
SYNTACTIC ANALYSIS OF

LR(k) LANGUAGES

NEWCASTLE UNIVERSITY LIBRARY

n~s 084 09982 5 N "-
-- -------------------------

T. ANDERSON

Ph.D. Thesis
January 1972

University of Newcastle upon Tyne

Acknowledgements

I am very grateful for the encouragement of my supervisor,

Dr. J. Eve, from whose suggestions and comments this thesis has

derived much benefit.

Thanks must also go to my wife, who typed the draft, and

Miss H. Bell, who typed the final version of the thesis.

Support for the research described here was received from the

Science Research Council. The University of Newcastle upon Tyne

aided the completion of the thesis.

Abstract

A method of syntactic analysis, termed LA(m)LR(k), is discussed

theoretically. Knuth's LR(k) algorithm is included as the special

case m = k. A simpler variant, SLA(m)LR(k) is also described, which

in the case SLA(k)LR(O) is equivalent to the SLR(k) algorithm as

defined by DeRemer. Both variants have the LR(k) property of

immediate detection of syntactic errors.

The case m = 1 k = 0 is examined in detail, when the methods

provide a practical parsing technique of greater generality than

precedence methods in current use. A formal comparison is made with

the weak precedence algorithm.

The implementation of an SLA(1)LR(O) parser (SLR) is described,

involving numerous space and time optimisations. Of importance is a

technique for bypassing unnecessary steps in a syntactic derivation.

Direct comparisons are made, primarily with the simple precedence

parser of the highly efficient Stanford AlgolW compiler, and confirm

the practical feasibility of the SLR parser.

Chapter

Chapter 2

Chapter 3

Chapter 4

Introduction

Theory

Notation

Contents

Knuth's LR(k) algorithm

Table driven parsers

LR(k) parsing tables

Table sizes

LA(m)LR(k) parsing tables

SLA(m)LR(k) parsing tables

Minimal LR(k) parsing tables

The SLR and LALR algorithms

Error detection

Precedence

1

6

9

14

16

20

23

30

32

35

41

Preliminary 44

Precedence parsers 46

Comparison of SLR and weak precedence 49

Weaker precedence 55

Practice

Practical considerations 58

SLR parsing 59

Chain productions 63

LR(O) statesets 70

Table compaction 74

Inadequate state sets 82

Parsing tables for PL360 AlgolW and XPL 86

Timing the SLR parser 97

Chapter 5 Conclusion 103

108

119

146

Appendices Appendix

Appendix 2

References

- 1 -

Chapter

Introduction

In recent years, the problem of analysing the structure of computer

programs written in high level programming languages has received

considerable attention. Theoretical studies have been concerned mainly

with methods of analysis dependent on the use of context free grammars

to model the syntax of such languages. Syntactic analysis forms an

important component of the process of compilation, and although context

free grammars do not in general provide all of the information required

for the analysis, they do give a formal specification which has proved

extremely useful.

Research has been directed towards methods for constructing, from

a given context free grammar, an algorithm capable of analysing any

string generated by that grammar. These methods play an essential role

in translator writing systems, and a number of existing techniques are

discussed in the survey by Feldman and Gries (1968). Most of the methods

which have been developed construct left to right analysis algorithms,

and fall into two categories, referred to as top-down and bottom-up

methods. This dissertation is concerned solely with methods in the

latter category.

A few of the methods which have been devised, are capable of

constructing analysers for any context free grammar, the best example

being that of Earley (1971). For reasons of efficiency it is unfortunately

necessary in practice to restrict choice to methods which are only

applicable to subsets of the context free grammars.

- 2 -

The work of Floyd (1964) and Irons (1964) on bounded context

grammars, and an algorithm due to Earley (1965) which transcended the

concept of bounded context, led to the definition of LR(k) grammars by

Knuth (1965). Knuth showed that the LR(k) grammars (those analysable

from left to right with only k symbols of lookahead) correspond with

the deterministic languages of Ginsburg and Greibach (1966). To use

the LR(k) method, a value for k must be chosen, and while k = 0 does

not give a sufficiently general method, the LR(1) grammars appear to be

adequate for most programming languages. Restriction to LR(1) grammars

also aids a human user of the syntax. Although theoretically efficient,

practical LR(1) implementation founders on the magnitude of the tables

needed to direct the analyser (while tables are not essential, in their

absence the analyser is too slow).

Other theoretical techniques, notably the precedence group of

methods, have met with practical success. Floyd (1963) describes an

algorithm for operator precedence grammars. The restriction to operator

grammars was removed by Wirth and Weber (1966), who defined simple

precedence grammars. McKeeman (1966) considered practical ways of

extending the generality of simple precedence techniques, while

Gries (1968) combined the use of transition matrices with a precedence

scheme for operator grammars. These methods are fast and efficient and

have received extensive practical use, but they lack the generality of

the LR(k) algorithm, as well as being inferior in their error detection

abilities.

In Chapter 2 of this dissertation, a generalisation of LR(k) is

discussed, called LA(m)LR(k), together with a simpler variant called

SLA(m)LR(k). Both have the LR(k) property of immediate detection of

syntactic errors, and for m = k they are identical to the LR(k) algorithm.

- 3 -

Methods are described for generating and minimising the size of the

tables required by these techniques. Special attention is given to

the LA(1)LR(O) and SLA(1)LR(O) algorithms (abbreviated LALR and SLR).

Their generality, and the size of tables they require lie between

those of LR(O) and LR(1).

Chapter 3 demonstrates the usefulness of the notation employed

(based on that of Knuth) by making a formal comparison of SLR with

precedence methods. This yields a characterisation of the precedence

relations, and proves the inclusion of the weak precedence grammars

within the SLR grammars, indicating to some extent the scope of the

SLR algorithm.

Practical aspects of the SLR method are stressed in Chapter 4.

Of importance is the incorporation, within the SLR framework of a

technique for bypassing unwanted steps in a syntactic derivation.

This increases the speed of analysis, as does a process of eliminating

parts of an SLR table which are LR(O) in behaviour. A number of

methods for compacting SLR tables are discussed, and a sequence for

applying these methods is suggested. A scheme is described by which

semantic routines may augment an SLR analyser, to enable the use of

non SLR grammars if required. Experimental evaluations are made of

the amount of storage needed for SLR tables, and a comparative sequence

of timings made between an SLR analyser and the simple precedence based

syntactic analyser of the highly efficient Stanford AlgolW compiler.

The results of these experiments show that the SLR, and hence also

LALR, algorithms can be made to compare very favourably with current

methods, both in time and space requirements; in view of their greater

generality (in accommodating a much larger subset of the context free

grammars) and their ability to detect syntactic errors at the earliest

possible point in an input string, the SLR and LALR algorithms should

substantially replace current methods.

- 4 -

A brief history of the development of the LA(m)LR(k) algorithm

follows.

In an attempt to obtain a practical algorithm of the LR type,

J. Eve devised a 'modified LR(1)' algorithm, and encoded (in PL/1

under O.S. 360) a table constructor program for both this and full

LR(1). Results from the programs being encouraging, the author

continued this line of investigation, making the generalisation to

'modified LR(k) , and implementing a more flexible table constructor

(in AlgolW under MTS, see Appendix 2). Examination of table

representations and compactions began.

In related work, Korenjak (1969) described the construction of

an LR(1) type of processor by means of an ad hoc partitioning of a

grammar. A much stronger connection is present in the research

described by DeRemer (1969) in his doctoral thesis. He discussed

SLR(k) grammars, which were virtually equivalent to our 'modified

LR(k) , grammars, although from a very different approach. In addition,

he defined a class of grammars which he called LALR(k) , but did not

specify any algorit.hm for these. The definition involves an exact

knowledge of the possible k symbol lookahead strings at every stage of

an analysis.

This exact knowledge can be obtained from an LR(k) table, which

can provide lookahead information for an otherwise LR(O) algorithm.

A generalisation of this procedure would be to use an LR(m) table to

ext.end the lookahead of an otherwise LR(k) algorithm (m ~ k); this is

the LA(m)LR(k) algorithm. If a simpler alternative is adopted, that of

computing the lookahead extension directly from the grammar, then we

obtain SLA(m)LR(k). The case SLA(k)LR(O) corresponds to SLR(k).

- 5 -

The terminology SLR(k) has the disadvantage of indicating a

nonexistent connection with LR(k), the only real link being with LR(O)

independently of the value of k. The same misconception is evident in

the phrase 'modified LR(k)'; better would have been 'k modified LR(O)'.

Similar comments apply to the term LALR(k)

Typographical Note

Care is needed on occasion in this thesis to distinguish between

a subscript numeral 1 (e.g. X) and a subscript letter 1 (e.g. X).
1 1

- 6 -

Chapter 2

Notation

Let V be a set of symbols. A string on V is a finite sequence of

symbols of V ,

[x E V} 1 ~ i ~ n n ~ 0
i

Such a string may be represented as x x '" x
1 2 n

If n = 0 the sequence

1S called the empty string, which is represented by A

If ~ == x X
1 2

x is a string (on V), its length n is denoted by I~I.

Let ~ = x x
1 2

n

X
n

s = y y ... y be strings.
1 :a III

Their concatenation

x x x y y ... Y is denoted by oa. If A and B are sets of strings
1 a n 1 a III

then their product AB is the set of strings which consist of a string in

A concatenated with a string in B, i.e.

AB {~S I ~ E A, S E B}

The set of all strings on V is denoted by V*. This is the smallest set

which satisfies V* == VV* U [A}. (V can be re'~ded as a set of strings,

f
of length \' on itself. The lengths of the strings in V* are unbounded,

but finite.) V+ is the sr,tallest set satisfying v+ = VV+ U V ; hence

V+ = V* '\ {A}, and is the set of strings on V which have positive length.

A relation r on a set A is a subset of Ax A. We write

(x,y) Eras x r y. The equality relation on A will be denoted where

ne~essary by =A' If r and s are relations on A we define the relation

rs by

x rs z iff x r y and y s z for some yEA

The reflexive transitive completion of r is denoted by r* and is the

smallest relation satisfying r* = rr*U ~A' The transitive completion

of

+ r

r is denoted by + r ,

- 7 -

which is the smallest relation satisfying

+ = rr Ur. (If r is irreflexive we have +
r = r* \ =A')

A context free grammar (CFG) q is a 4-tuple, q = (v;.,~ ,S,P).

V
N

and V
T

are finite, disjoint sets of symbols; v;. nv
T

= ¢. We now let

v = VNUV
T

which is called the vocabulary of q. The elements of V
N

are

called nonterminals, those of V
T

are terminals. S is a distinguished

member of V
N

called the principal nonterminal. P is a finite subset of

VNxV* whose elements are called the productions of q. P is used to

define the re~tion ~ on V* as follows. Given a,SEV*, we have
"

a ~ S iff a,~ E V* and (A, ~) E P such that a = a A ~ and S = a ~ T.

This definition ensures that P C ~, enabling us to denote a production

(A,~) by A ~ ~. A is called the left hand side (LHS) and ~ the

right hand side (RHS) of the production A ~ ~. * If a,S E v* and a ~ S

then we must have that

(.0 = a, (.0 = S
o n

(.0 ,
o

and

,(.0 E V*, n ~ 0 such that
n

(.0 ~ (.0 0 ~ i < n
1 1 +1

The sequence (.0 , ••• ,(.0 is called a derivation of a from a, and will
o n

* usually be written as (.0 ~ (.0 ~ ~ (.0. If S ~ a, then a is called a
o l n

sentential form of q; in particular, if a E V* it is called a sentence
T

of q. The language generated by 'l is the set of all sentences of q,

denoted by L(O).

r I 3. "'} L (q) = 1. a E V:; S.......

If the following condition holds, then q is said to be a reduced
•

CFG.

\;j X E V 3 a,S ,(.0 E Vi such that

This condition ensures that no member of V (nor of p) is redundant for

the purpose of deriving the sentences of ~

- 8 -

A CFG is said to have an endmarker if S occurs in exactly one

production, which has the form S -+ 1. m S' ~ n m, n ~ O.

m -1 = xx m > 0.) The endmarker .L E VT and occurs in no

other production. S' E V
N

and behaves similarly to the principal

nonterminal, since in this case

L(C}) [.l. m Q' 1. n I Q' E V:; , S' ~ Q'}

An arbitrary CFG can be amended so as to be reduced, and can be

augmented with an endmarker, so we will restrict our attention to such

reduced CFGs having endmarkers. They will be referred to simply as

grammars.

Consider 0) E L(q.). * Since S -+ 0), we know there exists a

derivation of 0) from S, but this is not usually unique. If we insist

that each stage of a derivation, the rightmost nonterminal is replaced,

then the derivation is said to be canonical; this implies that each

step is of the form

where Q' E V* A -+ rn Q E ~ * , '1" tJ T

If any sentence of q. has two distinct canonical derivations then q

is ambiguous. We defin. a parse to be synonomous with a canonical

derivation. The problem of determining, for any string on ~* whether

it is a sentence of C}, and if so specifying all parses of that sentence,

is called the parsing problem for q.. An algorithm which solves this

problem (for (j), is a parser (for C}).

Two general techniques are available, known as top-down and bottom-up

parsers respectively. The top-down approach starts with the principal

nonterminal and attempts to find a sequence of productions with which to

derive the given terminal string. (This does not give the canonical

derivation, but this is merely a matter of definition.)

- 9 -

A bottom-up parser adopts the opposite strategy of examining the

terminal string and trying to determine the sequence of productions

which must hawe been used to derive it. If successful, the canonical

derivation is found (in reverse o\'der). The parsing methods described

in this dissertation are all of the bottom-up variety; it is for this

reaaDn that we make the above definition of a parse.

We will use the following representation for the productiomof an

arbitrary grammar. Let s be the number of productions in P, then

P = [A ~ X X
i i l' i:il

X I 0 ~ i ~ s}
iii

1

Productions can be referred to by their indices in this scheme, thus

the length of the RHS of production i is n ,
1

and therefore n
1

~ 0 for

o ~ i ~ s. For convenience we assume that A = S, the principal
o

nonterminal.

~nuth's LR(k) Algorithm

The methods of this dissertation are based on the bottom-up parsing

technique described by Knuth (1965). To facilitate comparison, this

section repeats that description. The following definitions are needed.

[s E VT * I * Is I * I s I = k, YE V*} H (Q') = Q' -+ S, < k or Q' ~ Sy,
k

H' (Q') = [S E H (Q') no step in the derivation of S from Q' is
k k

of the form Aw ~ w where the leading

nonterminal is replaced by A }

The fundamental notion of a state is denoted by [p,j;Q'], where

At any stage of parsing a terminal

string, we will be in a stateset S, which is a set of such states.

If [p,j;Q'] E S, this indicates that the first j symbols of the RHS of the

pihproduction have been recognised, and that if the production is

completed, it could legitimately be followed by Q'.

Two weak constraints are imposed on grammars. Firstly, we require

that S I ±. is not possible for any Q' E V*, and secondly that

- 10 -

the ° th production is taken to be s-tS' J.k (S-+S~.1. if k = 0); this is normal

when considering LR(k) techniques. Denote the string to be parsed by

x ... x , whose last k symbols are J. k. Let i indicate the first
1 Dl

uninspected symbol of this string, and begin parsing with i = k + 1.

;During the parse, a stack of statesets g g .. $ is maintained.
o 1 n

The initial stateset g = [[O,O;AJ}. With the stack as shown, the parser
o

is in stateset g= S and proceeds inductively to stateset g as follows.
n n~

Step 1

Define the closure g' of g recursively as the smallest set

satisfying,

g' = g U [[q, ° ; e J \ 3 [p, j ; Q' J E g' ,j<n , X = A
p p ,3 +1 q

and e E H (X • •• X Q') }
k P,J+2 pn

Step 2

Compute the following sets:

z = [e \3 [p, j ; Q'J

z = [Q' \ [p, n; Q'J
p p •

Eg', j<n ,e E H'(X
p k P,J''''

Eg'},O~p~s

p

X Q')}
pn

p

We inspect the string x ... x = W. Assuming that the above
i -it i -1

sets are mutually disjoint, W must lie in one of them, or the

input string is invalid. If W E Z, we let Y = x ,increment i
i -k

by one and continue with Step 3. If w E Z , we decrement n by n ,
p p

which removes n statesets from the stack,and let Y = A .
p p

Step 3

Compute the next stateset g + as
n 1

g = [[p,j+1;Q'J \ [p,j;Q'J ES' and X = Y }
n~ n p ,J +1

If g = [[0,1;AJ} the parse is complete and i should be m+1.
n+1

Otherwise we have completed an inductive step on n, and the

algorithm proceeds from Step 1.

- 11 -

(This description is equivalent to Knuth's, except as regards notation.)

The closure operation on statesets specified in Step 1 adds to a

stateset states of the form [q,O;~J. These states represent those

productions whose RHS we could begin to recognise when in that stateset.

The string w is the lookahead string; symbols to the left of w in

the input are regarded as having been read in. The elements of Z are

those strings which indicate that no complete applicable RHS has yet

been found, and that we must read in another symbol. This is done by

adding one to i, and is called a shift operation. Strings in Z
p

indicate that the RHS of production p has been recognised, and that we

should remove n state sets from the stack. The removal of these stack
p

elements is called a reduce p operation. Notice that t he use of H' in
k

the definition of Z permits the recognition of RHSs with length O.

The state set S contains states which represent either a new
n+l

symbol read in, or the LHS of a production used to reduce the stack.

It can be seen that with any stateset S generated by Step 3, a symbol

x E V can be associated, with the property that, if [p,j;~J E S then

x = X. This symbol X is called the associated symbol of 8. Step 2
pJ

of the algorithm determines Y, which is the associated symbol of S
n +l

A reduce p operation removes statesets from the stack which ha~e as

their as~ociated symbols the RHS of production p. (The only state set

used in parsing which is not generated by Step 3 is the initial

stateset. If necessary, we can regard ~ as an associated symbol for

S .)
o

The presence of the k endmarkers at the end of the input string

ensures that the input is not exhausted, since they can only be valid

lookahead symbols in the case that we are indeed parsing a sentence,

and then the algorithm terminates with stateset ([O,l;~J}.

- 12 -

If in Step 2 we find that w belongs to more than one of the sets

z, z ° ~ p ~ s then the algorithm fails, since it cannot resolve which
p

operation is to be applied to determine Y. If we know that for every

stateset which can arise when parsing any sentence generated by Q,

application of Steps 1 and 2 gives rise to sets Z, Z ° ~ p ~ s which
p

are mutually disjoint, then ~ is said to be an LR(k) grammar.

A grammar which is LR(k) must be unambiguous, since the existence of

two distinc~ canonical derivations would ensure the algorithm~ failure.

An LR(k) language is a language which can be generated by some LR(k)

grammar.

We now consider a very simple example grammar ~, with productions

A'" B d

2 A ... e e

s=3 B ... e

Observe that this specifies, the principal nonterminal as S, V
N

and V
T

(and hence ~).

Suppose we wish to parse ed 1., using the LR(1) algorithm.

We have m = 3, i = 2, n = 0,

[O,O;AJ E g ~, ° < no = 2, X
01

g = [[° , 0; AJ }
o

= A = A = A , H (X)
1 2 1 02

so we add [1,0;1. J and [2,0;1. J tog'
o

[l,O;1.J Eg', 0<
o

so we add [3,0;dJ

n = 2, X
1 11

to g , .
o

= B = A
3

H (X 1.)
1 12

= td}

- 13 -

Since X = e and X = e no further additions are made from [2,0; .l J
21 31

and [3,OjdJ, s' is completed.
o

S' = (O,O;AJ, [1 , ° j.l] , [2,Oj.lJ, [3,0;d]}
0 A B e e

where beneath [p, j jQ'] we have written X
p ,J +1

Clearly Z = (e} and Z = ¢ 0~pS:3
p

Since i = 2, w = e and w E z. So let i = 3, Y = e n becomes 1 and

g = [[2,1 j.l], [3,1 ;d]}
n

S ' = g , and now Z = Ce}, Z = Cd}, Z = ¢
n n 3 p

i = 3, w = d and w E Z. n is reduced by n = 1. So n = 0, Y = A = B
333

n becomes and g = [[1 , 1; .d} (computed from S ')
o D

g ,
= g, Z = Cd}, Z = ¢ ° ~ p ~ 3

n n p

i = 3, w = d, w E z. So let i = 4, Y = d

n becomes 2 g = ([1,2; .l]} g ,
= g , Z = [.l }

1
Z =Z =Z =Z=¢ o a 3 n n n

i = 4, w = .J.. , w E Z n is reduced by n = 2. S~
1 1

n = 0, Y = A = A
1

n becomes 1 g = [[0,1;1\]} and the parse is complete with i = m + 1.
n

The sequence of reduce operations was reduce 3, reduce 1. When taken

in reverse order, and preceded by a reduce ° (which is always the initial

step in a derivation), they specify the parse

S -+ A.l -+ Bd.L -+ ed.l

The only other stateset which can arise (when parsing ee.l) is

g = ([2,2; .l]}, for which g' = g, Z = [.l}, Z = Z = Z = Z = ¢.
2 013

This shows that q 1 is LR(1) .

Let q; have productions S -+ A.l A -+ e d A -+ e e and let

q" have productions S -+ A.l.l
1

A -+ Bed A -+ C e e B -+ 1\ C -+ A.

Then L(~).l =L(q').l =L(~"), but q' is LR(O) and q" is LR(2).
1 1 111

Knuth showed that for any language which has an LR(k) grammar (with endmarker)

we can find an LR(O) grammar generating the language.

Table Driven ~rsers

fuccess

- 14 -

y

n:= n-n
p

F[n+1] := NEXT(F,n,A)
p

n:= n+1

F[n+1] := NEXT(F,n,I[i'])

n:= n+1

i':= i'+l

y

n:=O i':=l

F[O]:= Initial

W:= ACTION(F,n,I,i')

y

error ---

The above flow diagram de~cribes a generalised bottom-up parser

which will serve as a basis for all the algorithms discussed here. F is

a stack to which n is the pointer; Initial is the first element on this

stack. Th. input string is now denoted by I, and i' indicates the first

unread symbol. The procedure ACTION determines at each stage in the parse

what the next operation of the parser should be; procedure NEXT computes

the next element to be placed on the stack. The algorithm terminates

when Final is first placed on the stack.

- 15 -

W is merely a work variable.

in
The contents of the flow diagram boxes are written\pseudo Algol,

in which the algorithm may be programmed as

n:= 0; . , 1 1:= ; F[O]:= Initial; W:= ACTION(F,O,I,1);

while W = reduce p £E W = shift do

begin if W = shift then

begin F[n+1]:= NEXT(F,n,I[i']); n:= n+1j i':= i'+1 end

else

begin n:= n-n ; F[n+1]:= NEXT(F,n,A); n:= n+1 end;
p p---

W:= if F[n] = Final then success else ACTION(F,n,I,i')

end' --'

This algorithm will parse using precedence methods, which are to be

discussed later, or it can perform LR(k) parsing if we make the following

specification.

Stack elements are statesets, with Initial = S and Final = ([0,1;A]}
o

i' = i-k, ACTION determines W from F[n] and I[i'] I[i-1]

(the lookahead string), by means of Steps 1 and 2. NEXT computes the next

stateset from F[n] and either A or I[i'] as described in Step 3.
p

The restriction of the domain of ACTION to 1 stack element and k input

symbols, and that of NEXT to 1 stack element and 1 symbol, in the LR(k)

method, together with the fact of there only being a finite number of

possible statesets and lookahead strings, enables us to consider computing

a te.ble providing the results of ACTION and NEXT for all values of their

parameters.

- 16 -

The efficiency of the parser is greatly improved by such a table

since the calculation involved in Steps 1, 2 and 3 is replaced by a

simple table look-up mechanism. A parser using such techniques is

said to be table driven.

LR(k) Parsing Tables

Knuth's algorithm can be modified to produce tables which will

drive the above parser, and this was described in detail by Korenjak (1969).

We give an alternative description.

Let 8 be a stateset (for some grammar ~). The S successor of g is

denoted by ~ and defined for all S E V* as follows.

Sy = Up, j+1 ;Q'] [p, j ;Q'J E S I, j < n , X = y} y E V
p p ,J +1

81\ = g and gs = (SY)Y where S = YY

Observe that ifS is a stateset which can arise during the parsing of a

sentence of q, then 3 Q' E V* such that S= g Q' (take Q' as the sequence of
o

associated symbols of the statesets on the stack when8is first placed on

the stack). So we may define the stateset table 1 (of q) as the smallest

family of statesets satisfying

1 = [g } U [8Y I 8 E 1, Y E V}
o

For any grammar, 8 , [[O,1;1\]}, ¢ are elements of 1. ¢ has the
o

property ¢Y = ¢VY E V and corresponds to the error situation of the input

not being a sentence of q.

1 can be formed by the following iterative method. Let T be the

statesets f g 1. 0'
... , g }, of which j have been considered.

n

Initially n = j = 0.

While j ~ n perform the following,

Compute g I and from it g Y for each Y E v.
J J

If g Y r;. T then add g Y to T as g and increase n by one.
J J n +1

Increase j by one.

- 17 -

On completion of the above we will have T = r, and we can use the term

stateset j to refer to g in the table T.
j

Corresponding to each state set gin r we require a parsing-state R(3)

(which should not be confused with the states in a stateset).

If Z, Z 0 ~ p ~ s are as specified in Step 2 of the LR(k) algorithm, then
p

R(g) = (a,reduce p) I a E Z }
p

U«a, shift) I a E Z}

U[(Y,goto i) 1::3 [p,j;a] E g', j < n ,
p

Y = X , gy = g }
p ,j +1 1

Shift and reduce type pairs are used to determine ACTION, while those of

the goto type determine NEXT. Clearly, the LR(k) parsing table (for~) is

given by

(R(g) Ig E r}.

A state set g is said to be adeguate if the following conditions hold.

(a,shift), (~,reduce p) E R(g) must imply a ~ ~

(~,reduce p), (~,reduce q) E R(g) must imply p = q

Any stateset for which one of these conditions does not hold is said to be

inadeguate. A grammar is LR(k) iff every stateset in 1 is adequate. If we

have computed the parsing table, we need not retain information about the

state sets in 1, and they may be discarded.

The LR(1) stateset table and parsing table for q are given as an
1

example.

- 18 -

go = [[O,O;AJ} g L = S C = S d = g ~ A = g S B = SSe = g
o 0 0 10 20 30 4

g =¢ gy=S V YEV
111

S.., = [[0,1 ; AJ } g.L = S S Y = g V Y E V '\. [ol}
Q 262 1

S = [[1,1;.LJ} S d = g gy=s V Y E V '\. Cd}
3 3 6 3 1

S = [[2 , 1 ;ol J .. [3 , 1 ; dJ} g e = S g Y = g V Y E V " [e}
4 4 7 4 1

g = [[0,2;AJ} g Y=SYYEV
6 6 1

g = [[1 ,2;olJ} g Y = S V Y E V
661

g = [[2,2;olJ} g Y = S Y Y E V
771

R(S)
0

= [(e, shift), (A,goto 2) , (B,goto 3), (e,goto 4)}

R(g) = ¢ ,

1

R(g) = [(ol , shift) , (ol,goto 5)}
2

R(g) = [(d, shift) , (d,goto 6) }
3

R(g) = Uq:,reduce 3), (e, shift) , (e,goto 7)}
4

R(g) = [(A,reduce 0) }
6

R(g) = [(ol,reduce 1)}
i6

R(g)
7

= [(ol,reduce 2) }

Three of these parsing-states, R(S), R(g) and R(S) are not used
1 a 6

by the parser. gl is the error state set and ga the final stateset; on

these the algorithm halts. R(g) and R(g) are not required, since they
a 6

merely read the endmarker and reco.~se production ° respectively.

If we had defined 1 by the equation

1 = [S} u [~Y \gtf [[0,1;AJ},SE 1, Y E V},
o

statesets havi~g ol as their associated symbol would have been eliminated,

which is convenient in practice.

