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Abstract 

 
Foraging behaviour of the European Starling Sturnus vulgaris. 

A case study to explore the potential implications of climate 

change on ground-probing birds 

 

Caroline M. Rhymer 

 

A thesis submitted for the degree of Doctor of Philosophy, December 2012, 

School of Biology, Newcastle University 

 

It is well established that farmland bird population declines are strongly linked 

to the land use and management changes associated with increased 

agricultural intensification. In future, climate change is predicted to be an 

increasingly important driver of bird population changes. A substantial number 

of studies have investigated the large scale impacts of climate change on 

species’ distribution and abundance. However, few have examined in detail 

specific ecological impacts of climate change on bird demographics that would 

allow predictions of the effects of climate on bird populations.   

 Here I show that below-ground prey form a key part of the diet, of my 

study species, the Starling Sturnus vulgaris, on UK grassland in both the 

breeding and non-breeding season. I then show that soil moisture mediates 

intake rates of below-ground prey using field experiments on wild-caught 

Starlings. Intermediate soils provided the best foraging opportunities with both 

saturated and dry soils being suboptimal 

 I then linked delivery of below-ground prey to reproductive success. A 

study of adult provisioning of nestlings (n= 42 nests), over a four year period, 

established that the delivery of below-ground prey, specifically Tipulidae 

larvae, was mediated by changes in soil moisture and linked to Starling 

reproductive success via changes in fledgling survival.  

 Analysis of fledgling success at a range of sites (n=132) provided 

evidence that an increase in the mean spring (April-June) soil moisture deficit 

over a twenty year period was a significant driver of Starling population 

dynamics in Britain; even after controlling for temporal changes in starling 



 
 

xi 

populations (likely to be linked to agricultural intensification). I conclude by 

discussing different management options to alter soil moisture levels on 

grassland to benefit both ground-probing birds and the impacts on a range of 

other ecosystem services (e.g. reducing flood risk). 
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Chapter 1: General Introduction 

 

1.1 Main study species: European Starling Sturnus vulgaris 

 

The European Starling Sturnus vulgaris L. (hereon referred to as the Starling) is 

a medium sized passerine (c. 75-80g) with glossy black plumage and an 

iridescent mauve/green sheen (Cramp& Perrins 1994, Feare 1984) found 

throughout most of the Western Palaearctic. The British breeding population is 

resident and numbers approximately eight to ten million individuals (1994 – 

2000) (Robinson et al. 2002, 2005). It is augmented in winter by the arrival of 

millions of migrants from northern and eastern populations (Baillie et al. 2002, 

Cramp & Perrins 1994, Robinson et al. 2002, 2005). Starlings are gregarious 

birds that feed in small flocks numbering tens to hundreds, foraging on the 

ground in areas of short grass or other open vegetation (Brownsmith 1977) 

searching for their prey by pushing their closed bill into the top few centimetres 

of the soil (probing) then widening the hole by opening the bill during repeated 

stabs into the hole (rooting) (Feare 1984). Reasonably dated descriptive studies 

have reported that Starlings will preferentially consume soil and ground-dwelling 

invertebrates, but switch to soft fruit and seeds when their preferred prey, 

leatherjackets (tipulid larvae) and earthworms, are not available (Dunnet 1956), 

particularly in the autumn (Tinbergen 1981).  Tipulid numbers are variable from 

year to year, making trends difficult to discern (Wilson et al. 1999). However, 

soil invertebrate biomass particularly that of tipulids is generally highest in areas 

of permanent pasture, where soil disturbance is minimal (Paoletti 1999, 

Robinson et al. 2005). Foraging birds are strongly associated with areas of 

grassland pasture, primarily those with high densities of invertebrates 

(Whitehead et al. 1995, Feare 1984). 

 Starlings are semi-colonial, hole-nesting passerines (Feare 1984). They 

are known to be highly site faithful, returning to the same general area each 

year to breed (Feare 1984). Adults generally do not breed until they are two 

years old, but in many populations, large numbers of non-breeding individuals, 

especially males, are found throughout the breeding season (Stewart 1973, 

Sandell & Diemer 1999). Although these floaters do not defend a nest site, they 

often remain within a specific area possibly to gain information on the location 
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of potential future breeding sites (Tobler & Smith 2004). Starlings demonstrate 

a high degree of breeding synchrony (Feare 1984), but with some variation both 

between different populations (Pinxten et al. 1990, Smith et al. 1994), and 

within the same population (Feare 1984, Smith & Sandell 1998). In the UK, the 

mean laying date of Starlings advanced between 1968 and 2008, from the 27th 

to the 22nd April (http://www.bto.org/birdtrends2010/wcrstarl.shtml#population). 

Starlings lay 4-6 eggs and fledging occurs at around 21 days. Parents continue 

to feed the young for two weeks until they are independent. A second clutch 

may be laid 40 to 50 days after the first clutch (Crick et al. 2002). 

 A breeding colony will feed communally within a home range. Parent 

Starlings feeding nestlings are central place foragers (Orians & Pearson 1979, 

Kacelnik 1984) and mostly limit their foraging to areas within 500 m of their nest 

(Feare 1984).  The foraging day consists of up to 250 round trips to and from 

the nest site after a load of food has been collected for the young (Tinbergen 

1981). Distance to foraging grounds affects load size; as distance increases so 

does the food load transported by the provisioning adult (Kacelnik 1984).  Prey 

type, size and  percentage in the diet is influenced by age, due to changes in 

prey availability, developmental requirements of nestlings and nestling demand 

(Dunnet 1955, Westerterp 1973, Feare 1984), and brood size (Tinbergen & 

Drent 1980, Tinbergen 1981).Parents feed small and normal-sized broods 

different prey species with different consequences for the nestlings (Tinbergen 

1981).  

 Soon after becoming independent of their parents, first brood juveniles 

join communal roosts, leaving the parents to rear a second brood (Feare 1984). 

It has been suggested that the synchronisation of breeding is to allow the 

immediate formation of juvenile flocks after fledging (Dunnet 1955). Post-

breeding dispersals lead to geographical and sometimes habitat separation 

between juveniles and adults and may reduce competition between the age 

groups for scarce food resources in summer (Feare 1984). Invertebrates 

continue to be eaten in summer but where soft fruits are available they become 

an important food source, especially for juveniles. In Britain, large flocks of 

juveniles from nearby colonies, sometimes numbering thousands, appear on 

upland heather and rough grazing moors and on coastal salt marshes from late 

June through August-September (Feare & Douville de Franssu 1992). In winter, 

Starlings are omnivorous, eating invertebrates, grain and stock feed and they 
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also scavenge food scraps and feed at refuse tips and within wintering areas, 

behaviour of Starlings can vary from philopatry (Feare & Wadsworth 1981) to 

movements ranging over many kilometres within short time periods (up to 

50km) (Summers & Cross 1987). Regular flight lines are used between feeding 

sites and roosts. 

 Currently, Starlings are Red-listed in the UK owing to their breeding 

population size experiencing a severe ‘longer- term’ decline since 1969 (i.e. 

since the first Birds of Conservation Concern review) and declining by more 

than 50% during the past 25 years (Gregory et al. 2002, 2004; Eaton et al. 

2009).Populations across northern and western Europe have been declining at 

an unprecedented rate since the 1980s (Baillie et al. 2002, Robinson et al. 

2002, PECBMS 2011). In the UK, European Starling numbers have decreased 

throughout all of the main habitats they reside in (woodland, farmland and 

urban), especially woodland (Robinson et al. 2002, 2005). The declines have 

been greatest in the south and west of Britain and trends on farmland, which 

holds half of Britain’s Starlings, differ with respect to farm type, with the 

steepest declines in regions of pastoral and mixed arable-pastoral farming 

(Robinson et al. 2002, 2005).  As the population has dropped, the numbers of 

fledglings per breeding attempt has increased; clutches are now larger and 

rates of nest loss have fallen. It is thought that this decline in the overall 

population is a result of decreasing survival rates, particularly of first-year 

overwintering birds (Freeman et al. 2002, 2007, MacLeod et al. 2008). Despite 

the range of studies already targeting Starlings there is no clear evidence of 

why their populations are currently declining. This thesis will examine a 

previously neglected issue: the role of soil conditions (specifically soil moisture) 

on Starling populations.  

 A range of species are also likely to be affected in similar ways to 

Starlings because they also probe the ground for food. For example, there is a 

range of bird species that feed predominantly on soil invertebrates that are also 

associated with lowland grasslands and have been experiencing similar 

population declines (e.g. waders such as Common Snipe Gallinago gallinago L. 

- Green 1986; Common Redshank Tringa totanus L. and Northern Lapwing 

Vanellus vanellus L. - Baines 1990, Ausden et al. 2003, Tucker 1992; European 

Golden Plover Pluvialis apricaria L. - Pearce-Higgins & Yalden 2003, Fuller 

&Youngman 1979; corvids such as Chough Pyrrhocorax pyrrhocorax L. - 
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McCracken et al. 1992 and passerines such as Song Thrush Turdus philomelos 

L. - Peach et al. 2004 a, b). Decline of bird species associated with lowland 

farmland is a major conservation concern and is largely attributed to the land 

use and management changes associated with agricultural intensification (e.g. 

Chamberlain et al. 2000, Donald et al. 2001, Gregory et. al. 2004). In the future, 

there are further substantial effects predicted from climate change on species’ 

distribution and abundance (Parmesan & Yohe 2003, Root et al. 2003, Thomas 

et al. 2004, Hickling et al. 2006). 

 

1.2 Agricultural Intensification and Farmland Bird Declines 

 

Although I am not specifically exploring changes in soil conditions due to 

agricultural intensification (e.g. land drainage) it is important to place my study 

in context of wider changes on farmland over recent decades. I outline these 

briefly below and describe how changes have influenced farmland birds that live 

predominantly on grassland. 

 Agricultural intensification in Britain since the second World War (WWII) 

has been paralleled with a reduction in biodiversity and a decline in abundance 

across many taxa (Robinson & Sutherland 2002). There is much evidence to 

suggest a causal link between changing agricultural practices and farmland bird 

declines on both arable and pastoral farming systems (e.g. Krebs et al. 1999, 

Wilson et al. 1999, Chamberlain et al. 2000, Donald et al. 2001, Vickery et al. 

