
Middleware to Support Accountability of

Business to Business Interactions
In Partial Fulfilment of the Requirements for

the Degree of Doctor of Philosophy

School of Computing Science

Derek John Mortimer

April 2013

Wayfinding Report: Issue 1/2006

The Newcastle University Corporate Mark
can be used in two ways depending on the
background colour which the logo sits.

In the majority of signage cases, the logo
will be positioned on a corporate blue
background and in all these cases, the logo
used will be the white version as shown in
Figure 14.

 |

Fig. 14 White version of logo positioned on Corporate Blue
(PMS 541c) background

Fig. 13 Corporate logo when positioned on a light background:
Corporate Blue (PMS 541c) and Red (PMS 186c)

To Dad, Mum and Scott.

Acknowledgements

I have spent close to 10 years at Newcastle University throughout all my studies, I have

many people to thank for their support, motivation and guidance through it all.

First and foremost I would like to thank my PhD supervisor Doctor Nick Cook for

immeasurable support and guidance and always having an open door when I needed it,

I could not have had anyone more fitting for the role.

Of my friends at the University I would like to particularly thank Matthew, Robert

and Dylan for help with proof reading, allowing me to bounce ideas o� them and help

keeping me generally sane. Anna and Matthew deserve special mention for keeping me

well fed and sociable towards the end of writing up when I neglected to do so myself.

Thanks are also due to Professor’s Santosh Shrivastava and Aad van Moorsel for

much appreciated guidance and feedback on papers and this thesis and I would like

to graciously thank Doctor Mark Little, RedHat’s Newcastle operation and EPSRC

for funding my studies under CASE/CNA/07/71 (“Service Oriented Architectures for

Business-to-Business Collaboration”), allowing me the time to complete them.

I owe tremendous thanks to my parents for always pushing me to discover and pursue

my own goals, always supporting me in my e�orts to do so and I wish very much that

my Mum were around to see my PhD completed.

The path through my thesis has not been the smoothest and I am very lucky to

have a rich circle of support including my family, Scott, Nicole, Aaron, Chris, Ben and

Debs, Matthew and Anna, all of whom have been there for me through the di�cult and

wonderful times of my life while completing my studies, I love you all. I thank Scott

especially for his patience over these last few months, it means more than I am able to

express.

To the numerous people I have crossed paths with during my time at Newcastle, I

would like to say thank you and dedicate this thesis to everyone who has steered me

towards its completion, I am eternally grateful.

iii

Abstract

Enabling technologies have driven standardisation e�orts specifying B2B interactions

between organisations including the information to be exchanged and its associated

business level requirements. These interactions are encoded as conversations to which

organisations agree and execute. It is pivotal to continued cooperation with these in-

teractions that their regulation be supported; minimally, that all actions taken are held

accountable and no participant is placed at a disadvantage having remained compliant.

Technical protocols exist to support regulation (e.g., provide fairness and account-

ability). However, such protocols incur expertise, infrastructure and integration re-

quirements, possibly diverting an organisation’s attention from fulfilling obligations to

interactions in which they are involved. Guarantees provided by these protocols can

be paired with functional properties, declaratively describing the support they provide.

By encapsulating properties and protocols in intermediaries through which messages are

routed, expertise, infrastructure and integration requirements can be alleviated from

interacting organisations while their interactions are transparently provided with addi-

tional support.

Previous work focused on supporting individual issues without tackling concerns of

asynchronicity, transparency and loose coupling. This thesis develops on previous work

by designing generalised intermediary middleware capable of intercepting messages and

transparently satisfying supportive properties. By enforcing loose coupling and trans-

parency, all interactions may be provided with additional support without modification,

independent of the higher level (i.e., B2B) standards in use and existing work may be

expressed as instances of the proposed generalised design. This support will be provided

at lower levels, justified by a survey of B2B and messaging standards. Proof of concept

implementations will demonstrate the suitability of the approach. The work will demon-

strate that providing transparent, decoupled support at lower levels of abstraction is

useful and can be applied to domains beyond B2B and message oriented interactions.

iv

Contents

1 Introduction 1

1.1 B2B Interactions . 1

1.2 Supporting B2B Interactions . 5

1.3 Support Intermediaries . 6

1.3.1 Transparent Support Intermediaries 7

1.4 Intermediary Accountability Support . 9

1.4.1 Accountability as a Functional Property 9

1.4.2 When to Provide Accountability Support? 11

1.4.3 Intercepted Message Flow . 11

1.4.4 Composed Intermediary Accountability Support 13

1.4.5 Summary . 15

1.5 Objectives of Work . 15

1.5.1 Summary . 19

1.6 Thesis Structure and Contents . 19

2 Background 22

2.1 B2B Terminology . 22

2.1.1 Organisational Identity . 23

2.1.2 B2B Terminology . 23

2.1.2.1 Conversations, Agreements and Contracts 25

v

2.2 Levels of Abstraction . 25

2.2.1 Message and Signal Types . 28

2.2.2 Conversation Outcome Types . 29

2.3 B2B Support Service Types . 30

2.4 Assumptions . 32

2.4.1 Business Level Assumptions . 32

2.4.2 Technical Level Assumptions . 33

2.5 Concerns when Supporting B2B Interactions 35

2.5.1 Trust Concerns . 35

2.5.2 Fairness Concerns . 36

2.5.3 Accountability Concerns . 38

2.5.4 Accountability and Fairness: Why Both? 40

2.5.5 Consistency Concerns . 41

2.6 Technical Protocols . 43

2.6.1 Primitives and Capabilities . 43

2.6.2 Time-stamping: Time-stamping Authorities 45

2.6.3 Accountability: Non-repudiation Protocols 46

2.6.3.1 Protecting Against Key Revocation 50

2.6.4 Consistency: Synchronisation Protocols 50

2.7 Survey of B2B Standards . 52

2.7.1 Surveyed Documents . 53

2.8 Survey: ebXML . 54

2.8.1 Terminology and Stack . 55

2.8.2 Message Exchange Patterns . 57

2.8.3 Security . 59

2.8.4 Reliability and Timeliness . 60

2.8.5 Accountability Support . 61

vi

2.8.6 Fairness Support . 61

2.8.7 Extensibility Support . 62

2.8.8 Summary . 62

2.9 Survey: Domain Specific B2B Standards 63

2.9.1 Terminology and Stack . 63

2.9.2 Message Exchange Patterns . 65

2.9.3 Security . 66

2.9.4 Reliability and Timeliness . 67

2.9.5 Accountability Support . 67

2.9.6 Fairness Support . 68

2.9.7 Extensibility Support . 68

2.9.8 Summary . 69

2.10 Summary of B2B Standards Survey . 70

2.11 Cloud Computing . 71

2.11.1 Trust, Privacy and Compliance . 72

2.12 Related Work . 73

2.12.1 Law Governed Interaction . 73

2.12.2 Conversation Support for Business Process Integration 75

2.12.3 FIDES Fair Exchange System . 77

2.12.4 Interceptor Based support for Non-repudiation Protocols 79

2.12.5 Accountability as a Service for the Cloud 81

2.12.6 Extending Messaging with Application Conditions 83

2.12.7 Summary of Related Work . 84

2.13 Summary . 84

3 Generalisation of Survey and Background to Enable Support 85

3.1 Generalised Message Exchange Patterns 86

vii

3.2 Generalised Business Requirements . 87

3.2.1 Reliability . 87

3.2.2 Timeliness . 87

3.2.3 Security . 88

3.2.4 Accountability . 89

3.2.5 Fairness . 90

3.2.6 Consistency . 90

3.2.7 Summary of Generalised Requirements 91

3.3 Fairness, Accountability and Consistency as Functional Property Hierarchies 91

3.3.1 Expressing Levels of Trust . 92

3.3.2 Fairness Hierarchy . 93

3.3.3 Accountability Hierarchy . 94

3.3.4 Partial Consistency Hierarchy . 97

3.4 Declaration Mechanisms . 99

3.4.1 Generalised B2B Abstractions . 99

3.4.2 Intermediary Support Abstractions 101

3.4.3 Declaration via Predicates . 101

3.4.4 Declarations via Annotation . 103

3.4.5 Asymmetry and Decoupling of Declarations 104

3.5 Discussion: Supporting Individual Transmissions 104

3.5.1 Side Discussion: Optimisations . 108

3.5.2 Side Discussion: Fairness for Individual Transmissions 110

3.5.3 Side Discussion: Semantics of Accountability Evidence 110

3.6 Discussion: Predicate Declarations . 111

3.6.1 Side Discussion: Opaque Transmissions 114

3.6.2 Side Discussion: Extracting Knowledge versus Raw Content Match-

ing . 114

viii

3.7 Summary . 115

4 Designing and Discussion of Intermediary Support 117

4.1 Conceptual Middleware Positioning . 118

4.2 Middleware Layers of Abstraction . 120

4.2.1 Conversation and Exchange Pattern Layer 122

4.2.2 Declaration and Properties Layer 123

4.2.3 Protocol Execution Layer . 124

4.3 Communication With and Within the Intermediary Support 125

4.3.1 Interception and Encapsulation of Transmissions 126

4.3.2 Communication within the Intermediary Support 127

4.4 Assumptions and Compatibility Between Participants 128

4.4.1 Both Participants employ Support 128

4.4.2 One Participant employs Support 128

4.4.3 Neither or Other Support . 129

4.5 Intermediary Impact upon Deadlines and Timeouts 129

4.6 Handling Events Across Layers of Abstraction 130

4.6.1 Tracking and Automating Behaviour 130

4.6.2 Notification and Manual Behaviour Triggering 132

4.7 When to Maintain or Relax Transparency 132

4.7.1 Maintaining at all Costs . 133

4.7.2 Relaxing for Benefits to Interacting Organisations 134

4.7.3 Summary . 134

4.8 Design of an Organisation’s Intermediary 135

4.8.1 Middleware Components . 136

4.9 Supporting Middleware Components . 139

ix

4.10 Composing Components to Provide Intermediary Support 140

4.10.1 Composition to Enable Interception and Generalised Protocol Ex-

ecution . 140

4.10.2 Composition to Enable Fairness and Accountability Support . . . 141

4.10.3 Potential Composition to Enable Consistency Support 142

4.10.4 Summary . 142

4.11 Deployment of Middleware Components 142

4.11.1 Deployment within Supported Organisations 143

4.11.2 Deployment within Security Service Providers 143

4.12 Discussion: Previous Work as Instances of the Generalised Design 144

4.13 Instances Chosen for Implementation . 145

4.14 Summary . 146

5 Intermediary Middleware Implementations 147

5.1 A Common Business Message Format . 148

5.1.1 Common Declarations via Annotations and Predicates 149

5.2 Co�ey-Saidha Protocol Definition . 150

5.3 Implementation 1: Decentralised JMS . 151

5.3.1 Message Processors and Groups . 152

5.3.2 Signal and Audit Topics . 153

5.3.3 Fairness and Accountability Support 154

5.3.4 Testing . 155

5.3.5 Evaluation and Summary . 157

5.4 Implementation 2: Centralised, Cloud (AWS) 160

5.4.1 Interaction with the Service . 160

5.4.2 Message Processing . 163

5.4.3 Centralised Support Components 163

5.4.4 Testing . 166

x

5.4.5 Evaluation and Summary . 167

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing Measurements 168

5.5.1 Measurements Taken . 170

5.5.2 Results . 171

5.5.3 Centralised Support Costs . 173

5.5.4 Estimating Decentralised Support Costs 175

5.5.5 Evaluation and Summary . 176

5.6 Summary . 177

6 Summary and Future Work 180

6.1 Summary of Contributions . 180

6.2 Summary by Chapter . 182

6.3 Future Work . 183

Bibliography 187

xi

List of Figures

1.1 A and B execute an agreed upon ’Order Submission’ conversation. 2

1.2 A message sent from A to B passing through multiple intermediaries. . . 7

1.3 An intercepted message being provided accountability by an intermediary. 12

1.4 An intercepted message being provided accountability by an intermediary. 13

2.1 The components of A’s B2B software stack. 27

2.2 Two flows in which a participant gains an unfair advantage. 37

2.3 A and B terminate in di�erent states. 41

2.4 Styles of interaction with a TSA. 46

2.5 Non-repudiation execution possibly engages a TTP to guarantee fairness. 49

2.6 Synchronisation of outcomes by CMLs on behalf of A and B 51

2.7 ebXML’s concretised B2B stack. 55

2.8 Layers of the ebXML Messaging Service. 56

2.9 One-way push and one-way pull exchange patterns. 58

2.10 Two-way push-push exchange pattern. 58

2.11 Two-way pull-push (left) and push-pull (right) exchange patterns. 59

2.12 RosettaNet’s concretised B2B stack. 64

2.13 Each LG gateway acts to ensure only legal (valid) actions on behalf of its

organisation. 74

xii

2.14 CPa acts on behalf of A to prevent it from seeing late or unexpected

business messages. 76

2.15 Organisations employ FIDES clients, servers and TTPs to facilitate non-

repudiable exchange of information. 78

2.16 Intermediaries deployed within organisations interact (synchronously) to

execute non-repudiation protocols for service invocations. 80

2.17 Yao’s work . 81

3.1 Recursive decomposition of conversations and exchanges. 86

3.2 Fairness property hierarchy . 94

3.3 Accountability property hierarchy . 95

3.4 Consistency property hierarchy . 98

3.5 Business exchanges, possibly including non-repudiation evidence. 105

3.6 A single transmission rendered accountable by intermediary support. . . . 106

3.7 An excerpt from the XML definition of PIP 3A4. 111

3.8 An excerpt from an example RosettaNet Message Service Header in XML. 112

4.1 Transmission from A æ B passing through their B2B stacks. 118

4.2 Intermediary support’s positioning within the general B2B stack. 119

4.3 Layers of abstraction within IntA. 121

4.4 Intercepting the delivery of a messaging under MoM. 126

4.5 Connectivity of the components of an organisation’s intermediary. 138

4.6 The components of IntA interacting to execute protocols with IntB. 141

5.1 A simple message example. 148

5.2 A simple signal example. 149

5.3 Co�ey-Saidha non-repudiation protocol definition. 150

5.4 IntA and IntB collaborate on behalf of A and B to provide accountability

to message delivery. 151

xiii

5.5 An example intermediary with three processor groups. 153

5.6 An evidence logger attached to the intermediary’s audit topic. 154

5.7 A single provider allows A and B to interact with accountability and

fairness guarantees. 161

5.8 The provisioning of points of interaction per organisation as opposed to

complete sets of components. 162

5.9 Exchange service internal components and message flow. 165

5.10 Graph comparing end-to-end time measurements taken, measure in mil-

liseconds. 173

xiv

List of Tables

2.1 Cryptography and Communication Notation 45

2.2 Time-stamping Authority notation . 46

2.3 Non-repudiation protocols, their characteristics and channel requirements 48

3.1 Functional characteristics representing varying levels of Trust 92

3.2 Characteristics for the Fairness property 93

3.3 Multiple characteristics satisfied by fair exchange protocols in [VPG99]. . 94

3.4 Non-repudiation protocols and the Accountability characteristics they satisfy 96

3.5 Characteristics for the Consistency property 97

3.6 Example declarations using predicates . 102

5.1 Latencies between server locations, measured in milliseconds. 172

5.2 Median processing times for intermediary support operating in AWS-EU

and AWS-US locations, measured in milliseconds. 172

5.3 Median end-to-end times for intermediary support involvement, measured

in milliseconds. 173

xv

1 Introduction

Contracts and agreements have long been the standard construct by which parties agree

on a set of terms and conditions pertaining to exchanges resulting in mutually beneficial

outcomes [Hor07]. The terms and conditions in these contracts seek to simultaneously

allow for beneficial outcomes while also protecting the interests of those who do adhere

to expected behaviour against those who do not. In an electronic business-to-business

(B2B) context, these agreements are descriptions dictating the flow of communication

between organisations resulting in outcomes such as the exchange of goods, services and

information.

1.1 B2B Interactions

Open networks and enabling technologies have allowed B2B interactions to move in-

creasingly into an electronic setting. Organisations wishing to interact in this manner

create appropriate digital business messages containing business documents such as pur-

chase orders or invoices and exchange them with their intended recipient. Recipients

process these messages and sanction a response (e.g., a corresponding response message

or a real world action such as delivery). These exchanges are enabled by the develop-

ment of loosely coupled business services to asynchronously transmit, receive and process

business messages. These factors enable B2B interactions to become more streamlined;

however, higher degrees of automation require that more aspects of interactions are

agreed upon beforehand.

1

1.1 B2B Interactions Chapter 1

For B2B conducted via the exchange of messages as previously described, agreements

are encoded as conversations. Conversations describe a complete set of exchanges to

achieve desired outcomes, minimally including: the expected contents of messages (syn-

tactic and semantic) and the order in which they are to be exchanged. Higher degrees of

automation and regulation may require the specification of elements such as: deadlines

for acknowledgement or processing messages, security requirements, evidence of origin

or receipt and actions to take should exceptional circumstances arise.

A
Ini$ator

B
Responder

Purchase+Order

Ack

Accept+/+Reject

Ack

B2B+
Conversa8on:

Order/
Submission

Figure 1.1: A and B execute an agreed upon ’Order Submission’ conversation.

Figure 1.1 illustrates an example conversation between two organisations for the sub-

mission of a purchase order. The conversation specifies that an initiator, A, transmits a

message containing a purchase order which is acknowledged as being received. Upon pro-

cessing, the responder, B, will transmit a response message indicating whether the initial

purchase order was accepted or rejected (i.e., whether the contents were syntactically and

semantically valid and the order can be met). The response message is acknowledged as

being received, thus terminating the conversation. Possible conversation elements such

as deadlines and encryption are omitted for the sake of clarity.

The requirement for complete conversation descriptions, and the benefits of a common

base of understanding, drove the development of standards seeking to provide tools to al-

low the definition and agreement of conversations and their requirements. Available B2B

standards range in scope from specifying only the format of messages(e.g., EDIFACT

2

1.1 B2B Interactions Chapter 1

[Uni11]), specifying a set of permitted conversations including their requirements and

how they be satisfied (e.g., RosettaNet [Ros02, Ros09]) and general standards capable of

expressing any conversations and their requirements (e.g., ebXML [OAS01a, OAS07b]).

This thesis adopts ebXML as the general B2B standard, capable of specifying any B2B

conversation and its requirements1. Other standards discussed including RosettaNet

and Open Travel Alliance represent subsets of what may be expressed using ebXML

[Ros09, Ope11b] and are surveyed with regards to what requirements they support in

their respective domains such that commonly supported requirements may be generalised

to support the widest possible range of B2B interactions.

ebXML provides a toolbox of building blocks upon which organisations can define

and agree upon conversations tailored to their specific needs [OAS01a]. ebXML

provides a set of general exchange types to be composed in any order into con-

versations. These conversations may specify business level requirements, but do

not how their execution and support must be carried out, ebXML decouples this

into conformance profiles specifying message formats, transports and how suppor-

ted requirements must be satisfied, allowing conversations and their requirements

to be tailored as needed. Interacting organisations wishing to use ebXML must

agree on a set of conversations to support and an ebXML conformance profile to

determine how conversations and requirements are executed.

Domain Specific Standards represent subsets of ebXML by providing a permitted list

of conversations and instructions for how these conversations must be executed

and how the requirements must be supported. RosettaNet is a domain-specific

standard aimed at the supply chain of major Computer and Consumer Electronics,

Electronic Components, Semiconductor Manufacturing, Telecommunications and

Logistics companies and the conversations it permits are designed to address these

1The requirements permitted are restricted to an ebXML approved list of functional requirements, more
on this in Section 2.8.

3

1.1 B2B Interactions Chapter 1

needs [Ros02, Ros09]. Open Travel Alliance is a domain-specific standard aimed

at all aspects of the travel industry. Other domain-specific B2B standards include

CIDX aimed at the Chemical Industry, PIDX aimed at the Petroleum Industry. An

exhaustive list of all domain-specific standards is beyond the scope of this thesis.

Where domain-specific standards are discussed, it is with a view to generalising

commonly supported B2B requirements and message exchange patterns.

Following from the ebXML and domain specific standards, this thesis considers the

execution and regulation of B2B interactions to have two key aspects:

1. Specifications supporting high-level encoding of agreements as conversations, provid-

ing a definition for how organisations must be observed to behave, and

2. Low-level mechanisms enabling the execution of these conversations, the satisfac-

tion of their requirements and the support of their regulation. These mechanisms

will generate, exchange and store evidence irrefutably demonstrating where oblig-

ations, requirements and properties have (or have not) been satisfied.

B2B standards address the first point, providing definitions of conversations including

their functional requirements in well known format. Chapter 3 will generalise common

exchange patterns and supported requirements from varying B2B standards discussed

in Section 2.7.

Some B2B standards (e.g., RosettaNet) partially address the second point (e.g., by

specifying how certain requirements are satisfied); however, this thesis is concerned with

providing a generalised middleware design capable of satisfying multiple requirements

(e.g., fairness and accountability), with potentially stronger guarantees (e.g., account-

ability protected from cryptographic key revocation) such that regulation of all B2B

interactions may be supported, independent of the B2B standard in use.

Independence from B2B standards requires the middleware designed in this thesis

to operate in a decoupled and transparent manner, while this is considered a sound

4

1.2 Supporting B2B Interactions Chapter 1

engineering decision [SRC84], there are complexities (e.g., what is the most appropriate

point and mechanism of interception) and trade-o�s for doing so (e.g., is it possible to rely

on standard-specific information while also operating independently of any standard).

These complexities and trade-o�s are discussed in the remainder of this thesis.

1.2 Supporting B2B Interactions

The ease with which businesses can make themselves available online presents increased

opportunity for organisations to involve themselves in B2B collaboration. This can lead

to a significant investment of resources into collaborations. While undertaking these

high value interactions organisations are assumed to continue to operate autonomously

and are likely to privilege their own interests over those of their partners. These factors

can lead to a tension between the desire to cooperate and the need to ensure their own

interests remain protected.

In addition to this tension, there may be occasions where obligations are not met by

one or more participants. Where organisations have complete trust in each other, they

are safe in the knowledge that where obligations are not met, responsibility will be taken

by the correct participants. Realistically, however, organisations may not have complete

trust in each other for reasons including: protecting their own interests first or a lack of

previous experience upon which trust can be established. In the face of these concerns,

fairness and accountability become critical issues to tackle. If satisfied, they allow the

execution and governance of interactions to be supported while also addressing the issues

of trust (or lack thereof) and conflicts with a desire to cooperate while protecting one’s

interests.

Fairness is defined as the property that no well-behaved participant in an interaction

is placed at a disadvantage as a result of misbehaviour by another [Aso98]. For

example, if two participants are exchanging goods, fairness dictates that at the

5

1.3 Support Intermediaries Chapter 1

end of the exchange, both have the desired item or neither do. Any other outcome

would be unfair to one of the participants [GPV99].

Accountability is the property that all actions taken within a system are undeniable,

certifiable and tamper-evident [YC04]. Accountability is generally achieved by the

generation, exchange and logging of evidence binding participants to the actions

they take (e.g., proof of origin and proof of receipt). Such evidence forms an audit

trail allowing the resolution of disputes by demonstrating where obligations were

or were not met. Without this ability to irrefutably resolve disputes, agreements

become unenforceable [PG99].

In this thesis, we consider fairness and accountability as desirable concerns to address,

in the context of B2B interactions, such that participants are assured that their interests

will remain protected in the face of misbehaviour and that all agreements in place remain

unambiguously enforceable. Motivation for addressing fairness and accountability (i.e.,

what happens without such guarantees) is discussed in Section 2.5.2 and 2.5.3.

Implementations of middleware designed in this thesis will use fairness and accountab-

ility as examples properties, satisfied by the use of suitable technical protocols. However,

the generalised middleware design is capable of allowing other concerns to be addressed.

Section 2.5.5 and 3.3.4 discuss how consistency, based on previous work [MJSC07], could

be supported as proof of concept of the extensibility of the approach taken in this thesis.

1.3 Support Intermediaries

Current business involves the use of third parties for services such as: identity and credit

checks, payment processing and document notarisation. Communication with these third

parties can be thought of as the satisfaction of properties supporting an interaction (e.g.,

a credit check allows a purchase to proceed).

Accountability and Fairness can be considered properties in the same way, their sat-

6

1.3 Support Intermediaries Chapter 1

isfaction allows interactions to proceed with guarantees that agreements remain en-

forceable and no participants will be disadvantaged as a result of compliance. These

guarantees allow organisations to interact focusing primarily on their fulfilling business

objectives and obligations while additional support is provided by service providers who

deal with the expertise and underlying technicalities of the support they provide.

Of the possible modes of interaction with third party services, intermediaries present

a particularly useful approach to supporting interactions. That is, a message being

delivered from its sender to recipient may be routed through one or more intermediaries

who act upon messages passing through them (e.g., logging, notarising or validation).

ebXML and domain specific standards acknowledge the importance of intermediaries in

this capacity and discuss their possible involvement [OAS07b, Ros02, Ope11b]. Figure

1.2 illustrates a message passing through multiple intermediaries during its delivery from

A to B:

A
Message i1

B
Message i2 Message

Intermediaries/may/take/addi2onal/ac2on/about,/and/
upon,/messages/passing/through/them

Figure 1.2: A message sent from A to B passing through multiple intermediaries.

1.3.1 Transparent Support Intermediaries

Intermediaries, such as those in Figure 1.2, in the delivery path of a message have the

potential to alter the contents of messages routed through them. Any change to the

contents of a message may have an unintended impact on the semantics of the message.

By considering the capability to alter contents, we can define a transparent intermedi-

ary as one whose operation does not alter the contents of the intercepted transmission.

7

1.3 Support Intermediaries Chapter 1

In the example of Figure 1.2, this means the contents of the message, as it arrives at B,

are exactly the same as when it was transmitted by A, regardless the number of inter-

mediaries passed through. An important consideration is that A or B may still be able

detect intermediary involvement other ways (e.g., increased delivery time for a specific

message against a known median) and A and B must trust some subset of intermediary

support and connecting infrastructure. These concerns are discussed in Section 4.3 and

2.4.

Transparency can be applied to preserve levels of abstraction, for example, business

level transparency ensures that business level operation remains unchanged even when

introducing additional lower level elements to provide support such as fairness and ac-

countability in a transparent manner (i.e., by not altering the contents of any intercepted

business transmissions).

Provided the above can be achieved, transparent intermediary middleware provides an

ideal place to support the execution and regulation of B2B interactions. Support can be

o�ered to existing and new types of B2B interactions, independent of specific standards

in use, without any alterations to an organisation’s business level operation. Addition-

ally, existing support can be modified or extended by the reconfiguration of existing

intermediaries in the delivery process, still maintaining business level transparency.

The middleware designed in this thesis will operate as a set of transparent and de-

coupled intermediaries, promoting separation of concern and allowing the support o�ered

to be independent of specific B2B standards. The intermediaries will operate asynchron-

ously, just as the B2B services implemented by organisations do, and will use composition

to demonstrate support for di�erent properties (e.g., fairness, accountability or consist-

ency) and combinations of properties.

8

1.4 Intermediary Accountability Support Chapter 1

1.4 Intermediary Accountability Support

Previous sections have introduced B2B interactions, supporting their execution and regu-

lation, how this can be achieved and why it is desirable. This section will use the support

of accountability, satisfied by a transparent intermediary to introduce the topics explored

and discussed in the subsequent chapters of this thesis. The intermediary discussed here

is simplistic in that it employs only two protocols to satisfy accountability with coarsely

defined characteristics. Discussion in subsequent chapters will expand upon the topics

introduced here by considering: multiple properties (and multiple characteristics of those

properties), multiple protocols to satisfy those properties and characteristics, support for

more B2B standards, and multiple mechanisms for declaring when supported properties

should be satisfied. The challenges associated are discussed in Section 1.5.

1.4.1 Accountability as a Functional Property

Accountability, as introduced above, can be described as the functional definition that

participants are held accountable for their actions. Where this thesis refers to functional

properties, this indicates a business level concern or requirement (e.g., accountability

or fairness) considered in functional terms (i.e., the details of how this is achieved are

irrelevant to the discussion).

Thus, for any functional property, its satisfaction ultimately depends on the specific-

ation of the imperative details (e.g., protocols, formats and transports). Combinations

of di�erent imperative details may satisfy properties with varying characteristics. For

example, trust and fairness are discussed below as characteristics a�ecting how account-

ability can be satisfied.

Firstly, we classify trust as a characteristic whose value is either ‘trusted’ (the sender

has complete trust in the recipient) or ‘untrusted’ (all other cases).

Fairness is defined as a binary characteristic defining whether the release of account-

ability evidence (and the business message being sent) should done in such a way that

9

1.4 Intermediary Accountability Support Chapter 1

no participant gains an advantage by misbehaving.

Using these characteristics, we can reason that accountability, without complete trust,

should be delivered with fairness.

Non-repudiation protocols represent suitable protocols to satisfy accountability [KMZ02].

These protocols generate and exchange evidence irrefutably binding participants to the

actions they perform while interacting. Two non-repudiation protocols here for the sake

of brevity, both resulting in the generation and exchange of a message and two kinds of

evidence: non-repudiation of origin, irrefutably binding a message to its originator and

non-repudiation of receipt, irrefutably binding the receipt of a message to its recipient.

The first protocol is the Co�ey-Saidha non-repudiation protocol [CS96], mandating

the involvement of a mutually trusted third party (TTP) to ensure a message and its

associated evidence are exchanged fairly. The second protocol is named “voluntary

exchange” in which evidence is exchanged directly (and voluntarily) between participants

without a third party guaranteeing the exchange [CRS06]. The involvement of a TTP

to ensure fairness, and the type of its involvement (inline, discussed in Section 2.6.3)

mean that the Co�ey-Saidha protocol incurs a higher cost in terms of messages passed

and computational complexity (additional decryption and encryption at the TTP). For

the above reasons, it is assumed preferable to perform voluntary exchange where trust

relationships allow it.

As per the accountability property and its characteristics described above, voluntary

exchange is suitable only where the recipient is trusted at the time of exchange (i.e.,

fairness does not need to be guaranteed) and the Co�ey-Saidha protocol is suitable in

situations where fairness is required in the exchange of message and its non-repudiation

evidence. For simplicity, we assume here that the trust relationship between two organ-

isations is known. The complexities of defining and expressing trust relationships are

discussed in Section 2.5.1 and 3.3.1.

10

1.4 Intermediary Accountability Support Chapter 1

1.4.2 When to Provide Accountability Support?

The final piece is determining when accountability should be satisfied for an intercepted

message. Section 3.4 discusses all mechanisms for declaring when supported properties

should be satisfied. Here we consider the use of existing business level requirements to

create a rule inferring when accountability is required, as proof of concept for supporting

existing B2B interactions.

ebXML allows messages to specify whether they require “non-repudiation of origin”

and/or “non-repudiation of receipt” as binary parameters [OAS07b]. Where a message

specifies either of these parameters, the intermediary assumes that accountability is

desired and invokes the correct protocol to satisfy it with the desired characteristics

(e.g., fairness guaranteed without complete trust in recipient).

A valid question here is why, if ebXML specifies generation and exchange of non-

repudiation evidence, would we engage another non-repudiation protocol to satisfy ac-

countability? Section 2.7 will demonstrate that the support specified by ebXML and

other B2B standards is susceptible to cryptographic key revocation (rendering evidence

unusable) and exchanged without any fairness guarantees.

Transparent intermediaries allow stronger levels of support to be o�ered (e.g., Co�ey-

Saidha guarantees fairness and key revocation can be prevented) to better address iden-

tified concerns of B2B interactions, discussed in Section 2.5, 2.7 and 3.3.

1.4.3 Intercepted Message Flow

The previous section functionally defined accountability and specified two protocols sup-

porting its satisfaction under di�erent trust characteristics defining when fairness guar-

antees are required. Rules were also defined for how the requirement for accountability

will be inferred. This allows the definition of intermediary accountability support for

intercepted messages. Figure 1.3 illustrates intermediary accountability support for an

intercepted message:

11

1.4 Intermediary Accountability Support Chapter 1

A
Message

Intermediary+Accountability+Support

B
Message

The$intermediary$supportisresponsibleforexchangingand
storing$non7repudia8on$evidence$proving$AandB's$interac8on

Accountability?

Trusted? Untrusted?

Voluntary
Exchange

Coffey<Saidha
Protocol

Figure 1.3: An intercepted message being provided accountability by an intermediary.

1. A message is generated by its sender (A) and transmitted.

2. The message is routed through the intermediary support.

3. Once intercepted, the message is analysed to determine if accountability should be

satisfied by:

a) Checking the message to see if its business level requirements infer account-

ability is required.

4. If accountability is required, which protocol should be invoked?

a) If the recipient is completely trusted, use voluntary exchange knowing that

will provide their associated evidence.

b) For all other situations, use Co�ey-Saidha to guarantee fairness to both par-

ticipants.

5. Deliver the original message to its recipient (unaltered, to maintain business level

transparency between A and B) and reliably store any intermediary generated

evidence.

The figure shows a message, transmitted from A to B, passing through intermediary sup-

port whose determines whether accountability is required, satisfies the property where

12

1.4 Intermediary Accountability Support Chapter 1

necessary using a suitable protocol and finally delivers the original message on to B. All

messages are o�ered three routes through the intermediary support: without account-

ability, accountability via the Co�ey-Saidha protocol and accountability via voluntary

exchange and all routes result in the original message being delivered to B, maintaining

business level transparency.

This provides a general set of processing instructions for the intermediary support

of functional properties, for any intercepted message: determine the required proper-

ties (and characteristics), satisfy them appropriately through the execution of technical

protocols and finally deliver the intercepted message onwards to maintain transparency.

The dashed edge of the intermediary support in Figure 1.3 denotes that the interme-

diary support is a composition of smaller services, discussed in the next section.

1.4.4 Composed Intermediary Accountability Support

A

Messages

Intermediary+Accountability+Support

B

Messages

IntA IntBNR#Protocol#Execu.on

Figure 1.4: An intercepted message being provided accountability by an intermediary.

Figure 1.4 represents a simple decomposition of the provision of intermediary account-

ability support. A’s messages pass through IntA, a transparent intermediary acting on

behalf of A to support its interactions. Similarly, IntB acts on behalf of B to transpar-

ently support its interactions. IntA and IntB communicate with each other to execute

technical protocols satisfying supported functional properties. Specifically for account-

ability as discussed in the previous section, IntA and IntB communicate to ensure the

message is exchanged and the correct non-repudiation protocol is invoked where re-

13

1.4 Intermediary Accountability Support Chapter 1

quired. The composition of IntA and IntB provide the abstraction of “intermediary

accountability support”.

Henceforth, when referring to “A’s intermediary” or IntA, we are referring to any

intermediary acting on behalf of A. Specifically, the intermediary is not necessarily

owned or operated by A but A is assumed to have some degree of control over IntA.

For example, declaring when supported properties should be satisfied for intercepted

messages, configuring acceptable timeouts or exercising control over the cryptographic

keys used to generate evidence on its behalf.

IntA and IntB provide a known boundary at which business level transparency can be

guaranteed for A and B. That is, for a message transmitted from A to B, routed through

IntA and IntB, the last point at which transparency can be guaranteed (by intermediary

support) is when IntB emits the message, and vice versa. Additional intermediaries may

exist between A and IntA (and B and IntB), these are beyond the control of provided

intermediary support.

The provisioning of IntA and IntB in this manner match the loosely coupled asyn-

chronous exchange of messages facilitating the execution of B2B interactions. A, B,

IntA and IntB are all standalone entities who may communicate but are not all required

to be online at the same time to do so.

The composition of IntA and IntB to provide accountability support also illustrates

that the decomposition may be recursively applied. That is, IntA and IntB are themselves

composed of smaller services (discussed in Section 4.8.1).

A strong motivator for this approach is the possible configurations for the location

and operation of components, they may all be hosted by the same provider, split across

multiple providers or hosted within their respective organisations. This allows elements

to be composed across multiple domains of control (e.g., IntA’s composition may be

split across A and a dedicated provider). Section 4.10 discusses such configurations and

demonstrates that previous work can be expressed as instances of these configurations.

14

1.5 Objectives of Work Chapter 1

Section 2.4 discusses issues relating to the trust of components between one or more

providers.

1.4.5 Summary

While IntA and IntB communicate to execute non-repudiation protocols to provide ac-

countability to A and B, the execution of other technical protocols would allow di�erent

properties to be satisfied (e.g., synchronisation protocols to ensure consistency).