- 19 -

Suppose (x,goto i) E R(3) in some LR(k) parsing table with

x E V
T

• If k > 0 then

(xa ,shift), •.. , (xa ,shift) E R(3) a EV/, la I = k-1,1~j~n
1 n .1 J

n~1 (if k = 1 then n = 1)

If k = 0 we have (A,shift) E R(g). These entries specify that a shift

operation is to be performed a~d that the stateset which is next to be

entered is 3 . A more convenient representation would be to combine the
1

entries as

(~ ,shift i), •.. , (xa ,shift i) if k ~ 1
1 n

(x,shift i) if k ~

Certainly this does not reduce the information con~ained in R(g).

We can formalise this by defining

R' (3) = (a,reduce p) I a E Z }
p

U(a,shift i) I a = xY, aEZ' ,3x = S }
1

U«A,goto i) 13 [p,j;a] Eg,j < n ,A = X ,A E ~ ,SA = S}
p p,.l+l 1

where

(13 1.3 [p, j ; a] E 3 ' ,j < n , 13 = xy, x = ~ ,.x E VT ,
P p ,.1 +1

if k = 0 then y = A else Y E H (X
k-l p ,.l+a

X
p~

p

a) }

In appendix 1 (1.1) we show that when k ~ 1 we have Z' ~ Z (defined in

Step 2 of the Knuth algorithm). The definition of Z' simplifies the

calculation of Z (particularly so when k = 1), and avoids the use of sets

H' (a).
k

- 20 -

Our use of R'(g) to provide an alternative (preferable) parsing

table indicates the way in which k = 1 and k = ° can be considered as

special cases of the LR(k) algorithm. When k = 1, the (x,shift) and

(x,goto i) entries in R(g) correspond exactly; when k = 0, because the

lookahead is now less than the single terminal used to determine the

next stateset, (A, shift) corresponds to all the terminal goto entries.

Moving to R'(S) for an LR(O) parsing table gives shift entries the

appearance of being LR(1) in nature (which they are not - if k = ° and

R'(&) contains shift entries and reduce entries then it is inadequate).

Table Sizes

In this section we discuss the way in which state set tables increase

in size with k. The example grammar ~ already considered gives no

indication of this since an LR(O) table for q has the same number of
1

statesets as its LR(1) table. The grammar q , which has productions
a

° S -+ A.L

A -+ aAb

s=2 A -+ a

has LR(O) statesets

& = {[O,O]} & = ¢ & = [[0,1]} & = [[1,1],[2,1]} & = [[0,2]}
o 1 a 3 4

& = [[1,2]} & = [[1,3]}
6 6

(where we abbreviate

[p,j;A] by [p,j]),

and LR(1) statesets

&l = [[O,O;A]} g = ¢ g = ([0,1;A]} S = [[1,1;.LJ,[2,1;.LJ}
1 a 3

3 = ([0,2;A]} g = [[1,2;.LJ} g = ([1,3;.L]}
466

g = [[1,1;b],[2,1;bJ} g = [[1,2;b]} g = ([1,3;bJ}
789

- 21 -

Th~ three additional statesets in the LR(1) table are due to the

repetition of statesets ~ , S, S as statesets S, S , S with different
:3 5 6 7 8 9

right contextual information. The following lemma ShOWB that this type

of behaviour is always the case.

First define H (a) for a st~teset S by
k

H (S) = [[p,j;~J I [p,j;~J E S, a E H (~)}
k k

Lemma 1

Let 1 be an LR(m) stateset table. Then the LR(") state set table
m

1 , for the same grammar, where k ~ m, is such that
k

1 = [H (3) IgE~}.
k k m

Let S E1 and S E1 be the respective initial statesets.
Om m Ok k

Certainly H (S) = S
k Om Ok

Suppose S E1 and S E1 with H (S) = S .
m m k k k m k

Then H (S') = S' and thus clearly H (Sy) = Sy, \I y E v.
k m k k m k

Now, for any gET , S= S ~ for some ~ E V*, and so
m Om

H (S) = H (S ~) = g ~ E r
k k Om .. Ok k

[H (S) I SE 1 } c 1
k m - k

Similarly, for any SE 1 ,S= S a for some ~ E V*, and so
k Ok

S= ~. a = H (S a) and S ~ E r
Ok k Om Om m

:.1 C [H (S) Is E r }
k k •

and we have our result.

The lemma indicates how an LR(k+1) table can be considered to be built

up from an LR(k) table, each of the LR(k) statesets being refined, by

additional right contextual information, to a number of LR(k+1) statesets.

Also, we see the way in which the increase in the number of state sets can be

exponential with k.

- 22 -

The importance of lemma 1 will become apparent in the next section,

to which it is basic. A more detailed proof is given in appendix 1(1.2).

It is reasonable to ask why we should be concerned with k > 0 at all

since, as already noted, all LR(k) languages are LR(O). The reason is to

be found in the size of the LR(O) grammars required and of the transformations

needed to produce them. Grammars which arise naturally as models for

programming languages are not normally LR(O), and for such grammars even

ap LR(l) parsing table is usually prohibitively large. To put this in

perspective, a run of a program to generate an LR(l) table for an Algol 60

grammar was terminated when the 10000th parsing-state entry was produced.

At this point, over 1200 state sets had been generated.

Recently, Pager (1970) and Aho and Ullman (to be published) have

considered ways of reducing the magnitude of LR(k) tables. Pager minimises

the number of state sets required, but does not maintain the error detection

capabilities of the LR(k) algorithm (which are to be discussed subsequently);

Aho and Ullman are developing a formal treatment of the reduction of LR(k)

tables by such techniques as eliminating unnecessary entries, and merging

compatible parsing-states.

An alternative approach, adopted by Korenjak (1969) and DeRemer (1971),

is to develop modifications to the original LR(k) algorithm which give rise

to smaller tables. Korenjak suggests partitioning the grammar into a number

of smaller parts and us~g an LR(k) subparser for each part; DeRemer extends

the capability of an LR(O) parser to give an algorithm which he calls SLR(k).

A major drawback to the straightforward LR(k) scheme is that the

parameter k performs two functions. It specifies both the amount of right

context to be used in the formation of the statesets, and also, the amount

of lookahead which will be permitted at parse time. Thus, for the grammar

q , which is not LR(O), we must produce an LR(l) table having three more
2

statesets than are necessary. The reason for the LR(O) table's inadequacy

is to be found in g = [[1,lJ,[2,1J}. Here we have
3

- 23 -

g' = {[1,1],[2',1],[1,O],[2,O]},
3

R'(g) = «A,reduce 2), (a,shift 3), (A,goto 5)}
3

and cannot tell whether the reduce or shift operation is to be applied.

This is rectifip,d in the LR(1) table where

g' = [[1,1;.L],[2,1;.L],[1,O;b],[2,O;b]},
3

R'(g) = «.1.,reduce 2), (a,shift 7), (A,goto 5)}
3

and for the duplicate state g ,
7

g' = [[1,1;b],[2,1;b],[1,O;b],[2,O;b]},
7

R'(g) = [(b,reduce 2), (a,shift 7), (A,goto 8)}.
7

It can now be seen that replacing the (A, reduce 2) entry in the LR(O)

table by entries (b,reduce 2) and (.1.,reduce 2), would have been sufficient

to provide a parser, without incurring the overhead of statesets g , g
7 8

and g. These extra statesets, in fact make no contribution to the
9

resolution of the LR(O) inadequacy, which is due entirely to the provision

of one symbol lookahead for the reduce 2 operation. This observation

su~ests a parser having an LR(O) stateset table, but with one symbol of

lookahead added subsequently to the parsing table.

In the next section we consider the generalisation of this to the

calculation of LR(k) stateset tables from which can be formed m symbol

lookahead parsing tables.

LA(m)LR(k)l>arsing Tables

Informally, an LA(m)LR(k) parsing table is based on an LR(k)

stateset table, but its m symbol lookahead may be considered to be derived

from an LR(m) state set table. Because of thi s, the lookahead is correct

in the sense that none of the context is redundant; no better m symbol

lookahead information could be used. We will normally require m ~ k when

considering LA(m)LR(k) techniques; the situation when m ~ k is equivalent

t~(m) by virtue of ~mma 1.

- 24 -

We define an equivalence relation ~ on the members of an LR(m)

stateset table by

and denote the equivalence classes induced under ~ by B ,
o

,B
r

(for consistency, let g E B , and then B = {g }). Take the LA(m)LR(k)
o 0 0 0

parsing states to be specified by

R(B) = {(a,reduce p) I (a,reduce p) E R'(g),g E B }
1 1

U{(a,shHt j) I (a,shHt 1) E R'(S),3 E B , g E B }
1 l J

U{(A,goto j) I (A,goto 1) E R'(g),gE B , g E B }
1 l J

for 0 ~ i ~ r. Equivalently, we could form an LA(m)LR(k) stateset table

from an LR(m) table by

g = {[p,j;a] I [p,j;a] E 3,gE B} 0 ~ i ~ r
1 i

and form a parsing table from this almost as though it were an LR(m)

state set table. The only difference is that g Y is no longer necessarily

a stateset in the table. There will certainly exist S with g '" SY,
J J

and we can show (using the same argument as lemma 2 below) that it is

unique. Hence this g may be taken as the Y successor of g .
J

Suppose ~ rv g. This means that H (g) = a: (g) = g where S is a
l iii k l k iii

member of the LR(k) stateset table. We know that H (g Y) = gy
k l

(see lemma 1) and similarly H (g y) = ~y. So H (g y) = H (3 y) and
k iii k l k iii

therefore g Y rv g Y. This will be needed in the proof of the following
l iii

lemma.

- 25 -

Lemma 2

If (x~,shift i) and (xa,shift j) are entries in the same LA(m)LR(k)

parsing-state, then i = j. If (A,goto i) and (A,goto j) are entries in

the same LA(m)LR(k) parsing-state, then i = j.

First, let (x~,shift i), (xa ,shift j) E R(B)
1

then (x~,shift m) ER'(S), 3 E B , 3 E B
l l 1 • 1

and (x~,shift n) E R'(3), 3 E B , 3 E B
2 2 1 n J

We can de(luce 3 '" g :. 3 = gx'" 3x = 3
l 2 III l &I n

and 3 '" g implies i = j.
III n

Similarly, if (A,goto i), (A,goto j) E R(B)
1

then (A,goto m) E R'(3),
l

and (A,goto n) E R'(a),
a

We can deduce 3
l

~ :. ~
a III

3 EB,3 EB
l 1 III 1

g EB,3 EB
a 1 n J

=gA~SA=~
l a n

and g ~ implies i = j.
III n

Thus the goto and shift entries in the LA(m)LR(k) parsing table are as they

should be, the next parsint-state for any symbol in V being unique.

The underlying reason for lemma 2 is, of course, that the equivalence classes

correspond (under H) precisely to the statesets of the LR(k) table.
k

~).
If the con~~ions

(~,shift j), (S,reduce p) E R(B) must imply ~ ~ e
1

(e,~educe p), (e,reduce q) E R(B) must imply p = q
1

hold for 0 ~ i ~ r, then the grammar in question is said to be LA(m)LR(k).

Clearly, if a grammar is LR(k) it will also be LA(m)LR(k) for any m ~ k.

We have that

LA(k)LR(k) = LR(k) ~ LA(m)LR(k) ~ LR(m) = LA(m)LR(m)

where the inclusions are strict if m > k (we use LA(m)LR(k) here as an

abbreviation for the class of grammars which are LA(m)LR(k».

- 26 -

Despite the above definition, it is not necessary to form an

LR(m) table as a first step in computing an LA(m)LR(k) parsing table.

We now give two algorithms of a more practical nature.

The first of these behaves initially like an LR(m) stateset

algorithm, except that a newly generated stateset is only added to the

table if no equivalent (under~) stateset is already in the table.

If there is such an equivalent stateset in the table and it does not

contain the new stateset, then the two are merged, to form their union,

which replaces the equivalent stateset. When all statesets have been

considered we return to those members of the table which were merged.

Their successor statesets are recomputed and if necessary merged with

their original versions. This is continued until no merged stateset has

not subsequently had its successor statesets recomputed. We can specify

this more precisely as:

Let T be initialised as [g }, with g marked, and let n = O.
o 0

Repeat the following until no state set in T remains marked.

Set j to O.

While j ~ n perform the following.

If 3
j

is marked, first remove the mark, then compute g'
j

(as an LR(m) closure), and from g'
j

compute gyVyEv.
j

If 3 gET with g ~ g Y and g?. g y, then replace g
1 i j i j 1

by s U g Y and mark this new g.
1 j 1

If 11 g E T with g ~ g Y, then add gy to T as g ,
i i j j n+1

mark g , and increase n by one.
n +1

Increase j by one.

On completion, T is the LA(m)LR(k) stateset table.

- 27 -

A mark on a stateset indicates that further computation is

required for that stateset. The first run of j from ° to n corresponds

to the initial formation of the table; only during this stage can we

have]I 3 E T with g ,..,,3 Y. Termination is assured since merging
1 i J

enlarges a stateset, and there are only a finite number of states (and

thus a finite number of statesets).

The first stage of this LA(l)LR(O} algorithm applied to Ga yields

¢ g = ([O,l;A]J ~ = ([1,1;~],[2,1;~],[1,1;b],[2,1;b]}
a a

g = ([O,2;A]J g
4 6

= ([1 ,2;~] 3 = ([1 , 3 ; ~] }
6

with g marked due to ([1,1;b],[2,1;b]} having been merged in.
a

Recomputing successor statesets for g merges (and marks) 3 to
a 6

Recomputing successor statesets for g merges 3 to ([1,3;~],[1,3;b]}.
6 6

The only successor stateset to ~ is ¢ so we are done.
6

The parsing table is

R'(g) = (a, shift 3), (A,goto 2)}
o

R' (g)
a

= (~,reduce 2), (b,reduce 2), (a,shift 3), (A,goto 5)}

R' (g) =
6

«b,shHt 6)}

R'(g) = «~,reduce 1),(b,reduce 1)}
6

(~ , g and 3 being irrelevant to this table).
'"l. a 4

The second method begins with an LR(k) stateset table and extends the

lookahead string of each state to m symbol strings. Suppose [p,j;a] E 3'
1.

where g is a member of an LR(k) stateset table. We wish to determine
1

those strings of length m, which begin with a and can validly follow the

occurrences of production p to which [p,j;a] refers. Denote this set of

strings by Rm ([p, j ;a], 3
l

). Let 3 be any stateset for which g Y = g a 2 1.

where Y is the associated symbol of 3 ; such statesets are called
1

predecessors of 3 .
1.

If j > ° then clearly

- 28 -

R ([p,j;a],S) = [a' E R ([p,j-1;a],S) \ g is a predecessor of g 1.
DI 1 • :3 2 1

If j = ° then we are interested in those members of S' which caused us
1

to begin the recognition of production p.

R ([p,o;a],g) =
DI 1

[a' \ [q, 1 ; S] E g', X ::;: A , a ' E
1 q,1+1 p

H (X
• q ,1+2

x a'),

S' E R ([q,l;S],~), a' =
DI 1

a Y for some

qD
q

Y E vl
R ([O,O;A],s) is taken to be [A} as a special case (instead of ~).

DI 0

These equations admit the possibility of circularity, i.e. the

evaluation of R ([p,j;a], ~ invoking its own re-evaluation. In these
DI

circumstances, to obtain a finite algorithm, we instead re-evaluate

R ([p,j;a],g) (taking R ([p,j;a], S) = tAl), and delete any strings
DI~ 0

of length less than m which remain in the final version of R ([p,j;a], S) .
•

The problem is eliminated for the purposes of definition, by saying that

these sets are the smallest such that the equations hold.

An nth predecessor of a stateset S is any predecessor of an n_1
th

th
predecessor of S (n ~ 1) and the ° predecessor of S is S itself.

We can now combine the above equations and define R ([p,j;a], S) as the
• 1

smallest set satisfying

R ([p,j;a],s) = ta'\[q,l;S] E g', X = A ,a'E H (X
DI 1 2 q ,1 +1 P • q, 1 -Ha

X ~'),
qD

q

a' E R ([q,l;a], S), a' = ay some Y E VT*'
DI 2

(11. .th d f (11
o 1S a J pre ecessor 0 0

:3 1

If we replace [p,j;a] E S by the members of

[[p,j;a']\a'E R ([p,j;a], S)}
DI

for every state in an LR(k) stateset table then we have an LA(m)LR(k)

table from which the parsing table can be formed.

}

- 29 -

As an example of this method consider q with an extra endmarker
2

(oth production S ~ ALL). This adds an irrelevant stateset

s = [[0,3J} to the LR(O) stateset table. We can now compute
7

R ([1,3J,&).
a 6

g is the only predecessor of g
6 6

S is the only predecessor of &
3 6

Sand g are the predecessors of S
033

rd
So the 3 predecessors of S are g and ~

603

R ([1 , 3J , g) = R ([1 , oJ, g)U R ([1 , oJ , g)
:a 6 2 o:a 3

[O,oJ E g and X = A = A so we need H (X X a), a E R ([O,oJ,&)= u..}
o 01 1 2 02 03 2 0

thus H (X X 13) = Lu} = R ([1, oJ, S).
:a 02 03 :a 0

[1 ,1 J E S and X = A = A so we need H (X a) , a E R ([1 ,1 J , S)
3 12 1 2 l:f 2 3

R ([1,lJ,S' = R ([1,oJ,S)U R ([1,OJ,S)
2 ~ 2 023

R ([l,OJ,S)= [u} already computed.
2 0

R ([l,OJ,&) is a re-evaluation, we compute R ([l,O],S) = H (X S)
2 3 1 3 1 13

e E R ([1,lJ,S) = R ([1,0],~)U R ([1,0],S)
1 3 1 0 1 3

R ([1 , oJ, S) = [L}
1 0

R ([l,OJ, S) is a re-evaluation, it is taken to be (A}.
1 3

This yields approximations to R ([1,1J,g) as [L,A}
1 3

R ([1,0],S) as [b}
1 3

R ([1 , 1 J , g) as [LL, b}
:a 3

Finally R ([1 , oJ , g)
2 3

and R ([1 , 3 J , S) =
2 6

[U,bL,bb} .

(This example is complicated by the method having to cater for the

possibility of X ~ A.)
l3

A 2 symbol lookahead parsing-state for S would thus be
6

[(LL,reduce 1), (bL,reduce 1), (bb,reduce 1)}

- 30 -

The calculation of an LA(m)LR(k) parsing table by either of these

methods requires less work than a full LR(m) calculation, but both are

more complicated than the original algorithm. The second is the more

complex of the two, since in one sense, everything is worked out

backwards. This may be alleviated to some extent by processing state sets

in the order in which they are generated. The advantage of the second

method is indicated in the next section where a simpler means of

deriving m symbol lookahead is described.

SLA(m)LR(k) Parsing Tables

An LR(k) state set table is again used as a basis for the method.

For each [p,j;~J E g in this table, we compute a set of m symbol lookahead

strings, which contains R ([p,j;~J,g) of the previous section.
m

The additional strings, which are invalid and not required, do not

necessarily prevent the resolution of inadequacies in the LR(k) table.

Define F (Y), the m terminal follow set of Y E V by
m

F (Y) = [~ E ~* I I~I = m, S ~ ~ y ~ W for some ~, w E V*]
m

An equivalent formulation is that F (y) is the smallest set satisfying
m

F (Y) = [~ I ~ E H (X ... X ~), Y = X ,~E F (A)
m m p j +1 p n p .I m p

'. p
F (S) is taken to be tA] as a special case (instead of ¢).

m

To obtain a finite algorithm from this equation, if any F (Y) is required
8

to be re-evaluated, instead compute F (Y), taking F (y) = tA] and delete
8_l 0

any strings of length less than m which remain in the final version of

F (Y).
m

If we replace [p,j;~J by the members of

t[p,j;~~JI ~ ~ E F (A)]
8 p

for every state in an LR(k) stateset table, the result is an SLA(m)LR(k)

stateset table from which the corresponding parsing table can be

calculated. If for every state set g in tie SLA(m)LR(k) table, the conditions

- 31 -

(~,shift j), (~,reduce p) E R'(g) must imply ~ # a
(~,reduce p), (~,reduce q) E R'(g) must imply p = q

hold, then the grammar in question is said to be SLA(m)LR(k).

Our example is again q with an extra endmarker.
iii

F (S) = (A)
2

F (A) = H (X X ~)U H (X ~) with ~ E F (S), ~ E F (A)
2 2 02 03 a l3 2 a

F (A) is a re-evaluation, we com~ute F (A) a ~ 1

F (A) = H (X X ~)U H (X e), ~ E F (s), e E F (A)
1 1 02 03 1 13 1 1

F (A) is a re-evaluation, and is taken to be (A}.
1

This yields an approximation to F (A) = (~,b}
1

from which we deduce F (A) = (~~,b~,bb}.
2

The simple 2 symbol lookahead extensions of g, g, g are
356

g = ([1,3; {H,b~,bb}]}
6

where [p, j; {~ , ... , ~ }] abbreviates [p, j;~ J, "" [p, j;~ J.
1 n 1 n

It should be clear that the calculation of an SLA(m)LR(k) table

requires less work than t hat of an LA(m)LR(k) table by either of the

methods of the previous section. An LR(.) calculation is a part of all

three, but the provision of m symbol lookahead in the SLA(m)LR(k) case

is independent of any stateset table; it depends directly on the grammar,

a major simplification~ The LA(m)LR(k) table may be regarded either as a

coarse version of an LR(m) table, or as a refined LR(k) table!

The SLA(m)LR(k) table is merely a conveniently computed approximation to

the LA(m)LR(k) table, and for this reason we regard the LA(m)LR(k) table

as the more funadmental of the two.

- 32 -

We have that

SLA(k)LR(k) = LR(k) C SLA(m)LR(k) C LA(m)LR(k)

where the inclusions are strict if m > k.

The SLA(m)LR(k) and LA(m)LR(k) techniques may be combined, as is

now described. We first compute the LR(k) stateset and parsing tables.

If any stateset is inadequate, its lookahead is extended to m symbols

using the SLA(m)LR(k) method, and its parsing-state recalculated.

If the stateset is still inadequate, then the lookahead is refined using

the second LA(m)LR(k) method, which can be applied to individual

statesets. Hopefully this will resolve the inadequacy (of this, and

possibly other statesets). The combination of these two techniques gives

a method which yields a table having no inadequate state sets for any

LA(m)LR(k) grammar, with the possibility of a large economy of effort

over a full LA(m)LR(k) computation.

Referring to the LR(O) table for ~ , only SLA(1)LR(O) need be applied
a

to g to produce a useable parsing table, with
3

R'(g) = t<.L,reduce 2), (b,reduce 2), (a,shift 3), (A,goto 3)}.
3

Minimal LR(k) Parsing Tables

To determine' a method of constructing LR(k) tables which are

minimal in some sense, we compare the original LR(k) table constructor with

the first of the two LA(~)LR(k) techniques in the case LA(k)LR(O).

By either of these methods, statesets g Yare constructed, a nd must be
j

dealt with. Full LR(k) adds g Y as a new stateset unless it already exists
j

as g
1

LA(k)LR(O) only requires that a stateset g with g
1

g Y
j

- 33 -

(H (~) = H (g Y» exist, and if so, replaces a by a UaY. It is this
01 OJ 1 ~ J

merging of the statesets g and g Y which provides an LR(O) sized
1 .I

stateset table, but which also can create an inadequate stateset (if the

grammar is not LA(k)LR(O». The methods may be considered as two

extremes; LR(k) which never merges, and LA(k)LR(O) which always does so.

An ideal technilue would be to merge whenever the merged state set will

not subsequently result in the production of an inadequate stateset.

If we have g ~ S Y and either S c S Y or a => ~ Y, clearly
1.1 1-.1 1-.1

merging does not introduce a new state set and should therefore take

place. Conversely, if gUS Y is itself inadequate, then the merge
1 .I

should be avoided. If neither of these conditions apply, it would

theoretically be possible to test a Ua Y by continuing as for full LR(k),
1 .I

and if no inadequate statesets were produced then the merge could be made.

A better solution (though still expensive computationally for a non

LA(k)LR(O) grammar), would be a backtrack algorithm, which merges if

a ~ a Y, but is able to back up and split the statesets if their merge
1 .I

resulted in an inadequate stateset being generated. An outline of such

an algorithm is given in appendix 1(1.3).

The minimisation resulting from the above technique is concerned

with the use of right contextual information in the creation of the

stat~ets in the stateset table. It can be viewed as producing an

LA(k)LR(m) table over which m varies between 0 and k, taking the least

value consistent with the non-production of inadequate statesets.

The table produced is not optimal since the order in which statesets

are merged can affect the final size of the table. The simplest

situation in which this can be seen is as follows:

- 34 -

~ = [[p,n ;x],[q,n ;z]}
l p q

g = [[p,n ;y],[q,n ;x]}
2 p q

g = [[p,n ;x],[q,n ;y]}
3 p q

3 = [[p,n ;y],[q,n ;z]}
4 p q

Here g '" g '" g '" g , but ~ Ug , g Ug and g U g are inadequate.
l 234 l 2 2 3 3 4

If we merge g and g no further merging is possible, leaving three
l 4

state sets , but if we merge g and g we may also merge g and g
l 3 2 4

leaving only the two statesets,

gUS = [[p,n ;x],[q,n; [y, z}]}
l 3 p q

gUg = [[p,n ;y], [q,n ; [x,z}]}.
2 4 p q

An algorithm could, in principle, be devised which tried all sequences

of attempted merges, and produced an optimal LR(k) state set table.

A more elementary minimisation can be applied to the lookahead

strings in the parsing-states produced by any of the preceding methods.

Suppose S is an adequate stateset; we can minimise the lookahead strings

in R' (S) independently of any other parsing-state as follows.

Let (Y,reduce p)E R'(g). Replace this by (~,reduce p) where

Y = ~S, (~S',reduce q)E R'(3) implies p = q,:tI (~',shift i)E R'(g).

Similarly (xY,shift i) can be replaced by (x~,shift i) where

Y =~, ~ (x~~',reduce p)E R'(g).

When all such replacements have been made, further minimisation is still

possible if we are prepared to order the entries of R'(g). Thus, for

example, if when parsing we inspect all the reduce type of lookahead strings

first, the shift entries need only be of the form (x, shift i) (which

corresponds neatly with the goto entries). Alternatively, a set of reduce p

entries can all be replaced by (A, reduce p) if this is regarded as the last

entry to be inspected.

- 35 -

This type of minimisation is concerned with the second use of right

contextual information, that of providing the lookahead strings on which

parsing decisions are made. It produces a parsing table for which the

length of the lookahead strings varies from parsing-state to parsing-

state, and for example, can convert an LA(m)LR(k) table to an LR(k)

table if the grammar is in fact LR(k).

As a straightforward example, in the LA(1)LR(0) table for ~, the

parsing-state R'(g) can be minimised to [(A,reduce 1)}.
6

The SLR and LALI Algorithms

Some comments from a practical viewpoint are now appropriate. It has

already been mentioned that for programming language grammars, any value

of k other than 0 results in LR(k) parsing tables of excessive size, and

that such grammars are rarely LR(O). Also ruled out are the LA(m)LR(k)

and SLA(m)LR(k) tables except as the special cases LA(k)LR(O) and

SLA(k)LR(O). DeRemer (1969) independently defined these particular versions

as LALR(k) and SLR(k) respectively, and discussed an algorithm for

constructing SLR(k) parsers. (To be precise, an SLR(k) parser as defined

by DeRemer is equivalent to an SLA(k)LR(O) parsing table for which the

lookahead strings have been minimised.) His approach is based on a finite

state machine which can be derived from Knuth's first method for testing

whether a grammar is LR(k) (with k = 0). This dissertation parallels

Knuth's second method, described earlier in this chapter, and should clarify

the understanding of these algorithms and their connection with LR(k).

