2-5 used for timings in Chapter 4).

SLRIN : Accepts a CFG, in a free format BNF style of notation, and from this constructs an internal representation of the grammar. Checks are made on the validity of the input, to ensure that it represents a CFG in reduced form. The internal representation is augmented by a zero ${ }^{\text {th }}$ production with endmarker.

SLR : Computes from the grammar the sets $F_{1}(A)$ for each $A \in V_{N}$, and then constructs an uncompacted list representation of the SLR (or SLRPC or SLRC) parsing table.

SLRED : Applies the various compactions, in order merging of inadequate statesets, elimination of $\operatorname{LR}(0)$ statesets, terminal defaults, nonterminal defaults, renumbering of parsing-states, overlapping in SUPTACT.

SLROUT : Overlaps terminal entries, and formats the list representation into initialisation for PL360 declarations.

CPU time requirements, in seconds, for each of these programs operating on the AlgolW2 grammar are given in the following table.

Program	SLRIN	SLR	SLRED	SLROUT
	5 76 9 7 5 130 9 7 5 147 23 40 SLR SLRPC Parsing Table SLRC .			

The computation of $F_{1}(A)$ in the program SLR is based on the equation

$$
\begin{aligned}
F_{1}(A)=\left\{a \in V_{T} \mid\right. & C \rightarrow X_{2} \ldots B_{n} Y \omega \in P \text { with } B_{i} \ldots B_{n} \stackrel{*}{\rightarrow} \Lambda, \\
& X \xrightarrow{*} \beta_{A}, Y \xrightarrow{*} a \gamma, \alpha, \beta, \gamma, \omega \in V_{*}^{*}
\end{aligned}
$$

This result is stated by Knuth (1971), who uses the name 'follow' for F_{1}. Before the equation can be used, we must determine which nonterminals can generate the empty string. They may be computed recursively, using

$$
A \stackrel{*}{\rightarrow} \Lambda \text { iff } A \rightarrow B_{2} \ldots B_{n}, B_{i} \xrightarrow{*} \Lambda, 1 \leq i \leq n, n \geq 0
$$

Also required, for every $A \in V_{N}$, are

$$
\begin{aligned}
& \left\{a \in V_{T} \mid A \xrightarrow{*} a \alpha, \alpha \in V^{*}\right\} \\
\text { and } & =\operatorname{first}(A) \cap V_{T} \\
& \left\{B \in V_{N} \mid A \xrightarrow{*} \alpha B, \alpha \in V^{*}\right\}
\end{aligned}=\{A\} \cup \operatorname{last}(A) \cap V_{N}
$$

which may be determined using

$$
\begin{aligned}
X \in \operatorname{first}(A) \quad \text { iff } A & \rightarrow B_{1} \ldots B_{n} Y \alpha, B_{1} \ldots B_{n} \xrightarrow{*} \Lambda, n \geq 0, \\
X & =Y \text { or } X \in \operatorname{first}(Y) \\
X \in \operatorname{last}(A) \quad \text { iff } A & \rightarrow \alpha Y B_{1} \ldots B_{n}, B_{1} \ldots B_{n} \stackrel{*}{\rightarrow} \Lambda, n \geq 0, \\
X & =Y \text { or } X \in \operatorname{last}(Y)
\end{aligned}
$$

Iterative routines can be programmed to perform these calculations.

In an attempt to simplify storage allocation in the program SLR, an upper bound was derived for the number of statesets in a stateset table. If s is the number of productions and t the number of terminals of a grammar then 2^{m}, where $m=t^{k} \cdot \sum^{8} n_{i}$, is quoted as an upper bound $i=0$ for the LR(k) stateset table by Korenjak (1969). Since every stateset has an associated symbol, it can be shown that an improved upper bound is $\sum_{X \in V} 2^{f(X)}$ where $f(X)$ denotes the product of the number of occurrences of X on the RHSs of productions with max (number of elements in $F(A)$). For the XPL grammar, with $k=0$, we have $2^{A}=2^{228}$ and $\sum_{X \in V} 2^{f(X)} \div 2^{26}$, compared with an actual value of less than 2^{8}. Despite the improvement, the new upper bound was not used.

The strategies employed by SLRED and SLROUT for overlapping, can be described in terms of the following model. The elements of the sets $D_{1}=\left\{\lambda_{i 1}, \ldots, \lambda_{i m}\right\} \quad 1 \leq i \leq n$ are to be stored as a vector E, subject to the constraint,

$$
\forall i \exists j \text { such that } D_{i}=\left\{E(j), \ldots, E\left(j+m_{i}-1\right)\right\}
$$

Clearly one solution is $E=\lambda_{21} \ldots \lambda_{2 n} \ldots \lambda_{n_{2}} \ldots \lambda_{n 1}$; the objective of an overlapping strategy is to reduce the length of E.

The method used by SLRED for overlapping in SUPTACT is very simple. Each set D_{1} is in turn either overlapped on E if there already exists a j with $D_{i}=\left\{E(j), \ldots, E\left(j+m_{i}-1\right)\right\}$ or concatenated onto the elements already in E (the process is in fact further simplified by imposing an ordering on the $\lambda_{i j}$, storing each D_{i} as an ordered vector, and requiring $D_{i}(1) \ldots D_{i}\left(m_{i}\right)=E(j) \ldots E\left(j+m_{i}-1\right)$ for overlapping to take place).