Although omitted for brevity, communication between IntA and IntB may engage a

trusted third party (TTP) to guarantee fairness [PG99] the important elements here

were A, B, their respective intermediaries and the illustration of composition to provide

intermediary support abstractions. A TTP would simply represent another composition

of services to provide required functionality.

“Intermediary Accountability Support” was used as a label in Figure 1.3 and 1.4 to

show that IntA and IntB (and TTPs) were composed to provide the required paradigm

(i.e., using non-repudiation protocols to satisfy accountability). Following this, “inter-

mediary support” in used to mean any support o�ered to interacting organisations (e.g.,

A and B) through the use of intermediary components acting on their behalf to execute

protocols satisfying one or more support properties with varying characteristics.

1.5 Objectives of Work

Previous work has focused on supporting interactions through the provision of inter-

mediaries. This includes the execution of non-repudiation protocols [CRS06, NZB04],

contract monitoring [Str09], synchronisation for consistency management [MJS06], aug-

menting message delivery with additional capabilities [TMRS02] and ensuring agree-

ments are never violated [MU00]. These works have generally aimed to support one

property (e.g., non-repudiation) and placed significant requirements on organisations in

terms of:

15

1.5 Objectives of Work Chapter 1

Expertise: What protocols should be used, what properties do they provide and when

should they be used?

Infrastructure: The computing power required to executed the protocols rendering the

required support.

Integration: How is the o�ered support integrated into new and/or existing business

processes.

This thesis aims to improve on previous work by designing and implementing generalised

support middleware that does the following:

1. Supports multiple functional properties (e.g., accountability or fairness) with mul-

tiple characteristics (e.g., accountability when the recipient is untrusted)

2. Provides the desired support through the use of intermediaries which are com-

posed to satisfy the supported functional properties by implementing the required

technical protocols.

3. Operates transparently

4. Operates decoupled from B2B standards

5. Operates asynchronously

6. Alleviates expertise, infrastructure and integration requirements placed upon in-

teracting organisations

For point (1), the challenges are identifying which properties to support, which proto-

cols satisfy these properties (with what characteristics) and establishing suitable map-

pings. Discussed in Section 2.4, 2.5, 2.6, 2.7, 3.2, 3.3 and 4.10. A generalised design

in which this is possible will be capable of expressing previous work as instances of

functional properties to be supported. Discussed in Section 2.12 and 4.12.

16

1.5 Objectives of Work Chapter 1

For point (2), the challenges are decomposing the required support into individual

components that may be re-used to provide the widest range of support with minimal

duplication of e�ort or functionality. Discussed in Section 1.4.4, 2.3, 4.2, 4.3, 4.8.1,

4.9, 4.12, 5.3, 5.4 and5.5. Expressing previous work within this generalised design be-

comes a matter of implementing components to be composed to provide the required

functionality. Discussed in Section 2.12, 4.8.1 and 4.12.

For point (3), the challenges are identifying points of interception at which the re-

quired information is available to the intermediary support and the desired support can

be provided to the interacting organisations, independent of B2B standard, while en-

suring business level transparency is maintained. Discussed in Section 1.3.1, 2.2, 2.7,

2.12, 3.4, 3.5, 3.6, 4.7 and5.6. By enforcing transparency in the intermediary support,

existing and new B2B interactions can be supported by placing intermediary support in

the delivery path of B2B interactions. Discussed in Section 1.4, 2.7, 3.1, 3.4, 3.5 and

3.6.

For point (4), the challenges are ensuring that support o�ered is not dependent upon

any specific B2B standard, that some useful minimal level of support is available to all

interactions and also that available business level information may be capitalised upon

where available. Discussed in Section 2.7, 3.2, 3.3, 3.4, 3.6 and 4.3. By ensuring the

intermediary support is decoupled from any B2B standard, existing and new standards

can be supported (assuming they communicate using message oriented middleware).

Discussed in Section 3.4, 3.5, 3.6 and 4.3.1.

For point (5), the challenges fall under the realm of an engineering challenge. It

is best to implement intermediary support asychronously simply as message oriented

middleware and all surveyed B2B standards operate asynchronously. The benefits of

doing so are that all components are not required to be online at the same time. However,

we assume any component will eventually be online such that it can process messages

and proceed with executing or supporting interactions. Discussed in Section 2.1, 2.4,

17

1.5 Objectives of Work Chapter 1

3.1, and 4.3.1.

For point (6), we consider that expertise and infrastructure requirements can be sat-

isfied by dedicated service providers. Such providers would be responsible for implement-

ing component services and composing them into intermediary support that delivered

the required levels of support to interacting organisations. This thesis assumes the role

of one or more dedicated service providers for the purposes of supporting interacting

organisations. Discussed in Section 2.3, 2.11 and 4.11.

By enforcing transparency and decoupling, integration requirements can be minimised

to requiring only that an organisation’s messages are routed through the intermediary

support. Other scenarios for integration (including situations in which organisations

wish to retain control over specific aspects) are discussed in Section 2.4, 2.5.3, 2.6.3, 2.11

and 4.11.

The proposed approach to providing transparent, decoupled, asynchronous support

at lower levels, using middleware intermediaries, will be demonstrated as fit for purpose

and also applicable to domains beyond B2B and message oriented middleware.

Additionally:

1. Fairness and accountability will be developed as proof-of-concept properties along-

side technical protocols supporting their satisfaction. They will demonstrate that

multiple properties (and characteristics) can be supported independently of B2B

standards in use, all while maintaining transparency, loose-coupling and asynchron-

icity. Consistency will be described as a property that could be implemented (with

examples), demonstrating the extensibility of the generalised middleware design.

2. Example implementations will be created, representing di�erent instances of com-

position and deployment of components to provide intermediary support for B2B

interactions. These implementations will be evaluated with regards to how well

they function compared to previous work and what impact they may have on B2B

interactions.

18

1.6 Thesis Structure and Contents Chapter 1

1.5.1 Summary

In short, the major contributions are a generalised intermediary middleware design for

supporting interactions using by mapping functional properties to technical protocols

allowing their satisfaction and declaration mechanisms specifying when properties are

required for intercepted transmissions.

The challenges of transparency, asynchronicity and loose-coupling are addressed in the

support o�ered, allowing:

• Existing and new interactions to be supported seamlessly

• Previous work to be expressed as instances of composition and deployment within

the generalised design.

• Expertise, infrastructure and integration requirements to be alleviated from inter-

acting organisations.

Example properties, protocols and implementations, coupled with generalisation of pre-

vious work and surveyed standards will demonstrate the suitability of low-level approach

to providing support. Cross domain applications of the work will be discussed in Section

6.3.

1.6 Thesis Structure and Contents

The work presented in this thesis expands upon the topics discussed in this chapter and

is structured as follows:

Chapter 2 introduces general B2B terminology, concepts and assumptions made through-

out this thesis. Concerns relevant to supporting B2B interactions are presented

alongside technical protocols for their satisfaction and considerations for integra-

tion into intermediary support. B2B standards are surveyed, reporting on message

exchange patterns, supported requirements and extensibility. Cloud computing is

19

1.6 Thesis Structure and Contents Chapter 1

briefly discussed including benefits and issues relating to trust, regulation and

operational requirements. The chapter finishes by surveying related work.

Chapter 3 generalises the results of the surveyed B2B standards to generalise common

exchange patterns, business level requirements and abstractions. These generalisa-

tions are to define declaration mechanisms, specifying when supported properties

should be satisfied. Hierarchies for Fairness and Accountability properties are

defined and mapped to technical protocols providing their with di�erent charac-

teristics. The chapter finishes with discussions on supporting individual transmis-

sions (as a building block for grander support) and use of the proposed declaration

mechanisms.

Chapter 4 presents the generalised intermediary support middleware design, beginning

with its positioning within the a B2B stack and a breakdown of its layers of abstrac-

tion. Various design decisions are discussed with regard to their e�ects on business

level operation. Individual components are discussed including minimal compon-

ents required to facilitate interception of messages and how functional properties

are supported by composing additional components to execute technical protocols.

Configurations for deployment will be discussed followed by a demonstration that

previous work can be expressed as instances of the proposed generalised design.

Chapter 5 discusses three implementations representing instances of the design in Chapter

4. These first is a decentralised solution providing accountability where organisa-

tions retain control of their own cryptographic operations generation while still

maintaining business level transparency[MC09]. The second implementation is a

centralised solution providing accountability built using cloud computing as to

minimise requirements on an organisation [MC10]. The third implementation is

an adaptation of the second with extremely granular timing information. All im-

plementations are evaluated on their functionality and the third is evaluated on

20

1.6 Thesis Structure and Contents Chapter 1

its performance with regards to its impact on typical B2B interactions.

Chapter 6 concludes the work with a summary of contributions. An overview of contri-

butions will be followed by a description of contribution by chapter. Contributions

will be summarised and evaluated against the aims and objectives in this chapter.

The chapter will finish with a conclusion and an overview of future work.

21

2 Background

This chapter begins with a discussion of B2B terminology in Section 2.1. Section 2.2

and 2.3 discuss layers of abstraction involved in B2B interactions and their associated

components. Section 2.4 discusses relevant business and technical level assumptions.

Section 2.5 discusses relevant concerns to address when supporting B2B interactions

including fairness, accountability and consistency. Section 2.6 discusses technical pro-

tocols suitable to solving the identified concerns and how they can be integrated into

intermediary support while maintaining transparency.

Section 2.7 surveys current B2B standards, using ebXML as the general case and ex-

amining domain specific standards as subsets of ebXML. The survey reports on message

exchange patterns, supported business requirements, how B2B concerns are addressed

and how the B2B standards may be supported or have their own support extended.

Section 2.11 briefly discusses cloud computing with regards to its use for hosting com-

ponents of intermediary support. The discussion considers benefits typically associated

with cloud computing and where operational or compliancy issues may impact its use.

The chapter finishes with a survey of related work in Section 2.12 how it informs this

thesis. Section 2.13 summarises key points discussed in the chapter.

2.1 B2B Terminology

Before discussing issues associated with supporting the execution and regulation of in-

teractions, this section introduces some relevant terminology.

22

2.1 B2B Terminology Chapter 2

2.1.1 Organisational Identity

For the purposes of this thesis an organisation is an autonomous body, responsible for

the business services they provision to enable their participation in B2B interactions.

To facilitate participation in these interactions, organisations are represented by a suf-

ficiently unique identity, this identity is authenticated and authorised within a given

context (e.g., through the use of standards such as X.509 infrastructure, enabling the

authoritative issuing of identity certificates) [SHF02]. In order to allow organisations to

maintain their autonomy, the internal assignment of an identity within an organisation

(i.e., whether it represents the entire organisation or some subset thereof) is considered

out of scope, the authorised use of an identity representing any part of an organisation

is their own responsibility.

2.1.2 B2B Terminology

B2B standards generally have their own terminology, these relate to general terminology

laid out in this section including relevant relationships and assumptions:

Participant A participant is a single organisation (represented by an identity) interact-

ing with another for the purposes of conducting business. This thesis assumes

interactions to contain two participants, generally an initiator and a recipient.

Intermediary An intermediary is an entity through which interactions may be routed.

The intermediary may take actions upon the intercepted information before passing

in on for eventual delivery to its intended recipient.

Document A business document is a self contained document constructed by one parti-

cipant to be sent to another. Example business documents include purchase orders

or invoices.

Message Participants interact by sending business messages to each other. A business

message contains one or more business documents and required information to

23

2.1 B2B Terminology Chapter 2

ensure messages can be delivered to their intended recipient (i.e., the identity of

the sender and the recipient).

Signal Business signals are used to indicate significant events, these signals indicate both

positive and negative statuses including: the indication a participant is ready for

some message to be sent, the acknowledgement of receipt of a previously sent busi-

ness message or the acceptance or rejection of some business message’s contents.

Transmission A transmission constitutes the transmission of some business contents

(i.e., a message or signal) from one participant to another (e.g., A æ B). It is the

smallest observable unit of communication between two participants.

Exchange An exchange between A and B involves an initial transmission of a message

or signal from A æ B and then a subsequent transmission of a response signal or

message from B æ A. The response from B must explicitly reference the request

from A.

Conversation A conversations is a sequence of one or more transmissions and exchanges

(and their associated requirements), executed in order to achieve mutually benefi-

cial business outcomes.

Interaction Two participants engaging in a transmission, exchange or conversation are

interacting. Thus, interaction is used as a general term where the distinction is

irrelevant.

Additional terms are introduced in subsequent sections. The above definitions provide a

starting point for discussion related to B2B interactions. The survey of B2B standards in

Section 2.7 will relate general terms to standards-specific counterparts where illustrative.

24

2.2 Levels of Abstraction Chapter 2

2.1.2.1 Conversations, Agreements and Contracts

Until this point, the terms conversation, agreement and contract have been used inter-

changeably without clarification. For the purposes of this work, where organisations

conduct business through the exchange of messages, ‘conversation’ and ‘agreement’ may

be used interchangeably depending on the context of the discussion. Where the focus of a

discussion is on the need for organisations to agree, agreement will be the preferred term

and where the focus is on the exchange of messages to facilitate business, conversation

will be the preferred term.

Contracts are considered minimally to specify the conversations (or agreements) two

organisations agree to execute, the execution of which be a�ected by legal requirements.

This thesis assumes legal requirements a�ecting the business level definition and ex-

ecution of a conversation are translated into specific business requirements (e.g., if a

response is legally required within a certain time period, this can be translated to an

appropriate deadline requirement) or are otherwise incorporated into the implement-

ation of an organisation’s business services (e.g., laws a�ecting time periods for data

retention). To avoid confusion, only the terms ‘conversation’ and ‘agreement’ will be

subsequently used with the focuses described in this section.

2.2 Levels of Abstraction

Section 1.1 defined two key aspects to enabling (and supporting) the execution and reg-

ulation of B2B interactions. Specifically, high-level mechanisms allowing the definition

of conversations specifying how participants must be observed to behave and low-level

mechanisms enabling their realisation. That is, the satisfaction of requirements and

properties enabling their execution and regulation by being able irrefutably prove that

expected behaviour was observed, or indicate where expected behaviour was deviated

from. These high and low levels can be more descriptively defined:

25

2.2 Levels of Abstraction Chapter 2

Business Level The business (high) level comprises the implementation of business ser-

vices by an organisation and a specific set of B2B standards (e.g., ebXML) under

which the services are designed. That is, an ebXML business service is implemented

capable of supporting ebXML conversations through the exchange and processing

of ebXML messages. This level deals in business abstractions (e.g., business doc-

uments, business messages and business conversations) enabling a business service

to be constructed with details such as formats, protocols and transports abstracted

by the lower levels.

Technical Level The technical (low) level comprises enabling technology allowing the

business level standards and services to operate. This includes all formats, pro-

tocols and transports necessary to physically deliver the message from one parti-

cipant to another, allowing them to process it at the business level and sanction

an appropriate response. B2B standards may mandate the use of specific technical

level technologies (e.g., RosettaNet mandates MIME message format and HTTP

transport protocol) to satisfy their own business level requirements, but they still

maintain the business and technical abstractions.

Figure 2.1 illustrates the layers in a generic B2B stack, indicating which layers belong to

which level of abstraction. This layered stack is similar in approach to layered network

stacks such as the OSI and TCI/IP models [Tan03].

The points in the following list correspond to the numbering on the layers shown in

Figure 2.1:

1. A’s business service is implemented to participate conversations defined by a B2B

standard (e.g., RosettaNet), the chosen B2B standard dictates the contents and

the formatting of the business messages to be exchanged, facilitating the execution

of agreed upon conversations.

2. Messaging standards provide a general message format used to encapsulate all

26

2.2 Levels of Abstraction Chapter 2

A's$Business$Service

B2B$Standard

Messaging$Standard

Business
Level

Technical
Level Transport$Standard

Physical$Delivery

A's$Stack

(1)

(2)

(3)

(4)

Figure 2.1: The components of A’s B2B software stack.

of the business level information ready for transport. For example, RosettaNet

messages are encapsulated as MIME messages.

3. Messages ready for delivery can be transmitted across a number of di�erent trans-

ports, matching specific requirements. For example, RosettaNet specifies that

MIME messages be transmitted using HTTP or HTTPS where transport security

is required.

4. With messaging standards and transports chosen, the physical delivery of a mes-

sage to its recipient can occur, typically using TCP/IP or UDP.

Some Message oriented Middleware (MoM) standards specify their own wire-format

[AMQ09]. That is, they define the messaging and transport layers (3 and 4) as shown

in Figure 2.1.

It is important to note that while B2B standards may mandate technical level elements,

these are kept abstracted from the business level elements. Where technical elements

are mandated, it is for the reasons of satisfying specific requirements supported by the

B2B standards. For example, RosettaNet allows a message to specify it requires secure

transport, HTTPS is mandated as a technical requirement to guarantee a business level

27

2.2 Levels of Abstraction Chapter 2

notion of transport security. Conversations defined in RosettaNet need not be aware

that HTTPS is being used, they simply know their security requirement is being fulfilled.

This mirrors the approach taken by support middleware designed in this thesis. That

is, additional supported requirements are declared functionally, satisfied transparently

by lower level elements to maintain the appropriate abstractions.

The survey in Section 2.7 will demonstrate that B2B standards represent concretisa-

tions of the general stack shown in Figure 2.1 where certain technical level aspects are

specified to satisfy supported business level requirements (and the execution of conversa-

tions). It follows then, that two organisations interacting using the same B2B standard

will both implement B2B stacks containing a minimally required group of the same

components (i.e., they will both feature agreed upon elements of 1-4 as shown in Figure

2.1).

2.2.1 Message and Signal Types

Using these levels of abstraction, we define two message and signal types:

Business Message: A message whose contents and metadata drive operation at the busi-

ness (high) level of abstraction. Business messages are exchanged and processed

by business services.

Technical Message: A message whose contents drive operation at the technical (lower)

level of abstraction, such as individual protocol messages. Technical messages

are exchange and processed by technical level elements. Technical messages are

associated with business messages (e.g., a technical message facilitating protocol

execution related to a specific business transmission) and may contain parts of

business messages, to be reassembled before being passed to the business layer.

Business Signal: A signal indicating an event at the business level of operation (e.g.,

the acknowledgement of receipt of a business message, the rejection of contents of

28

2.2 Levels of Abstraction Chapter 2

a message or an indication of readiness to receive a business message).

Technical Signal: A signal indicating an event at the technical level of operation (e.g.,

the acknowledgement of receipt, the completion of a protocol or the indication of

some exceptional circumstance).

All technical level elements are related to some business level elements. For example, a

technical signal may refer to a technical message which is part of some protocol execution

associated with the delivery of a business message or signal. The associations and their

multiplicities are discussed in Section 4.6.1. This thesis will refer to messages where the

distinction is irrelevant, otherwise technical- or business- prefixes will be used to indicate

the applicable scope.

2.2.2 Conversation Outcome Types

The previous abstractions allow the definition of three outcomes for all B2B interactions:

Business Success: A business success (BizSucc) outcome indicates that all business in-

teractions were successful and the desired business outcome was achieved.

Business Failure: A business failure (BizFail) indicates a problem at the business level

of operation. For example, unexpected, malformed or erroneous business messages,

rejection or failure due to deadlines or the inability to supply an order.

Technical Failure A technical failure (TechFail) indicates a problem at the technical

level of operation. For example, unexpected, malformed or corrupt technical mes-

sages, technical incompatibilities or failures in communication, processing and stor-

age.

Technical failures are di�cult to deal with due to their potential impact on the business

level, easily giving rise to business failures (e.g., a broken connection leading to a missed

business deadline). These abstraction and outcome types are used in Section 2.5.5 and

29

2.3 B2B Support Service Types Chapter 2

4.6 when discussing the consistency of conversation outcomes and events whose e�ects

cross layers of abstraction.

2.3 B2B Support Service Types

Steinauer et al. discussed the role of third parties in electronic commerce (E-Commerce)

as trust enhancers, independent of and trusted by both participants in an interaction

[SWR97], these trust enhancers were envisioned to provide additional guarantees or

alleviate concerns regarding trusting interactions and their participants. They identify

support of regulation through accountability and fairness as key concerns that can be

addressed by the involvement of trusted third parties.

Subsequent work at Hewlett-Packard [BBMS01] went on to propose an ecosystem of

security services to support E-Commerce. They envisaged the emergence of security

service providers o�ering security services for a number of useful B2B roles including:

identity, authorisation, guaranteed message delivery, notarisation, storage, audit, receipt

generation and time-stamping. Desirable requirements for these services were identified

including: ease of use to emphasise ease of integration and composition, survivability

(long-lived availability and reliability), confidentiality and privacy including protection

against insider threats at the service provider.

The constituents composed into IntA, IntB and “Intermediary Accountability Sup-

port” as discussed in Section 1.4 are examples of composed security services capable of

providing support to B2B interactions.

The above allows the specification of di�erent types of services involved in B2B inter-

actions and their support. These types indicate domains of responsibility (separation of

concern) and define specifically the type of service this thesis implements:

Business Services are constructed using B2B standards such as RosettaNet and ebXML

to enabled the execution of agreed upon conversations allowing business to be

30

2.3 B2B Support Service Types Chapter 2

conducted between organisations. These services create and process only business

messages.

Security Services aid the execution and regulation of interactions conducted by business

services. These security services may render their support transparently (as in this

work) or be explicitly involved in them (e.g., the use of a payment processing service

between two participants)1.

Both of these service types require infrastructure to enable their operation, prompting

the consideration of another service (and provider) type:

Infrastructure Services provide computation, storage and communication as a service.

When infrastructure services are supplied by cloud providers, consumers pay for

only the resources they consume (i.e., bandwidth, storage space and CPU cycles)

and can be freed from provisioning their own hardware.

The definition of an ecosystem and security services allow functional properties to be

satisfied by their sensible composition (e.g., time-stamping, receipt generation, fair ex-

change and evidence storage could be composed to provide a type of accountability).

The design and implementations in Chapter 4 and 5 will make use of the composition

of component security services when satisfying the functional properties it supports, to

reduce redundant implementation of supporting features.

Each of the service types here has an associated service provider whose responsibility

it is to satisfy the expertise and infrastructure requirements of operating their service.

Business services are the responsibility of their respective organisation participating in

B2B interactions, security services are the responsibility of the security service provider.

In this thesis, we assume the role of one or more security service providers, develop-

ing component security services and composing them to provide intermediary support

1In the course of its transparent operation, intermediary support may explicitly interact with security
services. However, business level transparency will always be maintained to participants.

31

2.4 Assumptions Chapter 2

capable of supporting B2B interactions by transparently satisfying multiple functional

properties. This thesis makes no assumption about the infrastructure services used by

organisations or other security service providers to enable their business and security

services, they may use cloud computing, private hosting or combinations thereof.

Where external infrastructure services are used by the security services developed in

this thesis, they will be provisioned by cloud providers (e.g., Amazon Web Services), the

use and impacts of which are discussed specifically in Section 2.11 and 4.11.

2.4 Assumptions

Before continuing with discussion on the concerns associated with B2B interactions, and

technical protocols to address them, this section will state the assumptions upon which

the work in this thesis is developed.

2.4.1 Business Level Assumptions

As stated in 2.1.1, organisations are assumed to use a su�ciently unique identity, repres-

ented by a mechanism such as X.509 infrastructure certification [SHF02]. Organisations

are assumed to retain autonomy and be responsible for the internal assignment of such

identities.

We assume all B2B interactions can be described in terms business level and technical

level abstractions as discussed in Section 1.1 and 2.2 such that messages and signals may

be classified as discussed in Section 2.2.1 and outcomes may be classified as discussed in

Section 2.2.2.

Organisations are assumed to trust a critical subset of the intermediary support com-

ponents acting on their behalf. This includes components responsible for generating

and exchanging cryptographic data on behalf of an organisation and any other trusted

third parties involved in the provision of support (e.g., a TTP ensuring fairness in the

execution of a Co�ey-Saidha non-repudiation protocol execution). This thesis assumes

32

2.4 Assumptions Chapter 2

existing techniques for establishing or verifying trust, or mitigating risk, such as those

discussed in [Sv10, BBMS01, JsIB07, SGR09] could be adapted to the work presented

in this thesis.

For the mapping of functional properties (e.g., fairness and accountability) to tech-

nical protocols providing their satisfaction (e.g., non-repudiation), such as in Section

3.3.3 and 3.3.2, we assume formal modelling could be applied to verify the mappings

(e.g., su�cient coverage of characteristics). Similarly, we assume that declarations using

business level to infer functional properties (e.g., using ebXML non-repudiation require-

ment to infer accountability) can be verified or validated in the same way. This thesis

develops middleware capable of realising provided mappings and declarations, applying

methods for verification and validation of these is considered beyond scope.

2.4.2 Technical Level Assumptions

We assume two failure types regarding communication channels and nodes (i.e., all

business services and intermediaries) [MJSC07]:

Permanent Failures: Communication channels do not heal and nodes do not recover

their execution.

Temporary Failures: Communication channels will eventually heal and nodes will even-

tually recover their processing.

In the face of permanent failures, neither support or execution of B2B interactions can

be guaranteed to complete, thus the following assumptions are made:

• The communication channels between well-behaved nodes provide eventual mes-

sage delivery. That is, we assume channels are susceptible to temporary failures

and there is a known bound on the number of temporary failures experienced by

well-behaved parties.

33

2.4 Assumptions Chapter 2

• Well-behaved nodes have persistent storage for messages and ensure that messages

are available for as long as is needed to fulfil obligations to activities in which they

are engaged. That is, nodes are susceptible to temporary failures but may recover

their execution.

• Well-behaved participants only send and process messages that comply with the

specification of activities in which they are engaged (e.g., at the business level only

messages complying with supported conversations are exchanged and processed

and at the technical level all messages adhere to executing or supporting B2B

interactions).

Trusted third parties involved in intermediary support are well-behaved by definition.

There is no assumption (or restriction) regarding the number of misbehaving nodes.

By assuming temporary failures on communication channels, and the use of su�ciently

unique message identifiers for all business and technical messages we can assume at-least-

once delivery for messages and at-most-once processing for messages (on well-behaved

nodes). Asynchronicity is assumed in the exchange and processing of messages such that

channels and nodes do not need to be online at the same time but they are assumed to

eventually be online.

For the modelling of protocol execution, I adopt the model formalised in [CD04]. The

model is based on a modification of the Dolev-Yao model [DY83] in which intruders are

non-blocking. Participants in protocol executions may misbehave (and collaborate) but

eventually messages between well-behaved participants will be delivered. It is assumed

intruders are capable of eavesdropping and replaying on any channel, the cryptographic

primitives and capabilities described in Section 2.6.1 are used to secure transmissions

across insecure channels where required.

34

2.5 Concerns when Supporting B2B Interactions Chapter 2

2.5 Concerns when Supporting B2B Interactions

Section 2.1 through 2.3 defined concepts, classifications and assumptions relevant to the

work undertaken. This section motivates supporting the execution of B2B interactions,

discussing trust, fairness, accountability and consistency concerns.

2.5.1 Trust Concerns

Section 1.4 introduced the notion of classifying the level of trust between interacting

organisations. This has an impact on what guarantees must be enforced when they

interact. To this end we use three classifications of trust as described in [FR97]:

Trusted parties are assumed to behave at all times and will be honest about their

responsibilities when compliance is broken (e.g., if they miss a deadline, they will

admit to doing so)

Semi-trusted parties are assumed to be able to misbehave individually, but will not

conspire with others to do so.

Untrusted parties are assumed to be able to misbehave individually and in collaboration

with others.

From intermediary support’s point of view, semi-trusted and untrusted parties are clas-

sified as untrusted. That is, fairness guarantees should only be relaxed when complete

trust is present. Interacting organisations may be classified as semi-trusted in that they

may privilege their own interests ahead of others, as described in Section 1.2.

This thesis does not require or assume any specific trust relationship between organ-

isations, characteristics will be defined for fairness and accountability properties allowing

the relationship between two organisations to be expressed.

Importantly, we assume that trust relationships change over time. The intermediary

support will take this into account and use the trust relationship at the time of trans-

mission when choosing the best protocol to satisfy the required properties. Section 3.3.1

35

2.5 Concerns when Supporting B2B Interactions Chapter 2

and 3.4 discuss how intermediary support characterises the trust relationship between

participants, a�ecting the satisfaction of fairness and accountability properties.

It is required that an organisation trusts its own intermediary and TTPs engaged by

its intermediary. For example, A trusts intermediaries acting on its behalf and all TTPs

engaged with to provide extra guarantees (e.g., deterministic fairness). Components

requiring trust will be kept to a minimum, discussed in Section 4.9.

2.5.2 Fairness Concerns

We begin with the following definition:

Fairness: For a fixed quality communication channel, at the end of an exchange protocol,

either all involved parties obtain their expected items or none, even a part, of the

information to be exchanged is revealed. [MGK02].

Informally, we are expressing a desire that no participant is placed at a disadvantage as

a result of having co-operated with agreements in place. That is, there is no benefit to

deviating from the expected behaviour for participants who choose to do so.

Various work on fairness has defined some important characteristics regarding how it

is guaranteed [MGK02, Aso98, FR97, PVG03]:

Strong: The requirement that fairness is never violated during an exchange

Weak: Allows fairness to be violated during an exchange with assurances that it can be

re-established

Optimistic: The guarantee that TTPs will not become involved in an exchange unless

absolutely required

Transparent: The guarantee that where TTPs are involved, their involvement cannot

be detected by the participants

36

2.5 Concerns when Supporting B2B Interactions Chapter 2

Weak fairness is intended for situations in which the overhead of providing strong fairness

is deemed unsuitable. For example, if the value of an interaction were su�ciently low or

the cost of support too high.

The most desirable combination of these characteristics, for supporting fairness in

B2B interactions is strong, optimistic and transparent. That is, TTPs will only become

involved when absolutely necessary to maintain strong fairness and their intervention

remains undetectable to the participants. Transparency in TTP involvement protects

against situations in which detecting the involvement of a TTP (e.g., in generated evid-

ence) may harm the reputation of participants.

Section 3.3.2 discusses a mapping of Fairness as a property to a number of protocols

providing its satisfaction under the characteristics discussed in this section. As an aside,

various work has demonstrated that a TTP is required to guarantee deterministic fairness

in an exchange [PG99, EY80, Sch00].

If fairness is not guaranteed for an exchange, either participant can gain an unfair

advantage over the other, Figure 2.2 illustrates two examples, the first in which A o�ers

proof of origin (PoO) alongside the message it delivers and B is supposed to respond

with proof of receipt (PoR). In the second conversation B o�ers PoR as a show of good

faith before A is supposed to divulge PoO.

!Message,!PoO

A B

PoR X
!Message

A B

PoR

PoOX

Figure 2.2: Two flows in which a participant gains an unfair advantage.

37

2.5 Concerns when Supporting B2B Interactions Chapter 2

In the first exchange, B gains an unfair advantage in that it can choose to withhold

proof of receipt from A and A has no irrefutable recourse. Similarly, B is placed at a

disadvantage in the second exchange by A’s decision to withhold proof of origin from

B. These examples describe the selective receipt problem [Aso98]. Fairness will be

used in this thesis to protect participants during their interactions, that is, they are

able to interact under the assumption that their interests are protected in the face of

misbehaviour by other participants.

2.5.3 Accountability Concerns

Accountability, as defined by [YC04], denotes “assurances of semantic behaviour that

extend beyond basic perimeter security and the mechanisms for message authentication,

encryption, and integrity”. That is, the behaviour, state, and actions of accountable

systems should be:

Undeniable: Actions of an accountable actor are provable and non-repudiable. That is,

a service or its clients cannot plausibly deny their actions, and those actions may

be legally binding.

Certifiable: A client, peer, or external auditor may verify that an accountable service is

behaving correctly, and prove any misbehaviour to an arbitrary third party. For

example, a service may be prompted to prove cryptographically that its actions

are justified by the sequence of operations issued by its clients, in accordance with

its defined semantics.

Tamper-evident: Any attempt to corrupt the service state incurs a high probability of

detection. In particular, an external auditor may determine if the internal state

could or could not result from the sequence of operations issued on the service.

Thus, accountability can be satisfied by the generation, exchange and storage of evidence

satisfying these properties for all B2B interactions. We begin by defining two kinds of

38

2.5 Concerns when Supporting B2B Interactions Chapter 2

evidence as discussed in [CS96, ZG96b, ZG97b, KMZ02]:

Proof of Origin and Contents binding a message’s origin and contents to a participant

(the sender)

Proof of Receipt binding a message’s receipt to a participant (the recipient)

Additional kinds of evidence may be generated in the creation of an audit trail used to

irrefutably demonstrate accountability [Zho01, Coo06], including:

Proof of Submission evidence that a message was submitted to some delivery agent for

onward delivery to its recipient, usually generated by some delivery intermediary

or TTP.

Proof of Delivery evidence that a message was ultimately delivered to its intended re-

cipient, again usually generated by some delivery intermediary or TTP.

These evidence types bind the associated action to an identity such as those discussed in

Section 2.1.1. Such evidence allows participants and/or auditors (e.g., TTPs) to render

transmissions undeniable, certifiable and tamper-evident as previously described. Evid-

ence satisfying these properties allows the irrefutable demonstration of compliance with

agreements (i.e., conversations) in place, without it, agreements become unenforceable.

There is generally an agreed upon period of time for which accountability evidence

should be stored, usually some number of years [OAS07b, Ros02]. The potential longev-

ity of this evidence highlights an issue regarding its validity as generation of these evid-

ence types relies on the use of cryptographic operations. Cryptographic keys used to

generate this evidence may be revoked at any time, rendering evidence unusable if its

associated keys are no longer valid.

The issue becomes demonstrating that evidence was valid at the time of generation

(or some witnessed time before key revocation). Without such guarantees, a system is

vulnerable to key revocation [Coo06].

39

2.5 Concerns when Supporting B2B Interactions Chapter 2

Section 2.6.2 discusses time-stamping authorities, designed to irrefutably witness in-

formation at a given time, ensuring its validity against subsequent key revocations.

The specific protocols used to achieve accountability , discussed in Section 2.6.3, may

interact with TTPs and TSAs to ensure that generated evidence is protected against

selective receipt and key revocation.

2.5.4 Accountability and Fairness: Why Both?

A valid question may be why guarantee accountability for exchanges where strong fair-

ness can be guaranteed. The critical issues are the following:

1. An exchange is not the smallest unit of B2B interaction that can occur

2. Strong fairness only protects participants during an exchange, it is not su�cient

to ensure agreements remain irrefutably enforceable

Section 2.1 defined incremental building blocks for composing conversations: transmis-

sions, exchanges and conversations. A conversation is a sequence of transmissions (which

have no response) and exchanges (request transmissions with corresponding response

transmissions). The smallest unit of business communication we can assume between

two participants is a single transmission.

The issue here being that fairness as defined in Section 2.5.2 is only applicable to

exchanges. That is, there must be at least one piece of information, per participant,

to be exchanged to be able to guarantee fairness by the definition that everyone is

guaranteed their desired information, or nobody is.

If we consider that accountability is satisfied by the exchange of evidence, irrefutably

binding participants to the actions they take, a business level transmission can be sup-

ported at the technical level as an exchange of a message and its associated proof of

origin for proof of its receipt. In doing so, business level transparency is maintained for

the smallest unit of business interaction (i.e., a transmission) while allowing fairness and

40

2.5 Concerns when Supporting B2B Interactions Chapter 2

accountability to be provided. Section 3.5 will discuss this in details.

The second point above stated that strong fairness only protects during an exchange

and is not su�cient to ensure agreements remain irrefutably enforceable. What we mean

here is that, without accountability evidence to irrefutably bind participants to their

actions, it cannot be demonstrated whether a participant complied with agreements in

place for their interactions. Thus, accountability is required to protect participants after

interactions while fairness protects them during an exchange by ensuring that messages,

signals and associated evidence aren’t released prematurely, granting anyone an unfair

advantage.

2.5.5 Consistency Concerns

The B2B interactions considered in this thesis are executed via the asynchronous ex-

change and processing of messages. This asynchronicity can lead to unpredictable delays

in processing and communications and lead to situations in which participants have con-

flicting views of state. Figure 2.3 illustrates a conversation in which A and B terminate

with conflicting views of the outcome.

!Order

A B

Ack

Accept

!Ack

LATE

!Time

!Biz!Success Biz!Fail

Figure 2.3: A and B terminate in di�erent states.

