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Abstract  

The purpose of this thesis is to investigate the feasibility of producing hydrogen with 

microtubular membranes made of mixed ionic electronic conducting perovskite by 

membrane-based steam reforming. This process involves water splitting in one side of 

the membrane followed by oxygen ions transport across the membrane to react with 

methane in the membrane reaction side. The overall process produces two separate 

streams of pure hydrogen and syngas. 

Initial experiments were performed using temperature programmed redox (water 

oxidation and methane reduction) cycles to investigate the feasibility of three 

perovskites (Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ and La0.7Sr0.3FeO3-δ) to 

produce hydrogen from water splitting. Membrane fragments and powder materials 

were used during these tests, resulting in La0.6Sr0.4Co0.2Fe0.8O3-δ and La0.7Sr0.3FeO3-δ 

powder materials showing better activity for hydrogen production than 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ. However La0.6Sr0.4Co0.2Fe0.8O3-δ presented better performance 

among all membrane fragments tested under the experiments conditions.  

Preliminary oxygen permeation and hydrogen production experiments using membranes 

systems were also carried out with all perovskites; Ba0.5Sr0.5Co0.8Fe0.2O3-δ microtubes 

presented high oxygen permeation, however low activity for hydrogen production from 

water splitting. La0.7Sr0.3FeO3-δ microtubes presented low oxygen permeation rates and 

no activity for hydrogen production, post-operation analysis showed the presence of a 

strontium/sulfur layer on the microtubes surfaces which may have affected permeation. 

La0.6Sr0.4Co0.2Fe0.8O3-δ microtubes presented better potential for oxygen permeation and 

hydrogen production among the other membranes; hence these microtubes were 

selected for further long term experiments.  

La0.6Sr0.4Co0.2Fe0.8O3-δ microtubular membrane reactors were tested for long term 

oxygen permeation followed by membrane-based steam reforming. The membranes 

were subjected to two known axial temperature profiles in the temperature of 900°C and 

960°C. The microtubes showed good stability under reaction conditions, operating over 

a total operation period of ca 400 hours of oxygen permeation followed by ca 400 hours 

of steam reforming. The outlet gas composition from both sides (methane and water 

side) of the membranes were analysed which allowed material a balance. This indicated 

that the hydrogen production occurred due to oxygen flux across the membrane and not 
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just surface reaction. Post-operation analysis of the microtubes revealed the presence of 

a strontium-enriched dense layer on the water-exposed membrane surface and of 

crystallites enriched with cobalt and sulfur on the methane feed side surface. 
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Chapter 1 

1 Introduction  

1.1 Overview 

The growing economy in emerging countries such as Brazil, Russia, China, India and, 

more recently, South Africa, will involve increase in population expansion, and 

additional demands for energy. Countries with solid economies will also require more 

energy due to new life standards. Forecast scenarios estimate that world energy 

consumption will increase by 47%, from 2010 to 2035 [1]. 

This growing demand for energy has to be associated with increasing the supply (new 

energy sources) and/or modifying techniques for better efficiency in the usage and 

consumption of existing resources [2]. With expectations that fossil fuels prices will 

remain high and concerns about environmental damage of greenhouse gas emissions 

suggests that the world’s current energy supply is economically and environmentally 

unsustainable [3]. 

According EIA (U.S. Energy Information Administration) renewable energy is the 

fastest-growing source in many countries, mainly due to strong government incentives 

(more aggressive policies in relation of carbon dioxide emissions) [1]. Thus the 

tendency is to shift to lower carbon emission energy sources, which will be beneficial 

for whole society [4]. Hydrogen as an energy carrier meets this requirement as it does 

not produce greenhouse gas emissions in particular when applied in fuel cell system.  

Hydrogen has the potential to compete with fossil fuels however its storage and capital 

costs production are still main drawbacks. For all hydrogen production processes 

improvements are still necessary; conventional steam reforming of methane produces 

hydrogen with many by-products consequently a purification method is required. Also 

to have a sustainable hydrogen production method, the hydrogen must be produced 

from a renewable source (e.g. water) rather than fossil fuels. 

Membrane technology for hydrogen production/separation has potential to compete 

with conventional methods as they offer the opportunity of separating hydrogen in a 
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simple unit which requires less energy and consequently less investment. Recently 

membranes have also been investigated for hydrogen production from direct water 

splitting; oxygen transport membranes (OTM) are applied to remove oxygen from water 

dissociation therefore enhancing hydrogen conversion [5]. 

The main drawbacks of these membranes are durability and stability. microtubular 

membranes have been developed in order to improve mechanical stability and 

performance. This membrane geometry presents high surface area per unit of volume 

and reduced wall thickness which facilitate the oxygen transport. Other advantage is the 

possibility of avoiding high temperature sealing problems as long membranes can 

facilitate cold sealing.  

Hydrogen has the potential to play an important role in the transition from hydrocarbons 

to renewable energy sources. Therefore this gives particular importance to the 

investigation, development and commercialisation of oxygen transport membranes 

systems for pure hydrogen production from water splitting. 

1.2 Purpose of the research 

Hydrogen is conventionally produced by steam reforming of hydrocarbons to produce a 

mixture of hydrogen, steam, carbon monoxide and carbon dioxide. Further hydrogen 

separation is required in order to produce pure hydrogen. Recently there has been 

considerable interest in the use of high temperature membranes to produce pure 

hydrogen without using a downstream separation step. These techniques use high 

temperature gas-solid redox (reduction and oxidation) processes for hydrogen 

production with oxygen transport through the membrane.  

This project aims to verify the feasibility of microtubular perovskite membranes for 

hydrogen production from water splitting. Perovskite-type membranes, such as 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ have previously 

shown desirable properties for oxygen permeation [6-9]. In this thesis they are therefore 

proposed as potential materials for hydrogen production from water splitting.  

Most of the studies involving oxygen permeable membranes for hydrogen production 

from water splitting lacked the detail necessary to prove that hydrogen production is due 

to oxygen transport through the membrane rather than surface reactions. In this work, 

therefore, gas analysis of both sides was performed and a material balance was also 
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reported. Previous studies also rarely report longevity of the membranes under 

operation conditions which is of extreme importance for future industrial applications. 

In this project long term experiments are reported and other important aspects are 

discussed, such as membrane failure, trans-membrane leaks and membranes sealing.  

1.3 Structure of the thesis 

Following this introduction, Chapter 2 provides a background of conventional hydrogen 

production methods and membrane technology for hydrogen production/separation. 

Chapter 2 also presents the application of oxygen permeable membranes for syngas 

production and a literature survey regarding water splitting using oxygen permeable 

membranes. Membrane fabrication procedures and experimental setups used in this 

project are presented in Chapter 3. Chapter 4 presents preliminary studies on 

experimental conditions and membrane behaviour, when exposed to experimental 

environment and also some attempted studies. In Chapter 5 studies to investigate the 

feasibility of producing hydrogen from water splitting with three perovskite materials 

(Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ) are presented; 

temperature programmed and membrane system experiments were carried out during 

these studies. Chapter 6 presents the long term membrane-based steam reforming 

studies for hydrogen production with La0.6Sr0.4Co0.2Fe0.8O3-δ microtubes. Finally in 

Chapter 7 the most remarkable results of this work are highlighted and also future work 

suggestions are given. 

1.4 Aims and Objectives  

The first aim of this thesis is to review the experimental work that has been performed 

in previous literature regarding hydrogen production from water splitting using oxygen 

carrier membranes in order to develop an understanding of the current limitations of the 

process.  

A general summary of the tasks of this project is presented below: 

 Fabrication and characterisation of perovskite membranes 

(Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ) prepared 

by phase inversion (collaboration with Imperial College London). 
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 Development of membrane module suitable for hydrogen production from water 

splitting process, including investigation of sealant materials for high 

temperature membrane reactors. 

 Investigation of catalytic activity towards water splitting of powder perovskites 

(Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ) by 

temperature programmed experiments.  

 Fabrication of disk membranes for fast kinetic investigation of the perovskite 

materials (Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ) 

towards oxygen permeation and water splitting processes.  

 Evaluation of the capability of the perovskite microtubes (Ba0.5Sr0.5Co0.8Fe0.2O3-

δ, La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ) to transport oxygen ions across 

the membranes walls.  

 Investigation of the feasibility of perovskite microtubes (Ba0.5Sr0.5Co0.8Fe0.2O3-δ, 

La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ) to produce hydrogen from water 

splitting and reducing gas (methane or carbon monoxide) activation.  

 Investigation of catalytic activity of Palladium deposited by sputtering on the 

external surface of the microtubes for comparison with uncoated microtubes.  

 Investigation of long duration operation and stability of membrane systems. 

 Investigation of the effects of oxygen permeation and membrane-based steam 

reforming on the microtubes composition, microstructure and performance.  

 Development of an autothermal membrane system for hydrogen production 

using methane as fuel.  
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Chapter 2  

2 Membranes for hydrogen production 

2.1 Introduction  

The necessity of finding pathways to sustainability is driving researchers to find new 

energy sources for the future. Liquid fuels are still expected to remain the main source 

of energy, with already a major investment in 1
st
 generation bio fuels (derived from 

biomass conversion) research [10, 11]. Bio fuels themselves will not address energy 

demand issues nor, according to European Environment Agency (EEA), global 

warming concerns [12]. Clearly new environmentally friendly energy technologies have 

to be developed. 

Hydrogen as an energy carrier has the potential to provide energy with high efficiency 

and nearly zero emissions of pollutants when used in a fuel cell system [13, 14]. 

Demand for pure hydrogen has continuously increased in recent years, however 

currently hydrogen production technologies are energy intensive with many by-products 

associated; consequently purification is required making the overall process more 

expensive [15, 16]. 

This scenario has motivated researchers to improve methods of hydrogen production, 

separation and purification. Membrane technology shows great potential to 

substitute/integrate conventional methods for the production of pure hydrogen. 

Membrane processes also consume less energy and have the feasibility of operating 

continuously [17].  

Hydrogen separation using polymeric membranes is already a well known technology; 

however these membranes present drawbacks, such as limited temperature application 

and sensitivity to certain chemicals [15, 17-19]. Hydrogen production and purification 

using inorganic membranes have attracted large interest due to the possibility of 

application under harsh conditions. However improvements in this technology such as 

stability and durability are still required for industrial applications [20, 21]. 
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2.2 Conventional hydrogen production and separation 

methods 

Hydrogen can be produced from different methods and from a variety of feedstocks as 

illustrated in Figure 2.1 [22]. Most of the hydrogen produced nowadays is derived from 

fossil resources, such as natural gas and coal; however alternative renewable energy 

resources (e.g. biomass and water) also can be used. Several methods can be applied 

such as chemical, biological, electrolytic, photolytic and thermochemical. The main 

issue is how to separate the hydrogen from other reaction products in an economically 

and efficient manner [23, 24].  

 

Figure 2.1 Hydrogen production pathways presenting different methods and variety of 

feedstocks [22]. 

The main hydrogen production methods and separation processes are presented and 

discussed further in this chapter. Other potential alternative, membrane-based steam 

reforming, which is the main objective of this work is presented in Section 2.6. 

2.2.1 Hydrogen production from natural gas 

Steam methane reforming (SMR) is the most conventional and well developed 

technology for hydrogen production [25, 26]. In this reaction methane is reacted with 

water vapour at elevated temperatures (700-850°C) in the presence of a supported nickel 

catalyst (Equation (2.1)). The reaction product is syngas (mixture of hydrogen and 

carbon monoxide), which contains approximately 12% of carbon monoxide, which can 

be converted to more hydrogen by the water-gas shift (WGS) step (Equation (2.2)). In 

this step carbon monoxide reacts with water vapour over a shift catalyst to produce 
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hydrogen and carbon dioxide. Other hydrogen method is the dry reforming of methane 

which produces syngas from carbon dioxide and methane, according to Equation (2.4). 

 
                                

              

 

(2.1) 

 

 
                               

              

 

(2.2) 

 

 
                             

               

 

(2.3) 

 

Hydrogen can also be produced by the partial oxidation of methane (POM) as described 

in Equation (2.4) producing carbon monoxide and hydrogen. The carbon monoxide 

produced is further converted in hydrogen by WGS.  

 
    

 
                            

             

 

(2.4) 

 

Other hydrogen production method is the autothermal reforming of methane which 

combines SMR (endothermic) with POM (exothermic) processes. The total reaction is 

exothermic and once more WGS is used to improve the hydrogen yields. 

In order to achieve pure hydrogen in all methods mentioned a separation step is needed; 

the most common method used is pressure swing adsorption (PSA). This process 

involves capture of the impurities at higher pressure using a molecular sieve and then 

release of the impurities at low pressure. Hydrogen purities ca 99.9% may be obtained 

after the PSA process; however this separation technique is expensive and reduces the 

total efficiency of the overall process [27, 28].  

Other separation techniques such as temperature swing adsorption (TSA) and cryogenic 

distillation could also be used to remove the impurities. TSA has a relatively long time 

operation and cryogenic distillation requires extremely low temperatures and therefore 

considerable amount of energy. Membrane systems have potential for hydrogen 

purification and have been successfully competing with conventional methods [18, 29, 

30]. Hydrogen separation methods using membranes are discussed in Section 2.3. 

2.2.2 Hydrogen production from water  

Electrolysis is the process which water is split into hydrogen and oxygen using an 

electric current and an electrolyser (Equation (2.5)). Hydrogen obtained by electrolyses 

has a purity ca 99.99% being suitable for directly fuel cell applications. However 
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conventional electrolysis methods have not yet been competitive for large scale 

production due to high investment costs [31, 32]. 

 
       

 
     

 

(2.5) 

 

Water electrolysis has gained great interest recently since the possibility of producing 

sustainable hydrogen in large scale. Electrolysis can result in zero greenhouses 

emissions if powered by renewable energy sources such as solar, hydroelectric, or wind 

[23, 33]. Therefore this method can compete with traditional methods such as steam 

methane reforming, especially with given expectations that fossil resources prices will 

continue to increase [34].  

Direct thermal decomposition of water produces hydrogen splitting water in one step 

using heat. Since this process requires really high temperature (above 2000°C), 

multiple-step chemical reactions (thermochemical water splitting) are applied to lower 

the temperature and decompose water into hydrogen and oxygen. These processes are 

not industrially feasible yet due to many technical issues relate to high temperatures 

separation processes, corrosion, heat exchangers and heat sources [35, 36]. 

Photolysis is a developing method for hydrogen production which employs sunlight 

coupled with semiconductors materials (photovoltaic cells) to split water directly into 

hydrogen and oxygen. The technique is not yet economically competitive with other 

hydrogen production methods due to drawbacks related to semiconductors 

photocorrosion and low efficiencies [37-39].  

Biophotolysis is a process in which certain microbes, such as green algae and 

cyanobacteria, capture sunlight energy after photosynthesis to split water and produce 

hydrogen as a by-product [40]. Genetic manipulation of the microbes has improved the 

process however slow hydrogen production rates is the main drawback to this 

technology [41, 42].  

2.2.3 Hydrogen from biomass 

Biomass is widely available from a variety of sources and can be converted for 

hydrogen generation by different technologies [42, 43]. Thermochemical processes are 

the most common methods as they operate at high temperatures and therefore obtain 
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high reaction rates. These processes involve either gasification or pyrolysis to produce a 

hydrogen-rich stream [44, 45].  

Pyrolysis is used to produce bio fuels however its process can be adapted for hydrogen 

production. The process converts biomass into liquid and gaseous components by 

applying heat (370-550°C) under pressure (0.1-0.5MPa) in the absence of air (Equation 

(2.6)).  

 
                                       

 

(2.6) 

 

The gaseous components are normally hydrogen, methane, carbon monoxide, carbon 

dioxide and other products depending of the nature of the biomass. In order to increase 

the hydrogen production SMR (Equation (2.1)) is applied followed by WGS reaction 

(Equation (2.2)).  

During gasification biomass is converted into gaseous components by applying heat 

under pressure and in the presence of steam. The gaseous components are similar than 

in pyrolysis and subsequent series of chemical reactions produces syngas, which is also 

treated by SMR and WGS to improve hydrogen yields.  

Thermochemical biomass processes use dry biomass, requiring a water content below 

10 wt. %. However hydrothermal gasification processes requires an excess of water at 

increased temperature and pressure. The main advantage is that biomass, with a natural 

water content of 80 wt. % or more, can be converted without drying before. This 

process also has the advantage of having high reaction rates with a very low formation 

of undesired products like tars and coke [46].  

Biomass conversion has the potential to be an economically renewable hydrogen 

production method and has already proved to be industrially feasible [47]. However 

over half of the hydrogen produced from biomass comes from SMR, consequently 

separation methods are required to purify the hydrogen produced. Conventional 

methods of separation are an expensive step of the process, thus membranes technology 

clearly can play an important role in this industrial sector [48, 49]. 
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2.3 Membrane systems  

Membranes are basically physical barriers which allow the transport across them of only 

selected species. The first known membrane experiment was performed by J.A. Nollet 

in 1748, he realised osmosis using a piece of pig’s bladder [50]. However the first large 

scale gas separation membrane application was performed in the mid-1940s by the USA 

government for nuclear fuel enrichment [51]. Since then membrane technology for gas 

separation has received great attention.  

The integration of membrane systems in hydrogen production processes represents a 

potential option for intensification of the process by decreasing energy utilization and 

equipment size. Membrane systems are energy saving as the process does not require 

any phase-transformation [19, 52], moreover their operation requires smaller units 

compared to other hydrogen separation plants. Most conventional hydrogen processes 

consists of a reactor unit coupled to a separation unit while membrane systems offers 

the opportunity to operate reaction/separation in a single unit. This innovative scheme 

intensifies hydrogen production.  

Figure 2.2 shows a schematic of the membrane separation process, which most of the 

systems rely on pressure or concentration gradient as driving force for permeation from 

the feed stream to the permeated stream.  

 

Figure 2.2 Schematic of membrane separation process showing transport from the feed 

stream to the permeated stream [18]. 

The performance of a membrane system depends of its selectivity and flux towards 

mixtures. Flux (Jx) is the total material transport through the membrane and can be 

expressed using Equation (2.7).  
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(2.7) 

 

Where P is the species x permeability, t is the membrane thickness and        
  and 

           
   are the species x partial pressures in the feed and permeate side, respectively. 

It is important to notice that the membrane thickness plays an important role in the 

overall process, since the permeation rate is increased when the thickness is minimised. 

The separation factor can be expressed as the capability of a membrane to realise a 

given separation and is defined as the ratio of the permeability of the components in the 

membrane. The selectivity (α) of two components A and B can be defined as (Equation 

(2.8)): 

 
     

  
  

 

 

(2.8) 

 

Where    and    are component A permeability and component B permeability 

respectively. In the case of hydrogen separation, higher the selectivity more efficient is 

the process and therefore higher the purity of hydrogen produced.  

Membranes can be classified into organic and inorganic and hybrids of 

organic/inorganic systems. Organic membranes are made of polymers and generally 

have some limitations related to high temperatures and resistance to harsh chemical 

environments. Inorganic membranes are made of glass, metal and ceramic materials and 

have attracted great interest as most of them can operate under high temperatures and 

withstand harsh environments [18, 53].  

For hydrogen separation inorganic membranes can also be classified into dense and 

porous membranes. The gas separation through these membranes can be attributed to 

two mechanisms; through pores (porous membranes) and through the membrane 

material bulk (dense membranes). The most common hydrogen permeating membranes 

are the palladium alloys membranes, which separation mechanism can be described as 

solution/diffusion; a gas molecule is adsorbed in on side of the membrane wall, diffuses 

(in the form of ions and electrons or as atoms) through the bulk and associatively 

desorbs on the other side of the membrane [17, 54, 55]. Dense membranes generally 

have high selectivity, which is important factor for hydrogen purity, however they tend 

to present low fluxes. Other desirable properties are durability and stability (mechanical, 

chemical and thermal) under applied operation conditions [20, 56].  
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The scope of this work is limited to mixed ionic-electronic conducting membranes 

(MIEC) for oxygen separation; however a brief introduction of hydrogen perm-selective 

membranes and their properties are presented in the following section (Section 2.3.1). 

2.3.1 Hydrogen perm-selective membranes  

Hydrogen perm-selective membranes can be broadly separated in four categories; 

polymeric, metallic, carbon and ceramic [54]. Polymeric membranes for hydrogen 

separation are already commercially available, these are dense membranes therefore 

solution/diffusion is the mechanism to separate hydrogen from gaseous mixtures that 

generally consists of nitrogen, carbon monoxide, or hydrocarbons [17]. The advantages 

of polymeric membranes are their capability to resist high pressure drops and their low 

cost of raw material [56]. The main drawbacks of these membranes are the limited 

operation temperature (ca 100°C), mechanical strength and chemical resistance to 

certain chemicals such as hydrochloric acid, sulfur oxides and carbon dioxide [57].  

Dense metallic membranes for hydrogen separation, in particular palladium and 

palladium alloys, are known to be high selective for hydrogen. High-purity hydrogen 

(up to 99.99%) can be obtained due to the higher diffusivity of only atomic hydrogen 

through palladium and its alloys (Figure 2.3) [58]. Membrane cost is an issue of this 

technology; to overcome this problem researchers have been focused on producing thin 

membranes, which also will increase hydrogen fluxes [59]. Techniques such as 

electroless-plating, chemical vapour deposition (CVD), sputtering and spray pyrolysis, 

have been used to apply thin palladium films on porous metallic or ceramic supports 

[60, 61]. Other disadvantage of these membranes is their high sensitivity to some gases 

such as hydrogen sulphide, hydrogen chloride and carbon monoxide [59, 62]. 
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Figure 2.3 Hydrogen permeation through a dense palladium membrane showing the 

solution/diffusion mechanism [62]. 

Carbon membranes for hydrogen separation are divided into two groups based in the 

transport mechanism; surface diffusion and molecular sieving. Carbon molecular sieve 

membranes have received great interest due to great separation proprieties and stability, 

however large scale production still a challenge due to brittleness and fragility of carbon 

materials [63].  