DeRemer also discussed an algorithm termed L(m)R(k) which utilises

m symbols of the left context of a stateset together with k symbols of

lookahead for the resolution of inadequacies. It would be possible to

define a similar generalisation of this, as LB(l)LA(m)LR(k) which would

consist of an LR(k) stateset table with some statesets split on the basis

of the 1 symbols of left context, and the lookahead of m symbols computed

for each stateset. L(m)R(k) would, in fact, correspond to

Yl(m)SLA(k)LR(U,.
,I·, -

- 36 -

We further wish to restrict attention to a lookahead of only one

symbol. This is done partly because of the benefits of simplification

which result. Also, a one symbol lookahead is normally sufficient for

programming language grammars. When this is not the case, minor

grammatical changes or utilisation of a lexical pre-scan will usually

remove the problem.

This leaves us the algorithms LR(O), SLA(l)LR(O), LA(l)LR(O) and

minimal LR(l). LR(O) is insuffic~ently general for our purposes, and

minimal LR(l) can only be useful on non LA(l)LR(O) grammars, for which

it will be computationally expensive and produce tables larger than

LA(l)LR(O). As candidates for current practical use, we are left with

only SLA(l)LR(O) and LA(l)LR(O). For convenience, and following DeRemer,

we abbreviate these as SLR and LALR respectively. We have

LR(O) C SLR C LALR C LR(l).

To exhibit these inclusions, we consider the grammars

o

1

s=2 A.... e e

o

A B d

2

s=3 B.... e

o

A Bd

2

s=3 B.... e

Their LR(O) stateset and parsing tables will be specified by printing

for each stateset g, its number, associated symbol and members, a comma,

the additional members of its closure and the entries in the corresponding

parsing-state R'(g). The error state set is omitted in each case, as

are the two irrelevant parsing-states.

- 37 -

First for q , .
1

° A [O,oJ, [1, oJ [2,OJ (e,shift 3) (A,goto 1)
A e e

A [0,1 J
l.

2 l. [0,2J

3 e [1 , 1 J [2,1 J (d,shift 4) (e, shift 5)
d e

4 d [1,2J (A,reduce 1)

5 e [2,2J (A, reduce 2)

Although after the parser has read the first e it is unaware of

which production RHS is actually present, no reduction is called for and

it can continue to read either the d or the e which determines the

production uniquely. q' is LR(O).
1

° A [O,oJ, [1 , oJ [2,OJ [3,OJ
A B e e

A [0,1 J
l.

2 l. [0,2J

3 e [2,1J [),1J
e

4 B [1 ,1 J
d

5 d [1 ,2J

6 e [2,2J

(e,shift 3) (A,goto 1) (B,goto 4)

(A,reduce 3) (e,shift 6)

(d,shift 5)

(A,reduce 1)

(A, reduce 2)

With Q , when the parser has read the first e it must decide whether
1

a reduce 3 is called for, and cannot determine this from 0 symbol lookahead.

Since F (B) = (d} we can add 1 symbol lookahead to the parsing-state of g ,
1 3

indicating that the reduce 3 should only be performed if the next symbol

is d (and hence we are recognising production 1). The new parsing-state is

(d,reduce 3), (e,shift 6)}, ~ is SLR.

- 38 -

° f.. [o,oJ, [1,OJ [2,OJ [3,OJ (e,shift 3) (A,goto 1) (B,goto 4)
A B e e

A [0,1 J
.L

2 .L [0,2J

3 e [2,1 J b,1 J, b,oJ (f..,reduce 3) (e,shift 7) (B,goto 6)
B e

4 B [1 ,1 J (d,shift 5)
d

5 d [1,2J (f..,reduce 1)

6 B C2,2J (e,shift 9)
e

7 e b, 1 J (f..,reduce 3)

8 e [2,3J (f..,reduce 2)

The SLR technique fails with q because e E F (B) = td, e} due to the use
3 1

of B in production 2. R'(g) becomes
3

[(d,reduce 3), (e,reduce 3), (e,shHt 7), (B,goto 6)}

To remove the spurious (e,reduce 3) it is necessary to compute

R ([3,1 J , g) = fd}, and we have that u is LALR.
1. 3 "3

For completeness we construct a grammar q which is LR(1) but not LALR.
4

This requireS that at least two LR(1) statesets combine to form an

,inadequate state set at the LR(O) level. Denote two such LR(1) state sets

by g and g. Suppose that after the application of LALR, the inadequacy
1 a

in ~ Ug is (e,reduce p), (e,reduce q). If this is removed by LR(1) we
1. a

will have, say [p,n ; eJ E g and [q,n ; eJ E g. We have assumed g ~ g so
p 1. q a 1 a

we need [p,n
p

;dJ E ga and [q,n
q

;cJ E gl· Further, we !mow that Xpn = Xqn

p q

(associated symbol of g and g), d,e E F (A) and c,e E F (A). If we
1 alp 1. q

take A
p

= B, A = C, n = n = 1, X = e then q
q p q pl 4

could have the form

- 39 -

° S -+ A .L 3 A-+YCe

2 A f3Bd 5 B -+ e

s=6 C -+ e

Then ~ ~ Y to avoid ambiguity; ~ = 0 since these will be the associated

symbols of statesets on the stack when we are in g , similarly 8 = y.
1

So we take ~ = 0 = c and f3 = Y = d to gi ve (~ as
4

2 A-+dBd

The LR(O) tables for q are,
4

4 A-+cCc

5 B -+ e

s=6 C -+ e

° A [O,oJ, [1,OJ [2,OJ [3,OJ [4,OJ (c,shift 3) (d,shift 9) (A,goto 1)
A c d d c

A [0,1 J
.L

2 .L [0,2J

3 c [1,1J [4,1J, [5,OJ [6,OJ (e,shift 8) (B,goto 4) (C,goto 6)
B C e e

4 B [1,2J (e, shift 5)
e

5 e [1 ,3J (A,reduce 1)

6 C [4,2J (c, shift 7)
c

7 c [4,3J (A, reduce 4)

8 e [5,1J [6,1J (A, reduce 5) (A, reduce 6)

9 d [2,1J [3,1J, [5,OJ [6,OJ (e,shift 8) (B, goto 10) (C,goto 12)

B C e e

10 B [2,2J (d, shift 11)
d

11 d [2,3J (A, reduce 2)

12 C [3,2J (e, shift 13)

e

13 e [3 1 3J (A, reduce 3)

- 40 -

We see that g is inadequate. Since F. (B) = R ([5, 1J ,g) = [d.e}
s '- 1 6

and F (C) = R ([6,1J,g) = [e,c}, both SLR and LALR yield
1 1 s

[(d,reduce 5), (e,reduce 5), (e,reduce 6), (c,re..:!.·~ce 6)}

as parsing-state for gs' which remains inadequate. Full LR(1) analysis

gives two versions of g , i.e.
s

g = ([5,1 ; eJ ,[6,1 ; cJ}
s

g = ([5 , 1 ; dJ , [6, 1 : e J}
14

R'(g) = [(e,reduce 5), (c,reduce 6)}R'(,;)=[(d,reduce 5), (e,reduce 6)}
s 14

The entry (e,shift 8) in R'(g) is replaced by (e,shift 14).
9

The only lookahead strings affected by moving upwards from LR(O) in

these examples, have been those in reduce entries. This must always be

the case and is due to the mechanism of the shift operation. Since a

single symbol is read and inspected during a shift (even by LR(O»,

provision of one symbol lookahead leaves these entries unchanged. The way

in which reduce entries are modified is now described.

Consider (A,reduce p) E R'(g) in an LR(O) table. This is equivalent

to [(x,reduce p) I x E V
T

} although the symbols are not examined. It is

replaced by [(x,reduce p) I x E F (A)} under SLR, which is in turn replaced
1 p

by [(x,reduce p) I x E R ([p,n J,g)} under LALR. Application of LR(1) may
1 p

split g into a number of statesets, each having (x,reduce p) entries,

but with x a member of some subset of R ([p,n J,g). The union of these
1 p

subsets over all the versions of g will be R ([p,n J,g). Observe the
1 p

successive refinement of the lookahead as evidenced by

The proximity of the SLR and LALR methods to LR(1) indicated by these

comments may explain why they are so successful in handling grammars which

require one symbol of lookahead.

- 41 -

Error Detection

By our definition, a parser for q must be able to determine if a string

~ is not a sentence of q, since this is equivalent to saying ~ has no

canonical derivations. An LR(k) parser has the additional capability of

being able to locate the first symbol of S which is in error, i.e. the

earliest point at which the symbols to the left do not begin any sentence

of q.

If ~ := Q'xW and3w' such that ow'EL(q) and ~ wI! such that

Q'xW"EL(q) then x is the first erroneous symbol of S. As soon as the LR(k)

parser inspects x, the error 1S detected. Thus, when k ~ 1, a shift

th operation is performed and x is detected as the new k symbol of lookahead

(we assume the first k symbols of the input are valid). There are then

exactly k terminal symbols up to and including x which have not yet been

read by the parser. LR(O) parsers perform no lookahead and because of this,

errors can only be detected during ~hift operations. In this case x is

detected as being invalid as soon as it is read.

The LR(k) parser's ability to perform this error location is inherent

in the provision of the lookahead strings. In any stateset the lookahead

strings constitute exactly those k symbol strings which can validly be

enoenntered next in the input. An LR(O) parser, having no lookahead, must

rely on the knowledge of which terminal symbols are X for some [p,j]
p ,J +l

in its current stat~set.

Now consider an LA(m)LR(k) parser. When in a state set S, the parser

has m symbol lookahead strings, say Q' , ... ,Q' with which it compares the
1 n

actual lookahead ~ := X •.. x. If S = Q' for some 1 ~ i ~ n, then an
1 m i

operation is determined, which the parser performs. It is possible,

however, that an LR(m) parser would have detected an error, since that

parser would be in a refinement of g which does not necessarily have Q' as
i

a lookahead string. If S ~ Q' , 1 ~ i ~ n then the LA(m)LR(k) parser does
i

- 42 -

detect an error, and if x is the first symbol of ~ which causes
r

~ ~ a
1

, 1 ~ i ~ n then k ~ r ~ m (1 ~ r ~ m if k = 0) is ensured by the

LR{k) error detection capabilities of the parser. Unfortunately, this

does not necessarily locate the first invalid s~ol, which could be

any of x , ... , x (x , ... ,x if k = 0). If r > k (r > 1 if k = 0)
k r l r

and we require the parser to locate the error, it must continue parsing

by performing any operation which las an r-1 symbol lookahead equal to

x .•. x
1. r-l

Eventually an error will be detected with r = k which

locates the first invalid symbol.

An SLA{m)LR{k) parser behaves similarly, and will detect errors no

earlier than LA{m)LR{k) and no later than LR{k). Notice that SLR and

LALR d.o locate the error when it ia detected, but this may not be as

soon as LR(1). This is again due to the special behaviour of LR{O).

Minimisation of the lookahead strings of any parser can degrade its error

d.etection, possibly down to that of an LR{O) parser.

It should be clear that all the parsing algorithms discussed in

this chapter have at least the error detection capability of an LR{O)

parser, which ensures that they all detect an erroneous symbol, at the

latest, when it is read. This feature is of practical importance when

a parser is used in a compiler for a programming language; early detection

is an aid to good error recovery, and the location of the first incorrect

symbol is of obvious value to the programmer.

The grammar (j5'

o S-+A.L.L

1 A-+dBee

2 A -+ e B d d

s=4 C -+ d

gives an example of an LA(2)LR{O) parser's inability to locate a detected

error.

- 43 -

A part of the LA(2)LR(O) tables for q is,
5

o II. [O,O;II.J,
A

[1,0;~~J [2,0;~~J
d e

1 d [1,1;uJ, [3,0;eeJ
B d

(dd,shift 1) (ed,shift 4) (A,goto 5)

(dd,shift 2) (B,goto 6)

2 d [3,1;eeJ
C

[),1 ;ddJ,[4,0;eeJ[.(~~tIe,shift 3) (dd,shift 3) (C,goto 7)
C d d

3 d [4,1;eeJ [4,1;ddJ

4 e [2,1;~~J, [3,0;ddJ
B d

L(~) = tdddee~~, edddd~~}

(dd,reduce 4) (ee,reduce 4)

(dd,shift 2) (B,goto B)

Take as input to be parsed the string dddde~~, the first invalid symbol

of which is the last d. The parser will detect an error when in g with
3

de as lookahead and cannot as yet determine that it is the d which is

invalid.

- 44 -

Chapter 3

Preliminary

Before embarking on the main purpose of this chapter, which

is a comparison of precedence methods with the SLR parsing algorithm,

we digress to state (and prove) a necessary condition for a grammar to

be LR(1). The condition is somewhat elementary, but provides a

demonstration of the utility of the [p,j;~] notation for obtaining

formal results in the area of LR(k) methods.

We repeat the conditions which must be satisfied by an LR(1)

grammar. For each stateset g in the LR(1) stateset table of the

grammar we require that

(x,reduce p), (y,shift i) E R'(g) must imply x ~ y

(x,reduce p), (x, reduce q) E R' (g) must imply p = q

Directly applied to g , the conditions may be restated as

[p,n ;x],[q,l;~] E g', 1 < n , X = Y must imply x ~ y
P Q. Q. ,1 +1

[p,n ;x] ,[q,n ;x] E g' must imply p = q
P Q.

and these are of course equivalent to

znz = ¢ and
P

znz
p Q.

if p ~ q

where the sets Z and Z are defined for each state set g as described in
P

the previous chapter.

The disadvantage of the above conditions is that they apply to the

(closure of the) statesets, and are not directly in terms of the grammar.

There are two other criteria by which a grammar may be said to be LR(1).

- 45 -

The first is the intuitive definition applied to the sentences of the

grammar; that they can all be parsed by scanning once from left to right,

only looking one symbol ahead of the RHS to be reduced at any point in

the parse. Thus, if the input string has been reduced to the sentential

form X ... X XW with xwEV;
1 n

and the correct parsing action is a reduce

p on the symbols X X , then this must be the case for any
n-c -tl n

p ,

sentential form X ... X XW with w'EV*. The second is Knuth's first
1 n T

method for testing a grammar, already mentioned in connection with

DeRemer's work. This test involves the construction of an extended right

regular grammar from the original grammar, which is closely related to

the LR(1) stateset table and can be checked in a similar fashion

(a grammar is extended right regular if j < n implieS that X E V).
p p J T

The provision of necessary, and if possible sufficient, conditions

for LR(1) expressed in terms of the grammar would aid in the writing

(and perhaps the testina) of LR(1) grammars. We now establish a necessary

+.
condition; if a grammar is LR(1), then for each A E V such that A ~ A, we

N

must have H (A) n F (A) = ¢.
1 1

For, suppose A ~ A and x E H (A) n F (A).
1 1

Since x E F (A) we
1

[p, j ;CY] E g , ,

can find a state set g with,

X = A and H (X . .. X Q') = x
P ,J +1 1 p, J ~ p n p

Since x E H (A), 3 [q,O;~] E g I with X = x,
1 ql

and so (x,shift i) E R'(~).

Also A ~ A and we can find A such that
r

A ~ A A and [r, 0 ; x] E g , .
r

Since n = 0, (x,reduce r) E R' (g).
r

Hence g is inadequate, the grammar is not LR(1) and we have our

result.

- 46 -

The above is a formalisation of the following argument.

'l'-
X E F (A) implies S ~ a ~, x E H (A) implies A 4 x y.

l l

+ * * If also A ~ I\. then S ~ a x y x ~ and S ~ a~

By examining only ax, a parser cannot determine whether x should

be read, or a reduction made to aAx.

Precedence Parsers

The precedence methods with which we shall be mostly concerned are

known as simple precedence and weak precedence. The operation of these

parsers is determined by precedence relations, which are defined to be

relations on V, specified by

- = UX, Y) 3A~ aXYw E P, a,w E V*}

<. = UX, y) :3A~ aXBW E P, B:!t~, a,~ ,w E V*}

.> = [(X,Y) :3 B :!t ~X, * E V*} A~ aBCw E P, C ~ yY, a,~,y,w

:;;. = [(X, y) :3 * a,~,w E V*} A~ Q'XBw E P, B ~~,

The sets first(X) and last(X) are defined for X E V by

first(X) = [Y E V X:!t Ya, a E V*}

last(X) = [Y E V X ~ aY, Q' E V*}

(clearly we have first(x) = last(x) = ¢ if x E VT). As immediate

consequences of these definitions, we can state,

X~Y iff :3 A ~ aXYW

X <'Y iff :3 A~ aXBw, Y E first(B)

X·> Y iff :3 A~ Q'BCW, X E last(B), and either Y = C or Y E first(C)

X :;;.y iff :::I A~ aXBw, and either Y = B or Y E first(B)

iff X~Y or X <.y

- 47 -

A grammar is said to be A-free if] A -+ A in P i.e. n
p

> 0, OSps s.

A grammar is said to be a simple precedence grammar if

(i) it is A-free

(ii) s· and .> are disjoint

(ill) <. and .
disjoint are

(iv) A -+0(and A -+0(implies p = q
p q

Simple precedence grammars, and a solution to the parsing problem for them,

were first described by Wirth and Weber (1966).

A grammar is said to be a weak precedence grammar if

(i) it is A-free

(ii) s. and .,. are disjoint
I

(iii) A -+ 0(XYf3 and B -+ ~ implies X 1-. B

(iv) A -+ 0(and A -+ 0(implies p = q
p q

Notice that if <. n ~ = ¢, A -+ O(X~, B -+ ~ then we have X ~ Y, which

implies xi· Y, which implies X 1-. B. So (iii)' can be deduced from

(iii), showing that any simple precedence grammar is also a weak precedence

grammar. Further, if ~ n .> = ¢, A -+ O(X~, B -+ ~ then we have X ~ Y,

which implies X .~ Y, which implies X '1 B. The original definition by

Ichbiah and Morse (1970) required that

A -+ O(X~ and B -+ ~ implies X .~ B

holds for a weak precedence grammar. We have shown that this can be

deduced from (ii) and thus the apparently less restrictive definition

given here coincides with that of Ichbiah and Morse.

When discussing precedence grammars, we usually take as oth production,

S -+ l S' l , and let th~s override the LR(1) convention if both apply.

- 48 -

The general bottom-up algorithm described in chapter 2 can perform

weak precedence parsing with the following specification.

Stack elements are symbols of V, with Initial = Final = l.

ACTION(F,n,I,i') yields,

shift - if F[nJ ~. I[i'J and (I[i'J ~ l £E n = 1)

reduce P, - if F[nJ ~ I[i'J and F[n-n +1J ...
--- p

F[nJ = X
pl

X
pn

and F[n-n J ~. A
p

p p

error - otherwise

NEXT(F,n,X) = X

This parser will also parse sentences of simple precedence grammars,

and for such a grammar, the determination that ACTION should yield

reduce p can be made more efficient by observing that F[n-n J ~. A above
p p

implies F[n-n J <. F[n-n + 1J, which for a simple precedence grammar
p p

implies F[n-n J ~
p

F[n-n + 1J.
p

By scanning down F for the first <.

relation, the value of n can be evaluated. The test for n = 1 when we
p

have F[n] ~'l amounts to a check for lS' on the stack. A practical

implementation of this algorithm would be driven by a precomputed table

of the precedence relations.

It can now be seen that (ii) ensures that the parser can decide

whether to read the next symbol or perform a reduction, and that (iv) and

(iii)' (or (iii» ensure that the production to be used for a reduction

can be determined by inspection of the parser's stack. Condition (i) is

required because the precedence relations are defined on V. It is possible

to relax this condition, but then the relations must be defined on

V\ fA I A ~ A}, and are slightly more complex. This will not be pursued

here, but is discussed further by Gray and Harrison (1969).

- 49 -

Comparison of SLR and Weak Precedence

A bottom-up parser performs two distinct functions; the location of

the right most symbol of the RHS which must be reduced next, and the

determination of which production should be used for that reduction.

The SLR method uses the information inherent in the current state set g

to achieve this. The symbols to be read are those terminals which are

X for some state [p,j;~] in
p ,j +1

~', while terminals x with [q,n ;x] E g'
q

indicate that a reduction is necessary, and in fact identify the production

to be used as the qth The state set g corresponds to a set of

occurrences of its associated symbol on the RHSs of the productions of the

grammar.

The only contextual information available to the weak precedence

parser is the current symbol, X say; in SLR terms this corresponds to all

occurrences of X in the production RHSs. Terminals in F (X) are split
1

into two disjoint sets by ~. and .>, those which must be read, and those

which signal a reduction respectively. The production to be used in a

reduction must be determined by inspecting the parser's stack.

The conditions for a weak precedence grammar ensure that the longest RHS

which matches the top of the stack may be used, since no other valid

mat'ch can then be found.

Error detection by a weak precedence parser is inferior to that of

SLR, since invalid symbols can be read, and the error only discovered

later when no production RHS matches the stack. This can be seen by

considering a weak precedence parser for G
1

(with extra leading endmarker)

applied to the string J. eeee J. The error remains undetected until a

reduction is attempted, then since e ~. A, none can be made.

- 50 -

Grammars which describe programming languages usually require

substantial modification before the weak precedence conditions are

satisfied, and although this can often be done without altering the

language, the phrase structure imposed by the original grammar is

invariably corrupted.

These disadvantages also apply to the simple precedence algorithm,

even more modifications being needed to comply with the stricter

conditions in this case. Despite these drawbacks, the simple precedence

method has been utilised very successfully, for example, in the PL360

and Algol W compilers.

We next wish to show that any weak precedence grammar is also an

SLR grammar, the proof of which is roughly based on the above discussion.

First, since ~. corresponds to the shift entries in the SLR parsing-states,

and'> to the reduce entries, the absence of shift - reduce clashes can

be argued from ~. n .> = ¢. Secondly, if weak precedence can determine

from the stack which production to use in a reduction, the SLR method

(knowing which completed productions are on the stack) must also be able

to deduce the correct reduction. This argument will now be presented

more rigorously.

The following lemma establishes formally the connection between the

precedence relations and the states in the SLR statesets.

- 51 -

Lemma 3

Let g be a stateset, with associated symbol Y, and suppose

[p, j jQlJ E
I

a) < < Y ,; X g. If 0 j n then
p p ,J +1

b) If 0 = j < n then Y ~. A
p p

c) If j = n QI = xl' and the grammar is [,-free
p

then Y .> x

These results are now established.

a) If 0 < j < n , we have A ~ X
p p p1

X YX
P ,J -1 P ,J +1

X
pn

p

and so Y ,; X
p ,J +1

b) If 0 = j < n , we can find [q,ljY] E g with 0 < 1 < n and
p q

a sequence of productions

A ~ X QI n > 0 1 ~ i ~ r r ~ 0
qi qi ,1 qi

with X =A X =A 1 ~ i ~ r and A = A
q ,1 +1 q1 qi 1

q1 +l q r-tl p

(These productions correspond to the sequence of states

[°] E (lie' q ,jY c~
i i

~ i ~ r which is responsible for the

inclusion of [p,OjQlJ in g')

Then 1re have A~X ••• X yx
q ql q ,1-1 q ,1+1

X
qn

q

and

* X ~ A QI QI and so Y ~. A
q ,1 +1 p r 1 p

- 52 -

c) If j = n , ~ = xa and the grammar is A-free, we can find
l'

Corollary

a stateset g with [q,l;Y] E g'
:i. 1

sequence of productions

A .-. ~ X n > 0
qi i qi n qi

qi

with X A x E H (X
q 1 +1 q1 1 q,l+2 ,

X = A 1 ~ i ~ r
q1 n

q 1 -tJ.
qi

(These productions correspond to

and statesets [q ,O;xS] E g ,
1 1 '

1

o ~ 1 < n -1, and a
q

~ i ~ r r ~ 0

X y)
qn

q

and A = A
q

r-tJ.
P

the sequence of states

~ i ~ r + 1 where we have

1 ;xSJ E :;'
i-tJ.

and is an n _ 1th predecessor

[q ,O;x~] =
r-tJ.

I q i

[p,o;xSJ E g and
r¥

is an
r-tJ.

th
n predecessor of g. This sequence is one which ensures

l'

[p,n ;xaJ E g)
l'

Since the grammar is A-free, n
l'

> 0 and x E H (X).
1 q, 1 -Y.:l

Then we have

X
q ,1 +1

so Y .> x

A
q

.-.X
q1

~ X
r 1'1

••• X X
q ,1-tJ. q ,1+2

X Y
p n -1

, l'

X
qn

q * .-. x 6 and

Let [p, j ;Q'] E
(>,
3 , whose associated symbol is Y.

If 0 = j < n then Y <. X ,and thus if 0 ~ j < n then Y ~. X
l' 1'1 l' P ,j +1

Follows immediately from b) and a) above.

The following statements also hold for any stateset table.

If Y ~ X then :3 a stateset g with associated symbol Y and

[p,j;~] E g, 0 < j < n , X = X.
l' l' j +1 ,

If Y <. X then 3 a stateset g with associated symbol Y and

[p,o;~J E g' , X
1'1

= X.

If Y .> x E V
T

then 3 a stateset g wi th associated symbol Y and

[p,n ;xaJ E g (if g is not LR(O».
l'

These can all be deduced from t he definitions of the precedence relations.

- 53 -

Now suppose that [p,jja], [q,lj~] are members of the closure of

some stateset g', with 0 ~ j ~ 1. By considering the associated

... , . 1th d Q J- pre ecessors of ? , we can see

that X = X , X =X , ... , X =X When the parser
pj ql p ,j -l q ,1 -l pI q ,1 -j +l-

is in stateset ~ , X ... X =X . .. X will be the associated
pI pj q,l-J+l- q 1

symbols of the statesets on the top of the stack. This result may be

regarded as an extension of the associated symbol concept, and in

conjunction with lemma 3 enables us to prove the following theorem.

Theorem

Weak precedence grammars are SLR grammars.

Let f} be any grammar which is not SLR. We wish to show that Q

is not a weak precedence grammar. Consider the SLR stateset

table for ~. This contains at least one inadequate stateset.

Let g be such a stateset. The inadequacy may be

a) shift - reduce p or b) reduce p - reduce 9 p i q

a) Suppose (x,shift i) and (x,reduce p) E R'(g).

Then 3 [p,n jX] E g'. We must take q to be A-free, so
p

n
p

> 0, X
pn

IS the associated symbol of g and by lemma 3,
p

X .> x
pn

Also
p

:3 [q,jja] E

corollary to lemma 3,

g', j < n
q

X ~. x
pn

p

and X = x.
q ,j +1

Hence ~ is not a weak precedence grammar.

Then by the

- 54 -

b) Suppose (x,reduce p) and (x,reduce q) E R'(g), P ~ q.

Then 3 [p,n ;xJ, [q,n ;xJ E g', and we must take n ,n > O.
p q p q

If n = n then X •.• X = X X and therefore
p q p1 pn q1 qn

p q

q is not a weak precedence grammar.

If n ~ n then take 0 < n < n. We may write
p q p q

A x ... X X . .. X and A x . .. X
q q1 q ,n q ~ p pl pn p pl pn

p p
Let ~\ be th predecessor of g Then [p,O;xJ E

,
an n . g

p 1

and [q,n - n ;xJ E ~ . Since n - n > 0, X is the
q p 1 q p q ,n q _ n p

associated symbol of ~ . By lemma 3, X ~. A and
1 q , n """ p

q p

therefore q is not a weak precedence grammar.

In both cases we have deduced that q is not a weak precedence

grammar, which gives us our result.

The proof of case b) of the theorem shows that for a weak

precedence grammar a Ilarsing-state cannot contain two distinct reduce

entries, since the information that both reductions were on the same

terminal was not used.