The problem demonstrated in Figure 2.3 is an instance of the last-ack (or two gen-

41

2.5 Concerns when Supporting B2B Interactions Chapter 2

erals) problem [Tan03, MJSC07]. The red brackets represent deadlines by which an

acknowledgement is expected to be received for some previously sent message. The final

acknowledgement from A to B is seen to arrive beyond the end of the second deadline,

meaning A believes the conversation terminated successfully (a business success in terms

of the outcomes discussed in Section 2.2) whereas B treats the late arrival as a failure

to meet a business deadline and assumes the outcome is a business failure.

Based on the above, we define two levels of consistency for use in this work:

Total Consistency: The requirement that all participants are prevented from entering

conflicting states regarding ongoing interactions.

Outcome Consistency: The requirement that inconsistencies may arise during interac-

tions but the outcome is consistent for all participants.

Similarly to strong and weak fairness as discussed in Section 2.5.2, total consistency

would require additional complexity over outcome consistency. It may be permissible to

relax consistency requirements to apply only to outcomes, or even further depending on

factors such as the perceived value of an interaction.

B2B standards acknowledge that inconsistency may occur and a corrective approach

to the issue. Participants are able to notify others of failures regarding previous inter-

actions. The invocation of such mechanisms depends upon the eventual detection of

the inconsistency and will most likely result in corrective action being taken, potentially

at a cost of computation, reputation or money. For the above reasons, consistency is

desirable such that inconsistencies be prevented from manifesting at the business level.

Consistency is discussed as a proof of concept that properties beyond fairness and

accountability can be satisfied by the intermediary middleware designed in this thesis.

Section 2.6.4 and 3.3.4 will discuss how this could be achieved.

42

2.6 Technical Protocols Chapter 2

2.6 Technical Protocols

The issues discussed in Section 2.5 are not without technical solutions. However, these

solutions incur expertise, infrastructure and integration requirements as discussed in

Section 1.5. This section discusses technical protocols and techniques that will be used

to address the concerns of fairness, accountability and consistency. Protocols providing

fairness and accountability will be mapped with functional properties in Chapter 3,

specifying how the properties (with varying characteristics) are satisfied.

2.6.1 Primitives and Capabilities

For the protocols discussed in the remainder of this thesis, here we define supporting

notation, primitives and capabilities including secure hash functions, digital signature

schemes, secure pseudo-random sequence generators [Sch96, Gol99].

Secure hash functions have the following properties:

Ease of Computation: Given x, it is easy to compute hash (x)

Compression: Given an arbitrary string, the function produces a fixed length string as

output (a.k.a a message digest)

Preimage Resistance: Given h, it is computationally infeasible to find x such that h =

hash (x)

Second Preimage Resistance: Given x and hash (x) it is computationally infeasible to

find y ”= x such that hash (x) = hash (y)

Collision Resistance: If hash (x) = hash (y), then x = y with an e�ective probability of

1

Public key cryptography pairs together public and private keys to be used for asymmetric

cryptographic operations. These key pairs have the following properties:

43

2.6 Technical Protocols Chapter 2

• It is computationally infeasible to compute a private key from its corresponding

public key

• Cipher-text generated using a public key can only be decrypted using the corres-

ponding private key

• Cipher-text generated using a private key can only be decrypted using the corres-

ponding public key

The final of these properties supports digital signature schemes comprised of two al-

gorithms:

1. The signing algorithm where some data is encrypted using a private key to generate

a verifiable signature and

2. The verification algorithm which uses the corresponding public key to decrypt the

received signature

Verification allows a participant to confirm that only the signing participant’s private

key could have been used to generate the signature.

Secure pseudo-random sequence generators generate sequences of bits with the follow-

ing properties:

Pseudo-randomness: The generated sequence is statistically random

Unpredictability: Given complete algorithmic, hardware and previous generation know-

ledge it is computationally infeasible to predict the next bit of the sequence

Following these properties, we can specify the following notation used by protocols ref-

erenced in this thesis, shown in table 2.1.

For the involvement of public key cryptography we assume the existence of some

certificate authority (CA) and some public key infrastructure (PKI) allowing identity

certificates, key-pairs and public keys to be issued, validated, revoked and distributed

as discussed in this section and in Section 2.1.1.

44

2.6 Technical Protocols Chapter 2

Notation Description

h (x) A secure hash of x

sigP (x) Participant P ’s signature over x using P ’s private
key

encP (x) Encryption of x with P ’s public key

rn[P]
A secure pseudo-random number with optional
identity of participant P who generated rn

Tg Time of generation of some information

P æ Q : x The transmission of x from P to Q

x, y, z The concatenation of x, y and z.

Table 2.1: Cryptography and Communication Notation

2.6.2 Time-stamping: Time-stamping Authorities

Section 2.5.3 discussed the notion of key revocations subsequent to the generation of

evidence rendering them invalid. For this reason we consider the involvement of a spe-

cialised kind of TTP known as a Time-stamping Authority (TSA) . TSAs serve to act

as a witness to information presented to them at some time T . Specifically for account-

ability, TSAs are used to witness the time of generation (Tg) of accountability evidence

[ZG97b]. Revocations will be executed authoritatively by CAs and thus, all evidence

witnessed before the time of revocation can be irrefutably demonstrated as valid. Table

2.2 describes and defines notation for interacting with TSAs to witness information.

Interaction with TSAs may be in-line (all interactions between nodes passes through

the TSA) or on-line (nodes consult the TSA but not all messages are required to pass

through it), illustrated in Figure 2.4.

The existence of TSAs and the consistency issues discussed in Section 2.6.4 assume

there is a global time base from which clocks are synchronised to a reasonable (known

and bounded) accuracy.

45

2.6 Technical Protocols Chapter 2

Notation Description

tsTSA (x) The time-stamp on x generated by TSA to witness
the generation, Tg, of x

Notation Definition

tsTSA (x) {Tg, sigTSA (x, Tg)}

Table 2.2: Time-stamping Authority notation

A TSA

x

Inline&Interac+on

Bx,'tsTSA(x) ATSA

x

Online&Interac,on

Bx,'tsTSA(x)

x,'tsTSA(x)

Figure 2.4: Styles of interaction with a TSA.

2.6.3 Accountability: Non-repudiation Protocols

The accountability example in Section 1.3 introduced the notion of using non-repudiation

protocols for the satisfaction of accountability as a property. Non-repudiation is defined

to be the inability to subsequently deny an action or event. ISO 7489-2 identified non-

repudiation as a primary security concern alongside four others (authentication, access

control, confidentiality and data integrity) [ISO89]. Kremer et al. conducted an intensive

survey of non-repudiation protocols and classified them in terms of their requirements

and the properties they provide [KMZ02].

For each of the evidences detailed in Section 2.5.3 (proof of origin, receipt, submis-

sion and delivery) the non-repudiation specific counterparts are similarly named non-

repudiation of origin (NRO), non-repudiation of receipt (NRR), non-repudiation of sub-

mission (NRS) and non-repudiation of delivery (NRD).

They classify the following fairness properties:

46

2.6 Technical Protocols Chapter 2

Probabilistic at the end of an exchange there is some probability, p, that a message and

its NRO were fairly exchanged for its NRR

Strong Fairness states that at the end of an exchange a message and its NRO are guar-

anteed to have been fairly exchanged for its NRR or no valuable information has

been obtained by either participant. A TTP must be available to deterministically

guarantee fairness [PG99] but they may not be required to intervene in all cases

True Fairness states that strong fairness must be provided and, at the end of an ex-

change, it is indistinguishable from the evidence and execution whether the TTP

intervened or not

Alongside there fairness properties, they classify TTPs as having three modes of inter-

action for the execution of non-repudiation protocols:

Inline in which all communication between nodes engaged pass through the TTP

Online in which a TTP is involved in every execution of a protocol but all communica-

tion between nodes does not pass through it

O�ine in which a TTP is only engaged when necessary to guarantee a protocol termin-

ates and fairness is guaranteed

Transparent in which is it indistinguishable when an o�ine TTP becomes involved in

a protocol execution from when it does not

O�ine and transparent TTPs are synonymous with optimistic and transparent modes

of operation from the fairness discussion in Section 2.5.2.

Communication channels are classified as:

Unreliable channels are able to permanently fail or entirely lose messages

Resilient channels may temporarily fail, but will eventually heal and deliver messages

with an unknown but finite delay

47

2.6 Technical Protocols Chapter 2

Operational channels guarantee delivery with a known delay

Table 2.3 selects protocols for di�erent modes of TTP interaction from [KMZ02]. For

multiple protocols satisfying the same kind of TTP interaction, the protocol chosen

is the one guaranteeing timeliness alongside having the lowest communication channel

requirements (i.e., unreliable < resilient < operational).

Protocol Fairness TTP Channel

Co�ey-Saidha[CS96] Strong Inline Resilient
Zhou-Gollman [ZG96a] Strong Online Resilient

Kremer-Markowitch [KM00] Strong O�ine Resilient
Markowitch-Kremer [MK01] True Transparent Resilient

Mitsianis [Mit01] Probabilistic None Unreliable

Table 2.3: Non-repudiation protocols, their characteristics and channel requirements

Voluntary exchange is omitted from this table as the survey cited details only ex-

change protocols that guarantee some level of fairness (even probabilistic). Voluntary

exchange has no channel requirements (i.e., unreliable), involves no TTP interaction and

guarantees no fairness.

Each of these protocols is used to provide accountability with di�erent characteristics,

Section 3.3.3 will define the characteristics and provide a complete mapping of account-

ability to all available protocols able to satisfy it. As previously discussed, voluntary

exchange is only suitable when a participant has complete trust in the recipient. In all

other circumstances one of the protocols in table 2.3 providing deterministic fairness

guarantees will be used.

In terms of the best protocol to use to guarantee fairness where required, the Markowitch-

Kremer protocol is the theoretical best, providing strong fairness through an o�ine TTP

acting transparently. Transparency is cited as an important concern in the execution of

non-repudiation protocols and the generation of their evidence as being able to discern

when a TTP had to intervene versus when it did not may have an adverse a�ect on the

48

2.6 Technical Protocols Chapter 2

reputation of participants [KMZ02, VPG99].

In reality, complexity trade-o�s such as performance, message and computational may

make di�erent fairness guaranteeing protocols suitable under di�erent conditions. Full

protocol definitions are omitted from this section for brevity although Chapter 5 will

detail non-repudiation protocols implemented to provide accountability. Importantly,

the middleware design in Chapter 4, and constructs presented in Chapter 3 provide a

framework in which any non-repudiation protocol can be implemented and executed to

provide accountability while still maintaining business level transparency.

The intermediary accountability support example showed only two intermediaries,

acting on behalf of their respective organisations, communicating with each other to ex-

ecute non-repudiation protocols to provide accountability. In reality, TTPs (and other

security services such as TSAs and CAs) will be engaged with during the execution of

technical protocols. That is, the composition of intermediaries acting on behalf of organ-

isations and security services is used to satisfy some support property as an abstraction

like accountability. Figure 2.5 illustrates an example TTP being possibly involved in the

execution of a non-repudiation protocol.

A
Messages

Intermediary+Support

B
Messages

IntA IntB
NR#Protocol#Execu.on

TTP

Figure 2.5: Non-repudiation execution possibly engages a TTP to guarantee fairness.

49

2.6 Technical Protocols Chapter 2

2.6.3.1 Protecting Against Key Revocation

TSAs o�er protection against key revocation in non-repudiation protocols regardless of

the type of interaction with the TTP, the survey of non-repudiation protocols discusses

alternative schemes that either are not applicable to all modes of TTP interaction or

add complexity that does not contribute to the aims of this thesis. That is, the ability

within the intermediary support to safeguard evidence from key revocations is enough.

As such, where required unless otherwise specified, TSAs as described in Section 2.6.2

will be engaged to witness the generation of evidence and protect it against subsequent

key revocation.

2.6.4 Consistency: Synchronisation Protocols

Section 2.5.5 demonstrated that participants in B2B interactions may obtain inconsistent

view of state. Synchronisation can be used as a preventative approach in which incon-

sistent views are prevented from manifesting at the business level. Using the outcomes

defined in Section 2.2.2, any interaction can results in a business success, a business

failure or a technical failure. These outcomes are assigned the following precedence:

TechFail > BizFail > BizSucc

That is, failures take precedence over a success and technical failures are more severe

than business failures. This allows a framework to be established for synchronising the

outcomes of B2B interactions [MJSC07]. By performing a three-way handshake, two

participants can obtain a consistent view on the state of an interaction (using the above

precedence).

In doing so, inconsistent views can be prevented from manifesting at the business level.

BizSucc outcomes are never propagated to the business level where any participant is in

a failure state. Similarly, a BizFail outcome is never propagated to the business level if

any participant is in the TechFail state.

50

2.6 Technical Protocols Chapter 2

Molina et al. augmented existing RosettaNet interactions to provide synchronisation

of outcomes while also maintaining business level autonomy and transparency [MJSC07].

This is done through the implementation of a conversation management layer (CML) at

lower levels, each participant is equipped with a CML that acts on their behalf. The CML

ascertains its organisation’s view on the outcome of an interaction and performs a three-

way handshake with other CMLs to ensure that a consistent outcome is propagated.

Figure 2.6 illustrates an example B2B interaction with the additional synchronisation

steps taken at the end of the interaction.

!Invoice

A CMLA B

Ack

Accept/Reject

CMLB

!Invoice !Invoice

Accept/Reject

Ack

Accept/Reject

Handshake

Propagate Propagate

Synchronisa>on

Ack Ack

Ack

Figure 2.6: Synchronisation of outcomes by CMLs on behalf of A and B

Molina et al. use the outcome of a conversation as the chosen point of synchronisation.

By choosing other points of synchronisation, it may be possible to obtain a stronger level

of consistency guarantee such as total consistency as discussed in Section 2.5.5.

This approach to synchronisation is an instance of consensus within a distributed

asynchronous system, the desire is to reach consensus in a finite time in the face of

temporary failures. However, it must be considered that if nodes are prone to failure,

reaching consensus in finite time in an asynchronous system can be impossible [FLP85].

51

2.7 Survey of B2B Standards Chapter 2

Even assuming nodes never fail but communications may temporarily fail, it may still

be impossible to establish consensus in finite time (two-army/last-ack problem)[Tan03].

There is a small risk that, by assuming temporary failures, an agreed outcome cannot

be reached, this risk can be arbitrarily reduced by increasing the timeouts used for all

communications [MJS06].

This thesis will not implement support for the consistency property. However, it

will be considered as proof that additional capabilities could be implemented such as

consistency support through synchronisation/consensus. Section 3.3.4 will discuss a

possible example consistency property and some of the complexities of supporting it

while ensuring support remains decoupled from specific B2B standards.

2.7 Survey of B2B Standards

While the proposed support o�ered to B2B interactions in this thesis will be done so

independent of specific B2B standards, this following sections will survey existing B2B

standards in order to better generalise message exchange patterns, supported require-

ments and technical level elements discussed later in the thesis. The survey will ensure

the support o�ered has a real world grounding and, with the rest of the work presented

in this chapter will be used to address the challenges identified in Section 1.5.

ebXML is surveyed as the general case for defining B2B interactions and their re-

quirements, RosettaNet and Open Travel Alliance will be surveyed as a subset of what

is expressible using ebXML and where they di�er (or refine) ebXML specifications for

their own purposes.

The survey will discuss the following areas:

• A general overview discussing the aims and target audience of standard and relating

domain specific terminology to the general definitions in Section 2.1.

• An illustration of the standard’s B2B stack as a concretisation of the general B2B

52

2.7 Survey of B2B Standards Chapter 2

stack in Section 2.2, indicating any required technical level elements.

• What messages exchange patterns are used or supported in the construction of

conversations?

• What support is o�ered for the following requirements and how well are the re-

quirements satisfied?:

– Security for messages and their delivery.

– Reliability for the reliable delivery of messages to their recipients.

– Accountability to ensure participants are bound to their actions.

– Fairness guarantees for all participants.

• How are the supported requirements specified for messages and conversations?

• Can business level requirement support be improved and if not, how can interme-

diary middleware better support the standard.

The survey will finish with a summary, demonstrating the suitability for a lower level

approach.

2.7.1 Surveyed Documents

The surveyed ebXML documents are:

1. ebXML Messaging Services 3.0 [OAS07b]

2. ebXML Business Process Specification Schema [OAS01a]

3. ebXML Messaging Services 3.0 Conformance Profiles [OAS07a]

4. ebXML Collaboration Protocol Profile and Agreement Specification [OAS02]

The surveyed RosettaNet documents are:

53

2.8 Survey: ebXML Chapter 2

1. RosettaNet Implementation Framework 2.0 [Ros02]

2. RosettaNet Partner Interface Process [Ros09]

The surveyed Open Travel Alliance documents is:

1. OpenTravel Schema 2011B [Ope11b].

2.8 Survey: ebXML

ebXML comprises a set of standards designed to allow the definition of arbitrary con-

versations and the processing of messages facilitating their execution. It makes recom-

mendations for how some business level requirements may be satisfied leaves imperative

details as a matter of conformance profiles [OAS07a]. Standards such as RosettaNet

and Open Travel Alliance can be represented as an agreed upon set of ebXML conversa-

tions and a conformance profile dictating how conversations are executed and supported,

discussed in Section 2.9.

Conformance profiles specify details relating to handling of business messages includ-

ing transports to use (e.g., HTTP), general messaging versions (e.g., SOAP 1.x) and

how requirements are supported (e.g., WS-Reliability for reliability, HTTPS for trans-

port security or algorithms for generating non-repudiation evidence). The separation of

functional and imperative concerns allows ebXML to be adapted to new situations are

required. Section 2.8.8 briefly discusses conformance profiles.

Collaboration profiles allow organisations to provide a profile of all of the ebXML

capabilities they support (e.g., conformance profiles). A collaboration profile agreement

is an agreed upon intersection of two collaboration profile documents, allowing organ-

isations to agree on what capabilities conversations they define can make use of. These

specified mechanisms allow organisations to quickly agree upon a on a common base of

understanding and begin developing conversations [OAS02].

54

2.8 Survey: ebXML Chapter 2

2.8.1 Terminology and Stack

ebXML’s terminology is similar to that introduced in Section 2.1, participants in may

be referred to as partners, business messages may also be called ebXML messages and

conversations are called business processes, still composed of sequences of exchanges.

Figure 2.7 relates the ebXML stack to the general B2B stack in Figure 2.1, the subsequent

list points correspond to their element in the figure.

A's$Business$Service

ebXML$Standards

SOAP$
with$A9achments

Business
Level

Technical
Level Transports

Delivery

A's$ebXML$Stack

(1)

(2)

(3)

(4)

Figure 2.7: ebXML’s concretised B2B stack.

1. The ebXML Messaging Service and Business Process Specification Schema stand-

ards provide functional definitions for conversations and their requirements. Con-

formance and collaboration profiles allow organisations to agree upon how conver-

sations are executed and requirements supported.

2. All ebXML messages are encapsulated as SOAP messages (specifically SOAP with

Attachments [Wor00]). Conformance profiles dictate the version of SOAP (1.1 or

1.2 recommended). Their processing supports the use of any standards and tech-

niques applicable to SOAP messages, pending agreement with other participants

through collaboration profiles.

3. The ebXML Messaging Service standard abstracts away specific transport stand-

55

2.8 Survey: ebXML Chapter 2

ards and categorises all transports as one-way (e.g., SMTP) or two-way (e.g.,

HTTP). The use of HTTP, SMTP, FTP and even IIOP are discussed but ulti-

mately a result of conformance and collaboration agreements.

4. As with the transport layer, ebXML abstracts away specification of physical de-

livery as a matter of conformance and collaboration profile, or possibly a natural

consequence of the transports in use (e.g., HTTP over TCP/IP). TCP/IP and

UDP are highlighted as the most likely choices [OAS07b].

The ebXML Standards layer in Figure 2.7 can be further decomposed to illustrate how

the ebXML Messaging Service standard abstracts away messaging details, shown in

Figure 2.8 with subsequent discussion:

A's$Business$Service

Message$Service$Interface

ebXML
Messaging
Service

ebXML&MS&Components

(1)

(2)

(3)

Message$Processing

Transport$Interface

ebXML$BPSS

Figure 2.8: Layers of the ebXML Messaging Service.

1. The Messaging Service Interface marks the point at which a full formed ebXML

business message is passed from a business service for processing and delivery.

2. Message Processing involves extra processing required by the message, this may in-

volve the generation of signatures and receipts, encryption of contents or additional

SOAP-style operations on the ebXML message supported by WS-* standards.

56

2.8 Survey: ebXML Chapter 2

3. The Transport Interface provides a transport independent mechanism for ebXML

messages to be dispatched for delivery, a binding from the transport interface onto

specific standards such as HTTP, SMTP or FTP enables their use by ebXML

messaging.

Elements (3) and (4) of Figure 2.7, and elements (1), (2) and (3) of Figure 2.8 are spe-

cified by conformance and collaboration agreements between organisations. The ebXML

Messaging Service and ebXML Business Process Specification Schema abstract away

the imperative details of conversation execution and requirement support from their

specification.

2.8.2 Message Exchange Patterns

Conversations specified using ebXML are created by interacting organisations to suit

their specific needs. Their specification may be informed by documents such as the

ebXML catalog of common business processes, discussed later, but ultimately are the

responsibility of the interacting organisations. As with the general definitions in Section

2.1.2, conversations are defined as sequences of exchanges. The constituent exchange

patterns in ebXML consider two aspects:

Response required? Is any kind of response correlated to the original request required?

Push, Pull or Synchronous? Is the exchange categorised as push, pull or synchronous?

Based on these two aspects, ebXML considers the following exchange patterns: one-way

push, one-way pull, two-way push-then-push, two-way push-then-pull, two-way pull-then-

push and two-way synchronous. Two-way patterns can be considered in terms of the

one-way patterns:

For one-way push exchanges, some sender transmits a business message to a receiver

and the receiver responds with some kind of signal (e.g., acknowledgement of receipt,

proof of receipt or an exception).

57

2.8 Survey: ebXML Chapter 2

Business'Message

Business'Signal

A
Sender

B
Receiver

One$way(push

A
Sender

B
Receiver

Pull$Signal

Business(Message

Business$Signal

One$way(pull

Figure 2.9: One-way push and one-way pull exchange patterns.

For a one-way pull exchange, the receiver makes aware the sender that it is ready to

receive a business message. The sender then transmits its business message to the re-

ceiver who responds with a signal as in the one-way push exchange. Importantly, ebXML

requires that the pull signal and business message occur over the same connection.

That is, a two-way connection (e.g., HTTP), as discussed in Section 2.8.1 is required.

The supported two-way exchanges are compositions of the one-way patterns (i.e., push-

then-push, push-then-pull and pull-then-push). ebXML distinguishes two-way exchanges

by specifying that the second business message must make explicit reference to the first

(using its message identifier).

Request'Message

Business'SignalA
Ini$ator

B
ResponderResponse'Message

Business'Signal

Two$way'push$push

Figure 2.10: Two-way push-push exchange pattern.

Figure 2.10 illustrates a two-way push-then-push exchange, a composition of two one-

way push operations, the response message from the responder must contain an explicit

reference to the request message. The figure also indicates an association between the

first business signal (indicating the responder’s reaction to the request message) and the

58

2.8 Survey: ebXML Chapter 2

response message. ebXML states that the signal from the responder to initiator may

be piggy-backed on the response message, conformance and collaboration profiles can

strictly prohibit this behaviour if desired.

This optimisation may also be applied to the two-way pull-then-push pattern shown

in Figure 2.11 but not the push-then-pull pattern. The intervening pull signal from

initiator to responder prevents the business signal being piggy-backed onto the response

message.

Request'Message

Business'SignalA
Ini$ator

B
Responder

Response'Message

Business'Signal

Pull'Signal

Two$way'pull$push

Request'Message

Business'Signal

A
Ini$ator

B
Responder

Response'Message

Business'Signal

Pull'Signal

Two$way'push$pull

Figure 2.11: Two-way pull-push (left) and push-pull (right) exchange patterns.

The two-way synchronous exchange pattern is a synchronous execution of the two-way

push-then-push exchange, requiring the initiator to transmit its request message and

block its execution until the responder returns a response message and signal piggy-

backed together.

2.8.3 Security

The ebXML messaging service defines the format for ebXML business messages as an

extension to the SOAP with Attachments specification. As such, all applicable SOAP

security standards can be applied to ebXML messages. Additionally, all information

within an ebXML message, except that required to facilitate delivery to the intended

recipient, may be encrypted.

Messages are allowed to specify binary parameters requiring content security and

59

2.8 Survey: ebXML Chapter 2

transport security. Characteristic of ebXML’s approach, how this is achieved is left as

a matter of conformance and collaboration profiles. Standards such XML Encryption,

XML Signatures and HTTPS are discussed as suitable examples [Wor02, Wor08].

2.8.4 Reliability and Timeliness

ebXML discusses multiple methods for achieving reliable delivery including an ebXML

Reliable Messaging protocol and existing technologies designed to reliably deliver SOAP

messages. A message can specify that is requires reliable delivery alongside four para-

meters regarding the delivery and processing:

Time to Acknowledge Receipt: A deadline within which receipt of the message must

be acknowledged.

Time to Acknowledge Acceptance: A deadline by which the message must have fin-

ished processing and been acknowledged as such.

Time to Perform: A deadline by which a response message must be received for a re-

quest message and is measured from when the original message is successfully

transmitted.

Retry Count: The maximum number of times redelivery of a message may be attempted

in the face of timeouts and expired deadlines.

Retry count specifies may rather than will for redelivery as it may not be appropriate to

retransmit the original messages. For example, if a message has been acknowledged as

received but not as processed. The correct action here may be to abandon the interaction

altogether if some critical window of opportunity has expired, but this is a business level

decision.

60

2.8 Survey: ebXML Chapter 2

2.8.5 Accountability Support

ebXML allows messages to specify boolean parameters that they require non-repudiation

of origin, receipt or both. These parameters default to false. ebXML specifies that non-

repudiation of origin be attached to the outgoing message and must contain some form

of signature over it. The non-repudiation of receipt must contain a signature over the

original message and be returned in a signal indicating acknowledgement of receipt of

the message, possibly piggy-backed onto a response business message or signal.

By specifying that evidence must be attached to messages and responses, non-

repudiation support in ebXML is vulnerable to selective receipt as discussed in Section

2.5.2. The evidence generated may be susceptible to key revocation if conformance and

collaboration agreements in use do not mandate the involvement of a time-stamping

authority to witness evidence as discussed in Section 2.5.3.

2.8.6 Fairness Support

ebXML has no notion of fairness at the business level. Conversations could be designed

such that their flow guaranteed fairness but this places an expertise requirement on

participants, abandons separation of concern (the conversation itself implements fairness

as opposed to specifying it as a requirement) and will break business level transparency.

This does not preclude the use of lower level techniques to guarantee fairness, but such

support must maintain business level transparency.

ebXML does mention that TTPs may be involved in the execution of B2B interactions

but makes absolutely no assumptions to what extent and how this would be achieved.

The mechanisms for doing so are stated as entirely proprietary between interacting

organisations, there is no mechanism within conformance and collaboration profiles to

regarding TTP involvement.

61

2.8 Survey: ebXML Chapter 2

2.8.7 Extensibility Support

ebXML aims to be completely extensible in that new conformance and collaboration

profiles may be created and agreed upon by organisations. However, the lack of a

functional consideration for fairness, and the inability to specify TTP (specifically, TSA)

involvement means that conformance and collaboration profiles cannot protect against

issues including selective receipt and key revocation.

Furthermore, the adoption of new conformance profiles would require organisations to

commit to new conformance and collaboration agreements, possibly impacting existing

interactions specified using ebXML, this thesis aims to transparently support all existing

and new B2B interactions independently of specific standards, rendering this approach

entirely unsuitable.

2.8.8 Summary

ebXML leaves significant amount of room for organisations to agree on how best ex-

ecute conversations and support their requirements. However, the requirement that

non-repudiation evidence be attached to messages and the inability to specify TTP in-

volvement mean regardless of conformance profile in e�ect, ebXML exchanges will always

be susceptible to selective receipt and key revocation.

The specification of certain business level requirements in functional terms (e.g., re-

quirement for non-repudiation of origin/receipt or requirement for secure transport)

is useful for inference in that functional requirements from ebXML can be aligned with

functional properties provided by support middleware, this allows domain specific know-

ledge to be capitalised upon and is discussed in Section 3.4 and 3.6.

Critically, however, is the possibility that all information in an ebXML message (except

that required to deliver it to its intended recipient) may be encrypted. Intermediary

support must be able to provide the support it o�ers to transmissions whose contents

are completely opaque to it. A message’s sender, recipient and unique identifier are left

62

2.9 Survey: Domain Specific B2B Standards Chapter 2

in the clear such that intermediaries are able to deliver messages onwards to their final

destination [OAS07b].

It is useful to consider o�cial ebXML conformance profiles as they may indicate a

suitable set of transport protocols to support. AS4 represents the most recent o�cial

conformance profile [OAS11] and it supports the use of transports including HTTP,

HTTPS and SMTP, these transport choices are also supported by RosettaNet and Open

Travel Alliance, discussed in the subsequent sections.

2.9 Survey: Domain Specific B2B Standards

RosettaNet and Open Travel Alliance (OTA) represent two domain specific B2B stand-

ards, designed to be completely prescriptive about all possible conversations between two

participants, how these conversations must be executed and how their requirements are

satisfied. These specifications allow organisations within a business domain to quickly

enable interactions with other compliant partners.

2.9.1 Terminology and Stack

OTA uses exactly the same terminology as ebXML while RosettaNet refers to par-

ticipants as (RosettaNet) partners. Messages are distinguished as either RosettaNet

messages or general messages and exchanges and conversations are termed activities

and Partner Interface Processes (PIPs) respectively. Figure 2.12 illustrates the Roset-

taNet stack as a concretisation of the general B2B stack described in Figure 2.1, with

subsequent list points discussing their corresponding element in the figure.

1. The RosettaNet Implementation Framework and Partner Interface Process stand-

ards [Ros02, Ros09] define fully a set allowed conversations and their requirements,

the syntax for conversations and messages and how the conversations and their re-

quirements must be executed.

63

2.9 Survey: Domain Specific B2B Standards Chapter 2

A's$Business$Service

Rose0aNet$PIPs
Rose0aNet$RNIF

(S)MIME

Business
Level

Technical
Level HTTP(S),$SMTP

TCP/IP,$UDP

A's$Rose(aNet$Stack

(1)

(2)

(3)

(4)

Figure 2.12: RosettaNet’s concretised B2B stack.

2. RosettaNet specifies that all RosettaNet content will be encapsulated using the

MIME message format, possibly Secure MIME (SMIME) if message security is

required.

3. RosettaNet specifies that compliant implementations should prefer to use HTTP

transport, possibly HTTPS if transport security is required. The use of SMTP is

also supported but due to SMTP secured using TLS being an ad-hoc combination,

HTTP should be preferred by organisations implementing their business services

to use RosettaNet.

4. RosettaNet assumes that TCP/IP is used to enact the delivery of messages, it does

not mandate it but says the semantics are undefined if transports use alternatives

for their delivery.

OTA specifies the same technical level elements of the stack as RosettaNet, OTAs equi-

valent of the RNIF and PIPs standard is the single OTA 2011B document [Ope11b].

Any organisation wishing to be interact using RosettaNet or OTA or will implement its

services using the chosen B2B standards and support their execution through the use of

the required technical level requirements (e.g., MIME, HTTP, SMTP and TCP/IP). All

64

2.9 Survey: Domain Specific B2B Standards Chapter 2

stack elements for RosettaNet and OTA can be expressed using ebXML conformance

and collaboration profiles.

2.9.2 Message Exchange Patterns

As with ebXML, conversations in RosettaNet and OTA are broken down into sequences

of exchanges. These exchanges fall into a number of predefined patterns. RosettaNet

specifies four exchange patterns of which all its conversations are composed. They are

classified by two factors:

Synchronicity Is the exchange synchronous or asynchronous?

Substantive Response Is there a substantive response to the initial business message

(i.e., a corresponding business message in response to the original request)?

These two factors lead to the definition of four exchange patterns: (1) synchronous one-

way, (2) synchronous two-way, (3) asynchronous one-way and (4) asynchronous two-way.

One-way exchange patterns constitute a business message being sent from some sender

to a recipient and the optional transmission of a business signal acknowledging receipt

of the message back to the sender. In the synchronous variant, the sender blocks until

the recipient responds.

Two-way exchange patterns constitute a sequence of two one-way exchanges (request

and response, performed synchronously or asynchronously). As with ebXML the re-

sponse must explicitly reference the request. If a response business message is trans-

mitted back to the initiator, it provides a signal acknowledging receipt of the response

message back to the responder.

OTA supports the same one-way and two-way exchanges except it does not allow

synchronous blocking. That is, it conversations may only be composed using asynchron-

ous one-way and two-way exchange patterns. RosettaNet specifies that synchronous

exchanges should only be used they can be completed quickly (within seconds).

65

2.9 Survey: Domain Specific B2B Standards Chapter 2

2.9.3 Security

RosettaNet messages comprise three header sections and a business payload. The pay-

load contains business documents (and optional attachments) being transmitted from

one participant to another. RosettaNet messages are constructed as a MIME Multi-

part/Related messages [Lev98] and may only be transmitted using HTTP, HTTPS or

SMTP [FGM+99, Res00, Kle01].

The header sections are separated by duty:

Preamble Header: identifying the version of RosettaNet in use

Delivery Header: identifying the sender, recipient, whether secure transport is required,

a timestamp for message creation and a unique message identifier

Service Header containing process context for a message including which specific PIP is

being executed, information about the transmitting and receiving business partner

and unused (as of the latest RNIF version) quality of service negotiation informa-

tion.

As with ebXML, all elements of a RosettaNet message apart from the Preamble and

Delivery headers may be encrypted. All RosettaNet messages are multipart MIME

messages and security is achieved using secure MIME (SMIME) [Lev98] and HTTPs

[Res00] where required. A secured version of SMTP exists [Hof02] but RosettaNet makes

no mention of it and does not support its use.

OTA uses the same messaging format as ebXML. That is, all OTA messages are SOAP

messages (SOAP with Attachments, specifically) to be transported using HTTP, HTTPS

or SMTP. The same techniques described in 2.8.3 are used to secure OTA messages and

their transport.

66

2.9 Survey: Domain Specific B2B Standards Chapter 2

2.9.4 Reliability and Timeliness

RosettaNet provides a subset of the reliability and timeliness parameters specified by

ebXML, with slightly restricted semantics:

Time to Acknowledge specifies a deadline within which a partner must acknowledge

the receipt of a message. This deadline begins counting down when a message has

successfully been transmitted.

Retry Count specifies the maximum number of times a message may be retransmitted

beyond the initial attempt, such a retransmission would occur if the Time to

Acknowledge deadline expired.

Time to Perform specifies a deadline within which an activity must be performed by

a receiving partner. That is, for any business document requiring a correspond-

ing response document, the deadline by which that response must be received at

the initial sender after the initial message has been acknowledged and processed.

For business documents requiring only acknowledgement (i.e., no corresponding

response document) this parameter will be ignored.

For RosettaNet’s synchronous actions, Time to Acknowledge and Time to Perform are

expected to be identical and no longer than an acceptable timeout for a typical HTTP

request. Retry Count is expected to be set to 0 as the synchronous connection blocks

until a response (valid or exceptional) is received or the connection breaks.

OTA supports the same reliability and timeliness parameters as ebXML, discussed in

Section 2.8.4, but it prohibits the use of ebXML’s reliable messaging capabilities.

2.9.5 Accountability Support

Accountability support in RosettaNet and OTA consists of the voluntary exchange of

non-repudiation evidence, exactly as with ebXML. Messages may specify boolean para-

67

2.9 Survey: Domain Specific B2B Standards Chapter 2

meters that they require non-repudiation of origin, receipt or both. These parameters

default to false.

The generation of the evidence is completely specified, using S/MIME message signa-

tures [Lev98] for RosettaNet and XMLSIG and XMLENC [Wor08, Wor02] without the

use of a TSA to protect against key revocation. Non-repudiation of receipt evidence must

contain an MD5 or SHA-1 digest of the original message. These pieces of evidence are

expected to be stored at each participant for an agreed upon amount of time (typically

three to seven years according to the ebXML, RosettaNet and OTA documents).