A more complex technique was needed in SLROUT for overlapping entries of TSYM, TACT, and is now described. Two types of flag are employed, referred to as marks and ticks respectively; initially the D_{i} are not marked or ticked. Any D_{i} with $m_{i}=1$, or for which $D_{i}=D_{j}$ (for some D, not yet excluded), is excluded from Stages 1 and 2. Repeat Stage 1 until all the D_{1} are marked.

Stage 1

Select the largest unmarked set, say D_{i}. Determine the sequence C_{1}, \cdots, C_{m} where $C_{2}=D_{1}, C_{j+1}$ is the largest unmarked set such that $C_{j+2} \subset C_{j} \quad 1 \leqslant j<m$, and no unmarked set is contained in C_{m}. If $m \leq 2$ then tick and mark D_{1}, otherwise concatenate D_{1} onto E, and mark C_{1}, \ldots, C_{1}.

Repeat Stage 2 while 2 or more D_{1} remain ticked.

Stage 2

Select $i \neq j$ such that D_{i}, D_{j} are ticked and $D_{1} \cap D_{j}$ is largest. Concatenate $D_{i} \cup D_{j}$ onto E, and remove ticks from D_{i} and D_{j}.

Stage 3

Any remaining ticked D_{i} is concatenated onto E. Those D_{1} excluded from Stages 1 and 2 are optimally overlapped or concatenated onto E.

The elements of sets concatenated onto E must be ordered to ensure that the constraint on E is satisfied. This is complicated by the presence of default operations, and in Stage 2 , if D_{i} and D_{g} both contain default operations, then $D_{i} \cap D_{j}$ must be regarded as \varnothing.

The four programs produce the following information in a readable format.

SLRIN : Tables of the terminals, nonterminals and productions of the grammar are printed, together with the integers which identify these items within the programs. The principal nonterminal and endmarker are represented by ++++ and _I_ respectively. Productions $A \rightarrow \alpha_{1}, \ldots, A \rightarrow \alpha_{n}$ are printed as $A::=\alpha_{1}|\ldots| \alpha_{n}$. Some statistics of the grammar are also given.

SLR : Nonterminals A such that $A \stackrel{*}{\rightarrow} \Lambda$ are listed, and the sets F_{i} tabulated for every nonterminal. If $F_{1}(A)=\left\{a_{1}, \ldots, a_{n}\right\}$ this is printed as $A \mid a_{2} \ldots a_{n}$ under the heading 'TABLE OF FOLLOW'. Stateset and parsing tables (SLR or SLRPC or SLRC as required) are output together.

SLRED : Prints statistics of the parsing table and of the compactions obtained, followed by a specification of the stateset renumbering resulting from the compactions. The renumbered compacted parsing table is printed, with terminal default entries indicated by $H+$ (no confusion can arise from the use of this symbol). Then the table of nonterminal defaults is given.

SLROUT : Specifies the saving from terminal overlapping, and the amount of storage required for the tables. Initialised PL360 declarations for LHS, TSTATE, NSTATE, TSYM, NSYM and ACT are printed. The integers NDEF, TACT and NACT denote the locations of the first member of their respective vectors within ACT.

The output from each program is terminated (and hence delimited) by the CPU time used in the program's execution. We present examples of output for the grammars C_{2}, G_{6}, G_{7} and C_{8} (introduced on pages 20, 60 and 69).
Γ_{2} is a trivial SLR grammar which is not LR(0). The tables presented are the output of the programs SLRIN and SLR.

```
TERMINALS
    1 a b _l_
NONTERMINALS
    4+t++ A
PROLUCTIONS
    0 ++++ ::=A
        A
THERE ARE 3 TERMINALS AND 2 NONTERMINALS
THERE ARE 3 PRODUCTICNS HITH AVERAGE LENGTH OF BHS 2.OC
000.11 SECONDS IN EXECUTION
TAELE OF FOLLOW
A | b _l_
```

```
gRAMMAR IS SLR
SLR STATESET AND PARSING TABLE
STATESET 0
(0,0)
NUMEER OF STATES = 1 ASSOCIATED SYMEOL IS
pARSING-STATE 0
    O REDUCE ENTRIES 1 SHIFTENTRY ( 
STA TESET 1
(0,1)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS a
parSING-STATE 1
    O REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 2
(1,1) (2,1)
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS a
PARSING-STATE 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (b & -REDUCE & 2) & (a & .SHIFT & 2) & ( A & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & REDUCE & 2) & & & & & & \\
\hline 2 & EDUCE E & IES & 1 & & & & & \\
\hline
\end{tabular}
STATESET 3
(1.2)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS A
PARSING-STATE 3
    O REDUCE ENTRIES 1 SHIFT ENTRY 0 GOTO ENTRIES
STATESET 4
(1,3)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS b
PARSING-STATE 4
(b .REDUCE 1)
```



```
000.25 SECONDS IN EXECUTION
```

$\Gamma_{l_{G}}$ is a small grammar of a programming language type, incorporating statements and simple arithmetic expressions. It includes a production with an empty RHS. The tables presented are the output from all four programs (with chain elimination) and from SLR (without chain elimination).