Ceramics membranes (porous and dense) for hydrogen separation have the advantage of 

being chemically inert and also resistant to high temperatures [64]. Porous ceramic 

membranes are usually made of alumina, zirconia, titania and silica and generally have 

a two-layer structure [54]. Dense ceramic membranes (proton exchange membranes) 

have high selectivity as only hydrogen ions can transport through the membrane. 

Material such as SrCeO3-δ and BaCeO3-δ are commonly used for having high proton 

conductivity, however their electronic conductivity is relatively low; hence hydrogen 

permeation fluxes are very low and considerable improvements in the process are still 

required for practical applications [65, 66].  

2.3.2 Oxygen permeable membranes  

The interest in dense oxygen permeable membranes increased after the development of 

ionic conducting materials for solid oxide fuel cells and sensors [67, 68]. These 

materials are mixed electronic ionic conductors thus the transport through the bulk is a 

combination of ions and electrons rather than molecular diffusion. Consequently a high 

selectivity for oxygen can be archived with MIEC membranes, which originally became 

of great interest due to the possibility of separating oxygen from air in an economically 

and feasible route. The most promising MIEC materials are the perovskite oxides which 
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present desirable properties, such as high oxygen flux when exposed to an oxygen 

gradient at temperatures above 700°C [69-71].  

2.3.2.1 Perovskite 

Of particular interest to this investigation are the MIEC perovskite-type membranes, 

which can exhibit high oxide ion conductivity due to their oxygen deficient 

nonstoichiometry [72]. These are ABO3 structures in which large A ions are 

accommodate in a dodecahedral site while smaller B ions in an octahedral site as 

presented in Figure 2.4. The overall structure is very stable therefore the material has 

the capability of exchange a great range of metal cations at the A and/or B sites without 

changing its basic structure. This allows several modifications, such as doping 

strategies, to generate structure defects, which can create mobile oxygen vacancies and 

leading to higher oxygen ion mobility within the material lattice [73, 74].  

 

Figure 2.4 Ideal structure of ABO3 perovskite in which oxygen vacancies are generated 

by replacement of A and/or B ions [75].  

The ABO3 perovskite structure allows a wide range of compounds to be produced with 

the introduction of either A´ and B´ atoms or both. The new structure can be described 

as A1-xA´xB1-yB´yO3-δ, where δ denotes the amount of oxygen vacancies. When these 

intrinsic defects are introduced the material becomes a useful conductor that can be 

employed for several applications. 

The La1-x Srx Co1-yFeyO3-δ perovskite family has been studied for a number of years, and 

due to its electronic and oxide anion conductivity has been applied for fuel cell cathodes 

and oxygen carrier membranes [70]. In particular La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) 
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membranes have been selected as potential oxygen carrier membranes and applied in 

this work to perform long term catalyst experiments. Ba0.5Sr0.5Co0.8Fe0.2O3-δ 

(BSCF5582) and La0.7Sr0.3FeO3-δ (LSF731) perovskite membranes were also 

investigated for their feasibility to split water and produce hydrogen. 

2.3.2.2 Transport mechanism 

Dense perovskite membranes when subjected to high temperatures and oxygen chemical 

potential difference (driving force for permeation) can transport oxygen from the 

presence of oxygen vacancies in the lattice of the membrane material. As the membrane 

is dense the transport of oxygen molecules is blocked, however oxygen dissociation and 

ionisation occurs at the high pressure side followed by migration of oxygen ions to the 

low pressure side. Simultaneously the flux of oxygen ions is charge compensated by a 

flux of electrons in the opposite direction. At the low pressure side the oxygen ions 

recombine to form oxygen molecules [76-78] (Figure 2.5).  

 

Figure 2.5 Schematic principle for oxygen transport throuhg mixed ionic electronic 

membranes at elevated temperature from high oxygen activity to low oxygen activity.  

The reaction on the high pressure side can be written (using Kröger-Vink notation) as: 

 

 
       

     
      

 

(2.9) 

 

Where   
  

 denotes oxygen vacancies with a charge of +2,   
 

 lattice oxygen and   
 

electrons holes. At the low pressure side oxygen ions are released creating an oxygen 

vacancy and donating two electrons back to the lattice of the membrane material 

(Equation (2.10)).  

 
  

          
     

 

(2.10) 
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This is feasible at high temperatures (700-1000°C) as the oxygen ions require enough 

thermal energy to overcome the energy barrier and hop from one crystallographic site to 

the other. An important factor is the fact these materials possess the ability to conduct 

both oxygen ions and electrons without the necessity of electrodes and external 

loadings, simplifying the membrane reactor and consequently the cost [75, 78].  

Oxygen permeation through a dense membrane is controlled by (i) surface oxygen 

exchange (surface kinetics) and (ii) the rate of solid-state diffusion path the membrane 

length. When a MIEC membrane is under an oxygen partial pressure differential (   ), 

in a steady state, the oxygen permeation flux (   ) through the membrane can be 

expressed by Wagner equation (Equation (2.11)) [79]: 

 
     

  

      
 

       
        

      

     
  

     
 

 

 

(2.11) 

 

where   is the gas constant,   the temperature,   the Faraday constant and   the 

membrane thickness.    

 
 and    

  
 represent the oxygen partial pressure at the high and 

low     side of the membrane, respectively. The partial electronic and ionic 

conductivities of the material are represented by     and      respectively.  

For practical application it is interest to know whether the oxygen transport is controlled 

by bulk diffusion or surface exchange kinetics. From Equation (2.11) is evident that 

oxygen flux is inversely proportional to the membrane thickness; therefore higher 

oxygen flux can be obtained by reducing thickness. The oxygen permeation will be 

controlled by diffusion if the membrane has a thick wall, however reducing the 

membrane thickness, below a characteristic length Lc, surface exchange kinetics will 

predominantly control the oxygen permeation rate. Lc can be expressed in terms of self 

diffusion coefficient of oxygen ions (Ds) and surface exchange coefficients (ks) by 

Equation (2.12) [78, 80]. 

 
   

  

  
 

 

(2.12) 

 

When membrane surface reaction is the rate determining step (L ≤ LC), oxygen 

permeation can be improved by surface modification; depositing a porous surface layer 

or by catalytic modification (or deposition), leading to an improvement of surface 

exchange kinetics [81]. 
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2.3.2.3 Membrane geometry 

Membrane geometry is an important aspect for achieve high oxygen permeation fluxes; 

membranes generally can be classified into: (i) planar and tubular membranes; (ii) 

symmetrical and asymmetrical.  

Most of the oxygen permeation studies employ planar disk membranes due to easy 

fabrication method however tubular membranes have some advantages such as higher 

surface area and also simplicity to employ high temperature sealing. Microtubes 

(hollow fibres) membranes fabricated by phase inversion method have attracted great 

attention as they provide high surface area per unit volume when compared with disk 

membranes (Figure 2.6). Typically microtubular membranes have diameters range ca 1-

2mm and membrane walls ca 0.2-0.3mm [82, 83]. 

 

Figure 2.6 SEM image of a microtube (hollow fibre) membrane produced by phase 

inversion technique [84].  

It is well know that oxygen flux can be increased by employing membranes with small 

wall thickness [85]. Thus another method of enhancing oxygen flux is using a dense 

ceramic layer on a porous support (asymmetric membranes). The dense film has to be a 

defect-free membrane, moreover the layer and the porous support must have thermal 

and chemical compatibility to assure a strong interface between them. This geometry 

allows the construction of more resistant membranes as the dense layer can be deposited 

on a mechanically strong support [86]. 
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2.3.2.4 Applications 

Oxygen separation from air using MIEC membranes is already a well known 

technology competing with conventional methods, such as cryogenic distillation of air 

and PSA. This technology have attracted great interest in industrial processes as they 

can provide separation and oxygen supply in one module unit; therefore the overall 

process becomes more efficient and costs are reduced [87-89].  

Besides oxygen separation from air the integration of MIEC membranes in catalytic 

reactors is considered very promising. Partial oxidation of methane to synthesis gas 

(syngas) and oxidative coupling of methane to ethylene/ethane production are examples 

of these applications [73, 90-92]. However there are also a large number of potential 

applications in energy and environmental areas.  

Partial oxidation of methane is probably one of the most important MIEC membranes 

applications. In this process oxygen is separated from air in one side of the membrane. 

The oxygen ions are transported through the membrane bulk to react with methane in 

the reaction side and produce hydrogen and carbon monoxide (syngas) (Figure 2.7). Air 

separation and reaction occurs in the same reactor avoiding multiple steps as applied in 

conventional method which can make the overall process energy intensive and 

expensive [20]. 

 

Figure 2.7 Partial oxidation of methane using MIEC membranes. Oxygen ions are 

transported through the membranes to react with methane to produce syngas. 

Using the same principle of oxygen transport through MIEC membranes, pure hydrogen 

can be produced by water splitting and oxygen separation. This process combines 
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partial oxidation of methane and water splitting to produce hydrogen and syngas in 

separated streams (Figure 2.8). This process is described in detail in Section 2.6. 

 

Figure 2.8 Membrane-based steam reforming using MIEC membranes. Oxygen ions are 

transported through the membranes to react with methane to produce separate streams of 

hydrogen and syngas. 

2.3.2.5 Problems  

Although several researchers have been investigating the feasibility of MIEC 

membranes for catalytic reactions, there are still many drawbacks to industrial 

applications. There are several major problems associated with long term stability and 

high temperature sealing of the membranes [93].  

The performance of the oxygen carrier material plays a key role towards the selection of 

a MIEC membrane for a certain process; the membrane has to present thermal and 

chemical stability when exposed to high temperatures and large chemical potential 

gradients (e.g. air/methane). When such high chemical potential gradients are 

established the membrane can degrade which may lead to stress and total mechanical 

failure of the membrane. This degradation may happen due to lattice expansion 

mismatch of the different sides of the membranes, segregation of constituent cations, 

formation of different crystalline phases or formation of carbonates [94-97].  

Segregation of constituent cations is often reported in studies involving MIEC 

membranes exposed to large chemical potential gradients [98-101]. This demixing 

phenomenon can be related to solid state transport mechanism in these OCMs, which 

can often be described as cation, oxygen anion and electron migration. In a ABO3 

perovskite oxide exposed to an oxygen potential gradient, demixing can occur if the 
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cations diffusion coefficient (DA or DB) are greater than the oxygen anion diffusivity 

(DO). In the case of DA > DB and DA ≫ DO the crystal (or membrane) normally will be 

enriched of A-site species at the high oxygen pressure side.  

Another major issue to be solved is the high temperature sealing between the 

membranes and the vessels. This sealing has to withstand harsh environments and 

should not interact with the membrane surface (good compatibility). Membrane and 

sealing materials should have similar thermal expansions to avoid fractures and must 

perform over long periods. All these parameters are required to prevent mixing between 

the retentate and permeate streams [66, 102].  

Other problems are related to relative low oxygen permeation flux and high energy 

required to operate most of the processes. Enhanced ionic electronic conductivity of the 

membranes and low energy processes (autothermal operation) are improvements still 

required for industrial applications [20, 66].  

2.4 Oxygen transport membranes for hydrogen 

production 

A number of hydrocarbon-conversion processes applying oxygen transport membranes 

(OTM) have recently been investigated with a few reviews published in the area [103-

109]. The feasibility of POM and also other hydrocarbons to syngas production are the 

main subject studied in this area. These processes will be briefly discussed in Section 

2.5 however the scope of this literature review is to report the application of OTM to 

produce hydrogen from water-splitting (Section 2.6); this area has received little 

attention with fifteen publications since 1982. In these sections, oxygen permeation 

applications using OTMs are often recalled due to the similarity of the processes.  

Of major importance, the oxygen material balance is a point which is rarely reported in 

works related to hydrocarbon-conversion processes. This material balance would 

characterise the oxygen transport through the membrane and also prove that 

hydrogen/syngas production is a direct result of oxygen permeation rather than surface 

reaction (structural oxygen at membrane surface). Both sides of the membrane gas 

outlet have to be analysed in order to perform this material balance, however most of 

the studies report only the outlet gas analysis from the permeated side. 
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Other aspects that are rarely reported are: (i) duration of operation, (ii) reporting the 

operating temperature for tubular membrane experiments, (iii) water conversion (in 

water splitting studies) and (iv) trans-membrane leaks. Relating to the first point it 

would seem obvious that durability of the membranes under experimental conditions 

should be an important aspect for any study in this area; often the duration of 

experiments is not presented or data is collected over a short period of time. Concerning 

to the second point, studies involving cold-sealed tubular membranes impose a 

temperature profile along the membrane length leading to different oxygen permeation 

rates along the membrane. Most studies assume that the membrane operating 

temperature is the same temperature set at the furnace. In relation to the third point, 

water splitting studies often do not report instruments for measuring water, such as 

hygrometers, nor simple calculations for estimating water conversion. Last but not least, 

most of the studies do not report trans-membrane leak which is an important aspect to 

investigate possible membrane and/or sealant failure. 

2.5 Application of OTMs to syngas production from 

hydrocarbon sources  

The first work with dense oxygen permeable membranes with high ionic and electronic 

conductivities was reported by Teraoka et al.; membranes with the general formula   

La1-xSrxCo1-yFeyO3-δ presented higher performance for oxygen permeation than yttria 

stabilised zirconia [70, 71]. Since then new MIEC materials have been studied and also 

different applications have been tested.  

One of the most studied applications for OTM membranes is the POM reaction for 

syngas production. The membrane controls the addition of oxygen to the reaction side 

as they incorporate oxygen into the oxygen sublattice (Equation (2.13)) and transport 

through the bulk.  

 

 
       

     
      

 

(2.13) 

 

Where   
   denotes an oxygen vacancy at a site in the oxygen sub-lattice with a charge 

of +2,   
  denotes an oxygen occupying a site in the oxygen sub-lattice and    an 

electron. The oxygen anions transported react with methane in the other side of the 

membrane producing syngas (Equation (2.14)).  
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(2.14) 

 

MIEC membranes are typically used in these studies [83, 90, 110-112]; bare membranes 

[83, 113, 114] and also membranes with the addition of a catalyst material to improve 

conversions have been investigated. Nickel has been applied in most of the studies 

involving catalyst material integrated with OTM membranes [112, 115-118]; this is 

mainly because of its capability to activate methane and therefore speed up the 

consumption of the oxygen that is transported across the membrane. Asymmetric 

membrane configurations also can improve performance; thin layers from the same 

[119, 120] or different material [121] of the membrane substrate have been used to 

improve permeation. Oxygen permeation is controlled by bulk and surface exchange 

rates; reducing the thickness of the membranes is a method used to reduce bulk 

transport limitations and consequently increase oxygen permeation.  

Many techniques are used to apply thin dense layers such as dip coating, spin coating, 

sputtering and chemical vapour deposition; however the most prominent method to 

produce asymmetric membranes is the phase inversion technique. Membranes 

manufactured by this method (hollow fibres or microtubes) have an asymmetric 

geometry with a thin layer integrated [6, 122]. It is important to note that the sintering 

method also plays an important role is this process as removes the polymeric binder 

used during the process. 

Membranes of Ba0.5Sr0.5Co0.8Fe0.2O3-δ for oxygen permeation was first reported by Shao 

et al.[123]. Since then this material has received great attention due to high oxygen 

permeation rates reported [124] and promising application in methane oxidation studies 

[125]. Recent studies involving Ba0.5Sr0.5Co0.8Fe0.2O3-δ microtubular membranes 

produced by phase inversion technique presented formation of BaSO4 due to a reaction 

with polysulfone binder, commonly used in the phase inversion technique [7]. The 

authors stated this contamination affected bulk diffusion and surface kinetics and 

consequently lowered the oxygen flux across the membrane. The same group developed 

a new membrane using a sulfur-free phase inversion technique [8]. Post operation 

showed demixing of the cations constituents; however this has not affected stability of 

the membrane, which operated for oxygen permeation for ca 600 hours at the 

temperature range of 800-900°C. This work is of extreme importance to draw attention 

of researches which use phase inversion technique with polysulfone or polyethersulfone 

as a binder.  
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Membranes made of La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite showed good stability and 

relative high oxygen permeability under air/inert gas atmospheres [126]; therefore they 

also have been studied for methane oxidation to syngas production. Thursfield and 

Metcalfe [83] reported the dependence of methane conversion with the oxygen flux 

across the membrane in studies involving hollow-fibres. The authors stated complete 

methane conversion, leading to water and carbon dioxide, when high inlet oxygen flow 

rates were supplied at 860°C. However post methane oxidation studies indicated carbon 

deposition in the methane exposed side of the membranes, which may have restricted 

oxygen permeation rates. Segregation of metal constituents is another issue often 

reported in studies using La0.6Sr0.4Co0.2Fe0.8O3-δ membranes [90, 98, 99, 127], this 

demixing process can affect performance of the membranes or even cause mechanical 

failure after long term operation as presented in Section 2.3.2.5.  

Some researchers focused on the study of producing syngas from other hydrocarbon 

sources, such as heptane [128], ethane, propene and propane [129, 130]. However most 

of these studies have used coke oven gas (COG), which is a mixture gas generated in 

the production of coke from coal. The main components of COG are hydrogen (ca 54-

59 mol%), methane (ca 24-28 mol%), carbon monoxide (ca 5-7 mol%), carbon dioxide 

(ca 1-3 mol%), nitrogen (ca 3-5 mol%), oxygen (ca 0.3-0.7 mol%), “other 

hydrocarbons” (ca 2-3 mol%) and hydrogen sulfide (ca 0.01-0.5 mol%) [131]. The 

researchers stated that conventional separation methods (PSA) only can separate 

hydrogen; partial oxidation can be used to obtain higher hydrogen yields from the other 

energetic components (e.g. methane, carbon monoxide) present in the COG.  

Yang et al [132] have conducted partial oxidation of simulated COG to produce 

hydrogen at the temperature range of 800-900°C. The authors reported that a disk 

membrane of Ba1.0Co0.7Fe0.2Nb0.1O3−δ with NiO/MgO reforming catalyst operated for 

continuous 100 hours at 875°C providing a hydrogen flux of ca 68µmol cm
-2 

s
-1

 (highest 

reported in COG studies) with 80% of hydrogen selectivity. High hydrogen production 

rates are reported in studies involving COG however is important to recall that the 

initial feed already has a high concentration of hydrogen (ca 58%). Post operation 

analysis showed that both sides of the membranes retained the original perovskite 

structure. However, demixing of constituents is often stated in these studies; e.g. barium 

segregation at the surface exposed to air and cobalt segregation at the surface exposed to 

COG have been reported in studies with BaCo0.7Fe0.2Nb0.1O3-δ membranes [133]. 
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As mentioned before durability of the membranes are rarely reported, however some 

studies presented long term operations, such as Markov et al. who reported a 7500 

hours continuous operation of a La0.5Sr0.5FeO3-δ membrane for POM to syngas. Zhang 

et al. [133] also reported a long term experiment (550 hours) for hydrogen production 

from COG using a BaCo0.7Fe0.2Nb0.1O3-δ membranes. 

2.6 Applications of OTMs to hydrogen production 

from water splitting 

There are only a few publications concerning the application of OTMs to hydrogen 

from water splitting; composites materials, perovskites-type and non-perovskites oxides 

are examples of membrane materials used in these investigations. The application of 

different reducing gases have also been studied, gases such as hydrogen, carbon 

monoxide, ethane and methane have been applied to remove the oxygen permeated 

across the membranes. When methane is applied (Section 2.6.4) the overall process is 

the membrane-based steam reforming, which is the method used to produce hydrogen 

presented in this thesis.  

The water splitting work is summarised in a table (adapted from review work published 

in Energy & Environmental Science [109]) and presented in Table 2.1. The table 

presents operating conditions employed and also significant results reported in each 

study. The results from Chapter 6 of this thesis are also included in the table for 

completeness.  

Hydrogen production from directly water splitting remains a major challenge because of 

its thermodynamic stability; however the equilibrium can be shifted toward dissociation 

if OTMs are applied to remove the oxygen from the gas phase during dissociation. 

Consequently the hydrogen production rate from water splitting will depend directly on 

the rate oxygen is removed from the dissociation side and consumed in the reaction 

side. Water splitting over an OTM membrane can be expressed in Kröger-Vink notation 

as (Equation (2.15)): 

 
      

         
     

 

(2.15) 

 

At the reaction side oxygen is released creating an oxygen vacancy in the membrane 

crystal and also donating two electrons to counterbalance the electronic charge 

(Equation (2.16)).  
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(2.16) 

 

It is important to mention the ability of MIEC to conduct both ions and electrons 

without the necessity of an external circuit. The lack of electronic conductivity in the 

OTMs was the main issue reported by researchers in early work (1982) for hydrogen 

production from water splitting. To overcome this problem the authors operated the 

experiments at high temperatures (ca 1800°C) to achieve both electronic and ionic 

conductivities. Cales and Baumard and Lede et al. [134, 135] studied water dissociation 

using calcia-stabilised zirconia tubes to transport oxygen and produce hydrogen. A mix 

of carbon monoxide and carbon dioxide was applied as reducing agent to consume the 

oxygen permeated trough the zirconia wall. They also investigated the influence of 

temperature and partial pressure of oxygen on the permeated side (varying carbon 

monoxide to carbon dioxide ratio). 

Naito and Arashi [5] in 1995 attempted to improve hydrogen production with the 

application of a MIEC tubular membrane at high temperature (ca 1600°C). The oxygen 

partial pressure on the permeated side was controlled by adjusting the gas mixture of 

hydrogen-carbon dioxide ratio. The authors also stated that the modified membrane 

(ZrO2-TiO2-Y2O3) with higher electronic conductivity performed better than the bare 

membrane (ZrO2-Y2O3). 