As per discussions in Section 2.5 and2.8.5, voluntary exchange and the lack of a TSA to

witness evidence renders the accountability support in RosettaNet and OTA susceptible

to selective receipt and key revocation.

As a final note the RosettaNet indicates that it intends to support an additional kind

of evidence demonstrating non-repudiation of routing by intermediaries in the future.

As of now, “hubs are responsible for solving this in private ways.”.

2.9.6 Fairness Support

RosettaNet and OTA have no notion of fairness at the business level, participants cannot

be guaranteed deterministic fairness by use of either standard. Any deviation from ex-

pected behaviour would constitute both non-compliance and break business level trans-

parency.

Additionally, the prescriptive nature of RosettaNet and OTA means it is not possible to

define a conversation whose explicit flow guarantees fairness, even though the approach

is unsuitable as per discussion in Section 2.8.6.

2.9.7 Extensibility Support

RosettaNet and OTA are fully prescriptive in the syntax and semantics of all aspects of

interaction including formats, protocols, transports and even cryptographic algorithms

68

2.9 Survey: Domain Specific B2B Standards Chapter 2

(i.e., how evidence is generated). In order to remain compliant, the observed behaviour

at the business level cannot deviate from what compliant participants expect as defined

by RosettaNet or OTA. Following the above, RosettaNet and OTA are not extensible

and no extra support can be provided at the business level without modifications to

the B2B standards themselves, motivating a lower level approach that can be applied

independent of specific B2B standards or versions.

2.9.8 Summary

Domain specific standards such as RosettaNet and OTA succeed in being prescriptive

in their definitions of possible conversations and exactly how these should be executed.

However, there remain issues such as those discussed in [HKVO07] relating to the het-

erogeneity that occurs even within predefined message formats. Optional parameters

can lead to situations in which organisations cannot be sure (or must otherwise agree)

on which subset of optional parameters they will both support. This extra agreement

is in direct contrast with the aims of removing all ambiguity. Haller et al. also high-

lighted RosettaNet’s lack of support for indicating the units of some parameters (e.g.,

currency) in their work, they attempt to solve this using an intermediary driven ap-

proach employing ontologies to automatically transform RosettaNet messages between

participants.

The lack of extensibility, susceptibility to selective receipt and key exchange motivate

the pursuit of a lower level approach, such as the intermediary middleware designed by

this thesis. By operating as transparent, decoupled intermediaries, stronger (and new)

kinds of support (e.g., fairness and accountability) can be o�ered seamlessly to existing

and new domain specific B2B standards.

As a final comment on the ability of RosettaNet and OTA to be expressed as a subset

of ebXML, both domain specific standards make use of ebXML file formats for the

definition of all of their conversations. That is, all OTA and RosettaNet conversations are

69

2.10 Summary of B2B Standards Survey Chapter 2

specifies in ebXML Business Process Specification files. Domain specific standards were

surveyed here to demonstrate that they share common concerns with general standards

for supporting their B2B interactions.

2.10 Summary of B2B Standards Survey

Section 2.8 and 2.9 demonstrated that while B2B standards acknowledge and attempt to

address common business level requirements, the mechanisms for doing so vary between

standards and may not adequately address concerns such as fairness and accountability,

demonstrated to be vital in supporting the regulation of B2B interactions in Section 1.2

and 2.5. The support for non-repudiation in ebXML, RosettaNet and OTA is specified

in such a way that does not protect against key revocation or selective receipt. These

issues motivate the pursuit of a lower level approach, such as transparent and decoupled

intermediaries designed and implemented in this thesis.

The most useful aspects of the survey are in the discovery of common transport proto-

cols, messaging formats and message exchange patterns. Chapter 3 and 4 will generalise

and integrate these findings into the middleware design such that the support remains

transparent, decoupled and asynchronous while supporting a useful range of B2B stand-

ards (e.g., by supporting common transports such as HTTP, HTTPs and SMTP and

understanding SOAP and MIME messages where possible).

While the contents of intercepted messages may be completely opaque (through con-

tent or transport security), there may be instances in which additional information con-

tained within a message is available to support intermediaries. The knowledge learned

from surveying specific standards can be used to enrich the functionality provided by

intermediaries (e.g., by allowing B2B standards level requirements to infer functional

properties o�ered by intermediary support).

Briefly, surveying current B2B standards yielded a list of general message exchange

patterns, useful transports to facilitate transparent interception, common requirements

70

2.11 Cloud Computing Chapter 2

for supporting B2B interactions and demonstrated that a lower level approach is suitable

for providing stronger and additional guarantees to a range of existing B2B standards.

2.11 Cloud Computing

Section 2.3 discussed business services and security services and that providers of these

services are responsible for satisfying their infrastructure requirements. These infrastruc-

ture requirements can be broadly broken down into processing, storage and communic-

ation requirements. Service providers (e.g., security service providers) can use cloud

computing to provide any or all of these requirements, alleviating them from having to

deploy and maintain their own hardware. Cloud computing allows services to be de-

livered to cloud users (e.g., business and security service providers in this thesis) under

three models [AFG+10], listed in increasing level of abstraction:

Infrastructure as a Service (IaaS) where a provider o�ers infrastructure level resources

(e.g., virtual machines, block storage and networks), on demand. The cloud user is

responsible for configuring OSs and execution environments of the infrastructure

provisioned to them.

Platform as a Service (PaaS) where a provider o�ers a pre-configured platform (or exe-

cution environment) into which cloud users can deploy and execute their service(s).

The infrastructure underlying the provisioned platform is automatically scaled to

match demand such that the cloud user does not have to manually request and

allocate resources from the cloud provider.

Software as a Service where application software is provided to cloud users as a service

and the underlying platform and infrastructure are managed by the cloud provider.

The work carried out in this thesis is concerned with the use of IaaS and PaaS as an

enabler for deploying and executing security services which are composed to provide

71

2.11 Cloud Computing Chapter 2

intermediary support. Security and Business services as described in Section 2.3 may

be provided under the SaaS model but where I am concerned with provisioning security

services, IaaS and PaaS are the only suitable methods for doing so in the cloud.

The benefits of using cloud computing include alleviating physical deployment require-

ments from a service provider, allowing services to be operated to a cost of only what

they consume (e.g., computation, bandwidth and storage), on demand scaling (in all

models of delivery) and elasticity. Elasticity refers to the ability to scale up and down

across all tiers of an application, that is, any part of the software may be scaled up and

down as needed independently of another. The ability to scale down is vital to prevent

underutilization and ensure cloud users are not charged for resources they do not need

or utilise. That is, when elements are scaled up to cope with a surge, they do not remain

scaled up longer than required at a cost to the cloud user.

Enabling elasticity depends on the model of cloud computing in use, under IaaS the

cloud user can simply request more virtual machines or increasingly powerful virtual

machines but this does not automatically software deployed on them will scale in the

manner required. Under PaaS elasticity can be more automated as the infrastructure

underlying specific aspects of the platform can be automatically scaled up and down as

required.

2.11.1 Trust, Privacy and Compliance

Santos et al. discussed the trust concerns users may have in deploying and developing

their applications to leverage cloud computing [SGR09]. The main concerns regard trust

in the cloud environment even against insider threat. That is, can a cloud user trust that

their execution environment within the cloud is secure (and trusted)? Privacy concerns

also factor in to critical data which at some point may exist unencrypted within the cloud

either in the memory of a virtual machine or stored on some cloud storage. Chapter

6 discusses work and approaches taken to securing execution environments within the

72

2.12 Related Work Chapter 2

cloud and addressing issues of trust.

Beyond trust and privacy concerns, cloud users deploying services within the cloud

must be aware of compliance issues. Legal issues regarding the storage and processing

of data (e.g., Payment Card Information Data Security Standard (PCI DSS) and Data

Protection Acts (DPA) in Europe and Health Information Portability and Accountability

Act (HIPAA) and Sarbanes-Oxley Act (SOX) in the US) may a�ect to what extent cloud

computing may be leveraged or how it is used [SW07].

It is beyond the scope of this thesis to provide solutions catering to specific compliance

legislation but the existence of such legislation makes required that hybrid approaches

must be available. That is, approaches in which elements of infrastructure are hosted

by a service provider or organisation. The design presented in Chapter 4 discusses

deployment and composition configurations for intermediary support allowing for these

hybrid approaches.

2.12 Related Work

2.12.1 Law Governed Interaction

Minsky and Ungureanu developed a system described as Law Governed Interaction (LGI)

representing one of the earliest attempts at to support regulation between autonomous

organisations [MU00]. Under this system, all organisations have their messages routed

through trusted controllers. These controllers contain a set of rules, machine readable

representations of some law to be enforced among the controllers.

When organisations (or agents, in their terminology) dispatch messages for delivery,

a controller intercepts the message and ensures that its contents and delivery will not

violate the defined rules and takes the appropriate action (the rules are captured as

event-condition-action statements). Thus, misbehaviour (against some globally agreed

upon laws) is prevented by the actions of the trusted controllers.

73

2.12 Related Work Chapter 2

The work enforces specific message formats, transports and a language for the expres-

sion of rules representing laws (a restricted form of Prolog). Critically, it requires all

possible state transitions (events) to be know such that event-condition-action rules can

be programmed for each event. While the work is not aimed specifically at supporting

conversations or B2B interactions, the principles of satisfaction (or enforcement) of re-

quirements by intermediaries acting on behalf of participants is similar to the technique

explored in this thesis.

The LGI implementation assumes one global set of laws to which everyone must ad-

here. Controllers facilitate this by storing control states (CS) for each agent. The CS for

each agent represents the actions they are allowed to take from their current state. Crit-

ically, the requirements apply to all participants and there is no capability for expressing

individual requirements per participant.

A Messages LGA

Organisa-on/A

Gateway/Provider

Laws:
Events

Condi+ons
Ac+ons

C Messages LGC

Organisa-on/C

DMessagesLGD

Organisa-on/D

BMessagesLGB

Organisa-on/B

Figure 2.13: Each LG gateway acts to ensure only legal (valid) actions on behalf of its
organisation.

The intermediary support in this thesis supports organisations both individual require-

ments and decoupled operation. That is, organisations are free to use whichever B2B

standard(s) they desire (and associated messaging and transport standards) and express

their own requirements about how their interactions are supported. Additionally, the

74

2.12 Related Work Chapter 2

support can be provided without the requirement for prior knowledge about all possible

interactions. Section 3.6 will demonstrate that any interaction can be supported without

any requirement of knowledge regarding the conversation it belongs to.

2.12.2 Conversation Support for Business Process Integration

Hanson et al. commented on the value of supporting B2B interactions at lower levels

of abstraction, specifically that organisations be allowed to retain autonomy and “sov-

ereignty” in their business level operations [HNK02]. Their work expresses business

conversations (including converting existing conversations) as state machines known as

conversation policies (CPs), these policies are described as machine readable repres-

entations of message exchange patterns. Similarly to Section 2.2 they identify B2B as

consisting of separate layers including high (business) and low (support) levels.

Gateways are provisioned to act on behalf of interacting organisations, messages flow

through these gateways who act to enforce the expected flow of a CP (i.e., that attempted

state transitions are allowed). The gateways enable interoperability and interworking

by allowing organisations to engage in conversations over di�erent transports and B2B

standards. In a sense, the work functions as an enterprise service bus through which

all messages pass and conversation flow is enforced for the participants. Messages not

adhering to the expected flow will never propagate to the business level. Figure 2.14

illustrates the approach, showing that only valid and expected messages are passed back

to A.

The desire to allow organisations to retain autonomy is beneficial as they are freed

to use the most suitable standards and conversations supporting their interactions. The

o�ered interoperability and interworking across multiple transports and B2B standards

is theoretically an enabler for collaboration between organisations. However, the require-

ment that all conversations must be translated into a corresponding CP representation

represent integration and expertise requirements upon interacting organisations. For ex-

75

2.12 Related Work Chapter 2

A
Message

External
Par.cpants

CPA

Organisa.on5A Gateway5Provider

Valid
Messages

CP
CP

CP

CP5Mapping

Figure 2.14: CPa acts on behalf of A to prevent it from seeing late or unexpected business
messages.

ample, they would have to ensure that CPs representing conversations were valid, that

the same conversations using di�erent B2B standards resulted in the same generation

of the same CP and ensuring CPs are updated whenever conversation definitions are

modified.

The CPs in the work presented allow the contents, order and delivery deadlines for

messages in a conversation to be defined but do not support the expression of other

business requirements. This means the gateways do not allow an individual organisa-

tion’s requirements to be supported. The work focuses purely on ensuring the expected

order (and timing) of conversations by preventing unexpected or late messages from be-

ing propagated to the business level. Requirements such as fairness, accountability and

consistency are not supported or discussed.

Additionally, the functionality of the gateways relies completely on the ability to

understand the contents of intercepted messages such that the state of a conversation can

be discerned. This requires that some contents of the business message are unencrypted

(or can be decrypted). The intermediary support middleware developed in this thesis

enables support for all B2B interactions including transmissions whose contents are

opaque. However, where the contents of a transmission are available, domain specific

76

2.12 Related Work Chapter 2

knowledge will be capitalised upon in order to improve support.

In summary, the approach enforces transparency and allows the underlying B2B stand-

ard, messaging formats and transport protocols to be abstracted away. The caveat is

that the gateways are not decoupled in so much as they require the contents of a message

to be both available and understood to discern conversation state and prevent invalid

messages and actions.

The support o�ered in this work is improved over LGI, discussed in the previous sec-

tion, in that individual supports for organisations can be addressed. That is, the CPs

used are specific to the message flow expected in and out of the supported organisa-

tion. This thesis will further improve support by enforcing decoupling, allowing opaque

transmissions to be supported, and by allowing intermediaries to provide other kinds of

support (e.g., fairness and accountability).

2.12.3 FIDES Fair Exchange System

The FIDES system represents a bespoke client-server based approach to implementing

non-repudiation between organisations [NZB04], completely abandoning transparency

and automation in favour of providing strong fairness guarantees. Each organisation

deploys a FIDES server within their own infrastructure and FIDES client software within

their business level. The FIDES client provides an interface into which items can be

uploaded and their recipient designated. The recipient must also use the FIDES system

and have their own FIDES servers and clients configured.

The FIDES client will engage an organisation’s local FIDES server to communicate

with the recipient’s FIDES server to execute some protocol (engaging with FIDES TTP

servers to guarantee fairness where required) to non-repudiably transmit information

from sender to recipient. The specific non-repudiation protocols employed by FIDES

produce transparent evidence, discussed in Section 2.6.3, avoiding situations in which

ascertaining TTP involvement may cause inadvertent discrimination again a participant.

77

2.12 Related Work Chapter 2

A
Manual'
FIDES'
Client'

Invoca4on
BFIDESA

FIDES&NR&Protocol

FIDES
TTP

Organisa4on'A Organisa4on'B

FIDESB

Manual'
FIDES'
Client'

Invoca4on

Figure 2.15: Organisations employ FIDES clients, servers and TTPs to facilitate non-
repudiable exchange of information.

A drawback to this approach is that no modes of interaction with the FIDES servers

are o�ered except the FIDES client application. This makes it impossible to integrate

FIDES into an automated B2B flow. Manual intervention would be required to load each

document generated by a business service into the FIDES client, specify its recipient

and then invoke the exchange. Similarly, the recipient would have to take the received

document and feed it into their receiving business service. This breaks business level

transparency and introduces potentially redundant information. For example, a business

document will contain information about its recipient, this information must then be

(correctly) duplicated in the FIDES client interface in order to deliver the document to

its intended destination.

FIDES uses the Java Messaging Service (JMS) standard for all of its communication

within and between organisations, Section 5.3 contains a detailed summary of why JMS

is ill-suited to facilitating communication between di�erent organisations. Specifically,

it lacks a standardised remote addressing mechanism and specifies no transport or wire

level format, meaning two vendors’ implementations of the same JMS reference API will

be incompatible, causing tight coupling between organisations wishing to employ the

non-repudiation support o�ered. Furthermore, it does not render all JMS deliveries non-

repudiable, it simply uses JMS to facilitate its own application level messages resulting

78

2.12 Related Work Chapter 2

in the non-repudiable delivery of some business item(s) from sender to recipient. This

thesis will extend on FIDES by supporting automation, provision of support independent

of specific B2B standards, asynchronous operation and the use of multiple messaging

standards

2.12.4 Interceptor Based support for Non-repudiation Protocols

Cook [Coo06] (and Cook et al. subsequently in [CRS06]) developed interceptor-based

support to execute non-repudiation protocols in the delivery of SOAP and Java En-

terprise Edition 2.0 (J2EE) messages. Di�erent non-repudiation protocols are used to

render service invocations and updates to shared information non-repudiable. The sys-

tem employs one interceptor per participant, responsible for execution NR protocols

and engaging with TTPs where required). Under this work all components of an or-

ganisation’s intermediary are co-located with their business services and the interceptor

components are configured as part of the organisation’s J2EE or SOAP stacks.

In addition to the execution of non-repudiation at lower levels, allowing organisations

to retain autonomy at their business level operation (and ensuring business level trans-

parency), business level validation results may be fed into the lower level non-repudiation

support to trigger early protocol termination when a business level failure has occurred.

Mechanisms for doing this are provided specifically for the technologies used in the imple-

mentations (SOAP and J2EE), Section 4.6 discusses similar aspects in the consideration

of how to deal with events that cross layers of abstraction and whether these should be

hidden, passed up or invoke other actions.

The support o�ered by the interceptors functions in a synchronous manner and inter-

mediaries acting on behalf of organisations must all be online at the same time to execute

the non-repudiation protocol. In a sense, the work acts to guarantee non-repudiation for

object invocation middleware (it renders the invocations non-repudiable). The work was

specifically written to deal with J2EE and SOAP messaging although the design can be

79

2.12 Related Work Chapter 2

A
Invoca(on

B
Invoca(on

NRA NRBNR#Protocols

TTP

Organisa(on3A Organisa(on3B

Figure 2.16: Intermediaries deployed within organisations interact (synchronously) to
execute non-repudiation protocols for service invocations.

adapted to other technologies. The intermediary support in this thesis is designed such

that additional properties can be provided to multiple messaging and transport formats

and standards, presuming interactions using them can be intercepted. Chapter 3 and 4

discuss these issues in more detail.

Cook’s work represents an improvement over the FIDES work in that it supports

automated operation in existing and new B2B interactions and the use of more than

one non-repudiation protocol to address di�erent situations (non-repudiable service in-

vocation vs non-repudiable updates to share information). Cook’s work was used as

a starting point for this thesis, we seek to expand upon the approach by providing a

generalised middleware in which the previous work can be expressed as a mapping of

functional properties (e.g., accountability) to a set of protocols (e.g., non-repudiation).

Section 4.12 demonstrates Cook’s work can be expressed as an instance of deployment

and composition within the middleware designed by this thesis. Beyond this, middle-

ware designed in this thesis will operate asynchronously and be constructed in such a

way that it can employed by an organisation simply by being placed in the delivery path

of its messages, as opposed to requiring integration into their B2B stack.

80

2.12 Related Work Chapter 2

2.12.5 Accountability as a Service for the Cloud

Yao et al. propose a solution to provide accountability as a service to interacting parti-

cipants [YCW+10]. The work defines two domains, the business service domain (BSD)

and the accountability service domain (ASD), referring to both domains as part of a

Trusted Service Oriented Architecture (TSOA). The ASD contains one or more ac-

countability services, supplied with accountability evidence for each action taken by all

participants. That is, for a message transmitted from A to B, A is expected to send

accountability evidence to accountability services within the ASD. All evidence is gen-

erated by the interacting organisations and there is an assumption that this evidence

is irrefutable but no discussion of how to achieve this. In the face of a dispute, one or

more accountability services within the same domain would reach consensus and provide

a decision on who was to be held account as a resolution of the dispute.

A Business(
Messages

Accountability₁

Organisa4on(A

Accountability(Domain

CBusiness(
Messages

Organisa4on(C

B

Organisa4on(B

Accountability₂ Accountability₃

Concensus

Evidence(Submission

Figure 2.17: Yao’s work

An issue here is the lack of fairness guarantees, all evidence submission is voluntary.

Any participant providing evidence during in an interaction is provided with no guar-

antees that others will do the same, in the case of a dispute it becomes impossible to

81

2.12 Related Work Chapter 2

say a participant who did not provide evidence specifically did misbehave (i.e., a lack

of evidence of behaviour does not constitute evidence of misbehaviour) and agreements

can become unenforceable. Work in this thesis seeks to address accountability and

fairness guarantees such that agreements always remain enforceable and well behaved

participants are never placed at a disadvantage as a result of correct behaviour.

When contrasted with the aims of this thesis in Section 1.5, the lack of transparency

requires that organisations augment their business level operation specifically to gener-

ate and emit the accountability evidence associated with every action they take. The

intermediary support designed in this thesis allows these operations to be undertaken by

intermediaries but also supports the use case that an organisation may wish to generate

and emit their own evidence (e.g., limited trust in intermediaries or wishing to retain

private keys used to generate accountability evidence), discussed in Section 4.10.

The approach taken by Yao could be encapsulated within the intermediary based

design developed in this thesis. In such a scenario, intermediaries acting on behalf

of participants would generate and submit evidence on their behalf to accountability

services. This would allow Yao’s system to be used transparently but does not address

the lack of fairness guarantees where other participants are not completely trusted.

Section 4.12 discusses the encapsulation of Yao’s work within the generalised design

proposed in this thesis.

Yao’s approach is useful in that the protocol execution is o�oaded in a decoupled man-

ner and abstracted away from organisations (i.e., “as a Service”). Evidence is provided

to the accountability domain and decisions are emitted from the accountability domain

where required.

Work in this thesis goes a step further by supporting the case where the evidence

generation, submission and storage can be transparently encapsulated at lower levels

but still be available to organisations should they need it. In this sense, the technical

layer of the thesis can be considered the provision of supportive properties as services

82

2.12 Related Work Chapter 2

(e.g., accountability as a service, fairness as a service, consistency as a service), with

intermediaries serving to transparently encapsulate the invocation of these services on

behalf of interacting participants. Chapter 4 and 5 will discuss this approach to invoking

underlying support.

2.12.6 Extending Messaging with Application Conditions

Tai et al. propose an architecture in which conditions can be annotated onto outgoing

messages as metadata to be satisfied in the course of their delivery[TMRS02]. The

satisfaction of these conditions is performed and verified by one or more intermediaries

in the delivery of a message from its sender to recipient. This system is unique among

the surveyed related work in that it allows the sender of a message to express their

individual requirements on any outgoing message and have them satisfied by the lower

levels of the system. The strict use of only message oriented middleware (specifically

using only queues and topics for point-to-point and publish-subscribe communication

respectively) renders the approach asynchronous.

In the face of no intermediaries to provide additional support for the expressed con-

ditions, messages are delivered as they would have been normally with no additional

support available. I discuss the inclusion of this consideration in Section 4.4 when con-

sidering interaction with an organisation who does not employ intermediary support for

their B2B interactions. In such cases, strict transparency would dictate that interactions

continue unsupported (alternatives are also discussed in which an organisation may opt

not to continue interacting if properties cannot be guaranteed).

The work is not targeted specifically at B2B and as such, the example requirements

are proof of concept (examples include deadlines for delivery and ensuring a minimum

number of recipients). However, the design presents useful considerations for adding

support to existing message oriented systems while preserving transparency at higher

level of abstraction (e.g., business level transparency).

83

2.13 Summary Chapter 2

2.12.7 Summary of Related Work

The related work represents approaches that attempt to satisfy single properties [YCW+10,

CRS06, NZB04], use intermediaries to ensure established conditions are not violated for

observed interactions [MU00, HNK02] or allow individual messages to express additional

capabilities [TMRS02]. Yao’s work presents useful considerations for separation of sup-

port o�ered (e.g., accountability as a service) from its invocation (e.g., an intermediary

whose purpose is to transparently encapsulate the invocation of services on behalf of

some organisation).

The middleware developed in this thesis will demonstrate that individual concerns

can be addressed by the mapping of functional properties to technical protocols within

middleware intermediaries. By addressing the challenges of transparency, loose coupling

and asynchronicity (as discussed in Section 1.5), the support will be demonstrated as

applicable to all B2B interactions and more generally, any message oriented interactions.

Section 6.3 will discuss applications beyond messaging middleware for future work.

2.13 Summary

This chapter introduced terminology, concepts and assumptions regarding the execution

and support B2B interactions and their regulation. Fairness, accountability and con-

sistency were demonstrated as useful concerns to address for B2B interactions alongside

technical protocols capable of satisfying these requirements. The B2B standards survey

motivated the lower level intermediary approach explored by this thesis.

The B2B standards survey and related work inform decisions taken in the theoretical

and practical elements of this thesis and serve as a base from which useful generalisations

can be made. These generalisations are discussed throughout Chapter 3 and 4.

84

3 Generalisation of Survey and Background

to Enable Support

This chapter combines surveyed B2B standards, identified support concerns, technical

protocols and related work to generalise message exchange patterns, common require-

ments, example functional properties and declaration mechanisms. The generalisations

and mechanisms are used to design and implement the intermediary support middleware

in Chapter 4 and 5.

Section 3.1 generalises the exchange patterns that are characteristic of B2B conver-

sations expressed by the surveyed standards. These exchange patterns are decomposed

into the constituent units of communication when dealing with B2B interactions. By

supporting the smallest unit of interaction, support for bigger units of interaction can be

composed. Section 3.2 generalises the common requirements supported by surveyed B2B

standards. These generalisations are compared to the concerns of fairness, accountability

and consistency motivated in Section 2.5.

Section 3.3 proposes hierarchies mapping properties of fairness, accountability and

consistency to technical protocols that provide their satisfaction with varying character-

istics. These mappings will be realised by the implementations in Chapter 5.

Section 3.4 introduces the declaration mechanisms allowing the specification of when

supported properties (e.g., accountability) should be satisfied for intercepted interac-

tions. Two methods of declaration are discussed allowing individual transmissions to be

annotated with extra requirements and allowing the creation of decoupled rules ca be

85

3.1 Generalised Message Exchange Patterns Chapter 3

matched against any intercepted transmission to see if support should be satisfied.

Section 3.5 and 3.6 contain discussions around supporting individual business trans-

missions as the fundamental unit of business communication and the various ways in

which the declaration mechanisms may be used such that support can be o�ered to

opaque transmissions, capitalise on business level information where available and even

support new B2B standards through the use of content matching.

3.1 Generalised Message Exchange Patterns

All surveyed standards classified one and two-way exchanges as the exchange of a single

business message or the exchange of two related business messages respectively. The

survey demonstrated that the two-way exchanges can be decomposed into two (related)

one-way associations. The one-way exchanges can be further decomposed into sequences

of transmissions. Figure 3.1 illustrates the decomposition:

A B

Request
Signal

Response
Signal

A B
Exchange21

Exchange22
A B

Transmission
Transmission

Transmission
Transmission

Conversa)on Exchanges Transmissions

Figure 3.1: Recursive decomposition of conversations and exchanges.

By supporting individual business level transmissions, support can be provided to

exchanges (as sequences of transmissions) and conversations (as sequences exchanges).

Section 3.5 discusses supporting individual transmissions and fairness and accountability

concerns.

86

3.2 Generalised Business Requirements Chapter 3

3.2 Generalised Business Requirements

The B2B standards survey demonstrated that supported conversations are allowed to

specify similar types of requirements addressing areas including reliability, security,

timeliness, non-repudiation and consistency. This section discusses those common re-

quirements such that the example properties for fairness, accountability and fairness

may be defined in Section 3.3, attempting to provide stronger guarantees where B2B

standards and generalised requirements fall short.

3.2.1 Reliability

Reliability concerns to messages and conversations are generally tackled in two ways.

The first is a binary requirement that a message should be ’reliably transmitted’, usually

involving the invocation of some reliable delivery mechanisms (e.g., ebXML reliable

delivery protocol) designed to achieve at-least-once message delivery.

To maintain business level transparency, underlying support intermediaries must use

transports compatible with the business level requirements of standards in use. Reliable

messaging protocols invoked at (or by) the business level remain a business level concern

and will ultimately be delivered to recipients as individual transmissions.

3.2.2 Timeliness

The timeliness of message delivery, acknowledgement and processing is facilitated by the

following parameters:

Timeout A timeout is the length of time after which a single delivery attempt of a

message should be considered to have failed

Deadlines for Acknowledgement defines a deadline by which the receipt of a message

must be acknowledged to the sender by its recipient

87

3.2 Generalised Business Requirements Chapter 3

Deadlines for Processing defines a deadline by which the recipient of a message must

have processed the contents of a message acknowledge this fact to its sender

Retry Count The retry count dictates the number of times attempted retransmission of

a message should occur in the face of timeouts or communication failures

Ignore Duplicates Repeated attempted delivery may result in the delivery of duplicate

messages to an organisation, this field indicates that duplicates should be dis-

carded, guaranteeing at-most-one processing of a message

The passing of deadlines or timeouts will result in the retransmission of a message until

the specified retry count has been reached.

These parameters are business level concerns but underlying support middleware must

be mindful that its functionality (e.g., the execution of additional protocols to provide

support) does not cause timeouts or deadlines to expire. Section 5.5.5 discusses typical

lifespans and deadlines of B2B conversations and compares them to timing measurements

taken from implementations to evaluate the impact of providing extra support to B2B

interactions.

3.2.3 Security

The end-to-end security of messages exchanged during interactions is ensured through

two means:

Content Security in which the partial or entire contents of a message are encrypted.

This allows their delivery over insecure channels without compromising their con-

tents. Where content security is in place, minimal information about the message

must be left unencrypted to facilitate its delivery. This minimal information com-

prises: the identity of the sender, identity of the recipient and the unique message

identifier.

88

3.2 Generalised Business Requirements Chapter 3

Transport Security is designed so that the contents of all transmissions across a channel

do not have their contents compromised. Where content security allows messages

to be transmitted over unsecured channels, transport security allows the transport

of unencrypted messages over secured channels without compromising their con-

tents. As with content security, the sender, recipient and message identifier of the

message are always known.

Intermediary support must be able to function using the minimal available information

for intercepted transmissions although other information may be used where available, to

enrich functionality. Section 3.6 discusses capitalising on available business information

while ensuring support can be o�ered to all transmissions.

3.2.4 Accountability

All surveyed B2B standards acknowledge accountability and attempt to satisfy it using

non-repudiation evidence. All standards mandate this evidence is exchanged voluntarily

owing to the complexities of specifying TTP involvement and guaranteeing fairness. As

such, all standards support two binary properties:

Non-repudiation of Origin Required indicating whether a sender is expected to provide

evidence binding itself to the origin of a given message

Non-repudiation of Receipt Required indicated whether a recipient is expected to provide

evidence binding itself to the receipt of a given message

The surveyed standards (including real world ebXML conformance profiles) specify the

generation of evidence that is both susceptible to key revocation and exchange without

fairness guarantees.

Intermediary support in this thesis will consider the appearance of requirement for any

kind of non-repudiation evidence as an indication that accountability should be provided

89

3.2 Generalised Business Requirements Chapter 3

for both participants with the strongest guarantees necessary, protecting against selective

receipt and key revocation issues as discussed in Section 2.5.

3.2.5 Fairness

The surveyed B2B standards have no business level notion of fairness, this is due to the

complexity of guaranteeing fairness itself and the impacts it would have on allowable

conversations. That is, fairness for B2B interactions can be provided when there is at

least one transmission in either direction between two participants.

The importance of fairness, discussed in Section 2.5.2, prompts the discussion in Sec-

tion 3.5 about how fairness can be provided by individual transmissions. This is achieved

by maintaining the business level abstraction of an individual transmission while alter-

ing the operation at technical levels. Where insu�cient levels of trust are expressed,

intermediary support will attempt to provide the strongest levels of fairness it is capable

of.

3.2.6 Consistency

As with fairness, the surveyed standards have no business level notion of consistency

requirements. However, they do acknowledge notifications mechanisms are required to

invoke corrective measures when problems (such as inconsistency) are detected.

Section 2.6.4 discussed that where consensus can be quickly and unambiguously es-

tablished, the time to detect failures or inconsistencies can be reduced or even prevented

from manifesting at the business level.

The cost of synchronisation means that the frequency with which it occurs may have

an impact on deadlines, timeouts and a conversation’s overall execution time. Section

3.3.4 discusses potential characteristics of consistency as a property to address these

issues.

90

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

3.2.7 Summary of Generalised Requirements

Reliability and timeliness concerns prove di�cult to provide additional support for as

they closely coupled to the business level. That is, the expiration of deadlines or timeouts

will generally trigger a business level redelivery of a message. From a technical level

perspective this constitutes an entirely new transmission and should be supported as

such.

Intermediary support should, naturally, attempt to minimise its impact on the delivery

of a message (e.g., avoid causing message delivery to fail), Section 4.5 more thoroughly

discusses the possible e�ects of intermediaries on deadlines, timeouts and processing.

Similarly, little additional support can be o�ered to the two security options for mes-

sages. If a message requires content security, it will have been encrypted before being

routed through the intermediary support, thus the intermediary needs only pass the

message onwards once it has finished processing the data (e.g., executed the required

protocols to satisfy the desired support). Where transport security is required, the

intermediaries must support the transport being used and allow its secure operation.

Fairness, accountability and consistency all represent concerns that can be aided by

intermediary support. Accountability and fairness can, notably, be provided to any

transmission even if the contents are encrypted. For the above reasons, accountability

and fairness properties are defined in the next section and implemented in Chapter 5.

Discussion of consistency as a property is included in the next section as an example of

how the design proposed in Chapter 4 could be extended to provide additional support.

3.3 Fairness, Accountability and Consistency as Functional

Property Hierarchies

Section 2.5 motivated the satisfaction of fairness, accountability and consistency when

supporting B2B interactions. The previous section demonstrated that intermediary sup-

91

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

port provides an ideal place to transparently provide support for these concerns. This

section defines hierarchies of functional properties for satisfying fairness, accountabil-

ity and consistency with varying characteristics and which protocols are used to satisfy

those combinations. Trust will be used as the determining factor for when fairness is

required (both as a property and as a characteristic of accountability).

3.3.1 Expressing Levels of Trust

This work uses the three levels of trust discussed in Section 2.5.1.

For the purposes of fairness guarantees, semi-trusted participants are considered un-

trusted. That is, fairness guarantees will only be relaxed in the presence of complete

trust. Semi-trusted means an entity is expected to misbehave on their own but will

not collaborate to do so, this reflects the concern that most organisations will privilege

protecting their own interests above engaging in an interaction.

Importantly, these trust properties are not symmetric, a sender may have complete

trust in a recipient while the recipient has no trust in the sender. The support for each

organisation to specify their own declarations allow this expression.

Table 3.1 defines the values representing the trust relationship between two parti-

cipants.

Characteristic Example

FullyTrusted Sender’s complete trust in recipient

SemiTrusted Sender’s semi-trust in recipient

UnTrusted Sender does not trust recipient

Table 3.1: Functional characteristics representing varying levels of Trust

Where unspecified, the default trust relationship between participants is assumed to

be UnTrusted, requiring be it explicitly established by declaration where complete trust

is present.

92

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

It is possible that these three levels are too coarsely grained and a more suitable metric

for trust could be used. Potentially some probability 0 Æ p Æ 1 that a recipient can

be trusted, Section 2.4 and 6.3 discuss di�erent possibilities for expressing trust metrics

between di�erent participants.

3.3.2 Fairness Hierarchy

Figure 3.2 illustrates the hierarchy of fairness characteristics identified by this work.

These match the definitions provided in the discussion of fairness in section 2.5.2. Table

3.2 summarises the characteristics shown in the hierarchy.

Characteristic Description

Probabilistic No deterministic fairness guarantees, some p of
fairness after an exchange

Deterministic Fairness is guaranteed during or after an exchange

Strong Fairness is never violated during an exchange

Weak Fairness may be lost during an exchange but must
be subsequently recovered

Transparent Involvement by TTP is indistinguishable

Optimistic TTP is only involved when required

Table 3.2: Characteristics for the Fairness property

93

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

Fairness

FullyTrustedSemiTrustedUntrusted

Strong Weak Op7mis7c

Determinis7c Probabilis7c

Transparent

MPFE>Protocol
[ASW96]

P1
[VPG99]

P2,>P3
[VPG99]

P4,>P5,>P6
[VPG99]

P7,>P8
[VPG99]

Property(↑

Characteris0cs(↓

Protocols(↓

No#protocol#
required

Trust(→

Figure 3.2: Fairness property hierarchy

While omitted for clarity, some protocols from [VPG99] satisfy multiple deterministic

characteristics, summarised in the Table 3.3:

Protocol Characteristics Satisfied

P3, P5 Deterministic, Weak, Optimistic

P6 Deterministic, Strong, Optimistic

P7 Deterministic, Weak, Transparent, Optimistic

P8 Deterministic, Strong, Transparent, Optimistic

Table 3.3: Multiple characteristics satisfied by fair exchange protocols in [VPG99].