2001, Newton 2004). Grassland accounts for over 65% of the area of 

agricultural land in Britain, occupying approximately seven million hectares, and 

most is agriculturally improved or semi-improved. The mechanisms by which 

changes in management have affected ground-probing bird populations are 

diverse. Population effects could arise from reduced breeding productivity 

(Siriwardena et al. 2000), reduced survival (Siriwardena et al.1998) or a 

combination of the two. In terms of reduced foraging opportunities there are 

known links to the loss of permanent pasture and the intensification of livestock 

management (Robinson et al. 2005). Widespread land drainage over the last 

200 years has resulted in a reduction in the quantity of grassland through 

conversion of wetland habitats to arable farmland. Subsequent intensive 

management of the remaining grassland resource means that it is of limited 

quality for ground-probing birds through reductions in suitable nesting habitat, 
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direct effects of trampling on nests/chicks, soil degradation and compaction and 

reduced abundance, availability and access to invertebrate prey. The 

management and productivity of improved grassland has been transformed 

during the period of agricultural intensification by an increase in use of fertilisers 

and insecticides (Chamberlain et al. 1999, Chamberlain et al. 2000), changes in 

stocking densities and by changes in crop type, from hay to silage (Fuller & 

Gough 1999, Fuller 1987, Stoate 1996). Specifically, access and abundance to 

soil dwelling invertebrate prey is reduced through the use of fertilizers that 

increase soil moisture deficit, thus increasing soil penetration resistance 

(indication of the difficulty a bird might be expected to have when probing the 

soil to forage) through increased evapotranspiration (Garwood 1988) and the 

widespread spraying of grass fields to control Diptera spp. larvae (Campbell & 

Cooke 1997, Garthwaite et al. 1997, Vickery et al. 2001). Changes in sward 

structure through the decline in cattle and subsequent increase in sheep 

numbers (Chamberlain et al. 2000, Fuller & Gough 1999, Devereux et al. 2004), 

the increased use of fertilizer (Paoletti 1999) and the change in crop type from 

hay to silage (Stoate 1996) affect nest site selection and breeding success 

(Wilson et al. 2005). Sward changes also affect physiological demands of 

thermoregulation and locomotion (Walsberg 1985), access and abundance of 

food (e.g. Wilson et al.1999) and perceived predation risk (Butler & Gillings 

2004, Devereux et al. 2006, Whittingham & Evans 2004). 

 

1.3 Climate Change 

 

Climate change is likely to have a significant impact on the availability of 

suitable feeding habitat for species that probe the ground for their food as a 

result of both drought in the spring/summer and waterlogged soils in the 

autumn/winter (Hulme et al. 2002, Huntley et al. 2007). Soil conditions are likely 

to affect both below-ground invertebrate populations and access to them by 

their predators (i.e. ground-probing birds). Dry soil conditions can result in the 

death of invertebrate larvae, depending on the time of year (McCracken et al. 

1995), and, for example, force earthworms (Lumbricidae spp.) to descend 

deeper into the soil, thus reducing prey availability. Conversely, prolonged 

flooding results in invertebrate prey that are accessible but at low abundance 

because excessive water-logging reduces populations (McCracken et al. 1995, 
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Plum 2005).  Under the high emissions scenario, annual moisture content of 

soils is liable to decrease by 10-20% across the UK by the 2080s, with 20- 50% 

reductions in average summer soil moisture content occurring in southeast 

England compared with a 0-20% in the northwest. Winter soil moisture contents 

are expected to increase by around 4% in parts of Wales and southwest 

England, and by 4-10% in Scotland.  However, higher temperatures in winter 

are expected to result in reductions of winter soil moisture content (up to 10%), 

particularly in the southeast, rather than increases (Bisgrove & Hadley 2002). 

There is already some evidence linking soil moisture changes with population 

declines. For example, the timing and spatial distribution of Song Thrush 

population decline is consistent with the pattern of land drainage in Britain 

(Peach et al. 2004b). Although this does not imply causation, it is important to 

determine how changes in soil moisture caused by climate change may alter 

population levels of species of conservation concern in order to inform land 

management policy.  

 A number of studies have investigated the large scale impacts of climate 

change on species’ distribution and abundance (e.g. Thomas et al. 2004). 

However, few have examined in detail specific ecological impacts of climate 

change on bird demographics that would allow predictions of the effects of 

climate on bird populations (e.g. Great Tit Parus major Cresswell & McCleery 

2003, Golden Plover Pearce-Higgins et al. 2010).  Here I use the Starling as 

study species to explore the links between changes in soil moisture and 

population changes in ground-probing birds. Starlings are ideally suited as a 

model species for studying ground-probing birds for a number of reasons. They 

can be kept in captivity and are hole-nesting: both of which permit detailed 

studies via captive experiments and nest cameras respectively (see Chapters 

2-4). They inhabit and forage on farmland grassland, thus enabling us to assess 

the mechanisms by which climate change may affect farmland birds. They 

forage on soil and surface invertebrates in common with other grassland 

species (e.g. thrushes Turdus spp.) and feed in a similar manner to other guilds 

(e.g. waders). 
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1.4 Aims of thesis 

 

1. Examine the effects of experimentally manipulated soil moisture on 

 Starling foraging success (Chapter 2). 

2. Confirm the importance of below-ground prey, specifically Tipulidae 

larvae, in the diet of nestling Starlings on farmland (Chapter 3). 

3. Determine the effects of natural variation in soil moisture on nestling 

Starling diet composition and Tipulidae larvae provisioning on fledging 

success (Chapter 4). 

4. Examine the correlative effects of changes in soil moisture deficit on 

Starling breeding populations over a long term period (1981-2000) over a 

wide spatial scale (Chapter 5). 

5. Review management options that could alter habitat quality for farmland 

birds that rely on probing the ground for their food and link these to 

ecosystem service provision (e.g. flood mitigation) (Chapter 6). 

 

1.5 Thesis outline 

 

Chapter 2 examines the effect of soil penetration resistance on the foraging 

behaviour and success of Starlings. There was a strong negative correlation 

between penetration resistance and soil moisture content. Trial field plots were 

manipulated to produce a range of soil moisture levels by protecting them from 

direct rainfall and water flow for different periods of time. Foraging observations 

were conducted on trios of captive Starlings, one focal and two companions, in 

a purpose-built wire mesh bottomless cage. 

 Chapter 3 established the importance of below-ground prey, specifically 

Tipulidae larvae, in the diet of nestling Starlings on farmland. This chapter also 

examined the effects of brood size variation and nestling age on diet 

composition through the observation of parental food provisioning at four 

breeding colonies at John Krebs Field Station, Wytham, Oxfordshire, UK, over a 

four year period, using nestbox video recorders. Findings from this chapter 

were published in Bird Study in 2012.  

 Chapter 4 related nestling food provisioning, specifically provisioning of 

Tipulidae larvae, and fledgling survival at one colony to natural variations in soil 

moisture content in the area surrounding the nest sites. Soil moisture content 
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data were supplied by the Environmental Change Network from an automatic 

weather station situated at the field station. Soil moisture was found to alter 

fledgling survival with intermediate levels of soil moisture linked to higher 

reproductive output. 

 Chapter 5 examined the effect of decreases in soil moisture on Starling 

populations at a national scale, using Met Office soil moisture deficit data and 

British Trust for Ornithology Common Bird Census data. The chapter firstly 

investigated changes in soil moisture deficit (the amount of water in millimetres 

needed to bring the soil moisture content back to field capacity) since the 1980s 

and then explored the correlative effects of soil moisture deficit changes on 

Starling breeding populations. This chapter provides evidence linking long-term 

changes in soil moisture to Starling population changes and provides the first 

evidence of a direct link between climate change and Starling population 

declines.  

 In Chapter 6, I investigated the evidence linking soil moisture, foraging 

by grassland birds and their macro-invertebrate prey and population changes 

with soil moisture change. This evidence was then used to assess the potential 

linkage between ecosystem services (e.g. flood mitigation) and habitat 

management for grassland birds that derive the majority of prey from below-

ground soil invertebrates. Data were limited, particularly for non-wading 

species; therefore the study focused mainly on waders. Findings were 

presented at the BOU’s Lowland Farmland Birds 3: Delivering Solutions in an 

Uncertain World Conference in 2009 and published in Ibis: The International 

Journal of Avian Science in 2010.  

 I conclude with Chapter 7 which sums up the main finding of the thesis 

and provides suggestions for future research. 
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2.0 Abstract 

 

Capsule Starling intake rates of below-ground prey were highest on soils with 

intermediate soil moisture levels, with lower levels on saturated and drier soils.  

Aims To examine the effects of experimentally manipulated soil moisture on 

Starling foraging success. 

Methods We observed the foraging success of 25 wild-caught captive Starlings 

on outdoor grassland enclosures at a range of soil moisture levels during the 

autumn and winter. 

Results On saturated soils, the number and percentage of probes to the 

ground (roots) that resulted in prey capture had a curvilinear relationship with 

decreasing soil moisture. The number and percentage of successful roots 

initially increased as the soil became less saturated then decreased as the soil 

continued to dry. 

Conclusion A trade-off exists between soil moisture, prey abundance and 

accessibility: saturated soils are easy to access but have less prey.  
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2.1 Introduction 

 

In the UK, a major conservation concern is the decline of bird species 

associated with lowland farmland. The decline is largely attributed to the land 

use and management changes associated with agricultural intensification (e.g. 

Chamberlain et al. 2000, Donald et al. 2001, Gregory et. al. 2004). In the future, 

there are further substantial effects predicted from climate change on species’ 

distribution and abundance (Parmesan & Yohe 2003, Root et al. 2003, Thomas 

et al. 2004, Hickling et al. 2006). Extinction risks will be higher if locations of 

suitable climate do not coincide with other essential resources, such as food 

(Thomas et al. 2004, Huntley et al. 2007).  