This early work mainly focused on investigating the feasibility of the process and 

attempted to improve mixed electronic-ionic conductivities of the membranes. It 

became clear that membranes with higher ionic electronic conductivity were required to 

optimise the production of hydrogen from water splitting. With the improvements in 

material science engineering and membrane technology new MIEC membranes for 

oxygen permeation and POM were manufactured; therefore recent attempts to produce 

hydrogen from water splitting have been reported. 
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Table 2.1 Hydrogen production from water-splitting using oxygen transport membranes. 

 

         
   

Oxide system 

Membrane 

geometry 

Membrane 

thickness Catalyst 

 

 

 

Gas composition(s) 

 

 T range 

Highest 

reported H2 

production 

rate per 

membrane 

unit area a 

Longest 

reported 

operation 

period 

Leak detection 

method 

reported/leak 

quantified 

Material 

balance 

reported 

Post op’ 

analysis d ref 

   

(mm) 

 pH2O 

(atm) 

pSweep 

(atm) 

 

(°C) 

      

             

0.9ZrO2-0.1CaO COE b tube X none 0.20 CO-CO2  0.5-

0.5 

1400-

1800 

X X X X X [134] 

0.9ZrO2-0.1CaO COE b tube X none 0.20 (i) CO-CO2  

mixes 

(ii) Ar  1.0 

1500-

1800 

~2.2c X X X X [135] 

             

(ZrO2)0.8-(TiO2)0.1-

(Y2O3)0.1 

COE b tube 2 none 0.17 H2-CO2 1600, 

1683 

0.4 X “no leakage was 

found” 

X X [5] 

             

CeO2-Gd-NiO disk 0.1-1.5 none 0.03-0.49 (i) H2  0.04-0.8 

(ii) CH4  0.05 

700-900 4.1 X X X X [136] 

             

CeO2-Gd-Ni 

CeO2-Gd-NiO 

 

disk 0.1-0.36 none 0.49 H2  0.04-0.80 500-900 6.8 X X X X [137] 

             

BaCoxFeyZr1-x-yO3- microtube 0.17 Ni/Al2O3 0.05-0.75 CH4  0.01-0.10 800-950 3.4 X X X X [138] 

             

BaCoxFeyZr1-x-yO3- microtube 0.17 (i) none (ii) 

porous 

BaCoxFeyZr0.

9-x-yPd0.1O3- 

surface layer 

(i)-(ii) 0.75 (i)-(ii) CH4  

0.20 

(i)-(ii) 

800-950 

(i) 0.47 (ii) 1.4 (i)-(ii) X (i)-(ii) pressure 

test to 5 atm at 

25oC & no trans-

membrane N2 at 

800-950oC 

(i)-(ii) X SEM 

STEM 

EDS 

[139] 

BaCoxFeyZr1-x-yO3- microtube 0.17 none 0.75 C2H6  0.075 , 

0.20 

700-800 0.6 100 at 800oC “gas-tight after 

100 hrs” 

X SEM 

EDS 

[140] 

BaCoxFeyZr1-x-yO3- microtube 0.17 Ni/Al2O3 0.75 CH4  0.04 850-950 2.2 X O2, N2 < 10-5 atm 

by GC 

X X [141] 

             

La0.3Sr0.7FeO3- disk 3 none X CO  X 860 0.01 20 at 860oC No Ar and He 

detected 

X X [142] 
 

a where necessary derived from volumetric flux data and assuming STP ;  b closed at one end ;  c membrane area not given i.e., mol s-1 ;  d SEM  scanning electron microscopy, XRD  X-ray diffraction, EDS energy dispersive X-

ray spectroscopy, STEM scanning tunnelling electron microscopy ;  X not given 
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Continuation table hydrogen production from water-splitting using oxygen transport 

membranes 

      

Oxide system 

Membrane 

geometry 

Membrane 

thickness Catalyst 

Gas composition(s) 

 

 T range 

Highest 

reported H2 

production 

rate per 

membrane 

unit area a 

Longest 

reported 

operation 

period 

Leak detection 

method 

reported/leak 

quantified 

Material 

balance 

reported 

Post op’ 

analysis d ref 

   

(mm) 

 pH2O 

(atm) 

pSweep 

(atm) 

 

(°C) 

      

    
  

       

La0.7Sr0.3FeO3- disk 1-3 none 0.025 CO  X 900 0.04 8 at 900oC no trans-

membrane Ar and 

He detected 

X X [143] 

             

La0.7Sr0.3Cu0.2Fe0.8O3- (i) disk 

(ii) thin film 

(i) 0.33-

1.72 

(ii) 0.05 

(i) Pt and 

none 

(ii) Pt 

(i)-(ii) 0.03-

0.79 

(i)-(ii) H2  0.8 (i)-(ii) 

600-900 

(i) ~1.4 (ii) 7.8 (i)-(ii) X no trans-

membrane He 

detected 

(i)-(ii) X (i)-(ii) 

SEM 

[144] 

             

La0.7Sr0.3Cu0.2Fe0.8O3- thin film 

 

0.022 

 

none 0.03-0.49 (i) CO  0.99 

(ii) CO-CO2  

0.5-0.5 

[(i)-(ii) 

simulated coal-

gasification] 

(iii) H2  0.8 

 

(i)-(iii) 

600-900 

 

(i) 3.2 

(iii) ~6.8 

 

X trans-membrane  

He detected 

X (i)-(iii) X [145] 

             

(i)La0.7Sr0.3Cu0.2Fe0.8O

3-δ 

(ii) BaFe0.9Zr0.1O3-δ 

(i) supported 

tubular thin 

film 

(ii) disk 

 

(i) 0.03 

(ii) 1.6 

 

(i)-(ii) none (i) 0.49 

(ii) 0.03-

0.49 

(i) CO 0.995 

CO-CO2  0.5-

0.5 

CO-CO2  0.25-

0.75 

(ii) CO2 0.8 / 

CO  0.8 

(i) 500-

900 

(ii) 600-

900 

(i) 13.3 

(ii) 0.2 

(i) 80 

(ii) X 

(i)-(ii) trans-

membrane He 

detected 

(i)-(ii) X (i)-(ii) 

SEM 

[146] 

             

SrFeCo0.5Ox (i) disk 

(ii) thin film 

(i) 0.23-

1.76 

(ii) 0.02 

(i)-(ii) none (i)-(ii) 0.49 (i)-(ii) H2  0.8 (i)-(ii) 

900 

(i) 11.9 (ii) 4 (i)-(ii) X (i)-(ii) X (i)-(ii) X (i)-(ii) 

X 

[147] 

             

La0.6Sr0.4Co0.2Fe0.8O3- 

 

microtube 0.25 none 0.07 CH4  0.05 900 0.05c 260 & 400 at 

900oC 

10-4 atm O2 & 

trans-membrane 

CH4 monitored by 

GC 

Carbon 

and oxygen  

XRD 

SEM 

EDS 

This 

work 

             

a where necessary derived from volumetric flux data and assuming STP ;  b closed at one end ;  c membrane area not given i.e., mol s-1 ;  d SEM  scanning electron microscopy, XRD  X-ray diffraction, EDS energy dispersive X-

ray spectroscopy, STEM scanning tunnelling electron microscopy ;  X not given 
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2.6.1 OTM-based water splitting using hydrogen as 

reducing agent  

Some studies applied hydrogen as a reducing gas to produce hydrogen from water 

splitting with the purpose of demonstrating the feasibility of the process. However it is 

clear that this procedure is a proof of concept and the use of hydrogen as a reducing 

agent to produce hydrogen is impractical (hydrogen produced equivalent to hydrogen 

consumed). Balachandran et al. [136] in 2004 reported the application of disk 

membranes made of gadolinium doped ceria (CGO) doped with nickel to produce 

hydrogen at the temperature range of 700-900°C. A higher hydrogen production rate 

than previous work in the area was reported at this range of temperature demonstrating 

the improvement in mixed ionic electronic conductivities of OTMs. The authors stated 

that hydrogen production increased with decreasing membrane thickness, showing bulk 

transport limitations. Hydrogen production rates also increased with the increase 

hydrogen (reducing gas) and water partial pressures. Other reducing gases were also 

investigated in this work; methane was shown to be less reactive than hydrogen and 

therefore the hydrogen production rate was lower than that obtained with hydrogen as 

the reducing gas. Hydrogen production concentration was measured by a gas 

chromatograph at the water side gas outlet of the membrane, however material balance 

was not possible as the reaction side gas outlet was not measured.  

The same group attempted to improve the process by applying a porous layer of the 

same cermet (ceramic and metallic composite material) on the membranes [137]. Disk 

membranes of CGO/Ni and CGO/NiO were compared in this study; the application of 

nickel oxide instead of nickel improved hydrogen production and the surface reaction 

rates were enhanced by the application of the porous layers. The authors stated this 

layer extended the triple-phase boundary and therefore increased oxygen dissociation 

and recombination. However this layer did not affect membranes performance when the 

thickness was superior to 2mm where oxygen transport was controlled by bulk 

diffusion.  

Balachandran’s group in 2008 studied the application of a single phase MIEC disk 

membrane made of SrFeCo0.5Ox for water splitting at 900°C [147]. The driving force 

was established with a water partial pressure of 0.49 atm (water feed) and 0.8 atm of 

hydrogen as sweep (reducing gas). This membrane performed better than the CGO 

membranes, however when applied at temperatures ca 850°C the performance 
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decreased dramatically as the material undergoes phase transition at temperature range 

of 825-850°C. The membrane thickness and the deposition of porous layers were 

investigated. Bulk limitation was observed as the highest hydrogen production rate 

(11.9 µmol cm
-2

 s
-1

) in this work was achieved with a really thin membrane of 20 µm 

thick.  

Perovskite-type La0.7Sr0.3Cu0.2Fe0.8O3-δ disk membrane has also been tested for water 

splitting using hydrogen as a reducing gas [148, 149]. Porous support with a thin film 

(ca 50µm), both made of La0.7Sr0.3Cu0.2Fe0.8O3-δ, was coated with a platinum catalyst 

layer to improve kinetics; a high hydrogen production rate of ca 7.8 µmol cm
-2

 s
-1

 was 

reported when the membranes operated at 900°C. Post operation SEM analysis showed 

that the membrane surfaces did not present any fragments or porosity. However the 

authors have not presented long term operation.  

2.6.2 OTM-based water splitting using ethane as 

reducing agent  

Jiang et al. [140, 141] investigated the feasibility of producing hydrogen combining 

water splitting and ethane dehydrogenation at moderate temperatures (700-800°C). The 

authors have investigated the performance of a microtubular (hollow-fibre) 

BaCoxFeyZr1-x-yO3-δ membrane during 100 hours of operation; the hydrogen production 

rate showed direct dependence on temperature and oxygen partial pressure. The 

membranes provided 60% ethane conversion and 90% ethene selectivity with water 

disassociation giving a rate of hydrogen production of ca 0.6 µmol cm
-2

 s
-1

. Post 

operation SEM analysis showed erosion of the membrane surface (ca 10µm deep) 

exposed to ethane however the authors stated that this had not affected the membrane 

performance as no cracks were detected and the membrane was still gas-tight after 100 

hours of operation when the test was stopped. This is an important point as few 

researchers report membrane integrity of the membranes when the experiments are 

complete.  

The use of ethane as a reducing agent raises an important aspect in these 

oxidation/reduction studies; investigate reactivity of different reducing gases under 

experimental conditions. An interesting study reported by Shen et al.[150] investigated 

the reactivity of the main components in COG (hydrogen, methane and carbon 

monoxide) in order to understand the reaction mechanism for COG reforming using 
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BaCo0.7Fe0.2Nb0.1O3-δ membranes. The authors stated that hydrogen consumes the 

oxygen permeated at the OTM surface faster than carbon monoxide, which in turn 

consumes the oxygen permeated faster than methane (H2 > CO > CH4). This was 

concluded from experiments in which individual components of hydrogen, methane and 

carbon monoxide diluted in argon were fed into the OTM reactor and the rates of 

oxidation for each obtained.  

2.6.3 OTM-based water splitting using carbon 

monoxide as reducing agent  

Water-gas shift reaction has attracted recent attention in membrane reactors for 

hydrogen production. In this case water dissociates in one side of the membrane 

(Equation (2.17)). 

 
      

         
     

 

(2.17) 

 

At the reaction side carbon monoxide reacts with lattice oxygen to produce carbon 

dioxide, oxygen vacancies   
   and electrons (Equation (2.18)). 

 
     

        
       

 

(2.18) 

 

Resulting in the overall water-gas shift reaction (Equation (2.19)): 

 
              

 

(2.19) 

 

Evdou et al. [142] studied the feasibility of hydrogen production using a disk 

La0.3Sr0.7FeO3 membrane; hydrogen could be produced continuously at the temperature 

of 860°C however essential experimental conditions e.g. partial pressure of the inlet 

carbon monoxide and water are not provided in this work. The authors stated that 

hydrogen could be produced without the assistance of the reducing gas after a few hours 

(initial activation) of experiments; the supply of carbon monoxide was interrupted and 

switched to an inert gas. The membrane continued to produce a lower level of hydrogen 

during 10 hours. The same authors also investigated the La0.7Sr0.3FeO3 disk membrane 

under the same experimental conditions, however at the temperature of 900°C [143]. 

The same capability of producing hydrogen without the assistance of a reducing gas, 

after an initial activation, was reported. Bulk transport limitations were also observed as 
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thinner membranes (1mm thick) provided higher oxygen flux than membranes 3mm 

thick.  

Even though both studies of Evdou et al. [142, 143] for hydrogen production operated 

at different temperatures and direct comparison is not adequate, it is worthwhile to 

notice the effect of strontium doping in the La1-xSrxFeO3-δ family. Higher oxygen flux 

was obtained with the perovskite containing high strontium concentration 

(La0.7Sr0.3FeO3). A similar trend was also reported by Elshof ten et al.[101], who also 

reported enhancements in the oxygen flux when the strontium concentration was 

increased from x = 0.1 to x = 0.3. The authors indicated that higher oxygen vacancies 

can be obtained by increasing strontium contents; however this enhancement in oxygen 

flux cannot be directly related only to the strontium content increase. 

Park et al. [146] performed a study with two different materials and geometries; 

La0.7Sr0.3Cu0.2Fe0.8O3-δ tubular and BaFe0.9Zr0.1O3-δ disks membranes have been used to 

perform hydrogen production at the temperature range of 500-900°C. A thin film (30 

µm) of La0.7Sr0.3Cu0.2Fe0.8O3-δ was deposited in a tubular substrate of the same material 

to ensure good interface between them; the membrane operated during ca 80 hours 

showing a high hydrogen production rate (13.3 µmol cm
-2

 s
-1

) at 900°C. Post operation 

SEM analysis revealed some porosity however the membrane surfaces did not present 

cracks. The authors did not present direct comparison between tubular 

La0.7Sr0.3Cu0.2Fe0.8O3-δ and BaFe0.9Zr0.1O3-δ disks, nevertheless they indicated that 

BaFe0.9Zr0.1O3-δ membranes have the potential to perform better than 

La0.7Sr0.3Cu0.2Fe0.8O3-δ; however a better understanding of BaFe0.9Zr0.1O3-δ defect 

chemistry is required. 

The use of carbon monoxide as sweep gas was also investigated in oxygen permeation 

studies in the La1-xSrxFeO3-δ family; Elshof ten et al.[101] reported strontium 

segregation after 48 hours of operation, which lead to the formation of SrCO and/or 

SrO. The authors stated that the main perovskite composition remained however SEM 

analysis indicated an enlargement of the specific surface area. Similar oxygen 

permeation studies at 900°C with La0.6Sr0.4Co0.8Fe0.2O3-δ using carbon dioxide as 

reducing gas presented carbon deposition, strontium segregation and also corrosion of 

the membrane surface after 100 hours [100]. The authors stated that oxygen permeation 

decreased due to chemical adsorption of carbon dioxide on the membrane surface with 

oxygen atoms of carbon dioxide occupying the oxygen vacancy sites. Perhaps the use of 
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less reactive reducing agent (e.g. methane) may prevent membrane instability and 

material segregation. 

2.6.4 OTM-based water splitting using methane as 

reducing agent  

Membrane-based steam reforming has also been demonstrated as a good candidate for 

hydrogen production by water splitting [136, 138, 139, 141]. This process combines 

POM and water splitting to produce syngas and hydrogen in separate streams of the 

membrane. 

The oxygen generated from water splitting is transported through the membrane to the 

reaction side (Equation (2.20)):  

 
      

         
     

 

(2.20) 

 

At the reaction side methane reacts with lattice oxygen to produce syngas, oxygen 

vacancies,  
   and electrons (Equation (2.21)).  

 
      

    
              

 

(2.21) 

 

Resulting in the steam methane reforming reaction (Equation (2.22)): 

 
               

 

(2.22) 

 

This process produces pure hydrogen if the membrane is gas-tight as the hydrogen 

stream never meets the reducing gas stream. Unconverted water can be condensed and 

pure hydrogen can be collected; this process avoids any expensive hydrogen 

purification method e.g., pressure swing adsorption or cryogenic distillation.  

Jiang et al. [138] investigated the process using a BaCoxFeyZr1-x-yO3-δ microtubular 

membrane with wall thickness ca 170 µm; a nickel-based reforming catalyst was 

packed around the membrane to accelerate the conversion of methane. The influence of 

temperature at the range of 800 to 950°C was investigated; the highest hydrogen 

production rate (3.4 mol cm
-2

 s
-1

) was obtained at 950°C. Low methane conversions 

and low carbon monoxide selectivity were observed when a high concentration of 

methane was fed at the reaction side. The authors indicated this occurred due to carbon 

deposition at the membrane surface exposed to methane; however no post operation 
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analysis were presented to provide this evidence. Under such conditions the question of 

long term stability must be addressed, the authors did not provide any long term studies 

and it is not clearly stated whether data was collected with the same membrane or 

different sets of membranes while the influence of temperature and inlet gases 

concentration was studied. The same group [141] studied the performance of 

BaCoxFeyZr1-x-yO3-δ membranes with a nickel-based catalyst for membrane-based steam 

reforming (and also dehydrogenation of ethane with nitrous oxide reduction). The 

highest hydrogen production rate reported was 2.2 mol cm
-2

 s
-1

 at 950°C.  

Some attention has also been given to surface modification of BaCoxFeyZr1-x-yO3-δ 

microtubular membranes [139]. A BaCoxFeyZr0.9-x-yPd0.1O3-δ thin porous layer (40 µm 

thick) was deposited to improve catalytic performance to methane oxidation. The 

authors stated that good mechanical stability of the membranes since the porous layer 

and the substrate have almost the same melting point; therefore good interface 

compatibility was obtained. A higher hydrogen production rate was obtained with the 

surface modified membrane compared with the bare membrane; the highest hydrogen 

production rate presented was of ca 1.4 mol cm
-2

 s
-1

 at 950°C. The enhancement was 

attributed to the well known activity of palladium catalysts towards methane activation. 

Gas analysis of the methane feed side exit was not reported; thus oxygen balance and a 

correlation between oxygen flux and water splitting cannot be made.  

2.6.5 Summary  

It is important to notice that material balance was not possible in most studies involving 

water splitting as gas analysis was only performed on the water feed-side to detect 

hydrogen. Hence it is not possible to demonstrate that hydrogen production is directly 

related to oxygen permeation across the OTMs. Another omission is the duration of 

operation; few workers reported long term experiments or did not report at all. The 

longest reported continuous hydrogen production from water splitting is 100 hours 

using a BaCoxFeyZr1-x-yO3-δ microtubular membrane with ethane as a reducing agent 

[140].  

Few workers specifically reported the hydrogen production rate; the highest reported 

flux from OTM-based water splinting work is ca 13.3 4 mol cm
-2

 s
-1

 obtained with a 

La0.7Sr0.3Cu0.2Fe0.8O3-δ supported tubular thin film (ca 30 µm) [146]. Membrane 

thickness is definitely an aspect which requires some attention. Thinner membranes are 
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necessary to enhance oxygen permeation thus hydrogen production. Post-operation 

analysis is another important point very often neglected in these studies. This analysis 

can provide useful information about membranes stability/failure over time. This leads 

to other aspect rarely reported; few workers reported whether/when the membranes 

presented failure and stopped to perform on the way expected. Finally, another aspect 

not fully reported is the history of the membranes prior and during operation. 

Oxygen permeation in MIEC membranes is controlled by both bulk diffusion and 

surface kinetics. Most of the studies which reported high oxygen permeation flux 

attempted to reduce bulk limitation processes by producing membranes with thin dense 

walls or layers. Many researchers used the phase inversion technique, which is the most 

prominent method to produce asymmetric membranes with thin dense layer integrated. 

This project aims to study the feasibility of perovskite-type membranes (manufactured 

by phase inversion technique) to produce hydrogen from membrane-based steam 

reforming over long duration where permeation is more important than dynamic surface 

redox processes. Analysis of exit gas composition from both sides of the membranes in 

order to realise a careful oxygen balance will be conducted. Also methods to improve 

stability of the membranes (e.g. operate under lower water partial pressure and methane 

concentration) will be carried out. 
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Chapter 3  

3 Experimental  

3.1 Introduction  

This chapter details all fabrication procedures and experimental setups used in this 

work. The methods used for fabrication/sintering of the microtube membranes and their 

final dimensions are presented in Section 3.2. Temperature programmed studies aimed 

to compare and select the best material available for hydrogen production by water 

splitting/methane reforming. Section 3.3 illustrates the materials used and the 

experimental setup of these catalytic activity studies. The membrane module design and 

experimental setup for experiments involving membranes are presented in Section 3.4. 

An outline of the methodologies applied for the oxygen permeation studies and 

membrane-based steam reforming are presented in Section 3.5 and Section 3.6 

respectively.  

3.2 Membrane fabrication  

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428), La0.7Sr0.3FeO3-δ (LSF731) and 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF5582) microtube membranes were used during this work. 