THERE ARE 11 TERMINALS AND 9 NONTERMINALS
THERE ARE 15 PRODUCTIONS WITH AVERAGE LENGTH OF RHS 2.00 PRODUCTIONS 1246 ARE CHAIN PRODUCTIONS
000.30 SECONDS IN EXECUTION

L GENERATES THE EMPTY STRING

TABLE OF FOLLOW

D	1	-1			
A	1	else	1		
E	1	$+$)	else	-1_
T	1	$+$)	*	else
P	1	+)	*	else
C	1	-1_			
B	1	then	Or		
L	1	- 1			

GRAMMAR IS SLRC

SLRC STATESET AND EABSING TABLE

STATESET 0
(0,0)
NUMEER OF STATES $=1$ ASSOCIATED SYMEOL IS PARSING-STATE 0

(id	SHIFT	2)	(D	GCTC	$1)$
(if	SHIFT	3)	(A	GOTO	$1)$
			(C	GCTC 1$)$	
2	SHIFT ENTRIES	3	GOTO ENTRIES		

STATESET 1
$(0,1)$
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS D
PARSING-STATE 1
0 REDUCE ENTRIES 0 SHIFTENTRIES 0 GOTC ENTRIES
STATESET 2
$(3,1)$
NOMEER OF STATES = 1 ASSOCIATED SYMBOL IS id
PARSING-STATE 2
0 REDUCE ENTRIES $\quad 1$ SHIFT ENTRY 0 GCTO ENTRIES
STATESET 3
$(10,1)$
NUMEER OF STATES $=1$ ASSOCIATED SYMBOL IS if
PARSING—STATE 3

STA TE SE T 4
(3,2)
NUMEER OF STATES $=1$ ASSOCIATED SYMBOL IS :=
PARSING-STATE 4

(id	, SHIFT	10)	(E	,GOTC	7)
(1	, SHIFT	9)	(T	- GOTO	8)
			(P	,GCTC	8)
2	HIFT E	RIES	3	GOTO E	IES

STATESET 5
$(10,2) \quad(11,1)$
NUMBER OF STATES $=2$ ASSOCIATED SYMBOL IS B
PARSING-STATE 5
(then, SHIFT 11)
(or oSHIFT 12)
2 SHIFT ENTRIES
0 GOTO ENTRIES

```
STATESET 6
(12,1)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS id
PARSING-STATE 6
(then oREDDCE 12)
(OI &REDUCE 12)
2 REDOCE ENTRIES O SHIFT ENTRIES O GOTO ENTRIES
STATESET 7
(3,3) (5,1)
NOMBER OF STATES = 2 ASSOCIATED SYMBOL IS E
PARSING<STATE 7
(else,REDUCE 3) (+ &SHIFT 13)
(__ oREDOCE 3)
2-RELUCE ENTRIES 1 SHIFT ENTRY O GCTC ENTRIES
STATESET 8
(3,3) (5;1) (7, 1)
NUMEER OF STATES = 3 ASSOCIATBD SYMEOL IS T
PARSING-STATE 8
(else.REDUCE 3)
(%_REDUCE 3)
2 REDUCE ENTRIES
(+ \SHIFT 13)
```

(* ${ }^{(2 S H I F T}$ 14)
2 SHIFT ENTRIES 0 GOTO ENTRIES

STATESET 9
(8,1)
NUMEER OF STATES $=1$ ASSOCIATED SYMBOL IS (
PARSING-STATE 9

(id	-SHIFT	10)	(E	, GCTC	15)
(1	${ }_{\text {c }} \mathrm{SHIFT}$	9)	(T	- GOTO	16)
			(P	,GCTC	16)
2	HIFT E	RIE	3	OTO	R I

STATESET 10
($9 * 1$)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS id
PARSING-STATE 10
(+ \quad REDUCE 9)
() ${ }^{\text {(REDUCE 9) }}$
(* \quad REDUCE 9)
(else ${ }^{\text {REDUCE }}$ 9)
(_1_REDUCE 9)
5 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 11
(10,3)
NUMEFR OF STATES = 1 ASSOCIATED SYMBOL IS then
PARSING-STATE 11
0 REDUCE ENTRIES
STATESET 12
(11,2)
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS OI
PARSING-STATE 12
0 REDOCE ENTRIES $\quad \begin{gathered}1 \\ 1 \\ \text { SHIFT ENTRY }\end{gathered}$

STA TE SET 13
(5, 2)
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS +
PARSING-STATE 13

0 REDUCE ENTRIES

STA TESET 14
$(7,2)$
NUMEER OF STATES = 1 ASSOCIATED SYMEOL IS *
PARSING=STATE 14

0 REDUCE ENTRIES

STATESET 15
$(5,1) \quad(8,2)$
NUMBER OF STATES $=2$ ASSOCIATED SYMBOL IS E
PARSING-STATE 15

0 RELUCE ENTRIES
$\begin{array}{lcr}(4 & \text { SHIFT } & 13) \\ () & \therefore \text { SHIFT } & 21) \\ 2 & \text { SHIFT ENTRIE }\end{array}$
0 GOTC ENTRIES

STATESET 16
(5:1) (7, 1) $\quad(8,2)$
NUMBER OF STATES $=3$ ASSOCIATED SYMEOL IS T
PARSING-STATE 16

0 REDUCE ENTRIES

$(4$	SHIFT	$13)$
()	SHIFT	$21)$
$(*$	SHIFT	$14)$
3	SHIFT ENTRIES	

0 GOTO ENTRIES
STATESET 17
(10,4)
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS A
PARSING-STATE 17

1 REDOCE ENTRY 1 SHIFT ENTRY 1 GOTO ENTRY
STATESET 18
(11,3)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS id
PARSING=STATE 18
(then ${ }_{\theta}$ REDOCE 11)
(OI ${ }^{(1) R E D O C E ~ 11)}$
2 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTC ENTRIES