  A number of bird species associated with lowland farmland grassland 

feed predominantly on soil-dwelling invertebrates (e.g. waders such as 

Common Snipe Gallinago gallinago L. - Green 1986; Common Redshank 

Tringa totanus L. and Northern Lapwing Vanellus vanellus L. - Baines 1990, 

Ausden et al. 2003; European Golden Plover Pluvialis apricaria L. - Pearce-

Higgins & Yalden 2003; corvids such as Chough Pyrrhocorax pyrrhocorax L. - 

McCracken et al. 1992 and passerines such as Song Thrush Turdus philomelos 

L. - Peach et al. 2004 a, b and European Starlings Sturnus vulgaris - Dunnet 

1955, Tinbergen 1981, Rhymer et al. 2012). For most soils, raised ground water 

levels keep the soil surface moist; decreasing penetration resistance (the 

difficulty a bird may be expected to have when probing the ground) (Gerard 

1967, Green et al. 2000) and increasing the abundance and accessibility of soil-

dwelling invertebrates (e.g. earthworms) in the top layer (e.g. Milsom et al. 

2000). Climate change is likely to have a significant regional impact on ground 

water levels and the availability of suitable feeding habitat for these species 

(Hulme et al. 2002), as a result of both drought in the spring/summer and 

waterlogged soils in the autumn/winter. Under the high emissions scenario, 

annual moisture content of soils is liable to decrease by 10-20% across the UK 

by the 2080s, with 20- 50% reductions in average summer soil moisture content 

occurring in southeast England compared with a 0-20% in the northwest. Winter 

soil moisture contents are expected to increase by around 4% in parts of Wales 

and southwest England, and by 4-10% in Scotland.  However, higher 

temperatures in winter are expected to result in reductions of winter soil 

moisture content (up to 10%), particularly in the southeast, rather than 
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increases (Bisgrove & Hadley 2002). There is already some evidence linking 

soil moisture with population declines. For example, the timing and spatial 

distribution of Song Thrush population decline is consistent with the pattern of 

land drainage in Britain (Peach et al. 2004b). Although this does not imply 

causation, it is important to determine how changes in soil moisture caused by 

climate change may alter population levels of species of conservation concern 

in order to inform land management policy. 

 Here we focus on a model species, the Starling, that has undergone 

substantial declines in the UK (Robinson et al. 2002, 2005) and Europe 

(PECBMS 2010) since the 1980s. Currently, Starlings are Red-listed in the UK 

owing to their breeding population size experiencing a severe ‘longer- term’ 

decline since 1969 (i.e. since the first Birds of Conservation Concern review) 

and declining by more than 50% during the past 25 years (Gregory et al. 2002, 

2004; Eaton et al. 2009). It is thought that this decline is a result of decreasing 

survival rates, particularly of first-year birds (Freeman et al. 2002, 2007). 

 This study tests the hypothesis that soil moisture is an important factor 

limiting Starling foraging efficiency, mediated by its effect on accessibility and 

abundance of soil-dwelling invertebrate prey in the top layer of soil. Starlings 

forage on a wide range of different prey, but subsurface prey is important 

throughout the year (Dunnet 1956, Tinbergen 1981). If we are to understand 

how soil moisture affects ground-probing birds we need to understand how 

conditions at different times of year affect foraging. Here we investigated the 

impacts of manipulating soil moisture in outdoor grassland enclosures during 

the autumn and winter period.  

 

2.2 Methods 

 

2.2.1 Study site 

This study took place at Heddon Banks Farm (54°59'34''N, 01°47'26''W), 

Heddon on the Wall, Northumberland, UK between October 2010 and January 

2011. The experiment was performed on a horse-grazed pasture (2.6km2 (260 

hectares)) regularly used by foraging European Starlings (hereafter called 

Starlings). The study compared the foraging behaviour and success of wild-

caught captive Starlings foraging on grassland plots that had been manipulated 

to have a range of soil moisture levels. 
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A randomized block design was used to establish seventy-five plots 

(each measuring1.5m x 3m) within the study site. To create a range of soil 

moisture levels on the seventy-five plots there were three levels of treatment: (i) 

twenty-five plots were unprotected from direct rainfall or from water draining 

from the upslope (ii) twenty-five plots were protected from direct rainfall for 

between 14 and 21 days and also had a water drain inserted along the top side 

from day 1 (iii) similarly twenty-five plots were protected from water drainage 

from day 1 and from direct rainfall for 28 days or more. Plots were protected 

from direct rainfall and water drainage in two ways (Fig 2.1). Firstly, a section of 

the plot was covered with a polythene cloche (0.5 m x 0.5 m x 2m) to protect 

the area from direct rainfall. Cloches were positioned at a 90° angle to the top of 

the field so that one of the two openings faced to the southwest. This reduced 

damage to the cloches as winds came most often from a south-westerly 

direction. To encourage airflow, and reduce humidity, a gap of 5cm was left 

between the grass and the base of the polythene cover. Secondly, to prevent 

water draining through the trial plots a plastic barrier was placed 20cm below 

ground level along the top side (up the slope) of each treatment plot (0.5m from 

the edge).  

 

  

Figure 2.1 Trial plot design.   
A section of the trial plot (1.5m x 3m) was covered in a polythene cloche (0.5m 
x 0.5m x 2m) positioned so that one of the two openings faced southwest. To 
prevent water draining through the trial plots a plastic barrier was placed 20cm 
below ground level along the top side of each treatment plot (0.5m from the 
edge). The cloche is shown as a solid black line. The outline of the plot area is 
shown as a dashed black line and the plastic barrier is shown as a thick grey 
line 
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 The study site had a 12.4° slope (1:4.7 gradient, 21.3% grade). To 

control for the potential effects of water retention at the bottom of the field, the 

study site was divided into three blocks (1: top, 2: middle and 3: bottom) (Fig. 

2.2). Ten replicates of each treatment were assigned to the top and middle 

blocks and five replicates of each treatment were assigned to the bottom block 

in a randomized block design. In total, the top and middle blocks contained 30 

trial plots each. The bottom block contained 15 trial plots.  

 

 

 

 

Figure 2.2 Schematic diagram of the study site at Heddon Banks Farm, 
Heddon on the Wall, Northumberland, UK showing the gradient of the field and 
the partitioning of the site into three blocks (1: top, 2: middle, 3: bottom). Block 1 
contained 30 trial plots, Block 2 contained 30 trial plots and Block 3 contained 
15 plots. 

 
 
2.2.2 Experimental set-up 

Twenty-five Starlings from a nearby population (55°05'03''N, 01°28'12''W) were 

captured under Natural England licence using whoosh nets. They were housed 

indoors in 0.9 m x 0.7 m x 0.6 m cages (at Close House). Each cage housed a 

maximum of three birds and all groups were in auditory and visual contact with 

each other. The ambient temperature and lighting within the enclosure reflected 

external conditions. Birds received a diet of ad libitum turkey starter crumb and 

softbill pellets, and a 2.5 cm3 daily ration of mealworms Tenebrio molitor was 

provided after each days trial were completed (Devereux et al. 2006). Water for 

drinking and bathing was available at all times. Starlings were aged and sexed 

using morphological traits e.g. throat feather length (Smith et al. 2005, 

Devereux et al. 2006) and colour ringed with a unique colour-coded 
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combination for identification. They were released at the capture site following 

completion of all trials (mean time in captivity = 45 days, maximum = 89 days). 

 Each of the twenty-five birds was randomly selected to be a focal bird (6 

adult females, 6 first winter females, 9 adult males, 4 first winter males) 

(Appendix 2.A). Each focal bird was assigned to an individual block (top: 10 

birds, middle: 10 birds, bottom: 5 birds). A randomized block design was used 

for measuring foraging behaviour, with each bird undergoing one replicate of 

each of the three treatments in a random order within a block. Each treatment 

plot was used only once. Each focal bird had the same two companions, 

selected at random, present for each trial to ensure that the focal bird’s foraging 

rate was not influenced by individual differences in its companion’s rates, 

because foraging rates are mediated by the rates of other flock members 

(Fernández-Juricic & Kacelink 2004). To avoid pseudoreplication, the 

combination of companion birds was different for each focal bird. Each bird 

experienced five trials in total, three as a focal and two as a companion. 

Foraging trials were conducted in a purpose-built wire mesh bottomless 

cage that was divided into two sections (A and B) both measuring 0.5m x 0.5m 

x 0.5m (Fig. 2.3). Before a trial began, the cage would be placed on the treated 

area of the trial plot. Within section A, five measurements of penetration 

resistance and sward height (cm) were made, one at the centre and at each 

corner. There is a strong negative correlation between soil surface strength 

(penetration resistance) and soil moisture content (Vaz et al. 2011). For most 

soils, this is associated with the water table depth from the surface (Armstrong 

2000). Raised water levels keep the surface soil moist reducing the surface 

strength. Soil surface penetrability is an indirect measure of soil moisture that 

provides an indication of the difficulty a bird might be expected to have when 

probing the soil to forage (Armstrong 2000). Penetration resistance was 

measured using a hand-held soil penetrometer (Model 16 – T0171, Controls 

Testing Equipment Ltd., UK) on a scale of 0 to 5 KgF, with five indicating the 

most force required to penetrate the soil. A JVC Everio digital camcorder on a 

tripod was placed 3m in front of the cage and used to record the trials. 
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Figure 2.3 Wire-mesh bottomless cage used for conducting foraging trials at 
Heddon Banks Farm, Heddon on the Wall, Northumberland, UK.  
The cage was divided into section A (left) and B (right). The focal bird was 
released into section A and the two companions were released into section B. 
 

 Up to three focal birds were tested (in a random order) per day, with 

trials carried out between 8:30 and 15:00. Observations were not made in 

adverse weather such as rain or windy conditions or when the ground was 

covered in frost or snow. On average, each bird was used in a trial once every 

10 (± 0.87) days, the number of rest days ranged between 1 and 28. No bird 

experienced more than one trial per day, as a focal or companion. Individual 

birds were transported to the field site in cotton bags. The focal bird was 

released into section A and the two companions were released into section B. 

The birds were left to forage for 10 min and the trials lasted 20min from the first 

probe by the focal bird. The behaviour of the focal bird was recorded by the 

digital video camera.  If the focal bird failed to forage in the 10min following 

release into the cage the trial was abandoned. Birds were returned to their 

indoor cages after completing a trial. 