LSCF6428 and LSF731 microtubes were prepared by Zhentao Wu at Imperial College 

London and BSCF5582 microtubes were manufactured by Cedric Buysse at VITO NV, 

Belgium.  

The dense gas-tight LSCF6428 microtube membranes were manufactured by the phase 

inversion/sintering method (Figure 3.1) described by Tan et al [6] using LSCF6428 

commercial powder with a surface area of 6.0 m
2
/g and d50 < 1 µm  manufactured by 

combustion spray-pyrolysis (Praxair).  LSF731 microtube membranes were produced 

by similar process than LSCF6428, using LSF731 commercial powder with a surface 

area of 5.5 m
2
/g and d50 < 0.7 µm also manufactured by Praxair. BSCF5582 microtube 

membranes were also prepared by phase inversion/sintering method described 

elsewhere [7] using BSCF5582 powder with a surface area of 1.2 m
2
/g and d50 = 3 µm 

manufactured by HITK (Hermsdofer Institut für Techinische Keramik).  
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Figure 3.1 Schematic apparatus for microtubes fabrication by phase inversion [151].  

Crystallinity and phase purity of the membranes were determined by powder X-ray 

diffraction (XRD) using a PANalytical X'Pert Pro Multipurpose Diffractometer 

(PW3040/60) fitted with an X'Celerator and a secondary monochromator. For data 

acquisition, the Cu anode was supplied with 40 kV and a current of 40 mA to generate 

Cu K-α radiation (λ = 1.54180 Å) or Cu K-α1 (λ = 1.54060 Å). A nominal step size of 

0.0334 two-theta and time per step of 100 s in continuous mode was routinely used. A 

Rontec Quantax 1.2 FEI XL30 ESEM-FEG system was used to carry out microstructure 

characterisation by scanning electron microscopy (SEM) and elemental analysis by 

energy dispersive X-ray spectroscopy (EDS). SEM images of the cross-sections of the 

fresh microtubes are provided in Figure 3.2. The dimensions of the sintered microtubes 

are presented in Table 3.1. 

 

Figure 3.2 SEM images of the membrane cross sections of (a) LSCF6428, (b) LSF731 

and (c) BSCF5582. 
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Table 3.1 Dimensions of the sintered microtube membranes. 

Microtube Outer 

diameter  

(≈ mm) 

Inner 

diameter 

(≈ mm) 

Wall 

thickness  

(≈ mm) 

Total 

length 

(≈ cm) 

LSCF6428 1.5 1.0 0.25 30.0 

LSF731 1.4 0.9 0.25 30.0 

BSCF5582 3.5 2.7 0.4 25.0 

3.3 Temperature programmed experiments 

3.3.1 Material preparation and characterisation  

Dense membrane fragments with dimensions ca 3mm (ca 50 mg of material) from 

LSCF6428, LSF731 and BSCF5582 microtubes and commercial LSCF6428, LSF731 

and BSCF5582 powders (Praxair) were used without further processing.  

Surface area analysis was carried out on each powder sample with a Coulter 3100A 

using N2 as adsorbate at 77K with BET (Brunauer-Emmett-Teller) analysis. All samples 

were also characterised by SEM and EDS. 

3.3.2 Apparatus  

Temperature programmed reaction experiments were performed using a fully automated 

and programmable microreactor-gas analysis system (CATlab, Hiden Analytical, UK) 

at 1atm. The system consists of a microreactor and a quadrupole soft ionisation mass 

spectrometer (QMS) for analysis. The outlet of the microreactor is connected to the 

QMS via a heated capillary line to avoid condensation. Calibration was carried out and 

described by Murugan et al [152]. 

To generate fast responses usually ca 50 mg of sample was placed in the quartz 

microreactor (plug flow reactor) integrated with internal K-type thermocouple to control 

and monitor the temperature. Reduction and oxidation of the material was performed by 

alternating the flow of reducing and oxidation gases. The products were sent to the 

QMS for gas analysis. 

Water was fed into the microreactor by a water saturator system (Grant Scientific, UK) 

using helium as a carrier gas. The concentration of the water could be controlled by the 

temperature of the water bath and monitored by a platinum cold mirror dew point 
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hygrometer (CMH-1, Alpha Moisture Systems, UK). This unit was also used to 

calibrate the water signal for the QMS.  

3.3.3 Temperature programmed experiments 

procedure 

The sample (ca 50mg) was placed inside the microreactor and immediately was flushed 

out under a helium flow of 100 (STP) ml min
-1

 prior to testing to evacuate the air from 

the sampling tube. The furnace temperature was raised to 900°C, under a helium 

atmosphere, using a ramp of 10°C min
-1

. Fifteen isothermal redox cycles were 

performed at 900°C using alternating flows of 5% methane in helium and then 2.6% 

water in helium, each supplied at a total inlet flow rate of 20 ml min
-1

. Reduction and 

oxidation steps were performed for 30 minutes. Following the experiment the sample 

was removed for post operation analysis (SEM-EDS analysis). 

3.4 Membranes experimental setup  

Oxygen permeation and membrane-based steam reforming experiments for this work 

were performing using an experimental setup illustrated in Figure 3.3. This setup can be 

divided in three sections; the feed system, membrane reactor plus furnace and the 

analysis system. Pictures of the experimental setup are presented in Appendix 3-A.  

 

Figure 3.3 Schematic of the experimental setup for oxygen permeation and membrane-

based steam reforming experiments. 

3.4.1 Feed system  

The gases supplied to the membrane module are controlled by four mass flow 

controllers (MFC) (Brooks, UK) connected to different gas cylinders as presented: 
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 MFC 1: Compressed argon (BOC, UK) 

 MFC 2: Compressed air (BOC, UK) 

 MFC 3: 5% methane in argon (BOC,UK) 

 MFC 4: Compressed argon (BOC, UK) 

During oxygen permeation MFC 2 is used to supply air to the feed side of the 

membranes and MFC 4 to supply sweep argon to the other side. During membrane-

based steam reforming MFC 1 is used to supply water vapour plus argon to the shell 

side of the membranes and MFC 3 to supply methane to the lumen side. The water was 

delivered by a water saturator system (Grant Scientific, UK), which water bath (Figure 

3.4) temperature could be varied to control the saturation of the water.  

 

Figure 3.4 Schematic diagram of the water saturator system. 

The concentration of water leaving the water saturator was monitored and also 

calibrated by a hygrometer (VAISALA HMT330). The water concentration could be 

adjusted (at equilibrium) according to the water saturator calibration curve show in 

Figure 3.5. The results from this calibration test are presented in Appendix 3-B, they 

slight diverge from the typical water vapour pressure table. This variation could be 

related to actual fluctuation in inlet flow rates or temperature and/or pressure. The other 

factor that cannot be neglected is condensation, which is a common problem in systems 

that user water as a reactant. To avoid condensation heating lines at 80°C were used 

between the water saturator and the membrane module and also between the membrane 

module and the gas chromatograph GC 1 (Varian 3900). 
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Figure 3.5 Water saturator calibration curve. 

3.4.2 Furnace 

The membrane module was placed inside a furnace (Vecstar Furnaces, UK) which was 

used to heat the membranes using a programmed temperature ramp to the required 

operating temperature which was measured by an internal thermocouple. Two custom-

made furnaces were used to run the experiments: 

 SW furnace (short length and wide bore) - total length of 10 cm with a bore 

diameter of 5 cm.  

 LN furnace (long length and narrow bore) – total length of 15 cm with a bore 

diameter of 4 cm 

Most of the experiments were run at the temperature of 900°C; therefore temperature 

profiles at the interior of the reactor module at this temperature were recorded for both 

furnaces and presented in Figure 3.6. The thermocouple was originally placed at the 

centre of the membrane module and then moved out in 0.5 cm steps to the end-caps of 

the reactor. It was assumed that the furnaces had symmetrical temperature profiles. 

Isothermal zone lengths of 3 cm and 5 cm at the centre of the membrane modules were 

measured using the SW furnace and LN furnace, respectively. The experimental setup 

ensures that in both cases the sealing points are situated in the “cold” zone outside of 

the furnace at the temperature of ca 100°C.  
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Figure 3.6 SW and LN furnaces; internal temperature profile of reactor at 900°C. 

Horizontal lines indicate (a) total heated length of membranes using SW furnace, (b) total 

heated length of membranes using LN furnace and (c) total length of membranes used 

during the experiments.  

3.4.3 Membrane module  

3.4.3.1 1st membrane module design  

During the first year of this research a membrane module design illustrated in Figure 3.7 

was tested for oxygen permeation and redox experiments. In this membrane module the 

microtubes are contained in a quartz tube which has 40 cm in length with an internal 

diameter of 3.2 cm and external diameter of 3.6 cm. The shell tube is closed with two 

aluminium end-caps; one cap containing three longitudinal holes and the other two 

holes. The central holes from the end-caps were connected to the microtubes lumen-side 

(the inner side) and the other holes connected to the membranes shell-side (the outer 

side). Four holes of the end-caps were attached to two pairs of gas inlet/outlet made of 

stainless steel (Swagelok compression fittings with 1/8 in). A K-type thermocouple was 

housed inside an inert alumina sleeve and inserted in the remaining hole from the end-

cap. The thermocouple is free to move along the length of the module. 
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Figure 3.7 Schematic of the microtubes membrane module. 

The microtubes are placed in the module using two tubes made of MACOR (Precision 

Ceramics, UK), these tubes have one end open and the other end closed with holes 

drilled to fit the microtubes. The microtubes are sealed to the MACOR tube with a glass 

ceramic sealant (Fortafix, UK) and also coated with the same ceramic sealant 

throughout the length, leaving only 5 cm (isothermal zone of the furnace) uncoated to 

ensure that only this area of the membranes is active. A silicone rubber, which can 

withstand temperatures ca 240°C is attached to the open side of the MACOR tube and 

connected to the lumen-side gas inlet/outlet. Images of the membrane module before 

sealed are presented in Appendix 3-C. Silicone sealant (RS® Silicone rubber compound) 

was used for the end-caps, thermocouple sleeve and gas inlet/outlet sealing. Before 

sealing the end-caps and the quartz together the structure (microtubes + MACOR + end-

caps) is checked for leaks using a flow meter (Varian® analytical instruments) and a 

leak detector. The membrane module is also leak tested after sealed.  

3.4.3.2 New membrane module design  

In preliminary studies described in Chapter 4 it was found that the “cold” zones were 

unsuccessfully blanked off using commercial water based glass-ceramic sealant. 

Although this material could withstand high temperatures, it did not allow the 

microtubes to bend (necessary when exposed to high temperatures due to the 

membranes’ thermal expansion) causing mechanical stress leading to fracture. In 

addition, post operation inspection by Thursfield and Metcalfe [153] indicated that the 

sealant tends to become porous, raising doubts as to its suitability for this application. 

In order to overcome this issue a new membrane module was designed. To avoid 

fracture the microtubes were not blanked off with the glass-ceramic sealant and a 

silicone sealant rated to 300°C (ACC Silicoset 158; composition; 1-5% diacetoxy-di-

tertbutoxy silane and 1-5% methyl triacetoxy silane) was used to seal the membranes 

with the MACOR tube; therefore the microtubes were allowed to bend when exposed to 
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high temperatures. A photo image of a typical microtube membrane module showing 

the silicone sealant (in black) is presented in Figure 3.8. 

 

Figure 3.8 New microtube membrane module design; using silicone sealant (in black). 

The experimental setup ensures the sealing points are situated in the “cold” zone outside 

of the furnace but creates the problem of different oxygen fluxes along the length of the 

membranes due to the temperature profile inside the reactor. Therefore the active 

permeation area of the system is not fixed, as increasing the operating temperature the 

active length of the microtube would also increase. However, the effective membrane 

area SA of the module can be approximated by the log mean permeation area: 

    
         

           
   (3.1) 

Where ro and ri are the outer and inner radius, respectively, of the microtubes, n is the 

number of microtubes used and l is the effective heating length of the membranes.  

The LSCF6428 and LSF731 membrane modules were constructed and each comprised 

of four microtubes. The BSCF5582 membrane module was constructed with only one 

microtube. Approximated effective area for each membrane module at 900°C, using SW 

and LN furnaces are presented in Chapter 4.  

3.4.4 Analysis system  

During this work gas chromatography was the main technique used to analyse the 

products (gases) from oxygen permeation and redox experiments. This technique was 

selected due to the gradual speed of the reactions occurring at the membrane 

experiments.  

The interactions of the gases with the walls of the GC column causes different elution 

times of the compounds, this is called retention time and the comparison of these 

retention times is the analytical power of GC [154]. The thermal conductivity detectors 

(TCDs) do not interact with the compound chemically but responds to a physical 
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property (thermal conductivity) of the carrier gas compared with the compound/carrier 

gas mixture. TCDs are also sensitive to concentration.  

Helium is the most common carrier gas used in gas chromatography for its large 

difference of thermal conductivity for the other gases. Therefore the choice for the 

carrier gas has to be determined according to the nature of the experiments. In this work 

hydrogen was one of the main products; hence the use of helium as a carrier gas could 

not be employed as the thermal conductivity of hydrogen-helium mixtures at low 

concentrations of hydrogen is anomalous [155]. The use of helium as a carrier gas 

would have led to uncertainty and non linear responses. Argon was used as a carrier gas 

instead helium during this research. 

In order to obtain material balances to demonstrate permeation through the membranes 

both exit gas composition of the membrane module were analysed simultaneously; two 

gas chromatographs (Varian 3900) equipped with a molecular sieve 5A column (GC 1) 

and a SHIN carbon column (GC 2), a thermal conductivity detector and argon as carrier 

gas, were used to analyse the outlets from the shell side (GC 1) and the lumen side (GC 

2). Analysis interval time was ca 30 minutes. The discrete data obtained by GC were 

plotted as connected points for clarity 

GC 1 was calibrated using a standard containing; 1% hydrogen 2% oxygen and 2% 

nitrogen in argon and GC 2 calibrated using a standard containing; 2% hydrogen 0.5% 

oxygen 2% carbon dioxide 2% nitrogen 2% carbon monoxide 2% methane 2% ethylene 

and 2% ethane in argon.  

3.5 Oxygen permeation  

Oxygen permeation through the microtubes was studied as a function of temperature 

and gases flow rate. The membrane module was placed inside a furnace (Vecstar 

Furnaces, UK) which was used to heat the membranes using a programmed temperature 

ramp of 0.5°C min
-1

 to the required operating temperature which was measured by an 

internal thermocouple. Air (BOC, UK) was supplied to the feed side of the microtubes 

and argon (BOC, UK) was used as the sweep gas on the permeate side (Figure 3.9). The 

oxygen partial pressure on both sides was varied by adjusting the total flow rate of the 

gases, which could be varied from 20 to 500 ml (STP) min
-1

. All oxygen permeation 

results reported here refer to measurements at the permeated side. The oxygen 

permeation rate and also the rate of cross-membrane leak of nitrogen, Jx (mol s
-1

), was 
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determined by the percentage mole fraction of the gas phase species, x, in the argon 

sweep side outlet, [x]out measured by gas chromatography using GC 1 (Varian 3900). 

             
 

  

 

  
 (3.2) 

Where F is the flow rate of the argon sweep gas in ml (STP) min
-1

, Vm is the molar 

volume (1 mole is equivalent to 22,400 ml at STP) and the 1/60 factor converts the rate 

from minutes to seconds. The rate of gas supply to the membrane module was 

controlled by mass flow controllers (Brooks, UK) and monitored using a digital flow 

meter (Varian, UK). All experiments were performed at 1 atm on both sides of the 

membranes. 

 

Figure 3.9 Schematic diagram of oxygen permeation experiments. 

The presence of nitrogen (leaks) in the outlet of the sweep side was observed in most 

oxygen permeation experiments at similar levels. The oxygen permeation rate is 

adjusted to take this into account by subtracting the rate of oxygen leakage based on the 

rate of nitrogen leakage (assuming a 1:4 oxygen:nitrogen ratio).  

3.6 Membrane-based steam reforming  

During the membrane-based steam-reforming experiments the membrane module was 

placed inside a furnace (Vecstar Furnaces, UK) and the membranes were heated to the 

required operating temperature using a programmed temperature ramp of 0.5°C min
-1

. 

Water vapour was supplied at a total flow rate of 20 ml (STP) min
-1

 to the shell side of 

the microtubes by a water saturator system (Grant Scientific, UK) using argon as a 

carrier gas. The methane (balance gas argon) was supplied at a total flow rate of 20 ml 

(STP) min
-1

 to the lumen side as a reducing gas. A schematic diagram of membrane-

based steam reforming is given in Figure 3.10. 
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Figure 3.10 schematic diagram of membrane-based steam reforming. 

The saturation of water vapour supplied could be controlled by varying the temperature 

of the water saturator, which in most of the experiments was maintained at 40°C so that 

water vapour (nominally 7.2%) was supplied to the shell side of the microtubes. The 

water content was monitored by a hygrometer (VAISALA HMT330) at the inlet of the 

membrane module. Methane concentration could be varied between 1% and 5%.  

Gas chromatographs GC 1 and GC 2 (Varian 3900) were used to analyse the outlet from 

the shell side (for hydrogen production) and the outlet from the lumen side (for syngas 

production), respectively. Gas phase transport through micro-cracks in the membranes 

was determined by monitoring the presence of methane from the shell-side outlet.   

After membrane failure the module was cooled down to room temperature under air. 

Membrane samples from the “hot” zone (central zone) and “cold” zone (outside the 

furnace) were taken from the modules for post operation analysis (SEM, EDS and 

XRD); the analysed samples were uncrushed. 

A blank membrane-based steam-reforming experiment using dense, gas-tight alumina 

tubes, approximately the same dimensions of the microtubes and operated under the 

same conditions as described above, was performed to check if a refractory membrane 

could be adequately sealed under reaction conditions (900°C and methane and water 

vapour feeds as described above). The results of this blank experiment are presented in 

Chapter 4. 

  



47 

 

Chapter 4  

4 Preliminary studies  

4.1 Introduction  

Prior to starting experiments evolving microtubes some important studies were carried 

out in order to understand how the microtubes and also the membrane module perform 

when exposed to the experiment environment. The effect of exposing the microtubes to 

high temperatures produces a few problems such as hot sealing, fracture and active 

surface area. These issues and their respective solution are reported in section 4.2. 

Residence time distribution studies, presented in Section 4.3, were performed in order to 

understand how the gases behave within the membrane module. Also a blank 

membrane-based steam reforming experiment (Section 4.4) was carried out using bare 

membranes to check if the new membrane module design could withstand the 

experiment conditions. In Section 4.5 other research approaches which were attempted 

(e.g. water-gas shift reaction and catalyst deposition) are briefly discussed; although 

time consuming they were not fully investigated/reported here as they presented 

unsorted drawbacks. 

4.2 Thermal expansion of the microtubes 

Most studies in this area have been performed using disk membranes in an attempt to 

simplify the interpretation of results and also to keep the membrane at the same 

temperature zone during the experiments. Future application of such membranes will 

require high surface area and reduced wall thickness to minimise resistance to oxygen 

transport while maintaining mechanical strength. Microtubular membrane geometries 

meet this requirement and also provide a way to avoid high temperature sealing 

problems as long membrane lengths can facilitate “cold” sealing [122]. 

During the first year of this research a membrane module using a ceramic cement to 

blank off the “cold zones” of the microtubes leaving only 5 cm uncovered (isothermal 

zone) was used to perform the experiments. The microtubes used to fracture during the 

long process of heating up the membrane module to the required temperature of ca 
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900°C, using a programmed temperature ramp of 0.5°C min
-1

. If the microtubes resisted 

the heating process they used to fracture after ca 40 min under reaction conditions. The 

fractures could be detected by checking the level of nitrogen at the permeated side outlet 

when running oxygen permeation and the level of methane at the hydrogen production 

side outlet when running membrane-based steam reforming experiments. 

After many observations it was found that the microtubes often used to fracture at the 

interface between the uncovered microtube and the ceramic cement. Therefore it was 

deduced the microtubes have high thermal expansions coefficients, which may 

introduce internal mechanical stress across the microtubes, especially under an oxygen 

gradient [127]. The thermal expansion of these materials depends on the electrostatic 

attraction forces within the lattice, which are disturbed due to the oscillation of atomic 

vibrations when exposed to high temperatures [156, 157]. 

It was also observed that the membranes use to bend when exposed to temperatures 

above ca 750°C; however the presence of the cement prevented the microtubes to bend 

due to incompatibility of these materials thermal expansion leading to fracture. Hence a 

new membrane module was designed (described in Chapter 3); without the cement 

coating the microtubes length and using flexible silicon sealant. By this means the 

microtubes were able to bend when heated up to the desired temperature without 

fracturing as illustrated in Figure 4.1.  

 

Figure 4.1 Microtubes bending when exposed to high temperatures due to high thermal 

expansion coefficient. 
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The new membrane setup addresses the problem of sealing and fractures, however 

produces the problem of the membrane length being exposed to different temperatures 

along the membrane module. This issue is reported in section 4.2.1. 

4.2.1 Effective membrane area calculation 

Reporting the operating temperature in studies employing cold-sealed long tubular 

microtubular membranes presents the problem of determining the temperature at which 

oxygen permeation is occurring. It is often assumed that the membrane operating 

temperature is the same as the furnace set-point temperature. However the axial 

temperature profile along the membrane complicates matters as the true geometric 

active membrane area is difficult to calculate. As presented in Chapter 3 two custom-

made furnaces were used in this work; SW furnace (isothermal zone of 3 cm) and LN 

furnace (isothermal zone of 5 cm). Therefore each membrane module had a different 

effective area (SA) of the membranes calculated by Equation (3.1). The results are 

presented in Table 4.1. 

Table 4.1 Approximated active area (SA) of each membrane module. 