For simple precedence grammars a stronger result of a similar nature

can be obtained. Let g be a stateset with [p,j;O!J,[q,l;SJ E g and

j ~ 1. Then ~ ~ g and we may take 0 < j < 1.
o

Since

X
pl

X =X ••• X we have A X ••. X X ••• X X
q 1 q q 1 q ,1 -J p 1 p J q, 1 +1 p J q ,1 -J +1

If g is a j th predecessor of g, then
1

X Thus X - X
q n q 1 -j p 1

q ,

[q,l-j;AJ E g and [p,o~J E g'. r 1 l
The associated symbol of g

1
is

therefore and so by the corollary to lemma 3, X <. X
q,l-J pl

We have shown that, if for a grammar the precedence relations <.

and ~ are disjoint (~ondition (iii) for simple precedence), then for any

statesetg with [p,j;O!J, [q,l;SJ Eg we must have j = 1. The presence

of two reduce entries in a parsing-state for such a grammar would

imply that the respective productions had identical RHSs.

- 55 -

Weaker Precedence

This section describes a modification of the weak precedence

method which removes two anomalies in the description given here.

First, since the parser checks F[n-n] ~. A for a reduce p
p p

operation, it is possible to change condition (iv) to

(lOV)' A ~~, A ~ ~ ~ ~ Q' implies either p = q or
p q

[X E V I X~· A and X ~. A} ¢
p q

Second, it can be seen that the weak precedence algorithm, after

inspecting a terminal symbol which indicates that a reduce is required,

proceeds to ignore that symbol for the purpose of deciding which

production to use. A more uniform criterion for ACTION to yield a

reduce p operation would be,

F[nJ .> l[i'J and F[n-n +1J ... F[n] = X ... X and F[n-n] ~. A
p

and (A .> l[i'] or
p

pl pn -- p p
p

A ~. l[i'])
p

This gives a more powerful parser, and permits a further weakening of

the conditions imposed on a grammar, which we define to be a

weaker precedence grammar if

(i) It lS A-free

(ii) ~. and .> are disjoint

(ill)" A -+ Q'~, B -+ ~ implies either X 1-. B or F (A) n F (B) = ¢
1 1

(iv)" A -+ Q', A -+Q' implies either p = q or F (A) n F (A) = ¢
p q 1 p 1 q

or (X E V I X ~. A and X ~. A } = ¢
p q

Conditions (iii)" and (iv)" have been simplified by the use of

(x E V I A~' x or A .> x} = F (A), which holds for A-free grammars.
T 1

- 56 -

The proof of case b) of the theorem may be modified to show that

the weaker precedence grammars are included in the SLR grammars.

Two changes are required in case b), namely the observation that

x E F (A) n F (A) for
1 p 1 q both parts, and when n = n , the consideration

th
p q

of any n predecessor
p

of ~ ; if g is such a predecessor with
1

associated symbol X, then since [p,O;x], [q,O;x] E I
gl we may deduce

Examples to show that the by lemma 3 that X ~. A and X~' A .
p q

inclusion is strict are easily found.

Weaker precedence grammars are also included in the mixed

strategy precedence of degree (1,1 ;1,1) grammars as defined by

McKeeman, Horning and Wortman (1970).

An SLR parsing table can be used to construct a table which

drives a precedence type of parser, by combining the entries of

parsing-states whose corresponding state sets have the same associated

symbol. The shift and goto entries must be altered to refer to the

merged parsing-states, i.e. for (A,goto i), i must designate the

unique merged parsing-stage corresponding to A. The effect of this

merging is to remove from the parsing table any contextual information

other than the current symbol.

By merging LR(O) statesets on associated symbol as they are

Produced by an LR(O) stateset computation, and using F (A) to add
1 p

lookahead to [p,n] states, the same table can be constructed more
p

efficiently. Notice that mergi~g an LR(1) table on associated symbol

would result in an identical table to the above.

- 57 -

The resulting parser does not have the error detection capability

of an LR(O) parser, and when a reduce p operation is called for, it

must verify that the RHS of production p is represented by the top of

the stack. In view of this verification, we permit the resolution of

(x,reduce p), (x,reduce q) inadequacies on the same basis as weaker

precedence; for production p to be used we require X
pl

represented on the stack, and the associated symbol of

be ~. A .
p

••• X
pn

p

F[n-n] must
p

The class of grammars which can be parsed by the above,

informally described, precedence-SLR method may be termed PLR.

In appendix 1 (1.4) we show that a A-free grammar is PLR iff it is

weaker precedence. Essentially this is because the technique used for

reductions is defined to be equivalent, and ~. n .> = ¢ iff there are

no shift-reduce inadequacies in the PLR table (in fact the PLR table

corresponds to a tabulation of~· and .». As a consequence of this

result? it should be clear that the PLR method is merely a more costly

version of weaker precedence, and should not be considered for practical

use.

The preceding discussion of simple, weak and weaker precedence

within the framework of the SLR parsing algorithm is intended to indicate

the ways in which SLR can be regarded as an extension of the precedence

methods. The inclusion results and the characterisation of ~. and .> in

terms of the SLR state set table provide an aid to the understanding of

the SLR parser.

Other parsing methods which may be considered with advantage from an

SLR viewpoint are described by Hext and Roberts (1970) (Domolki's

algorithm) and Lynch (1968) (ICOR grammars). Connections with the

augmented operator techniques of Gries (1968) are discussed by Anderson,

Eve and Horning (1971). Finally, the SLR algorithm may itself be

considered as a special case of Korenjak's method, by constructing LR(1)

subparsers for all nontermina~in a grammar.

- 58 -

Chapter 4

Practical Considerations

Chapter 4 is concerned with the practical implementation of the SLR

parsing algorithm, and in this first section we attempt to justify our

concentration on LR techniques in general and the SLR method in particular.

Techniques are available for the construction, from an arbitrary

grammar, of a parser for the sentences of that grammar. However,

Earley (1970) reports that to parse an input string of length n, his method

may require time proportional to n3
, and space proportional to n2 (the time

bound is reduced to n
2

for unambiguous grammars). Since these are

currently the best results for the parsing of arbitrary grammars, we

restrict our attention to less general methods having time and space

requirements that are linearly proportional to the length of the input.

Because of the reduced generality of such methods, a grammar may need

substantial modification before it is acceptable. This is the case with

the predictive top-down analysers, which only work for the LL(k) grammars

as defined by Lewis and Stearns (1968). The precedence methods also

require the transformation of most grammars, although McKeeman, Horning

and Wortman claim that this can often be done for the mixed strategy

precedence method of degree (2,1;1,1) without destroying the grammar's

usefulness as a syntactic reference. The inferior error detection

capability of precedence methods is an added disadvantage.

In contrast, we claim that a programming language grammar, which

has been made unambiguous, will usually be LR(1), and further, that few

if any changes will be needed for it to be LALR or even SLR. All the

LR methods can locate the first erroneous symbol of an invalid string,

and they utilise time and space at most in linear proportion to the

length of the input. For programming languages this space requirement

- 59 -

is somewhat misleading, since it is normally possible to ensure that the

space needed for the stack (which is variable), is very small compared

with the space occupied by the parser itself (with its tables).

We consider only the LALR and SLR methods becaus'e of the magnitude of

LR(1) tables. The selection of SLR for discussion and implementation is

merely for convenience, in description and computation. In any case,

much of what is said can be seen to apply equally to the LALR algorithm.

While the above does not present a conclusive argument, the points

which are made serve as motivation (if one is needed) for what follows.

SLR Parsing

We give a compact description of the formation of 5LR tables,

omitting some of the complexity which was required in Chapter 2.

The notation used here (for convenience) conflicts slightly with that

chapter, but the description is essentially equivalent.

For SLR, a state is an ordered pair [p,j], which indicates that

j symbols of production p have been recognised (recall A ~ X ... X).
p p 1 P D

p

At any stage during the parse of a sentence, the status of the parser can

be represented by a set g of such states, called a stateset. The closure

of g, denoted by ~', is formed by adding to g states indicating those

productions which at this stage in the parse we could begin to recognise,

and is the smallest set satisfying,

g I = g U ([q, 0] I 3 [p, j J E g I, j < n ,
p

X = A }
P ,J +l q

If the next symbol encounte~ed is Y E V, the new status of the

parser is represented by gy, the Y successor of g.

gy = ([p, j +1] I [p, jJ E g I, j < n ,
P

X
P , J +l

= y}

- 60 -

Initially the status of the parser is represented by g = C[O,O=}.
o

The stateset table 1, containing all statesets which can occur during

parsing is given by

1 = Cg } u Cgy I g E 1, g f C[0,1]}, Y E V, gy f ¢}
o

whose members are indexed, i.e. we refer to the ith member of 1 as g .
1

Corresponding to the ith member of 1, a parsing-state R(g) specifying
1

the parser's operation is computed by

R(g) = C(x,reduce p)
i

U((Y, shift 1)

Finally, the parsing table is

[p,n] E g ,x E F (A)}
p 1 1 P

E g
1

Throughout this chapter, we will use the grammar q6 as an exampl~,

the productions of which are

° S ... D 7 T ... T * P
.L

1 D ... A 8 P ... E

2 D ... C 9 P ... id

3 A ... id .- E 10 C ... if B then A L

4 E ... T 11 B -+ B or id --
5 E -+ E + T 12 B ... id

6 T ... P 13 L ... else D

s=14 L ... 1\

In the SLR parsing table for q , we represent an entry (Y,shift 1) by
6

1

in the column headed Y, and an (x,reduce p) entry by -p in the column

headed x.

i g
1

° [O,oJ

[0,1]

2 [1 ,1 J

3 [2,1 J

4 [3,1 J

5 [10,1]

6 [3,2J

7 [10,2J [11,1]

8 [12,lJ

9 [3,3 J [5,1 J

10 [4,1] [7,1 J

11 [6,1 J

12 [8,1 J

13 [9,1 J

14 [1O,3J

15 [11,2J

16 [5,2J

17 [7,2 J

18 [5,1 J [8,2J

19 [10,4J

20 [11,3J

21 [5,3J [7,1 J

22 [7,3J

23 [8,3J

24 [10,5J

25 [1),1J

26 [1),2J

- 61 -

id + () * if ~ .£!: else D ACE T P B L .- .1.

4 5 1 2 3

-1

-2

6

8 7

13 12 9 10 11

14 15

-12 -12

16 -3 -3

-4 -4 17 -4 -4

-6 -6 -6 -6 -6

13 12 18 10 11

-9 -9 -9 -9 -9

4 19

20

13 12 21 11

13 12 22

16 23

25 -14 24

-11 -11

-5 -5 17 -5 -5

-7 -7 -7 -7 -7

-8 -8 -8 -8 -8

-10

4 5 26 2 3

-13

State set and parsing tables for q
6

- 62 -

The operation of the SLR parser is described by the following

flow diagram and equivalent pseudo Algol, in which:

F is a stack, to which n is the pointer.

I denotes the input string, and i indicates the first unread

symbol.

The stack elements are integers which index the state set

table (0 and 1 corresponding to the initial and final

statesets).

ACTION(l,X,op,W) inspects the parsing-state R(S) to assign
1

values to op and W.

If (X,shift j) E R(g) then op:= shift W:= j.
1

If (JQ,reduce p) E R(gl) then op:= seduce W:= p.

Otherwise op:= error.

The variables op and W are work variables; op indicates the type

of operation the parser must perform next, while W specifies

either the index of a new stateset, or a production number.

n:= 0 i'-

F[O]:= 0

y

ACTION(F[n],I[i],op,W)

n:= n+1 F[n]:= W

n:= n-~ y

ACTION(F[n],Aw,op,W)

y

error

- 63 -

F[O]:= n:= 0; i:= 1; ACTION(F[O],I~1J,op,W}:

while F[n] ~ 1 and op ~ error do

begin if op = shift then i:= i+1 else

begin n:= n-nw; ACTION(F[n],~,op,W) end;

n:= n+1;

F[n] .- W; ACTION(F[n],I[i],op,W)

en~· ---'

Differences between this section and Chapter 2 include the use of an

LR(O) stateset table to produce an SLR parsing table(using the sets F (A)
1 p

for reduce p entries), the omission of the error stateset ¢ and state sets

having L as associated symbol. The procedure ACTION now incorporates NEXT,

and is simplified by the replacement of (A,goto j) by (A,shift j).

For notational convenience we omit the' from R'(3) and i'.

Chain Productions

Grammars for programming languages often include productions which

have no semantic s~gnificance for compilation. By this we mean that a

reduction involving such a production invokes no special semantic routine,

and need not affect the output of the parser. (We have ignored this aspect

of parsing, and in the main will continue to do so.) These productions

commonly occur in connection with the generation of arithmetic expressions,

and are mainly of the form A ~ A. When a production of no semantic
p ,

significance has a RHS of length one, it is possible for the parser to omit

any reduction involving that production, since a reduction of length one does

not change the size of the stack. The omission of all such reductions can

result in a large increase in parsing speed. This can be achieved within

the SLR framework, as is now described.

- 64 -

We say that the pth production is a chain production iff it has no

semantic significance and n = 1, and write A c X (analagouslv to
51 P - 511 -

A ~ X). In q we let productions 1,2,4 and 6 be chain productions.
51 51 1 6

The chain E ~ T ~ P so formed is typical of the situation in programming

languages, as for example Algol W where a variable can be parsed as an

expression only by means of 12 chain productions.

To modify the SLR table constructor so that the parser can bypass

chain productions, it is necessary to replace gy by the chained

Y successor of g, denoted by gy.

gy = ([p, j+1] \ [p, j] E a', j < n , X c* Y
51 p,J+1- ,

th
P production not a chain production}

This definition is a generalisation of Y successor, since in the absence

of chain productions we have SY = ay . The tables which result from the

use of this generalisation will be termed SLRC tables.

An alternative means of computing gy is provided by the following

equations.

Let Wy = gy U ([p,jJ E g X I [q,1] E Wy,A
q

= X,

th d t· . h . d t . } q pro uc 10n lS a c aln pro uc 10n

then Wy = ([p,j+1] \ [p,j] E 3', j < n, X ~* y}
51 51 , J +1

so gy = [[p,j] E Wy \ p~h production is not a chain production}

Consider stateset g = g = [[3,2J} for grammar q. We have
6 6

y gy Wy ay

id [[9,1]} ([9,1J} U9,1]}

([S,1J} ([S, 1 J} [[S,1 J }

E ([3,3 J [5,1]} ([3,3J [5,1]} ([3,3J [5,1]}

T ([4,1J [7,1]} [[4,1] [7, 1] [3,3 J [5,1]} ([7,1 J [3,3 J [5, 1])

P ([6,1]} ([6,1J [4,1] [7,1J [3,3J [5,1]} ([7 , 1] [3, 3] C 5 , 1J}

- 65 -

ST and Sp are of interest here. In WT we include the members of gE

because [4,lJ E gT. In Wp we include the members of gT because

[6,lJ E gpo Then, since [4,lJ E Wp , we also include the members of gE.

States [4,lJ and [6,lJ are deleted to form gT and gp' since productions

4 and 6 are chain productions.

We discuss the differences between the SLRC and SLR tables for Q ,
6

in an attempt to indicate the effects of utilising chained successor

statesets. To aid in this comparison, the state sets in the SLRC table

have been numbered in correspondence with their SLR counterparts, with

the result that this numbering is not consecutive.

First consider R(g). The SLR entries (D,shift 1), (A,shift 2),
o

(C,shift 3) occur in the SLRC parsing table as (D,shift 1), (A,shift 1),

(C,shift 1). This results from the elimination of statesets 2 and 3,

which in the SLR table contained reduce entries for productions 1 and 2

respectively. Since these are chain productions, the SLRC parser can

ignore the reductions, and when in R(g) will regard A and C as being
o

implicitly reduced to D. The parsing-state entries correspond to this

implicit reduction having been made.

R(g) exhibits the same behaviour, for the same reasons,
25

(A,shift 2), (C,shift 3) being replaced by (A,shift 26), (C,shift 26).

The elimination of g , which like g and g only performSa chain
11 2 3

reduction (on production 6), affects the entries on P in g ,g , g
6 12 16

These are changed to correspond to the respective entries for T.

SLR statesets g , g and g are involved in a more complicated
6 9 10

transformation. Because some, but not all, entries in g specify chain
10

reductions, g cannot be eliminated, and instead is amended as follows.
10

The chain reduce 4 entries are replaced by the corresponding entries from

g , since production 4 reduces a T to an E, and g E = g. In particular,
969

the (),reduce 4) entry is deleted.

i g
1

0 [O,OJ

1 [0,1 J

4 C3,1 J

S [lO,lJ

6 [3,2J

7 [10,2J [11,1]

8 [12,lJ

9 [3,3J [S,1]

10 [7,1 J [3,3J [S,l J

12 [8,1 J

13 [9,1 J

14 [1O,3J

lS [11 ,2J

16 [S,2J

17 [7,2J

18 [S,l] [8,2J

10' [7,1] [S,l] [8,2J

19 [10,4J

20 [11,3]

21 [S,3J [7,1]

22 [7,3]

23 [8,3]

24 [10,S]

2S [13,1]

26 [13,2J

- 66 -

id + () * if ~ £! else

4

8

13

16

16

13

-9

4

20

13

13

16

16

-S

-7

-8

4

S

12

14 lS

-12 -12

17

12

-9 -9

12

12

23

23 17

-11 -11

-S 17

-7 -7

-8 -8

S

SLRC tables for q
6

-3

-3

-9

2S

-S

-7

-8

:= J. D A C E T P B L

1 1 1

6

7

9 10 10

-3

-3

18 10'10'

-9

19

21 21

22

-14 24

-S

-7

-8

-10

26 26 26

-13

- 67 -

Similar comments apply when we consider statesets g S; and
12 ' 18

g Since g E = g
18 '

chain reduce 4 entries in g must be replaced by
loO 12 10

the corresponding entries from g These amendments to g are
18 10

incompatible with those described previously, since in this case the

(else,reduce 4) and (L,reduce 4) entries are deleted. In consequence,

a new stateset appears in the SLRC tables, and is referred to as g

For a programming language having a grammar which defines

arithmetic expressions in the usual way, the replication of statesets,

in the way 8 is duplicated, is a prominent feature of the SLRC tables
10

for the grammar. The elimination of statesets occurs less often, so

that in a practical situation an SLRC table usually contains many more

statesets than the SLR table for the same grammar. However, this is

more than offset by the increased speed of the SLRC parser.

If all replications of the same state set are merged back to a

single stateset, chain reductions are still avoided, but at the expense

of the parser's LR(O} error detection capability. The stack must then

be checked whenever a reduce operation is performed.

Alternatively, chain reductions may be partially avoided, by

using a modification of 8y • This modified 3y is computed (in Q) by

Q := 3Y;

while V [q,l] E Q, q is a chain production do

Q .- ([p,j] E gx \ [q,l] E Q, X = A }
q

The tables which result from using this modification will be termed

SLRPC tables. Statesets are eliminated from an SLR table, but none are ---
replicated. (It is therefore possible to produce SLRPC tables directly

from SLR tables.) The parser's LR(O} error detection capability is

maintained but some chain reductions will still be performed.

- 68 -

A number of complications arise in both the SLRC and SLRPC

methods, and are now discussed.

More than one final stateset can be created by these algorithms.

If no chain production has X as its LHS then this anomaly does not
01

occur.

In the SLRC tables for q , the entries in ~ and 3 for Dare
6 O:i!6

never used, and can be deleted. In general, if all productions of which

a nonterminal A is the LHS are chain productions, then all entries for A

may be deleted from an SLRC table. Any statesets which are only

accessed from these entries can also be deleted.

There is a slight degradation of error detection in going from SLR

to SLRPC to SLRC parsers, similar to that resulting from lookahead

minimisation; namely that error detection may be deferred until after

the stack is reduced, but before the next input symbol is read.

This means, as already noted, that the LR(O) detection capability is

maintained.

The concept of an associated symbol for SLRC and SLRPC state sets

is less simple than for SLR statesets. A generalisation of the

original definition must be made. Let ~ be any member of a stateset

table, other than g. Then t he set
o

[y E V \ V [p, jJ E 3 X c* y}
p J

is not empty, and may be regarded as an associated symbol set for 3.

An important point, which must be made, is that the SLRC and SLRPe

methods are not strictly parsing algorithms within our definition,

although we will continue to refer to them as such. This is because

they do not determine the canonical derivation for a sentence; rather

they determine what Gray and Harrison call a sparse parse

i.e. a specification of a parse from which reductions by a subset of the

productions have been omitted (in our case, the chain productions).

- 69 -

One consequence is that the sentences of some grammars which are

not SLR can be 'parsed' by means of the SLRC or SLRPC algorithms.

Since only a sparse parse is to be determined, in certain circumstances

additional right context may be examined before an essential reduction

is called for. Grammar q (constructed in Chapter 2), which is LR(l)
4

but not LALR, is an SLRC grammar if productions 5 and 6 are chain

productions. Perhaps more surprising is the existence of SLRC grammars

which are not LR(l), or even unambiguous. Consider q which has
7

productions

o S -+ A .1.

2 A -+ B

s=3 B -+ c

Although clearly ambiguous, if productions 1,2 and 3 are chain productions,

then q is SLRC. The sentence c.l. has a unique (trivial) sparse parse.
7

In appendix (1.5) we establish theorem A, which states that a

A-free SLR grammar is an SLRC grammar, for any set of chain productions.

The A-free premise of theorem A cannot be removed, as is shown by Q , e

with productions

o 3 A-+Ld

A -+ B L 4

2 A -+ C d 5 C ... e

s=6 L'" A

~ is SLR, but not SLRC if productions 4 and 5 are chain productions.
8

(Stateset and parsing tables for r~ and (}e are exhibited in appendix 2.)

- 70 -

The difficulty arises from the combination of an empty RHS with

the inaccuracy of the SLR method's lookahead calculation. If any SLR

grammar is not SLRC, the inadequacies must involve the reduction of

empty RHSs. A rudimentary refinement of the lookahead for such a

reduction, local to the state set in question, will be sufficient to

remove the inadequacy. The proof of theorem A indicates that the

corresponding result for LALRC grammars (defined analagously to SLRC),

is not complicated by A; that an LALR grammar is LALRC.

LR(O) Statesets

Technically, an SLR stateset is said to be LR(O) if it is adequate

without any provision of lookahead, in which case either all the

corresponding parsing-state entries are shifts, or all are reduce entries

for the same production. If all are shifts, the input must still be

inspected to determine the next stateset, and for this reason we shall

regard an SLR stateset as having the LR(O) property only if all entries

are reduce p for some unique p. In such circumstances the parser's next

operation may be considered independent of the lookahead symbol.

Statesets which are LR(O) by this definition can be eliminated from the

SLR stateset table at the cost of introducing a new type of parsing-

state entry. Their elimination increases the speed of the parser as

well as reducing the size of the stateset table.

Suppose an SLR stateset g 1S LR(O). Then g = ([p,n]} for some
1 p

p, and R(8) = ((x,reduce p) I x E F (A)}. Minimisation of the
1 1 p

lookahead converts these to the single entry (A,reduce p). Now consider

a stateset 8, whose parsing-state contains an entry (X,shift i).

Since the parser's action in 8 is known to be unique and independent
1

of the lookahead, this entry could be altered to (X,'shift i, and then

reduce pI). The shift portion of this operation involves stacking i.

- 71 -

Since n must be positive, the reduce p will immediately remove i, and so
p

the actual value stacked is immaterial. If X E V
N

the entry can be just

(X,reduce p), if reduce operations on nonterminals increment the stack

pointer. The new type of entry is needed when X E ~ and is written

(X,scan reduce p). The scan indicates that X must be read from the input,

and the stack pointer incremented, before the reduction takes place.

ACTION is modified to yield op = scanreduce and W = P for such an

entry. We again specify an SLR (and SLRC, SLRPC) parsing algorithm by

means of a pseudo Algol description and corresponding flow diagram.

In the absence of scan reduce and nonterminal reduce entries this parser

1S in fact equivalent to that given earlier in this chapter.