STA TE SET 19
(5,3) (7, 1)
NUMEER OF STATES $=2$ ASSOCIATED SYMEOL IS T
PARSING-STATE 19
(+ REDUCE 5) (* 5 SHIFT 14)
() \quad REDUCE 5)
(else, RED DCE 5)
(_I_REDUCE 5)
4 REDUCE ENTRIES
1 SHIFT ENTRY
0 GOTO ENTRIES

```
STA TESET 20
(7, 3)
NUMBER OF STATES \(=1\) ASSOCIATED SYMBOL IS \(p\)
PARSING-STATE 20
( + -REDUCE 7)
() \({ }^{\text {(REDUCE 7) }}\)
(* \(\quad\) REDUCE 7)
(else, REDUCE 7)
(_1_REDUCE 7)
    5 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 21
( 8,3 )
NUMBER OF STATES \(=1\) ASSOCIATED SYMBOL IS )
PARSING STATE 21
(+ \(\quad\) REDUCE 8)
() \({ }^{\text {RREDUCE 8) }}\)
(* \({ }^{*}\) REDUCE 8)
(else \({ }^{\text {REDUCE 8) }}\)
(1 *REDUCE 8)
\(\overrightarrow{5}\) REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 22
\((10,5)\)
NOMBER OF STATES \(=1\) ASSOCIATED SYMBOL IS L
PARSING-STATE 22
    (1_ REDUCE 10)
    REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 23
\((13,1)\)
NUMEER OF STATES \(=1\) ASSOCIATED SYMBOL IS else
PARSING STATE 23
\begin{tabular}{|c|c|c|c|c|c|}
\hline (id & - SHIFT & 2) & (D) & ,GOTO & 24) \\
\hline \multirow[t]{2}{*}{(if} & \({ }_{0} \mathrm{SHIFT}\) & 3) & ( A & , GOTO & 24) \\
\hline & & & (C) & .GCTC & 24) \\
\hline 2 & HIFT E & IES & 3 & GOTO & IE \\
\hline
\end{tabular}
    0 RELUCE ENTRIES 2 SHIFT ENTRIES 3 GOTO ENTRIES
STATESET 24
\((13,2)\)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS D
PARSING-STATE 24
    (_1_ REDUCE 13)
    1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES
001.36 SECONDS IN EXECUTION
```

```
THERE ARE A TOTAL OF 25 PARSING-STATES
THEY CCNTAIN 59 TERMINAL AND 18 NONTERMINAL ENTRIES
O STATESETS ARE INADEQUATE
7 STATESETS ARE LR(0); THEIR BEMOVAL SAVES 21 TERMINAL ENTRIES
TERMINAL DEFAULTS SAVE 5 TERMINAL ENTRIES
NONTERMINAL DEFAULTS REMOVE 7 NONTERMINAL ENTRIES
RENUMEERING PARSING-STATES SAVES 12 ENTRIES FROM NSTATE
```

Stateset	0	RENUMBERED AS	STATESET 0	
STA TESET	1	RENUMBERED AS	STATESET 6	
STATES ET	2	RENUMBERED AS	STATESET 7	
STA TESET	3	RENUMEERED AS	STATESET 8	
STATESET	4	RENUMBERED AS	STATESET 9	
STA TESET	5	RENDMBERED AS	STATESET 10	
STATESET	6	LR (0) ; ELIMIN	TED AS REDUCE	12
STA TESET	7	RENDMBERED AS	STATESET 11	
STATESET	8	RENUMBERED AS	STATESET 12	
STA TESET	9	RENOMBERED AS	STATESET 1	
STATESET	10	LR (0): ELIMINA	TED AS REDOCE	
STA TESET	11	RENUMBERED AS	STATESET 2	
STATESET	12	RENOMBERED AS	STATESET 13	
STA TESET	13	RENUMBERED AS	STATESET 3	
ST AT ES ET	14	RENUMBERED AS	STA TESET 4	
STA TESET	15	RENUMBERED AS	STATESET 14	
STATESET	16	RENUMBERED AS	STATESET 15	
STA TESET	17	RENUMBERED AS	STATESET 16	
STATESET	18	LR (0) : ELIMIN	ATED AS REDUCE	11
STA TESET	19	RENUMBERED AS	STATESET 17	
STATESET	20	LR (0): ELIMINA	TED AS REDUCE	7
STA TE SET	21	IR (0): ELIMIN	ATED AS REDUCE	8
STATESET	22	LR (0): ELIMINA	AED AS RED DCE	10
STA TESET	23	RENUMBERED AS	STATESET 5	
STATESET	24	LR (0) : ELIMINA	TED AS REDUCE	13

COMPACTED PARSING TABLE

PARSING STATE 0

(id	${ }_{0}$ SHIFT	7)	(D	${ }_{0} \mathrm{SH}$ IFT	6)
(if	SHIFT	8)			

2 TERMINAL ENTRIES 1 NONTERMINAL ENTRY
WAS NOMBERED 0 ASSOCIATED SYMBOL IS
PARSING-STATE 1

(id	${ }_{\square}$ SCANREDUCE	9)	(E	-SHIFT	14)
(1)	${ }_{0}$ SHIFT	1)	(T	${ }_{0} \mathrm{SHIFT}$	15)
			(P	-SHIFT	15)

2 TERMINAL ENTRIES 3 NONTERMINAL ENTRIES
WAS NUMBERED 9 ASSOCIATED SYMBOL IS (
SAME TERMINAL ENTRIES AS PARSING-STATE 9
PARSING-STATE 2
(id ${ }_{0}$ SHIFT 7) (A ${ }_{c}$ SHIFT 16)