Furnace 
SA LSCF6428 

(cm
2
) 

SA LSF731 

(cm
2
) 

SA BSCF5582 

(cm
2
) 

SW 4.6 4.2 2.9 

LN 7.7 7.1 4.8 

 

There is some significant uncertainty in calculating the effective area in these membrane 

module systems. Therefore, it is difficult to report area-specific fluxes, and, instead in 

this work, flux is related to nominal inlet molar concentrations or transport rates. When 

comparing this work with other research the permeation rate is divided by the geometric 

effective area (SA) of the membrane module to obtain the flux.  

4.3 Residence time distribution 

Working with membrane modules raises an important and poorly appreciated point for 

membrane studies: t o determine how gases behave within the membrane reactor. Some 

molecules spend longer than others to come out of the reactor. This time spent in the 

reactor is called the residence time and the distribution of the various atoms coming out 

the reactor with respect to time is called the residence time distribution [158]. This 



50 

 

information is important in order to determine some parameters such as conversion and 

yield. In this work is mainly important to know how long the flowing fluid stays in the 

membrane module.  

The residence time distribution can be determined directly by stimulus-response 

experiments. Basically these experiments consist of injecting an inert gas, called the 

tracer, into a reactor and measuring its concentration at the outlet as function of time. In 

this work argon was used as a tracer to determine the residence time of the membrane 

module (new design with four LSCF6428 microtubes). Both, lumen and shell sides 

were analysed with the membrane module operating at the temperature of 900°C. The 

carrier flow of nitrogen was supplied at a total flow rate of 20 ml (STP) min
-1

 till the 

QMS could detect only the nitrogen signal, then the tracer (argon) was introduced, also 

at a total flow rate of 20 ml (STP) min
-1

, by turning the argon sample valve on and 

turning the nitrogen supply off. The necessary time for only argon leave the reactor was 

then recorded. The elution profiles for the lumen-side and the shell-side are presented in 

Figure 4.2 and Figure 4.3, respectively.  

 

Figure 4.2 Lumen-side stimulus-response residence time distribution profile at 900°C, 

using nitrogen (20 ml (STP) min
-1

) as a carrier gas and argon (20 ml (STP) min
-1

) as a 

tracer. 

As can be observed in Figure 4.2 at the lumen-side outlet, when argon is introduced at 

ca 50 sec there is a fast and intense response signal and after ca 20 sec only argon was 

detected by the QMS. Therefore it can be assumed that the lumen-side performs in a 

plug flow regime when compared to the shell-side (Figure 4.3). This is characterised by 

the fluid travelling in the axial direction of the reactor with no element of fluid 
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overtaking or mixing. In this case the residence time in the lumen-side of the 

membranes is the same for all elements of fluid. 

 

Figure 4.3 Shell-side stimulus-response residence time distribution profile at 900°C, 

using nitrogen (20 ml (STP) min
-1

) as a carrier gas and argon (20 ml (STP) min
-1

) as a 

tracer. 

As shown in Figure 4.3 at the shell-side outlet, when argon is introduced at ca 120 sec 

there is a slow response and a broad signal of argon can be observed. The signal of 

argon becomes constant after ca 30 min. Therefore it can be assumed that the shell side 

of the membranes performs as a well mixed reactor. This regime is characterised by the 

fact that the gases introduced into a reactor are left to react for a period, and then the 

final mixture exits the reactor. The composition of the mixture varies with time however 

in certain period the composition throughout the shell-side is consistent. 

The theoretical mean residence time (  ) can also be estimated by Equation (4.1), where 

 is the reactor volume and   is the flow rate.  

    
 

 
 (4.1) 

The lumen side consists of four LSCF6428 microtubes with total length ca 30 cm and 

internal diameter of ca 1.0 mm. A calculation of volume of the four microtubes 

(assuming the membranes are perfect cylinders) gives a volume of ca 0.94 ml, which 

divided by the total flow rate (20 ml min
-1

) gives a    of ca 3 seconds. The quartz tube 

of the reactor has 40 cm in length with an internal diameter of 3.2 cm; assuming no 

dead volume the volume of the shell side is ca 321 ml, which divided by the total flow 

rate (20 ml min
-1

) gives a    of ca 16 minutes. From the calculations presented, it can be 
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assumed that the lumen-side performs in a plug flow regime when compared to the 

shell-side, which can be described as a well mixed reactor.  

4.4 Blank membrane-based steam reforming test 

The purpose of this study was to check if using the new membrane module design; a 

refractory membrane could be adequately sealed under the membrane-based steam 

reforming reaction conditions at 900°C. Four gas-tight alumina tubes, approximately the 

same dimensions of the LSCF6428 microtubes were used to simulate the microtubes. 

The lumen side was supplied with methane (5%) at 20 ml min
-1

 and the shell side with 

water vapour (7.2%) at 20 ml min
-1

. GC1 recorded the products from the shell side 

outlet. 

As can be seen in Figure 4.4 the presence of a background leak of oxygen (0.104% in 

outlet) and nitrogen (0.344% in outlet) was observed on the H2O side. However, no 

methane was observed in the H2O side outlet indicating that the alumina membranes 

and their sealing was gas tight. The air leak may be due to membrane module sealing or 

from the connections of the water vapour feed apparatus. Also, a trace amount of 

hydrogen (0.002%, at the limit of detection) was observed at the outlet of the H2O side 

indicating a very low water-splitting activity. Any significant hydrogen production can 

therefore be attributed to the presence of the perovskite microtubular membranes. 

 

Figure 4.4 Blank membrane-based reforming at 900°C using alumina tubes to simulate 

the microtubes. Lumen side was supplied with methane (5%) at 20 ml min
-1

 and the shell 

side with water vapour (7.2%) at 20 ml min
-1

. 
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4.5 Attempted studies 

Although most of the work presented in this thesis refers to methods which presented 

satisfactory results for hydrogen production via membrane-based steam reforming, 

many other studies were attempted which however presented drawbacks. These 

attempts were based in previous work reported in the literature and also in novel ideas. 

Nevertheless they have not presented satisfactory operation conditions and further 

investigation/conclusions were not possible within the scheduled time. In this section 

they are briefly presented.  

These drawbacks were expected as membrane-based hydrogen production from water 

splitting is an emerging area with many developments still being required. The state of 

art does not allow yet a fully efficient use of this technology in commercial applications 

as there are some limiting factors (e.g membrane stability).  

Concerning publications in this area, research could benefit if some aspects were clearly 

reported, such as experimental protocol, duration of operation, membrane history, 

membrane stability, material balance and specially membrane failure. These are often 

neglected or incomplete described, hence the reproducibility of these studies are 

difficult or even impossible. 

4.5.1 Tubular membrane reactors 

During this research project more than 150 tubular membrane reactors were assembled, 

each module requiring an average period of three days to be successfully assembled. 

This time lapse is necessary as leaking tests can only be performed after silicone sealant 

cure. From whole reactors produced, a failure rate of approximately 80% was observed 

since satisfactory operation conditions were only achieved in ca 20%. The main issues 

observed were the already mentioned instabilities, both thermal and chemical, of the 

membranes under operating conditions.  

Inhomogeneity of the membranes appears to affect performance of a single membrane 

reactor (consisting of four microtubes) as membranes from the same “bunch” presented 

different behaviour when used at the same experiential conditions, e.g. during the 

process of heating up, some membranes usually bent (eventually fracturing) to a greater 

extent than other membranes in the same reactor. This non-homogeneity may occur due 

to impossibility of perfect reproducibility of the membranes.  
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The sintering process of the microtubes can also lead to non-homogeneity in a single 

membrane. The temperature profile of the horizontal furnace used to sinter the 

microtubes (LSCF and LSF) applied in this research is presented in Figure 4.5. Most of 

the microtubes were sintered at the temperature of 1200°C; therefore temperature 

profile at the interior of the furnace at this temperature was recorded. The thermocouple 

was originally placed at the centre of the furnace and then moved out in 2.0 cm steps to 

the end of the furnace. It was assumed that the furnace had symmetrical temperature 

profile. 

An isothermal zone length of 20 cm at the centre of the furnace was measured; however 

the temperature dropped when the thermocouple was moved out the furnace. This drop 

on the temperature can generate some non-uniform sintering properties, leading to 

different properties along the microtube length.  

 

Figure 4.5 Microtubes sintering furnace; internal temperature profile of at 1200°C. 

The non-uniformity of ion-exchange membranes has great influence on many physical 

and chemical properties of ion-exchange systems and their operational characteristics. 

As an example, Figure 4.6 presents a membrane module which was cooled down to 

room temperature after two membranes presented mechanical failure, however it was 

observed that the other two membranes in the module remained in good conditions. 

This behaviour shows non-homogeneity of microtubes from the same “bunch” when 

exposed to the same operation conditions.  
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Figure 4.6 Mechanical failure of two membranes in the reactor; the other two membranes 

remained in good conditions. 

4.5.2 Disk membrane reactors 

Disk membranes were also studied in this project; powder material of LSCF6428, 

LSF731 and BSCF5582 were pressed into disks 1mm thick (Figure 4.7). Calcined 

powders were ground using a mortar and pestle followed by green disk formation 

(15mm diameter) using a 3 tons force hydraulic press. The disks were finally sintered at 

1300°C for 12h. 

This simpler membrane geometry would have facilitated the fast investigation of certain 

processes (e.g. kinetics) as the reactor assembling process is easier than tubular reactors. 

The main issue encountered with these membrane reactors was the incapability to 

perform a gas-tight seal between the membrane and the alumina tube (support). Hot 

sealant materials are discussed in the following section.  
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Figure 4.7 Disk membranes (1mm thick) produced by hydraulic press.  

4.5.3 Sealant materials 

Other drawbacks encountered during this project were the high temperature sealant 

materials to membrane reactors as the sealant material has to withstand the experimental 

conditions and should present compatibility with the membrane material. Hot sealant 

materials and “cold” sealant materials were studied during this research and discussed in 

the following sections.  

4.5.3.1 Hot sealant  

Hot sealant material must present good compatibility with the membrane. It is of major 

importance that both (sealant and membrane) present similar thermal expansions to 

avoid fractures during the operating mode. Moreover this sealant material has to present 

good chemical stability to perform over long period. Some hot sealant material tried 

during this project presented promising results, but most of them presented undesirable 

properties and did not perform as expected, leading to leaks or mechanical failure of the 

microtubes (incompatibility). 

An alkali-free glass sealant material (provided by Henny Bouwmeester’s group) cut into 

rings with an outer diameter of 12 mm and inner diameter of 8 mm was tested to seal 

disk membranes. This sealant material had to be operated at the temperature range of 

750-900°C; in a first attempt the seal presented desired properties however after ca 20 

min of oxygen permeation operation the seal failed and leakage could be detected. Other 
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attempts presented success in sealing the disk membranes with this glass sealant 

material; however no oxygen permeation was detected during these experiments. Post 

operation analysis has shown the glass melted and blocked the permeation area of the 

membranes as observed in Figure 4.8. Semi-quantitative EDS analysis (Table 4.2) of the 

blocked permeation area (point 0) presented elements from the glass sealant material.  

 

Figure 4.8 Glass sealant material blocking permeation area of a disk membrane. 

Table 4.2 Semi-quantitative EDS analysis of disk membrane blocked by glass sealant 

material. 

 Approximate atom (%)  

Si Al P Mg Ca C 

24.0 12.0 1.5 2.8 2.0 57.7 

 

A ceramic sealant material (Aremco Ceramabond) was also tested for disk membranes 

and microtubular membranes. This sealant material presented good compatibility only 

with BSCF5582 tubular membranes. A short BSCF5582 membrane of ca 5 cm was 

sealed at the isothermal zone of the SW furnace and operated over 90 hours under 

oxygen permeation conditions.  

The oxygen permeation rate was measured on the lumen-side outlet as a function of the 

air flow rate on the shell-side when the sweep gas (argon) flow rate was kept constant at 

20 ml (STP) min
-1

 on the lumen-side. Measurements were made with the SW furnace at 

900°C. Oxygen permeation measurements are presented in Figure 4.9. As expected, the 

oxygen permeation flux increases with increasing air flow rate, as the oxygen partial 
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pressure on the shell-side is increased, consequently increasing the driving force for 

oxygen permeation. Oxygen permeation rate increased from ca 1.2µmol O2 s
-1

 to ca 

1.6µmol O2 s
-1

 when the air flow rate was raised from 20 to 100 ml(STP)min
-1

. The 

highest permeation achieved in these experiments was ca 1.7µmol O2 s
-1

 when the air 

flow rate was 300 ml(STP)min
-1

. After 90 hours of operation a leakage was detected 

and the experiment stopped.  

 

Figure 4.9 Oxygen permeation with BSCF short microtube on the lumen-side outlet, 

varying air supplied on the shell side with argon as sweep gas on the lumen side at 20 ml 

min-1. 

4.5.3.2 “Cold” sealant  

The new membrane module design ensures the sealing points are situated in the “cold” 

zone outside of the furnace; silicone sealant rated to 300°C was successfully applied 

guarantying gas-tightness during all the experiment. However silicon contamination of 

the membrane surfaces was often detected at operation conditions. It is conceivable that 

silicon leached out of the sealant and contaminated the membranes. In some extreme 

cases a “white powder” was observed on the top of the membranes and also at the 

quartz shell (Figure 4.10). Semi-quantitative EDS analysis (Table 4.3) confirmed the 

presence of silicon in this powder and also at the shell-side surface of the contaminated 

membranes. Membranes which presented silicon contamination showed low oxygen 

permeation rates and therefore did not perform as expected.  
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Figure 4.10 “White powder” observed at the quartz shell. 

Table 4.3 Semi-quantitative EDS analysis of LSCF membranes with no oxygen 

permeation due to silicon contamination and "white powder" encountered on the top of 

the membranes. 

Material Approximate atom (%) 

 La Sr Co Fe Si O 

White powder - - - - 36.0 64.0 

LSCF no 

permeation 

- 7.7 2.6 3.3 86.4 - 

 

From the furnaces internal temperature profile (Figure 3.6) it was observed that the 

sealant material was exposed to temperatures ca 100°C during operation. In order to 

avoid silicon contamination the membrane/sealant material was exposed to temperatures 

ca 100°C before the assembling of the membrane reactor. This has shown to reduce this 

effect as the white powder was not observed after this procedure.  

4.5.4 Catalyst materials  

Catalyst material deposition in order to improve surface exchange kinetics was also 

studied. Thin palladium films were deposited by sputtering (by David Book’s group at 

Birmingham University) in LSCF6428 membranes. Two disk membranes and one 

microtubular were coated according to the time of palladium deposition: 

 Disk membrane (D1) coated for a period of 5 seconds. 

 Disk membrane (D2) coated for a period of 50 seconds. 

 Microtubular membrane (T1) coated for a period of 5 seconds. 
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A preliminary investigation of the deposition of palladium on the membranes was 

carried out. Semi-quantitative EDS analysis (Table 4.4) indicated the presence of small 

amounts of palladium (ca 3 atom %) in the disk (D1) and microtubular (T1) membranes 

coated for 5 sec. The disk membrane coated for 50 sec (D2) presented a higher amount 

of palladium (ca 10 atom %). Although the thickness of the layers was not measured it 

is expected that thickness increases linearly with time in sputtering processes [159].  

Table 4.4 EDS analyses of LSCF6428 membranes coated with palladium catalyst. 

Material Approximate atom (%)  

La Sr Co Fe Pd 

LSCF6428 (D1) 30.0 13.1 9.2 43.9 3.8 

LSCF6428 (D2) 27.9 8.6 11.2 41.6 10.7 

LSCF6428 (T1) 31.7 11.0 10.2 43.8 3.3 

 

Figure 4.11 presents SEM images of the two coated LSCF6428 disks, coupled with 

EDS maps which show the palladium distribution. It is clear that the coating (both 5 and 

50 sec) has not covered the surfaces as the grains are clearly observed. Palladium was 

found to be eventually distributed on the both surface of both disks; however, as 

expected, with a higher concentration in D2. The deposition of palladium in the 

microtubular membrane (T1) showed similar SEM and EDS mapping results to D1.  

Similar studies using palladium surface modified LSCF microtubes showed that 

palladium coating procedure was beneficial in improving oxygen fluxes [160]. The 

authors stated that the palladium coating onto the surface of the LSCF microtubes 

overcame the surface exchange reaction kinetics and enhanced the oxygen flux by up to 

350%, in comparison to unmodified LSCF hollow fibres. Nevertheless some of the 

membranes coated with palladium did not present any effect on the oxygen flux due to 

the non-homogeneous distribution and aggregation of palladium nanoparticles, hence 

reducing the spill-over effect of the catalyst.  

However the palladium deposition presented promising results, its application in disk 

membrane reactors was not possible for reasons mentioned before (hot sealant issues). 

The microtubular membrane with palladium deposition was assembled in a membrane 

reactor and placed inside the SW furnace for further investigation. The membrane, 

however, fractured during the heating up process using a programmed temperature ramp 

of 0.5°C min
-1

. Cleary stability issues (compatibility, palladium aggregation, thermal 
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expansion, etc) caused the mechanical failure and further experiments with this catalyst 

material are necessary to understand the failure process.  

 

Figure 4.11 SEM images and EDS maps of the surface of LSCF6428 disk membranes 

after (a) 5 seconds and (b) 50 seconds of palladium deposition. 

4.5.5 Membrane-based water-gas shift  

Membrane-water gas shift was also briefly investigated with LSCF6428 microtubes. 

During these experiments the membrane module (consisting of four microtubes) was 

placed inside the LN furnace and heated up (0.5°C min
-1

) to 900°C. Water vapour 

(nominally 7.2%) was supplied at a total flow rate of 20 ml (STP) min
-1

 to the lumen 

side of the microtubes using argon as a carrier gas. Carbon monoxide (10% balanced in 

nitrogen) was supplied at a total flow rate of 20 ml (STP) min
-1

 to the shell side as a 

reducing gas. A schematic diagram of membrane-based steam reforming is given in 

Figure 4.12. 
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Figure 4.12 Schematic diagram of water-gas shift experiments. 

The membranes used in this first attempt (carbon monoxide concentration of 10%) 

presented mechanical failure after ca 30 min of operation and no data was collected. In 

an attempted to operate the membranes under a less aggressive environment the carbon 

monoxide concentration was reduced (0.5%). A new membrane reactor was then tested 

(Figure 4.13); the membranes presented trans-membrane leakage of oxygen, nitrogen 

and carbon monoxide (not presented) probably due to gas phase transport through 

micro-cracks in the membranes. Hydrogen production was detected at very low levels 

(ca 0.07%). The membranes presented mechanical failure after 300 minutes of 

operation.  

 

Figure 4.13 Membrane-based water-gas shift with water vapour supplied on the lumen 

side at 20 ml min
-1

 and carbon monoxide (0.5%) on the shell side at 20 ml min
-1

using LN 

furnace (900°C). 
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Semi-quantitative EDS analysis (Table 4.5) with the membranes used in the first 

experiment (10% of carbon monoxide) indicated the presence of carbon on the shell-

side (not observed in fresh membranes); carbon deposition may have caused corrosion 

and further mechanical failure of the membranes. Similar behaviour has been reported 

with perovskite membranes for hydrocarbons conversions [100, 101]. Other 

characterisation techniques are required to fully understand the failure mechanism in 

these membranes.  

Table 4.5 Post operation EDS data of LSCF6428 microtubes after membrane-based 

water-gas shift.  

Material  Approximate atom (%)  

La Sr Co Fe C S 

LSCF6428 

 (Shell side) 

12.3 10.5 3.0 15.7 51.8 6.7 

LSCF6428 

(Lumenside) 

23.2 20.5 13.0 32.8 - 10.5 

 

4.5.6 Autothermal membrane-based steam reforming 

studies 

It is important to state that this experiment was only a preliminary study for autothermal 

membrane-based steam reforming operation; material balance or post-operation analysis 

were not the purpose of this experiment. Complete analysis of hydrogen production 

from membrane-based steam reforming is presented in Chapter 6. 

Membrane-based steam reforming is an endothermic process; in order to achieve 

autothermal operation some of the reducing gas can be used to be combusted and 

provide the required heat (Figure 4.14). In a first attempt to achieve this autothermal 

operation a membrane module (consisting of four microtubes) was placed inside the LN 

furnace and the membranes were heated to 940°C. Water vapour (nominally 7.2%) was 

supplied at a total flow rate of 20 ml (STP) min
-1

 to the shell side of the microtubes 

using argon as a carrier gas. Methane (5% balanced in argon) was supplied at a total 

flow rate of 20 ml (STP) min
-1

 to the lumen side as a reducing gas.  
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Figure 4.14 Schematic representation of autothermal membrane-based process for 

hydrogen production. 

As can be observed in Figure 4.15(a) at the shell-side outlet the level of hydrogen 

increased and after ca 40 hours reached a steady state mole fraction of ca 0.7%. After 

60 hours the temperature was lowered to 900°C followed by a decrease of hydrogen 

production to ca 0.4%. After ca 85 hours diluted oxygen (1%) was supplied with 

methane in order to combust some methane and produce heat to the system. However 

methane rapidly consumed the oxygen supplied, indicating complete combustion of 

methane and carbon dioxide production on the lumen side (Figure 4.15 (b)). Therefore 

the hydrogen production on the shell side rapidly decreased as the methane stopped to 

remove oxygen across the membrane. This demonstrates the need for an oxygen 

vacancy concentration gradient across the membrane in order to observe water splitting. 

The oxygen supply was interrupted and only methane supplied after ca 200 hours of 

experiment, the oxygen vacancy gradient was re-established and hydrogen on the shell-

side outlet was observed at approximately the same level as before interruption. The 

addition of oxygen may have generated heat to the system, however interrupted the 

hydrogen production. A novel approach for autothermal membrane-based steam 

reforming is suggested in Section 7.2 (suggested future work). 
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Figure 4.15 Outlet composition from autothermal membrane-based steam reforming 

studies using the LN furnace (a) on the shell side and (b) on the lumen side. 