 Earthworm (Lumbricidae spp.) abundance was measured throughout the 

study period. The average beak length of an adult Starling was taken to be 

25mm (Feare 1984). However, soil moisture has been linked to earthworm 

abundance in the top 5–10 cm of soils (Gerard 1967, Green et al. 2000, Peach 

et al. 2004a) and is likely to influence movement throughout the top layer of soil. 

In each block (top, middle and bottom) six soil samples were taken every 7 
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days, two soil samples from each treatment. A bulb planter (100mm x100mm) 

was used to take soil samples and a single soil core was taken from the centre 

of section B of the bottomless wire cage prior to the start of a trial. The 

penetration resistance of the soil and the number and wet mass (g) of 

earthworms contained within the core was recorded. 

 

2.2.3 Data collection 

It took 22 trial days to complete the study. From 25 birds, 20 hours and 58 

minutes of digital video recordings were collected and analysed from 62 trials. 

Foraging behaviour data was extracted from the digital video recordings using 

an event recorder. Each recording was analysed frame by frame and a number 

of variables were recorded: video date, video duration, number of probes, 

number of roots and number of roots that resulted in prey captured (Table 2.1). 

The time of day, temperature, mean penetration resistance, mean sward height, 

area of bare soil and identity of prey items (when possible) were also recorded. 

Random data were cross-checked (CMR) and the recording of foraging 

variables was found to be consistent in all cases. 

 

Variable Description 

Probe Initial investigative stab into the soil 
 

Root ‘gape’ 
a
 Secondary stab into the soil followed by 

opening of the bill. The number of roots gives 
an indication of search intensity 

b 

 

Prey capture Secondary stab that results in prey capture 
 

 

a 
Tinbergen 1981 

b 
Devereux 2006 
 

Table 2.1 Description of the foraging variables used in this study 
 

We had two main aims. First, describe the effects of variation in soil moisture on 

the foraging behaviour of Starlings (e.g. number of probes made into the ground 

known as ‘rooting’). Soil surface penetrability is an indirect measure of soil 

moisture that provides an indication of the difficulty a bird might be expected to 

have when probing/rooting the soil to forage (Armstrong 2000). Typically, as soil 

moisture increases penetration resistance decreases (Francis et al. 1987, 

Tekeste et al. 2008). We expected the root rate to increase with decreasing soil 
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penetration resistance (increased soil moisture), as found in studies of Common 

Snipe (Green 1988).  Second, determine the effects of variations in soil 

moisture on the success rate i.e. the number of roots per trial that resulted in 

prey capture.  

 Starlings are predominantly ground foraging birds (Feare 1984), although 

they eat a wide range of foods (Tinbergen 1981). During the autumn/winter, 

earthworms increase in importance as a below-ground food source as their 

preferred prey Tipulidae larvae ‘disappear’ as a result of pupation and/or 

because the new population are too small to be detected (Feare 1984, 

McCracken 1990). Dry soils support fewer soil invertebrates (Milsom et al. 

2000), as the top layer of soil dries earthworms descend deeper into the soil 

and become less available to foraging birds. Waterlogged soils, although easier 

to probe, have a lower abundance of invertebrate prey (McCracken et al. 1995, 

Ausden et al. 2001, Plum & Filser 2005). We expect accessibility to prey to 

increase with an increase in soil moisture, up to a point. Therefore, we 

predicted that Starlings will increase their root rate (A) with decreased 

penetration resistance (increased soil moisture) and that the number (B) and 

percentage(C) of roots that resulted in prey capture (accessibility) will change in 

a curvilinear fashion, increasing with increased soil moisture at first and then 

decreasing when the soil becomes waterlogged. These hypotheses were tested 

with Generalized Linear Mixed Models (GLMMs) as follows: 

A.  Total number of roots across each trial as the response variable with a 

poisson error structure and log link function. 

Total number of roots = penetration resistance + treatment + block + 

temperature + Julian date + time of day + 1|bird ID + 1|observation 

B.  Total number of roots that resulted in prey capture as the response variable 

with a poisson error structure and log link function. 

Total number of roots that resulted in prey capture = penetration resistance + 

treatment + block + temperature + Julian date + time of day 1|bird ID + 

1|observation  

 C.  Percentage of roots that resulted in prey capture as the response variable 

with a binomial error structure and a logit link function. 

Percentage of roots that resulted in prey capture = penetration resistance + 

treatment + block + temperature + Julian date + time of day + 1|bird ID + 

1|observation 
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All tests were performed using the program LMER in the lme4 package 

v.0.999375-42 (Bates et al. 2012) for R version 2.14.1 (R Development Core 

Team 2011). Models were generalized linear mixed-effects models (GLMMs) fit 

using the Laplace method for estimating parameters. Individual bird identity 

‘Bird ID’ was modelled as a random effect (in the models above 1|bird ID 

represents the random effect) to acknowledge the hierarchical design of the 

dataset and to control for possible temporal and spatial effects. Type of 

treatment (1 – 3) and block (top, middle or bottom field) were included as fixed 

factors. In addition, we included an individual-level random effect (1|observation) 

to control for overdispersion (Bates et al. 2012). Squared terms were dropped 

from the models if on their own they did not explain a significant amount of 

deviance. Treatment and penetration resistance were positively correlated (P < 

0.001), meaning that penetration resistance increased the longer the ground 

was protected from rainfall and water drainage. Julian date increased with days 

in captivity (P < 0.001) and time of day (P < 0.001), but was negatively 

correlated with temperature (P < 0.001), meaning that the Starlings spent longer 

in captivity, trials took place later in the day and temperature decreased as the 

study progressed. Julian date shared less information with temperature than 

days in captivity and therefore was used in the models as a proxy for the 

number of days birds had been held in captivity. To check the robustness of 

models A, B and C and whether the variables were interchangeable, GLMMs 

were run with the penetration resistance, treatment, Julian date, temperature 

and time of day independently (referred to as ‘penetration resistance without 

treatment’, ‘treatment without penetration resistance’, ‘temperature without 

Julian date’, ‘Julian date without temperature’ and ‘Julian date without time of 

day’ (Appendices 2.D, E and F). 

  

2.3 Results 

 

Sixty-two trials were completed; treatment 1(15), treatment 2(25), treatment 3 

(22) (Appendix 2.A). Twenty-six were completed in the top block, twenty-three 

in the middle block and thirteen in the bottom block.  Fifteen birds completed all 

three trials, seven completed two trials and three only completed one (Appendix 

2.A). Birds did not complete the three trials if they began to show stereotypical 

behaviour, specifically somersaulting, when released into the outdoor cage. 
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Birds displaying stereotypical behaviour were immediately excluded from any 

further trials and released at the original capture site before the end of the study 

period. Mean sward height across the 62 trials was 3.49cm ± 0.05 (± se) and 

mean air temperature was 5.8°c ± 0.48 (± se). There was no significant 

difference in sward height (GLM: F3, 2 = 2.13, P = 0.13) or air temperature (GLM: 

F3, 2 = 1.72, P = 0.19) between treatments. 

 The mean penetration resistance across all plots was 1.82 ± 0.11 (± se). 

There was a significant difference in penetration resistance between treatments 

(GLM: F3, 2 = 72.05, P < 0.001), but not between blocks (GLM: F3, 2 = 0.41, P = 

0.67) (Appendix 2.B). The mean probe rate was 323.3 ± 37.6 (± se), root rate 

was 22.9 ± 3.87 (± se), success rate was 3.07 ± 0.43 (± se), number of roots 

that were successful was 22 ± 1.87 (± se) and percentage of roots that were 

successful was 20.21 ± 2.76 (± se) per twenty minute trial. There were no 

significant differences in probe rate (GLM: F3, 2 = 0.83, P = 0.44), root rate 

(GLM: F3, 2 = 1.15, P = 0.32), success rate (GLM: F3, 2 = 0.10, P = 0.91) or 

percentage of roots that were successful (GLM: F3, 2 = 1.61, P = 0.21) between 

treatments. 

 The mean number of earthworms per sample (786 cm3) was 0.82 ± 0.10 

(± se) and the mean earthworm wet mass was 0.55 ± 0.07 (± se) (Appendix 

2.C). There was no significant difference in the number (GLM: F3, 2= 2.27, P = 

0.11) or mass (GLM:F3, 2= 1.79, P = 0.17)  of earthworms between treatments.  

A.  After block had been taken into account, there was no effect of penetration 

resistance within treatments (P = 0.46) on the number of roots per trial 

(Appendix 2.D). Although penetration resistance and treatment were 

significantly positively correlated they were not interchangeable. There was no 

effect of treatment on rooting rate (ANOVA: P =0.49) (Appendix 2.D). The 

number of roots tended to increase as the soil initially dried out and then 

declined as the soil became too dry, along a scale from 0.5 KgF (waterlogged) 

to 3.5 KgF (Fig. 2.4), but the relationship with natural variation in penetration 

resistance was not significant (penetration resistance without treatment: P = 

0.80). The total number of roots was not affected by temperature (P = 0.11), 

Julian date (P = 0.29) or time of day (P = 0.09). Julian date and time of day 

were significantly positively correlated, but were not interchangeable within the 

full model. However, Julian date and temperature were interchangeable. When 

Julian date was dropped from the model the positive relationship with 
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temperature became significant (P = 0.01). When temperature was dropped 

from the model the negative relationship with Julian date became significant 

(P=0.02). 

  

 

Figure 2.4 Mean number of roots (± se), roots that resulted in prey capture (± 
se) and percentage of roots that resulted in prey capture (± se) in relation to 
natural variations in penetration resistance at Heddon Banks Farm,  
Heddon on the Wall, Northumberland, UK.  Penetration resistance is known to 
be strongly correlated with soil moisture (see methods). Neither the number of 
roots per trial (penetration resistance without treatment: P = 0.80) or the number 
of roots that resulted in prey capture (P = 0.10) were correlated with penetration 
resistance. However, the percentage of roots that resulted in prey capture were 
positively correlated with penetration resistance (P = 0.04).  
 