1 TERMINAL ENTRY 1 NONTERMINAL ENTRY
HAS NOMBERED 11 ASSOCIATED SYMEOL IS then

```
PARSING-STATE 3
(id oSCANREDUCE 9) (T .SHIFT 17)
(! SHIFT 1) (P SHIFT 17)
2 TERMINAL ENTRIES 2 NCNTERMINAL ENTBIES
HAS NUMBERED 13 ASSOCIATED SYMBOL IS +
SAME TERMINAL ENTRIES AS PARSING-STATE g
PARSING-STATE 4
(id sCANREDOCE 9) (P ,RECUCE 7)
(( }\mp@subsup{|}{0}{SHIFT 1)
2 TERMINAL ENTRIES 1 NONTERMINAL ENTRY
WAS NUMBERED 14 ASSOCIATED SYMEOL IS *
SAME TfRMINAL ENTRIES AS PARSING-STATE 9
PARSING-STATE 5
(id SHIFT 7) (D .RELUCE 13)
(if SHIFT 8) (A ,REDUCE 13)
(C ,RELUCE 13)
2 TERMINAL ENTRIES 3 NONTERMINAL ENTRIES
WAS NUMBERED 23 ASSOCIATED SYMEOL IS else
SAME TERMINAL ENTRIES AS PARSING= STATE 0
PARSING-STATE 6
NO ENTRIES 'FINAL` PARSING-STATE
WAS NUMBERED 1 ASSOCIATED SYMEOL IS D
PARSING=STATE 7
(:= SHIFT 9)
    1 TERMINAL ENTRY
WAS NUMBERED 2 ASSOCIATED SYMBOL IS id
PARSING-STATE 8
    (id oSCANREDUCE 12)
    1 TERMINAL ENTRY
WAS NUMBERED 3 ASSOCIATED SYMBOL IS if
    PARSING-STATE 9
    (i.1 , SCANREDUCE 9)
    (( SHIFT 1)
    2 TERMINAL ENTRIES
    WAS NUMBERED 4 ASSOCIATED SYMBOL IS :=
    PARSING-STATE 10
    (then,SHIFT 2)
    (OI ,SHIFT 13)
    2 TERMINAL ENTRIES
WAS NUMBERED 5 ASSOCIATED SYMBOL IS B
PARSING-STATE 11
    (+ \SHIFT 3)
    (t+t+,REDDCE 3)
    2 TERMINAL ENTRIES
    WAS NOMBERED 7 ASSOCIATED SYMEOL IS E
```

```
PARSING-STATE 12
    (+ SHIFT 3)
    (* -SHIFT 4)
    (++++* REDUCE 3)
    3 TERMINAL ENTRIES
#AS NUMBERED 8 ASSOCIATED SYMEOL IS T
PARSING-STATE 13
    (id SCANREDOCE 11)
    1 TERMINAL ENTRY
WAS NUMBERED 12 ASSOCIATED SYMEOL IS or
PARSING-STATE 14
    (+ >SHIFT 3)
    () SCANREDUCE 8)
    2 TERMINAL ENTRIES
    WAS NUMBERED 15 ASSOCIATED SYMBOL IS E
    PARSING-STATE 15
    (+ SHIFT 3)
    () SCANREDUCE 8)
    (* -SHIFT 4)
    3 TERMINAL ENTRIES
    WAS NUMBERED 16 ASSOCIATED SYMBOL IS T
    PARSING-STATE 16
    (elsegsHIFT 5)
    (1_ %REDUCE 14)
    2 TERMINAL ENTRIES
    WAS NUMBERED 17 ASSOCIATED SYMEOL IS A
    PARSING-STATE 17
    ** ©SHIFT 4)
    (t+t+%REDUCE 5)
    2 TERMINAL ENTRIES
    #AS NUMBERED 19 ASSOCIATED SYMBOL IS T
NONTERMINAL DEFAULT ENTRIES
\begin{tabular}{|c|c|c|}
\hline (D) & \({ }_{0} \mathrm{SHIFT}\) & 6) \\
\hline (A & \({ }_{0}\) SHIFT & 6) \\
\hline (E & \({ }^{\text {a SHIFT}}\) & 11) \\
\hline (T & -SHIPT & 12) \\
\hline (P & , SHIFT & 12) \\
\hline (C & , SHIFT & 6) \\
\hline (B) & \({ }^{\text {S SHIFT}}\) & 10) \\
\hline (L & - REDUCE & 10) \\
\hline
\end{tabular}
000.78 SECONDS IN EXECOTION
```

13 TERMINAL ENTRIES HAVE BEEN SAVED BY OVERLAPPING.
PARSING TABLES REQUIRE 171 BYTES
INTEGER NDEF $=0$. TACT $=16$, NACT $=56 ;$
ARRAY 14 BYTE LHS $=$
$(13,13,14,15,15,16,16,17,17,18,19,19,20,20) ;$
ARRAY 18 SHORT INTEGER TSTATE=
 385.449) ;

ARRAY 6 SHORT INTEGER NSTATE=

ARRAY 20 BYTE TSYM=
$(5,2,12,5,4,2,1,6,1,3,7,8,9,11,5,12,11,10,1,1)$;
ARRAY 11 BYTE NSYM=
(13.15.16.17。14, 16, 17, 17, 13.14, 18) ;

ARRAY 39 SHORT INTEGER ACT=
$\left(6,6,11_{0} 12,12,6,10,17674,4,3,17155,4,8968,3,7,8,8457,1,2,13,5\right.$,
 16909 16909) ;