 

  

(a) 

(b) 
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Chapter 5  

5 Materials Selection 

5.1 Introduction  

The main objective of the work presented in this chapter is to investigate the feasibility 

of three perovskite materials (later presented) to produce hydrogen from water splitting. 

Temperature programmed and membrane-based experiments were carried out to 

evaluate the reactivity of each perovskite. Also the suitable conditions for long term 

membrane-based steam reforming experiment were investigated. Material balance and 

detailed post operation analysis are not the main goal and therefore not presented in this 

chapter; those are presented in Chapter 6 when long term experiments were performed. 

Materials that exhibit oxygen transport and the capability to undergo surface oxidation 

and reduction can be operated in membrane processes and in the dynamic mode of 

temperature programmed processes. In this work the oxide would be reduced in 

methane in the first step followed by reoxidation in water; during the second step the 

feasibility of producing hydrogen by water splitting will be investigated. The membrane 

system also works in a similar process, which one side of the membrane is exposed to 

methane and the other to water. In this way the temperature programmed redox 

processes are separated temporally rather than spatially across a membrane (Figure 5.1). 

 

Figure 5.1 Schematic representing (a) periodically temperature programmed process and 

(b) oxygen permeating mebrane system for hydrogen production via steam reforming 

[109]. 
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For practical applications the oxygen carrier material (OCM) itself and the membranes 

must be able to transport oxygen through the bulk and not just surface oxidation and 

reduction. Operation of the material in temperature programmed processes can offer 

information on the oxygen storage/transport capacity of the OCM and the feasibility of 

producing hydrogen from water splitting under the experimented conditions. 

In order to determine which OCM material, among LSCF6428, LSF731 and BSCF5582 

is the most suitable for hydrogen production via methane activation and water splitting, 

temperature programmed experiments were performed (Section 5.2). Powder material 

and dense membrane fragments were used in the experiments, LSCF6428 and LSF731 

performed better than BSCF5582, however LSCF6428 membrane fragment presented 

better performance among all OCM tested. 

Experiments using membrane modules were also studied and presented in this chapter; 

oxygen permeation experiments (Section 5.3.2) were carried in order to evaluate the 

capability of the microtubes to permeate oxygen; BSCF5582 microtubes presented 

higher oxygen permeation rates than LSCF6428 and LSF731. However LSCF6428 

demonstrated better potential for hydrogen production from water splitting (Section 

5.3.3). The influence of oxygen partial pressure was also analysed, this focused on 

systematically varying the inlet methane and water concentrations during the 

membrane-based steam reforming experiments. 

Post operation analyses (Section 5.3.4) revealed the presence of a strontium/sulfur layer 

on the LSF731 microtubes which may have affected the oxygen permeation and 

consequently hydrogen production.  

5.2 Temperature programmed experiments  

Powder material and dense membrane fragments (50 mg of material was used in each 

case) were evaluated in a microreactor testing system. Fifteen isothermal redox cycles 

were performed at 900°C using alternating flows of 5% methane and then 2.6% water, 

each supplied at a total inlet flow rate of 20 ml min
-1

. Temperature programmed 

reduction (TPR) and oxidation (TPO) steps were performed for 30 minutes. 
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5.2.1 Characterisation of fresh materials  

BET analysis of the fresh OCM powder materials are presented in Table 5.1. LSCF6428 

presented the highest specific surface area per mass of sample so this material would be 

expected to present higher kinetics than the others. However this cannot be considered 

the main property of the material as oxygen transfer to the bulk of the material would 

play an important role due to the presence of oxygen vacancies in the perovskite 

structure.  

Table 5.1 BET analysis of fresh OCM samples. 

OCM Abbreviation  BET (m
2
 g

-1
) 

La0.6Sr0.4Co0.2Fe0.8O3-δ LSCF6428 9.0 

La0.7Sr0.3FeO3-δ LSF731 6.0 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ BSCF5582 1.2 

 

SEM images were taken of the surfaces of the fresh microtubes fragments and are 

shown in Figure 5.2. BSCF5582 and LSCF6428 surfaces consists of well sintered 

particles with grains connected and clear boundaries. Grain size range from ca 2 to 7µm 

and ca 1 to 5µm is observed in BSCF5582 and LSCF6428 respectively. LSF731 shows 

an irregular rough surface with unclear grains and boundaries. Spot EDS analysis (Table 

5.2) of the fresh microtubes fragments show the presence of sulfur and segregation of 

strontium on the LSF731 surface and may be the reason that the SEM did not present 

clear images. Further analysis of the LSF731 fresh microtubes are presented in Section 

5.3.1. 

 

Figure 5.2 SEM Images of fresh microtubes fragments (a) BSCF5582, (b) LSCF6428 and 

(c) LSF731. 
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Spot EDS of the LSCF6482 did not show the presence of foreign elements or 

segregation of any constituents of the perovskite. However BSCF5582 surface shows 

the presence of sulfur, probably from polysulfone binder used at the microtube 

fabrication [7]. Studies with BSCF5582 microtubes showed that sulfur-containing 

compounds can react with barium and form BaSO4 [161, 162], which can decrease the 

oxygen permeation of the membranes [163]. 

Table 5.2 Spot EDS analyses of fresh microtubes fragments. 

Material  Approximate atom (%)  

La Ba Sr Co Fe S 

BSCF5582 - 21.4 14.3 42.7 13.4 8.2 

LSCF6428 32.5 - 8.9 10.0 48.6 - 

LSF731 2.7 - 38.2 - 4.0 55.1 

5.2.2 TPR/TPO cycles  

Methane was used as the reducing agent during the TPR cycles and water as the 

oxidising agent during the TPO cycles. The overall reaction is the steam reforming of 

methane (Equation (5.1)). 

 
                

 

(5.1) 

 

During the TPR steps mainly carbon monoxide and hydrogen are produced by the 

following reaction (Equation (5.2)), using Kröger-Vink notation:  

 
      

           
       

 

(5.2) 

 

Hydrogen is produced during TPO steps by the Equation (5.3).  

 
      

            
  

 

(5.3) 

 

Temperature programmed reaction of the powder materials and membrane fragments 

were carried out in order to analyse and compare the oxygen capacity and reactivity for 

water splitting and methane activation of the OCMs during 15 cycles for 50mg of 

sample. The products of TPR/TPO for powder materials and membrane fragments are 

presented in Appendix 5-A. Operation of powder and membrane material in the dynamic 

mode of TPR/TPO can in principle offer additional kinetic information for the 
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membrane processes. As hydrogen production is the main focus of this research only 

the TPO cycles presenting hydrogen production are reported in Figure 5.3.  

As can be observed in Figure 5.3a BSCF5582 powder produced initially ca 300µmols 

of hydrogen per cycle and after the 6
th

 cycle the level of hydrogen decreased to ca 

160µmols per cycle. LSCF6428 powder produced steady hydrogen (ca 400µmols per 

cycle) during the 15 cycles. The level of hydrogen decreased after the 6
th

 cycle of TPO 

using LSF731 from ca 560µmols per cycle to ca 430µmols per cycle.  

BSCF5582 membrane fragments presented low hydrogen production activity from 

water splitting as can be observed in Figure 5.3b, producing ca 5µmols per cycle during 

the 15 cycles. LSCF6428 produced ca 5µmols per cycle during the first 5 cycles then 

rapidly increased to 36µmols per cycle and later (9
th

 cycle) to ca 45µmols per cycle, 

remaining steady until the 15
th

 cycle. LSF731 also presented an induction period until 

the 6
th

 cycle, producing ca 5µmols per cycle then increasing to ca 15µmols per cycle 

until the 15
th

 cycle. 

The results of the investigation indicated that LSCF6428 and LSF731 performed better 

for hydrogen production from water splitting and methane activation than BSCF5582. 

However the LSF731 membrane fragment did not present good activity for hydrogen 

production from water splitting. Post operation analysis revealed that surface 

contamination may have caused this effect and is discussed in Section 5.2.3. 
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Figure 5.3 Hydrogen production during 1st and 15th TPOs at 900°C of ca 50mg of 

BSCF5582, LSCF6428, LSF731 (a) powder materials and (b) membrane fragments. 

LSCF6428 samples (powder and membrane fragment) produced hydrogen during 

oxidation with water and also syngas during reduction in methane (Appendix 5-A). 

Although, during oxidation the LSCF6428 powder gave a significant amount of 

hydrogen from the first cycle, the LSCF6428 membrane fragments showed an induction 

period in which almost no hydrogen from water splitting was observed until the 6
th

 

redox cycle. This is consistent with a slowly changing oxidation state of the membrane 

material in membrane form over the first five cycles and may be related to the induction 

also observed in the operating membrane (Section 6.4.1). Similar behaviour was also 

observed in temperature programmed studies involving La0.3Sr0.7FeO3 powder 

materials; Evdou et al affirmed that a certain activation process is necessary in prior to 

the material split water and produce hydrogen [142]. 

During reoxidation (TPO) steps, carbon monoxide and traces of carbon dioxide were 

produced (Appendix 5-A) for all OCM materials (powder and membrane fragments), 
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probably due to water oxidation of deposited carbon (Equations (5.4) and (5.5)), which 

could have been formed during the TPR steps. Carbon formation during reduction will 

result in carbon being carried over to the water-splitting process and result in impure 

hydrogen in the product stream. 

             (5.4) 

 
               

 

(5.5) 

 

It is important to mention that in terms of the purity of hydrogen produced which is 

critical for water-splitting processes, a membrane system ( if gas-tight) should give only 

hydrogen in water as a product (as the product stream never sees the reducing surface).  

5.2.3 Post operation characterisation  

After the 15 redox cycles were completed, the powder samples were removed and 

reweighed. Sample loss was observed for all OCM samples. BSCF5582, LSCF6428 and 

LSF731 powders suffered 12%, 10% and 9% loss in mass respectively. These mass 

losses are large and the most suitable explanation is due to powder lost during the 

experiment and/or during removal of the sampling tube from the microreactor. 

Irreversible oxygen removal and also impurities burnout cannot be neglected.  

The membrane fragments were characterised by SEM-EDS (only remarkable results are 

presented) after performing the TPR/TPO experiments. BSCF5582 and LSCF6428 

microscopy surface morphologies (Figure 5.4) appears to be rougher than the fresh 

samples, however spot EDS analysis (Table 5.3) did not show evidence of any foreign 

element compared to the fresh materials (BSCF5582 already presented sulfur) nor was 

evidence of segregation of elements observed. 

 

Figure 5.4Post operation SEM images of (a) BSCF5582 and (b) LSCF6428 membrane 

fragments after 15th TPR/TPO cycles. 



73 

 

Table 5.3 Spot EDS analyses of fresh microtubes fragments after 15
th
 TPR/TPO cycles. 

Material  Approximate atom (%)  

La Ba Sr Co Fe S 

BSCF5582 - 24.1 15.4 38.0 14.5 8.0 

LSCF6428 28.8 - 11.2 12.0 48.0 - 

LSF731 point 0 6.3 - 42.3 - 39.4 12.0 

LSF731 point 1 4.0 - 40.2 - 55.8 - 

 

Post operation SEM images from the LSF731 membrane fragments are presented in 

Figure 5.5. As can be observed, the surface is decorated with a sponge-like cluster 

(point 0) of ca 60µm size that differs from the surface microscopy structure (point 1). 

Spot EDS indicated enrichment of strontium and presence of sulfur in the sponge-like 

cluster (point 0) and enrichment of strontium at the surface (point 1). It is also important 

to notice the increase of iron content (to the expected composition of La0.7Sr0.3FeO3-δ) at 

the membrane surface when compared with the fresh membrane fragment. It seems that 

the fresh LSF731 material possessed a sulfur layer, which started to leach out after 15 

TPR/TPO cycles. It is important to state that EDS is a quick semi-quantitative analysis 

technique thus extra characterisation methods are required to indicate any surface 

modification. Further characterisation studies of the LSF731 fresh microtubes (Section 

5.3.1) and post membrane-based steam reforming operation (Section 5.3.4) are 

presented later in this work.  

 

Figure 5.5 Post operation SEM images of the LSF731 membrane fragment after 15
th
 

TPR/TPO cycles. 
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5.3 Membrane Experiments  

Oxygen permeation and membrane-based steam reforming experiments were performed 

using the new module design described in Section 3.4.3.2. The LSCF6428 and LSF731 

membrane modules were constructed and each comprised of four microtubes. The 

BSCF5582 membrane module was constructed with only one microtube. The SW 

furnace was used in all membrane experiments described in this chapter.  

5.3.1 Characterisation of fresh microtubes  

LSCF6428 microtubes characterisation is not presented in this section as detailed 

studies with this OCM are presented in Chapter 6, including fresh and post operation 

characterisation. Images of the surfaces and cross-section of the fresh BSCF5582 and 

LSF731 microtubes are presented in Figure 5.6 and Figure 5.7 respectively.  

As can be seen on the lumen-side surface (Figure 5.6b) of the BSCF5582 microtubes 

the grains are connected with clear boundaries. The grain size ranges from ca 2 to 8 µm. 

The shell-side surface (Figure 5.6a) shows an irregular surface decorated with small 

crystals (ca 1 µm). A regular cross-section (Figure 5.6c) could be observed. Spot EDS 

analysis (Table 5.4) show the presence of sulfur at both lumen and shell surfaces. The 

presence of sulfur has been already discussed in Section 5.2.1. 

 

Figure 5.6 SEM images of the fresh BSCF5582 (a) shell-side surface of the microtubes, 

(b) the lumen-side surface and (c) cross-section. 

As can be observed in Figure 5.7a and Figure 5.7b LSF731microtubes show irregular 

rough surfaces with unclear grains and boundaries. Spot EDS (Table 5.4) show the 

presence of sulfur and segregation of strontium on the LSF731 surfaces. A regular 

circular cross-section could be observed as shown in Figure 5.7c. The microtubes 

possess enclosed finger-like pores that are visible in the cross section but do not 

communicate with either membrane surface.  
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Figure 5.7 SEM images of the fresh LSF731 (a) shell-side surface of the microtubes, (b) 

the lumen-side surface and (c) cross-section. 

A higher magnification SEM image of the cross-section (Figure 5.8) shows the presence 

of a layer of needle-like crystals covering the lumen-side surface. From spot EDS 

analyses (Table 5.4) was found this layer (point 0) is rich in sulfur and strontium. This 

layer was also observed in the shell-side surface and confirmed by EDS analysis. The 

bulk of the material (point 1) did not present sulfur or segregation of strontium. The 

stoichiometry at the bulk was closer to the expected to La0.7Sr0.33FeO3-δ. 

 

Figure 5.8 SEM image of the fresh LSF731 cross-section showing enriched 

sulfur/strontium layer. 
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Table 5.4 Spot EDS data of fresh BSCF5582 and LSF731 microtubes; LS (Lumen side) 

and SS (Shell side).  

Material/ Location  Approximate atom (%)  

La Ba Sr Co Fe S 

BSCF5582/(SS) - 21.4 14.3 42.7 13.4 8.2 

BSCF5582/(LS) - 25.8 13.6 42.1 14.4 4.1 

LSF731/(SS) 2.7 - 38.2 - 4.0 55.1 

LSF731/(LS) 5.5 - 37.3 - 7.9 49.3 

LSF731(point 0) 5.0 - 44.3 - 7.9 42.8 

LSF731(point 1) 39.5 - 6.7 - 53.8 - 

5.3.2 Oxygen Permeation  

The oxygen permeation rate was measured on the lumen-side outlet as a function of the 

air flow rate on the shell-side when the sweep gas (argon) flow rate was kept constant at 

20 ml (STP) min
-1

 on the lumen-side. Measurements were made for the microtubes 

LSCF6428 and BSCF5582 at 900°C and LSF731 at 950°C using SW furnace, as at 

900°C the LSF731 microtubes did not show any oxygen permeation. The reason for that 

behaviour is explained later in Section 5.3.4.  

Oxygen permeation measurements are presented in Figure 5.9. As expected, the oxygen 

permeation flux increases (to a limiting value showing the presence of surface exchange 

limitations) with increasing air flow rate, as the oxygen partial pressure on the shell-side 

is increased, consequently increasing the driving force for oxygen permeation (as 

expressed in Equation (2.11). 

LSF731 and LSCF6428 microtubes showed similar oxygen permeation rates of ca 

0.2µmol O2 s
-1

, however as explained before at different temperatures. With the 

LSCF6428 membrane the oxygen permeation rate increased from ca 0.15µmol O2 s
-1

 to 

ca 0.2µmol O2 s
-1

 when the air flow rate was raised from 50 to 100 ml(STP)min
-1

. With 

the LSF731 microtube the oxygen permeation rate increased from ca 0.13µmol O2 s
-1

 to 

ca 0.16µmol O2 s
-1

 when the air flow rate was raised from 50 to 100 ml(STP)min
-1

. No 

significantly changes were observed when the air flow rate was increased higher than 

100 ml(STP)min
-1

.  
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Figure 5.9 Oxygen permeation on the lumen-side outlet, varying air supplied on the shell 

side with argon as sweep gas on the lumen side at 20 ml min
-1

. 

BSCF5582 presented much higher oxygen fluxes than LSCF6428 and LSF731, 

indicating fast bulk transport of O
2-

 through the membrane. Similar studies also showed 

the same behaviour [7, 83]. Oxygen permeation rate increased from ca 1.2µmol O2 s
-1

 to 

ca 1.6µmol O2 s
-1

 when the air flow rate was raised from 20 to 100 ml(STP)min
-1

. The 

highest permeation achieved in these experiments was ca 1.7µmol O2 s
-1

 when the air 

flow rate was 300 ml(STP)min
-1

. The importance of the membrane thickness is not 

apparent as BSCF5582 microtube has wall thickness twice as large as LSCF6428 and 

LSF731. This indicates surface oxygen exchange kinetics as the rate limiting step for 

oxygen permeation in BSCF5582 membranes  

5.3.3 Membrane-based steam reforming 

Membrane-based steam reforming at 900°C was undertaken directly after the oxygen 

permeation experiments. Water vapour was supplied to the shell side of the microtubes 

at 20 ml (STP) min
-1

 and methane was supplied at a total flow rate of 20 ml (STP) min
-1

 

to the lumen side as a reducing gas.  

To investigate the influence of oxygen partial pressure associated with hydrogen 

production, studies on surface oxidation and reduction processes were conducted. This 

focused on systematically varying the partial pressures of water vapour and the methane 

concentration. To analyse the influence of the reducing gas on hydrogen production 

with the microtubes, the concentration of methane was varied from 1.0% to 5.0%. The 
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influence of the oxidising gas was also studied by varying the water saturator 

temperature and consequently the water vapour concentration from 1.0% to 11.0%. 

LSF731 did not show any hydrogen production during the membrane-based steam 

reforming experiments. Post operation analysis revealed that surface contamination may 

have caused this effect and is discussed in Section 5.3.4. 

 

Figure 5.10 Hydrogen production molar fraction on the shell-side outlet at different water 

vapour concentrations (shell-side inlet) when methane was maintained constant on the 

lumen-side inlet at 5%. . 

Investigation of the oxidation step was carried out by increasing the water partial 

pressure while the methane concentration was maintained at 5%. As can be observed in 

Figure 5.10 BSCF5582 hydrogen production maintained steady ca 0.08% when the 

water vapour concentration was increased, showing low oxidation activity to water 

vapour.  

In the other hand with the increasing of water vapour from 1% to 6%, LSCF6428 

hydrogen production increased from ca 0.33% to ca 0.46%. With increasing the water 

vapour concentration the oxygen partial pressure will be raised; consequently a higher 

driving force for oxygen permeation is produced and the level of hydrogen produced 

would also increase. However when the water vapour concentration was increased to 

11% the hydrogen production decreased to ca 0.43% showing surface exchange 

limitations.  

The influence of methane concentration was also investigated and presented in Figure 

5.11; during this experiment water vapour was maintained constant at 7.2% (highest 
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oxidation level obtained from previous experiment). BSCF5582 and LSCF6428 

hydrogen production increased from ca 0.03% to ca 0.08% and ca 0.2% to ca 0.44% 

respectively, when the methane concentration was raised from 1 to 5%.  

These results demonstrate that hydrogen production can be improved by increasing the 

concentration of the reducing gas; consequently the oxygen permeated is rapidly 

consumed, establishing a higher oxygen partial pressure gradient across the microtubes 

and therefore a higher hydrogen production rate from water dissociation. 

 

Figure 5.11 Hydrogen production molar fraction on the shell-side outlet at different 

methane concentrations (lumen-side inlet), when water vapour was maintained constant 

on the shell-side inlet at 7.2%. 

5.3.4 Post operation characterisation  

As explained in Section 5.3.1, LSCF6428 post operation characterisation is not 

presented here as detailed studies and characterisation with this OCM are discussed in 

Chapter 6.  

BSCF5582 shell-side surface (exposed to water vapour) microscopy morphology 

(Figure 5.12a) did not show remarkable changes from the fresh microtube, however 

spot EDS (Table 5.5) revealed high segregation levels of barium and strontium. 

Apparently barium and strontium are leaching out from the microtube structure. Studies 

with BSCF5582 also showed strontium and barium segregation when exposed to high 

temperatures and water vapour. Leo et al assigned the formation of barium carbonate 

and strontium carbonate at the membrane surface which affected the oxygen ionic 

diffusion [164]. The formation of carbonates was unexpected and the authors speculated 
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the presence of carbon dioxide from the atmosphere in the distilled water fed to the 

evaporator. The BSCF5582 lumen-side surface (exposed to methane) showed a rougher 

surface than the fresh membranes as can be observed in Figure 5.12b. Spot EDS 

indicated segregation of barium and enrichment of sulfur when compared with the fresh 

membranes. Non-stability and perovskite structure modification have been reported 

when BSCF5582 membranes were exposed to reducing atmospheres [165, 166]. These 

results could indicate the reason for the low activity for hydrogen production via water 

splitting and methane activation. However other factors (i.e. surface exchange 

limitations and catalytic activity) cannot be neglected. 