3.3.3 Accountability Hierarchy

Figure 3.3 illustrates the hierarchy of properties, characteristics and protocol mappings

for accountability.

94

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

Ac
co
un

ta
bi
lit
y

Fu
lly
Tr
us
te
d

Vo
lu
nt
ar
y

Se
m
iT
ru
st
ed

U
nt
ru
st
ed

St
ro
ng

W
ea
k

O
p;

m
is;

c

De
te
rm

in
is;

c
Pr
ob

ab
ili
s;
c

Tr
an
sp
ar
en

t

M
its
ia
ni

Pr
ot
oc
ol

[M
it0

1]

Co
ffe

y
Sa
id
ha

Pr
ot
oc
ol

[C
S9
6]

U
nn

am
ed

B
pr
ot
oc
ol
Bin

[Z
G
97

a]

Kr
em

er
M
ar
ko
w
itc
h

Pr
ot
oc
ol

[K
M
00

]

M
ar
ko
w
itc
h

Kr
em

er
Pr
ot
oc
ol

[M
K0

1]

Pr
op

er
&e

s(↑

Ch
ar
ac
te
ris
&c
s(↓

Pr
ot
oc
ol
s(↓

Fa
irn

es
s

Vo
lu
nt
ar
y

Ex
ch
an
ge

[C
RS

06
]

Tr
us
t(→

Fa
irn

es
s(→

Figure 3.3: Accountability property hierarchy

95

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

Figure 3.3 indicates the protocols used to satisfy accountability with varying charac-

teristics. Table 3.4 summarises the hierarchy.

Protocol Name Characteristics Satisfied

Co�ey-Saidha UnTrusted or SemiTrusted, Fairness,
Deterministic, Strong(Inline)

Zhou-Gollman UnTrusted or SemiTrusted, Fairness,
Deterministic, Strong(Online)

Weak Protocol in [ZG97a] UnTrusted or SemiTrusted, Fairness,
Deterministic, Weak

Kremer-Markowitch UnTrusted or SemiTrusted, Fairness,
Deterministic, Strong, Optimistic

Markowitch-Kremer UnTrusted or SemiTrusted, Fairness,
Deterministic, Strong, Optimistic, Transparent

Mitsiani UnTrusted or SemiTrusted, Fairness, Probabilistic

Voluntary Exchange FullyTrusted, Voluntary

Table 3.4: Non-repudiation protocols and the Accountability characteristics they satisfy

The Zhou-Gollman protocol [ZG97b] is not indicated in Figure 3.3 for the sake of

space, it would occupy the same space as the Co�ey-Saidha protocol. It would also be

possible to insert additional characteristics into the hierarchy to force the use of protocols

with Inline or Online TTP requirements.

The fairness hierarchy in Figure 3.2 can be seen within the accountability hierarchy

shown in Figure 3.3. This references the discussion in Section 2.5.4 where accountability

and fairness are guaranteed for transmissions to protect both during and after exchanges.

The implementations in Chapter 5 will default to providing deterministic strong fair-

ness where finer grained fairness characteristics are unspecified. That is, probabilistic or

weak protocols will only ever be used when explicitly specified.

This hierarchy serves as an example mapping of functional properties (and character-

96

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

istics) to technical protocols, implemented in Chapter 5 to satisfy fairness and account-

ability requirements, acting as proof of concept of the approach to supporting multiple

B2B support properties specified in this manner.

3.3.4 Partial Consistency Hierarchy

Consistency presents an interesting discussion with regards to provisioning it within

intermediary support. Section 2.6.4 described the use of a three-way handshake on the

outcome of an interaction. Specifically, the synchronisation takes place to ensure the

outcome with the highest precedence (TechFail > BizFail > BizSucc) is the one that is

propagated to the business level.

This section considers a partial consistency hierarchy as an example of a direction

the intermediary support could be extended in. Table X defines the characteristics and

Figure Z illustrates the hierarchy.

Characteristic Description

Outcome The outcome of an interaction must be consistent
for all participants

Total Participants must maintain a consistent state at all
times during interactions

Table 3.5: Characteristics for the Consistency property

97

3.3 Fairness, Accountability and Consistency as Functional Property HierarchiesChapter 3

Consistency

OutcomeTotal

Unclear Three3way5
Handshake
[MJSC07]

Property(↑

Characteris0cs(↓

Protocols(↓

Figure 3.4: Consistency property hierarchy

The reason consistency is explored as an example property rather than implemen-

ted, as fairness and accountability are in Chapter 5, is that the approach specified by

[MJSC07] cannot be applied in a decoupled manner to intercepted transmissions. That

is, intermediaries would require that all messages be sent unencrypted, or could be de-

crypted and must also be able to discern which conversation is being executed and at

what stage the current execution is. This also implies that intermediaries are aware

of all possible conversations that can occur, where the aim of this thesis is to produce

intermediaries that can support transmissions independent of their B2B standard in-

cluding which conversation(s) are being executed with the optional ability to capitalise

on conversation definitions to enhance functionality.

An approach that provided consistency that could be applied independently to B2B

interactions, the characteristic of total consistency could be tackled by adding new points

of synchronisation. For example, after every transmission or after every exchange. This

would incur communication and computational overheads but could allow consistency

to be maintained for participants during an entire interaction.

The development of suitable protocols to satisfy consistency is beyond the scope of

98

3.4 Declaration Mechanisms Chapter 3

this thesis, its consideration as a property is to indicate ways in which the proposed

intermediary support could be extended where applicable protocols are available.

3.4 Declaration Mechanisms

This section discusses two mechanisms by which organisations can specify which available

functional properties should be satisfied for their intercepted transmissions: predicates

and annotations.

Declaration via predicates are defined as pairings of predicates and functional proper-

ties (and their characteristics). Intercepted transmissions are tested against the specified

predicate to be if the paired functional properties should be satisfied for it. Section 3.4.1

and 3.4.2 provide generalised abstractions upon which the predicates may be construc-

ted to match intercepted transmissions. 3.4.3 will demonstrate example predicates and

discuss their application.

Declaration via annotation encapsulates a business transmission and annotates the

desired properties onto the encapsulated transmission, the intermediary support will

unpack the original transmission and delivery it to ensure business level transparency is

maintained. Annotations are discussed in Section 3.4.3.

3.4.1 Generalised B2B Abstractions

The following abstractions are generalised from the surveyed B2B standards:

• Message Identifier

• Conversation Name

• Conversation Version

• Conversation Identifier

• Business Identity (minimally of sender and recipient)

99

3.4 Declaration Mechanisms Chapter 3

• Business Role

• Business Requirement

• Raw Business Message

• Raw Conversation Definition

For all transmitted messages the following parameters are always unencrypted: business

identity of sender, business identity of recipient and message identifier. These are re-

quired to facilitate delivery even if all remaining data and metadata is encrypted. All

B2B standards analysed express this requirement and I assume it to be true for all

messages under the message oriented middleware paradigm.

Conversation name and version apply to the definitions of conversations whereas

conversation identifier is used to identify messages as belonging to an instance of a

conversation. Where readable, this allows messages belonging to the same instance of a

conversation to be correlated.

Business roles are generally expressed at the conversation level, they are used to indic-

ate actions expected by each participant. In previous examples such roles have included

‘sender’ with ‘recipient’ and ‘initiator’ with ‘responder’. They are identity-agnostic names

for participants that allow conversations to be applied to any two participants fulfilling

their roles.

Business requirements are named requirements that are expressed either on conver-

sations or individual messages, these may represent B2B standard independent require-

ments (e.g., non-repudiation of receipt) or reference a specific standard (e.g., ebXML

non-repudiation of receipt).

Section 3.4.3 will use the abstractions to construct example predicates, illustrating

how they are used to support B2B interactions.

100

3.4 Declaration Mechanisms Chapter 3

3.4.2 Intermediary Support Abstractions

In addition to the generalised abstractions in the previous section, we specify the follow-

ing abstractions:

• Property Name (with characteristics)

• Protocol Name

• Protocol Identifier (i.e., an identifier referencing a specific instance of any protocol

execution)

Property name refers to any available support property the intermediary support is able

to satisfy for intercepted transmissions (e.g., accountability), properties are declared (via

annotation or predicates) by name as required for the matching interactions.

Protocol name and identifier are not used in the definition of predicates. However,

these abstractions are used in Section 4.6 when discussing cross layer events. Specifically,

it is useful to be able to map protocol identifiers to message and conversation identifiers,

allowing automation and inference where appropriate.

3.4.3 Declaration via Predicates

By combining the abstractions from Section 3.4.1 and 3.4.2, declarations can be defined

using predicates to specify when matched interactions require specific properties to be

satisfied. Table 3.6 lists some example predicates and desired properties.

The final two examples represent inference using existing business level requirements.

They state that any transmissions detected to specify generic or ebXML business level

non-repudiation of origin should be provided with accountability with strong fairness

guarantees. This follows earlier discussion about capitalising on business information

where available to provider richer functionality (i.e., the inference of functional require-

ments from business level requirements).

101

3.4 Declaration Mechanisms Chapter 3

Predicate Properties Required

Any Message Accountability

Recipient Identity = ‘Unknown Organisation’ Accountability(Fairness, Strong)

Recipient Identity = ‘Sister Organisation’ Accountability(FullyTrusted)

Conversation Name = ‘SubmitPurchaseOrder’ Accountability(Strong),
Consistency

Conversation Name = ‘SensitiveExchange’ Accountability(Strong,
Transparent), Consistency

Business Requirement = ‘Non-repudiation of
Origin’ Accountability(Strong)

Business Requirement = ‘ebXML Non-repudiation
of Origin’ Accountability(Strong)

Table 3.6: Example declarations using predicates

These predicates are intended to be evaluated quickly, allowing the desired properties

to be determined as quickly as possible and satisfied in the most appropriate manner. For

multiple predicates matching a transmission the intermediary support has the option to

attempt to combine the associated properties in the best manner possible (e.g., strongest

requirements take precedence) or simply allow multiple di�erent protocols to execute

(e.g., a protocol providing weakly fair accountability and a protocol providing strongly

fair accountability).

These declarations should be stored within an intermediary acting on behalf of an

organisation. For example, IntA stores declarations checked against all of A’s trans-

missions. That is, all transmissions from A can be checked against the declarations

within its intermediary to determine if support properties are required. This keeps sup-

port transparent (i.e., predicates are matched against intercepted transmissions within

an intermediary) and decoupled (i.e., the predicates are written separately from B2B

transmissions and can be constructed using standards-independent abstractions such

102

3.4 Declaration Mechanisms Chapter 3

as recipient identity). The implementations in Chapter 5 contained pre-programmed

predicates for deciding when fairness and accountability should be satisfied. A produc-

tion implementation would most likely use a rule-based evaluation system such as JBoss

Drools. Future work in Chapter 6 will discuss possible refinements to predicate based

declarations.

3.4.4 Declarations via Annotation

Declaration via annotation involves encapsulating an entire transmission and annotat-

ing the container with the desired properties that should be satisfied by intermediary

support. Within the intermediary support the desired properties could be separated

from the original transmission, the required support rendered and the original trans-

mission delivered onwards to its intended recipient. Encapsulation of the entire original

transmission is preferred as annotating desire properties into a transmission may not

be possible (e.g., if the contents are encrypted) or may be obtrusive (e.g., a�ect the

generation of signatures and digests).

Specifically, for business transmission whose entire contents are represented by {data},

annotation encapsulates the transmission inside a technical level message whose contents

are {desiredProperties, {data}}. For some transmission of {data} from A æ B, it would

be encapsulated as {desiredProperties, {data}}. IntA would separate {data} and satisfy

the desiredProperties before delivering it onwards to B. B receives {data} and continues

its normal operation.

Declaration via annotation is useful for its ability to specify required properties on

a per-transmission basis. Declaration via predicates, stored within an organisation’s

intermediary, will generally apply to multiple transmissions (i.e., any that match the

predicate).

Declaration via annotation does place specification requirements on an the transmit-

ting organisation, which may be considered to break levels of transparency. However,

103

3.5 Discussion: Supporting Individual Transmissions Chapter 3

declaration by annotation still specifies functional properties. The specified properties

are satisfied by intermediary support and this is preferable to interacting organisations

having to implement and integrate technical protocols into their own stack.

3.4.5 Asymmetry and Decoupling of Declarations

Declarations via predicates and annotations, as discussed in the previous sections, are

defined on a per-participant level. Declarations via predicates will be stored within an

intermediary acting on behalf of an organisation with the ability to be match against

that organisation’s incoming and outgoing transmissions. Declarations via annotations

allow an organisation’s individual outgoing transmissions to specify a list of properties

to be satisfied for that transmission.

The above mechanisms facilitate asymmetric predicates for organisations. For ex-

ample, A may fully trust B but B may not trust A at all. This is represented by A

and B having separate sets of declarations (within their respective intermediaries and

on their own transmissions).

By storing declarations within the intermediaries acting on participants’ behalf, and

ensuring encapsulation where properties are annotated on to transmissions, the declara-

tions are entirely decoupled from a transmission’s contents (including which B2B stand-

ards it uses) but are still able to capitalise on transmission information where available.

3.5 Discussion: Supporting Individual Transmissions

This section discusses the ways in which individual transmissions can be supported

including examples of providing fairness and accountability and potential considerations

for optimisation.

Consider a one-way exchange pattern, as discussed in Section 2.8.2, 2.9.2 and 3.1, in

which a business message is sent including its business level non-repudiation of origin

104

3.5 Discussion: Supporting Individual Transmissions Chapter 3

evidence, in response to this message a business signal is generated and transmitted

containing the business level non-repudiation of receipt for the original message.

We define bizMSG to represent a business message, bizNRO to represent non-repudiation

of origin evidence (at the business level, such as ebXML non-repudiation evidence),

bizSIG to represent a response signal and bizNRR to represent non-repudiation of re-

ceipt evidence. Figure 3.5 shows two possible conversations in which a message is ex-

changed for a signal with optional non-repudiation evidence attached to the respective

transmissions:

{bizMSG,bizNRO}

A B

{bizSIG,bizNRR}

{bizMSG}

A B

{bizSIG}

Figure 3.5: Business exchanges, possibly including non-repudiation evidence.

Both conversation consists of two transmissions (A æ B and then B æ A). After

the first transmission in either conversation, B has an advantage over A in that it can

choose not to transmit bizSIG or bizNRR (i.e., selective receipt) and A has no recourse.

What is demonstrated here is that the most granular level of support required is for a

single transmission. Taking accountability as an example, there must be proof to show

that A initiated a single transmission and proof that B accepted it.

To this end, we define the contents of a transmission to be arbitrary (and opaque) data

such that datan represents the data contained in the n

th transmission. In the figures

above, data1 would represent {bizMSG, bizNRO} or {bizMSG}. Following this, we define

iNROn and iNRRn to represent non-repudiation of origin and receipt (respectively) of the

n

th transmission. The i prefix on these evidence types denotes that they are generated

at lower-levels, by the intermediary support (where the biz prefix indicates business level

105

3.5 Discussion: Supporting Individual Transmissions Chapter 3

elements).

By considering the example intermediary accountability support in Section 1.3, Figure

3.6 illustrates the exchanges between A, B, IntA, IntB and TTP to render the transmis-

sion of data1 from A to B accountable (by executing the Co�ey-Saidha non-repudiation

protocol between IntA and IntB, engaging TTP):

!data1

A IntA B

h(iNRO1)

iNRR1
iNRR1 !iNRO1

!data1

IntBTTP

!data1,!iNRO1

Figure 3.6: A single transmission rendered accountable by intermediary support.

The composition of IntA, IntB and TTP form the ‘Intermediary Accountability Sup-

port’ abstraction as defined in the example in Section 1.3. All communication between

IntA, IntB and TTP is the execution of protocols designed to satisfy the required prop-

erties. In this example accountability is satisfied by executing the Co�ey-Saidha non-

repudiation protocol, fully specified in Section 5.2.

The outcome of this flow is data1 is transmitted from A to B and IntA, IntB and TTP

have copies of iNRO1 and iNRR1 proving irrefutably that A originated the transmission

and B accepted receipt of its contents.

It follows then that data2 represents {bizSIG, bizNRR} or {bizSIG} as in the second

transmissions from the conversations in Figure 3.5. The flow illustrated in Figure 3.6

could be repeated by exchanging data2 to yield evidences iNRO2 and iNRR2 for the

second transmission.

106

3.5 Discussion: Supporting Individual Transmissions Chapter 3

Assuming both transmissions between A and B occur successfully, business level trans-

parency is achieved and they both receive the contents they expect (bizMSG, bizSIG and

possibly bizNRO and bizNRR) without it being observable that IntA, IntB and TTP

intervened in the transmissions to provide stronger accountability guarantees. Similarly,

unfair outcomes are prevented from occurring: evidence exists that could demonstrate

irrefutably that B received data1 but did not respond with data2 and B is unable to

initially acquire data1 without iNRR1 being pro�ered on its behalf. Chapter 4 discusses

the actions that can be taken in the face of non-compliance at the technical level. For

example, should the transmission of a message from A to B be aborted if B won’t pro�er

iNRR1 even if this breaks transparency?

This illustrates that by providing support for each individual transmission (i.e., trans-

mission 1 is supported by iNRO1 and iNRR1 and transmission 2 by iNRO2 and iNRR2),

support for the entire exchange has been achieved. This applies again to exchanges, by

supporting each exchange, entire conversations can be supported.

This means the intermediary support operates agnostic of the semantics of both the

transmission and the contents being transmitted. That is, it doesn’t matter if a trans-

mission stands alone, is part of an exchange or part of a conversation, all supported

properties are available for all transmissions and all supported properties can be satis-

fied regardless of transmission contents (i.e., the protocols can all operate while consid-

ering data to be opaque). Interestingly, this potentially allows transport protocols to be

changed during a conversation’s execution and also supports asymmetry in transports

used by both participants (i.e., A may transmit to B using a di�erent transport than B

uses to transmit to A).

Following this, the analysis of B2B standards may seem somewhat redundant. How-

ever, the analysis yields that where the contents of a transmission are available (i.e.,

unencrypted), the service can inspect the contents to support its execution. This allows

the intermediary support to be able to correlate protocol executions to transmissions,

107

3.5 Discussion: Supporting Individual Transmissions Chapter 3

transmissions to exchanges and exchanges to conversations. Such correlations are not

required but may be extremely beneficial to the retrieval of data from IntA, IntB and

TTP (e.g., A can query for all evidence relating to a single conversation identifier).

While the example above uses the Co�ey-Saidha non-repudiation protocol for account-

ability satisfaction, the other non-repudiation protocols guaranteeing fairness discussed

in Section 2.6.3 are all equally suitable since the contents of datan can be completely

opaque to the protocol in use. However, Co�ey-Saidha provides suitable clarity for the

flow diagram in this example.

3.5.1 Side Discussion: Optimisations

As hinted at above, and discussed in Section 2.10, the intermediary support may inspect

the contents of datan where unencrypted and use this information to make more informed

execution decisions. An application of this is optimising the application of Figure 3.6 to

the conversations in Figure 3.5.

The first possible optimisation we will consider is optimising up through layers of

abstraction. That is, it may be possible to replace bizNRO with iNRO1 and bizNRR

with iNRR1.

The second kind of optimisation considered is optimising down through the layers of

abstraction. That is, it may be possible to replace iNRO1 with bizNRO. It is not possible

to replace iNRR1 with bizNRR since bizNRR is not generated until the transmission of

data2. iNRR2 cannot be replaced with bizNRO as iNRR2 is proof for B where bizNRO

is proof for A.

Both of these optimisations aim to deduplicate evidence exchange during interactions.

However, they are protocol dependent, the above optimisations work specifically for

Co�ey-Saidha but are not possible for the other non-repudiation protocols used in this

work. Optimising up through layers of abstraction may break business level transpar-

ency if the evidence is generated di�erently from how a B2B standard specifies. Op-

108

3.5 Discussion: Supporting Individual Transmissions Chapter 3

timising down through layers of abstraction may be possible but when replacing lower

level evidence, we must ensure the replacing evidence is su�ciently strong (e.g., for non-

repudiation evidence, it must be witnessed by a TSA to protect against key revocation).

Another optimisation may involve not providing the transmission of data2 with ac-

countability guarantees since its contents simply inform A of data1’s receipt and iNRR1

serves the same purpose. This requires the intermediary support to have su�cient busi-

ness level understanding to correlate the transmission of data2 as a response to data1.

An extreme optimisation, following the previous example, may be that transmission of

data2 to A can be completely abandoned as iNRR1 serves as su�cient proof. This would

likely result in breaking business level transparency, the trade-o� is whether saving the

transmission of data2 is worth it with the additional complexity that at least IntB must

receive data2 and be able to discern that its transmission should be abandoned (i.e.,

it relies on IntB being able to view the contents of data2 and also reason about them

by both correlating the transmission as a response to data1 and determining that it is

suitable not to transmit data2 as a response).

Generally these optimisations come down to a minimal saving in overhead versus a

big increase in the complexity of understanding required to implement them.

For the case of optimisation via evidence replacement, evidences can only be treated as

redundant if they provide the same strength of guarantees. That is, iNROn and iNRRn

use TSA witnessing to protect against key revocation where bizNRO and bizNRR may

not. In this case, no evidence generate at lower levels is redundant. If the evidences

do have equal strength, then there are only two pieces of redundant evidence generated

(some iNROn that matches bizNRO and some iNRRn matching bizNRR).

For such small overheads on top of conducting fair accountability, it is worth incurring

the small overhead for an overall larger gain in the simplicity of treating all transmissions

individually and transmission data opaquely.

109

3.5 Discussion: Supporting Individual Transmissions Chapter 3

3.5.2 Side Discussion: Fairness for Individual Transmissions

As introduced in Section 2.5.4, a single business transmission is the smallest guaranteed

unit of communication between two interacting participants, not an exchange. To guar-

antee fairness, the transmission must be executed as some kind of exchange at lower

levels. Furthermore, fairness only serves to protect during an exchange, accountability

is required to protect after an exchange and ensure agreements remain enforceable.

The abstraction of a single business level transmission is maintained by saying that

for the transmission of datan from A æ B, the intermediary support guarantees the fair

exchange of {datan , iNROn} for iNRRn with guarantees that iNROn and iNRRn remain

valid in the future.

3.5.3 Side Discussion: Semantics of Accountability Evidence

This section illustrates that treating the contents of a transmission as opaque allows all

interactions to be supported even when the contents are secured. The business semantics

of accountability evidence generated for a single transmission are also of no concern to

the intermediary support. The contents could include a message belonging to an instance

of a conversation or the transmission or agreement of new conversations, by providing

evidence and being able to guarantee its fair exchange in a semantic agnostic manner,

interacting organisations are able to use the evidence to whatever ends they please.

For example, by combining proof of the origin and receipt of a transmission, and

demonstrating the transmission’s contents were a message belonging to an instance of

a conversation, the evidence generated by the intermediary support can be used to

demonstrate compliance with a given conversation, allowing dispute resolution where

required.

110

3.6 Discussion: Predicate Declarations Chapter 3

3.6 Discussion: Predicate Declarations

This section demonstrates the use of declaration via predicates to infer when accountab-

ility should be satisfied using RosettaNet business level requirements. Firstly we consider

an existing RosettaNet conversation: RosettaNet PIP 3A4 (or ‘RequestPurchaseOrder’)

and describe the submission of a purchase order, acknowledgement of its receipt and

subsequent acceptance or rejection based on the validity of the contents of the purchase

order.

Figure 3.7 includes a snippet of the conversation definition from which predicates to

facilitate inference are established. The XML snippet indicates that non-repudiation of

origin and receipt are required for both the requesting message (‘PurchaseOrderRequest’)

and the response message (‘PurchaseOrderConfirmation’). Lines 4, 5, 9 and 10 mark

the exact location of parameters specifying the requirements1.

1 <ProcessSpecification name="3A4">
2 <RequestingBusinessActivity
3 nameID="InitiatePurchaseOrderRequest"
4 isNonRepudiationRequired="true"
5 isNonRepudiationReceiptRequired="true" />
6

7 <RespondingBusinessActivity
8 nameID="InitiatePurchaseOrderConfirmation"
9 isNonRepudiationRequired="true"

10 isNonRepudiationReceiptRequired="true" />
11 </ProcessSpecification>

Figure 3.7: An excerpt from the XML definition of PIP 3A4.

This constitutes a specification at the conversation level that messages require non-

repudiation evidence. It is also possible that individual RosettaNet messages contain the

same attributes in their XML definition. That is, we can tell if a RosettaNet message

requires non-repudiation by either (a) identifying an intercepted message as belonging to
1XML elements and attributes beyond the scope of the example have been omitted for brevity.

111

3.6 Discussion: Predicate Declarations Chapter 3

a known RosettaNet conversation specifying the requirement for non-repudiation evid-

ence or (b) detecting the inclusion of the non-repudiation parameters of a RosettaNet

message itself.

Section 2.9.2 described three kinds of headers included in every RosettaNet message,

the service header contains information including which PIP is in execution and a unique

identifier for this particular instance of that PIP. That is, a conversation name, version

and identifier as described in Section 3.4.1. Figure 3.8 contains an XML snippet of

a service header for a message belonging to an instance of the RosettaNet PIP 3A4

conversation.

1 <ServiceHeader>
2 <ProcessControl>
3 <pipCode>3A4</pipCode>
4 <pipVersion>1.2</pipVersion>
5 <pipInstanceId>12345</pipInstanceId>
6 </ProcessControl>
7 </ServiceHeader>

Figure 3.8: An excerpt from an example RosettaNet Message Service Header in XML.

As per RosettaNet’s specification, the service header may be encrypted. However,

where it is readable, reasoning can be established to drive inference. Specifically we can

specify predicates to infer when accountability is required. The following list contains

two examples of using predicates to establish when the declaration should apply:

1. By conversation name

a) if Conversation Name = ‘3A4’ then require Accountability(Strong)

2. By business level requirement

a) if Business Requirement = ‘non-repudiation of origin’ then require Account-

ability

112

3.6 Discussion: Predicate Declarations Chapter 3

b) if Business Requirement = ‘non-repudiation of receipt’ then require Account-

ability

Both cases rely on abstractions that can be extracted from known business level in-

formation. That is, intermediary support must be able to extract the information from

transmissions (i.e., su�ciently unencrypted transmission elements) and know how to

match these.

For point (1a) the intermediary support must understand where a conversation’s name

is defined (Line 1 in Figure 3.7) and similarly, which parameter in a message indicates

the PIP and instance thereof it belongs to (Lines 3 and 5 in Figure3.8).

For points (2a) and (2b) the intermediary support must understand what parameters

specify non-repudiation of origin and receipt for a message (Lines 4, 5, 9 and 10 in Figure

3.7).

For points 1 and 2, participants can be provided with additional accountability guar-

antees with no extra specification cost on their part. That is, the declarations exist

within intermediary support and can infer the additional requirements for any intercep-

ted transmission where su�cient information information is available. In short, once

the declaration is defined within an organisation’s intermediary, all (or a part of) their

transmissions may be supported with no extra specification e�ort on their part.

Naturally, there are costs in terms of additional computation, storage and timing (e.g.,

the generation, exchange and storage of evidence) but, importantly, the business level

continues to operate as normal while still being provided with potentially stronger levels

of support. Section 5.5.5 empirically evaluates the impact of one of the implementa-

tions on typical business conversations by calculating computation and communications

overheads and comparing them to existing delays and conversation lifespans.

113

3.6 Discussion: Predicate Declarations Chapter 3

3.6.1 Side Discussion: Opaque Transmissions

While the example declarations in the previous section rely on the contents of a trans-

mission being unencrypted and understandable, it is still possible to support opaque

transmissions by limiting predicates to using only sender identity, recipient identity and

message identifier. For example:

• All messages require Accountability(Fairness, Strong)

Referencing the hierarchy in Figure 3.3, we can see that this specifies accountability re-

fined by the available characteristics. In our hierarchy, this makes any protocol satisfying

the ‘strong’ characteristic of accountability suitable, specifically, Co�ey-Saidha, Zhou-

Gollman, Kremer-Markowitch or Markowitch-Kremer. Importantly, this allows strongly

fair accountability to be provided to all outgoing transmissions from an organisation

regardless of their contents.

The requirement that sender identity, recipient identity and message identifier is man-

dated by the use of message oriented middleware. That is, a message must expose enough

information to facilitate delivery its intended recipient(s).

3.6.2 Side Discussion: Extracting Knowledge versus Raw Content Matching

The predicates within the declarations specified in Section 3.6 rely on the abstractions

exposed by the intermediary support, these abstractions are enabled by the interme-

diary support’s ability to understand and extract information relating to specific B2B

standards. That is, the intermediary support knows how to identify elements such as

business level requirements and conversation name for specific standards such as ebXML

and RosettaNet.

An alternative for specifying the same declarations relies on raw content matching on

conversation definitions and messages for predicates. Using the abstractions provided,

the following declaration was previously defined:

114

3.7 Summary Chapter 3

• if Conversation Name = ‘3A4’ then require Accountability.

We can redefine this using raw content matching as the following:

• if Raw Message contains: (“<pipCode>3A4</pipCode>”) then require Accountab-

ility

In the latter version, the intermediary support does not need to be able to reason about

the B2B contents of the intercepted transmission although the entity creating the declar-

ation does (to create the pattern described the contents to be matched). Accountability

will be satisfied for any message whose contents are unencrypted and found to contain

the desired contents. A benefit to this approach is that messages belonging to B2B

standards not understood by the intermediary support can still be supported, relying on

content matching as opposed to knowledge extraction.

All of the declaration via predicate examples demonstrate the ability of the inter-

mediary support to capitalise on available information regarding the transmissions it

intercepts, enriching the functionality where suitable.

3.7 Summary

Section 3.1 and 3.2 generalised message exchange patterns and common requirements of

the surveyed B2B standards. These generalisations allow the smallest unit of supported

business interaction to be determined (a business transmission) and highlighted how

fairness, accountability and consistency are particularly suitable concerns to support via

transparent, decoupled intermediaries.

Section 3.3 specified hierarchies of properties for addressing concerns of fairness and

accountability with a discussion for how consistency could be supported in the future.

The hierarchies included varying characteristics and were mapped to technical protocols

providing their satisfaction under these characteristics. The implementations in Chapter

115

3.7 Summary Chapter 3

5 will realise a subset of the accountability hierarchy (Figure 3.3) to provide fairness and

accountability support for intercepted transmissions.

Section 3.4 discussed predicate and annotation mechanisms for declaring when sup-

ported properties should be satisfied for intercepted transmissions. Section 3.5 and 3.6

demonstrate the general applicability of the proposed support to all B2B interactions,

situations in which business level knowledge may be capitalised upon and even that

the predicates and individual support transmission other types of message oriented in-

teractions (beyond B2B) to be supported. Elements of this chapter are referenced in

Chapter 4 in discussions about design decisions (trade-o�s) and events that cross layers

of abstraction (e.g., technical events that have a consequence at the business layer).

116

4 Designing and Discussion of Intermediary

Support

Section 4.1 and 4.2 begin by discussing the positioning of the support with regards

to each participant’s B2B stack and the layers of abstraction within the intermediary

support’s own stack, used to determine and provide the required support. Section 4.3

discusses communication with and within the intermediary support including details of

interception and assumptions for communication between components of the intermedi-

ary support.

Section 4.5 through 4.7 discuss design decisions relating to how support is o�ered to

participants and how to deal with events that may require notification or may cross

levels of abstraction and the associated trade-o�s.

Section 4.8 and 4.9 discuss components and their role within the intermediary sup-

port. Section 4.10 discusses configurations for the deployment and composition of these

components. Section 4.12 demonstrates that related work can be expressed as instances

of composition and deployment within the proposed generalised design and Section 4.13

details the instances that will be implemented in Chapter 5.

Section 4.14 summarises the design and discussions in this chapter, discussing how

their contribution (i.e., how they address the challenges outlined in Section 1.5).

117

4.1 Conceptual Middleware Positioning Chapter 4

4.1 Conceptual Middleware Positioning

This section discusses the conceptual positioning in relation to general B2B stacks as

discussed in Section 2.2. This will illustrate how support can be rendered transparently

to interacting organisations at lower levels, independently of the B2B standards in use

by supporting interception and provision of support at the transport level. Figure 4.1

illustrates the transmission of a message from A to B through general B2B stacks with

zero intervening intermediaries.

A's$Business$Service

B2B$Standard

Messaging

Business
Level

Technical
Level

Transport

Physical$Delivery

A's$Stack

B's$Business$Service

B2B$Standard

Messaging

Transport

Physical$Delivery

B's$Stack

Send

Transmission

Receive

Figure 4.1: Transmission from A æ B passing through their B2B stacks.

As per Section 2.2, a business message (or signal) is created by A’s business service.

This creation occurs at the business level, the business transmission has some business

semantics and may specify some business level requirements. A then dispatches its

transmission for delivery, incurring the use of specified message and transport formats

and protocols, abstracted away by the business level.

Based on work in Section 3.5, intermediary support must render the support it o�ers

to transmissions at the transport level if it is to do so transparently and independent

of the B2B standards in use. This is achieved by placing intermediary support in the

delivery path of B2B interactions, requiring that intermediary support exposes compat-

118

4.1 Conceptual Middleware Positioning Chapter 4

ible transports and can determine the sender, recipient and transmission (or message)

identifier.

By also considering that intermediary support may read the contents of outgoing

transmissions (and messages) and that certain transports may require certain types of

physical delivery, the support intermediary can be considered to be its own stack as

shown in Figure 4.2.

Messaging

Transport

Delivery

B2B#Knowledge

A's3Business3Service

B2B3Standard

Messaging

Business
Level

Technical
Level

Transport

Delivery

A's$Stack

B's3Business3Service

B2B3Standard

Messaging

Transport

Delivery

B's$Stack

Send Receive

Intermediary$Stack

Figure 4.2: Intermediary support’s positioning within the general B2B stack.

The blue stack depicts elements of the intermediary support. The solid red line

indicates where the intercepted transmission deviates from its normal delivery path with

regards to its delivery from A to B. It is important to note that the entire intermediary

stack, and elements thereof can be distributed between A, B and service providers. It

is simply useful for this discussion to consider the support o�ered as an intermediary

stack through which transmissions can be routed. Critically, the grey line indicating

transmission from A to B leaves A’s and enters B’s in the same places as in Figure 4.1.

Figure 4.2 illustrates that the intermediary support does not replace any layers within

the B2B stack, it provides a complete parallel support, o�ering the transport layer such

that compatible transmissions could be intercepted, but transmission without interme-

diary involvement is still supported.

While shown in the intermediary stack, the B2B knowledge layer is not required to be

119

4.2 Middleware Layers of Abstraction Chapter 4

involved in interception, it represents the ability to use available business information

in intercepted transmissions to drive capabilities such as business level requirement to

functional requirement inference as discussed in Section 3.6. Similarly, the messaging

layer may have minimal involvement such as being used to determine only the sender,

recipient and message identifier.

The delivery layer element of the intermediary is present as specific transports may

mandate the use of specific delivery standards, formats or protocols (e.g., TCP, UDP,

IPv4 or IPv6). Intermediary support may be required to use obey such requirements to

ensure business level transparency is maintained.

As an example, intermediary support illustrated in Figure 4.2 could support all Roset-

taNet and OTA interactions by supporting interception HTTP, HTTPS and SMTP

transports, MIME, S/MIME and SOAP messages and TCP, UDP and IPv4 delivery

standards. Declarations could be developed based on the recipient of messages such

that all of an organisation’s outgoing messages could be supported by fairness and ac-

countability, even when encrypted or part of an unknown conversation.

4.2 Middleware Layers of Abstraction

Given the intermediary support’s positioning within the B2B stack, this section defines

internal layers of abstraction used to facilitate its functionality and discusses them in

the order that they are generally encountered during normal execution of supporting

B2B interactions. Specifics regarding communication with and within the intermediary

support are discussed in detail in Section 4.3. Figure 4.3 illustrates the abstract layers

within an intermediary acting on behalf of an organisation (e.g., IntA).