SHORT INTEGER SUPTACT SYN ACT;
000.28 SECONDS IN EXECUTION

GRAMMAR IS SLR

SLR STATESET AND PARSING TABLE


```
STATESET 1
(0,1)
NUMBER OF STATES = 1 ASSOCIATED SYMbOL IS D
PARSING-STATE 1
    O RELUCE ENTRIES 0 SHIFT ENTRIES 0 GCTC ENTRIES
STATESET 2
(1, 1)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS A
parSING-STATE 2
(_1_ sREDUCE 1)
    1 REDUCE ENTRY 0 SHIPT ENTRIES 0 GCTC ENTRIES
STATESET 3
(2.1)
NOMEER OF STATES = 1 ASSOCIATED SYMBOL IS C
PARSINGSTATE 3
(_1_ ,REDOCE 2)
    1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTC ENTRIES
STA TESET 4
(3,1)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS id
PARSING*STATE 4
0 REDUCE ENTRIES 1 SHIFT ENTRY 0 GCTC ENTRIES
STATESET 5
(10, 1)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS if
PARSING-STATE 5
    0 REDUCE ENTRIES 1 SHIFT ENTRY 1 GOTO ENTRY
STATESET 6
(3,2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS :=
PARSING-STATE 6
    O REDUCE ENTRIES
\begin{tabular}{|c|c|c|c|c|c|}
\hline (id & - SHIFT & 13) & (E & \({ }_{\text {c GCTC }}\) & 9) \\
\hline 11 & \({ }_{0}\) SHIFT & 12) & (T & , GOTO & 10) \\
\hline & & & ( P & ,GCTC & 11) \\
\hline 2 & SHIFT & RIES & 3 & GOTO E & RIES \\
\hline
\end{tabular}
STATESET 7
(10,2) (11.1)
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS B
PARSING-STATE 7
O REDUCE ENTRIES 2 SHIFT ENTRIES
    O GCTC ENTRIES
```


Stateset 13
(9,1)
NUMBER OF STATES = 1 aSSOCIATED SYMBOL IS id PARSING-STATE 13
(+ 。REDUCE 9)
() ${ }^{\circ}$ REDUCE 9)
(* •REDUCE 9)
(else ${ }_{n}$ RED OCE 9)
(.1.. oREDUCE 9)

5 REDDCE ENTRIES 0 Shift ENTRIES 0 goto entries

STATESET
 14

$(10,3)$
NUMBER OF STATES $=1$ PARSING-STATE 14

$$
0 \text { REDUCE ENTRIES }
$$

STATESET 15
(11,2)
NOMBER OF STATES $=1$ PARSING $=$ STATE 15

0 RED UCE ENTRIES

ST AT ES ET 16

(5.2)

NUMBER OF STATES = PARSING-STATE 16

0 REDUCE ENTRIES

STA TESET 17

(7, 2)
NUMEER OF STATES = PARSING—STATE 17

0 REDUCE ENTRIES
(2 SHIFT 12)

(id	, SHIFT	13)	(T	,GCTC	21)
$1($	SHIFT	12)	(P	, GOTO	11)
2	SHIFT E	RIES	2	GOTC E	RIES

STATESET 18
$(5,1) \quad(8,2)$
NUMBER OF STATES $=2$ ASSOCIATED SYMBOL IS E PARSING STATE 18

0 REDUCE ENTRIES
($+\quad$ SHIFT 16)
() ${ }_{c}$ SHIFT 23)

2 SHIFT ENTRIES 0 GOTC ENTRIES

STATESET 19
(10,4)
NUMEER OF STATES $=1$ ASSOCIATED SYMBOL IS A

PARSING~STATE 19
(1_ REDUCE 14)
1 REDUCE ENTRY

STATESET 20
$(11,3)$
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS id
PARSING-STATE 20
(then n_{b} REDUCE 11)
(OI ${ }^{\circ}$ REDUCE 11)
2 REDUCE ENTRIES

0 SHIFT ENTRIES O GOTC ENTRIES

```
STATESET 21
    (5.3) (7.1)
NUMEER OF STATES = 2 ASSOCIATED SYMEOL IS T
PARSING-STATE 21
    (+ \REDOCE 5) 5 (* % SHIFT 17)
    1) aREDUCE 5)
    (else gRED DCE 5)
    (I_OREDUCE 5)
    4 REDOCE ENTRIES 1 SHIFT ENTRY 0 GOTO ENTRIES
STATESET 22
    (7.3)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS P
PARSING-STATE 22
    (+ *REDUCE 7)
    () „REDOCE 7)
    (* oREDUCE 7)
    (else sRD OCE 7)
    (_1. aREDUCE 7)
    5 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATES ET 23
    (8.3)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS )
parSING-STATE 23
(+ &REDUCE 8)
() „REDUCE 8)
(* &REDUCE 8)
(else }\mp@subsup{}{~}{\prime}\mathrm{ REDUCE 8)
(_1_ &REDUCE 8)
5 REDUCE ENTRIES 0 SHIFT ENTRIES O GOTO ENTRIES
STA TE SET 24
(10,5)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS L
PARSING-STATE 24
(_1_ oREDUCE 10)
1-qEDUCE ENTRY 0 SHIfT ENTRIES 0 GOTC ENTRIES
STATESET 25
(13.1)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS else
PARSING-STATE 25
O REDUCE ENTRIES
2 SHIFT ENTRIES 3 GOTO ENTRIES
STATESET 26
(13, 2)
NOMEER OF STATES = 1 ASSOCIATED SYMEOL IS D
PARSING-STATE 26
(_1_ oREDUCE 13)
    REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTC ENTRIES
```