 

Figure 5.12 Post operation SEM images of BSCF5582 microtube (a) shell-side surface 

and (b) lumen-side surface. 

As can be observed in Figure 5.13, LSF731 microtube presented a layer (point 0) which 

appears to sit on top of the shell-side surface (exposed to water). Spot EDS (Table 5.5) 

indicated this layer is rich strontium, however no evidence of sulfur (presented in the 

fresh microtubes) was found. Spot EDS indicated that the shell side underneath the 

layer (point1) did not present strontium enrichment. It seems the rich sulfur/strontium 

layer (presented in the fresh membranes) was leached out during the membrane-based 

steam reforming experiments.  
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Figure 5.13 Post operation SEM images of LSF731 microtube shell-side surface showing 

dense strontium layer. 

The rich strontium layer formed can clearly be observed in the cross-section SEM 

image (Figure 5.14) and has ca 10µm of thickness. It is plausible that this dense layer 

could be responsible for the lower than expected oxygen permeation rates and none 

hydrogen production using LSF731 microtubes. 

 

Figure 5.14 Post operation SEM images of LSF731 microtube cross-section showing 

dense strontium layer. 
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Table 5.5 Post operation EDS data of BSCF5582 and LSF731 microtubes. 

Material/ Location Approximate atom (%) 

Ba La Sr Co Fe S 

BSCF5582 (SS) 42.3 - 34.6 12.4 6.9 3.8 

BSCF5582 (LS) 47.8 - 10.0 13.2 4.5 24.5 

LSF731/(SS) - 2.3 27.0 - 67.9 2.8 

LSF731/(LS) - 25.7 19.3 - 55.0 - 

LSF731(point 0) - 2.0 45.2 - 52.8 - 

LSF731(point 1) - 36.0 6.9 - 57.1 - 

LSF731 (bulk) - 43.7 4.3 - 52.0 - 

 

5.4 Summary 

Temperature programmed reduction and oxidation cycles were carried out with the 

OCM materials to understand the kinetic behaviour and reaction steps involved during 

oxidation in water and reduction in methane. It is clear that both LSCF6428 and 

LSF731 materials showed better activity for hydrogen production than BSCF5582. 

However LSF731 membrane presented an enriched sulfur/strontium layer and may be 

reduced the relative permeation rate and consequently hydrogen production.  

Oxygen permeation at 900°C showed that BSCF5582 microtubes possess higher oxygen 

permeation rates than LSCF6428. However LSCF6428 demonstrated better potential for 

hydrogen production from water splitting than BSCF5582. Hydrogen production from 

water splitting depends on the catalytic capability of the perovskite-type membrane 

surface to split water and activate methane. Fast bulk transport of O
2-

 through the 

membrane is not necessarily the main consideration. By varying water and methane 

concentrations, it was observed that hydrogen production can be improved by 

increasing the methane concentration supply. 

During the studies presented in this chapter; LSCF6428 microtubes performed better for 

hydrogen production via membrane-based steam reforming among the other materials 

and it was chosen to long term studies presented in Chapter 6. The most suitable 

conditions of experiment (water vapour ca 7% and methane concentration at ca 5%), 

determined from varying water and methane concentrations in Section 5.3.3, would be 

applied during these studies.   
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Chapter 6  

6 La0.6Sr0.4Co0.2Fe0.8O3- microtubular 

membranes for hydrogen production from 

water splitting 

6.1 Introduction  

The work presented in this chapter has been published in the Journal of Membrane 

Science and the following sections have been adapted from this paper [167].  

Based in the results from Chapter 5 LSCF6428 has shown the best performance (under 

the experiments conditions) among the studied materials to hydrogen production by 

membrane-based steam reforming (Figure 6.1). The most suitable water vapour inlet 

concentration (7.2%) and methane inlet concentration (5%) were also obtained (highest 

oxidation and reduction levels) and applied in the following sections.  

 

Figure 6.1 Schematic diagram of membrane-based steam reforming at 900°C 

The membranes were subjected to two known axial temperature profiles (SW and LN 

furnaces) in the temperature of 900°C. The microtubes showed good stability under 

reaction conditions, operating over a total operation period of ca 400 hours of oxygen 

permeation (Section 6.3) followed by ca 400 hours of steam reforming (Section 6.4). An 

induction period of approximately 30 hours was observed before steam reforming 

commenced due to oxygen gradient re-establishment and oxygen transport through the 

membrane. 

Previous work has lacked the detail necessary to conclusively prove that hydrogen 

production is due to oxygen permeation across the membrane (e.g. a perovskite 

membrane can store and release oxygen; a reduced surface will produce hydrogen over 
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some period of time without net oxygen permeation being required). In this work the 

exit gas composition from both sides of the membrane was analysed and material 

balances (Section 6.5) were obtain to demonstrate permeation (as opposed to dynamic 

changes in membrane state). Long duration operation was also carried out where 

permeation is more important than dynamic surface redox processes. 

Post operation analysis (Section 6.6) of the microtubes revealed the presence of a 

strontium enriched dense layer on the water exposed membrane surface and of 

crystallites enriched with cobalt and sulfur on the methane feed side surface. 

6.2 Characterisation of fresh LSCF6428 

The XRD of the lumen-side and shell-side surfaces of unused fresh membranes 

(presented in Appendix 6-A) indicated the presence of a single perovskite phase and the 

absence of foreign phases. Spot EDS analysis (Table 6.1) also did not show the 

presence of foreign elements or segregation of any of the constituents of the perovskite.  

Table 6.1EDS data of fresh LSCF6428 microtubes. 

Location Approximate atom (%) 

La Sr Co Fe 

Fresh lumen-side 34.1 13.5 8.2 43.9 

Fresh shell-side  28.6 16.5 12.4 42.5 

As can be seen on the lumen-side surface of the microtubes (Figure 6.2a) the grains are 

connected with clear grain boundaries, surface cavities are also present. The grain size 

ranges from ca 1 to 5 µm. The shell-side surface (Figure 6.2b) shows an irregular rough 

surface. An irregular circular cross-section could be observed as shown in Figure 6.2c 

indicating wall thickness of ca 250 µm. The microtubes possess enclosed finger-like 

pores that are visible in the cross section but do not communicate with either membrane 

surface. 

 

Figure 6.2 SEM images of the fresh (a) lumen-side surface of the microtubes, (b) the 

shell-side surface and (c) cross-section. 
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The treatment histories of the membrane modules reported in this chapter are provided 

in Table 6.2. 

Table 6.2 Membrane treatment history 

Heating/hold  

(
o
C) 

Cooling/hold  

(
o
C) 

Shell side sweep 

rate(s) 

(ml min
-1

) 

Lumen side 

sweep rate(s) 

(ml min
-1

) 

Duration 

(hours) 

Experimental conditions (SW furnace 916°C / 900°C) 

25 to 916 - Atmospheric air – 0  Atmospheric air – 0 29.7 

916 - Synthetic air – 20 Argon – 20 400.6 

- 916 to 900 Synthetic air – 20 Argon – 20 0.5 

- 900 Synthetic air – 20 Argon – 20 163.4 

- 900 H2O (7.2%) – 20 CH4 (5%) – 20 240.0 

- 900 H2O (7.2%) – 20 Argon – 20 5.0 

- 900 H2O (7.2%) – 20 CH4 (5%) – 20 21.4 

- 900 to 25 Atmospheric air – 0 Atmospheric air – 0 29.1 

Experimental conditions (LN furnace 900°C) 

25 to 900 - Atmospheric air – 0 Atmospheric air – 0 29.1 

900 - Synthetic air – 20 Argon – 20 411.7 

900 - H2O (7.2%)  – 20 CH4 (5%) – 20 430.2 

- 900 to 25 Atmospheric air – 0 Atmospheric air – 0 29.1 

Experimental conditions (LN furnace 960°C) 

25 to 960  Atmospheric air – 0 Atmospheric air – 0 31.1 

960  H2O (7.2%) - 20 CH4 (5%)- 20 333 

 960 to 25 Atmospheric air – 0 Atmospheric air – 0 31.1 

     

6.3 Oxygen permeation studies  

For the purposes of this study, the oxygen permeation investigation was first undertaken 

using both furnaces (SW and LN) to verify the capability of the membranes to permeate 

oxygen. Air was supplied to the shell side of the microtubes at 20 ml (STP) min
-1

 and 

argon at 20 ml (STP) min
-1

 was used as the sweep gas on the lumen side. 

Generally, as can be seen in Figure 6.3 and Figure 6.4, the microtubes could permeate 

oxygen continuously for at least 400 hours. The presence of nitrogen in the outlet of the 

sweep side was observed in both experiments at similar levels. The oxygen permeation 

rate is adjusted to take this into account by subtracting the rate of oxygen leakage based 
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on the rate of nitrogen leakage (assuming a 1:4 oxygen:nitrogen ratio). Furthermore, 

fluctuations of the calculated oxygen and nitrogen permeation and leakage rates can be 

seen in both oxygen permeation experiments. This may be related to actual fluctuation 

in permeation rates or could be as a result of fluctuations in inlet flow rates or 

temperature and/or pressure. The fluctuations follow a 24 hours pattern and issues with 

the mass flow controller calibration cannot be neglected. Similar fluctuations have 

previously been reported in studies using the same rig used in this research [83]  

Using the SW furnace (Figure 6.3) the oxygen permeation and nitrogen leakage rates at 

916°C were initially ca 0.25 µmol O2 s
-1

 and 0.08 µmol N2 s
-1

 respectively indicating 

mainly oxygen permeation through solid state transport. Over time the oxygen 

permeation gradually increased to ca 0.33 µmol O2 s
-1

 and the nitrogen leakage rate 

decreased to ca 0.03 µmol N2 s
-1

 and was constant during the remainder of this 

experiment. The behaviour may be associated with slow disordering of oxygen 

vacancies causing the gradual increase of the oxygen permeation rate. After 400 hours 

at 916°C the temperature was lowered to 900°C to probe sensitivity to small 

temperature changes. The rate of oxygen permeation decreased over two hours to 0.30 

µmol O2 s
-1

 showing the expected dependence on temperature. Over the next 150 hours 

at this temperature the fluctuations in the rate continued but the underlying permeation 

rate remained constant.  

 

Figure 6.3 Oxygen permeation with air supplied on the shell side at 20 ml min
-1

 and argon 

as sweep gas on the lumen side at 20 ml min
-1

using SW furnace (916°C and 900°C). 
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Using the LN furnace (Figure 6.4) the initial oxygen permeation and nitrogen leakage 

rates were ca 0.15 µmol O2 s
-1

 and 0.04 N2 µmol s
-1

 respectively. After 200 hours the 

nitrogen leakage rate decreased to ca 0.03 µmol N2 s
-1 

and then remained constant. The 

oxygen permeation rate gradually increased during the first 300 hours of the 

experiment, reaching the highest value of 0.24 µmol O2 s
-1

, followed by a decrease over 

ten hours back to the starting value of ca 0.15 µmol O2 s
-1

. The membranes used in the 

LN furnace gave a lower oxygen permeation rate than those used in the SW furnace. 

This is unexpected as the LN furnace has a longer central hot zone; post operation 

analysis revealed that surface contamination may have caused this effect and is 

discussed in Section 6.6. 

 

Figure 6.4 Oxygen permeation with air supplied on the shell side at 20 ml min
-1

 and argon 

as sweep gas on the lumen side at 20 ml min
-1

using LN furnace (900°C). 

6.4 Membrane-based steam reforming studies 

Membrane-based steam reforming at 900°C was undertaken directly after the oxygen 

permeation experiments. Water vapour (nominally 7.2%) was supplied to the shell side 

of the microtubes at 20 ml (STP) min
-1

 and methane, nominally 5% (measured as 4.8% 

± 0.5%), was supplied at a total flow rate of 20 ml (STP) min
-1

 to the lumen side as a 

reducing gas. At the same time as hydrogen is produced by water splitting on the shell 

side of the membrane, hydrogen, carbon dioxide and carbon monoxide are produced on 

the lumen side. The low levels of background oxygen and nitrogen leaks into the shell 

side are not shown (these were characterised earlier with alumina membranes in Section 

4.4 and do not differ significantly here). In addition the methane mole fraction in the 
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outlet of the lumen side is not shown as this mole fraction is much higher than that of 

the other species. However, this mole fraction is used in determining material balances 

and did not behave in any unexpected way.  

6.4.1 Induction Period  

As shown in Figure 6.5a at the shell-side outlet using the SW furnace, an induction 

period of ca 30 hours was observed before any trace of hydrogen was detected. The 

same induction period for methane consumption was also observed at the lumen side 

(Figure 6.5c). In previously similar reported work [136, 138, 168, 169] , there tends to 

be an implicit assumption that any hydrogen production is due to oxygen permeation 

(and not just a change in the state of the membrane) and that this permeation rate is 

established rapidly and remains at steady state. It must recall that prior to this 

experiment the membranes were used for oxygen permeation experiments and as such 

would still hold the previously established oxygen chemical potential gradient. It would 

be expected that it may take some time for this gradient to re-establish itself (depending 

upon the rate-determining steps involved, note the more reducing gas is always supplied 

to the lumen) and this could be a reason for the induction (and the induction period 

itself will depend upon the nature of preceding experiments).  

Based on a typical oxygen permeation rate for hydrogen production (0.04 µmol O s
-1

), 

an estimated effective area for permeation (8 cm
2
 for the SW furnace and 19 cm

2
 for the 

LN furnace), a membrane thickness of 250 µm, an assumed maximum change in the 

degree of nonstoichiometry, Δδ, of 0.5 and a membrane molar volume of 35 cm
3
 mol

-1
 

[170], a time constant for membrane oxidation/reduction of ca 20 hours (SW furnace) 

and ca 50 hours (LN furnace) can be estimated. This is similar to the length of the 

induction period. 

6.4.2 SW furnace (900°C) 

As can be observed Figure 6.5a shows that for the membranes in the SW furnace, the 

level of hydrogen increased and after ca 50 hours reached a steady state mole fraction in 

the gas stream of ca 0.35%. After 240 hours the methane supply through the lumen side 

was interrupted and argon was introduced as the sweep gas for five hours as presented 

in Figure 6.5b. The hydrogen level at the shell side rapidly decreased, to a low level 

(0.02%) but we note that it did not reach 0.002% as would be expected based on the 
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blank experiment (Section 4.4). Also was noticed that the cross-membrane methane leak 

into the shell side decreased to zero.  

The resultant low level of hydrogen production from water splitting was one order of 

magnitude higher than that obtained for the blank experiment; the produced hydrogen 

may be from water splitting on the membrane surface but in the absence of permeation 

(no oxygen-containing species were detected on the lumen side during this operation). 

This further demonstrates the need for an oxygen vacancy concentration gradient across 

the membrane in order to observe significant steady state water splitting. Reintroduction 

of methane established the oxygen vacancy gradient and hydrogen was observed at 

approximately the same level as before interruption. Low level hydrogen production has 

also been observed in membrane-based WGS studies when the carbon monoxide supply 

was interrupted but the water vapour feed maintained [142]. 

Pulses of hydrogen were observed superimposed on steady hydrogen production at both 

sides of the microtubes as observed in Figure 6.5. These two sets of pulses do not occur 

at exactly the same time. Similar periodic fluctuations have previously been reported in 

methane oxidation studies using LSCF6428 microtubes but the origin of this effect is 

not clear [83]. 

The level of hydrogen at the lumen side (methane oxidation side) increased after 

induction and reached a steady state after ca 60 hours of ca 0.16%, as shown in Figure 

6.5c, with mainly carbon dioxide and hydrogen being produced (note that the pulses 

result in carbon monoxide production and not carbon dioxide production). The level of 

carbon dioxide decreased after 50 hours to a steady state of ca 0.09%. 

Traces of methane were observed in the shell-side outlet and should be related to gas 

phase transport through micro-cracks in the membranes. The level of methane started to 

increase after 120 hours and increased significantly after 260 hours; this leakage is 

related to the failure of the membranes. The failure can be related to chemical stress due 

to reduction and oxidation of the perovskite and also axial stress due to the temperature 

gradient along the length of the membrane. 
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Figure 6.5 Outlet composition from membrane-based steam reforming at 900°C using the 

SW furnace on the (a) shell side (water-splitting side) when methane is supplied as a 

reducing gas at the lumen side, (b) expanded view of showing the affect of interruption of 

the methane supply with argon and (c) lumen side (methane oxidation side) when 

methane is supplied as a reducing gas. 
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6.4.3 LN furnace (900°C) 

Similar to the SW furnace, the membranes used with the LN furnace had an induction 

period of ca 30 hours before any trace of hydrogen or products of methane consumption 

(Figure 6.6) were detected at the shell side and lumen side respectively.  

The level of hydrogen at the shell side (Figure 6.6a) increased and peaked to ca 0.5% 

and then fell to ca 0.28%. After 220 hours it rose to ca 0.35% and remained at this level 

until termination of the experiment. The hydrogen production rate is essentially the 

same as for the SW furnace even though the temperature profile would be expected to 

result in a higher hydrogen production rate for the LN furnace. Post operation analysis 

revealed that surface contamination may have caused this effect and is discussed in 

Section 6.6. 

 

Figure 6.6 Outlet composition from membrane-based steam reforming at 900°C using LN 

furnace on the (a) shell side (water-splitting side) and (b) lumen side (methane oxidation 

side) when methane is supplied as a reducing gas. 
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Pulses of hydrogen were also observed in the experiments using the LN furnace. As 

shown in Figure 6.6b carbon monoxide, carbon dioxide and hydrogen were produced on 

the lumen side using the LN furnace. The longer isothermal section of the LN furnace 

gave carbon monoxide and carbon dioxide in contrast to the SW furnace which gave 

mostly carbon dioxide with a trace of carbon monoxide. This difference in carbon 

selectivities will be due to differences in oxygen permeated and the different effective 

reactor residence times changing the relative importance of further reactions of carbon 

dioxide through [171], e.g., dry reforming (Equation (6.1)) where carbon dioxide reacts 

with methane to produce carbon monoxide and hydrogen; 

 
                

 

(6.1) 

 

and reverse water-gas shift (Equation (6.2)) where carbon dioxide reacts with hydrogen 

to produce carbon monoxide and water. 

 
              

 

(6.2) 

 

6.4.3.1 Membrane-based steam reforming 960°C 

Membrane-based steam reforming was carried out under the same inlet flow rate and 

composition conditions using the LN furnace at 960°C with a fresh membrane module. 

Here, we report only the shell-side outlet gas composition. As can be seen in Figure 6.7 

hydrogen level rapidly increased to ca 0.74 % and maintained this level throughout the 

experiment.  

This result showed that the driving force of oxygen permeation has an exponential 

dependence with temperature as the rate of hydrogen production at 960°C was 

approximately double that observed at 900°C (Figure 6.6a) and the required oxygen 

vacancy gradient was rapidly established. The level of cross-membrane methane leak 

was constant (0.02%) during most of the experiment but increased significantly after 

300 hours. This is directly related to the mechanical failure of the membranes. Again 

hydrogen pulses are observed but at this temperature they are more intense and occur in 

a more periodic fashion, approximately every 100 hours. For all membrane modules the 

membranes cracked near the centre and the investigation stopped after the total elapsed 

time indicated in the figures. 
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Figure 6.7 Shell-side outlet composition from membrane-based steam reforming at 960°C 

using LN furnace when methane is supplied as a reducing gas. 

6.5 Material Balance  

In order to perform material balances for the steam reforming experiments at 900°C, a 

table showing the average product mole fractions from 100 to 200 hours (SW furnace) 

and 150-350 (LN furnace) is provided (Table 6.3). The table also shows the uncertainty 

in measuring the gas phase mole fractions of the products (approximately 10% error in 

absolute values – note that errors in absolute values and not relative values are needed 

because the material balance requires the consolidation of data from two independent 

GCs; this leads to higher uncertainties). Error analysis is presented in Appendix 6-B. 

Table 6.3 Average mole fractions of products from membrane-based steam reforming at 

900°C using SW furnace (between 100 and 200 hours) and LN furnace (between 150 and 

350 hours). 

 H2
out

 (%) CH4
out

 (%) CO
out

 (%) CO2
out

 (%) 

SW furnace 

Shell side (SS) 0.366 ± 0.036 0.102 ± 0.010 - - 

Lumen side (LS) 0.159 ± 0.016 4.095 ± 0.409 0.011 ± 0.001 0.094 ± 0.009 

LN furnace 

Shell side (SS) 0.330 ± 0.033 0.064 ± 0.006 - - 

Lumen side (LS) 0.087 ± 0.008 4.101 ± 0.410 0.033 ± 0.003 0.091 ± 0.009 

 

 



94 

 

We can estimate the amount of oxygen transported across the membrane from both the 

lumen-side composition change and the shell-side composition change. These amounts 

of oxygen can then be compared to see if the oxygen balance closes within the 

uncertainty due to the analytical technique. 

On the shell side the oxygen permeated (in this case removed), OPSS, is simply equal to 

the rate of hydrogen production (hydrogen mole fraction in the outlet,      
     minus 

hydrogen mole fraction in the inlet (zero in this case),      
    multiplied by the total 

molar flow on the shell side,      ): 

            
         

         (6.3) 

Or 

           
         (6.4) 

On the lumen side the permeated oxygen,       appears in the carbon oxides and would 

also appear in water (not monitored). 