The flow as illustrated in Figure 4.3 shows an intercepted transmission (datan) passing

through the conversation and exchange pattern knowledge layer that is able to extract

and reason about the contents of a transmission, the declarations and properties layer

is responsible for determining which properties (if any) are required for the intercep-

120

4.2 Middleware Layers of Abstraction Chapter 4

A

Conversa*on+and+Exchange+
Pa3ern+Knowledge

Intercepted+
Transmission

Declara*ons+and+Proper*es

Protocol+Execu*on

datan

IntA

Figure 4.3: Layers of abstraction within IntA.

ted transmission and finally the protocol execution layer executes protocols, interacting

with another organisation’s intermediary (e.g., IntB) and security services to satisfy the

required properties. At the recipient’s end, their intermediary will ensure business level

transparency is maintained (e.g., IntB will maintain business level transparency for B

by ensuring datan is passed to the business level unaltered, as if delivered directly from

A).

Of note here (and also demonstrated in the fair accountable transmission example in

Section 3.5) is that a single business level transmission (e.g., datan transmitted from

A æ B) may result in multiple transmissions back and forth between IntA and IntB in

the execution of the required technical protocols. Critically to ensuring business level

transparency is that preservation of the abstraction of a single business level transmission

from A æ B regardless of the underlying execution. As in previous examples, the stack

based approach with layers of abstraction is similar to layered network stacks.

121

4.2 Middleware Layers of Abstraction Chapter 4

Section 4.2.1 through 4.2.3 discuss the three abstract layers in detail.

4.2.1 Conversation and Exchange Pattern Layer

The conversation and exchange pattern layer (or MEP layer) is responsible for extracting

and interpreting the contents of a transmission where available (i.e., unencrypted). It will

always determine values for the sender identity, recipient identity and message identifier

and attempt to determine values for all other abstractions defined in Section 3.4.1 (e.g.,

conversation name) to be used when determining which declarations using predicates

apply to an intercepted transmission.

The MEP layer contains instances of domain specific message exchange patterns (i.e.,

conversations in a specific B2B standard) and also of more general message exchange

patterns (i.e., transmissions, exchanges, one/two-way actions as described in Section

3.1). Knowledge of these patterns is used to enhance the functionality of the intermediary

support where possible. For example, when a transmission can be identified as part of

an exchange or conversation, the intermediary support can aid consistency support (i.e.,

trigger synchronisation at the end of a conversation to ensure a consistent outcome).

The ability to correlate related protocol executions, transmissions and exchanges and

conversations can improve the retrieval of evidence from intermediary support.

It is assumed that two interacting organisations agree to use identical (or compatible)

versions of conversations defined in their desired B2B standard and that these versions

are also known by the intermediary support (specifically by the organisations’ interme-

diaries). It is reasonable that intermediaries could expose functionality by which their

organisation could upload and update conversation definitions to be used in the course of

supporting B2B interactions. Future work in Chapter 6 discusses possible developments

relating to mutually agreed updates and the signing of conversations and agreements

along these lines.

The MEP layer is only capable of providing support for the B2B standards, conver-

122

4.2 Middleware Layers of Abstraction Chapter 4

sations and general exchange patterns it is aware of. However, it may still intercept

transmissions in known message and transport formats for B2B standards that it is not

aware of. In these cases there are still two possibilities by which intermediary support

can be configured to provide additional properties to these transmissions:

1. Declarations via annotation. With known transport protocols, it is possible to

encapsulate the contents of a transmission and annotate them with required prop-

erties to be satisfied. By being able to function while treating the contents of

any transmission as opaque, intermediary support can support arbitrary transmis-

sions including B2B standards it can not reason about and general (i.e., non-B2B)

transmissions.

2. Declarations via predicates, specifically using raw content matching. An organ-

isation can define declarations within their intermediary that perform raw content

matching on intercepted transmissions. The content matching relies on the know-

ledge of the organisation to express their desired requirements but enables them

to specify ad-hoc predicates matching content that cannot be reasoned about by

the intermediary support.

In summary, the MEP layer exists to determine minimally required information (i.e.,

sender, recipient, message identifier) and, where possible, capitalise on higher level and

domain specific knowledge to better inform the lower levels of execution in supporting

B2B interactions transparently.

4.2.2 Declaration and Properties Layer

The declaration and properties layer contains the available functional support properties

(and maps them to technical protocols), the defined declarations using predicates and

is able to determine the overall required properties for an intercepted transmission (i.e.,

the combination of annotated requirements and requirements specified using predicates).

123

4.2 Middleware Layers of Abstraction Chapter 4

For example, when IntA intercepts a transmission A æ B it will firstly check if the

contents (i.e., datan) are annotated with requirement declarations. These annotated

properties are added to a list of properties that must be satisfied for this transmission.

Following this, the layer will check the contents of the transmission against defined

predicates, for all satisfied predicates the declared requirements will also be added to

the list of required properties for this transmission. After these operations, the layer

can invoke the correct technical protocols (in the protocol execution layer) to satisfy the

required properties (and their given characteristics).

It may be possible to optimise on the required list of properties to satisfy once they

have all been determined. Optimisations in this case may apply simple heuristics such as

“the strongest requirement wins” where characteristics such as “strong, optimistic and

transparent fairness” would win out over lesser characteristics (e.g., just “strong and

optimistic”). Without any optimisations the intermediary support will simply execute

all protocols required to satisfy all of the properties that have been declared as required.

Common sense will be applied such that the same technical protocols are not invoked

twice for the same transmission.

4.2.3 Protocol Execution Layer

The protocol execution layer is responsible for the execution of technical protocols to

satisfy the required functional support properties (and their characteristics). The inter-

mediary support will invoke the protocols based on the results of the previously discussed

declaration and properties layer. The layer contains all available technical protocols for

execution and the components required to execute them by communicating with other

intermediaries acting on behalf of organisations and required security services.

Section 3.4.2 defined the notion of a protocol identifier. This is some su�ciently unique

identifier that can be used to identify individual instances of protocol execution within

the intermediary support. This allows the association of protocol identifiers with business

124

4.3 Communication With and Within the Intermediary Support Chapter 4

level elements where possible. If a conversation identifier is known, association allows all

protocol executions related to the conversation to be referenced or vice versa. Similarly,

protocol identifiers can be associated with message identifier to facilitate referencing.

These identifiers and their association will be referenced in Section 4.6 to automate the

handling of events crossing layers of abstraction.

A final note about the protocol execution layer is that it may be useful to allow organ-

isations to configure parameters a�ecting the execution of technical protocols. Examples

of these parameters would be acceptable timeouts or the maximum number of retries

in the fact of exceptional behaviour. Reasons for allowing this configuration will be

discussed in Section 4.5 through 4.7. Referring back to the discussion of using synchron-

isation protocols to obtain consistency for B2B conversations in Section 2.6.4. It was

said that in the face of temporary failures, it may not be possible to guarantee consensus

in a distributed asynchronous system but that this risk can be arbitrarily reduced by

increasing the timeouts allowed in synchronisation protocols. Allowing the configura-

tion of the protocol layer gives an organisation the ability to configure these timeouts

for satisfactory performance.

4.3 Communication With and Within the Intermediary Support

This section discusses communication with the intermediary support (i.e., facilitating

interception) and within it (i.e., how do security services within the intermediary support

communicate with each other). Discussion in Section2.8, 2.9, 3.1 and 4.2 shows that by

exposing specific transports, transmissions from an organisation can be intercepted and

supported. Section 4.3.1 discusses some assumptions and considerations for facilitating

interception by intermediaries.

125

4.3 Communication With and Within the Intermediary Support Chapter 4

4.3.1 Interception and Encapsulation of Transmissions

It is assumed in this thesis that conversations are executed via the asynchronous delivery

and processing of messages. That is, we adopt a message oriented middleware (MoM)

view of communication by organisations in which messages are asynchronously deposited

in to endpoints and subsequently processed by some recipient or other delivery inter-

mediary [Tan03]. For example, the transmission of a message from A æ B constitutes

the depositing of some message on a queue from which B will subsequently claim and

process it. Thus, interception under MoM is quite easily facilitated by redirecting the

flow of the message leaving A. For example, a message from A can be deposited on a

queue IntA who collects it and executes protocols to provide additional guarantees before

the message ends up deposited within IntB. From IntB the message can be deposited

on B’s queue for normal processing and both A and B’s business level remain unaware

that redirection or extra support took place at lower levels. Figure 4.4 illustrates the

examples.

A B

Deposit
BizMsg

Process

A IntA

Deposit
BizMsg

IntB

Technical
Protocols

Deposit
BizMsg

B

Process

Figure 4.4: Intercepting the delivery of a messaging under MoM.

126

4.3 Communication With and Within the Intermediary Support Chapter 4

Figure 4.4 illustrates that participants and intermediaries may have multiple queues

for di�erent purposes. For example, A has a queue containing outgoing messages, IntA

and IntB have a queue containing messages for and from A and B as well as an internal

queues for technical protocol execution. The implementations in Chapter 5 adopt sim-

ilar approaches for internal communication and facilitating interception with supported

organisations.

As previously discussed, encapsulation under MoM is easy to achieve, a message can

be considered the combination of some payload and its meta-data. Encapsulation can

be achieved by treating the entire message as the payload in a larger container message

whose meta-data constitutes the declaration of require properties for this transmission.

This ensures at the recipient side, the original message is unpacked unaltered to be

passed to the recipient organisation. Such encapsulation (and the annotation of re-

quired properties) can occur at the technical level within an organisation before the

message is transmitted. Chapter 5 discusses some caveats with encapsulation under

specific transports (e.g., HTTP and SMTP encapsulation must use transparent proxies

as intermediary endpoints). In all cases, the abstraction of a single transmission from

sender to intended recipient is maintained regardless of the amount of additional support

provisioned at lower levels.

4.3.2 Communication within the Intermediary Support

Communication between components within the intermediary support will be done ex-

clusively using the MoM paradigm. Specifically using message, queue and topic abstrac-

tions. Messages are deposited onto queues and topics who facilitate di�erent modes of

communication.

A message may only be received from a queue by one recipient. That is, there may be

multiple nodes reading from a queue but a message will only be received and processed

127

4.4 Assumptions and Compatibility Between Participants Chapter 4

by one of these1.

A message deposited onto a topic may be received by zero or more subscribers to the

topic. That is, every subscriber will receive a copy of a message deposited on to a topic.

Message delivery and processing is asynchronous, meaning all components of the inter-

mediary support need not be online at the same time although, as per the assumptions

in Section 2.4.2, they are assumed to eventually come online to process queued messages.

4.4 Assumptions and Compatibility Between Participants

This section discusses compatibility considerations between organisations. Specifically,

how to deal with situations in which organisations do not employ the intermediary

support designed in this chapter. In this thesis we assume that both organisations agree

to employ compatible middleware intermediaries to aid in supporting the execution and

regulation of their interactions. However, it is still useful to consider how to handle

situations in which this is not always possible.

4.4.1 Both Participants employ Support

The first scenario considered is that both participants employ my intermediary support.

This completely facilitates the provision of support for all available requirements. Just

as organisations agree to use specific B2B standards such as RosettaNet or ebXML, it

is assumed they would agree to use intermediary support to provide them both with

additional guarantees.

4.4.2 One Participant employs Support

The second scenario considered is one in which a single participant employs my interme-

diary support but the other does not (e.g. they run a plain B2B RosettaNet or ebXML
1For high throughput applications there may be instances in which a message is accidentally retrieved

from a queue by more than one recipient, message identifiers are used to prevent the message being
processed multiple times in this case.

128

4.5 Intermediary Impact upon Deadlines and Timeouts Chapter 4

stack). Under this scenario, the important decision is what to do in the face of being

unable to provision additional support. Under this scenario there are two choices.

Firstly, interaction could be abandoned with the participant not employing intermedi-

ary support under the decision that where stronger guarantees cannot be provided, the

potential loss of accountability or fairness make it too risky to continue. However, this

approach makes it likely that business level transparency will be compromised when an

organisation must be informed why all of their interactions with a specific participant

fail.

The second choice is simply to continue without being able to provision any extra

support, this approach has the benefit of maintaining transparency and the intermediary

support is capable of “vanilla” execution by definition. That is, if no additional properties

are required then regular execution takes place anyway.

4.4.3 Neither or Other Support

It is beyond the scope of this thesis to deal with scenarios in which alternative additional

support for B2B interactions is provisioned and trivial to deal with situations in which

no additional support is provisioned (i.e., two vanilla B2B stacks interacting normally

as per their chosen standard).

4.5 Intermediary Impact upon Deadlines and Timeouts

The execution of one or more technical protocols at lower levels naturally has an asso-

ciated time cost. This may impact business level deadlines and timeouts. For example,

if a technical protocol takes too long to terminate, a delivery deadline may be missed

and a business level retransmission would occur. Obviously, implementation will place

a premium on e�cient implementation to attempt to minimise the time required for

technical protocols to execute.

129

4.6 Handling Events Across Layers of Abstraction Chapter 4

Due to the possible encryption of a transmissions contents, intermediary support can-

not reliably determine the deadlines for business transmissions. This renders scheduling

or prioritising of protocol execution potentially wasted e�ort. Similarly, it is impossible

for the intermediary support to controller higher level elements of processing. That is,

the intermediary support may execute as fast as possible only for another intermediary

beyond our control to delay the delivery and cause a deadline to be missed.

For these reasons, configuration of the protocol layer as discussed in Section 4.2.3 is

considered particularly useful as it allows an organisation to place their own reasonable

restrictions on the length of time protocols are allowed to execute for before timing out

(e.g., All non-repudiation protocols must terminate within sixty seconds). Beyond this,

the execution of protocols could be profiled to determine average execution times which

could potentially be factored into the definition of reasonable business level deadlines

within a conversation.

4.6 Handling Events Across Layers of Abstraction

In supporting the execution and regulation of B2B interactions, there may be eventu-

alities occurring that have impacts beyond their layer of abstraction. For example, if

technical protocols are being executed and a business conversation is abandoned, the

intended behaviour should be that all technical protocols associated with that conversa-

tion be terminated as soon as possible. Similarly, if the execution of a technical protocol

fails, this may in turn cause a business failure to occur. This section discusses possib-

ilities within the middleware design of the intermediary support for dealing with these

events automatically and allowing participants to manually trigger specific behaviour.

4.6.1 Tracking and Automating Behaviour

Referring to the discussion in Section 4.2.3 regarding the association of protocol, mes-

sage and conversation identifiers. Here we establish multiplicities for the relationships

130

4.6 Handling Events Across Layers of Abstraction Chapter 4

between all identifier types:

• one protocol identifier maps to one message identifier

• one protocol identifier maps to zero or one conversation identifiers

• one message identifier maps to zero or more protocol identifiers

• one message identifier maps to zero or one conversation identifier

• one conversation identifier maps to zero or more protocol identifiers

• one conversation identifier maps to one or more message identifiers

Not all of these mappings will always be available. That is, a conversation identifier

cannot always be determined and mappings involving this abstraction may not exist.

However, where any of these mappings exist, elements can be associated across both

levels of abstraction (i.e., protocol executions at the technical level and messages and

conversations at the business level). This allows behaviour to be inferred when events

happen at either level. The following list contains examples:

• If a business level failure is detected for a given message or conversation identi-

fier, any associated executing technical protocols may need to be informed of the

eventuality (e.g., to trigger aborts or terminations)

• If a technical failure occurs, this may require corrective or preventative action to be

taken about business level elements (associated by message of conversation iden-

tifier) such as aborting the execution of a conversation or preventing an exception

from manifesting at the business level

There operations are an instance of capitalising on higher level knowledge to enhance

the functionality of intermediary support. Only by determining this information and

associating it can this type of functionality by automated to aid in the transparent

support of B2B interactions.

131

4.7 When to Maintain or Relax Transparency Chapter 4

4.6.2 Notification and Manual Behaviour Triggering

The previous section discussed using association of identifiers to respond automatically

to failures at either level of abstraction. Another possibility is that an organisation may

opt to simply be notified of these eventualities such that they can respond appropriately.

This would likely entail exposing points through which organisations can manually

trigger (or inject) the resolution of technical protocols by providing a protocol, mes-

sage or conversation identifier. These points of interaction can be accessed while still

maintaining business level transparency. However, they do require e�ort on the part of

an organisation in that they must subscribe to relevant notifications about the state of

their interactions, understand how to respond appropriately to relevant notifications and

how to trigger the desired behaviour within the intermediary (e.g., retry, terminate or

abort). Future work in Chapter 6 discusses the integration of work specifically designed

to monitor contracts (conversations and agreements modelled a specific way) and notify

participants when violations occur.

4.7 When to Maintain or Relax Transparency

The previous sections on compatibility, impacts on processing and deadlines and cross

layer events prompt a discussion the possible approaches towards maintaining business

level transparency and how involved or aware an organisation is with regards to technical

level execution. A motivating example not discussed explicitly so far is what action to

take when a property declared as required for a given interaction cannot be satisfied?

The following sections will discuss strictly maintaining transparency versus potentially

relaxing it to better inform an organisation’s business level processes using this example

and others discussed so far.

132

4.7 When to Maintain or Relax Transparency Chapter 4

4.7.1 Maintaining at all Costs

The first possibility discussed is maintaining transparency at all costs. A motivation

for this approach is to shield all lower level details (including exceptions and failures)

from the higher (i.e., business) levels. When considering eventualities such as cross

layer events, and impacts upon processing and deadlines, intermediary support must be

able to appropriately control respond to technical level events (e.g., taking corrective

measures and possibly preventing their propagation upwards).

What constitutes the correct action to take is subjective, it could be argued that for

eventualities such as an inability to satisfy a required property (e.g., strong fair account-

ability) can be handled either by allowing interaction to continue without additional

guarantees or simply causing the interaction to technically fail (i.e., TechFail). The ar-

gument hinges upon whether a precedence be place on the additional guarantees (e.g.,

fairness and accountability) or an organisation continuing to engage in B2B without

extra technical e�ort on their part. Causing an interaction to fail does not break busi-

ness transparency in so much as the business level services continue to operate without

modification. However, it is a consideration that a business service with intermediary

support operating in this manner will simply try (unsuccessfully) to repeat the business

transmission until retry limits or timeouts have been reached. Ultimately a decision

must be made with regards to this trade-o�.

The implementations in Chapter 5 opt to place precedence on the additional guar-

antees provided by intermediary support, treating the inability to satisfy a required

property as a technical failure of a business interaction. This is strictly true in that the

failure to execute protocols at the technical level has occurred although the grey area

is in that the technical failure occurred because the intermediary support become in-

volved in delivery and could not successfully execute the required protocols for whatever

reason(s).

133

4.7 When to Maintain or Relax Transparency Chapter 4

4.7.2 Relaxing for Benefits to Interacting Organisations

The second approach considers when business transparency may be broken. This may

involve feeding notifications from intermediary support directly into the flow of business

conversations. That is, a business service implemented by an organisation may choose to

use notifications from intermediary support to inform or direct the execution of conver-

sations. This approach would allow more descriptive errors to be passed to the business

layer. For example, technical failures could be split into support failures (e.g., property

cannot be satisfied) and technical failures (e.g., transmission timeout).

These intermediary support notifications (including potentially descriptive errors)

could be consumed by the business level and integrated into business services and the

flow of conversations. This could also potentially make the properties o�ered by inter-

mediary support available as business level requirements directly within conversation

definitions.

4.7.3 Summary

As previously stated, the implementations in Chapter 5 will act to maintain transpar-

ency, treat the inability to satisfy required properties as technical failures and allow

these failures to propagate to the business level, potentially triggering business level re-

transmissions until retry limits or timeouts are reached or the required properties are

satisfied for an intercepted transmission. It is possible that intermediary support could

automatically retry specific technical level operations where doing so would prevent a

technical failure propagating upwards and potentially causing a business interaction to

abort, the argument for when to propagate versus when to mask an event from higher

levels is a well discussed software engineering topic [SRC84].

Future work in Chapter 6 will discuss potential refinements of the available declara-

tions to provide finer grained specification of required properties to an organisation while

still placing a premium on simplicity.

134

4.8 Design of an Organisation’s Intermediary Chapter 4

4.8 Design of an Organisation’s Intermediary

This section will decompose intermediaries acting on behalf of an organisation (e.g.,

IntA) into the minimally required components in order for them to function in their

intended capacity. Before breaking down the individual components of an organisation’s

intermediary, it is useful to consider the flow of execution for an intercepted transmission:

1. A transmission is intercepted by (or routed through) the intermediary support

2. If encapsulated, the intermediary support extracts the contents of the transmission

from the annotated list of required properties for this transmission

3. The contents of the transmission are checked against the declarations (using predic-

ates) stored within the intermediary to see if any additional properties are required

4. From the list of required properties, determine the correct technical protocols to

execute

5. For each protocol to be executed, invoke its execution over the transmission’s

contents, through some handler

• In the course of execution, the handler may communicate with other security

services (e.g., TTPs)

6. If required, pass data to the business, preserving business transparency

• Possibly emit notifications for interested parties about the events occurring

within the intermediary support

This flow of execution allows the main components of an organisation’s intermediary to

be drawn out, listed in the following section.

135

4.8 Design of an Organisation’s Intermediary Chapter 4

4.8.1 Middleware Components

All communication between components is conducted through the use of messages,

queues and topics as discussed in Section 4.3.

1. Endpoints through which an organisation’s transmissions are intercepted and routed

(incoming and outgoing).

2. Internal queues and topics connecting the components of the intermediary.

a) Including a topic through which intermediary support can emit notifications,

providing a known point of subscription to which interested parties can sub-

scribe.

3. A component to extract the encapsulated incoming transmission from property

annotations, if required

4. A component to determine which predicates the transmission matches and which

properties are required

5. A component to determine which protocols satisfy the required set of properties

6. A component to invoke the required technical protocols on the intercepted trans-

mission

7. For each technical protocol required, a component to handle that protocol’s exe-

cution

a) Each protocol handler may interact with required security services, other

intermediaries and other TTPs

8. A component to deliver the transmission’s unaltered contents on to the recipient

if required, maintaining business level transparency

136

4.8 Design of an Organisation’s Intermediary Chapter 4

As a side note, where multiple protocols are invoked, they may be executed sequentially

or in parallel, they subject data for each protocol execution will always be the opaque

contents of the original transmission. That is, the protocols invoked will take action

about the transmission’s contents but never upon it, allowing parallel execution to

occur and reducing execution time.

As an example of components to enable the execution of non-repudiation, the following

list serves as an example:

1. A component acting as protocol handler for Co�ey-Saidha Non-repudiation

Protocol executions

a) Interaction with a component acting as an inline TTP to guarantee fairness

b) Interaction with a component to generate evidence on behalf of the organ-

isation being supported (e.g., evidence representing A is generated within

IntA2)

c) Interaction with a component to store the evidence associated with a protocol

run

In fact all non-repudiation protocol handlers (with the exception of Mistianis’ probab-

ilistic protocol and voluntary exchange) will require components to generate evidence,

securely store evidence and act as a TTP guarantee fairness in its exchange.

There is a design decision as to whether a single handler is implemented to support

all non-repudiation protocols or whether one handler per protocol be implemented. Ow-

ing to composition I opt to implement a single component for each available protocol

that could be composed into a virtual “non-repudiation” component providing multiple

protocols.

Figure 4.5 shows the flow and connectivity of components within an organisations in-

termediary. The figure uses organisation A and their corresponding IntA as the example.
2This can be done with A remaining in full control of the evidence generation, discussed in Section

4.10.

137

4.8 Design of an Organisation’s Intermediary Chapter 4

It should be noted that components 3-5 in the above list are likely to be implemented

as a single component whose responsibility is “determine protocols to execute” and de-

clarations via annotation and predicates are simply part of this process.

Intermediary+IntA

Extract+datan+and

Annotated+Proper3es

Determine+
Predicate+Proper3es

Determine+Protocols+
to+Execute

Protocol
Handler

Finish+and+Deliver
Transmission

A
Outgoing

Incoming

Suppor3ng+
Components

Suppor3ng+
Components

Other
Intermediaries

No,fica,ons

Protocol
Finished

Figure 4.5: Connectivity of the components of an organisation’s intermediary.

The notifications topic, seen on the bottom left of Figure 4.5 is a topic onto which

any component of IntA can publish events relevant to its operation. Connecting lines

from every component are omitted for clarity. This design makes no assumption about

where the components are hosted, Section 4.10 discusses the available configurations for

deployment and how these satisfy di�erent operational requirements.

Supporting components are shown both as part of the intermediary and externally

to it. An example internal support component would be evidence generation or storage

where an example external support component would be TTPs to guarantee fairness,

TSAs to witness evidence or CAs and PKIs to facilitate public key cryptography.

138

4.9 Supporting Middleware Components Chapter 4

4.9 Supporting Middleware Components

In addition to the components of an intermediary acting on behalf of an organisation,

external supporting components exist. The composition of intermediaries (containing the

necessary protocol handler components) and these external supporting components allow

abstractions such as “transparent intermediary accountability support” (see Section 1.3)

or “transparent intermediary consistency support” between interacting organisations.

The following list contains external supporting components that may be interacted

with:

1. Certificate Authorities and Public Key Infrastructures to issue, verify, distribute

and revoke identity certificates, public and private keys. This enables the use of

public key cryptography.

2. TTPs to guarantee fairness for non-repudiation protocols

a) As with protocol handlers within an organisation’s intermediary, there may

be multiple component types representing TTPs for di�erent non-repudiation

protocols.

3. TSAs to witness evidence generated by non-repudiation protocols

N.B. TSA engagement will be online, not inline.

4. Secure logging or storage of evidence

N.B. TTPs should always, where possible, log non-repudiation evidence in the

process of protocol execution. Evidence storage must exist within an organisa-

tion’s intermediary and may exist within the TTP. That is, it makes no sense for

an organisation’s intermediary not to store evidence relating to their interactions

but it is not strictly required that a TTP also retains copies of all evidence it sees.

Also, under o�ine TTP engagement, a TTP may never see evidence.

139

4.10 Composing Components to Provide Intermediary Support Chapter 4

5. Identity Services (e.g., authorisation and authentication)

6. Consensus services

N.B. Consistency support as described in Section 2.6.4 can support more than

two participants through the use of a component deciding the outcome for all

participants

These components can all be considered security services in the ecosystem described in

Section 2.3, discussed by [BBMS01].

4.10 Composing Components to Provide Intermediary Support

This section will discuss the composition and deployment configurations that enable

the intermediary support to satisfy the properties it o�ers and how the components

of these compositions are deployed between one or more service providers and within

organisations.

4.10.1 Composition to Enable Interception and Generalised Protocol

Execution

Section 4.8 and illustrated Figure 4.5 describe and illustrate the minimum required

components to facilitate the interception of a transmission between two organisations.

For example, with only the components listed in the aforementioned section and figure,

A and B would have their messages routed through IntA and IntB. However, without

any protocol handlers no extra support can be provided. The internal processing by an

organisation’s intermediary can be considered to have three phases:

Pre-processing in which it is determined what protocols should be executed for the

intercepted transmission

140

4.10 Composing Components to Provide Intermediary Support Chapter 4

Protocol Execution in which the required protocols are executed to satisfy the proper-

ties declared for the intercepted transmission

Post-processing in which business transparency is guaranteed by ensuring only the ori-

ginal transmission is passed to the recipient organisation

Figure 4.6 illustrates this, providing a base from which accountability and consistency

support will be described in the following sections.

IntA

Pre$processing

Protocol(s)

Post$processing

A

Outgoing

Incoming

Protocol51

...

Protocol5N

IntB

Figure 4.6: The components of IntA interacting to execute protocols with IntB.

4.10.2 Composition to Enable Fairness and Accountability Support

In addition to the components in the previous section, components supporting non-

repudiation protocols such as those discussed in the hierarchy in Section 3.3.3 would be

implemented as protocol handlers to enable Fairness and Accountability support. Non-

repudiation protocol handlers would be co-located with Protocol1 , ..., ProtocolN handlers

shown in Figure 4.6. Support components providing evidence generation and evidence

storage on behalf of a supported organisation would be required, their location determ-

ined by (de)centralisation of components and providers.

External support components must include TTP and TSA, the TTP may or may not

employ its own evidence storage into which copies of evidence are reliable stored. These

components would be involved in the protocol executions between IntA and IntB.

141

4.11 Deployment of Middleware Components Chapter 4

Assuming the above components are present, intermediary support can provide Fair-

ness and Accountability support for intercepted transmissions.

4.10.3 Potential Composition to Enable Consistency Support

Consistency support, as described in Section 2.6.4 is achieved by including a synchron-

isation protocol handler within an intermediary acting on behalf of an organisation (e.g.,

IntA). This synchronisation protocol handler acts as the conversation management layer

(CML) from the referenced work [MJS06, MJSC07].

With the presence of the synchronisation protocol handler, intermediary support can

o�er and satisfy the Consistency property for intercepted transmissions.

Referencing Figure 4.6, the synchronisation protocol handler would replace one of the

placeholder protocol handlers. For synchronisation involving more than two participants,

an external consensus component would be engaged.

4.10.4 Summary

The accountability and consistency support described in Section 4.10.2 and 4.10.3 can be

composed to provide intermediary support capable of satisfying accountability and con-

sistency properties. Thus, supporting new properties within the intermediary support

requires the definition of a new functional property, implementation of the necessary

protocol handler(s) to execute protocols satisfying the property (and supporting com-

ponents). Section 4.11 considers the potential locations for deployment of all components

within one or more providers and within interacting organisations.

4.11 Deployment of Middleware Components

With the components and their compositions into intermediary support defined, the

next consideration in the design is that of deployment locations. Specifically, restrictions

regarding where components may be deployed.

142

4.11 Deployment of Middleware Components Chapter 4

4.11.1 Deployment within Supported Organisations

Two major restrictions relate to the deployment of components within organisations.

Firstly, by definition, no part of any mutually trusted third party components (e.g.,

TTPs, TSAs, CAs and PKIs) may be hosted within an organisation participating in

interactions that it wishes to support. These component must be completely independent

of interacting organisations to ensure neutrality and prevent bias.

The second restriction relates to the degree of control an organisation wishes to retain

over aspects of supporting interactions in which it is engaged. In the case of accountab-

ility support, there is a requirement that an evidence generation component be present.

The non-repudiation protocols covered in Section 2.6.3 use the public and private keys

(sensibly) of the participants to generate and validate evidence. An organisation may

not wish to divulge private keys to a component such as this, acting on their behalf.

In this case, they would host a security service representing the evidence generation

component.

4.11.2 Deployment within Security Service Providers

Any of the aforementioned components can be hosted by security service providers (see

Section 2.3). An entire intermediary support solution may be hosted by one provider

(i.e., a centralised solution), by multiple providers (i.e., a decentralised solution), or split

between one or more providers and interacting organisations. In the case of a centralised

solution using a single provider, the provider must be trusted by, and independent of,

both interacting organisations. Otherwise components cannot truly function as TTPs.

The deployment of components within multiple security providers (i.e., decentralised

intermediary support) has the benefits of allowing organisations to choose a provider who

o�ers some service(s) closely matching their desired requirements. The trade-o� here is

in complexity, interaction between all components must be well defined. Additionally,

there may be situations in which parts of intermediary support o�ered by di�erent

143

4.12 Discussion: Previous Work as Instances of the Generalised Design Chapter 4

providers di�erent or incompatible protocols to satisfy their requirements. Possibly

requiring some form of brokering and agreement on what additional capabilities are

available for interactions between two supported organisations.

Message oriented middleware is a particularly useful communication paradigm in en-

abling the components of the intermediary support to span multiple providers and or-

ganisations and communicate the same regardless of this. That is, messages are con-

sumed and deposited from and to arbitrarily addressed queues and topics which may

be co-located with components of the intermediary support or hosted elsewhere. Thus,

components are loosely coupled and asynchronous execution is allowed.

Providers and organisations may use cloud computing to operate their components

as discussed in Section 2.11, allowing the components to operate at a cost of only the

resources they consume (i.e., computation, storage and communication). Additionally,

intermediary support (and the components thereof) can benefit from aspects such as

scalability and elasticity. The use of open standards such as AMQP allow their backing

to be provided by cloud providers, private providers or a combination thereof completely

transparently to the intermediary support. That is, it is inconsequential what kind of

provider a topic or queue identifier is backed by. Chapter 5 discusses these implement-

ation focussed issues in greater detail.

4.12 Discussion: Previous Work as Instances of the

Generalised Design

Previous work supporting B2B interactions discussed in Section 2.12 can be expressed

as instances within the generalised design proposed in this chapter.

Cook’s work [Coo06] can be implemented by the composition of protocols implement-

ing the Co�ey-Saidha non-repudiation protocol to be executed between interception

components. Yao’s work [YCW+10] could be implemented completely as-is (that is,

144

4.13 Instances Chosen for Implementation Chapter 4

with no transparency) as a set of distributed consensus components into which business

processes pass evidence allowing consensus to be reached. It is possible to adapt Yao’s

work and encapsulate its invocation inside transparent interception such that the service

it provides is called while interacting organisations retain transparency. The second im-

plementation in Section 5.4 adopts this approach of transparently invoking software as

a service (providing fairness and accountability). FIDES work could be implemented by

the creation of components to execute the FIDES non-repudiation protocol (providing

strong and transparent accountability and fairness). Note that none of these works allow

the capabilities they provide to be expressed (this is because they are designed to do one

thing) as functional properties with characteristics as in this work. In order to actually

implement previous work, the support they provide would have to be characterised in

terms of functional hierarchies such as those discussed in Section 3.3.

4.13 Instances Chosen for Implementation

Using work from [Coo06] as a starting point, the first implementation provides a decent-

ralised service constructed using JMS using no cloud hosting. Each intermediary acting

on behalf of their organisation is hosted by their own provider and support components

(e.g., TTPs and TSAs) are hosted by another provider. That is, five providers in total

(A, B, IntA , IntB and support component provider).

The second implementation provides a centralised solution using cloud computing to

satisfy all infrastructure requirements of the support service. All components of the

intermediary support are satisfied by a single security service provider (independent to

interacting participants). That is, all components of IntA , IntB and external support

are hosted by a single provider. A and B both agree to use the centralised support for

their B2B interactions.

The third implementation is a variant of the second in which timing measurements

are taken for all aspects of support to ascertain the communication and computation

145

4.14 Summary Chapter 4

overheads of providing additional support to B2B interactions and how these overheads

compare to (and a�ect) the original interactions.

Beyond the implemented configurations, other useful instances include decentralised

using cloud computing to allow variation in a choice of service providers and the potential

benefits of cloud computing. Centralised without cloud computing o�ers solutions to

situations such as those where compliance issues prevent the use of cloud computing

(see Section 2.11.1). Similarly, decentralised or centralised approaches using a hybrid

of cloud and otherwise hosted infrastructure can customise elements of the system as

needed (e.g., transition them to or from the cloud) to cater to operational requirements

possibly determined by compliance or other issues.

4.14 Summary

This chapter illustrated the conceptual positioning and layers of the intermediary sup-

port with regards to the general B2B stack. That is, distributed intermediary support

components may be considered to be an intermediary stack for the purposes of support-

ing B2B interactions. The discussions in Section 4.1 through 4.7 relate to the challenges

and considerations associated with achieving transparent, asynchronous, decoupled op-

eration within the intermediary support.

Section 4.8 through 4.11 discuss components, their composition and deployment to

form intermediary support middleware addressing varying operational requirements, fol-

lowed by examples of achieving fairness and accountability support by composing specific

protocol components with general interception components and declaration mechanisms

to determine required properties. Section 4.12 demonstrates previous work also as in-

stances of composition and deployment before Section d4.13 discusses the instances of

composition and deployment chosen for implementation in Chapter 5.

146

5 Intermediary Middleware

Implementations

This chapter discusses three implementations representing two instances of the pos-

sibilities discussed in Section 4.13. The first implementation is decentralised solution

constructed entirely without the use of cloud computing providers. The service uses

Java Enterprise Edition 5.0 (JEE) and the Java Messaging Service (JMS) standards to

facilitate communication. The use of non-repudiation protocols allows the delivery of all

JMS transmissions to be rendered accountable with fairness guarantees [MC09].

The second implementation is a centralised solution constructed using cloud comput-

ing for infrastructure requirements (i.e., computation, storage and communication). The

solution is written in Scala [Ode10] and uses Amazon Web Services as the cloud services

provider. Non-repudiation protocols are used to ensure the fair and accountable deliv-

ery of documents between between participants, the implementation was published in

[MC10].