F[O]:= n:= 0; i:= 1; ACTION(F[0],I[1],op,W);

while F[n] ~ 1 and op ~ error do

begin if op ~ reduce then

begin i:= i+1; n:= n+1 end;

while op ~ shift do

begin n:= n-Ilw;

ACTION(F[n],Aw,op,W); n:= n+1

F[n]: = W; ACTION(F[n], I [i], op, W·)

- 72 -

n:= 0 i'- 1 W:= 0

ACTION(F[n],I[i],op,W)

y
success

y
error

y
~~~~ ______________ ~ i:= i+1 n:= n+1r-__ ~ 

y 

ACTION(F[n],Aw,op,W) 

n:= n+1 

Elimination of LR(O) statesets affects the parser's error detection 

in the same way as the elimination of statesets by SLRPC techniques. 

The number of statesets which are LR(O) is in practice much greater than 

the number eliminated by SLRPe. 



- 73 -

The SLRC tables for q , 
6 

with LR(O) statesets eliminated, provide an 

example. Scan reduce p entries in the parsing table are represented by 

*p in the appropriate columns. The original (SLR) state set numbering is 

retained. 

i g id + ( ) * if then or else 
1 ------ := .L D A C E T P B L 

° [O,oJ 4 5 1 1 

[0,1 J 

4 [3,1J 6 

5 [10,1 J *12 7 

6 [3,2J *9 12 9 1O 10 

7 [10,2J [11,1J 14 15 

9 [3,3J [5,1 ] 16 -3 -3 

10 [7,1 J [3,3J [5,1 J 16 17 -3 -3 

12 [8,1 J *9 12 18 
I I 

10 1O 

14 [1O,3J 4 19 

15 [11 ,2J *11 

16 [5,2J *9 12 21 21 

17 [7,2J *9 12 -7 

18 [5,1 J [8,2 J 16 *8 

10 ' [7,1 J [5,1] [8,2J 16 *8 17 

19 [1O,4J 25 -14 -10 

21 [5,3J [7,1 J -5 -5 17 -5 -5 

25 [13,1J 4 5 -13 -13 -13 



- 74 -

Table Compaction 

For the purpose of driving the parser, it is only necessary to 

retain the parsing table; the stateset table may be discarded. 

To represent economically the information contained in a parsing table, 

a number of compaction techniques are available. Initially we consider 

these techniques independently of each other. 

Conditions may be postulated under which parsing-states can be 

merged, by combining their entries and changing references to the 

component parsing-states to refer to their combination. Sufficient 

conditions for two parsing-states to be merged, without detriment to 

the parser's error detection are now given. 

1) Nonterminal entries must not conflict. 

2) The terminal shift (and scan reduce) entries must be 

identical. 

3) Terminal reduce entries must not conflict. 

4) The set of productions used in terminal reductions 

must be identical. 

(The entries of two parsing-states conflict if for some symbol in V 

they contain distinct entries.) 

All syntactic errors are detected by the parser on terminal symbols, 

so parsing-states are only accessed with valid nonterminals. Thus the 

addition of nonconflicting nonterminal entries does not alter the parser's 

behaviour. Similarly we may add an (x,reduce p) entry to a parsing-state 

if there is already in the parsing-state a (y,reduce p) entry for some 

y (x,y E V
T

), and no entry for x (compare lookahead minimisation). 

• 



- 75 -

Two parsing-states satisfying the above conditions can therefore 

have entries added to make them identical, when clearly they can be 

merged. Such a merge would eliminate a parsing-state and economise 

on any common entries. Unfortunately, for parsing tables derived from 

LR(O) stateset tables, if R(g ) and R(g ) satisfy these conditions, we 
1 j 

must have i = j; hence no merging is allowed in the tables with which 

we are here concerned. Substantiation of this remark is deferred to 

appendix 1 (1.6). 

Parsing tables can conveniently be regarded as transition matrices, 

with rows indexed by parsing-state number and columns indexed by symbol. 

An element of such a matrix may be blank, corresponding to an error, or 

else indicates a type of operation (shift, scan reduce, reduce) and the 

number of either a parsing-state or a production. It may be possible 

to reduce the number of bits required to encode an element of the matrix. 

If within each row (or each column) the range of the entries is small 

then an economy can be made by the following means. Let the entries in 

the row (column) be a for 1 ~ i ~ n say. We evaluate c = min(a ) -1, 
1 1 1 

and then the entries can be stored as a -c. The value of c for each row 
1 

(column) must also be recorded. 

To decrease the range of entries in a row (column) we may reorder 

parsing-states and productions. Indeed, for SLR, by reordering parsing-

states, we can ensure that the shift entries in a column form a sequence 

of consecutive integers; a consequence of the fact that all references to 

a particular parsing-state must lie in one column of the matrix, namely, 

the column indexed by the parsing-state's associated symbol. Different 

constants can be kept for the different types of entry, e.g. one constant 

could apply to reduce (and scan reduce) entries and another to shift 

entries. Reduce entries should then be handled by row, since the number 

of different production numbers used in a parsing-state is likely to be 

small. 



- 76 -

Applied to the SLRC parsing table (with LR(O) statesets eliminated) 

for Q , this technique can be used to reduce the size of the matrix entries 
6 

from 7 bits to 4 bits (including 2 bits which indicate the type of 

operation) and thus reduce an overall requirement of 2394 bits to 1535 bits. 

To represent a matrix in computer memory it must be linearised, and we 

can take advantage of the indirection involved in such a linearisation to 

overlay rows (parsing-states) of the matrix. The conditions for such 

overlaying are as for the merging of parsing-states, but now, by 

partitioning the matrix into a terminal section and a nonterminal section, 

conditions 2) to 4) may be applied to the terminal submatrix, and 

(independently) condition 1) to the nonterminal submatrix. For SLR, 

conditions 2) to 4) imply that the two parsing-states have identical 

terminal entries, which means that determination of the optimum overlay 

is trivial for the terminal submatrix. The problem of determining the 

optimum solution for the nonterminals is combinatorial in nature, as is 

indicated by an example. 

A B C 

1 (shift,a) 

2 (shift,b) (shift,c) 

3 (shift,d) (shift,e) 

4 (shift,f) 

We can overlay 1 with 4 and are done, but better would be 1 with 3 and 

2 with 4. (This example is similar to that given in Chapter 2 on the 

merging of statesets.) In general, more overlaying of nonterminal rows 

than terminal rows can take place, a consequence of the less stringent 

condition imposed. 

After overlaying the rows of the SLRC parsing table (with LR(O) 

statesets eliminated) for Q , we obtain the following terminal and 
6 

nonterminal submatrices, and associated indirection table. 



- 77 -

Terminal Submatrix 

id + ) * if then or else 0- .L -------
1 4 5 

2 6 

3 *12 

4 *9 12 

5 14 15 

6 16 -3 -3 

7 16 17 -3 -3 

8 4 

9 *11 

10 16 *8 

11 16 *8 17 

12 25 -14 

13 -5 -5 17 -5 -5 

Nonterminal Submatrix 

D A C E T P B L 

1 1 1 9 10 10 7 -10 

2 -13 -13 -13 18 10' 10' 

3 19 21 21 

4 -7 

Indirection Table 

Parsing-state o 456791012141516171810'192125 

Terminal row o 2 3 4 5 6 7 4 8 9 4 4 10 11 12 13 

Nonterminal row 100 1 1 0 0 0 2 303 400 o 2 



- 78 -

An entry of 0 in the indirection table is used to indicate that the 

corresponding row does not contain any entries. By renumbering the 

parsing-states it is possible to eliminate these entries from the 

nonterminal portion of the indirection table. If overlaying is not 

performed, then this renumbering makes a large saving on the nonterminal 

submatrix. 

Direct representation of the parsing table as a matrix is very 

costly in space. Since the matrix is usually sparse, an obvious saving 

can be achieved with the following scheme. 

The parsing table entries are stoDed in two vectors named SYM and 

ACT. Elements of S1M are symbols and those of ACT are their corresponding 

parsing operations, thus (S1M(i),ACT(i)) forms a parsing table entry. 

The entries of parsing-state j are located by accessing a vector called 

STATE with j, to obtain an index and a length. The index specifies the 

location, in S1M and ACT, of the first entry in parsing-state j, while 

the length gives the number of entries in the parsing-state. 

All entries of a parsing-state are placed consecutively in SYM,ACT , 

following the first. This representation of the parsing table will be 

referred to as a list representation, as opposed to a direct matrix 

representation. 

To aid in further compactions, we partition SYM and therefore ACT, 

into a terminal and a nonterminal part, accessed via two vectors called 

TSTATE and NSTATE. With a terminal lookahead symbol, in parsing-state j, 

we obtain from TSTATE(j) an index to TSYM and TACT, the terminal parts 

of S1M and ACT; similarly, for a nonterminal symbol we obtain from 

NSTATE(j) an index to NSYM and NACT. 



- 79 -

The constraints we impose on these vectors, as a consequence of the 

above construction, are that, 

if TSTATE(.j) = (ptr,len) then 

(TSYM(ptr),TACT(ptr», ••. , (TSYM(ptr+len-1),TACT(ptr+len_1» 

must be the terminal entries of R(3 ), 
.1 

and if NSTATE(j) = (ptr',len') then 

(NSYM(ptr'),NACT(ptr'», •.. , (NSYM(ptr'+len'-l),NACT(ptr'+len'_l» 

must be the nonterminal entries of R(3 ). 
J 

The possibility then arises of overlapping rows of the parsing table 

having common subsets of entries. This will reduce the lengths of 

TSYM,TACT and NSYM,NACT. The problem of performing this overlapping 

optimally, subject to the above constraints is combinatorial and 

nontrivial. (The constraints can be weakened to correspond with 

conditions 1) to 4) for mergeability.) Special cases such as rows having 

only one entry, identical entries or included entries assist in obtaining 

worthwhile compactions by heuristic methods. 

If overlapping is not performed, then the length entries in TSTATE 

and NSTATE are not essential; they can be deduced from the index entries. 

The list representation of the SLRC parsing table (with LR(O) 

state sets eliminated) for q 
s 

is now given. 

Pars ing-state 0 1 4 5 6 7 9 10 12 14 15 16 17 18 10'19 21 25 

Index 1 3 4 5 7 9 12 16 18 19 20 22 24 26 29 31 36 
TSTATE 

Length 2 0 1 1 2 2 3 4 2 1 2 2 2 3 2 5 2 

Index 4 5 8 11 12 14 15 16 
NSTATE 

Length 3 0 0 3 0 0 0 3 0 2 0 0 1 0 3 



- 80 -

TSYM and TACT 

1 2 3 4 5 6 7 8 9 10 11 12 13 1415161718 

symbol id if .- id id ( then or + else .J.. + * else .J.. id ( id -- -- ----
operation 4 5 6 *12 *9 12 14 15 16 -3 -3 16 17 -3 -3 *9 12 4 

19 20 21 22 23 24 25 2627 28 29 30 31 32 33 34 35 36 37 

symbol id id id + ) + -- ) * else .J.. + ) * else .J.. id if 

operation *11 *9 12 *9 12 16 *8 16 *8 17 25 -14 -5 -5 17 -5 -5 4 5 

NSYM and NACT 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

symbol D A C B E T P E T P A T P P L D A C 

operation 1 1 7 9 10 10 18 10' 10' 19 21 21 -7 -10 -13 -13 -13 

Overlapping of rows leaves NSYM,NACT unaffected in this case (since 

all nonterminal entries are distinct) but reduces TSYM,TACT by almost 50%. 

Parsing-st.ate 0 1 4 5 6 7 9 10 12 14 15 16 17 18 10
/

19 21 25 

Index 1 3 4 5 7 11 11 5 1 19 5 5 10 9 20 14 
TSTATE 

Length 2 0 1 2 2 3 4 2 1 2 2 2 3 2 5 2 

TSYM and TACT 

123 456 7 8 9 10 11 12131415161718 

symbol id if := id id + else .J.. * + ) else .J.. -- --
operation 4 5 6 *12 *9 12 14 15 17 *8 16 -3 -3 17 -5 -5 -5 -5 

19 20 21 

symbol 

operation *11 25 -14 
--------' 



- 81 -

In the list representation economies can be made by lookahead 

minimisation. If a parsing-state contains a terminal reduce p entry, 

then all terminal reduce p entries in the parsing-state may be replaced 

by a single (A,reduce p) entry, which is regarded as a default entry 

for the parsing-state, to be used only as a last resort (recall that 

(A,reduce p) is equivalent to (x,reduce p) ~ x E y). To ensure 
T 

this, we position the (A,reduce p) entry last in the sequence of entries 

in TSYM,TACT corresponding to the parsing-state. 

Since we can add nonconflicting nonterminal entries to a parsing-

state, we can have a default nonterminal entry for the most frequently 

occurring operation on a nonterminal in the parsing-state. This is only 

relevant to SLRC and SLRPe tables, since for an SLR parsing-state, all 

operations on nonterminals are distinct. An alternative technique is 

to associate with each nonterminal symbol a default operation (a default 

on columns as opposed to rows of the matrix). It is then possible to 

delete from NSYM,NACT all entries consisting of a nonterminal and its 

default operation. 

If the parser does not find an entry for a nonterminal symbol, this 

can only have occurred due to that entry having been deleted, so the 

parser can take the default operation for the nonterminal symbol. 

Notice that the use of default entries necessitates the adjustment 

of the length components in TSTATE ani NSTATE. 

When there are fewer entries, on average, in a column than in a row 

of the parsing table, it may be advantageous to use an inverted list 

representation in which the roles of STATE and SYM are interchanged. 

SYM is then accessed with the current symbol to give an index and length, 

the index referring to STATE and ACT. ACT(i) specifies the parsing 

operation to be performed if the parser is in parsing-state STATE(i). 

Thus the parsing table can be represented by columns instead of rows. 



- 82 -

The method of reducing the size of the individual parsing table 

entries described earlier also applies to the list representation, but 

the savings are not so great. 

Use of a list representation, while yielding a large economy of 

storage, has serious implications for the speed of the parser. 

The parsing table is examined by the procedure ACTION, and if a matrix 

representation is used, ACTION inspects only the single entry of the 

matrix located by the current symbol and parsing-state number. 

With the list representation, ACTION must search the entries for the 

current parsing-state until either the current symbol is found, or the 

sequence of entries is exhausted. Clearly this search will result in 

some deterioration of the speed of the parser. The time taken for the 

search can be made more acceptable on modern computers by the use of 

hardware implemented searching instructions, such as are available on 

the IBM 360, PDP 10 and Univac 1108. 

Reducing the size of the parsing table entries also results in 

a degradation of the parser's speed, because it is then necessary to 

compute the operation required after an entry has been accessed. 

Inadequate State sets 

Programming languages are not necessarily strictly context free, 

and because of this, a CFG constructed to represent the syntax of such 

a language will often be ambiguous. Context sensitivity is then 

restored by means of semantic routines which remove the ambiguities 

inherent in the grammar. 

This provides an example of a situation for which modifications to 

a grammar in order to obtain a version which is SLR may not always be 

the best solution to the problem of parsing sentences in the language. 

It may be more expedient to produce an inadequate SLR parsing table for 

an otherwise convenient grammar, and use semantic routines to resolve 

inadequacies as they arise. 



- 83 -

We now describe a scheme for incorporating this technique into an 

SLR parser, given in terms of the list representation discussed in the 

previous section. 

If a parsing-state is inadequate, then for some symbol x E V
T

, 

the parsing-state contains more than one entry. All the entries on x 

(in the parsing-state) are replaced in TSYM,TACT by a single entry 

(x,multiple z) • The value of z must specify, by some means, the set 

of parsing operations which were replaced. One method is for z to 

prescribe an index and a length, the length being the number of 

operations, and the index locating the first of them in a supplementary 

vector which we w:ill refer to as SUPrACT. The operations, of which at 

most one can be a shift (or scan reduce), are stored sequentially in 

SUPrACT, with any shift (or scan reduce) operation being placed last. 

Among the reduce operations the ordering is irrelevant. Here we are 

assuming that semantic routines are only called when reductions are 

performed, and that at most one reduction can be applicable at any 

point in a parse. 

For an entry (x,multiple z), the procedure ACTION uses z to 

compute the appropriate index and length, and records these in two 

variables zp and zc. It then assigns to op and W from SUPrACT(zp), 

and in fact we must have op:= reduce. 

Before applying any reduce operation, the parser calls a semantic 

routine to determine whether the reduction is semantically valid, and 

only if this is the case is the reduction performed. If the reduction 

is not valid, the parser calls ACTION in an endeavour to obtain an 

alternative operation, indicating that an operation from SUPrACT is 

required by giving a negative parsing-state number as a parameter. 



- 84 -

In these circumstances, ACTION inspects the value of zc. 

If zc = then op is returned as error. 

If zc > 1 then the counter zc is decremented by one, 

the pointer zp is incremented by one, 

op and Ware returned from SUPTACT(zp). 

Because of the possibility of an adequate reduce operation being 

rejected on semantic grounds, ACTION sets zc to 1 whenever it returns 

an adequate reduce or scan reduce operation (from TACT). 

This SLR parser is described by the following pseudo Algol. 

The specification of the algorithm has been simplified by regarding 

zp and zc as own variables of the procedure ACTION. 

F[O):= n:= 0; i:= 1; ACTION(F[O],I[1],op,W); 

while F[n] f 1 and op f error do 

begin if op f reduce then 

begin i:= i+1; n:= n+1 end; 

while op f shift and op f error do 

if reduce W is semantically invalid then 

begin ACTION (-1,I[i],op,W)j 

if op f reduce and op ~ error then 

begin i:= i+1; n:= n+1 ~ 

end 

else begin n:= n-llw; 

ACTION(F[n),Aw'oP,W); n:= n+1 

end· -' 
if op ~ error then 

begin F[n):= Wj ACTION(F[n),I[i),op,W) end 

If SUPTACT contains no shift or scan reduce operations, the conditional 

statement following ACTION(-1,IU],op,W) may be omitted. 



- 85 -

It can be important to compact inadequate parsing-states, since 

they may contain a large number of entries, as for example, in connection 

with the association of type information with identifiers in Algol like 

programming languages. 

For this reason we would normally overlap the elements of the 

vector SUPTACT. The compaction techniques described in the previous 

section apply to both adequate and inadequate parsing-states. 

In particular, a multiple entry will often be the default operation for 

an inadequate parsing-state. 

A useful modification can be made to the criteria for parsing-state 

merging. Conditions 1) to 4) given in the previous section do not seem 

appropriate for inadequate parsing-states, which already contain 

conflicting terminal entries. We therefore suggest the following 

conditions for two inadequate parsing-states to be mergeable. 

1) Nonterminal entries must not conflict. 

2) The terminal shift (and scan reduce) entries must be 

identical. 

3) The adequate terminal reduce entries must be identical. 

4) The multiple entries must be on the same set of 

terminals. 

5) The inadequate entries in one parsing-state must be a 

subset of those in the other. 

These conditions do permit merging of inadequate parsing-states 

in SLR tables, and ensure that a set of reductions require resolution 

by semantic means after merging only if their resolution was necessary 

before merging. 



- 86 -

Parsing Tables for PL360 AIgolW and XPL 

Programs were written to generate list representations of SLR. SLRPC 

and SLRC parsing tables, and applied to grammars for the programming 

languages PL360, AlgolW and XPL. These languages are described by 

Wirth (1968), Wirth and Hoare (1966) and McKeeman, Horning and Wortman 

(1970) respectively. 

In each case, the syntax employed was a version intended for use in 

a compiler for the language. For PL360 and AlgolW this was available 

from the source listings of the two compilers (which are written in PL360). 

In all, three grammars for AIgolW were analysed, and are here designated 

AlgolW1, AlgoIW2 and AlgolW3. AlgolW2 represents the current compiler 

synta~, and was used to implement a replacement SLR parser for the 

compiler, as is described in the next section. AlgoIW1 is an older version 

of the syntax, which in conjunction with the PL360 grammar, was the basis 

for most of the decisions presented here. AlgoIW3 is an extension and 

modification of the basic AlgolW syntax; its ambiguity and some 

eccentricities of a simple precedence nature l~ve been removed, and a 

number of language extensions incorporated. Tables were constructed for 

XPL to enable a comparison to be made with the results obtained by 

Lalonde (1971) from his LALR parsing table constructor. 

In addition, sufficient information was available to determine, 

for each syntax, those productions which should be considered as chain 

productions (one semantic routine of XPL was ignored to complete the 

chain for arithmetic expressions). 

Uncompacted lists were produced initially, and measurements made 

to indicate the effectiveness of the various compaction techniques. 

From this empirical evidence, a sequence of compact~ns was chosen which 

should be capable of producing an economic list representation. Before 

describing this selection of compac~n methods, we discuss informally 

the interactions which take place between the different methods. 



- 87 -

For a matrix representation, the only interaction is between 

overlaying of rows and reducing the number of bits needed to represent 

an element of the matrix. If both techniques are to be employed, the 

reduction can with advantage be performed first, when the resulting 

smaller entries may assist in obtaining additional overlaying. 

If overlaying is not performed, the renumbering of rows to economise on 

empty nonterminal rows becomes very important; this renumbering may be 

incompatible with that required to reduce the size of elements of the 

matrix. 

In a list representation, we have the possibility of incompatability 

between the use of default entries and overlapping, where an instance of 

one may prevent an instance of the other (since a default entry must 

occur last). If a nonterminal default is taken by symbol (i.e. column) 

then incompatability can only arise if overlapping is performed under the 

nonconfliction criterion. Again, reduction of the size of entries should 

be done before overlapping, which may be aided by the reduction. 

The three algorithms, SLR, SLRPC and SLRC were regarded as requiring 

individual evaluation, and were applied to each grammar. The decision to 

use a list representation stems from both the sparseness (5% to 15%) and 

the magnitude (up to 70000 elements) of the matrices required for a full 

matrix representation. Other techniques are of course available for 

representing sparse matrices, the list representation we have described 

was chosen as being relatively economic and convenient. The inverted 

form of list representation was not used, since columns contained more 

entries than rows. 



- 88 -

The merging of inadequate statesets was done 1"n an ad hoc fashion; 

any two mergeable statesets were merged, and this was continued until no 

further merging was possible. Inadequate entries were then replaced by 

multiple entries, the inadequate entries corresponding to a given 

multiple entry being placed in SUPTACT. Overlapping in SUPTACT was 

performed by an elementary sorting technique, which produced excellent 

economies, and is described in more detail in Appendix 2. 

The techniques of LR(O) stateset elimination and terminal default 

entries are closelr related (both depend on lookahead minimisation). 

They produce major savings of terminal entries (between 50% and 70%) and 

increase the speed of parsing by removing parsing-states and reducing 

the length of rows contained in TSYM,TACT. It was decided to apply these 

techniques fully before attempting any other compactions. In view of 

this decision, it would be permissable to modify the constructor algorithm 