               
          

         
        

          
         

          (6.5) 

We assume that all carbon monoxide and carbon dioxide produced results in the 

simultaneous production of hydrogen and/or water (the role of carbon deposition is 

neglected): 

       
         

          
         

            
          

          
        

    (6.6) 

Therefore water production can be estimated by: 

       
         

            
          

          
        

          
         

    (6.7) 

Substituting into (6.5) for      gives: 

              
          

          
        

          
         

    (6.8) 

Or in the case of none of these components being present in the feed: 

              
         

         
          (6.9) 

Based upon the above expressions for the experiments, using the SW furnace, the rate 

of oxygen removal from the shell side (OPSS) is 0.054 ± 0.005 µmol O s
-1 

and the 

oxygen permeation rate to the lumen side (OPLS) is 0.037 ± 0.01 µmol O s
-1

.
 
Using the 

LN furnace, OPSS and OPLS are 0.049 ± 0.005 µmol O s
-1 

and 0.056 ± 0.01 µmol O s
-1

, 

respectively. The values of OPSS and OPLS show that within measurement error the 

oxygen removed from the shell side matches the oxygen permeated to the lumen side 
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for the LN experiment. For the SW experiment there is some disagreement but the error 

is relatively small compared to the flux and does not appear to be a cause for concern.  

The closure of the oxygen material balance is supporting evidence that the hydrogen 

production from water splitting is directly related to the oxygen permeation flux through 

the membrane. The carbon balance closed within the measurement uncertainty. 

Furthermore, after 400 hours of operation there were no visible signs of carbon build up 

anywhere in the system indicating that rate of carbon accumulation is low. 

6.5.1 Conversion and selectivity 

For the SW furnace the methane conversion (Equation (6.10)) was 2.1% ± 0.2 and the 

water conversion (Equation (6.11)) 5.0%. ± 0.5. For the LN furnace the conversions 

were 2.5% ± 0.2 and 4.6%. ± 0.4. This confirms that both membranes were operated 

under differential conditions (conversions less that 10%).  

 
            

   +     
   )        

   

 

(6.10) 

 

 
           

          
   

 

(6.11) 

 

On the lumen side, in both cases (SW and LN furnace) the selectivity to carbon dioxide, 

SCO2,LS, is greater than 0.7 consistent with a degree of total oxidation where, 

               
           

        
     (6.12) 

The selectivity to hydrogen, SH2,LS, is 0.75 ± 0.004 for the SW furnace and 0.35 ± 0.002 

for the LN furnace where the selectivity to hydrogen is defined in terms of exit carbon 

oxide mole fractions in light of the lack of information on the exit water mole fraction,  

             
            

        
     (6.13) 

The selectivity to water is therefore 0.25 ± 0.004 and 0.65 ± 0.002, again indicating 

significant total oxidation. 

6.6 Post operation characterisation  

After membrane failure the module was cooled down to room temperature under air. 

Membrane samples from the “hot” zone (central zone) and “cold” zone (outside the 

furnace) were taken from the modules used in the SW (900 and 916°C) and LN (900°C) 

furnaces for SEM, EDS and XRD; the analysed samples were uncrushed.  
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6.6.1 SW furnace  

The XRD patterns of the membranes using the SW furnace were not remarkable; 

reflections corresponding to the fresh LSCF6428 perovskite were observed and none 

foreign elements were found.  

Post operation SEM images from the membranes used in the SW furnace are presented 

(only remarkable results) in Figure 6.8. As can be observed the lumen surface (Figure 

6.8a) at the cold zone had become decorated with small crystallites less than 1 m in 

size (absent in the fresh membranes). Spot EDS (Table 6.4) on the crystallites indicated 

the presence of sulfur and enrichment of cobalt. Possible sources of sulfur 

contamination include the methane feed and the polyether sulfone used to form the 

membrane by the phase inversion technique [161, 162]. 

The hot zone shell-side membrane surface (Figure 6.8b) shows the development of 

cracks and the presence of needle and sphere-like crystals. There was no evidence from 

EDS or XRD that these needles and spheres had a composition different from the bulk 

membrane. EDS indicated the presence of carbon in isolated areas for both the shell-

side and lumen-side surfaces; it can be concluded that this carbon originates from the 

methane. Carbonates were not observed in the XRD patterns but have been reported 

previously in POM studies [90]. 

 

Figure 6.8 Post operation SEM images of the microtubes using the SW furnace: (a) the 

lumen-side surface of cold zone showing small crystals, and (b) the shell-side surface of 

the hot zone showing the development of cracks on the membrane surface and the 

presence of needle and sphere-like crystals. 
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Table 6.4 Post operation EDS data of microtubes using SW furnace. 

Location 
Approximate atom (%) 

La Sr Co Fe S C 

Cold zone lumen-side surface crystals 10.7 3.4 28.5 46.3 11.1 - 

Cold zone lumen-side surface (carbon spot) 3.7 2.3 0.8 4.3 - 88.9 

Hot zone lumen-side surface (carbon spot) 3.0 1.5 1.3 3.9 - 90.3 

Hot zone shell-side surface (carbon spot) 7.3 42.1 6.0 14.8 - 29.8 

6.6.2 LN furnace  

The XRD patterns presented in Figure 6.9 provided evidence of SiO2 (PDF01-083-

2465) contamination at the hot zone shell-side membrane surface when using the LN 

furnace; the contamination probably has its origin in the silicone sealant or quartz shell. 

In addition there is evidence of segregation of SrO (PDF01-074-1227) and La2O3 

(PDF00-022-0641) at both the hot and cold zones at the shell-side surface. Spot EDS 

(Table 6.5) did not confirm deposition of SiO2 but confirmed enrichment of strontium. 

Table 6.5 Post operation EDS data of microtubes using LN furnace. 

Location 
Approximate atom (%) 

La Sr Co Fe S C 

Hot zone lumen-side surface crystals 10.5 8.7 58.4 17.3 5.1 - 

Hot zone shell-side surface 5.6 69.6 4.8 20.0 - - 

 

 

Figure 6.9 Post operation XRD pattern of microtubes using the LN furnace of (a) shell-

side cold zone and (b) shell-side hot zone. Low intensity peak assignments; (▲) SiO2 

()) La2O3 () SrO. 
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Turning to microstructural changes the membranes used in the LN furnace features 

similar to those described for SW furnace. In Figure 6.10a it can be seen that in the hot 

zone the lumen-side surface is sparsely decorated with small crystals of ca 1 m in size 

(not observed in the cold zone in contrast to the case of the SW furnace). EDS 

unambiguously indicated high cobalt content and the presence of sulfur again. The 

shell-side membrane surface in the hot zone using the LN furnace also had needle like 

crystals (Figure 6.10b), which were more pronounced than those formed using the SW 

furnace (Figure 6.9(b)). Spot EDS indicated enrichment of strontium but no carbon, 

silicon or sulfur. These needles are also observed in cross-section (Figure 6.10c) and 

appear to sit on a dense layer on top of the membrane (this dense layer was not observed 

for the SW furnace). Several spot EDS measurements indicated an approximate 

composition of La0.05Sr0.95Co0.2Fe0.8O3 for this dense layer. It is conceivable that this 

dense layer could be responsible for the lower than expected oxygen permeation rates 

and hydrogen production rates for the LN furnace as compared to the SW furnace. 

 

 

Figure 6.10 Post operation SEM images of the microtubes using the LN furnace: (a) the 

lumen-side surface of hot zone showing small crystals, (b) the shell-side surface of the 

hot zone showing needle like crystals and (c) the cross-section showing the shell-side 
surface of the hot zone covered with a micro-layer. 
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6.7 Summary 

Microtubular membranes have been employed for hydrogen production via steam 

reforming of methane across oxygen permeable LSCF6428 membranes. A dual gas 

analysis strategy was undertaken in order to simultaneously monitor the gas outlet 

composition from both sides of the membrane. This allowed for material balances to be 

undertaken and confirmed that the production of hydrogen from water splitting was not 

from transient surface reaction but from steady oxygen permeation as a result of an 

oxygen vacancy gradient. The role of oxygen permeation was confirmed by interruption 

of the methane supply. The influence of the axial temperature profile of the furnace was 

investigated by using two furnaces in order to subject the membranes to two different 

temperature profiles over a total operation period of ca 400 hours of oxygen permeation 

followed by ca 400 hours of steam reforming (the membranes suffered mechanical 

failure at the end of this period). The two temperature profiles imposed on the 

membranes gave rise to differences in performance and degradation. While the main 

perovskite phase is generally maintained, SrO and La2O3 segregation were observed at 

the water vapour exposed membrane surface (shell side) for membranes used in the 

longer furnace. A strontium rich dense layer on this surface was observed by SEM-EDS 

and may have reduced the relative permeation rate. This highlights a potential 

complication due to variable chemistry as a result of differing axial temperature 

gradients at the inlet and outlet of tubular membrane modules. 
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Chapter 7  

7 Conclusions and suggested future work  

7.1 Research outcome  

The main objective of this project was to evaluate the feasibility of using microtubular 

perovskite membranes, as oxygen carrier materials, in membrane-based processes for 

hydrogen production from water splitting. Membrane-based water splitting 

investigations was hindered during the ‘80s due to low capability of the membranes to 

conduct electrons; however with recent developments in material science engineering 

and membrane technology new membranes able to overcome this deficit have been 

designed. Three perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ, La0.7Sr0.3FeO3-δ and 

La0.6Sr0.4Co0.2Fe0.8O3-δ were selected in this project as potential candidate for hydrogen 

production from water splitting due to desirable properties for oxygen permeation when 

exposed to oxygen partial pressure gradient [6-9].  

Preliminary tests with the perovskites in the powder form were carried out; both 

La0.7Sr0.3FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ generated steady hydrogen production over 

fifteen temperature programmed oxidation cycles in water and reduction in methane at 

the temperature of 900°C. Ba0.5Sr0.5Co0.8Fe0.2O3-δ powder material however presented 

low hydrogen production activity from water splitting and methane reduction.  

Temperature programmed redox cycles were also carried out with dense membrane 

fragments (ca 50mg) of each perovskite; membrane fragments presented much lower 

hydrogen production activity than the powder material. However it is clear that the 

surface area of the powder is much higher than dense membrane fragments. 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.7Sr0.3FeO3-δ membrane fragments presented low activity 

for water splitting: This was expected to Ba0.5Sr0.5Co0.8Fe0.2O3-δ as the powder material 

presented the same behaviour. However La0.7Sr0.3FeO3-δ membrane fragment low 

activity was unexpected as its powder material showed good performance for water 

splitting. Material characterisation showed the presence of an enriched sulfur/strontium 

layer on the membrane surface and may have reduced the relative permeation rate and 

consequently hydrogen production. La0.6Sr0.4Co0.2Fe0.8O3-δ dense membrane fragments 



101 

 

presented an induction period (first five redox cycles) with low hydrogen production 

from water splitting, after this the hydrogen production had a significant increase 

indicating that an activation period is necessary for steady hydrogen production. During 

reoxidation cycles with water, hydrogen and also carbon monoxide and traces of carbon 

dioxide were produced probably due to water oxidation of deposited carbon generated 

during the reduction step with methane.  

Microtubular membranes of each perovskite were also tested in membrane-based 

processes, oxygen permeation and membrane-based steam reforming were carried out in 

order to evaluate the capability to permeate oxygen and produce hydrogen from water 

dissociation and methane reduction. Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes presented high 

oxygen permeation rates at 900°C (higher than La0.6Sr0.4Co0.2Fe0.8O3-δ and 

La0.7Sr0.3FeO3-δ membranes) however did not present good activation for hydrogen 

production via membrane-based steam reforming. This indicated that fast oxygen bulk 

transport is not necessarily the main consideration for hydrogen production and the 

limiting step can be a surface process. The surface’s catalytic capability to split water 

and activate methane plays an important role in the overall process. La0.7Sr0.3FeO3-δ 

membranes did not show oxygen permeation at 900°C nor hydrogen production from 

water splitting; post operation analysis revealed that a strontium/sulfur layer (previous 

observed with membrane fragments) affected the membrane’s performance. 

La0.6Sr0.4Co0.2Fe0.8O3-δ membranes presented moderate oxygen permeation rates and 

good capability to hydrogen production from membrane based steam reforming. 

Altering water vapour and methane concentrations it was observed that hydrogen 

production gradually increased with the increase of methane and water vapour 

concentration, however surface exchange limitation was observed at the oxidation 

membrane surface when water vapour concentration was raised above 6%. Also the 

most suitable conditions (to the experimental setup used in this project) for long term 

membrane-based steam reforming experiments were determined in these studies; 

temperature at 900°C, water vapour concentration ca 7% and methane concentration at 

5%.  

Preliminary studies, rarely reported in membrane experiments, were carried out in this 

project; temperature profiles of both the furnaces (short and long) used in this project 

were prepared in order to estimate the active effective area of permeation. This is 

necessary as the total length of the membrane is uncovered due to the cold sealing 

strategy applied. Residence time distribution analysis was also carried out; it was 
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observed that the shell side of the membranes performs as a well mixed reactor and the 

lumen side performs in a plug flow regime when compared to the shell side. A blank 

membrane-based steam reforming test with alumina tubes (instead membranes) showed 

that the sealant material could support the experiments conditions. Low water-splitting 

activity was also observed with the alumina tubes.  

As a result of the preliminary tests, the best performing perovskite membrane 

(La0.6Sr0.4Co0.2Fe0.8O3-δ) for hydrogen production from water splitting was selected for 

further long term studies. The influence of the axial temperature profile of two different 

furnaces was investigated in oxygen permeation and membrane-based steam reforming 

experiments. The membrane reactor used in the short furnace unexpectedly performed 

better than the membrane reactor in the long furnace. Post operation analysis indicated 

that the temperature profile imposed from the long furnace gave rise to differences in 

performance and degradation. 

The membrane reactors operated over a total operation period of ca 400 hours of 

oxygen permeation followed by ca 400 hours of steam reforming (longest reported 

duration in water splitting studies). The need for an induction period of ca 30 hours in 

order to establish an oxygen vacancy gradient across the La0.6Sr0.4Co0.2Fe0.8O3-δ 

membrane was observed. No water splitting activity or methane products were observed 

during this induction period. This was possible due to a dual gas analysis strategy in 

order to simultaneously monitor the gas outlet composition from both sides of the 

membrane. This also allowed a careful material balance which showed that the oxygen 

removed from the water dissociation side matches the oxygen permeated to the reaction 

side. The closure of this material balance is supporting evidence that hydrogen 

production from water splitting is directly related to the oxygen permeation flux across 

the membrane rather than surface reactions only. 

The role of oxygen permeation was also investigated by interrupting the methane supply 

at the reaction side of the membranes during membrane-based steam reforming. The 

hydrogen production level rate rapidly decreased, however not to zero, showing that 

hydrogen production from water splitting is associated not only to oxygen permeation 

but also to surface reactions. Reintroduction of methane established the oxygen vacancy 

gradient and hydrogen was observed at approximately the same level as before 

interruption. Post-operation analysis indicated that the main perovskite structure of the 

membranes was maintained; however performance may hindered due to a strontium rich 
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dense layer observed at the water exposed side for membranes used in the longer 

furnace. SrO and La2O3 segregation combined with SiO2 contamination, probably from 

the quartz tube, was also observed.  

7.2 Suggested future work  

This research project investigated three different membrane perovskites for hydrogen 

production from water splitting at high temperature. Some future tasks are suggested 

from the outcome of this research: 

 Development of microtubular asymmetric membranes can improve 

performance; porous substrate combined with thin layers to reduce bulk oxygen 

diffusion limitations can be used to ensure high oxygen permeation and 

therefore higher hydrogen production rates.  

 

 Application of catalyst material to improve kinetics e.g. nickel based catalyst 

can be applied to improve methane activation on the reaction side of the 

membranes.  

 

 Optimisation of hot sealant materials for tubular membranes in order to avoid 

temperature gradient along the membrane length. This would reduce thermal 

stress (caused by restricting thermal expansion) as the length can be exposed to 

an isothermal zone.  

 

  Employment of pulsed isotopic exchange techniques with labelled water 

(H2
18

O) on membrane samples during high temperature operation to investigate 

the surface oxygen exchange and bulk oxygen transport.  

 

 Membrane-based steam reforming is an endothermic process; a novel 

autothermal membrane-based process for hydrogen production from water 

splitting can be developed if some of the reducing gas is combusted to provide 

the required heat. This would involve two sets of OTM tubular membranes with 

fuel (e.g. methane) on the shell side and different inlet feeds on the lumen side 

for each set of membrane; one set with water and the other with air (Figure 7.1). 

Autothermal operation can be achieved balancing their flow rates and 
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conversions (e.g. with the application of catalyst material to improve kinetics) 

of each set of membranes.  

 

Figure 7.1 Schematic representation of autothermal membrane-based process for 

hydrogen production. Water splitting is performed in one set of membranes and the other 

set provides oxygen for methane combustion.  
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9 Appendix 3-A 

Experimental apparatus showing feed system, flow meters, furnace and membrane 

module.  

 

Figure 9.1 Experimental setup used in this project.  

  



117 

 

10 Appendix 3-B 

Results from water saturator calibration using hygrometer.  

Table 10.1 Results for water saturator calibration. 

Water 

bath T  

(°C) 

Thermocouple T 

inside water bath 

(°C) 

Dew point 

hygrometer 

(°C) 

Vapour 

pressure 

hygrometer  

(hpa) 

Concentration  

 

(%) 

11 11 8.5 11.1 1.11 

20 20 18.9 21.8 2.18 

30 30 28.3 38.6 3.86 

35 34 32.3 48.3 4.83 

40 40 36.7 61.8 6.18 

50 49 48.0 110.0 11.0 

60 60 56.6 170.5 17.05 
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11 Appendix 3-C 

Membrane module before sealed showing MACOR tubes, silicone rubber, shell glass 

and end-caps.  

 

Figure 11.1 Membrane module before sealed. 
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12 Appendix 5-A 

Powder materials  

Analysis from the 1
st
 to 15

th
 TPR and TPO cycles of (a) and (b) BSCF5582; (c) and (d) 

LSCF6428 and (e) and (f) LSF731 (b) powder materials at 900°C.  

 

Figure 12.1 Products of TPR/TPO at 900°C during 15 cycles for powder materials. (a) 

and (b) BSCF5582; (c) and (d) LSCF6428 and (e) and (f) LSF731. 
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Membranes fragments  

Analysis from the 1
st
 to 15

th
 TPR and TPO cycles of (a) and (b) BSCF5582; (c) and (d) 

LSCF6428 and (e) and (f) LSF731 membranes fragments at 900°C. 

 

Figure 12.2 Products of TPR/TPO at 900°C during 15 cycles for membranes fragments. 

(a) and (b) BSCF5582; (c) and (d) LSCF6428 and (e) and (f) LSF731. 

  



121 

 

13 Appendix 6-A 

The XRD patterns of the lumen-side and shell-side surfaces of unused LSCF6428 fresh 

membranes. 

 

Figure 13.1 XRD patterns of unused LSCF6428 fresh membranes (a) shell side and (b) 

lumen side.  

 

  

(a) 

(b) 



122 

 

14 Appendix 6-B 

Error analysis 

In general, a source of error is any factor that may affect the outcome of the experiment. 

In this present work, uncertain measurements generated by the equipment used in the 

experiments can result in these sources of errors. The experimental errors calculated in 

this section have not been included into the data of this thesis (apart from the material 

balance calculations), however they are discussed and used to explain possible 

discrepancies. Each source of error is discussed in the following sections.  

Water saturator 

The routine set point for the water saturator was 7.2% H2O (water bath maintained at 

40°C) balanced in argon, the water content was monitored by a hygrometer and the 

reading generally fluctuated between 7.1 and 7.3%. The temperature of the water bath 

during experiments was monitored carefully, however is conceivable that the 

temperature was warmer or cooler than intended and this would have affected the water 

vapour pressure. These fluctuations could also be result of the hygrometer itself 

performing feedback control or due to variation of the laboratory temperature.  

This experimental error of ± 0.1% H2O (± 10% of the set point) is relatively small and 

would have little effect on the results obtained during hydrogen production (membrane-

based steam reforming experiments), as the hydrogen mole fraction signal of the GC is 

calibrated using the calibration gas containing hydrogen. Also, over a long experiment 

(ca 400 hours) a variance of ± 0.1 H2O would make little difference as the shell-side of 

the membranes would be fully oxidised over this period and would not affect the 

oxidation step of the experiment.  

Mass flow controllers  

The usual flow rate delivered to the membrane reactor was 20 ml (STP) min
-1

 (routine 

set point). To ensure flow rates were accurate, an independent flow meter (Varian UK.) 

was used to monitor the set flow rate. The readings generally fluctuated and an 

experimental absolute error of ± 0.5 ml min
-1

 was recorded. This error would not make 

much difference for mole fraction measurements by the GC, however during the 
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calculation of the permeation rates (Equation (3.2)) this would lead to an error of ± 

2.5%. 

Leaks 

Preliminary experiments (Section 4.4) were performed to detect if a refractory 

membrane could be adequately sealed under the membrane-based steam reforming 

reaction conditions at 900°C. It was noticed that at a flow rate of 20 ml (STP) min
-1 

a 

maximum background leak of oxygen (0.104 mol %) and nitrogen (0.344 mol %) was 

observed. Therefore, an approximate total error of ± 0.1 mol. % for oxygen permeation 

could be assumed for measurement by the GC, however the oxygen permeation rate is 

adjusted to take this into account by subtracting the rate of oxygen leakage based on the 

rate of nitrogen leakage (assuming a 1:4 oxygen:nitrogen ratio).  

Gas chromatograph 

Prior to the beginning of the experiments, the GC was calibrated as described in Section 

3.4.4. However, the GC could not maintain the correct calibration over ca 800 hours of 

experiment as a result of drift in stability of the GC detector. Recalibration of both CGs 

at the end of this period indicated a drift of no more than 10 %, calculated by Equation 

(14.1)  

 

 

        
         

  
      

 

(14.1) 

 

Where      is the recalibration value (measured) after the experiments and    is the 

calibration value at the beginning of the experiment. This uncertainty (percentage error) 

of measuring the gas phase mole fractions of the products was applied for the material 

balance calculation (Section 6.5) and presented in Table 6.3.  