B.  After block had been taken into account, there was a significant positive 

relationship between the total number of roots per trial that resulted in prey 

capture and penetration resistance within treatments (P = 0.002) (Appendix 

2.E). The amount of time the ground was protected from direct rainfall and 

water drainage (treatment) had a significant effect on the number of roots that 

resulted in prey capture overall (ANOVA: P = 0.03) (Appendix 2.E.a). As the soil 

became less waterlogged the number of roots that resulted in prey capture 

tended to increase, particularly on treatment 2 (Fig. 2.5). The number of roots 

that resulted in prey capture were highest on treatment 1(unprotected) 

(parameter estimate: 0.60), followed by treatment 2 (protected 14 - 21 days) 
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(parameter estimate: -0.93) then 3 (protected for 28 days or more) (parameter 

estimate: -1.97). Although penetration resistance and treatment were 

significantly positively correlated they were not interchangeable. There was no 

independent effect between treatments (treatment without penetration 

resistance: Treatment 2: P = 0.91, Treatment 3: P = 0.91). The number of roots 

that resulted in prey capture tended to increase as the soil dried out and then 

declined as the soil became too dry, along a scale from 0.5 KgF (waterlogged) 

to 3.5 KgF (Fig 2.4), but the relationship with natural variation in penetration 

resistance was not significant (penetration resistance without treatment: P = 

0.10). Temperature had no effect on the number of roots that resulted in prey 

capture (P = 0.29), neither did time of day (P = 0.12). The number of roots that 

resulted in prey capture decreased with advancing Julian date (days in 

captivity) (P = 0.004). Julian date and time of day were significantly positively 

correlated but were not interchangeable within the full model. Neither were 

Julian date and temperature.  

 

Figure 2.5 Mean number of roots per trial that resulted in prey capture (± se) in 
relation to penetration resistance within each type of treatment at Heddon 
Banks Farm, Northumberland, UK. There was a significant positive relationship 
between the total number of roots per trial that resulted in prey capture and 
penetration resistance within treatments (P = 0.002). 
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C.  After block had been taken into account, there was a significant positive 

relationship between the percentage of roots per trial that resulted in prey 

capture and penetration resistance within treatments (P < 0.001) (Appendix 

2.F). As the soil became less waterlogged the percentage of roots that resulted 

in prey capture tended to increase (Fig.2.6). The percentage of roots that 

resulted in prey capture were highest on treatment 2 (protected 14 – 21 days) 

(parameter estimate: -1.17), followed by treatment 1(unprotected) (parameter 

estimate: -1.34) then treatment 3 (protected for 28 days or more) (parameter 

estimate: -2.09). There was no independent effect between treatments 

(treatment without penetration resistance: Treatment 2: P = 0.95, Treatment 3: 

P = 0.67). Overall, the amount of time the ground was protected from direct 

rainfall and water drainage (treatment) did not have a significant effect on the 

number of roots that resulted in prey capture (ANOVA: P = 0.06).  Natural 

variation in penetration resistance had an independent positive effect on the 

percentage of roots that resulted in prey capture (penetration resistance without 

treatment: P = 0.04). The relationship was curvilinear, increasing as the soil 

dried out and then decreasing as the soil became too dry, along a scale from 

0.5 KgF (waterlogged) to 3.5 KgF (Fig 2.4), but not significantly so. 

Temperature had a significant negative relationship on the percentage of roots 

that resulted in prey capture (P = 0.002). The number of roots that resulted in 

prey capture decreased with advancing Julian date (days in captivity) (P = 

0.01). There was no effect of time of day (P = 0.66). Julian date and time of day 

were significantly positively correlated but were not interchangeable within the 

full model. Julian date and temperature were interchangeable. When 

temperature was dropped from the model Julian date was no longer significant 

(P = 0.30).  
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Figure 2.6 The percentage of roots per trial that resulted in prey capture (± se) 
in relation to penetration resistance within each type of treatment at Heddon 
Banks Farm, Northumberland, UK. There was a significant positive relationship 
between the total number of roots per trial that resulted in prey capture and 
penetration resistance within treatments (P < 0.001). 
 

2.4 Discussion 

 

Both the number and percentage of successful roots per trial increased as soil 

moisture decreased. This is counter to the a priori prediction that both would 

decrease with increased penetration resistance.  This can be explained by the 

fact that the soil at the study site was saturated (average rainfall at the 

beginning of the trial period 

(http://www.metoffice.gov.uk/climate/uk/2010/november/averages.html) and a 

period of snow cover mid-way through resulted in the study area being 

waterlogged in parts and the soil being generally saturated), prior to undergoing 

treatments. For example, plots that had been protected from rainfall and water 

flow for more than 28 days recorded a maximum of 3.5 KgF, on a scale of 0 to 5 

(5 being the driest / hardest). On most soils, increased soil moisture will 

increase accessibility to below-ground prey i.e. decrease penetration resistance 

(e.g. Green et al. 2000), however, prolonged water logging will reduce the 
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abundance of invertebrate prey in the top soil (McCracken et al. 1995, Ausden 

et al. 2001, Plum & Filser 2005). Earthworm (Lumbricidae spp.) numbers and 

biomass at the study site demonstrate that this is likely to be the case at our 

study site (Fig. 2.7). Within treatments, the number and percentage of roots that 

are successful increased with penetration resistance. Specifically, the 

percentage of roots that were successful was highest on treatment plots that 

had intermediate penetration resistance of between 1 and 3 KgF (protected for 

14-21 days).  

 

 

Figure 2.7 The mean number and mass of earthworms (Lumbricidae spp.)      
(± se) per m3 at Heddon Banks Farm, Heddon on the Wall, Northumberland, UK 
in relation to soil penetration resistance.  
 

In terms of natural variation in penetration resistance, the percentage of roots 

that were successful also increased as the soil dried to between 2 and 3 KgF 

and then declined as penetration resistance continued to increase.  From these 

results, it can be concluded that optimal conditions for both invertebrate survival 

and foraging therefore require a trade-off between soil conditions (e.g. Smart et 

al. 2008). Prolonged water logging results in invertebrate prey that are 

accessible but at low abundance. Conversely, as the soil dries prey will become 

increasingly less accessible as (i) penetration resistance increases and (ii) 

earthworms descend deeper into the soil. At this study site, mean earthworm 

numbers and biomass declined at penetration resistance of between 3 and 4. 

Soils at these values are still relatively moist, on a scale of 0 to 5 KgF where 

five is the driest, and therefore a higher number and biomass would be 
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expected.  Trial plots with a penetration resistance between 3 and 4 were 

predominantly under treatment three and had been covered and protected from 

water flow for over 28 days but it is unclear why they had lower earthworm 

numbers and biomass.  

 During the autumn and winter, temperature had a significant positive 

effect on the number of roots per trial.  There was no correlation between 

penetration resistance and temperature (P = 0.70) and therefore this may have 

been as a result of the effect of air temperature on the birds themselves. At low 

temperatures individuals will reduce energy expenditure (e.g. Grubb 1975) and 

maximize prey intake profitability (e.g. Pyke 1984, Stephens & Krebs 1986). At 

lower temperatures intake rate was higher. However, temperature increased 

over the course of the trials and therefore a decrease in success may be a 

result of time in captivity (e.g. Butler et al. 2006). It is important to note that 

because temperature was controlled for in models penetration resistance (soil 

moisture) explained a significant amount of deviance in addition to that 

explained by temperature. 

Our results are consistent with the idea that soil moisture is an important 

factor limiting Starling foraging success. If we are to understand how soil 

moisture affects ground-probing birds more fully we also need to understand 

how conditions at different times of year affect foraging.  It is probable that the 

curvilinear relationship between penetration resistance and foraging success 

described here will also be observed on drier soils in the spring/summer and 

may influence reproductive success. This information is critical to determining 

management of habitats to enhance below-ground prey abundance and 

accessibility (e.g. Devereux et al. 2004, Whittingham & Devereux 2008) and will 

be explored in the following chapters. 
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Appendix 2.A  

The identification numbers, sex and age of Starlings used in field trials. The 

identification numbers of the two companions birds used in each trial. The 

treatment block in which each focal bird carried out all three trials and the 

number of trials each bird completed. 

 

Focal Bird 

ID 

Sex Age Companions Block Treatments 

completed 

1 M A 25 & 8 2 2 
2 M A 17 & 18 3 1,2,3 

3 M A 4 & 21 1 1,2,3 

4 M A 11 & 24 1 1,2,3 

5 M A 13 & 23 1 1,2,3 

6 M A 7 & 3 2 1,2,3 

7 F A 16 & 25 1 1,2,3 

8 F A 26 & 18 1 2,3 

9 M FW 23 & 11 3 2,3 

10 M FW 11 & 14 1 2 

11 M A 20 & 13 2 2,3 

12 F FW 6 &14 1 1,2,3 

13 F FW 5  & 12 3 1,2,3 

14 M A 8 & 9 3 1,2,3 

15 F FW 1 & 17 2 2,3 

16 F FW 16 & 4 2 2 

17 F A 10 & 19 2 2,3 

18 F FW 20 & 15 2 1,2,3 

19 F A 12 & 5 3 2,3 

20 F A 3 & 22 1 2,3 

21 M FW 7 & 24 2 1,2,3 

22 F FW 6 & 9 1 1,2,3 

23 M FW 2 & 26 1 1,2,3 

24 M A 2 &15 2 1,2,3 

25 F A 22 & 10 2 1,2,3 

 
M = Male, F= Female, A = Adult, FW = First winter 
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Appendix 2.B  

Mean penetration resistance (Mean PR), probe rate, root rate, success rate and 

the percentage of successful roots per 20 minute trial in relation to treatment 

type and block. Treatment type refers to the amount of time a trial plot was 

protected from direct rainfall and water flow: (1) unprotected (2) 14 – 21 days 

and (3) 28 days or more. Block refers to sections of the study site: (1) top, (2) 

middle and (3) bottom. Results are quoted in the form of mean (± se). 