\int_{7} is an ambiguous grammar (and hence not SLR). but which is SLRC. The tables presented are the output of the programs SLRIN and SLR (with and without chain elimination).

```
TERMINALS
    c - - 
NONTERMINALS
    3 +t+t A B
PRODUCTIONS
    llt+t : := A 
    B B ::=c
```

there are 2 TERMINALS AND 3 NONTERMINALS
THERE ARE 4 PRODUCTIONS WITH AVBRAGE LENGTH OF RHS 1.25
PROLUCTIONS 123 ARE CHAIN PRODOCTIONS
000.13 SECONDS IN EXECOTION

```
TAELE OF FOLLON
```

$\left.\begin{array}{lll}A & 1 & -1 \\ B & 1 & -1\end{array}\right]$
grammar IS SLRC

SLRC STATESET AND PARSING TABLE

```
Stateset 0
```

($0_{n} 0$)
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS
Parsing State 0
(C : SATPT 1) (A ${ }^{\text {GOTC 1) }}$
1 SHIFT ENTRY $\quad \begin{gathered}\text { (B GOTO } \\ 2\end{gathered}$
STATESET 1
(0.1)
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS A
Parsing-STATE 1
0 REDUCE ENTRIES
000.21 SECONDS IN EXECUTION

```
gRAMMAR IS NOT SLR
SLR STATESET aND ParSING TABLE
STATESET 0
(0,0)
NUMEER OF STATES = 1 ASSOCIATED SYMEOL IS
PARSING-STATE 0
    0 RELUCE ENTRIES 1 SHIFT ENTRY 2 GÓTO ENTRIES
STATESET {
(0,1)
NOMBER OF STATES = 1 aSSOCIATED SYMBOL IS A
PARSING-STATE 1
    O REDUCE ENTRIES O SHIFT ENTRIES O GCTC ENTRIES
STATESET 2
(1,1) (3,1)
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS c
PARSING-STATE 2
(_I_.REDUCE 1)
(I..aREDOCE 3)
2 REDUCE ENTRIES O SHIFT ENTRIES O GOTC ENTRIES
STA TE SET 3
(2.1)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS B
PARSING-STATE 3
(_1_ oREDDCE 2)
1-pEDUCE ENTRY 0 SHIFT ENTRIES 0 GOTC ENTRIES
000.23 SECONDS IN EXECDTION
```

C_{8} is an SLR grammar which is not Λ-free. It is not SLRC or even SLRPC. The tables presented are the output of the programs SLRIN and SLR (wit: and without partial chain elimination).

```
TERMINALS
    d e - l
NONTERMINALS
    4 +t+t A B C L
PRODDCTIONS
    0++++::=
    4 B : := C
    5 C :O=e
    L :%=
THERE ARE 3 TERMINALS AND 5 NONTERMINALS
THERE ARE 7 PRODUCTICNS WITH AVERAGE LENGTH OF RHS 1.43
PROLUCTIONS 4 5 ARE CHAIN PRODOCTIONS
000.16 SECONDS IN EXECUTION
L GENERATES THE EMPTY STRING
```


TABLE OF FOLLOW

```
llll
```

```
llll
```

grammar IS NOT SLRPC

SLRPC Stateset and parsing table

STATESET 1
$(0,1)$
NUMBER OF STATES = 1 aSSOCIATED SYMBOL IS A PARSING-STATE 1
0 Reduce entries 0 Shift entries 0 gctc entries
STATESET 2
(101)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS B
PARSING-STATE 2
(d ${ }^{\text {© REDOCE }}$ 6) (L ,GOTO 6)
(1., REDUCE 6)

2 REDUCE ENTRIES 0 SHIFT ENTRIES 1 GOTO ENTRY
Stateset 3
(2,1)
NUMBER OF STATES $=1$ ASSOCIATED SYMBOL IS C
PARSING-STATE 3
0 REDUCE ENTRIES 1 SHIFT ENTRY 0 GOTO ENTRIES
STATESET 4
(3.1)
NUMBER OF STATES $=1$ aSSOCIATED SYMBOL IS L PARSING-STATE 4
0 REDUCE ENTRIES $\quad 1 \quad$ SHIFT ENTRY $\quad 0 \quad$ GOTO ENTRIES
STATESET 5
$(1,1) \quad(2,1)$
NUMBER OF $\begin{gathered}* * * * * * * * * * ~ \\ \text { STATES }=2\end{gathered}$ INADEQUATE ASSOCIATED SYMBOL IS PARSING-STATE 5 (d ${ }^{\text {BREDDCE 6) (} \mathrm{C} \text {,SHIFT 7) (L ,GOTO 6) }}$ (1-aREDUCE 6) 2 REDUCE ENTRIES

1 SHIFT ENTRY
1 GOTO ENTRY

```
STATESET 6
(1.2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS L
PARSING-STATE 6
(1-%REDUCE 1) 1)
STATESET 7
(2,2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d
PARSING-STATE 7
(_1-,REDUCE 2)
    1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 8
(3.2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d
PARSING-STATE 8
(_1..oREDUCE 3)
1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES
000.48 SECONDS IN EXECUTION
```

GRAMMAR IS SLR
SLR STATESET AND PARSING TABLE
Stateset 0
$(0,0)$
NuMBER OF STATES $=1$ aSSOCIATED SYMBOL IS
Parsing-STATE 0