so as to suppress the production of LR(O) statesets. 

Having utilised terminal defaults we consider default entries for 

the nonterminals. Taking a default action for each nonterminal symbol 

reduced the total number of nonterminal entries by about 65% for SLRC 

tables, and about 90% for SLR tables; sufficient to justify full use of 

the technique. Overlapping of nonterminal entries was not attempted since 

it was determined that few entries could be saved from NSYM,NACT 

(overlapping by nonconfliction yields no additional benefits in a list 

representation). 

The method of reducing the size of entries was not applied, since only 

a slight economy could be achieved, and only at the expense of convenience 

of access. This omission allowed ~arsing-states to be renumbered to 

eliminate elements of NSTATE with length components equal to zero i.e. those 

corresponding to parsing-states having only default entries for nonterminals. 



- 89 -

All the compaction techniques applied so far were fairly simple to 

implement. The final compaction, a heuristic for overlapping terminal 

entries was more complicated. 

Considerable economy was still possible by overlapping in 

TSYM,TACT , and much of this could be obtained simply by overlaying 

identical terminal rows. As noted earlier, the determination of the 

optimum overlap is distinctly nontrivial, particularly in the presence 

of default terminal entries, which must occur last in a row of entries. 

'A first attempt at a heuristic method, which overlapped pairs of 

parsing-states having most elements in common, and performed well for 

SLR parsing tables, was found to be unacceptable when applied to SLRC 

tables. This was a consequence of the replication of statesets in SLRC 

tables, which results in sequences of parsing-states whose sets of 

terminal entries form a sequence of nested inclusions. Clearly if 

AC B C •.. CD we need only store the members of D, in some order. 

To cater for this situation, the following algorithm was used. 

We initially exclude terminal rows consisting of a single entry, 

and all but one of a set of identical terminal rows. 

i) Overlap inclusion sequences of length greater than two 

(largest first). 

ii) Overlap pairwise from the remaining parsing-states 

(largest first). 

iii) Overlap (optimally) those rows excluded initially. 

A more detailed description of the algorithm is given in appendix 2. 



- 90 -

The grammars for which measurements were made, and parsing tables 

produced, are characterised in the following table. 

Grammar qs PL360 AlgolW1 AlgolW2 AlgolW3 XPL 

Terminals 11 62 58 62 71 42 

Nonterminals 9 62 84 72 61 49 

Productions 15 151 203 191 178 109 

Chain productions 4 14 18 18 13 12 

Average length of 2.00 1.93 2.24 2.30 2.46 2.07 
production RHS 

The effects of the various compactions as applied to the SLR, SLRFC 

and SLRC parsing tables for these grammars are recorded in the following 

tables. 

Grammar Cl
s 

PL360 AlgolW1 AlgolW2 AlgolW3 XPL 

SLR 151 1179 2108 2161 2145 1107 

SLRPC 160 1269 2375 2434 2229 1182 

SLRC 171 1624 5191 5523 5344 1980 

storage requirements (in bytes) of the compacted tables 

(for the IBM 360, the encoding is described 

in the next section) 



- 91 -

Grammar Cis PL360 AlgolWl AlgolW2 AlgolY3 XPL 

State sets 27 224 341 330 328 183 

Terminal entries 64 1230 4397 4513 4507 1178 

Nonterminal entries 18 280 1493 1552 1202 395 

Inadequate statesets 0 3 7 7 0 0 

Inadequate entries 148 993 810 

Multiple entries 68 179 204 

Parsing-states 
removed by merging 0 4 4 

Entries saved 117 133 

LR(O) state sets removed 10 136 170 166 146 84 

Entries saved 28 763 2183 2445 2382 636 

Default entries: 
Terminal 

entries saved 7 96 392 332 682 179 

Nonterminal 
entries removed 12 235 1389 1424 1082 339 

NSTATE entries 
saved by renumbering 11 57 111 100 121 60 

Overlapped entries: 
Terminal 

entries saved 10 117 581 674 1109 210 

Inadequate 
967 792' entries saved 142 

Results for SLR parsing tables 



- 92 -

Grammar q,s PL360 AlgolWl AlgolW2 AlgolW3 XPL 

Statesets 24 219 330 319 323 175 

Terminal entries 57 1218 4199 4316 4418 1095 

Nonterminal entries 18 280 1493 1552 1202 395 

Inadequate state sets 0 3 7 7 0 0 

Inadequate entries 148 993 810 

Multiple entries 68 179 204 

Parsing-states 
removed by merging 0 4 4 

Entries saved 117 133 

LR(O) statesets removed 7 131 159 155 141 76 

Entries saved 21 751 1985 2248 2293 553 

Default entries: 
Terminal 

entries saved 7 96 392 332 682 179 
Nonterminal 

entries removed 9 226 1300 1338 1059 325 

NSTATE entries 
saved by renumbering 11 57 111 100 121 60 

Overlapped entries: 
Terminal 

entries saved 10 96 581 669 1104 199 
Inadequate 

entries saved 142 967 792 

Results for SLRPC parsing tables 



- 93 -

Grammar Qs PL360 AlgolW1 AlgolW2 Algol~3 XPL 

Statesets 25 237 471 469 519 223 

Terminal entries 59 1411 6699 7483 7907 1570 

Nonterminal entries 18 320 1707 1566 1208 437 

Inadequate statesets 0 3 7 7 0 0 

Inadequate entries 148 993 810 

Multiple entries 68 179 204 

Parsing-states 
removed by merging 0 4 4 

Entries saved 117 133 

LR(O) statesets removed 7 131 159 155 141 76 

Entries saved 21 751 1985 2248 2293 553 

Default entries: 
Terminal 

entries saved 5 158 1141 1430 1644 226 
Nonterminal 

entries removed 7 247 1177 1022 781 273 

NSTATE entries 
saved by renumbering 12 76 251 249 316 108 

Overlapped entries: 
Terminal 

entries saved 13 139 1825 2129 3008 487 
Inadequate 

entrie s saved 142 967 792 

Results for SLRC parsing tables 



- 94 -

Grammar q PL360 AlgolWl AlgolW2 6 AlgolY3 XPL 

TSTATE 17 88 167 160 182 99 

NSTATE 6 31 56 60 61 39 

TSIM,TACT 19 174 310 323 334 153 SLR 

NSIM,NACT 6 45 104 128 120 56 

SUPl'ACT 6 26 18 

TSTATE 17 88 167 160 182 99 

NSTATE 6 31 56 60 61 39 

TSIM,TACT 19 195 310 328 339 164 SLRPC 

NSIM,NACT 9 54 193 214 143 70 

SUPTACT 6 26 18 

TSTATE 18 106 308 310 378 147 

NSTATE 6 30 57 61 62 39 

TSIM,TACT 20 283 817 937 962 304 SLRC 

NSIM,NACT 11 73 530 534 427 164 

SUPl'ACT 6 26 18 

NDEF 8 61 83 71 60 48 

LHS,RHS 14 150 202 190 177 108 

Number of elements in the compacted list representation data structures. 

NDEF(i) specifies the default operation for the nonterminal i. 

LHS(i) specifies the nonterminal on the LHS of production i. 

RHS(i) specifies the length of the RHS of production i. 

(A and n , the LHS and length of the RHS of production 0 are never used 
o 0 

by the parser.) 



- 95 -

We draw attention to the high proportion of parsing-states (over 80% 

for SLR and over 85% for SLRC) which for nonterminals have either no 

entries or only default entries. A contributory factor is the proportion 

of LR(O) statesets; over 50% for SLR and over 35% for SLRC. 

The results for SLRPC data structures are very similar to those for 

SLR. Indeed, just after the elimination of LR(O) statesets the SLRPC 

tables contain exactly the same number of entries as the equivalent SLR 

tables. Fewer nonterminals have default operations in the SLRPC case 

which results in NSYM,NACT showing an increase. Changes in TSYM,TACT are 

due to differing overlapping, and because the RHS of only one chain 

production in AlgolW is a terminal, the effects for that language are 

slight. 

The proximity between the figures for AlgoIW2 and AlgoIW3 is 

coincidental; language extensions and the elimination of ambiguities 

required an additional 600 bytes of storage. This excess was more than 

regained by the removal of productions which were only introduced to avoid 

precedence conflicts, and by the convenient use of an empty RHS. Since 

the AlgoIW3 grammar is the only grammar not specifically designed for use 

by a precedence parser, this improvement was very welcome. 

Although the selection of compaction methods was made mainly from 

results obtained for PL360 and AlgoHI1, and cannot be an optimal technique, 

it proved extremely effective in producing economic representations of 

parsing tables. We illustrate this with the SLR results for the AlgolW3 

grammar, for which a list representation of 5700 entries (equivalent to a 

matrix representation of over 43000 entries) is reduced to merely 454 

entries. 



overlapped default 

- 96 -

43296 = 328x132 

A 
4507 1202 

terminal nonterminal 

2382 
LR(O) 

334+120 
=454 

default 

matrix representation 

iist representation 

compacted list 
representation 

We can compare our results with the number of entries in the matrix 

used by a simple precedence parser, for each of the grammars. 

Grammar 

Precedence matrix 

Cis PL360 

220 7688 

AlgolW1 

8236 

AlgolW2 AlgolW3 

8308 9372 

XPL 

3822 

The comparison is superficial, since these values are for an uncompacted 

precedence matrix, such entries can be encoded in 2 bits, and furthermore, 

an encoding of the grammar must also be stored. As an indication of what 

has proved acceptable in practice for storing parsing tables we quote the 

'storage requirements of the simple precedence parser for AlgolW2 (6730 

bytes) and of the mixed strategy precedence parser for XPL (2962 bytes). 

Lalonde describes a parsing table constructor based on DeRemer's 

work, for LA(k)LR(O) grammars. When applied to XPL (with k = 1), he 

reports that LALR tables requiring 1250 bytes were generated. Because of 

the different theoretical approach adopted by DeRemer, the data structures 

utilised differ fro~those described here, and require a more complex 

parsing routine. 



- 97 -

Timing the SLR Parser 

To enable timings of the SLR parser to be made, an encoding of the 

compacted list representation, and of the SLR parser was designed for 

the IBM 360. 

The Stanford written AlgolW compiler was chosen as the vehicle for 

these timings. It is a fast, three pass compiler, producing efficient 

object code for a language which is a substantial extension of Algol 60. 

The second pass utilises a simple precedence parser embodying a mechanism 

for bypassing chain reductions. Designed and implemented by S. Graham, 

no description of the mechanism is as yet published. Since the compiler 

is written in PL360, it was relatively easy to replace the existing 

parser and its tables by an SLR parser. Because of the ambiguity of the 

AlgoIW2 grammar used by the compiler, it was necessary to program (in 

PL360) the modified SLR parser given on page 84, which utilises multiple 

entries (as well as scan reduce entries and reduce entries on 

nonterminals). 

The programs which construct the compacted tables were modified to 

output their results as initialised PL360 arrays in a format which we now 

describe. (The word length of the IBM 360 is 32 (4 bytes each of 8 bits~) 

TSTATE and NSTATE are recorded as half word arrays. Each half word 

contains two fields, one of 10 bits for the index, and one of 5 bits for 

the length. The high order bit is not needed, and can be set to zero for 

ease of accessing. 

TSYM and NSYM contain byte entries which represent symbols of the 

grammar. 



- 98 -

Because of addressing considerations, SUPTACT NDEF , , TACT and ~ACT 

are combined into a single half word array, ACT. Entries in ACT 

represent one of four types of parsing operation, the type being 

specified by the high order bits. 

1. Multiple entry. Bit 15 = 1 (can only occur in TACT) 

Comprises two fields, one of 10 bits for the index, and 

one of 5 bits for the length. 

2. Reduce entry. Bit 15 = 0, bit 14, 13 = 1 

Comprises two fields, one of 8 bits specifying a 

production, and one of 5 bits specifying the length of 

the production RHS. 

3. Scan reduce entry. Bits 15, 14 = 0, bit 13 = 1 

(can only occur in TACT and SUPTACT - for AlgoIW2 only 

occurs in TACT) 

Except for bit 14, the format is identical to that of 

a reduce entry. 

4. Shift entry. Bits 15, 14, 13 = 0 

One 13 bit field specifying a parsing-state. 

A byte array LHS contains the LHS of each production. We have 

avoided using a separate array to indicate the length of production RHSs 

by including this information in each reduce and scan reduce entry. 

For each production, a byte array SEMANTIC is usecr to specify a semantic 

rule number to be applied whenever a reduction by that production is made. 

A rule number of zero indicates that no semantic action is required. 

This encoding, designed for the 360, with AlgoIW2 in mind, imposes 

various restrictions e.g. the number of productions in a grammar must be 

less than 256. Clearly these restrictions can be eased at the expense of 

additional storage. All are met by the SLn, SLRPC and SLRC data 

structures for AlgolW2. 



TSTATE 

160 x 2 

NSTATE~ 

~ 
LHS 

190 

- 99 -

TSYM 

323 

NSYM 

128 

.SUPl'ACT 
NDEF 

TACT 

NACT 

360 data structures for AlgolW2, SLR - 2161 bytes 

ACT 

18 x 

71 x 

323 x 

128 x 

These data structures are interrogated by the procedure ACTION, 

which is in fact written into the parser as inline code. To search a 

2 

2 

2 

2 

subvector of TSYM or NSYM for the current symbol, the translate and test 

instruction (TRT) of the 360 is used. By means of this instruction it is 

possible to search a vector for any of a set of values marked in a second 

vector. The first vector can be the subvector of TSYM or NSYM, while the 

second represents the symbols of the grammar, and in which the current 

symbol is marked. 



- 100 -

Since the principal nonterminal Ao does not occ'ur in NSYM, the entry 

of the second vector corresponding to Ao can remain permanently marked. 

Terminal default entries in TSYM,TACT can then have their symbol component 

(in TSYM) encoded as A. Since A will only occur last in a vector of 
00' 

terminals being searched, default entries will have the required property 

of only being selected if the current symbol is not found. 

To obtain the required timings, it was only necessary to interface 

the SLR parser with the first pass (lexical analysis) of the AlgolW 

compiler. However, it proved possible to interface with both the error 

recovery routines of the syntax phase, and the third pass (code generation), 

and thus produce a fully working compiler. 

Timings were made of the syntax phase of the compiler, using several 

AlgolW programs as input, for each of the following. six parsers. 

SLR The AlgolW2 SLR parser. 

SLRPC The AlgolW2 SLRPC parser. 

SLRC The AlgolW2 SLRC parser. 

SLRC I An SLRC parser for AlgolW2 with one less chain 

production (a semantic routine~as stipulated 

which splits the 12 step. derivation for an 

expression). 

SP The AlgolW2 simple precedence varser with the 

elimination of chain derivations suppressed. 

SPC The existing AlgolW2 simple pte~edence parser. 

These timings were obtained on an IBM 360/67, under the Michigan 

Terminal System (MTS). Over all the tested pro~rams, the performance 

ranking of the parsers was substantially'uniform. Results for five of 

these programs are now given; times are quoted,iJ;l ~econds, and are not 

more accurate than + 0.01 seconds. 



- 101 -

Program Symbols SLR SP SLRPC SLRC I SLRC SPC 

1 793 0.43 0.41 0.35 0.31 0.28 0.27 

2 2004 1.12 1.09 0.94 0.83 0.76 0.75 

3 3740 1.64 1.59 1.34 1.21 1.09 1.10 

4 4034 2.40 2.32 2.02 1. 78 1.61 1.60 

5 6253 4.07 3.92 3.42 3.02 2.76 2.75 

Differences between the simple precedence and SLR algorithms in the 

above table are sufficiently small for us to regard them as being roughly 

equivalent in terms of parsing speed (the SP parser is approximately 3% 

faster than the SLR parser, while the SPC parser is only 1% faster than 

the SLRC parser). However, timing results given by Lalonde (1971) show 

that his LALR parser runs about 40% faster than the mixed strategy 

precedence parser with which he makes comparison (MSP). Since this 

implementation of LALR searches vectors by means of software, the 

apparent discrepancy deserves comment. 

An important distinction between the MSP and SP parsers is to be 

found in the methods by which they determine the production to use when 

a reduction is required. MSP must search through the productions whose 

final symbol matches the stack top, while SP uses a hashing function 

based on production length as well as final symbol. This is known to 

be very efficient, and largely negates a potential advantage of the SLR 

method, namely the a priori knowledge of which production to use 

whenever a reduce operation is specified. 

-t 



- 102 -

The precedence matrix employed by MSP has 2 bit entries which must 

be unpacked, a penalty avoided in SP by the use of one ~te for each 

entry in the matrix (an additional cost of 3800 bytes). Also, the use 

of the TRT instruction for searching vectors, although advantageous, is 

far from ideal. Overheads incurred tend to nullify the benefits when the 

vectors to be searched are short. 

Time - space trading is evident in the figures for the four variants 

of the SLR algorithm (the tables for the SLRC' parser occupy 4412 bytes). 

In particular, SLRPC gives a substantial improvement in speed over the 
> 

ordinary SLR parser, for only a modest space premium. The SLRC' and SLRC 

versions are less economical of storage, but yield valuable increases in 

parsing speed. 

" ~ 

To evaluate more precisely the effects of ch_in elimination, 

measurements were taken of the number of reduoe operations performed by the 

SLR parsers for each of the test programs. On average, for eve~ 1000 

input symbols, the following number of reductions were made. 

SLR SLRPC SLRC' SLRC 

Chain reductions 2843 1049 273 o 

Other reductions 1201 1201 1201. 1201 

• ,.Jr o 

The preponderance of chain reductions per~orpl~d by the SLR parser 

reflects the frequency with which ex:pressions-o~cJ -. in the AlgolW language. 

The need for bypassing such reductions when parsing is clearly indicated. 



- 103 -

Chapter 5 

Conclusion 

The definition of LA(m)LR(k) grammars is instructive from a 

theoretical viewpoint, since it points out the dual role of the 

parameter k in the LR(k) method. In the LA(m)LR(k) formulation we see 

that k controls the amount of right contextual information which is to 

be retained directly in the statesets (and therefore affects the number 

of statesets), while m specifies the amount of lookahead that the parser 

inspects to determine its next parsing operation. To accommodate every 

grammar whose sentences can all be parsed using only k symbols of 

lookahead, both parameters must equal k, and this gives LA(k)LR(k) 

which is identical to LR(k). 

Separation of the two functions of the lookahead parameter adds 

flexibility to the LR(k) method, and permits an algorithm intermediate 

to LR(O) and LR(1). This algorithm, LA(1)LR(O) or LALR, has an LR(O) 

stateset table, but utilises 1 symbol lookahead when parsing. If the 

complex (order of LR(1» calculation of this lookahead is simplified 

by computing an approximate version directly from the grammar, then we 

obtain SLA(1)LR(O) or SLR. The classes of grammars accepted satisfy 

the inclusions 

LR(O) C SLR C LALR C LR(1). 

The [p,j;~J notation for a state, as used by Knuth (1965), 

provided a useful formalism which aided in deriving theoretical results, 

i.e. the development of LA(m)LR{lt} and of SLRC, and the formal comparison 

and inclusion result for weak precedence and SLR. 



- 104 -

Parsing table compaction techniques were very successful in 

decreasing the storage requirements of the SLR parser, achieving 

80-90% reductions on the full list representation. The sequence of 

compactions suggested is not optimal, and some bias may have been 

introduced in that most of the grammars involved were designed for 

use by precedence parsers. However, the results for AlgolW3 indicate 

that removal of simple precedence features from a grammar may improve 

storage requirements. 

Timing figures for SLR show that, despite the overhead of 

searching vectors (incurred as a consequence of the list representation 

of the tables), the algorithm remains comparable in speed with an 

efficient simple precedence implementation. Also demonstrated is the 

benefit available from bypassing chain reductions. These comprise 

around 70% of all reductions made in parsing AlgolW2 programs; their 

elimination increases parsing speed by almost 50%. Since the syntax 

phase of the AlgolW compiler occupies about 40% of the total compilation 

time, this represents an increase of 15% in the speed of compilation. 

In summary, our examination of the SLR algorithm confirms that 

its storage requirements can be made acceptable for practical 

implementation, and that its generality is adequate to encompass most 

programming language grammars. Unlike the widely used precedence methods, 

very little modification of an unambiguous grammar is needed for the SLR 

algorithm. SLR retains the LR property of immediate detection of 

syntactic errors; a further advantage over precedence, which is of 

potential benefit for the provision of error diagnostics and error 

recovery routines. A further consequence of this property is that the 

SLR parser's stack always represents the prefix of a sentential form 

(if ~ is the string represented by the stack, then 3 ~ E VT* such that oS 

is a string in some canonical derivation). The integrity of the stack 

may simplify the design of related sections of a compiler. 



- 105 -

These comments also apply to the LALR algorithm, which has greater 

generality and requires less storage than SLR, but involves a more complex 

calculation to produce its parsing tables. 

To give an indication of the CPU time required for the production of 

parsing tables, we give the figures for AlgolW2. On an IBM 360/67, SLR 

tables required It minutes and SLRC tables 3t minutes. Since the table 

constructor is written in AlgolW, and was designed for flexibility rather 

than speed, a recoding could be expected to reduce these times by a 

factor of 2 or more (c.f. DeRemer (1971) - SLR tables for Algol 60 

required 1 minute on a 360/40). 

Syntactic problems have been considered here virtually in isolation 

from considerations of semantics or lexical analysis. The LR methods are 

amenable to the incorporation of these aspects of compilation. Issues 

raised by translation are discussed by DeRemer (1969) where the simple 

Polish transduction grammars of Lewis and Stearns (1968) feature prominently. 

Further optimisations of parsing speed are possible. By using a mixed 

matrix-list representation, a renumbering of the parsing-states could 

ensure that parsing-states having many entries were represented in a matrix, 

while those with few entries were stored as vectors. The nonterminal tables 

for the SLRC method tend to be suitable for such a scheme. Another 

possibility is the sorting of elements of vectors in the list representation 

by some estimate of their frequency of occurrence (during parsing). 

Most commonly encountered entries would then be examined first when vectors 

are searched. Sophisticated strategies would be required for the overlapping 

of ordered vectors. Sorting could be done after overlapping, but to much 

less advantage. 



- 106 -

Other avenues for further investigation include 

1. Modification of Theorem A to prove LALR C LALRC 

(major difficulty is notational). 

2. Consideration of LR(1) storage requirements, in view of 

the success of the compaction techniques (stateset merging 

is then possible, and overlapping would yield increased 

savings). 

3. Evaluation in practical terms of the increased generality 

of LALR and LALRC over SLR and SLRC (requires an 

environment having a translator writing or similar system; 

J. Horning at Toronto has found that while a majority of 

practical grammars are SLR, a few do require LALR). 

4. Structure preserving grammatical transformations which 

yield SLR or LALR grammars (Graham (1970) gives these for 

simple precedence and LR(1) grammars). 



- 107 -

APPENDICES 

There are two appendices, the first of which consists mainly 

of proofs omitted from the main text. The second provides some 

details of the author's implementation of an SLR parsing table 

constructor, and also gives examples of the output from that 

implementation. 



- 108 -

Appendix 1 