 

 
Treatment 1 

(n = 15) 

Treatment 2 

(n = 25) 

Treatment 3 

(n = 22) 

Block 1 
(n=26) 

   

Mean PR 0.98 ± 0.13 1.92 ± 0.13 2.86 ± 0.16 
Probe rate 218.80 ± 52 452.90 ± 92.5 297 ± 140 
Root rate 14.18  ± 3.64 34.50  ± 10.60 12  ± 5.72 
Success rate 2.10  ± 0.60 3.90  ± 1.22 2.25  ± 1.29 
Percentage of 
roots that were 
successful 

21.68 ± 9.11 18.08 ± 5.07 18.10 ± 11.30 

Block 2 
(n=23) 

   

Mean PR 0.92 ±0.11 1.93 ± 0.14 3 ± 0.15 
Probe rate 459 ± 113 416 ± 125 239.60 ± 79 
Root rate 34.30  ± 11.6 37  ± 19.2 15.20  ± 4.31 
Success rate 5.10  ± 1.14 3.50  ± 1.32 4.40  ± 1.94 
Percentage of 
roots that were 
successful 

21.31 ± 3.35 24.10 ± 10.60 22.52 ± 9.35 

Block 3 
(n=13) 

   

Mean PR 1.43 ± 0.41 1.96 ± 0.40 2.93 ± 0.28 
Probe rate 237 ± 105 119 ± 30 98 ± 76 
Root rate 11.75  ± 7.42 3.75  ± 0.63 23  ± 23 
Success rate 1  ± 0.41 1  ± 0.41 0.50  ± 0.5 
Percentage of 
roots that were 
successful 

18.20 ± 11.5 23.80 ± 10.30 2.17 ± 0 

Overall 
   

Mean PR 1.06 ± 0.11 1.93 ± 0.10 2.91 ± 0.10 
Probe rate 317.6 ± 56.5 378.6 ± 65.6 251.5 ± 78.5 
Root rate 21.84 ± 5.31 29.82 ± 8.59 14.53 ± 4.06 
Success rate 3.12 ± 0.62 3.23 ± 0.75 2.73 ± 0.96 
Percentage of 
roots that were 
successful 

20.98 ± 4.43 21.16 ± 4.42 17.11 ± 6.12 
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Appendix 2.C  

The mean number and mass of earthworms (Lumbricidae spp.) per sample 

(783 cm3) at Heddon Banks Farm, Heddon on the Wall, Northumberland, UK in 

relation to treatment type and block. Treatment type refers to the amount of 

time a trial plot was protected from direct rainfall and water drainage: (1) 

unprotected (2) 14 – 21 days and (3) 28 days or more. Block refers to sections 

of the study site: (1) top, (2) middle and (3) bottom. Results are quoted in the 

form of mean (± se). 

 

 
Treatment 1 

(n = 36) 

Treatment 2 

(n = 36) 

Treatment 3 

(n = 36) 

Block 1 
(n=36) 

   

Mean number 0.73 ± 0.38 0.92 ± 0.40 0.17 ± 0.11 

Mean biomass (g) 0.46 ± 0.25 0.58 ± 0.26 0.15 ± 10.10 

Block 2 
(n=36) 

   

Mean number 1.27 ± 0.30 0.50 ± 0.34 0.40 ± 0.16 

Mean biomass (g) 0.86 ± 0.28 0.30 ± 0.21 0.35 ± 0.14 

Block 3 
(n=36) 

   

Mean number 0.79 ± 0.19 1.43 ± 0.31 0.93 ± 0.22 

Mean biomass (g) 0.48 ± 0.10 1.04 ± 0.29 0.56 ± 0.12 

Overall    

Mean number 0.92 ± 0.17 1.00 ± 0.21 0.53 ± 0.12 

Mean biomass (g) 0.59 ± 0.12 0.68 ± 0.16 0.37 ± 0.07 
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Appendix 2.D  

Results of a generalized linear mixed-effects model (GLMM) of the total number 

of times wild-caught captive Starlings root the ground for invertebrate prey 

during a twenty minute observation period (n = 62) as a function of the mean 

penetration resistance and ground treatment, accounting for variations in Julian 

date, temperature and time of day. The GLMM was fit using the Laplace 

method. 

Fixed Effects Estimate se z P 

Full model 
a 

    

Intercept 0.94 0.32 2.97 0.003 
Penetration resistance 0.13 0.18 0.74 0.46 
Treatment 2 -0.13 0.25 -0.50 0.62 
Treatment 3 -0.48 0.43 -1.10 0.27 
Block 2 0.22 0.18 1.25 0.21 
Block 3 -0.48 0.28 -1.71 0.09 
Temperature 0.17 0.10 1.61 0.11 
Julian date -0.14 0.13 -1.07 0.29 
Time of day 0.17 0.10 1.70 0.09 

Penetration resistance without treatment 
b 

    

Intercept 0.85 0.28 3.00 0.003 
Penetration resistance -0.03 0.10 -0.26 0.80 
Block 2 0.22 0.18 1.24 0.22 
Block 3 -0.43 0.28 -1.56 0.12 
Temperature 0.19 0.10 1.88 0.06 
Julian date -0.13 0.13 -0.99 0.32 
Time of day 0.14 0.10 1.46 0.14 

Treatment without penetration resistance 
c 

    

Intercept 0.87 0.30 2.88 0.004 
Treatment 2 -0.00 0.19 -0.01 0.99 
Treatment 3 -0.21 0.24 -0.88 0.38 
Block 2 0.21 0.18 1.19 0.23 
Block 3 -0.45 0.28 -1.64 0.10 
Temperature 0.19 0.10 1.94 0.05 
Julian date -0.10 0.12 -0.86 0.39 
Time of day 0.16 0.10 1.59 0.11 

Temperature without Julian date 
d 

    

Intercept 1.01 0.31 3.20 0.001 
Penetration resistance 0.06 0.17 0.37 0.71 
Treatment 2 -0.08 0.25 -0.30 0.76 
Treatment 3 -0.42 0.44 -0.97 0.33 
Block 2 0.19 0.18 1.08 0.28 
Block 3 -0.51 0.28 -1.86 0.06 
Temperature 0.23 0.09 2.63 0.01 
Time of day 0.14 0.10 1.43 0.15 

Julian date without temperature 
e 

    

Intercept 0.92 0.33 2.84 0.01 
Penetration resistance 0.23 0.18 1.29 0.20 
Treatment 2 -0.16 0.26 -0.63 0.53 
Treatment 3 -0.62 0.44 -1.41 0.16 
Block 2 0.26 0.18 1.41 0.16 
Block 3 -0.40 0.28 -1.41 0.16 
Julian date -0.25 0.11 -2.25 0.02 
Time of day 0.18 0.10 1.80 0.07 
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Julian date without time of day 
f 

    

Intercept 1.33 0.22 6.04 < 0.001 
Penetration resistance 0.07 0.18 0.42 0.67 
Treatment 2 -0.09 0.25 -0.37 0.71 
Treatment 3 -0.32 0.42 -0.75 0.45 
Block 2 0.22 0.18 1.23 0.22 
Block 3 -0.42 0.28 -1.52 0.13 
Temperature 0.18 0.11 1.72 0.09 
Julian date -0.07 0.12 -0.57 0.57 

 

a   
AIC: 122.3, Random effects (variance): bird = 1.39 , individual level = 1.36. 

b   
AIC: 119.7, Random effects (variance): bird = 0.00 , individual level = 0.14. 

c   
AIC: 120.9, Random effects (variance): bird = 4.86 , individual level = 1.38.. 

d   
AIC: 121.5, Random effects (variance): bird = 0.02 , individual level = 0.14. 

e  
AIC: 122.8, Random effects (variance): bird = 0.01 , individual level = 0.16. 

f  
AIC: 123.2, Random effects (variance): bird = 0.02 , individual level = 0.01. 
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Appendix 2.E  

Results of a generalized linear mixed-effects model (GLMM) of the total number 

of times wild-caught captive Starlings successfully root the ground for 

invertebrate prey during a twenty minute observation period (n = 62) as a 

function of the mean penetration resistance and ground treatment, accounting 

for variations in Julian date, temperature and time of day. The GLMM was fit 

using the Laplace method. 

Fixed Effects Estimate se z P 

Full model 
a 

    

Intercept 0.60 0.54 1.11 0.27 
Penetration resistance 1.01 0.32 3.15 0.002 
Treatment 2 -0.93 0.45 -2.06 0.04 
Treatment 3 -1.97 0.74 -2.67 0.01 
Block 2 0.75 0.30 2.47 0.01 
Block 3 -1.14 0.54 -2.11 0.04 
Temperature -0.19 0.18 -1.05 0.29 
Julian date -0.69 0.24 -2.89 0.004 
Time of day 0.26 0.17 1.56 0.12 

Penetration resistance without treatment 
b 

    

Intercept -0.03 0.51 -0.06 0.95 
Penetration resistance 0.30 0.18 1.64 0.10 
Block 2 0.73 0.32 2.28 0.02 
Block 3 -0.83 0.53 -1.57 0.12 
Temperature -0.09 0.19 -0.48 0.63 
Julian date -0.60 0.24 -2.49 0.01 
Time of day 0.18 0.17 1.06 0.29 

Treatment without penetration resistance 
c 

    

Intercept 0.02 0.57 0.03 0.98 
Treatment 2 -0.04 0.36 0.12 0.91 
Treatment 3 -0.05 0.45 -0.12 0.91 
Block 2 0.64 0.33 1.95 0.05 
Block 3 -0.85 0.55 -1.55 0.12 
Temperature 0.00 0.19 0.02 0.98 
Julian date -0.41 0.23 -1.79 0.07 
Time of day 0.17 0.18 0.95 0.34 

Temperature without Julian date 
d 

    

Intercept 0.95 0.57 1.67 0.09 
Penetration resistance 0.64 0.31 2.06 0.04 
Treatment 2 -0.67 0.47 -1.42 0.16 
Treatment 3 -1.72 0.80 -2.16 0.03 
Block 2 0.59 0.33 1.82 0.07 
Block 3 -1.24 0.55 -2.27 0.02 
Temperature 0.10 0.17 0.59 0.56 
Time of day 0.10 0.17 0.55 0.58 

Julian date without temperature 
e 

    

Intercept 0.59 0.54 1.08 0.28 
Penetration resistance 0.90 0.31 2.96 0.003 
Treatment 2 -0.89 0.46 -1.95 0.05 
Treatment 3 -1.81 0.73 -2.50 0.01 
Block 2 0.71 0.30 2.33 0.02 
Block 3 -1.20 0.54 -2.23 0.03 
Julian date -0.57 0.21 -2.75 0.01 
Time of day 0.25 0.17 1.48 0.14 
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Julian date without time of day 
f     

Intercept 1.20 0.37 3.23 0.001 
Penetration resistance 0.91 0.31 2.90 0.004 
Treatment 2 -0.87 0.46 -1.91 0.06 
Treatment 3 -1.76 0.73 -2.41 0.02 
Block 2 0.73 0.31 2.40 0.02 
Block 3 -1.12 0.55 -2.04 0.04 
Temperature -0.17 0.18 -0.94 0.35 
Julian date -0.57 0.22 -2.54 0.01 

 

a   
AIC: 154.17, Random effects (variance): bird = 0.00 , individual level = 0.69. 

b   
AIC: 156.6, Random effects (variance): bird = 0.00 , individual level = 0.81. 

c   
AIC: 161, Random effects (variance): bird = 0.01 , individual level = 0.90. 

d   
AIC: 159.4, Random effects (variance): bird = 0.02 , individual level = 0.84. 

e  
AIC: 153.6, Random effects (variance): bird = 0.01 , individual level = 0.72. 

f 
AIC: 153.6, Random effects (variance): bird = 0.00 , individual level = 0.69. 
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Appendix 2.F  

Results of a generalized linear mixed-effects model (GLMM) of the percentage 

of roots that result in prey capture by wild-caught captive Starlings during a 

twenty minute observation period (n = 62) as a function of the mean penetration 

resistance and ground treatment, accounting for variations in Julian date, 

temperature and time of day. The GLMM was fit using the Laplace method. 