The third implementation is a variation on the second with timings for all computation

and communication overheads. The locations of components are varied to demonstrate

that the processing costs of the implemented support remain steady while the commu-

nication overheads vary depending on component locations. The timings are compared

to typical B2B conversation deadlines and lifespans to evaluate the acceptability of the

intermediary implementation.

The implementations will be evaluated on their functionality, how they improve over

147

5.1 A Common Business Message Format Chapter 5

previous work and what the performance impacts associated with doing so. Section 5.6

will summarise the results and evaluations.

5.1 A Common Business Message Format

For purposes of clarity in this chapter we define here a simple messaging format using

XML. Support for inspecting MIME, S/MIME and SOAP messages (such as those used

by ebXML, RosettaNet and OTA) could be added seamlessly to the implementation.

Figure 5.1 contains an example of the simple message format.

1 <Message
2 senderID="org-a.com"
3 recipientID="org-b.com"
4 messageID="msg1">
5

6 <BizInfo
7 msgName="EXAMPLE_MSG"
8 convName="EXAMPLE_CONV"
9 convID="conv1"

10 requireBizNRO="true"
11 requireBizNRR="true" />
12

13 <!-- Message Body -->

14 </Message>

Figure 5.1: A simple message example.

As with all surveyed B2B standards, we assume the entire contents of the <Message>

tag in the above example may be encrypted and thus, unreadable by intermediary sup-

port. That is, only the senderID, recipientID and messageID parameters are always

guaranteed to be readable.

Figure 5.2 shows an example business signal with a similar format.

As with the earlier message example, the contents of the <Signal> tag may be en-

crypted but senderID, recipientID and signalID parameters will always be available.

148

5.1 A Common Business Message Format Chapter 5

1 <Signal
2 senderID="org-b.com"
3 recipientID="org-a.com"
4 signalID="sig1">
5

6 <BizInfo
7 signalName="MSG_ACK_RECEIPT"
8 messageID="msg1"
9 convName="EXAMPLE_CONV"

10 convID="conv1"
11 requireBizNRO="true"
12 requireBizNRR="true" />
13 </Message>

Figure 5.2: A simple signal example.

There is no body in a signal message, the signal name in combination with the conver-

sation and message identifiers provide context enabling a recipient to process the signal.

The example in Figure 5.2 is a MSG_ACK_RECEIPT event applicable to some message with

ID msg1 in some conversation with ID conv1.

All business messages and signals in the implementations discussed in this chapter will

use for formats defined in Figure 5.1 and 5.2.

5.1.1 Common Declarations via Annotations and Predicates

As discussed in Section 3.5 and 3.6, support o�ered by intermediaries will be applicable

to opaque transmissions. However, where business requirements are readable, predic-

ates can be created to declare when accountability should be satisfied by intermediary

support. All implementations will support annotation of requirements onto individual

transmissions (using encapsulation as discussed in Section 3.4.4) and will be programmed

with the following predicate based declarations for the purposes of testing:

1. if recipient = ’org-b.com’ then require Accountability(Fairness,Strong)

149

5.2 Co�ey-Saidha Protocol Definition Chapter 5

2. if business requirement = ’requireBizNRO’ or ’requireBizNRR’ then require Ac-

countability

3. if conversation name = ’important_conversation’ then require Accountability(Strong)

Declarations 2 and 3 constitute using business level information to infer which properties

the intermediary support should satisfy. Declaration 1 is applicable to all intercepted

transmissions as recipient is always unencrypted information.

5.2 Co�ey-Saidha Protocol Definition

The Co�ey-Saidha protocol is used to provide accountability with strong fairness guar-

antees, Figure 5.3 contains the non-repudiation protocol definition [CS96]. The Co�ey-

Saidha protocol involves a TTP to guarantee fairness and TSA to protect evidence

against key revocation (as discussed in Section 2.5.2 and 2.6.2).

1 IntA æ TTP : encT T P (id, A, B, datan, NRO, tsT SA (NRO))
2 TTP æ IntB : id, A, B, h (NRO)
3 IntB æ TTP : encT T P (id, A, B, NRR, tsT SA (NRR))
4 TTP æ IntB : encB(id, A, B, datan, NRO, tsT SA (NRO))
5 TTP æ IntA : encA(id, A, B, NRR, tsT SA (NRR))

Figure 5.3: Co�ey-Saidha non-repudiation protocol definition.

id represents a unique protocol identifier, meaning each protocol message contains the

context of the protocol instance to which it belongs. A and B represent the identity of

the participants on whose behalf the non-repudiation protocol is being executed. This

protocol is implemented using constructs described in the following sections.

150

5.3 Implementation 1: Decentralised JMS Chapter 5

5.3 Implementation 1: Decentralised JMS

The first implementation is a decentralised solution where each intermediary acting

on behalf of an organisation is hosted by their own provider alongside a single provider

hosting external and trusted support components (i.e., TTPs, TSAs, CAs, PKIs). Figure

5.4 illustrates high level view of the implementation.

A
Message

B
Messages

IntA IntB

TTP

Organisa0on2A Organisa0on2BSecurity2Provider21 Security2Provider22

Non$repudia,on-Protocols

TSA

Security2Provider23

Figure 5.4: IntA and IntB collaborate on behalf of A and B to provide accountability to
message delivery.

The implementation provides accountability with fairness guarantees through the ex-

ecution of the Co�ey-Saidha non-repudiation protocol, where required. By using trans-

port level interception as discussed in Section 4.1 and 4.3.1, any JMS transmission

routed through the intermediary support can be provided with fairness and accountab-

ility.

IntA, IntB and the components hosted by service provider 3 execute the non-repudiation

protocol to generate, exchange and store evidence guaranteeing fairness and accountab-

ility. A and B exchange JMS messages whose contents are business messages and signals

as discussed in Section 5.1.

151

5.3 Implementation 1: Decentralised JMS Chapter 5

5.3.1 Message Processors and Groups

The implementation is based around the notion of processors and processor groups.

Processors are invoked with some intercepted message to take some action about it.

Groups of processors are logically partitioned to form components. To facilitate loose

coupling and asynchronous execution, processor groups are connected using JMS queues

and topics. A processor group has four connected locations:

Input: A mandatory location specifying where messages to be processed by a processor

group should be collected from.

Output: An optional location specifying where the intercepted, unaltered, message should

be deposited once processing is complete.

Signal: An optional topic into which significant events during a processor group’s exe-

cution are deposited for interested subscribers.

Audit: An optional topic into which extremely detailed messages about a processor

group’s execution are deposited, allowing its behaviour to be audited.

Figure 5.5 illustrates example processor groups and their interconnection using messaging

queues. The figure omits signal and audit topics for clarity, their use is discussed in

Section 5.3.2 and 5.3.3.

Intermediary support components, as described in Section 4.8 and 4.9, are implemen-

ted as processor groups.

The pre-processing group in Figure 5.5 is responsible for determining which proto-

cols to execute, programmed with the predicate declarations discussed in Section 5.1.1

and capable of supporting annotation via encapsulating an entire JMS transmission

within another JMS transmission. The processing group is responsible for executing the

Co�ey-Saidha protocol to satisfy fairness and accountability where required. The post-

processing group is responsible for ensuring that the original business level transmission

152

5.3 Implementation 1: Decentralised JMS Chapter 5

Intermediary+IntA

Pre-processing+Group

Processing+GroupPost-processing+Group

A
Outgoing

Incoming

TTP

TSA

P1 P2

P2 P1

P1 P2

P4 P3 IntB

Figure 5.5: An example intermediary with three processor groups.

is passed upwards to maintain transparency.

Processor groups are connected using JMS queues and topics (thick black lines at the

border of the organisation, intermediary and processor groups) although the processors

inside groups may, where required, connect to arbitrary JMS queues and topics to deposit

and retrieve additional messages.

5.3.2 Signal and Audit Topics

Signal and audit topics decouple processor groups from event notification and auditing

concerns (e.g., logging). Processors simply emit events and audit messages and these

are routed to their processor group’s signal and audit topics if defined.

This implementation defines a single signal and audit topic for an organisation’s in-

termediary. An authorised logger is subscribed to the audit topic to log all messages

generated and sent during the execution of intermediary support. This logging will

include all evidence generated and exchanged in the execution of the Co�ey-Saidha

non-repudiation protocol. Authorised parties may also subscribe to signal topics to be

notified of significant events within the intermediary support (e.g., protocol invoked,

protocol terminated and protocol failed).

Access control restricts the subscription to sensitive topics to prevent unauthorised

153

5.3 Implementation 1: Decentralised JMS Chapter 5

Intermediary+IntA

Pre-processing+
Group

Processing+
Group

Post-processing+
Group

A
Outgoing

Incoming

Evidence+
Logger

Audit

TTP,+TSA
IntB

Protocol'Execu,on

Protocol'Start

Protocol'Finish

Protocol'Queue

Figure 5.6: An evidence logger attached to the intermediary’s audit topic.

parties from obtaining information such as non-repudiation evidence and prevent fairness

from being compromised.

5.3.3 Fairness and Accountability Support

The support for fairness and accountability are implemented in three processor groups

corresponding to the general areas outlined in Section 5.3.1.

NR-Pre-Process: This group determines if fairness and accountability are required.

This is determined either by annotation (in JMS this is achieved by key-value

pairs in the encapsulating message’s meta-data) or by predicates programmed to

implement the declarations specified in Section 5.1.1.

NR-Process This processor group executes the Co�ey-Saidha non-repudiation protocol

in cooperation with the recipient’s intermediary (e.g., IntB), a TTP and a TSA.

If no non-repudiation is required the message will be delivered straight to the

recipient’s intermediary who will pass it through to the business level.

NR-Post-Process: Post-processing ensures only original transmissions are passed to the

organisation. For example, a transmission from A æ B will be passed to B’s

154

5.3 Implementation 1: Decentralised JMS Chapter 5

business level by IntB’s post-processing group once a non-repudiation protocol has

successfully executed.

An evidence logger, as shown in 5.6 is implemented simply as a JMS subscriber to the

audit topic that logs received audit messages into a MySQL database.

TTPs and TSAs involved in the execution of the Co�ey-Saidha protocol are only ever

concerned with technical level messages. As such, TTPs and TSAs are implemented

as single processor groups who collect messages from an input queue and deposit their

results on determined protocol queues.

For the TTP, the output destination depends on the current step within the Co�ey-

Saidha protocol (as per the definition in Section 5.2). The TSA’s output destination will

correspond to whoever used it to witness their evidence. That is, if A sends a message

to the TSA to be witnessed, the TSA will deposit the witnessed message back to A.

5.3.4 Testing

The implementation was tested to ensure that it functioned as intended and also that is

functioned under a variety of transmissions it could intercept. To this end, transmissions

and evidence stored in the MySQL audit database will be compared to test data to

ensure the correct evidence was generated, exchanged and stored providing fairness and

accountability for the intercepted transmissions.

The test data includes various transmission contents to ensure:

1. That predicates function for opaque transmissions where only the sender, recipient

and message ID are known

2. That predicates function for clear transmissions and can correctly use business

level information

3. That support can be provided to both opaque and clear transmissions

155

5.3 Implementation 1: Decentralised JMS Chapter 5

Based on the above, the following transmissions were constructed for testing, using the

message from Section 5.1 as a template:

1. An encrypted transmission whose recipient is ‘org-b.com’ to trigger predicate (1)

in Section 5.1.1

2. An unencrypted transmission whose recipient is ‘org-b.com’ to trigger predicate

(1) in Section 5.1.1

3. An unencrypted transmission expressing a business level requirement for NRO

evidence to trigger predicate (2) in Section 5.1.1

4. An unencrypted transmission expressing a business level requirement for NRR

evidence to trigger predicate (2) in Section 5.1.1

5. An unencrypted transmission whose conversation name is ‘important_conversation’

to trigger predicate (3) in Section 5.1.1

6. An encrypted transmission with an annotated requirement for Accountability

7. An unencrypted transmission with an annotated requirement for Accountability

8. An encrypted transmission that does not require additional support to be provided

9. An unencrypted transmission that does not require additional support to be provided

Testing the intermediary support with each of these transmissions and validating the

evidence will address the points discussed at the beginning of this section.

For each of the above transmissions, those requiring support will result in the genera-

tion, exchange and storage of non-repudiation evidence providing fairness and account-

ability. The evidence is stored in a MySQL audit database as described in the previous

section. This means for each transmission requiring support, the database will contain

two rows:

156

5.3 Implementation 1: Decentralised JMS Chapter 5

1. A row containing the intercepted transmission, a protocol run identifier and TSA-

witnessed NRO evidence

2. A row containing the intercepted transmission, a protocol run identifier and TSA-

witnessed NRR evidence

The protocol run identifier for corresponding NRO and NRR rows will be identical as

they are produced during the same protocol execution.

For all transmissions requiring support (1-7 in the above list), both associated rows

were retrieved from the database and validated to ensure that they correctly represen-

ted the intercepted transmission. That is, the NRO evidence correctly represented the

intercepted transmission and the NRR evidence correctly represented the NRO evidence

and intercepted transmission.

Logging within the implementation verified that the correct predicates were being

triggered for test transmissions 1-5 and that transmissions requiring support (1-7) were

only delivered to their recipient upon successful completion of the Co�ey-Saidha protocol,

providing fairness and accountability.

5.3.5 Evaluation and Summary

Based on the testing in the previous section, this implementation is capable of intercept-

ing any JMS transmission and providing it with fairness and accountability support,

where required, by invoking the Co�ey-Saidha non-repudiation protocol. The imple-

mentation allows the declaration of when fairness and accountability are required using

both annotations and predicates against which intercepted transmissions are tested.

The resulting evidence which is exchanged on behalf of interacting organisations and

stored was correctly associated to the intercepted transmissions and the NRR evidence

was correctly associated to its corresponding NRO evidence. While B2B interactions

are supported such that predicates like those in 5.1.1 can be specified, any intercepted

157

5.3 Implementation 1: Decentralised JMS Chapter 5

JMS transmission can be supported and predicate support could be widened to extract

information from messages belonging to other application domains.

In comparison with [YCW+10] (Yao), this implementation provides stronger account-

ability guarantees by engaging with a TTP to ensure deterministic fairness and a TSA to

witness evidence to address selective receipt and key revocation issues. The implement-

ation operates transparently whereas Yao’s implementation required business processes

to explicitly emit accountability evidence. Both this and Yao’s work operate asynchron-

ously and independent of B2B standards in use.

In comparison with [Coo06] (WSNR) and [NZB04] (FIDES), this implementation

is improved in its transparent and asynchronous operation. Compared specifically to

FIDES this implementation improves by o�ering automated support that can be place

in the delivery path of B2B interactions. WSNR and FIDES both provide determin-

istic strong guarantees but place integration requirements on interacting organisations.

WSNR requires a SOAP interceptor to be integrated into an organisation’s B2B stack

and FIDES requires an manual workflow to be defined in which the proprietary FIDES

clients are used to engage with FIDES servers to facilitate non-repudiable exchanges.

WSNR and FIDES both execute synchronously, requiring all involved components (or-

ganisations and intercepting components) to be online at the same time.

All works, including this implementation, require some minimal set of trusted com-

ponents to be hosted in a location independent from all interacting organisations. This

work specifically considers decentralised operation as an example that an organisation

can be supported by an external intermediary service provider acting upon its behalf in

combination with other providers hosting trusted components (e.g., TTPs and TSAs)

and intermediaries for other organisations.

On a more technical level, the design of processors and processor groups could be

improved to support parallel execution of processors within groups and also to provide

more flexible interconnection between processor groups. In this implementation a trans-

158

5.3 Implementation 1: Decentralised JMS Chapter 5

mission flows through all groups even if those groups were to implement a protocol not

required for the intercepted transmission. The design in Chapter 4 dispatches transmis-

sions only to protocol handlers that are required to be invoked, the improvement was a

consequence of this evaluation.

The use of JMS was problematic in a number of ways. First and foremost is that JMS

defines no wire-level format for transmission. That is, two vendors implementing the

same reference interface for JMS may not interoperate. The requirement that everyone

uses the same vendor’s (and version) implementation of JMS is not realistic in open

heterogeneous networks. Beyond this, JMS has no standardised mechanism for remote

addressing. There is no standardised way to pass a portable URL referencing a JMS

queue or topic. Ad-hoc solutions exist, generally relying on Java Naming and Directory

Interface (JNDI) standard to perform remote lookups. The JMS reference API also con-

tains no standardised mechanisms for connecting to JMS services, it simply treats them

as an implementation specific detail. As with the URL issue, ad-hoc solutions exist that

abstract away vendor specific details but no standardised solution is available. As a final

minor issue, JMS messages are not serialisable, this makes their use in operations such

as signatures, encryption, hashes and digests an ad-hoc solution alongside URL schemes

and dealing with remote or di�erent JMS services. The use of JMS for heterogenous

networks relies on additional support to marshall between vendor implementations.

In summary, the implementation addresses the requirements of intercepting transmis-

sions and transparently supporting them. The support rendered is o�ered via functional

properties (fairness and accountability), paired with technical protocols providing their

satisfaction (Co�ey-Saidha) and declared as required in a decoupled manner through

the use of annotations and predicates. The MoM based communication renders the

implementation asynchronous.

159

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

5.4 Implementation 2: Centralised, Cloud (AWS)

This implementation provides a centralised solution using cloud computing for all infra-

structure requirements. Amazon Web Services (AWS) are used as the cloud provider

for the following services: Simple Queueing Service (SQS), Simple Notification Service

(SNS), SimpleDB Service (SDB), RelationalDB Service (RDS), Simple Storage Service

(S3) and Elastic Compute Cloud (EC2).

The implementation is written in a combination of Scala and Java [Ode10]. Both

languages compile to Java byte-code, Section 6.3 discusses the use of Scala (a functional

language) and the possibility of leveraging it to provide domain specific APIs onto B2B

and other conversational standards. Open Java libraries (e.g., Typica) are used to access

Amazon Web Services.

All components of the intermediary support are satisfied by a single security service

provider (independent to participants supporting their B2B interactions). That is, all

IntA , IntB and other support components (i.e., TTP, TSA) are hosted by a single pro-

vider. A and B both agree to use, and trust, the same provider and the centralised

support it provides. The security service provider is assumed to trust the infrastruc-

ture upon which their intermediary support operates (trust in the cloud is discussed in

Section 6.3). Figure 5.7 illustrates the high level view of the system. As with the JMS

implementation in Section 5.3, this implementation uses the message formats, predicates

and protocols defined in Section 5.1, 5.1.1 and 5.2.

5.4.1 Interaction with the Service

Figure 5.7 illustrates the provision of components acting on behalf of A and B within the

intermediary support (i.e., IntA and IntB). The centralised nature of the intermediary

support means that it is not necessary to deploy a complete set of these components

for each organisation. Instead, it can provision what is minimally required to allow an

organisation their own point of interaction with the service.

160

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

A
Message

B
Messages

IntA IntB

TTP

Organisa0on2A Organisa0on2BSecurity2Provider21

Non$repudia,on-Protocols

TSA

Figure 5.7: A single provider allows A and B to interact with accountability and fairness
guarantees.

Since communication with and within the service is message based (using queues and

topics), each user of the intermediary support is provisioned with the following:

Outgoing Queue: onto which outgoing messages are deposited

Incoming Queue: onto which incoming messages are deposited by the intermediary sup-

port

Notification Topic: allowing a user to subscribe to events generated by the intermediary

support

Configuration Data: containing all predicate declarations and configuration for a par-

ticular organisation (e.g., cryptographic keys or acceptable timeouts for protocols)

Figure 5.8 illustrates the provision of queues and topics for organisations. Queue and

topic names are prefixed with the identity of their respective organisations to prevent

naming collisions and mechanisms exist to prevent unauthorised parties interacting with

the queues and topics (either encryption of contents or the use of authentication and

authorisation mechanisms).

Compared to the JMS implementation it may be noted there is now a single notification

topic as opposed to an event and audit topic. This single topic employs message prefixes

161

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

A Intermediary
Support

QOutgoing

T Events

Q Incoming

Q Outgoing

TEvents

QIncoming

B

Figure 5.8: The provisioning of points of interaction per organisation as opposed to com-
plete sets of components.

to provide a desired verbosity of messages received by a subscriber. That is, a receiver

can choose to receive messages from a topic or queue with a given prefix. This approach

is similar to logging architectures in which logs capture events at a desired levels of

granularity (e.g., critical events, exceptional events, debugging information and complete

trace information).

The centralised support uses reliable storage for all generated evidence and provides

mechanisms for its retrieval by authorised parties, removing the requirement for a logging

component to be attached to the notification topic to log all generated evidence.

Under Amazon Web Services, Simple Queue Service (SQS) and Simple Notification

Service (SNS) are used to facilitate queue and topic based communication, respectively.

SQS queues and SNS topics are addressed and accessed using HTTP. To this end, the

implementation will intercept transmissions over HTTP and HTTPS using transparent

HTTP(S) proxies.

162

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

5.4.2 Message Processing

Messages processors in this implementation present a simpler but more powerful refine-

ment over the JMS implementation. Processors are not organised into groups, but the

same behaviour may be achieved if desired. In this implementation a message processor

is created with a single parameter, an incoming location (i.e., queue or topic) from which

it should retrieve messages and engage in its execution. Under this implementation, pro-

cessor groups, as in the JMS implementation, could be achieved by a linear arrangement

of multiple processors.

Processors may query for global configuration parameters (e.g., configuration specified

by the security service provider) or organisation-specific configuration parameters (e.g.,

configuration specified by users of the intermediary support). The output destinations

of processors are dependent upon the context of their execution (i.e., their role, the

identities of the involved participants from the intercepted transmission and available

configuration parameters).

Critically, messages are not removed from queues until their processing is complete.

They are flagged as “in use” by a receiving processor, preventing the same message being

processed by other processors at the same time. As a message contains the complete

context for its processing (e.g., a business transmission to be supported or a protocol

message with protocol information), this allows message processors to arbitrarily crash

and be recreated without a loss of messages within the system. Messages that are not

removed from a queue will eventually have their “in use” marker removed and be pro-

cessed. This also allows multiple processors (of the same functionality) to be subscribed

to the same queue, providing horizontal load balancing to handle increased workloads.

5.4.3 Centralised Support Components

Figure 5.9 details the components (i.e., queues, topics, message processors and support

components) of the centralised intermediary support.

163

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

The provision of queues and topics for each organisation maintain the abstraction of

intermediaries acting on their behalf. Internally, however, messages may be processed

from A and B’s queues by the same message processor. This is a consequence of the

centralised design, it is entirely possible to spawn individual message processors per

organisation but not required in this implementation. This would also allow an easy

migration to a decentralised deployment if desired.

The centralised design also facilitates the complete execution of non-repudiation pro-

tocol by a single processor. That is, the centralised support contains components capable

of generating evidence on behalf of all interacting organisations.

The implementation does, however, also support evidence generation outside the cent-

ralised support, this is facilitated by providing a technical API to organisations which

can be used to drive exchanges if desired. This API maintains business level transpar-

ency but does require an organisation to become involved in driving the execution of

exchanges and reacting accordingly to generated events. It breaks the strictly centralised

design of the support but the sensitive nature of divulging the required cryptographic

keys involved in evidence generation make it a potentially useful feature, allowing or-

ganisations to retain control of their own private keys.

The Work queue shown in Figure 5.9 is fed by all queues that intercept messages

outgoing from organisations. That is, the Work queue is an aggregation of all intercepted

messages requiring non-repudiation protocol execution. Messages outgoing from A or

B would go through the pre-processing message processor and, if required, be passed

to the Work queue for processing by a non-repudiation protocol processor. It is also

possible that a message not requiring any additional support is passed straight from pre-

processing to post-processing for delivery to its recipient. The aggregation of messages

awaiting protocol execution into a single queue allows the number of non-repudiation

processors to be increased arbitrarily to deal with processor crashes and/or workload

balancing.

164

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

Centralised+Intermediary+Support

A B

Q Work Q Done

Non7repudia8on+Processors

TImestamp
Service

Data
Storage

Evidence
Storage

Evidence+
Genera8on

Evidence
Valida8on

Pre7
Processing

Post7
Processing

(In,%Out,%Event)

Figure 5.9: Exchange service internal components and message flow.

Similarly, the Done queue is an aggregation of all messages that have successfully had

non-repudiation protocols executed for their contents. The messages are distributed to

their respective organisations’ queues.

The Amazon Web Services are leveraged in the following manner in the centralised

intermediary support implementation:

Simple Queueing Service (SQS) queue based MoM communication

Simple Notification Service (SNS) topic based messages between nodes.

SimpleDB Service (SDB) global configuration and organisation-specific configuration

storage and querying

RelationalDB Service (RDBS) SQL databases for storing logs and non-repudiation evid-

ence

N.B. Non-repudiation evidence storage period can be configured per-organisation

165

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

and defaults to 5 years

Simple Storage Service (S3) storing copies of the intercepted data unless configured

not to

Elastic Compute Cloud (EC2) to host linux virtual machines executing all intermediary

support components (Java 6, Scala 2.8)

Amazon was chosen as the cloud provider simply for ease of use, they are assumed to be

su�ciently trusted as a cloud provider. All services apart from EC2 scale automatically.

That is, SQS and SNS scale with increased communication demand, SDB and RDB will

scale to increased database read or write activity and S3 will scale to meet increased

storage demand. EC2 requires manual intervention to increase the power of the currently

executing VMs or deploy new ones. Each deployed VM must also have its operating

environment configured (i.e., Linux, Java and Scala).

5.4.4 Testing

Testing for the cloud based implementation was exactly the same as that described in

Section 5.3.4. That is, the same 9 test transmissions were used to ensure correct function-

ality across encrypted and unencrypted transmissions where support is declared using

annotations, predicates or not required at all. For each transmission, the two generated

rows of evidence were extracted and validated to ensure the NRO and NRR evidences

correctly associated with each other and with the originally intercepted transmission.

All transmissions were intercepted as required.

The first 7 transmissions had their required properties identified (i.e., the correct

predicates were matched or annotations extracted) and satisfied by the intermediary

support. Furthermore, messages were only delivered to their recipient upon successful

completion of the protocols. Transmissions 8 and 9 were successfully passed straight

through the intermediary support without traversing the protocol processors.

166

5.4 Implementation 2: Centralised, Cloud (AWS) Chapter 5

5.4.5 Evaluation and Summary

Based on the successful testing of this implementation, HTTP transmissions can be

intercepted and provided with fairness and accountability support, where required, by

invoking the Co�ey-Saidha non-repudiation protocol. As with the JMS implementation,

transmissions other than those in the B2B domain could be intercepted and supported.

This work is more in line with [YCW+10] (Yao) than the JMS implementation. That

is, this implementation provides accountability and fairness support in the cloud as

a service. Additional components intercept transmissions between organisations and

transparently invoke the service, where required, using the contents of the intercepted

transmission. Such an improvement was discussed in Section 2.12 that would allow

Yao’s work to be invoked transparently. As it is, this implementation improves over

Yao’s support by transparently providing fairness guarantees and stronger accountability

guarantees (i.e., the use of TTPs and TSAs to protect against selective receipt and key

revocation). This implementation represents the same asynchronous, automated and

transparent improvements over [Coo06] and [NZB04] as the JMS implementation.

The use of centralisation requires that interacting organisations fully trust the single

service provider although the components could be decentralised as in the JMS imple-

mentation. The centralised intermediary support allows the expedited execution of the

Co�ey-Saidha non-repudiation protocol where all information is available within the ser-

vice. As it is still possible for an organisation to retain control of evidence generation

(through the use of the technical API), expedited execution may not always be possible.

The implementation leverages cloud hosting for all aspects. All cloud services used

scale automatically to cope with demand except EC2 although services exist to provide

automatic scaling of EC2 deployments. Compared specifically to the JMS implement-

ation, cloud computing made the acquisition and configuration of resources easier and

quicker.

The use of SQS and SNS mean that messages are not lost within the system in the

167

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

face of processor crashes. New processors spawn and will eventually process messages

that are flagged as re-available for processing.

The manner in which the support is provided (i.e., fairness and accountability as a

service with components to facilitate transparent interception and invocation) prompt

the consideration that the intermediary support in this thesis could also be realised as

“Delivery as a Service”, this is discussed in Section 6.3.

The use of Amazon Web Services for all services brings with it the advantages that

Amazon do not charge for data that passes within their own services and they can

provide improved quality of service (e.g., they guarantee instant delivery of notifications

from EC2 instances to SNS topics and they guarantee delivery of messages from SNS

topics into SQS queues). The other side of the argument is that by choosing a single

provider for all infrastructure needs, a service provider is subject to all of their guarantees

regarding availability, reliability, durability and performance.

In summary, as with the JMS implementation, support is successfully o�ered to in-

tercepted HTTP transmissions in a transparent manner. Realised by the mapping of

functional properties to technical protocols and declared as required through both pre-

dicates and explicit annotations on transmissions. The implementation improves on

previous work by addressing the challenges of transparency, asynchronous operation,

loose coupling and automated operation.

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing

Measurements

The JMS and AWS Cloud implementations discussed in the previous sections were tested

(in Section 5.3.4 and 5.4.4) in terms of their functionality. That is, they correctly identi-

fied when support was required and provided it in the correct manner (ensuring delivery

after non-repudiation protocols had executed). This implementation modifies the cent-

168

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

ralised implementation discussed in the previous section to remove logging statements

allowing accurate timing data to be collected.

Finely grained timing data will be taken for communication and processing such that

overheads for each can be calculated. From these timings we will extrapolate the total

impact of intermediary support for a variety of configurations (e.g., centralised, decent-

ralised and over varying locations) and compare them to deadlines and lifespans for

typical B2B conversations.

This implementation will be timed using two transmissions:

1. An unencrypted transmission expressing a business level requirement for NRO

evidence to trigger predicate (2) in Section 5.1.1

2. An unencrypted transmission with an annotated requirement for Accountability

These transmissions declare the same requirements from intermediary support (i.e., Ac-

countability) using both predicates and annotations. Both transmissions will have a fixed

size of 512 kilobytes, this is slightly larger than the largest text-based messages seen in

conversations specified in [OAS01b, Ros09, Ope11b].

This implementation will consider two locations for the operation of example business

services (i.e., the services whose interactions will be supported) and two locations for the

operation of the centralised intermediary support. For business services, servers located

in Newcastle upon Tyne, England (Newcastle) and London, England (London) will be

used. For intermediary support, servers located in Amazon’s EU Ireland (AWS-EU)

and US-East Northern Virginia (AWS-US) locations will be used. Each AWS virtual

machine is configured using the m1.medium profile providing 3.75Gb memory, 1 AWS

virtual core with 2 EC2 Compute Units and 410Gb storage space [SGR09, AFG+10].

For each business service location (London and Newcastle), 10,000 transmissions will

be sent to each intermediary support location (AWS-EU and AWS-US). Providing a total

of 40,000 transmissions whose communication and processing overheads will be timed for

169

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

evaluation. Relevant latencies between all four sites will be calculated to demonstrate

that processing overheads are stable while communication overheads vary depending on

locations.

5.5.1 Measurements Taken

The implementation will take the following communication measurements:

1. Communication latency between the transmitting organisation and the intermedi-

ary support.

2. Communication latency within the intermediary support. That is, inter-component

latencies within the intermediary service provider.

• N.B. In decentralised systems these could also be inter-provider latencies.

3. Communication latency between the intermediary support and the recipient or-

ganisation.

4. Communication latency between transmitting organisation and recipient organisa-

tion (for comparison).

The following processing measurements will be taken:

1. Time taken to facilitate interception (i.e., to get the transmission in to the inter-

mediary support).

2. Time taken to determine the desired support properties to satisfy (predicate or

annotation driven).

3. Time taken to execute the required protocols.

4. Time taken to execute post-processing cleanup before delivery towards recipient.

Composite timings will be taken including the following:

170

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

1. End-to-end business transmission time. That is, the total time taken between dis-

patching a transmission from a sending organisation and its arrival at the recipient

organisation.

• N.B. This timing does not include business level processing, this occurs before

transmission at the sender and after receipt at the recipient.

2. End-to-end intermediary support timing. That is, total time taken to intercept,

process and forward to transmission towards its recipient.

All of the above measurements will be taken for 10,000 transmissions under the following

four experiments:

1. Business services operating on Newcastle servers, Intermediary support operating

on AWS-EU servers.

2. Business services operating on Newcastle servers, Intermediary support operating

on AWS-US servers.

3. Business services operating on London servers, Intermediary support operating

on AWS-EU servers.

4. Business services operating on London servers, Intermediary support operating

on AWS-US servers.

5.5.2 Results

Table 5.1 shows the median observed communication latencies between the four loca-

tions.

* The observed latencies within the AWS-EU and AWS-US locations (3ms and 2ms)

actually represent local connections to HTTP servers running on the same machines,

not communication between di�erent servers within the server locations. These figures

are included as they comprise portions of the total time taken to render support to

171

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

Location Newcastle London AWS-EU AWS-US

Newcastle 9 39 99 172
London 39 15 119 220

AWS-EU 99 119 3* -
AWS-US 172 220 - 2*

Table 5.1: Latencies between server locations, measured in milliseconds.

intercepted transmissions. Timings between AWS-EU and AWS-US zones are not taken

as this experiment assumes centralised providers.

Table 5.2 shows the observed median processing times for intermediary support oper-

ating on AWS-EU and AWS-US servers.

AWS-EU AWS-US

Interception Processing 3 1
Determine Properties

(Predicates)

12 11

Determine Properties

(Annotations)

15 18

Execute Protocols 38 46
Post-processing 1 2

Table 5.2: Median processing times for intermediary support operating in AWS-EU and
AWS-US locations, measured in milliseconds.

Medians calculated for interception processing, protocol execution and post-processing

are averaged across 20,000 transmissions (2 business service locations tested per inter-

mediary support location at 10,000 transmissions each).

Medians calculated for determining properties via predicates and annotations are

10,000 each (the transmissions from each business service location are half annotation

based and half predicate based).

Table 5.3 shows the median end-to-end times for all four experiments.

172

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

AWS-EU AWS-US

Newcastle London Newcastle London

Business Transmission Time 251 296 406 510
Intermediary Support Time 53 58 68 62

Table 5.3: Median end-to-end times for intermediary support involvement, measured in
milliseconds.

!! Newcastle!*!AWS*EU London!*!AWS*EU Newcastle!*!AWS*US London!*!AWS*US

550

0

50

100

150

200

250

300

350

400

450

500

Loca:ons

M
ed
ia
n!
En

d*
to
*E
nd
!T
im
in
gs
!(m

s)

■!Intermediary!Support!Time
■!Business!Transmission!Time

Figure 5.10: Graph comparing end-to-end time measurements taken, measure in
milliseconds.

Table 5.3 and Figure 5.10 indicate that the total time taken by the centralised in-

termediary support remains stable where end-to-end business transmission time is most

significantly impacted by communication overheads.

5.5.3 Centralised Support Costs

The performance of the intermediary support was stable on both servers, owing to the

same AWS EC2 hardware provision profile (m1.medium). The expected result for cent-

173

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

ralised intermediary support running on equally provisioned and prioritised virtual ma-

chines was that the intermediary support operation would be similar across both servers.

Table 5.3 and Figure 5.10 demonstrate this, showing that total time taken for interme-

diary support to fully process intercepted transmissions averaged (median) between 53

and 68ms where the remaining communication overheads constitute the majority of the

end-to-end business transmission time taken.

The blue portion of the bars in Figure 5.10 comprise transmission from sender to

intermediary support and transmission from intermediary to recipient. That is, we would

expect the blue bar to be approximately double the median latency between support and

interacting organisations. This is observed for all four scenarios.

For example, communication latency between Newcastle and AWS-EU is 99ms (Table

5.1), median total time taken by intermediary support is 53ms and median total business

transmission time is 251ms (Table 5.3). Following this we would expect the total business

transmission time minus time taken by intermediary support to be approximately two

times the communication latency (sender to support followed by support to recipient)

giving:

251ms ≠ 53ms = 198ms = 2 ú 99ms

The centralised nature of the support has helped to keep total intermediary support

time low. The communication latency for requests within the centralised support was

shown as 2ms for AWS-US and 3ms for AWS-EU in Table 5.1. Each supported trans-

missions results in a call to evidence generation, time-stamping and evidence storage

components within the centralised design as shown in Figure 5.9.

The centralised implementation optimises support component invocation and only

calls each of these components once per protocol execution to generate, timestamp and

store both kinds of evidence, resulting in three requests each with a request and response

component with communication latency in both directions.