1.1 The sets Z and Z' are defined for an LR(k) stateset g by, 

Z = (~ \3[p,jjO'] E 3', j < n , 
P 

I3EH'(X X O')} 
k P,J;J. P" 

P z'= (13 \ 3[p,jjO'] E 3', j < n , a 
P 

= xv, x = X E V 
P ,J +1 T ' 

v E H (X ••• X O')} 
k-1 P,J+2 pD 

P 

We show that Z = Z' for k ~ 1. The reason is to be found in the 

calculation of g' from 3, which adds to 3' states [q,O;SJ 

corresponding to any [p,j;O'] E g' with A = X E VU' 
q P ,J +1 .' , , 

Clearly Z ~ Z, we need only prove Z ~ Z • 

Let w E z. Then 3 [p,j ;O'J E 3' with j < n ,w E H' (X 
P k P,J+l 

X 0'). 
PD 

\w \ = k ~ 1 and so w = x5, x E VT ' \6\ = k-l. 
P 

If X E VT ' then 
P ,j +l 

x=X 
P ,J +l 

and so w E Z'. 

Otherwise, because x5 E H' (X 
k P ,J+l 

X 0'), we can find a sequence 
PD 

P 

of productions, 

A -+X 0' n > ° 1 ~ i ~ r r ~ 1 
qi q ,1 1 qi 1 

with X = A X = A ~ 

P ,j +l q1 q 1 ,1 q 1 +1 

and such that 5 E H (0' O'X 
k-1 r 1 P ,J -t2 

By virtue of this sequence, 

[q ,O;~] E 3' V 13 E H (0' ... 0' X 
1 k i -l 1 P ,J +2 

q 
r 

q 1 
r'· 

X V E Z' V V E H (0' 
q 1 k-l r 

r ' 
and so x5 = w E Z'. 

Thus Z C Z' . 

O'X 
1 P ,J +2 

i < r and X = x 
q ,1 

r 

X 0') • 
PD 

P 

X 0') 1 ~ i ~ r 
pD 

P 

X 0') 
pD 

P 



1.2 

- 109 -

In the proof of lemma 1, we claim that if 3 and 3 are 
• Ie 

respectively LR(m) and LR(k) state sets (for the same grammar), 

with H (3 ) = 3 , then H (3') = 3'. This will now be justified. 
k II k Ie II Ie 

Suppose [q,O;Y] E 3' (and [q,OjY] ~ 3). Then we can find 
Ie Ie 

[p,j;~] E 3 with ° ~ j < n and a sequence of productions 
Ie p 

A -+X ex n > ° 1 :!':: i :!':: r r ~ ° qi q 1 ,1 1 q1 

with X = A X = A :!':: i :!':: r and A = A 
p , j +1 q1 q 1 ' 

1 

and such that Y E H (ex 
Ie r 

Also 3 [p,jja] E g with S E H (a), 
II Ie 

hence Y E H (a 
Ie 

aX 
1 P,J-+2 

q 1 +1 

a X 
1 P ,J +2 

X a) . 
pn 

p 

Because of the above sequence of productions, 

X S) . 
pn 

p 

[q,OjO] E 3' V 0 E H (a X a) 
II II r pn 

p 

So we can find [q,Ojo] E 3' with Y E H (0). 
II Ie 

Thus [q,OjY] E H (3') and we have 3' C H (S'). 
k II Ie - Ie • 

q 
r~ 

Conversely, suppose [q,OjY] E H (3') (and [q,OjY] ~ g ). 
Ie II Ie 

Then 3 [q,Ojo] E 3' with Y E H (0). We can find [p,jja] E g 
• II k 

with ° ~ j < n and a sequence of productions, 
p 

A -+X a n > ° 1 :!':: i :!':: r r ~ ° 
qi q i ' 

1 i qi 

with X = A X =A :!':: i :!':: r and 
P ,J +l q1 q ,1 qi +l i 

and such that 0 E H (a ... aX X a) . 
II r 1 P ,j -te pn 

p 

Also 3 [p,jjS] E 3 with ~ E H (a). 
Ie k 

Because of the above sequence of productions, 

X s) 
pn 

p 
[q,O;O] E g' \I 0 E H (a a X 

Ie Ie r 1p,j-+2 

= H (a a X 
Ie r 1p,J+2 

X a) 
pn 

p 

Thus [q,O;Y] E 3' and we have H (3') c g' . 
Ie Ie • - Ie 

Hence H (3') = 3'. 
\( II 'k 

A 
q 

r +1 

q 

A 
q 



- 110 -

1 .3 Next we give an outline of a minimal LR(k) backtracking 

algorithm. This has not been implemented and should only be 

regarded as indicating that such a technique is theoretically 

possible. The method used is a modification of the first LA(k)LR(O) 

algorithm, where if two statesets are combined and generate an 

inadequate stateset, sufficient information is retained to permit 

their separation. M is a matrix, whose elements are statesets, 

which are all initially set to ¢. We denote by 3 the contents of 
1 

M[i,j] where j is a maximum such that M[i,j] 1 ¢ (if no such j then 

g = ¢). All non void entries in the ith row of M will be different 
1 

k symbol lookahead refinements of the same LR(O) stateset, g being 
1 

the most recent version. At any stage in the computation a 

variable t indicates how of M are in use, and {g I 1 ~ i ~ t} many rows 1 

is the current table of statesets. An attempt is made to combine a 

generated stateset gy with each g such that g 
1 1 

gy (under H ). 
o 

Only if no attempt succeeds is t incremented and gy inserted as a new 

stateset g. TEST is a recursive boolean procedure with three 
t 

parameters, a stateset g, and integers n and 1. TEST returns false 

if g generates any inadequate statesets, but otherwise returns true 

and updates M with all statesets generated by g. n specifies a row, 

and I a column of M (1 indicates the depth of recursion). In the 

following pseudo Algol description, efficiency is sacrificed in the 

hope of reducing obscurity. 



- 111 -

boolean procedure TEST (g,n,l); value g,n,l; stateset S; integer n.l; 

if g is inadequate then TEST:= false else 

begin M[n,l] :=~; 

for each Y E V do if] g with g - gy and g ~ gy then 
-- ---- 1 1 -- 1 

begin i:= 1; while i ~ t do 

if g - gy and TEST(g U gY,i,I+1) then i:= t+2 else i'- i+l', 
- 1 -- 1 

if i = t+1 then 

begin t:= t+1; if not TEST(gY,t,l+l) then 

begin for i:= 1 step 1 until t do M[i,l] .- ¢; 

t:= t-1; TEST:= false; goto EXIT 

end 

for i:= 1 step 1 until t do if M[i,l] ~ ¢ then 

begin M[i,l-l]:= M[i,l]; M[i,l] := ¢ end; 

TEST:= true; 

EXIT: end TEST; 

t:= 1; if TEST([[O,O;A]},1,2) then 

comment minimal LR(k) machine is in M[l,l] ... M[l,t];; 



- 112 -

1.4 To prove that a A-free grammar is PLR iff it is weaker 

precedence, we show that a grammar which is not PLR is not 

weaker precedence, and that a A-free grammar which is not 

weaker precedence is not PLR. 

First suppose q is not PLR. Then we can find a state set 

with either a) a shift - reduce p inadequacy or b) a reduce p -

reduce q inadequacy which cannot be resolved by examining the 

stack. 

a) If the stateset's associated symbol is Y, and the 

inadequate lookahead symbol is x we can deduce both 

Y ~. x and y.> x by applying lemma 3 to the SLR 

statesets which contributed the inadequacy causing 

states. 

Thus q is not weaker precedence. 

b) If the inadequate lookahead symbol is x, then 

x E F (A ) n F (A). If n = n and the inadequacy 
1 p 1 q p q 

cannot always be resolved, then we must have 

A -+ Ct, A -+ Ct and 
p q 

Then q is not 

Ifn f n , say n 
p q p 

always be resolved, 

and X ~. A . 
p 

X such that X S· A , X S' 
p 

weaker precedence. 

< n , and the inadequacy 
q 

we must have A -+ CtXIS, 
q 

Then q is not weaker precedence. 

A 
q 

cannot 

A -+-ye 
p 



1.5 

- 113 -

Now suppose q is A-free, but not weaker precedence. One of 

conditions (ii), (iii)", (iv)" does not hold. 

* If Y ~. X and Y .> X then since X ~ xY with x E V
T 

we have Y ~. x 

and Y .> x. Consider the PLR stateset g with associated symbol Y. 

Then [p,j;O'J E g o ~ j < n 
p 

ie. shift - reduce q inadequacy, 

so q is not PLR. 

If A ~ O'XYa, A ~ Ya, X s;. A and x E F (A ) n F (A ), then 
p q q lp lq 

consider the state set g with associated symbol the final symbol of 

Ya. [p,n ;xJ, [q,n ;xJ E g, and if the stack top represents O'XYe 
p q 

the inadequacy cannot be resolved. 

So q is not PLR. 

If A ~ 0', A ~ 0', X E F (A ) n F (A ) and X ~. A , X S;. A then 
p q lp lq p q 

consider the stateset g with associated symbol the final symbol 

of 0'. [p,n ;xJ, [q,n ;xJ E g and if the stack top represents ~, 
p q 

the inadequacy cannot be resolved. 

So q is not PLR. 

This completes the proof. 

In this section we establish, as theorem A, the result that 

any SLR grammar which is A-free is an SLRC grammar (for any set 

of chain productions). The following lemma is central to the 

proof of this theorem. 



- 114 -

Lemma A 

Let q be SLR, and g an SLR stateset. 

If [p,j-1], [q,l-1] E g', and X = B ~ 
p J 11 

y = C ~ ~ = y and A f: B m ~ i ~ q1 n 1 q 1 

~B = y 
1 

1 A f: 
;> 

n ~ i ~ 1 and F (X ) n F (X ) f: ¢, then 
1 p J 1 q1 

X = X 
pj q 1 

C 
1 

Let y E F (X ) n F (X ). Then y E F (B) m ~ i ~ 1, 
1 pj 1 q1 1 1 

Y E F (C) n ~ i ~ 1. Take n ~ m. Determine r such that 
1 i 

\I i < r we have B = C and either B f: C or r = m. 
i 1 r r 

If B f: C , then r > 1 so let B = A ~ X = B 
r r r p , p ,1 r--1 

C = A ~X = C 
r q , q '1 r -1 

We have [p 
, 
,oJ, [q 

, 
,oJ E g' [p '1], [q; 1 ] E g B , so 

r -1 

Since p 
, 

f: 
, 

y E F (A ) n F (A ) q , n = n = 1, the 
p , q , 1 p' 1 q' 

stateset g B is inadequate - a contradiction. 
r _1 

So B = C and r = m. If n > m, let C = A ~ X = C = B . 
r r III +1 q , q '1 • III 

We have [q',O] E g', so [q;1], [p,j] E g B . 
III 

Since n = 1, Y E F (A ) 
q , 1 q' 

, 
we have a (y,reduce q ) entry. 

Also, Y E F (X ) so 
1 pj , 

if j < n we either have a (y,shift) entry or a (y,reduce P ) 
p 

'..I. ' entry with n = 0, so P T q . p , 

if j = n 
p 

we have a (y,reduce p) entry, and p f: q' since A IC . 
P 11 +1 

In either case ~ B is inadequate - a contradication. 
III 

Thus r = m = n, and hence X = X 
pJ q1 



- 115 -

Theorem A 

Let ~ be an SLR, A-free grammar. Then ~ is SLRC. 

For suppose 3 an inadequate SLRC stateset g say. Extending 

the chained successor notation, we have g = g 
oY1 

Ya (with m ~ 

since ~ is SLR). Let g denote g v. 
1 'J Y1 ••• .Ll 

o ~ i ~ m. 

We can find two sequences of states, 

[p ,j ], [q ,1] 0 ~ i ~ m with the following properties. 
1 1 1 1 

1) 

2) 

[p ,j ], [q ,1 ] E ~ 0 ~ i ~ m 
1 1 111 

For 0 ~ i < m, j < n and 
1 p 1 

either [p ,j +1J 
1 1 

= [p ,j J 
1 +1 1 +l 

or [p ,oJ E g/, j = 1 as a result 
1 +1 1 1 +1 

* of x .... A Ci 
p J +1 
l' 1 P 1 +1 1 

Thus [Pl+1,jl+l - 1J E g 

1 < n and 
1 q 1 

similarly [q ,1 - 1J E g I 
1 +1 1 +1 1 

[p ,j J introduces (or is equal to) a state 
m m 

[p,n ] E g I E F (A ) , x 
p m 1 p 

[q ,1 J introduces (or is equal to) a state 
m m 

[q,lJ E g I 
m 

with either 1 < n , x = X 
q q ,1 +1 

or 1 = n , x E F (A ), p ~ q. 
q 1 q 



- 116 -

Since X 4 y ex and 
P

1
, J

1
-tl 1+1 

e for some 0!,3 E V*. "'"e have 

F (X ) n F (X 
1 P J 1 q 1 
iii 1 

Since q is A-free, n > ° and we have [p,n ] E g 'so 
P P III 

[p ,j ] = [p,n ]. 
III III P 

x E F (A ) and so x E F (X ) . 
1 P 1 P J 

III III III 

If 1 = n we similarly deduce x E F (X ) . 
q 1 Cl 1 

* II III 

If 1 < n then X -+X e = xS such that x E F (X ) . 
q q ,1 +l q ,1 +1 1 Cl I 

III III • • 
So F (X ) n F (X ) ~ ~. 

1 P j 1 q 1 
III III III III 

Thus, F (X ) n F (X ) 1 ¢, X c*Y, X c*Y and 
1 P 1 ql PJ 1 ql 1 

, 
1 i i 1 1 1 1 1 

A , A cannot occur in these chains since (by virtue of 
PI qi 

[Pl,ji J, [q ,1 J E g ) 
PI and q do not designate chain 

1 1 1 1 

productions, all for 1 ~ i ~ m. 

By induction on i we can show 

[Pili' jill J, [\' \ J E ~o X 
P1J 1 

••. X 
P J 

III III 

Clearly [p ,j ], [q ,1 J = [O,oJ 
o 0 0 0 

E g . 
o 

Assume ~ wit.h 1 ~ i ~ m, that 

[p j J [a 1 ] E g X 
1 -1' 1 -1 ' "'1 -1' 1 _lOp 1 J 1 

X 
P 1 J J i -1 

This is an SLR stateset. 

Also [p ,j -1],[q ,1-1] E(8X ... X )' 
1 ill 0 P 1 J 1 P 1 -1 J 1 -1 

The conditions of lemma A are all satisfied, and so X = X 
P

1
J

1 
Cl

1
11 

Then [p ,j ], [q ,1 ] E S X 
1 1 1 1 0 P

1
J

1 

X ,completing an inductive 
Pi J 1 

step. 

From [p ,j ], [q ,1 ] E g X ... X we deduce that 
III III III III 0 P

1
J

1 
P~ III 

[p,n ], [q,l] E (S X ... X )' which contradicts q being SLR, 
P 0 P

1
J

1 
Pili Jill 

since 8 X X would be inadequate. This gives us our 
o P

1
J

1 
PIIIJ m 

result. 



- 117 -

1.6 The final result of this appendix shows that SLR parsing-states 

cannot be merged under the criteria given in Chapter 4. 

Let R(8 ) and R(8 ) be SLR (or LALR) parsing-states such 
1 r 

that 

(1) their nonterminal entries do not conflict, 

(2) their terminal shift entries are identical, 

(3) the productions used for reductions in each are 

the same. 

Then we can show 1 = r. 

For suppose [p,j] E 8 . 
1 

If j = n 
p 

then we will have reduce p entries in R(S ) and so 
1 

(by (3» also in R(8). Hence [p,n ] E 8 . 
r P r 

If j < n 
p 

then consider X 
p ,J +1 

If X = x E V then (x,shift t) E R(8 ) for some t. 
T 1 p ,3 +1-

By (2), (x,shift t) E R(8 ) 
r 

we deduce [p,j] E 8 . 
r 

also. Since [p,j+1] E 8 
t 



- 118 -

Otherwise X E v. We can find a sequence of productions 
p ,3 +1 N 

A -+X a n > 0 1 :S:: i <m m ~ 1 
q1 q 1 ,1 1 q1 

with X = A X =A 1 :S::i<m 
P ,3 +1 q1 q 1 ,1 q1 +1 

[q1 ,oJ E S' 1 :S:: i :S:: m 
1 

and either A -+A or A -+xa, x E V
T

• q q • • • 
!fA -+ A then we will have reduce ~ entries in R(S ) and 

q 1 
II 

so (by (3» also in R(S ). Hence [q ,oJ E S' . 
r • r 

If A -+ xa then (x, shift t) E R(S ) for some t. By (2), q II 1 
II 

(x, shift t) E R(S ) also. Since [q ,1J E S we deduce 
r • t 

[q ,oJ E S' 
II r 

Now suppose [~,oJ E S: for some i with 1 < i ~ m. 

Since (A ,shift t) E R(8 ) for some t , by (1) the entry on 
q 1 1 1 

A in R(8 } must also be (A ,shift t ), and since 
q1 r q1 1 

[q ,1J E S and A = X we deduce [q ,oJ E g'. 
1-1 t q q 1 ~J 

1 1 1 -1 ' 

By induction we deduce 0 and then consider [~ ,oJ E (J , 

r 

(A ,shift t) E R(S ) for some t. By (1) the entry on A 
ql 

in 
q1 1 

R(S } must also be (A ,shift t), and 
r q1 

since [p,j+1] E g and 
t 

A = X we deduce [p,j] E g . 
q P j +1 r 

1 ' 
Thus in all cases [p,j] E S. Therefore g c g and by symmetry 

1 r r 

S = S. Hence I = r. 
1 r 



- 119 -

Appendix 2 

A parsing table constructor was implemented as a suite of four 

programs, written in AlgolW, and run under the Michigan Terminal System 

on the IBM 360/67 at Newcastle. These programs, named SLRIN, SLR, SLRED 

and SLROUT, accomplish the following tasks (in addition to serving as 

the test programs 2-5 used for timings in Chapter 4). 

SLRIN 

SLR 

SLRED 

SLROUT 

Accepts a CFG, in a free format BNF style of notation, 

and from this constructs an internal representation of 

the grammar. Checks are made on the validity of the 

input, to ensure that it represents a CFG in reduced 

form. The internal representation is augmented by a 

th zero production with endmarker. 

Computes from the grammar the sets F (A) for each 
1 

A E V , and then constructs an uncompacted list 
N 

representation of the SLR (or SLRPC or SLRC) parsing 

table. 

Applies the various compactions, in order -

merging of inadequate statesets, elimination of LR(O) 

statesets, terminal defaults, nonterminal defaults, 

renumbering of parsing-states, overlapping in SUPTACT. 

Overlaps terminal entries, and formats the list 

representation into initialisation for PL360 declarations. 

CPU time requirements, in seconds, for each of these programs 

operat1ng on the AlgolW2 grammar are given in the following table. 



- 120 -

Program SLRIN SLR SLRED SLROUT 

5 76 9 7 SLR 

5 130 9 7 SLRPC Parsing Table 

5 147 23 40 SLRC 

The computat ion of F (A) 
1 

in the program SLR is based on the equation 

... 
C .... dXB ... B Y w E P wi th B 

1 n :.. 
B .... 11., 

n 

* * X .... ~A, Y .... aY, ct, ~, Y, w E V* } 

This result is stated by Knuth (1971), who uses the name 'follow' for F . 
... 

Before the equation can be used, We must determine which nonterminals can 

generate the empty string. They may be computed recursively, using 

* * A .... A iff A.... B 
1 

B , B .... 11., 1 ~ i ~ n, n ~ ° 
n 1 

Also required, for every A E V, are 

'" 
[a E * ctEV* } first(A) n V

T VT A .... act, = 

[B E 
* ctEV*} [A} U last (A) n and V

N 
A .... ctB, = VN 

which may be determined using 

* 
X E first (A) iff A .... B B Yct, B ... B .... j\ , n ~ 0, .. . 

1 n 1 n 

X = Y or X E fir st ( Y) 

* 
X E last(A) iff A .... ctYB B B ... B .... 11., n ~ 0, .. . , 

1 n 1 n 

X = Y or X E last(Y) 

Iterative routines can be programmed to perform these calculations. 



- 121 -

In an attempt to simplify storage allocation in the program SLR, 

an upper bound was derived for the number of statesets in a stateset 

table. If s is the number of productions and t the number of terminals 
8 

of a grammar then 2-, where m = t k 
• L n

1
, is quoted as an upper bound 

1 = 0 

for the LR(k) stateset table by Korenjak (1969). Since every stateset 

has an associated symbol, it can be shown that an improved upper bound 

is L 2f
(X) where f(X) denotes the product of the number of occurrences 

XEV 

of X on the RHSs of productions with max (number of elements in F (A». 
AE'{. [k 

For the XPL grammar, with k = 0, we have ;! = 2226 and 2f (X) * 2 16 , 

XEV 
compared with an actual value of less than 28

• Despite the improvement, 

the new upper bound was not used. 

The strategies employed by SLRED and SLROUT for overlapping, can be 

described in terms of the following model. The elements of the sets 

D = [A , '0' ,A } 1 ~ i ~ n are to be stored as a vector E, subject 
1 1 1 1 II 

1 

to the constraint, 

V i .3 j such that D = [E(j), •.. , E(j+m -1)} 
1 1 

Clearly one solution is E = A •.. A ••• A .•• A the objective of 
11 1- 01 oa 

1 0 

an overlapping strategy is to reduce the length of E. 

The method used by SLRED for overlapping in SUPTACT is very simple. 

Each set D is in turn either overlapped on E if there already exists a 
1 

j with D = [E(j), ••. , E(j+m -1)} or concatenated onto the elements 
1 1 

already in E(the process is in fact further simplified by imposing an 

ordering on the A storing each D as an ordered vector, and requiring 
1 J ' 1 

D (1) ••• D (m ) = E(j) ..• E(j+m -1) for overlapping to take place). 
1 1 1 1 



- 122 -

A more complex technique was needed in SLROUT for overlapping 

entries of TSYM, TACT , and is now described. Two types of flag are 

employed, referred to as marks and ticks respectively; initially the 

D are not marked or ticked. Any D with m = 1, or for which D = D 
1 1 1 1 J 

(for some D not yet excluded), is excluded from Stages 1 and 2. 
J 

Repeat Stage 1 until all the D are marked. 
1 

Stage 1 

Select the largest unmarked set, say D. Determine the 
1 

sequence C , •.. ,C where C = D , C is the largest 
1 m 1. 1 J+l 

unmarked set such that C c C 1 ~ j < m, and no unmarked 
J + 1. J 

set is contained in C. If m ~ 2 then tick and mark D , otherwise 
m 1 

concatenate D onto E, and mark C , ... , C 
1 1. 

Repeat Stage 2 while 2 or more D remain ticked. 
1 

Stage 2 

Select i ~ j such that D ,D are ticked and D n D is 
1 J 1 J 

largest. Concatenate DUD onto E, and remove ticks from 
1 J 

D and D . 
1 J 

Stage 3 

Any remaining ticked D is concatenated onto E. Those D 
1 1 

excluded from Stages and 2 are optimally overlapped or 

concatenated onto E. 

The elements of sets concatenated onto E must be ordered to ensure that 

the constraint on E is satisfied. This is complicated by the presence 

of default operations, and in Stage 2, if D and D both contain default 
1 J 

operations, then D n D must be regarded as ¢. 
1 J 



- 123 -

The four programs produce the following information in a readable 

format. 

SLRIN 

SLR 

SLRED 

SLROUT 

Tables of the terminals, nonterminals and productions 

of the grammar are printed, together with the integers 

which identify these items within the programs. 

The principal nonterminal and endmarker are represented 

by ++++ and _1_ respectively. Productions 

A .... ex
l

, •.• , A .... ex are printed as A :: = ex I ... I ex • 
n 1 n 

Some statistics of the grammar are also given. 

* Nonterminals A such that A .... A are listed, and the sets 

F tabulated for every nonterminal. 
1 

If F (A) = {a , 
1 1 

. .. , a } 
n 

this is printed as A I a ..• a under the heading 
1 n 

'TABLE OF FOLLOW'. Stateset and parsing tables (SLR or SLRPC 

or SLRC as required) are output together. 

Prints statistics of the parsing table and of the compactions 

obtained, followed by a specification of the stateset 

renumbering resulting from the compactions. The renumbered 

compacted parsing table is printed, with terminal default 

entries indicated by ++++ (no confusion can arise from the 

use of this symbol). Then the table of nonterminal defaults 

is given. 

Specifies the saving from terminal overlapping, and the amount 

of storage required for the tables. Initialised PL)60 

declarations for LHS, TST.ATE, NSTATE, TSYM, NSYM and ACT are 

printed. The integers NDEF, TACT and NACT denote the 

locations of the first member of their respective vectors 

within ACT. 



- 124 -

The output from each program is terminated (and hence delimited) 

by the CPU time used in the program's execution. We present examples 

of output for the grammars q , q , q and q (introduced on pages 20, 
Iii 6 7 e 

60 and 69). 



- 125 -

~2 is a trivial SLR grammar which is not LR(O). The tables presented 

are the output of the programs SLRIN and SLR. 

TERMINALS 
1 a 1: _L 

NONTERMI NALS 
4 ++++ A 

PRO DO CT ION S 
o ++++ ::= A 
1 A ::= a I a 

THERE ARE 3 TERMIN ALS AND 2 NON TERMINALS 
THERE ARE 3 PRODUCTICNS WITH AVERAGE LENGTH OF RHS 200C 

OOO~11 SECONDS IN EXECUTION 

TABLE OF FOLLO W 

A b 



- 126 -

GRAl'll'lAR IS SLR 

SLR STATESET AND PARSING TABLE 

STATESET 0 
(0 10) 
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS 
PARSING-STATE 0 

(a "SHIFT 2) (A , GOTO 1) 
o REDUCE ENTRIES 1 SHIFT ENTRY 1 GOTe ENTRY 

STA TESET 1 
(0 r 1) 
NUMfER OF STATES = 1 ASS OCI AT ED SY M EOL IS A 
PARSING-ST ATE 1 

o REDUCE ENTRIES o SHIFT ENTRIES 0 GOTO ENTRIES 

STATES ET 2 
(1,,1) (2,,1) 
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS a 
PARSING-STATE 2 
(b 41REDUCE 2) (a "SHIFT 2) (A , GOTO 3) 
L ,_ I REDUCE 2) 
2 REDUCE ENTRIES 1 SHIFT ENT RY 1 GO TO ENTRY 

STATES IT 3 
(10 2) 
NUHfER OF STATES = 1 ASSOCIATED SYMBOL IS A 
PARSING-STATE 3 

(b 8 SHIFT 4) 
o REDUCE ENTRIES 1 SHIFT ENT RY o GOTO ENTRIES 

ST ATES ET 4 
(11/ 3) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS b 
PARSING-STATE 4 
(b "REDUCE 1) 
L 1_ "RED DCE 1 ) 
2 REtUCE ENTRIES o SHIFT ENTRIES 0 GOTe ENTRIES 

000~~5 SECONDS IN EXECUTION 



- 127 -

n is a small grammar of a programming language type, incorporating 
'6 

statements and simple arithmetic expressions. It includes a production 

with an empty RHS. The tables presented are the output from all four 

programs (with chain elimination) and from SLR (without chain elimination). 

TERMINALS 
1 id + * if then or else := _1-

NONTERMI NALS 
12 ++++ D A E T P C B L 

PRODUCTION S 
0 ++++ : := D _L 
1 D : := A I C 
3 A G 4- id := E 
4 E : : = T I E + T 
6 T : := P I T * P 
8 P :: = ( E ) 1 id 

10 C '0':'= if B then A L 
11 B : : = B or id I id 
13 L :: := else D I 

THEBE ARE 11 TERMINALS AND 9 NONTERMINALS 
THERE ARE 15 PRODUCTIONS WITH AVERAGE LENGTH OF RHS 2 .. 00 
PBODUCTIONS 1 2 4 6 ARE CHAIN PRODUCTIONS 

000~30 SECONDS IN EXECUTION 

L GENERATES THE EMPTY STRING 

TABLE OF FOLLOW 

D _L 
A else _I-
E + ) else _I-
T + ) * else _1-
P + ) * else _I-e _1-
B then or 
L _1-



- 128 -

GRA ~MAR IS SLRC 

SLBC STA TESET AND PARSING TABLE 

STATESET 0 
(011 0) 
NUMfER OF STATES = 1 ASSOCIATED SYMBOL IS 
PARSING~STATE 0 

(id , SHIFT 2) (D ,GCTC 1 ) 
(if ,SHIFT 3) (A , GOTO 1) 

(C ,GCTe 1 ) 
0 REtUCE ENTRIES 2 SHIFT ENTRIES 3 GOTO ENTRIES 

ST ATES ET 1 
(0 J7 1) 

NU MBER OF STATES = 1 ASSOCIATED SYMBOL IS D 
PAR SING- STATE 1 

0 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTC ENTRIES 

STATESET 2 
(3, 1) 

NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS id 
PARSING~ST ATE 2 

( := "SHIFT 4) 
0 REDUCE ENTRIES 1 SHIFT ENTR Y 0 GOTO ENTRIES 

STATESET 3 
(10 Q 1) 

NUM EER OF STATES = 1 ASSOCIATED SYMBOL IS if 
PARSING~ST ATE 3 

(id uSHIFT 6) (B I GOTO 5) 
0 REDUCE ENTRIES 1 SHIFT ENTR Y 1 GOTO ENTRY 

STA TESET 4 
(3 Q 2) 
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS .-.-
PARSING~ST ATE 4 

(id u SHIFT 10) (E ,GOTC 7) 
( ( ",SHIFT 9) (T • GOTO 8) 

(P ,GCTO 8 ) 
0 REtUCE ENTRIES 2 SHIFT ENT RIES 3 GOTO ENTR IES 

ST ATES ET 5 
(10,2) (11,,1) 
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS B 
PARSING-STATE 5 

(then,SHIFT 11 ) 
(or (/SHIFT 12) 

0 REDUCE ENTRIES 2 SHIFT ENTRIES 0 GOTO ENTRIES 



- 129 -

ST ATES IT 6 
(1211 1) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS id 
PARSING-STATE 6 
(then Q RED UCE 12) 
(or gREDUCE 12) 
2 REDUCE ENTRIES 0 SHIFT ENT RIES 0 GOTO ENTRIES 

ST ATES I'r 7 
(311 3) (5 g 1 ) 
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS E 
PARSING~STATE 7 
(elseg REDUCE 3) (+ "SHIF T 13) 
L'_ oREDUCE 3) 
2 REW CE ENTRIES 1 SHIFT ENTRY 0 GCTC ENTRIES 

STATESET 8 
(3 r 3) (5 11 1) (711 1) 

NUMBER OF STATES = 3 ASSOCIATED SYMBOL IS T 
PARSING~ST ATE 8 
(else,fJREDUCE 3) (+ oSHIFT 13 ) 
L L g REDUCE 3) (* u SHIFT 14 ) 
2 REDUCE ENTRIES 2 SHIFT ENTRIES 0 GOTO ENTRIES 

STATES IT 9 
(8 J7 1) 
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS 
PAR SING~ STATE 9 

(id 11 SHIF T 10) (E ,GCTC 15) 
« "SHIFT 9) (T tJ GOTO 16) 

(P "GCTC 1 6 ) 
0 REDUCE ENTRIES 2 SHIFT ENTRIES 3 GOTO ENTRIES 