Fixed Effects Estimate se z P 

Full model 
a 

    

Intercept -1.34 0.66 -2.05 0.04 
Penetration resistance 1.24 0.39 3.21 0.001 
Treatment 2 -1.17 0.54 -2.15 0.03 
Treatment 3 -2.09 0.90 -2.32 0.02 
Block 2 0.45 0.36 1.25 0.21 
Block 3 -0.05 0.62 -0.09 0.93 
Temperature -0.71 0.23 -3.09 0.002 
Julian date -0.79 0.31 -2.54 0.01 
Time of day 0.09 0.20 0.43 0.66 

Penetration resistance without treatment 
b     

Intercept -2.02 0.63 -3.23 0.001 
Penetration resistance 0.47 0.23 2.06 0.04 
Block 2 0.41 0.38 1.07 0.29 
Block 3 0.17 0.62 0.27 0.78 
Temperature -0.61 0.24 -2.54 0.01 
Julian date -0.67 0.31 -2.15 0.03 
Time of day 0.01 0.21 0.05 0.96 

Treatment without penetration resistance 
c     

Intercept -2.00 0.71 -2.82 0.01 
Treatment 2 0.03 0.44 0.06 0.95 
Treatment 3 0.25 0.58 0.43 0.67 
Block 2 0.32 0.41 0.80 0.42 
Block 3 0.10 0.65 0.15 0.88 
Temperature -0.43 0.24 -1.79 0.07 
Julian date -0.40 0.30 -1.34 0.18 
Time of day -0.01 0.23 -0.03 0.98 

Temperature without Julian date 
d     

Intercept -1.07 0.69 -1.54 0.12 
Penetration resistance 0.82 0.37 2.24 0.03 
Treatment 2 -0.86 0.56 -1.55 0.12 
Treatment 3 -1.91 0.97 -1.97 0.05 
Block 2 0.36 0.39 0.94 0.35 
Block 3 -0.25 0.62 -0.41 0.68 
Temperature -0.35 0.20 -1.72 0.09 
Time of day -0.03 0.22 -0.13 0.89 

Julian date without temperature 
e     

Intercept -1.60 0.74 -2.15 0.03 
Penetration resistance 0.85 0.41 2.10 0.04 
Treatment 2 -1.02 0.61 -1.67 0.09 
Treatment 3 -1.70 1.01 -1.69 0.09 
Block 2 0.41 0.42 0.99 0.32 
Block 3 -0.39 0.66 -0.60 0.55 
Julian date -0.29 0.28 -1.04 0.30 
Time of day 0.15 0.24 0.62 0.53 
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Julian date without time of day 
f     

Intercept -1.13 0.43 -2.61 0.01 
Penetration resistance 1.21 0.38 3.21 0.001 
Treatment 2 -1.15 0.54 -2.13 0.03 
Treatment 3 -2.01 0.88 -2.29 0.02 
Block 2 0.43 0.35 1.22 0.22 
Block 3 -0.03 0.61 -0.05 0.96 
Temperature -0.71 0.23 -3.13 0.002 
Julian date -0.75 0.30 -2.54 0.01 

 

a   
AIC: 140, Random effects (variance): bird = 0.00 , individual level = 0.83. 

b   
AIC: 156.6, Random effects (variance): bird = 0.00, individual level = 1.73. 

c   
AIC: 147.3, Random effects (variance): bird = 0.00, individual level = 1.27. 

d   
AIC: 144.4, Random effects (variance): bird = 0.00 , individual level = 1.09. 

e  
AIC: 146.3, Random effects (variance): bird = 0.00 , individual level = 1.27. 

f  
AIC: 146.3, Random effects (variance): bird = 0.00 , individual level = 0.83. 
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3.0 Abstract 

 

Capsule Tipulidae larvae are a key resource for adult Starlings provisioning 

their young on lowland farmland. 

Aims (i) To describe Starling nestling diet on lowland farmland. (ii) To examine 

the effects of brood size variation and nestling age on Starling parental food 

provisioning. 

Methods Over 4 years, we observed parental food provisioning at 42 nests 

across 4 sites on lowland farmland in Oxfordshire, UK using nest box video 

recorders.  

Results Tipulidae larvae were the most frequent prey item recorded in 

provisioning loads (52%), the next most frequent were winged insects (11%), 

then Coleoptera larvae (6%), Lepidoptera larvae (5%) and Lumbricidae (5%), 

with 21% of prey unidentified. Estimates of prey lengths, dry mass and total 

energy content also confirmed that Tipulidae larvae were the key prey source. 

Generalized linear mixed-effects models showed that larger broods received 

fewer Tipulidae larvae per nestling per day and that the percentage of Tipulidae 

larvae in the diet did not vary with brood size or nestling age.  

Conclusion Our results support the idea that Tipulidae larvae are the primary 

dietary item for nestling Starlings on lowland farmland. 
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3.1 Introduction 

 

Around the world, a range of grassland bird species probe the ground to obtain 

their food (e.g. waders such as Snipe Gallinago gallinago (Smart et al. 2008) 

and Lapwing Vanellus vanellus (Wilson et al. 2005); corvids such as Chough 

Pyrrhocorax pyrrhocorax (McCracken et al. 1992) and passerines such as Song 

Thrush Turdus philomelos (Peach et al. 2004 a, b)). Therefore, informed 

management of their preferred habitats is crucial to successful land 

management targeting these species. For conservationists aiming to manage 

grasslands to benefit populations of a target species, it is key to understand the 

relative importance of below-ground prey versus above ground prey (e.g. is 

access to soil-dwelling prey important?). Here we focus on a target species, the 

Starling Sturnus vulgaris, that has undergone substantial declines in the UK 

(Robinson et al. 2002, 2005) and Europe (PECBMS 2010) since the 1980s. 

Currently, Starlings are Red-listed in the UK owing to their breeding population 

size experiencing a severe ‘longer- term’ decline since 1969 (i.e. since the first 

Birds of Conservation Concern review) and declining by more than 50% during 

the past 25 years (Gregory et al. 2002, 2004, Eaton et al. 2009). It is thought 

that this decline is a result of decreasing survival rates, particularly of first-year 

birds (Freeman et al. 2002, 2007). 

The Starling is known to probe the ground for food and also to feed on a 

range of above ground resources (e.g. Dunnet 1955) and variations in diet 

composition reflect the distribution of invertebrates on a regional and local scale 

(Feare 1984). Despite regional differences, provisioning adults make use of 

Coleopteran and Lepidopteran larvae in most areas worldwide (e.g. Coleman 

1977, Russell 1971). However, soil-dwelling larval prey is usually taken most 

frequently (Feare 1984). Of these soil-dwelling prey, Tipulidae larvae have been 

found to be important in Holland (Kluijver 1933, Westerterp 1973, Tinbergen & 

Drent 1980, Tinbergen 1981), England (Wright & Cuthill 1990a, b, Wright et 

al.1998) and Scotland (Dunnet 1955), but their relative importance to farmland 

nesting Starlings has received little attention. Furthermore, although a number 

of studies have looked at the importance of Tipulidae larvae (see above), most 

were carried out more than 30 years ago, before the widespread spraying of 

grass fields to control Diptera spp. (Campbell & Cooke 1997, Garthwaite et al. 

1997). 

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0418.2011.01696.x/full#b30
http://www.bto.org/birdtrends2010/references.htm#Freemanetal02
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This study firstly describes the prey items used to provision nestling 

Starlings from 2005 to 2008 across four study areas. We then explore how 

increased brood size and nestling age (both placing increasing stress on 

parents) alter provisioning patterns, in particular, the percentage and quantity of 

Tipulidae larvae in the diet. Given past studies, we expect Tipulidae larvae to be 

a key part of the diet (e.g. Dunnet 1955).   

 

3.2 Methods 

 

3.2.1 Experimental set-up  

Data were collected at the John Krebs Field Station (51°47'N, 01°19’W), 

Wytham, Oxfordshire, UK. Historically, the area surrounding the study site was 

conventional mixed farmland that underwent routine pesticide spraying. Since 

2001, the site is extensively managed organic grassland under the Upper 

Thames Tributaries Environmentally Sensitive Area Scheme and Countryside 

Stewardship. Four nest box colonies close to the Field Station were studied 

(Fig.3.1), one of which was an existing site and the others were established in 

winter 2004/5. From these 53 nestboxes, 42 Starling pairs in 33 nestboxes 

providing food for their young were observed over a 4-year period (2005-2008) 

(Appendix 3.A). Capturing and colour-ringing breeding adults in 2005 resulted in 

high desertion rates. Therefore, the identity of individual Starlings making each 

nesting attempt was unknown. Due to the potential for pseudoreplication 

(multiple records from individuals and/or pairs across years which we were 

unable to control for) we also examined patterns in each year individually (e.g. 