174

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

For the AWS-US server, three invocations with internal communication latency in both

directions gives: (2 ú 2ms) ú 3 = 12ms. That is, a median 12ms of the total time taken

by intermediary support operating on the AWS-US server was internal communication.

For the AWS-EU server (3ms) the corresponding time is (2 ú 3ms) ú 3 = 18ms. These

figures can be subtracted from the total time taken by intermediary support to give a

median total computation time within intermediary support.

5.5.4 Estimating Decentralised Support Costs

Following the above, we can begin to extrapolate and estimate the costs associated

with decentralising components in terms of the messages that are required to be passed.

Considering the Newcastle to AWS-EU scenario in Table 5.3, end-to-end business trans-

mission time was 251ms and total intermediary support time was 53ms. Of the 53ms,

18ms of that was communication latencies as discussed in the previous section. This

gives 53ms ≠ 18ms = 35ms of pure computation time within intermediary support.

Using 35ms as a base and assuming that all components run on hardware matching the

AWS EC2 m1.medium profile, we can estimate time taken by this intermediary support

running in decentralised configurations by calculating number of messages to be passed

and the latencies between the component locations.

The Co�ey-Saidha protocol defined in Section 5.2 requires five protocol messages to

be passed. Additionally, two invocations of component services for evidence generation,

time-stamping and storage are required (with communication latency in both directions)

and two transmissions delivering the transmission from sender to intermediary support

and from intermediary support to recipient.

If we imagine an example set of distinct providers with an average inter-provider com-

munication latency of 20ms, and provider-to-organisation latencies of 50ms, executing

the Co�ey-Saidha non-repudiation protocol, with individual components for evidence

generation, time-stamping (witnessing) and storage, total intermediary support time

175

5.5 Implementation 3: Centralised, Cloud (AWS) with Timing MeasurementsChapter 5

would be:

35ms Base processing time

+ 5 ú 20ms Co�ey-Saidha Message Passing

+ (2 ú 20ms) ú 6 Support Component Communication

+ 2 ú 50ms Provider to Organisation Latency

= 835ms Business Transmission Time

Using the communication latencies in Table 5.1, a worst case scenario using the ob-

served values would involve all communication having a median latency of 220ms. Insert-

ing 220ms for all communication into the above expression would result in an end-to-end

business transmission time of 4215ms. Similarly, a best case fully decentralised system

using the lowest cross-location latency (39ms between Newcastle and London) would

result in an end-to-end business transmission time of 776ms. If we considered di�erent

providers all located in Newcastle (9ms median communication latency between ma-

chines) the end-to-end business transmission time would be 206ms.

In summary, the total intermediary support time is a function of base processing

time of protocol(s) to be executed combined with the latencies for inter-component

(and potentially inter-provider) communication. End-to-end business transmission time

becomes a function of total intermediary support time and communication latencies

between interacting organisations and support intermediaries.

5.5.5 Evaluation and Summary

The functionality of this implementation was tested in Section 5.4.4. This implementa-

tion disabled logging and console output and deferred output of timing data to ensure

that data collected was accurate and that finer grained timing operations did not unin-

tentionally increase the timing of larger operations.

The impact of support on interactions between organisations in any two locations may

be calculated by subtracting the communication latency between the two organisations

176

5.6 Summary Chapter 5

from the end-to-end business transmission time involving intermediary support between

the organisations. If we consider a business transmission between two organisations

in Newcastle, with centralised intermediary support hosted on AWS-EU servers, we

know median latency directly between organisations is 9ms (Table 5.1), and end-to-end

business transmission time via intermediary support is 251ms (Table 5.3), giving an

impact of 251ms ≠ 9ms = 242ms.

OTA and ebXML Common Business Processes do not specify default timeouts or

lifespans for their conversations except for acknowledgement that they may be “long-

lived” due to asynchronicity [Ope11b, OAS01b]. RosettaNet does not specify expected

life spans for entire conversations but does mandate a default two hours timeout on

individual exchanges. Given that the worst case estimated timings were measures in the

seconds (4215ms in the previous section), the impact of the intermediary support on B2B

conversations can be deemed acceptable (0.000583% of a default two hour deadline).

We assume that for additional protocols, and more realistic (i.e., powerful) servers,

acceptable impacts on B2B interactions could be maintained.

5.6 Summary

The implementations in Section 5.3 and 5.4 had their functionality tested in Section 5.3.4

and 5.4.5, demonstrating that the evidence was correctly generated, stored and that

transmissions were not delivered until protocols had successfully executed. Essentially,

fairness and accountability were provided successfully to all intercepted transmissions

requiring them.

The implementation in Section 5.5 was tested in terms of its performance and impact

upon typical B2B transmissions and evaluated to be acceptable in these terms. That is,

support was provided in between hundreds to thousands of milliseconds and the default

deadlines and timeouts of B2B interactions far exceed these [Ros02, Ros09]. The size of

the transmissions used in performance testing was larger than any message observed in

177

5.6 Summary Chapter 5

example conversations in ebXML, RosettaNet and OTA.

In terms of previous work, the implementations improve over [Coo06] by being trans-

parent, asynchronous and loosely coupled. [NZB04] is improved over by the implementa-

tions being automated, transparent, asynchronous and potentially supporting additional

protocols and properties. [YCW+10] is improved over by transparently encapsulating

the invocation of underlying support and providing stronger accountability (and fairness)

guarantees. Both [Coo06] and [YCW+10] allow multiple protocols but do not provide

a notion of functional properties satisfied by the supported protocols. [Coo06] essen-

tially supports synchronous execution of arbitrary protocols over an intercepted SOAP

message without a notion of what support the protocols provide. [YCW+10] provides

a system that is implicitly programmed to deliver Accountability with no refinements

on the type of support o�ered although execution among the Accountability services in

the Accountability Service Domain is abstracted away meaning it could be improved (to

address key revocation) but would still be invoked in a non-transparent manner (i.e.,

business processes are still expected to emit their own evidence).

The implementations have the predicates described in Section 5.1.1 explicitly pro-

grammed in to them. The use of a rules engine to allow dynamic definition of predicates

would likely incur an increase in execution time by intermediary support.

A limitation in terms of real world use is that all interacting participants must employ

compatible intermediary support in order to have stronger guarantees provided for their

transmissions. Properties cannot be guaranteed without cooperation from intermediaries

acting on behalf of both sides of an interaction (and independently trusted components).

Section 4.4 discussed these issues but the best approach is subjective.

In order to enable the functionality of declarations by predicates intermediary sup-

port must be programmed with the knowledge to extract and understand information

from intercepted transmissions where available such that predicates relying on that in-

formation can successfully be interpreted. While it is beneficial that the implemented

178

5.6 Summary Chapter 5

intermediary support provides its functionality at the transport level (i.e., all JMS or

HTTP transmissions can be intercepted, regardless of B2B or other content), in order

to capitalise on any domain specific information, the intermediary support must under-

stand how to extract that information. Similarly, if defining predicates using raw content

matching, as discussed in Section 3.6, those predicates require that the defining party

assumes specific knowledge about the contents of intercepted transmissions.

179

6 Summary and Future Work

6.1 Summary of Contributions

This thesis sought to alleviate the requirements of expertise, infrastructure and integra-

tion placed on interacting participants who wished to support their interactions. This

is achieved by the design and implementation of intermediary support middleware that

operates asynchronously, transparently and decoupled from higher level communication

standards (e.g., B2B). By enforcing these characteristics, support intermediaries can

be provided by support service providers through which transmissions are routed and

provided with additional support. These combination of factors allow the aforementioned

requirements (expertise, infrastructure and integration) to be alleviated from interacting

participants.

The support o�ered by the middleware intermediaries was abstracted into mappings of

functional properties (describing what support is o�ered) and technical protocols (defin-

ing how the support is satisfied). The hierarchies in Section 3.3 represent an application

of functional properties mapped to technical protocols in the B2B domain. That is, these

concerns were identified as relevant to B2B interactions in order to support regulation,

and suitable protocols were identified that could be encapsulated into intermediary sup-

port to address these concerns with added challenges of transparency and loose-coupling.

The generalised middleware design proposed in Chapter 4 is capable of expressing

related work upon which this thesis builds, as demonstrated in Section 4.12.

Issues of transparency are motivated by a desire to ensure separation of concern

180

6.1 Summary of Contributions Chapter 6

(Chapter 1 and 2). In doing so, higher levels of abstraction (e.g., B2B) can be sup-

ported at lower levels (i.e., transmission level by the intermediary support in this thesis)

as demonstrated in Chapter 3 through 5.

Ensuring loose-coupling is also motivated by a desire to ensure separation of concern,

discussed throughout Chapter 1 through 3. In doing so, transmissions in any application

domain can be supported simply by intermediary support exposing the correct trans-

port standards (e.g., JMS or HTTP) and the declaration via annotation and predicate

mechanisms discussed in Chapter 3 through 5.

By adopting a message oriented middleware approach, and assuming participants will

eventually be online to exchange messages (Section 2.4), asynchronicity is supported

within intermediary support, better supporting the potential longevity of interactions

such as those in the B2B domain. Additional benefits of supporting interactions using

intermediaries as done in this thesis include the expression of asymmetric requirements by

interacting participants and the support for asymmetric transports within the generalised

middleware design.

The implementations in Chapter 5 server as proof of concept of the approaches dis-

cussed throughout the thesis and are demonstrated as functioning as expected (Section

5.3.4 and 5.4.4) and performing acceptably with regards to their impact in the chosen

application domain (i.e., B2B, Section 5.5).

The approach of providing intermediary support at lower levels (e.g., transport level)

allow the support o�ered to be tailored to other application domains relying on message

oriented middleware seamlessly. Similarly, the notion of altering execution at lower levels

to provide additional or altered functionality while maintaining higher level operation

may be applied beyond the message oriented middleware domain. For example, Platform

as a Service o�erings may be adapted to become Accountable Platform as a Service,

discussed in future work in Section 6.3.

181

6.2 Summary by Chapter Chapter 6

6.2 Summary by Chapter

This section summarises the chapters of this thesis.

Chapter 1 introduced the general problem area (supporting message oriented interac-

tions) and an application domain of such issues (B2B). The approach of using transpar-

ent intermediaries was introduced and discussed in the context of providing fairness and

accountability to B2B interactions.

Chapter 2 more thoroughly defined the B2B application domain including termino-

logy, assumptions, concerns, technical protocols and a survey of existing B2B standards

to motivate the pursuit of a lower level approach that was standards independent and

application domain agnostic (i.e., not just B2B). Related work was surveyed both in the

domain of supporting B2B interactions and supporting general message oriented inter-

actions to investigate suitable methods for ensuring transparency and loose-coupling.

Chapter 3 generalised the background and surveyed material to better understand how

all interactions could be supported (i.e., the smallest unit of message oriented interaction

that must be supported) in the general domain, and how such support could be applied

to all transmissions (both clear and opaque) using declaration mechanisms. B2B specific

property hierarchies for fairness, accountability and consistency were devised to be later

implemented as an example of providing intermediary support in the B2B domain (i.e.,

functional properties paired with technical protocols realised by support intermediar-

ies). Section 3.5 and 3.6 discussed supporting individual transmissions and declaration

mechanisms.

Chapter 4 discussed considerations for compatibility and ensuring transparency within

intermediary middleware and went on to propose components that could facilitate trans-

parent interception to be subsequently composed with components implementing specific

protocols to satisfy the functional properties they were mapped from. Configurations

for composition and deployment were discussed to demonstrate the flexibility of the

proposed design and previous work demonstrate to be instances of components imple-

182

6.3 Future Work Chapter 6

menting specific protocols.

Chapter 5 implemented proof of concept systems and evaluated them in terms of

functionality and performance to gauge how support is improved over previous work

(specifically over [Coo06, YCW+10, NZB04]) and what its e�ect on interactions in the

B2B domain might be (the comparison of median support time versus unsupported

transmission time).

6.3 Future Work

Section 2.11 discussed the various levels of delivery associated with cloud computing us-

age. Of these models, Platform as a Service provides a monitored execution environment

into which specially packaged applications are deposited to be automatically deployed

and executed (e.g., Google Application Engine). Following the theme of providing sup-

port at lower levels, it may be possible to provide an Accountable Platform as a Service

into which arbitrary applications are deployed. As the application makes use of the

features provided by the platform, additional functionality could also generate account-

ability evidence. All of this could occur transparently to the deployed service. This

represents an application of the work beyond the domain of message oriented middle-

ware.

The centralised cloud based implementation was implemented in two pieces, an inter-

mediary providing Accountability as a Service and boundary interceptors marshalling

incoming and outgoing communication. This presented the possibility to represent ex-

changes (or protocol executions) as resources using Restful architectures. This would

require well defined semantics for the resources and operations (i.e. the HATEOAS con-

straint discussed in [Fie00]). Similarly, protocols can be adapted for execution via HTTP

(although not requiring Restful architectural constraints) providing a well understood

and accessible representations through which participants may easily interact.

The centralised cloud implementation also prompted the exploration of domain spe-

183

6.3 Future Work Chapter 6

cific APIs to programatically drive conversations under specific B2B standards. The use

of the Scala language was suited to this. Such work would take conversations defined

in well-known B2B standards such as RosettaNet or ebXML and produce an API used

to drive them. For example, RosettaNet PIP 3A4 may be turned into an API that

capitalises on the names of the messages (e.g., SubmitPurchaseOrder) to provide more

intuitive method names (e.g., submitPurchaseOrder(RequiredItems)) and automate the

generation of RosettaNet messages and send them for delivery. This approach com-

pletely breaks transparency but does o�er the ability to hide technical details and allow

engagement in conversations using familiar terminology capitalising on domain specific

knowledge.

Another interesting problem is the possible calculation of a conversation’s structure

simply by observing transmissions between participants. That is, is it possible to de-

termine a conversation’s structure by observing transmissions and if so, can properties

then be attributed to that conversation based on its associated transmissions’ require-

ments. It may then be possible to associate transmissions with a calculated conversation

to determine potential requirements.

On a more technical level within the intermediary support itself, declaration mechan-

isms within the support could be refined to allow finger grains of expression (e.g., re-

quired versus desired properties) and specify whether certain characteristics are already

satisfied by specific criteria in intercepted transmissions (e.g., does this standard already

provide strong fairness?).

The satisfaction of consistency as property using synchronisation as discussed in

[MJSC07] are not applicable to all intercepted transmissions (e.g., if the contents of

a transmission are opaque), it would be preferable to find alternative techniques applic-

able to all interactions although this was beyond the scope of this thesis. Additionally,

techniques may exist for better ascertaining ideal points of synchronisation for a given

flow of execution (e.g., a conversation).

184

6.3 Future Work Chapter 6

The use of cloud computing prompts the requirement that service providers trust the

infrastructure upon which their services are deployed. Work is ongoing into ensuring

execution environments are trusted that must be integrated into any realistic o�ering

hoping to support real world interactions [SGR09, CS11]. Organisations cannot be

realistically expected to trust service providers who can provide no proof of trust in the

infrastructure upon which the services are deployed.

The capturing of trust as a property with three levels of granularity (full, semi and

none) may be inadequate for future requirements. It may be better to model trust as

some metric or heuristic (e.g., express trust a some probability p) [JsIB07]. This may be

of use when considering when it is worth invoking extra support versus when it is not.

For example, a su�cient probability of trust may allow the use of probabilistic protocols

for accountability and fairness.

The intermediary support could provide support for fairness through the support

for fair exchange protocols similar to those discussed by [VPG99]. These protocols

support the definition of item descriptions that can be used by a TTP to verify that

the items being exchanged are the expected items before passing the exchange items to

their respective recipients. Support for this was not included in this thesis as evidence

demonstrating accountability cryptographically binds the contents of the transmission

to its origin and receipt meaning there is proof any participant sent an unexpected or

invalid item. [VPG99] also discussed the modular composition of protocols from smaller

building blocks, this would be interesting in terms of dynamically composing protocols

with new previously unsolved combinations of characteristics.

Strano’s work, discussed in [Str09] and shown as an instance of deployment and com-

position configurations in Section 4.12, constitutes a service designed specifically to react

to events and how they a�ect current engaged contracts. That is, participants emit events

when they take an action (e.g., “I sent this type of message”), and a centralised contract

monitor evaluates this event against a contract. Contracts are modelled as EROP sets

185

6.3 Future Work Chapter 6

(electronic rights, obligations and prohibitions) which dictate the actions that can, must

and should never be taken. An issue with this work was that participants communicate

directly (e.g., A æ B and B æ A) and emit their own, untrusted, events. The work

could be adapted such that messages from A and B are intercepted by intermediary

support who is then responsible for generating and emitted trusted events to provide

irrefutable contract monitoring. This would entail determining the context of the inter-

cepted transmission to su�ciently advise some central (trusted by and independent to

all participants) monitor.

186

Bibliography

[AFG+10] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D Joseph, Randy H

Katz, Andrew Konwinski, Gunho Lee, and David A Patterson. A View of

Cloud Computing. Commun. ACM, 53(4):50–58, 2010.

[AMQ09] AMQP. AMQP A General-Purpose Middleware Standard, 2009.

[Aso98] N Asokan. Fairness in Electronic Commerce. PhD thesis, University of Wa-

terloo, June 1998.

[ASW96] N Asokan, Matthias Schunter, and Michael Waidner. Optimistic Protocols for

Multi-Party Fair Exchange. Research Report RZ2892, IBM Zurich Research

Lab, 1996.

[ASW98] N Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols for

optimistic fair exchange. In Proc. IEEE Symp. on Research in Security and

Privacy, pages 86–99, Los Alamitos, CA, USA, 1998.

[BBMS01] Adrian Baldwin, Yolanta Beres, Marco Casassa Mont, and Simon Shiu. Trust

Services: A Trust Infrastructure for E-Commerce. Technical Report HPL-

2001-198, Hewlett Packard Laboratories, Bristol, UK, 2001.

[CD04] Jan Cederquist and Muhammad Torabi Dashti. Formal Analysis of a Fair

Payment Protocol. In Proc. IFIP World Comp. Congress Workshop on Formal

Aspects in Security and Trust (FAST), Toulouse, France, 2004.

187

Bibliography Bibliography

[Coo06] Nick Cook. Middleware support for non-repudiable business-to-business inter-

actions. PhD thesis, Newcastle University, 2006.

[CRS06] Nick Cook, Paul Robinson, and Santosh K Shrivastava. Design and Imple-

mentation of Web Services Middleware to Support Fair Non-repudiable In-

teractions. Int. J. Cooperative Information Systems (IJCIS) Special Issue on

Enterprise Distributed Computing, 15(4):565–597, December 2006.

[CS96] Tom Co�ey and Puneet Saidha. Non-repudiation with mandatory proof of

receipt. ACM SIGCOMM Comp. Commun. Review, 26(1):6–17, January 1996.

[CS11] Christian Cachin and Matthias Schunter. A Cloud You Can Trust. IEEE

Spectrum, 2011.

[CSB03] Tom Co�ey, Puneet Saidha, and Peter Burrows. Analysing the Security of a

Non-repudiation Communication Protocol with Mandatory Proof of Receipt.

In Proc. 1st ACM Int. Symp. on Information and Communication Technolo-

gies, Dublin, Ireland, 2003.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed

Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546,

5746, 6176.

[DY83] Danny Dolev and Andy C Yao. On the Security of Public Key Protocols.

IEEE Trans. Inf. Theory, 29(2):198–208, 1983.

[EY80] Shimon Even and Yacov Yacobi. Relations among public key signature sys-

tems. Technical report, Computer Science Department, Technicon, Haifa,

Israel, January 1980.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft

Standard), June 1999. Updated by RFCs 2817, 5785, 6266, 6585.

188

Bibliography Bibliography

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irvine, 2000.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility

of Distributed Consensus with One Faulty Process. Journal of the ACM,

32(2):374–382, April 1985.

[FR97] Matthew Franklin and Michael Reiter. Fair Exchange with a Semi-Trusted

Third Party. In Proc. ACM Conf. on Comp. and Comm. Security (CCS),

Zurich, Switzerland, 1997.

[Gol99] Dieter Gollmann. Computer Security. John Wiley and Sons, 1999.

[GPV99] Felix Gärtner, Henning Pagnia, and Holger Vogt. Approaching a

formal definition of fairness in electronic commerce. Reliable Distrib-

uted Systems, 1999. Proceedings of the 18th IEEE Symposium on DOI -

10.1109/RELDIS.1999.805123, pages 354–359, 1999.

[HKVO07] Armin Haller, Paavo Kotinurmi, Tomas Vitvar, and Eyal Oren. Handling

heterogeneity in RosettaNet messages. In Proceedings of the 2007 ACM sym-

posium on Applied computing - SAC ’07, page 1368, New York, New York,

USA, March 2007. ACM Press.

[HNK02] James E Hanson, Prabir Nandi, and Santhosh Kumaran. Conversation Sup-

port for Business Process Integration. In Proc. 6th IEEE Int. Enterprise Dis-

tributed Object Computing Conf. (EDOC), Lausanne, Switzerland, 2002.

[Hof02] P. Ho�man. SMTP Service Extension for Secure SMTP over Transport Layer

Security. RFC 3207 (Proposed Standard), February 2002.

[Hor07] Morton J Horwitz. The Historical Foundations of Modern Contract Law.

Harvard Law Review, 87(5):917–956, October 2007.

189

Bibliography Bibliography

[HV04] T. Hansen and G. Vaudreuil. Message Disposition Notification. RFC 3798

(Draft Standard), May 2004. Updated by RFCs 5337, 6533.

[ISO89] ISO. Information Processing Systems - Open Systems Interconnection - Secur-

ity Frameworks for Open Systems - Basic Reference Model - Part 2: Security

Architecture. ISO 7498-2, 1989.

[JsIB07] Audun Jø sang, Roslan Ismail, and Colin Boyd. A survey of trust and reputa-

tion systems for online service provision. Decis. Support Syst., 43(2):618–644,

March 2007.

[Kle01] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),

April 2001. Obsoleted by RFC 5321, updated by RFC 5336.

[KM00] Steve Kremer and Olivier Markowitch. Optimistic non-repudiable information

exchange. In J. Biemond, (Ed.), 21st Symp. on Information Theory in the

Benelux, Werkgemeenschap Informatieen Communicatietheorie, pages 139—-

146, Enschede, Netherlands, 2000.

[KMZ02] Steve Kremer, Olivier Markowitch, and Jianying Zhou. An intensive survey of

fair non-repudiation protocols. Computer Communications, 25(17):1606–1621,

2002.

[Lev98] E. Levinson. The MIME Multipart/Related Content-type. RFC 2387 (Pro-

posed Standard), August 1998.

[MC09] Derek Mortimer and Nick Cook. CS-TR-1214: A Declarative Approach to

Configuring Business-to-Business Conversations. Technical report, Newcastle

University, Newcastle upon Tyne, 2009.

[MC10] Derek Mortimer and Nick Cook. Supporting accountable business to business

document exchange in the cloud. In 2010 IEEE International Conference

190

Bibliography Bibliography

on Service-Oriented Computing and Applications (SOCA), pages 1–8. IEEE,

December 2010.

[MGK02] Olivier Markowitch, Dieter Gollmann, and Steve Kremer. On fairness in ex-

change protocols. In Proc. 5th Int. Conf. on Information Security and Crypto-

logy (ISISC 2002), Springer LNCS 2587, pages 451–465, Seoul, Korea, 2002.

[Mit01] John Mitsianis. A new approach to enforcing non-repudiation of receipt. Ma-

nuscript, 2001.

[MJS06] Carlos Molina-Jimenez and Santosh K Shrivastava. Maintaining Consistency

Between Loosely Coupled Services in the Presence of Timing Constraints and

Validation Errors. In Proc. IEEE European Conf. on Web Services (ECOWS),

pages 148–157, Zurich, Switzerland, 2006.

[MJSC07] Carlos Molina-Jimenez, Santosh K Shrivastava, and Nick Cook. Implementing

Business Conversations with Consistency Guarantees using Message-oriented

Middleware. In Proc. 11th IEEE Int. EDOC Enterprise Computing Conf.,

pages 51–62, Annapolis, MD, USA, 2007.

[MJSW05] Carlos Molina-Jimenez, Santosh K Shrivastava, and John Warne. A Method

for Specifying Contract Mediated Interactions. In Proc. 9th IEEE Int. EDOC

Enterprise Computing Conf., Enschede, Netherlands, 2005.

[MK01] Olivier Markowitch and Steve Kremer. An optimistic non-repudiation protocol

with transparent trusted third party. In Information Security Conference

2001, Lecture Note in Computer Science, Berlin, Germany, 2001. Springer.

[MS01] Olivier Markowitch and Shahrokh Saeednia. Optimistic Fair Exchange with

Transparent Signature Recovery. In 5th International Conference, Financial

Cryptography 2001, Lecture Notes in Computing Science, volume 2339, pages

339 – 350, 2001.

191

Bibliography Bibliography

[MU00] Naftaly Minsky and Victoria Ungureanu. Law-Governed Interaction: A Co-

ordination and Control Mechanism for Heterogeneous Distributed Systems.

ACM Trans. Software Eng. and Methodology, 9(3):273–305, 2000.

[NZB04] Aleksandra Nenadic, Ning Zhang, and Stephen Barton. FIDES - A Middleware

E-Commerce Security Solution. In Proc. 3rd European Conf. on Inf. Warfare

and Security (ECIW), London, UK, 2004.

[OAS01a] OASIS. ebXML Business Process Specification Schema. OASIS ebXML Spe-

cifications, July 2001.

[OAS01b] OASIS. ebXML Catalog of Common Business Processes. OASIS ebXML

Specifications, July 2001.

[OAS01c] OASIS. ebXML Technical Architecture Specification. OASIS ebXML Spe-

cifications, February 2001.

[OAS02] OASIS. Collaboration-Protocol Profile and Agreement Specification. OASIS

ebXML Specifications, September 2002.

[OAS07a] OASIS. ebXML Messaging Services 3.0 Conformance Profiles. OASIS ebXML

Specifications, 2007.

[OAS07b] OASIS. ebXML Messaging Services Version 3.0: Part 1, Core Features. OASIS

ebXML Specifications, October 2007.

[OAS11] OASIS. AS4 Draft Conformance Profile of ebMS 3.0. OASIS ebXML Specific-

ations, 2011.

[Ode10] Martin Odersky. The Scala Language Specification, 2010.

[Ope11a] Open Applications Group. Open Applications Group Integration Specification

9.5.1, 2011.

192

Bibliography Bibliography

[Ope11b] Open Travel Alliance. OpenTravel Schema 2011B, 2011.

[PG99] Henning Pagnia and Felix Gärtner. On the impossibility of fair exchange

without a trusted third party. Technical Report TUD-BS-1999-02, Dept. of

Computer Science, TU Darmstadt, 1999.

[PR85] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (INTERNET

STANDARD), October 1985. Updated by RFCs 2228, 2640, 2773, 3659, 5797.

[PVG03] Henning Pagnia, Holger Vogt, and Felix Gärtner. Fair Exchange. The Com-

puter Journal, 46(1):55–75, 2003.

[Res00] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000. Updated

by RFC 5785.

[Ros02] RosettaNet. RosettaNet Implementation Framework: Core Specification, Feb-

ruary 2002.

[Ros09] RosettaNet. RosettaNet Overview: Clusters, Segments and Pips, January

2009.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley and Sons, 2nd edition,

1996.

[Sch00] Matthias Schunter. Optimistic Fair Exchange. PhD thesis, Universität des

Saarlandes, Saarbrücken, Germany, 2000.

[SGR09] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. Towards Trusted

Cloud Computing. In Proceedings of the 2009 conference on Hot topics in cloud

computing, San Diego, CA, USA, 2009. USENIX Association.

[SHF02] David Solo, Russell Housley, and Warwick Ford. Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile, 2002.

193

Bibliography Bibliography

[SRC84] Jerome Saltzer, David Reed, and David Clark. End-to-End Arguments in

System Design. ACM Trans. Computer Systems (TOCS), 2(4):277–288, 1984.

[SSCE07] James Skene, Allan Skene, Jason Crampton, and Wolfgang Emmerich. The

monitorability of service-level agreements for application-service provision. In

Proceedings of the 6th international workshop on Software and performance -

WOSP ’07, page 3, New York, New York, USA, February 2007. ACM Press.

[Str09] Massimo Strano. Contract Specification for Compliance Checking of Business

Interactions. PhD thesis, Newcastle University, 2009.

[Sv10] Chris Smith and Aad van Moorsel. Mitigating provider uncertainty in service

provision contracts. Economic Models and Algorithms for Distributed Systems,

pages 143–159, 2010.

[SW07] Radu Sion and Marianne Winslett. Regulatory-compliant data management.

Very Large Databases, pages 1433–1434, 2007.

[SWR97] Dennis D Steinauer, Shukri A Wakid, and Stanley Rasberry. Trust and trace-

ability in electronic commerce. StandardView, 5(3):118–124, September 1997.

[Tan03] Andrew Tannenbaum. Computer Networks. Prentice Hall, 2003.

[TMRS02] Stefan Tai, Thomas Mikalsen, Isabelle Rouvellou, and Stanley Sutton. Condi-

tional messaging: extending reliable messaging with application conditions. In

Distributed Computing Systems, 2002. Proceedings. 22nd International Con-

ference on DOI - 10.1109/ICDCS.2002.1022249., pages 123–132, 2002.

[Uni11] United Nations Economic Commission for Europe. UN/EDIFACT D.11A,

2011.

[VPG99] Holger Vogt, Henning Pagnia, and Felix Gärtner. Modular Fair Exchange

194

Bibliography Bibliography

Protocols for Electronic Commerce. In Proc. IEEE Annual Comp. Security

Applications Conf., pages 3–11, Phoenix, AZ, USA, 1999.

[Wor00] World Wide Web Consortium. SOAP with Attachments, 2000.

[Wor02] World Wide Web Consortium. XML Encryption Syntax and Processing, 2002.

[Wor08] World Wide Web Consortium. XML Signature Syntax and Processing (Second

Edition), 2008.

[YC04] Aydan Yumerefendi and Je�rey Chase. Trust but Verify: Accountability for

Network Services. In Proc. 11th ACM SIGOPS European Workshop, Leuven,

Belgium, 2004.

[YCW+10] Jinhui Yao, Shiping Chen, Chen Wang, David Levy, and John Zic. Account-

ability as a Service for the Cloud. In 2010 IEEE International Conference on

Services Computing, pages 81–88. IEEE, July 2010.

[ZG96a] Jianying Zhou and Dieter Gollmann. A fair non-repudiation protocol. IEEE

Symposium on Security and Privacy, Research in Security and Privacy, IEEE

Computer Society, Technical Committee on Security and Privacy, IEEE Com-

puter Security Press, pages 55–61, 1996.

[ZG96b] Jianying Zhou and Dieter Gollmann. Observations on non-repudiation. In

Advances in Cryptology—ASIACRYPT’96, Springer LNCS 1163, pages 133–

144, Kyongju, Korea, 1996.

[ZG97a] Jianying Zhou and Dieter Gollmann. An e�cient non-repudiation protocol. In

The 10th Computer Security Foundations Workshop, IEEE Computer Society

Press, Silver Spring, pages 126–132, 1997.

[ZG97b] Jianying Zhou and Dieter Gollmann. Evidence and non-repudiation.

J.˜Network and Comp. Applications, 20(3):267–281, 1997.

195

Bibliography Bibliography

[Zho01] Jianying Zhou. Non-repudiation in Electronic Commerce. Artech House Com-

puter Security Series, 2001.

196

	Introduction
	B2B Interactions
	Supporting B2B Interactions
	Support Intermediaries
	Transparent Support Intermediaries

	Intermediary Accountability Support
	Accountability as a Functional Property
	When to Provide Accountability Support?
	Intercepted Message Flow
	Composed Intermediary Accountability Support
	Summary

	Objectives of Work
	Summary

	Thesis Structure and Contents

	Background
	B2B Terminology
	Organisational Identity
	B2B Terminology
	Conversations, Agreements and Contracts

	Levels of Abstraction
	Message and Signal Types
	Conversation Outcome Types

	B2B Support Service Types
	Assumptions
	Business Level Assumptions
	Technical Level Assumptions

	Concerns when Supporting B2B Interactions
	Trust Concerns
	Fairness Concerns
	Accountability Concerns
	Accountability and Fairness: Why Both?
	Consistency Concerns

	Technical Protocols
	Primitives and Capabilities
	Time-stamping: Time-stamping Authorities
	Accountability: Non-repudiation Protocols
	Protecting Against Key Revocation

	Consistency: Synchronisation Protocols

	Survey of B2B Standards
	Surveyed Documents

	Survey: ebXML
	Terminology and Stack
	Message Exchange Patterns
	Security
	Reliability and Timeliness
	Accountability Support
	Fairness Support
	Extensibility Support
	Summary

	Survey: Domain Specific B2B Standards
	Terminology and Stack
	Message Exchange Patterns
	Security
	Reliability and Timeliness
	Accountability Support
	Fairness Support
	Extensibility Support
	Summary

	Summary of B2B Standards Survey
	Cloud Computing
	Trust, Privacy and Compliance

	Related Work
	Law Governed Interaction
	Conversation Support for Business Process Integration
	FIDES Fair Exchange System
	Interceptor Based support for Non-repudiation Protocols
	Accountability as a Service for the Cloud
	Extending Messaging with Application Conditions
	Summary of Related Work

	Summary

	Generalisation of Survey and Background to Enable Support
	Generalised Message Exchange Patterns
	Generalised Business Requirements
	Reliability
	Timeliness
	Security
	Accountability
	Fairness
	Consistency
	Summary of Generalised Requirements

	Fairness, Accountability and Consistency as Functional Property Hierarchies
	Expressing Levels of Trust
	Fairness Hierarchy
	Accountability Hierarchy
	Partial Consistency Hierarchy

	Declaration Mechanisms
	Generalised B2B Abstractions
	Intermediary Support Abstractions
	Declaration via Predicates
	Declarations via Annotation
	Asymmetry and Decoupling of Declarations

	Discussion: Supporting Individual Transmissions
	Side Discussion: Optimisations
	Side Discussion: Fairness for Individual Transmissions
	Side Discussion: Semantics of Accountability Evidence

	Discussion: Predicate Declarations
	Side Discussion: Opaque Transmissions
	Side Discussion: Extracting Knowledge versus Raw Content Matching

	Summary

	Designing and Discussion of Intermediary Support
	Conceptual Middleware Positioning
	Middleware Layers of Abstraction
	Conversation and Exchange Pattern Layer
	Declaration and Properties Layer
	Protocol Execution Layer

	Communication With and Within the Intermediary Support
	Interception and Encapsulation of Transmissions
	Communication within the Intermediary Support

	Assumptions and Compatibility Between Participants
	Both Participants employ Support
	One Participant employs Support
	Neither or Other Support

	Intermediary Impact upon Deadlines and Timeouts
	Handling Events Across Layers of Abstraction
	Tracking and Automating Behaviour
	Notification and Manual Behaviour Triggering

	When to Maintain or Relax Transparency
	Maintaining at all Costs
	Relaxing for Benefits to Interacting Organisations
	Summary

	Design of an Organisation's Intermediary
	Middleware Components

	Supporting Middleware Components
	Composing Components to Provide Intermediary Support
	Composition to Enable Interception and Generalised Protocol Execution
	Composition to Enable Fairness and Accountability Support
	Potential Composition to Enable Consistency Support
	Summary

	Deployment of Middleware Components
	Deployment within Supported Organisations
	Deployment within Security Service Providers

	Discussion: Previous Work as Instances of the Generalised Design
	Instances Chosen for Implementation
	Summary

	Intermediary Middleware Implementations
	A Common Business Message Format
	Common Declarations via Annotations and Predicates

	Coffey-Saidha Protocol Definition
	Implementation 1: Decentralised JMS
	Message Processors and Groups
	Signal and Audit Topics
	Fairness and Accountability Support
	Testing
	Evaluation and Summary

	Implementation 2: Centralised, Cloud (AWS)
	Interaction with the Service
	Message Processing
	Centralised Support Components
	Testing
	Evaluation and Summary

	Implementation 3: Centralised, Cloud (AWS) with Timing Measurements
	Measurements Taken
	Results
	Centralised Support Costs
	Estimating Decentralised Support Costs
	Evaluation and Summary

	Summary

	Summary and Future Work
	Summary of Contributions
	Summary by Chapter
	Future Work

	Bibliography