STATES E'r 10 
(9.v 1) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS id 
PARSING~STATE 10 
(+ oR EDUCE 9) 
() gREDUCE 9) 
(* 11 REDU CE 9) 
(else 0 RED UCE 9) 
LL t/REDUCE 9) 
5 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTR IES 

STATESET n 
(10#3) 
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS then 
PARSING~STATE 11 

(id (/ SHIFT 2) (A ,GOTC 17) 
0 REDUCE ENTRIES 1 SHIFT ENTRY 1 GOTO ENTRY 

STATESIT 12 
(11112) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS or 
PARSI NG~ STATE 12 

Cia , SHIFT 18} 
ENTR IES 0 REDUCE ENTRIES 1 SHIFT ENTRY 0 GOTO 



- 130 -

STA 'IE SE T 13 
(5,2) 

NU MBER OF STATES = 1 ASSOCIATED SYMBOL IS + 
PARSING- STATE 13 

(id • SHIFT 10) (T ,GCTC 19 ) 
( ( 6 SHIFT 9) (P I GOTO 19) 

0 REDUCE ENTRIES 2 SHIFT ENTRIE S 2 GOTe ENTRIES 

STA TESET 14 
(7,2) 

NUM EER OF STATE S = 1 ASSOCIATED SYMBOL IS * PARSING-ST ATE 14 
(id gSHIFT 10) (P , GOTO 20) 
( ( , SHIFT 9) 

0 REDUCE ENTRIES 2 S HI FT E NT B I ES 1 GOTO ENTRY 

ST ATES ET 15 
(5 c 1) (8 0 2 ) 
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS E 
PARSING-STATE 15 

(+ " SHIFT 13) 
() "SHIFT 21) 

0 REDU CE ENTRIES 2 SHIFT ENTRIE S 0 GOTe ENTRIES 

STATESET 16 
(50 1) (7" 1) (8 0 2) 

NUMBER OF STATES = 3 ASSOCIATED SYMEOL IS T 
PARS IN G~ST AT E 16 

(+ g SHIFT 13) 
() ,SHIFT 21) 
(* oSHIFT 14 ) 

0 REDUCE EN TR IES 3 SHIFT E NT RI ES 0 GOTO ENTRIES 

ST ATES ET 17 
(10 11 4) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS A 
PAR SING~ STATE 17 
LL (J REDUCE 14) (elseo SHIF T 23) (L "GOTC 22) , REDUCE ENTRY 1 SHIFT ENTRY 1 GOTO ENTRY 

ST ATES ET 18 
(11.3) 
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS id 
PAR 51 NG~ STATE 18 
(then(J REDUCE 11) 
(or oREDUCE 11 ) 
2 REDUCE ENTRIES a SHIFT ENTRIES 0 GOTO ENTRIES 

STATESET 19 
(5" 3) (7 D 1) 

NUMfER OF STATES = 2 ASSOCIATED SYMBOL IS T 
PARSING-ST ATE 19 
(+ ,REDUCE 5) (* oSHIFT 14 ) 
() gREDUCE 5) 
(else",REDUCE 5) 
L 1_ B REDUCE 5) 

0 GOTO EN TR IES 4 RED UCE E NTBIES 1 SHIFT ENTRY 



- 131 -

STATESET 20 
(7 g 3) 

NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS p 
PARSING-STATE 20 
(+ gREDUCE 7) 
() oREDUCE 7) 
(* , REDU CE 7) 
(else"REDUCE 7) 
LI_ ,REDUCE 7) 
5 REDUCE ENTRIES 0 SHIFT ENT RIES 0 GOTO ENTRIES 

STATESIT 21 
(8 Q 3) 

NU MBER OF ST ATES = 1 ASSOCIATED SYMBOL IS 
PAR SING-· STATE 21 
(+ Q REDUCE 8) 
() oREDUCE 8) 
(* oREDUCE 8) 
(else Q RED UCE 8) 
L 1_ II'REDUCE 8) 
5 REDUCE ENTRIES 0 SHIFT ENT RIES 0 GOTO EN TR IES 

STATESET 22 
(10 0 5) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS L 
PAR SING- STATE 22 
L L Q REDUCE 10) 
1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GO TO ENTR IES 

STATESET 23 
(13,1) 
NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS else 
PAR SING-' STATE 23 

Cid , SHIFT 2) (D ,GOTO 24) 
(if "SHIFT 3) (A t GOTO 24) 

(C ,GCTe 24) 
0 RELUCE ENTRIES 2 SHIFT ENT RIES 3 GOTO EN TR IES 

ST ATES ET 24 
(13,,2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS D 
PAR SING~ STATE 24 
LL 0 REDUCE 13} 
1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES 

001~36 SECONDS IN EXECUTION 



- 132 -

~ERE ARE A TOTAL OF 25 PARSING-STATES 
THEY CONTAIN 59 TERMINAL AND 18 NONTERMINAL ENTRIES 
o ST ATES FTS ARE IN ADEQUATE 
7 STATESETS ARE LR (0) ~ THEIR REMOVAL SAVES 21 TERMINAL ENTRIES 
TERMINAL DEFAULTS SAVE 5 TERMINAL ENTRIES 
NONTERMINAL DEFAULTS REMOVE 7 NONTERMINAL ENTRIES 
RENUMBERING PARSING--STATES SAVES 12 EN'IRIES FROM NSTATE 

STATESET 
STATESET 
STATESET 
STA'lESET 
ST ATES ET 
STA'IESET 
STATES ET 
STA 'lE SET 
STATESET 
STA 'IE SE T 
STATESET 
STA'IESET 
ST ATES ET 
STA'IESET 
STATES ET 
STATESET 
ST ATES ET 
STA TESET 
ST ATES ET 
STA'lESET 
ST ATES ET 
STA 'IE SE T 
STATESET 
STATESET 
ST ATES ET 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

RENUMBERED AS STATE SET 0 
RENUMBERED AS STATESET 6 
RENUMBERED AS STATESET 7 
RENU~BERED AS STATESET 8 
RENUM BERED AS STATE SE 'I 9 
RENU~BERED AS STATESET 10 
LR (0) ; EL IMINA TED A S RED UCE 
RE NU ~BERED AS ST AT ES ET 11 
RENUMBERED AS STATE SET 12 
RENU~BERED AS STATESET 1 
LR (0) ; ELIMINATED AS REDDCE 
RE NU MBERED AS ST AT ES ET 2 
R EN U M BE RED ASS TA TE SE T 1 3 
RENUMBERED AS STATESET 3 
RENUMBERED AS STATE SET 4 
RENU~BERED AS STATESET 14 
RENUMBERED AS STATESET 15 
RENU~BERED AS STATESET 16 
LR (0); ELIMINATED AS REDDCE 
RENUl'IBERED AS STATESET 17 
LR (0) ; ELIMINATED AS REDUCE 
LR(O): ELIMINATED AS REDUCE 
LR (0) ; ELIMINATED AS REDDCE 
RENUl'IBERED AS ST ATESET 5 
LR (0) ; ELIMINATED AS REDUCE 

COMPACTED PARSING TABLE 

PARSING'~ST ATE 
(id oSHIFT 
(if l'SHIFT 

o 
7) (D oSHIFT 6) 
8) 

2 TERMINAL 
WAS NUMBERED 

ENTRIES 1 NONTERMINAL ENTRY 
o ASSOCIATED SYMBOL IS 

PAR SING- STATE 1 
(id Q S CAN REDUCE 
( ( 0 SHIF T 

9) 
1 ) 

(E qSHIFT 14) 
(T 0 S HI FT 1 5) 
(P oSHIFT 15) 

2 TERMINAL ENTRIES 3 NONTERMINAL ENTRIES 
WAS NUMBERED 9 ASSOCIATED SYMBOL IS ( 
SAME TERMINAL ENTRIES AS PARSING-STATE 9 

PARSING~ST ATE 2 
(id u SHIFT 7) (A {,SHIFT 16} 

12 

9 

11 

7 
8 

10 

13 

1 TERM IN AL ENTRY 
WAS NUMBERED 11 

1 NONTERMINAL ENTRY 
ASSOCIATED SYMEOL IS then 



- 133 -

PARSING-STATE 3 
(id oSCANREDUCE 9) (T IISHIFT 17) 
( (oSHIFT 1) (P (J SHIFT 17) 
2 TERMINAL ENTRIES 2 NCNTERMINAL ENTRIES 

ilAS NUMBERED 13 ASSOCIATED SYMBOL IS + 
SAME TERMINAL ENTRIES AS PARSING-STATE 9 

PARSING-ST ATE 4 
(id oSCANREDUCE 9) (P I/REtUCE 7) 
( ( 1I SHIF 'I 1) 
2 TERMINAL ENTRIES 1 NONTERMINAL ENTRY 

iiAS NU MBERED 14 ASSOCIATED SYMEOL IS * 
SAME TERMINAL ENTRIES AS PARSING-STATE 9 

PARSING-ST ATE 
(id 0 SHIFT 
(if 0 SHIFT 

5 
7) (D 1/ REtU CE 13) 
8) (A ,REDUCE 13) 

(C , REtD CE 13) 
2 TERMINAL 

ilAS NUMBERED 
SAME TERMINAL 

ENTRIES 3 NONTERMINAL ENTRIES 
23 ASSOCIATEt SYMBOL IS else 
ENTRIES AS PARSING-STATE 0 

PAR SI NG- STATE 6 
NO ENTRIES IIFINALw PARSING~STATE 
ilAS NUMBERED 1 ASSOCIATED SYMBOL IS D 

PARSING~'ST ATE 7 
(~= II SHIFT 9) 
1 TERMINAL ENTRY 

WAS NUMBERED 2 ASSOCIATED SYMBOL IS id 

PARSING-STATE 8 
(id oSCANREDUCE 12) 
1 TERMI NAL ENTRY 

WAS NUMBERED 3 ASSOCIATED SYMBOL IS if 

PARSING~STATE 9 
(i 1 , SCANREDUCE <}) 
( ( 0 SHIF T 1 ) 
2 TERMINAL ENTRIES 

WAS NUMBERED 4 ASSOCIATED SYMBOL IS 

PARSING-ST ATE 10 
(then,SHIFT 2 ) 
(or ,SHIFT 13) 

2 TERMINAL ENTRIES 
WAS NUMBERED 5 ASSOCIATED SYMBOL IS 

PAR SING-' STATE 11 
(+ l'SHIFT 3) 
(++++ ,REDUCE 3) 
2 TERMINAL ENTRIES 

WI S NUMBERED 7 ASSOCIATED SYMEOL IS 

..-

B 

E 



PARSIBG";'STATE 
(+ e SHIFT 
(* gSHIFT 
(+ + + + 0 R E DU C E 

12 
3) 
4) 
3) 

ENTRIES 

- 134 -

3 TERMINAL 
Ii AS NUMBERED 8 ASSOCIATED SYMBOL IS 

PABSING-STATE 13 
(id , SCA NRED UCE 11 ) 
1 TERMINAL ENTRY 

T 

WAS NUMBERED 12 ASSOCIATED SYMEOL IS or 

PARSING~STATE 14 
(+ 0 SHIF T 3) 
() oSCANREDUCE 8) 
2 . TERMINAL ENTRIES 

WAS NUMBERED 15 ASSOCIATED SYMBOL IS E 

PARSING~STATE 15 
(+ , SHIFT 3) 
() e SCA NRED UCE 8) 
(* e SHIFT 4) 
3 TERMINAL ENTRIES 

WAS NUMBERED 16 ASSOCIATED SYMBOL IS T 

PAR SING~ STATE 16 
(else, SHIFT 
LI_ oREDUCE 
2 TERMINAL 

WAS NUMBERED 

PARSING~ST ATE 
(* e SHIFT 
(++ ++0 REDU CE 
2 TERMINAL 

WAS NUMBERED 

5) 
14) 

ENTRIES 
17 ASSOCIATED 

17 
4 ) 
5) 

ENTRIES 
19 ASSOCIATED 

NONTERMINAL DEFAULT ENTRIES 

(D gSHIFT 6) 
(A 0 SHIFT 6) 
(E I1SHIFT 11) 
(T e S HI FT 1 2) 
(P e SHIF T 12) 
(C II SHIFT 6) 
(8 Q SHIF T 1 0) 
(L .. REDUCE 10) 

OOO~78 SECONDS IN EXECUTION 

SYMBOL IS A 

SYMBOL IS T 



- 135 -

13 TERMINAL ENTRIES HAVE BEEN SAVED BY OVERLAPPING. 

PARSING T ABLES REQUIRE 171 BYTE S 

INTEGER NDEF= O~TACT= 16 q NACT= 56; 

ARRAY 14 BYTE L HS= 
(13,13 0 14 015,15 0 16 0 16,17,17,18,19,19,20,20); 

ARRAY 18 SHORT INTEGER TSTATE= 
(1 93 0257 " 1 92 0257 11257 0 193 ,512,544,,576, 257, 321, 33, 2, 608, 129, 98, 
385" 449) ; 

ARRAY 6 SHORT INTEGER NSTATE= 
(0 0 34" 128 0 161 0 224" 258) ; 

ARRA Y 20 BYTE TSYM= 
(5,20121/50402" 1,,6 0 1Q 30 7,8 u 9,11,5,12,11,10,1,1); 

ARRAY 11 BYTE NSYM= 
(13,15016017014016" 171/17" 13~ 14, 18) ; 

ARRAY 39 SHORT INTEGER ACT= 
(6 0 60 110 12 (1 12(1 6 (I 100 17674 Q 4,3" 171551/ 4 8 8968,,3 , 7 ,8,8457 ,1 ,2 ,13 ,5" 
1639804017157170090846008971(16.14015,,15616,17,17, 17159, 16909, 
16909 0 16909) ; 

SHORT INTEGER SUPTACT SYN ACT; 

OOO~28 SECONDS IN EXECUTION 

GRAMMAR IS SLR 

5LR STATE SET AND PARSING TABLE 

5TATESET 0 
(0 0 0) 
NUMBER OF STATES = 1 
PARSING-STATE 0 

o REDUCE ENTRIES 

ASSOCIATED SYMBOL IS 

(ia 0 SHIF T 4) 
(if ,SHIFT 5) 

2 SHIFT ENTRIES 

(D ,G eTC 1) 
(A , GOTO 2) 
(C ,G CTC 3) 
3 GOTO ENTR IES 



- 136 -

ST ATES IT 1 
(0 0 1) 

NU MBER OF STATES = 1 ASSOCIATED SYMBOL IS D 
PAR SI NG~ STATE 1 

0 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GCTC ENTRIES 

STA TE SET 2 
(1 e 1) 

NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS A 
PARSING-ST ATE 2 
LI_ oREDUCE 1 ) 
1 REDU CE ENTRY 0 SHIFT ENTRIES 0 GCTC ENTRIES 

STATESET 3 
(2" 1) 

NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS C 
PARSING--ST ATE 3 
LI_ oREDUCE 2} 
1 REDU CE ENTRY 0 SHIFT ENTRIE S 0 GOTC ENTRIES 

STA TESET 4 
(3" 1) 

NUI'lEER OF STATES = 1 ASSOCIATED SYMBOL IS id 
PARSING~STATE 4 

( .-G- gSHIFT 6) 
O REDUCE ENTRIES 1 SHIFT ENTRY 0 GCTC ENTRIES 

STATE SET 5 
(10 0 1) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS if 
PARSING-STATE 5 

(i d o SHIFT 8) (B ,GCTC 7 ) 
0 REDUCE ENTRIES 1 SHIFT ENTRY 1 GOTO ENTRY 

ST ATES E'r 6 
(3.11 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS . -
PARSING~STATE 6 

(id "SHIF T 13) (E cGCTC 9 ) 
( ( .IISHIFT 12) (T , GO TO 10) 

(P .. GCTC 11 ) 

0 REDUCE ENTRIES 2 SHIFT ENT RIES 3 GOTO EN TR IES 

ST ATES IT 7 
(10 6 2) (110 1 ) 
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS B 
PAR SING~ STATE 7 

(then" SHIFT 14) 
(or oSHIFT 15 ) 

GCTC ENTRIES 0 REDUCE ENTRIES 2 SHIFT ENTRIES 0 



- 137 -

ST ATES ET 8 
(128 1) 
NUMEER OF STATES = 1 ASSOCIATED SyeEOL IS id 
PARSI NG-'ST ATE 8 
(thenoREDUCE 12) 
(or Q REDUCE 12) 
2 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GO TO ENTRIES 

ST ATES ET 9 
(3 fl3) (5 D 1 ) 
NUMBER OF STATES = 2 ASSOCIATED SyeBOL IS E 
PAR SING~ STATE 9 
(elsee REDUCE 3) (+ fI SHIFT 16 ) 
LI_ oREDUCE 3 ) 
2 REDU CE ENTR IES 1 SHIFT ENTR Y 0 GOTC ENTRIES 

STA '!ESET 10 
(4 Q 1) (7 D 1) 
NUMBER OF STATES = 2 ASSOCIATE~ SYMBOL IS T 
PARSING~ST ATE 10 
(+ nREDUCE 4) (* flSHIFT 17) 
() DREDUCE 4) 
(else JI RED UCE 4) 
L I~ D REDUCE 4) 
4 REDUCE ENTRIES 1 SHIFT ENTRY 0 GOTO ENTR IES 

STATESET 11 
(6 D 1 ) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS P 
PAR SING- STATE 11 
(+ g REDUCE 6) 
() llREDUCE 6) 
(* 11 REDU CE 6) 
(else gRED UCE 6) 
LI_ uREDUCE 6) 
5 REDUCE ENTRIES 0 SHIFT ENT RIES 0 GOTO ENTRIES 

ST ATES ET 12 
(8 II 1) 
NUMBER OF STATES = 1 ASSOCIA TED SYMBOL IS 
PAR SING- STATE 12 

(id o SHIFT 13) (E II GCTe 18 ) 
( ( flSHIFT 12) (T fI GOTO 10) 

(P ,GOTe 11 ) 
0 RErUCE ENTRIES 2 SHIFT ENTRIES 3 GOTO EN TR IES 

ST ATES ET 13 
(9 11 1) 

NU MBE R OF STATES = 1 ASSOCIATED SYMBOL IS id 
PAR SING-' STATE 13 
(+ 11 REDU CE 9) 
() QREDUCE 9) 
(lI! Q REDUCE 9) 
(elseoREDUCE 9) 
L I. _ Q R E DU C E 9) 

0 GOTO ENTRIES 5 REDUCE ENTRIES 0 SHIFT ENTRIES 



- 138 -

STATESET 14 
(10,3) 

NUI1BER OF STATES = 1 ASSOCIATED SYMBOL IS then 
PARSING-STATE 14 

(id # SHIF 'I 4) (A .GCTC 19 ) 0 REDUCE ENTRIES 1 SHIFT ENTRY 1 GO TO ENTRY 

ST ATES ET 15 
(118 2 ) 
NUI1BER OF STATES = 1 ASSOCIATED SYMBOL IS or 
PARSING~STATE 15 

(id , SHIFT 20) 
0 REDUCE ENTRIES 1 SHIFT ENTRY 0 GOTO ENTRIES 

STATES ET 16 
(5" 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS + 
PAR SING~ STATE 16 

(id , SHIF T 13) (T .GCTC 21 ) 
( ( #SHIFT 12) (P I GOTO 11 ) 

0 REDU CE ENTRIES 2 SHIFT ENTRIES 2 GOTC ENTRIES 

STATESET 17 
(7 (J 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS * PARS ING-~ST ATE 17 

(id uSHIFT 13) (P r GOTO 22) 
( ( I' SHIFT 12) 

0 RED UCE ENTRIES 2 SHIFT ENTRIES 1 GOTO ENTRY 

ST ATES ET 18 
(5 (J 1) (8/7 2 ) 
NUMBER OF STATES = 2 ASSOCIATED SYMBOL IS E 
PARSING~'STATE 18 

(+ u SHIFT 16) 
() (,SHIFT 23) 

0 REDU CE ENTR IES 2 SHIFT ENTRIES 0 GOTC ENTRIES 

STA TESET 19 
(10 u 4) 

NUM BER OF STA TES = 1 ASSOCIATED SYMBOL IS A 
PAR SING--' STATE 19 
L 1_ Q REDUCE 14) (else, SHIFT 25) (L ,GCTC 24) 
1 REDUCE ENTRY 1 SHIFT ENTRY 1 GO TO ENTRY 

ST ATES ET 20 
(11.3) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS id 
PAR SING- STATE 20 
(then v REDU CE 11) 
(or QREDUCE 11 ) 

GOTC ENTRIES 2 REDU CE ENTR IES 0 SHIFT ENTRIES 0 



- 139 -

STATES ET 21 
(5,,3) (7o~1) 

NUMEER OF STATES = 2 ASSOCIATED SYMBOL IS T 
PARSING~ST ATE 21 
(+ oREDUCE 5) (* "SHIFT 17) 
() oREDUCE 5) 
(elseoREDUCE 5) 
LI_ II REDUCE 5) 
4 REDUCE ENTRIES 1 SHIFT ENTRY 0 GOTO ENTRIES 

STATESET 22 
(7,3) 

NU MBER OF ST ATES := 1 ASSOCIATED SYMBOL IS P 
PAR SING~ STATE 22 
(+ o REDUCE 7) 
() oREDUCE 7) 
(* Q REDUCE 7) 
(else 11 RED UCE 7) 
L L 0 REDUCE 7) 
5 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES 

ST ATES ET 23 
(8 0 3) 

NU MBER OF STATES = 1 ASSOCIATED SYMBOL IS 
PAR SI NG~' STATE 23 
(+ o REDUCE 8) 
0 oREDUCE 8) 
(* o REDU CE 8) 
(el se Q RED UCE 8) 
LI_ oREDUCE 8) 
5 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTR IES 

STATESET 24 
(10 0 5) 

NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS L 
PARSING~ST ATE 24 
LL oREDUCE 10) 
1 REI:UCE ENTRY 0 SHIFT ENTRIE S 0 GaTe ENTRIES 

STA TESET 25 
(13 0 1) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS else 
PARSING-ST ATE 25 

(id "SHIFT 4) (D , GOTO 26) 

(if , SHIFT 5) (A "GOTe 2) 
(C , GOTO 3) 

0 REDUCE ENTRIES 2 SHIFT ENTRIE S 3 GOTO ENTRIES 

STA TESET 26 
(13,,2) 

NUMBER OF STATES = 1 ASSOCIATED SYMEOL IS D 
PARSING=ST ATE 26 
LI_ oREDUCE 13) 

GOTe ENTRIES 1 REDUCE ENTRY 0 SHIFT ENTRIES 0 

001 Q 44 SECONDS IN EXECUTION 



- 140 -

0
7 

is an ambiguous grammar (and hence not SLR). but which is SLRC. 

The tables presented are the output of the programs SLRI~ and SLR 

(with and without chain elimination). 

TERMINALS 
1 c _L 

NONTERMINALS 
3 ++++ A B 

PRODUCTIONS 
0 ++++ ~ := A -'-
1 A ~ ~- c J B 
3 B : := c 

THERE ARE 2 TERMINALS AND 3 NONTERMINALS 
THERE ARE 4 PRODUCTIONS WITH AVERAGE LENGTH OF RHS 1.2~ 
PROruCTIONS 1 2 3 ARE CHAIN PRODUCTIONS 

000~J3 SECONDS IN EXECUTION 

TAELE OF FOLLOW 

A 
B 

GRAMMAR IS SLRC 

SLRC STATESET AND PARSING TABLE 

STATESET 0 
(0 IJ 0) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS 
PARSING~STATE 0 

(c 8 SHIFT 1 ) 

o REDUCE ENTRIES 1 SHIFT ENTR Y 

STA TESET 1 
(0 q 1) 

(A gGOTC 1 ) 
(B g GOTO 1) 
2 GOTC ENTRIES 

NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS A 
PARSING-STATE 1 

o REDUCE ENTRIES o SHIFT ENTRIES 0 GOTO ENTRIES 

OOOc21 SECONDS IN EXECUTION 



- 141 -

GRAMMAR IS NOT SLR 

SLR'STATESET AND PARSING TABLE 

ST! 'IESET 0 
(0 0 0) 
IUMEER OF STATES = 1 
PARSING=ST ATE 0 

o RErUCE ENTRIES 

ST ATES ET 1 
(0 0 1) 
NUMBER OF STATES = 1 
PARSING-STATE 1 
o REDUCE ENTRIES 

STATESET 2 
(101) (3 0 1) 

********** 
NU MBER OF STATES = 2 
PAR SING';' STATE 2 
LL oREDUCE 1) 
L I. _ oREDUCE 3) 
2 REDUCE ENTRIES 

STATESET 3 
(20 1) 

NUMEER OF STATES = 1 
PARSING-ST ATE 3 
LI_ oREDUCE 2) 
1 REDUCE ENTRY 

ASSOCIATED SYMBOL IS 

(c "SHIFT 2) (A , GOTO 1) 

SHIFT ENT BY 
(B ,GCTC 3 ) 
2 GOTO ENTRIES 1 

ASSOCIATED SYMBOL IS A 

o SHIFT ENTRIES 0 GCTC ENTRIES 

INADECUATE ********** 
ASSOCIATED SYMBOL IS c 

o SHIFT ENTRIES 0 GOTC ENTRIES 

ASSOCIATED SYMBOL IS B 

o SHIFT ENTRIES 0 GOTC ENTRIES 

000c~3 SECONDS IN EXECUTION 



- 142 -

qa is an SLR grammar which is not A-free. It is not SLRC or e,en SLRPc. 

The tables presented are the output of the programs SLRIN and SLR (wit:. 

and without partial chain elimination). 

TERMINALS 
1 a e _1_ 

NON TER MI NA L5 
4 ++++ A 

PRODDCTIONS 
0 ++++ : .:= 
1 A o .-

4 B .. -
5 C .,.,= 

6 L 00-.. -

B 

A 
B 
e 
e 

C L 

_L 
L I C a 1 L 

THERE ARE 3 TERMINALS AND 5 NONTERMINALS 

a 

THERE ARE 7 PRODUCTICNS WITH AVERAGE LENGTH OF RBS 1Q 43 
PROBUCTIONS 4 5 ARE CHAIN PRODUCTIONS 

000.)6 SECONDS IN EXECUTION 

L GENERATES THE EMPTY STRING 

TABLE OF FOLLOW 

A I _I-
E I _L 
c I a 
L 1 a _1-



- 143 -

GRA~MAR IS NOT SLBPC 

SLRPC STATESET AND PARSING TABLE 

ST ATES IT 0 
(0 0 0) 
NUMEER OF STATES = 1 
PA RSING-ST ATE 0 
(d gREDUCE 6) 
L 1_ g REDUCE 6) 

2 REDUCE ENTRIES 

ST ATES IT 1 
(0 0 1) 
NUMBER OF STATES = 1 
PARSING-STATE 1 
o REDUCE ENTRIES 

STA TESET 2 
(10 1) 

NUMEER OF STATES = 1 
PARSING-STATE 2 
(d oREDUCE 6) 
L L g R EDU CE 6) 
2 REDUCE ENTRIES 

STATESET 3 
(20 1 ) 
NUMBER OF STATES = 1 
PARSING~STATE 3 

o REDUCE ENTRIES 

ST AT ES E'l' 4 
(3 tI 1) 
NUMBER OF STATES = 1 
PAR SING~STATE 4 

o REDUCE ENTRIES 

5T ATES ET 5 
(10 1) (20 1 ) 

********** 
NUMBER OF STATES = 2 
PARSING-ST ATE 5 
(d oREDUCE 6) 
L 1_ 0 REDUCE 6) 
2 REDUCE ENTRIES 

ASSOCIATED SYMBOL IS 

(e ,SHIFT 5) (A , GOTO 1) 
(B ,GOTO 2) 
(C , GOTO 3) 
(L ,GaTe 4) 
4 GOTO ENTRIES 1 SHIFT ENTRY 

ASSOCIATED SYMBOL IS A 

o SHIFT ENTRIES 0 GCTC ENTRIES 

ASSOCIATED SYMBOL IS 

o SHIFT ENTRIES 

B 

(L 

1 

ASSOCIATED SYMBOL IS C 

(d 0 SHIFT 7) 

,GOTO 6) 

GOTO ENTRY 

1 SHIFT ENT RY o GOTO ENTRIES 

ASSOCIATED SYMBOL IS L 

(d , SHIFT 8) 
1 SHIFT ENT RY o GOTO ENTR IES 

INADEQUATE ********** 
ASSOCIATED SYMBOL IS e 

(d 7) (L , GOTO 6} 

1 SHIFT ENT RY 1 GOTO ENTRY 



- 144 -

STATESET 6 
(1/1 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS L 
PAR SING~ STA TE 6 
L L /I REDUCE 1) 
1 REDUCE ENTRY 0 SHIFT ENT RIES 0 GOTO ENTR IES 

STATESET 7 
(2,2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d 
PAR SING';' STATE 7 
LI~ oREDUCE 2) 
1 REDUCE ENTRY 0 SHIFT ENTRIES 0 GOTO ENTRIES 

ST ATES ET 8 
(34/ 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d 
PARSING~STATE 8 
L L_ /I REDUCE 3) 
1 REDUCE ENTRY 0 S HI FT E NT R I ES 0 GOTO EN TR IES 

000 .. 48 SECONDS IN EXECUTION 

GRAMMAR IS SLR 

SLR STATESET AND PARSING TABLE 

STATESET 0 
(0 0 0) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS 
PARSING~STATE 0 
(d /I REDU CE 6) 
L 1_ 0 RED UCE 6 ) 

(e , SHIFT 5) (A ,GOTe 1 ) 
(E , GOTO 2) 
(C ,GOTG 3) 
(L , GO TO 4) 

2 REDUCE ENTRIES 1 SHIFT ENTRY 4 GOTO ENTRIES 

STATESET 1 
(0 II 1) 

NUMEER OF STATES = 1 ASSOCIATED SYMBOL IS A 

PARSING~STATE 1 
o REDUCE ENTRIES o SHIFT ENTRIES 0 GOTO ENTRIES 



- 145 -

5TATESET 2 
(1, 1) 

NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS B 
PARSING-'STATE 2 
(d o REtU CE 6) (L ,GCTC 6) 
LL oREDUCE 6} 
2 REIUCE ENTRIES 0 SHIFT ENTRIES 1 GCTC ENTRY 

5TATESET 3 
(2c 1) 

NUMEER OF STATES = 1 ASSOCIATED SYMEOL IS C 
PARSING~ST ATE 3 

(d ,SHIFT 7) 
0 REtU CE ENTR IES 1 SHIFT ENTRY 0 GCTC ENTFIES 

5TA 'IE SE T 4 
(30 1) 
NUMfER OF STATES = 1 ASSOCIATED SYMEOL IS L 
PARSING-ST ATE 4 

(d , SHIFT 8) 
0 REIUCE ENTRIES 1 SHIFT ENTRY 0 GCTC ENTRIES 

5TA TESET 5 
(40 1) (50 1) 

NUMEER OF STATES = 2 ASSOCIATEt SYMBOL IS e 
PARSING~ST ATE 5 
(d QREDUCE 5) 
L 1_ 0 REDUCE 4) 
2 REDUCE ENTRIES 0 SHIFT ENTRIES 0 GOTO ENTRIES 

5T ATES IT 6 
(10 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS L 
PARSING~STATE 6 
LI_ QREDUCE 1) 
1 RED UCE ENTRY 0 SHIFT ENTRIES 0 GOTO EN TR IES 

5TATESET 7· 
(2.0 2) 
NUMBER OF STATES = 1 ASSOCIATED SYMBOL IS d 
PAR SI NG~ STATE 7 
L I~ 0 REDUCE 2) 

GOTO ENTR rES 1 RED OCE ENTRY 0 SHIFT ENTRIES 0 

STATESET 8 
(30 2) 

d NU MBE R OF STATES = 1 ASSOCIATED SYMBOL IS 

PAR SING~ STATE 8 
L 1. __ r REDU CE 3) 

0 GOTO ENTB IES 1 RED OCE ENTRY 0 SHIFT ENT RIES 

000043 SECONDS IN EXECUTION 



- 146 -

References 

Aho A.V. and Ullman J.D. (to be published) 

'Techniques for Parser Optimisation' (Chapter 6) 

Anderson T., Eve J. and Horning J.J. (1911) 

'Efficient LR(1) parsers' 

DeRemer F. L. (1969) 

Technical Report 24, Computing Laboratory, 

University of Newcastle upon Tyne 

'Practical Translators for LR(k) Languages' 

DeRemer F .L. (1911 ) 

Ph.D. Thesis, Department of Electrical Engineering, 

M.LT. 

Simple LR(k) Grammars 

CACM 14 p.453 

Earley J. (1965) 

'Generating a recognizer for a BNF grammar' 

Computation Centre Report, 

Carnegie Institute of Technology, Pittsburgh 

Earley J. (1910) 

An Efficient Context-Free Parsing Algorithm 

CACM 13 p.94 

Feldman J. and Gries D. (1968) 

Translator Writing Systems 

CACM 11 p.11 

Floyd R.W. (1963) 

Syntactic Analysis and Operator Precedence 

JACM 10 p.316 



- 147 -

Floyd R.W. (1964) 

Bounded Context Syntactic Analysis 

CACM 7 p.62 

Ginsburg S. and Greibach S.A. (1966) 

Deterministic Context Free Languages 

Information and Control 9 p.620 

Graham S.L. (1970) 

Extended Precedence Languages, Bounded Right 

Context Languages, and Deterministic Languages 

IEEE Conference Record of the Eleventh Annual 

Symposium on Switching and Automata Theory 

p. 175 

Gray J.N. and Harrison M.A. (1969) 

Single Pass Precedence Analysis 

Gries D. (1968) 

IEEE Conference Record of the Tenth Annual 

Symposium on Switching and Automata Theory 

p. 106 

Use of Transition Matrices in Compiling 

CACM 11 p.26 

Hext J.B. and Roberts P.S. (1970) 

Syntax analysis by Domolki's algorithm 

Computer Journal 13 p.263 

Ichbiah J.D. and Morse S.P. (1970) 

A Technique for Generating Almost Optimal Floyd-Evans 

Productions for Precedence Grammars 

CACM 13 p.501 



- 148 -

Irons E.T. (1964) 

"Structural Connections" in Formal Languages 

CACM 7 p.67 

Knuth D.E. (1965) 

On the Translation of Languages from Left to Right 

Information and Control 8 p.607 

Knuth D.E. (1971) 

Top-Down Syntax Analysis 

Acta Informatica 1 p.79 

Korenjak A.J. (1969) 

A Practical Method for Constructing LR(k) Processors 

CACM 12 p.613 

Lalonde W.R. (1971 ) 

'An Efficient LALR Parser Generator' 

Technical Report CSRG-2, University of Toronto 

Lewis II P.M. and Stearns R.E. (1968) 

Syntax-Directed Transduction 

JACM 15 p.465 

Lynch W.C. (1968) 

'A high-speed parsing algorithm for ICOR grammars' 

Report 1097, Andrew Jennings Computing Centre, 

Case Western Reserve University 

McKeeman W.M. (1966) 

'An Approach to Computer Language Design' 

Technical Report CS48, Stanford University 

McKeeman W.M., Horning J.J. and Wortman D.B. (1970) 

'A Compiler Generator' 

Prentice-Hall 



- 149 -

Pager D. (1970) 

A Solution to an Open Problem by Knuth 

Information and Control 17 p.462 

Wirth N. (1968) 

PL360, A Programming Language for the 360 Computers 

JACM 15 p.37 

Wirth N. and Hoare C.A.R. (1966) 

A Contribution to the Development of ALGOL 

CACM 9 p.413 

Wirth N. and Weber H. (1966) 

EULER: A Generalisation of ALGOL, and its 

Formal Definition 

CACM 9 p.13 


	447882_0001
	447882_0002
	447882_0003
	447882_0004
	447882_0005
	447882_0006
	447882_0007
	447882_0008
	447882_0009
	447882_0010
	447882_0011
	447882_0012
	447882_0013
	447882_0014
	447882_0015
	447882_0016
	447882_0017
	447882_0018
	447882_0019
	447882_0020
	447882_0021
	447882_0022
	447882_0023
	447882_0024
	447882_0025
	447882_0026
	447882_0027
	447882_0028
	447882_0029
	447882_0030
	447882_0031
	447882_0032
	447882_0033
	447882_0034
	447882_0035
	447882_0036
	447882_0037
	447882_0038
	447882_0039
	447882_0040
	447882_0041
	447882_0042
	447882_0043
	447882_0044
	447882_0045
	447882_0046
	447882_0047
	447882_0048
	447882_0049
	447882_0050
	447882_0051
	447882_0052
	447882_0053
	447882_0054
	447882_0055
	447882_0056
	447882_0057
	447882_0058
	447882_0059
	447882_0060
	447882_0061
	447882_0062
	447882_0063
	447882_0064
	447882_0065
	447882_0066
	447882_0067
	447882_0068
	447882_0069
	447882_0070
	447882_0071
	447882_0072
	447882_0073
	447882_0074
	447882_0075
	447882_0076
	447882_0077
	447882_0078
	447882_0079
	447882_0080
	447882_0081
	447882_0082
	447882_0083
	447882_0084
	447882_0085
	447882_0086
	447882_0087
	447882_0087a
	447882_0087b
	447882_0089
	447882_0090
	447882_0091
	447882_0093
	447882_0094
	447882_0095
	447882_0096
	447882_0097
	447882_0098
	447882_0099
	447882_0100
	447882_0101
	447882_0102
	447882_0103
	447882_0104
	447882_0105
	447882_0106
	447882_0107
	447882_0108
	447882_0109
	447882_0110
	447882_0111
	447882_0112
	447882_0113
	447882_0114
	447882_0115
	447882_0116
	447882_0117
	447882_0118
	447882_0119
	447882_0120
	447882_0121
	447882_0122
	447882_0123
	447882_0124
	447882_0125
	447882_0126
	447882_0127
	447882_0128
	447882_0129
	447882_0130
	447882_0131
	447882_0132
	447882_0133
	447882_0134
	447882_0135
	447882_0136
	447882_0137
	447882_0138
	447882_0139
	447882_0140
	447882_0141
	447882_0142
	447882_0143
	447882_0144
	447882_0145
	447882_0146
	447882_0147
	447882_0148
	447882_0149
	447882_0150
	447882_0151
	447882_0152
	447882_0153