(d	-SEDUC	$6)$	(e	, SHIFT	5)	(A	, GOTC	1)
	${ }_{\text {s }}$ RED DCE	6)				(E	GOTO	2)
						(C	GOTC	3)
						(L	, GO TO	4)
	REDUCE	IES	1	SHIFT E		4	GOTO E	IES

STA TE SET 1
(0.1)
NUMEFR OF STATES = 1 aSSOCIATED SYMBOL IS A PARSING-STATE 1 0 REDOCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES

```
STA TESET 2
(1, 1)
NOMBER OF STATES = 1 ASSOCIATED SYMBOL IS B
PARSING-STATE 2
\begin{tabular}{ll} 
(d \(\quad\) RECUCE 6) (L & 6) (LCTC 6)
\end{tabular}
2}\mathrm{ beLUCE ENTRIES 0 SHIFT ENTRIES 1 GOTC ENTRY
STA TESET 3
(2,1)
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS C
PARSING-STATE 3
(d ,SHIFT 7)
    1 SHIFT ENTRY 0 GCTC ENTRIES
STA TESET 4
(3. 1)
NUMEER OF STATES = 1 ASSOCIATED SYMEOL IS L
pARSING~STATE 4
(d ,SHIFT 8)
    1 SHIFT ENTRY O GCTC ENTRIES
STA TE SET 5
(4,1) (5,1)
NUMEER OF STATES = 2 ASSOCIATED SYMBOL IS e
PARSING-STATE 5
(d oREDUCE 5)
(-1, &REDUCE 4)
2 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 6
(1,2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS L
PARSING-STATE 6
(G_ragEDUCE 1)
1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 7.
(2, 2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d
PARSING-STATE 7
(GOrEDUCE 2)
    REDOCE ENTRY
    O SHIFT ENTRIES 0 GOTO ENTRIES
STATESET 8
(3.2)
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d
PARSING-STATE 8
    (.1..rreduce 3)
    1 REDOCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES
```

000.43 SECONDS IN EXECUTION

References

Aho A.V. and Ullman J.D. (to be published)
'Techniques for Parser Optimisation' (Chapter 6)
Anderson T., Eve J. and Horning J.J. (1971)
'Efficient LR(1) parsers'
Technical Report 24, Computing Laboratory, University of Newcastle upon Tyne

DeRemer F.L. (1969)
'Practical Translators for LR(k) Languages'
Ph.D. Thesis, Department of Electrical Engineering, M.I.T.

DeRemer F.L. (1971)
Simple LR(k) Grammars
CACM 14 p. 453
Earley J. (1965)
'Generating a recognizer for a BNF grammar'
Computation Centre Report,
Carnegie Institute of Technology, Pittsburgh
Earley J. (1970)
An Efficient Context-Free Parsing Algorithm
CACM 13 p. 94
Feldman J. and Gries D. (1968)
Translator Writing Systems
CACM 11 p. 77
Floyd R.W. (1963)
Syntactic Analysis and Operator Precedence
JACM 10 p. 316

Floyd R.W. (1964)
Bounded Context Syntactic Analysis CACM 7 p. 62

Ginsburg S. and Greibach S.A. (1966)
Deterministic Context Free Languages Information and Control 9 p. 620

Graham S.L. (1970)
Extended Precedence Languages, Bounded Right
Context Languages, and Deterministic Languages
IEEE Conference Record of the Eleventh Annual
Symposium on Switching and Automata Theory p. 175

Gray J.N. and Harrison M.A. (1969)
Single Pass Precedence Analysis
IEEE Conference Record of the Tenth Annual
Symposium on Switching and Automata Theory p. 106

Gries D. (1968)
Use of Transition Matrices in Compiling
CACM 11 p. 26
Hext J.B. and Roberts P.S. (1970)
Syntax analysis by Domolki's algorithm
Computer Journal 13 p. 263
Ichbiah J.D. and Morse S.P. (1970)
A Technique for Generating Almost Optimal Floyd-Evans
Productions for Precedence Grammars
CACM 13 p. 501

Irons E.T. (1964)
"Structural Connections" in Formal Languages
CACM $7 \quad$ p. 67
Knuth D.E. (1965)

On the Translation of Languages from Left to Right
Information and Control 8 p. 607
Knuth D.E. (1971)
Top-Down Syntax Analysis
Acta Informatica 1 p. 79
Korenjak A.J. (1969)
A Practical Method for Constructing LR(k) Processors CACM 12 p. 613

Lalonde W.R. (1971)
'An Efficient LaLR Parser Generator'
Technical Report CSRG-2, University of Toronto
Lewis II P.M. and Stearns R.E. (1968)
Syntax-Directed Transduction

JACM 15 p. 465
Lynch W.C. (1968)
'A high-speed parsing algorithm for ICOR grammars'
Report 1097, Andrew Jennings Computing Centre,
Case Western Reserve University
McKeeman W.M. (1966)
'An Approach to Computer Language Design'
Technical Report CS48, Stanford University
McKeeman W.M., Horning J.J. and Wortman D.B. (1970)
'A Compiler Generator'
Prentice-Hall

Pager D. (1970)
A Solution to an Open Problem by Knuth
Information and Control 17 p. 462
Wirth N. (1968)
PL360, A Programming Language for the 360 Computers JACM 15 p. 37

Wirth N. and Hoare C.A.R. (1966)
A Contribution to the Development of ALGOL CACM $9 \quad \mathrm{p} .413$

Wirth N. and Weber H. (1966)
EULER: A Generalisation of ALGOL, and its
Formal Definition
CACM 9 p .13

[^0]: Results for SLR parsing tables

[^1]: Results for SLRC parsing tables