Table 3.1 split by year). 
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Figure 3.1 Location of Starling nestbox colonies 1, 2, 3 and 4 at John Krebs 
Field Station, Wytham, Oxfordshire, UK. Areas of grey represent woodland and 
areas of white represent farmland (predominantly pasture). Roads are shown 
as a solid dark grey line and waterways as dashed grey lines. Black shapes 
represent buildings. 
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Tipulidae 
Larvae 

Lumbricidae Winged 
Insects 

Coleoptera 
Larvae 

Lepidoptera 
Larvae 

 

Unidentified 

 
2005 
(n=5) 

 
677 

(49%) 

 
93 

(7%) 

 
13 

(1%) 

 
79 

(6%) 

 
49 

(4%) 

 
460 

(33%) 
 

2006 
(n=10) 

 
680 

(43%) 

 
93 

(6%) 

 
35 

(2%) 

 
121 
(8%) 

 
185 

(12%) 

 
473 

(29%) 
 

2007 
(n=17) 

 
1788 
(58%) 

 
79 

(3%) 

 
689 

(22%) 

 
75 

(2%) 

 
116 
(4%) 

 
334 

(11%) 
 

2008 
(n=10) 

 

 
711 

(52%) 

 
89 

(7%) 
 

 
68 

(5%) 

 
140 

(10%) 

 
57 

(4%) 

 
295 

(22%) 

 
All years 

(n=42) 

 
3856 
(52%) 

 
354 
(5%) 

 
805 

(11%) 

 
415 
(6%) 

 

 
407 
(5%) 

 

 
1562 
(21%) 

Table 3.1 Abundance of prey items delivered to nestlings by 42 Starling pairs at 
Wytham, Oxfordshire, UK. Data were collected from nestbox video cameras 
(see methods for further details). If a beak-load of food contained two Tipulidae 
larvae and one earthworm (Lumbricidae) then a count of two would be entered 
into the Tipulidae larvae column and one into the Lumbricidae column in the 
Table above. Tipulidae larvae were the key dietary prey item in each year of the 
study (n= number of nests).  
 
 

Nestboxes were visited every 2-3 days from early April (pre-nest 

building) until mid-June and standard biometric and nest history data collected, 

with a particular note made of brood size and nestling age on days when filming 

occurred. Time-lapse video recorders were used to record the parental 

provisioning rates and the type and size of food items provided to nestlings in 

each nest. Each nest was videoed twice prior to fledging. The mean nestling 

age on the first day of observation was 11.05 ± 0.36, on the second observation 

day it was 14.81 ± 0.42. Cameras were fitted with motion-sensitive switches 

which recorded for a 10 second duration following any movement (continuous 

movement results in continuous recording). Cameras were attached to 

nestboxes after dusk, once foraging had ceased. They recorded for a 24 hour 

period and were powered by 12v battery. To aid with prey identification and 

estimation of prey size, a bird turner (clear tunnel) was permanently attached to 

the entrance of the nestboxes to ensure that birds always entered the nest 

facing in the direction of the camera.  
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3.2.2 Analysis 

From the 42 nests, 807 hours of video recordings were collected and analysed 

from 84 video tape recordings. Random data were also cross-checked (30 

video recordings) and both prey identification and size estimates were found to 

be consistent across observers in all cases. The total number of recording 

hours (shown in brackets) varied between years: 2005(118), 2006 (203), 2007 

(262) and 2008 (224). On average, each nest was observed for 12.61 ± 0.45 

hours during each 24 hour period. Each observation video was analysed frame 

by frame and a number of variables were recorded: video date and duration, the 

identity of prey items delivered (Chinery 2009), prey number (where possible to 

estimate) and the number of prey units in relation to adult beak length. The 

average adult beak length was taken to be 25mm (Feare 1984). A prey item 

that was the same length as the beak was therefore classed as measuring one 

unit. 

 

3.2.3 Diet of nestling Starlings  

Provisioning data recorded from nestbox foraging videos were analysed. From 

these data the percentage of the total number of prey items made up by each 

prey type delivered per nest per day was calculated.  We also calculated the 

size and percentage of prey items, in relation to the total number of prey units in 

the nestling diet per nest per day. Neither is as good a score of information as 

biomass, but they give an indication of the key dietary requirements of the 

young. In addition, we were not able to record the abundance of the key dietary 

items in the surrounding areas to determine whether dietary items were taken at 

random or not. 

Although it was not possible to measure biomass or energetic value of 

the prey items directly we were able to approximate these values: (i) volume of 

prey was expressed as the number of units of each prey item as a percentage 

of adult beak length and (ii) mean dry mass, mean kilojoules per item and mean 

ash content were calculated for each prey species from data in the literature 

(see Table 3.2).    
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Tipulidae Larvae 

Unknown species  

 

Lumbricidae 

Unknown Species  

Winged Insects 

Unknown species  

Coleoptera Larvae 

Unknown species  

Lepidoptera Larvae 

Unknown species 

Unident-

ified 

Mean 

Length 

(mm) 

Mean 

Dry 

Mass 

(mg) 

(a) 

Mean 

kJ per 

item 

(e) 

Mean 

ash 

content 

(%) (g) 

Mean 

Length 

(mm) 

Mean 

Dry 

Mass 

(mg) 

(b) 

Mean 

kJ per 

item 

(e) 

Mean 

ash 

content 

(%) (g) 

Mean 

Length 

(mm) 

Mean 

Dry 

Mass 

(mg) 

(c) 

Mean 

kJ per 

item 

(e) 

Mean 

ash 

content 

(%) (g) 

Mean 

Length 

(mm) 

Mean 

Dry 

Mass 

(mg) 

(d) 

Mean 

kJ per 

item 

 (f) 

Mean 

Length 

(mm) 

Mean 

Dry 

Mass 

(mg) 

(d) 

Mean 

kJ per 

item 

(e) 

Mean 

ash 

content 

(%) (g) 

Mean 

Length 

(mm) 

27.53± 

1.07 

20.69 ± 

0.72 

0.39 ± 

0.01 

12 72.11 

± 8.01 

51.3 ±  

1.60 

0.97± 

0.03 

19 11.29 

± 1.51 

5.46 ± 

1.37 

0.12 ± 

0.03 

11 15.59± 

1.17 

0.01 ± 

0.001 

0.22 

± 

0.03 

30.39± 

2.65 

0.12 ± 

0.02 

2.75 ± 

0.41 

4  
15.63± 
1.17 

58% 77.87% 48% 73% 14% 17.76% 11% 11% 5% 4.31% 3% 13% 4% 0.01% 3% 7% 0.05% 35% 3% 12% 

 
(a) Dry mass calculations based on log M = log a + b * log X)  i.e. (log M = log -2.5495 + 2.5127 * log L) (Berg 2000). (b) Dry mass calculations based on ln(W) = 2.394 + 0.373 ln(L) (Collins 1992).  
(c) Dry mass calculations based on W = aL

b 
 i.e. W = 0.1 x L

1.57 
for the suborder Nematocera

 
(Sabo et al. 2002).  (d) Dry mass calculations based on lnY = a + bX + b

1
X

2 
, specifically for

  
Coleoptera larvae:  

lnY = -13.497 + 0.90848X + -2.0853 x10
-2 

X
2
 and Lepidoptera larvae: lnY = -9.273 + .36998X + -3.9949 x 10

-3
 X

2
 (Sage 1982). (e) Dry energy content values based on Westerterp et al. 1982. (f) Dry energy 

content based on Norberg (1978). (g) Ash content based on Wright et al. (1998). 

Table 3.2 Estimates of the volume and energy content of prey items delivered to nestling Starlings at Wytham, Oxfordshire, UK.  
Estimates were made from video observations and data from the literature for: (i) the mean length of prey items; (ii) the dry mass of the 
mean length of prey items; (iii) the mean kilojoules (kJ) per item based on the mean length from samples; and (iv) the mean ash content 
of each prey item (see footnote). The proportion of each prey item in relation to their abundance in the diet (see Table 3.1) is shown in 
BOLD (e.g.3856 Tipulidae larvae were identified with a mean length of 27.53 mm thus the total length of Tipulidae larvae was 
106147mm). This method was also used to calculate the total length of all prey items and the percentage of the total of each category. 
Calculations were based only on those categories for which there were data.
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3.2.4 Factors determining the adult provisioning rate of Tipulidae larvae 

Because energy needs increase with nestling growth (Tinbergen 1981), the 

latter stage of the nestling period is the most energy demanding. This demand 

reaches a plateau for Starlings at around day 10 and then decreases from day 

15 onwards (Dunnet 1955, Westerterp 1973, Tinbergen 1981). Similarly, the 

effort required to feed larger broods means that parents are less likely to 

provision their young with prey that are difficult to access compared to those 

with smaller broods (Wright et al. 1998). Therefore we explore the relationship 

between both nestling age and brood size and the (A) quantity and (B) 

percentage of Tipulidae larvae provisioned to Starling nestlings. These 

relationships were tested as follows: 

A.   Total number of Tipulidae larvae units per nestling per day as the response 

variable with a poisson error structure and a log link function. 

Total number of Tipulidae larvae units per nestling per day = number of 

nestlings + number of nestlings2 + mean nestling age + Julian date + 1|nest + 

1|observation  

B.   Percentage of Tipulidae larvae units in the diet per nestling per day as the 

response variable with a binomial error structure and a logit link function. 

Percentage of Tipulidae larvae units per nestling = number of nestlings + mean 

nestling age + Julian date + 1|nest + 1|observation 

 

All tests were performed using the program LMER in the lme4 package 

v.0.999375-42 (Bates et al. 2012) for R version 2.14.1 (R Development Core 

Team 2011). Models were generalized linear mixed-effects models (GLMMs) fit 

using the Laplace method for estimating parameters. Individual nextbox identity 

‘nest’ was modelled as a random effect to acknowledge the hierarchical design 

of the data set and to control for possible temporal and spatial effects. In 

addition, we included an individual-level random effect to control for 

overdispersion by accounting for individual-level variability (Bates et al. 2012). 

The number of nestlings squared term was dropped from models if on its own it 

did not explain a significant amount of deviance. The number of nestlings and 

mean nestling age were negatively correlated (P = 0.01) meaning that older 

clutches were likely to be smaller as a result of nestling deaths. Julian date was 

included in the model to take account of the variation in nestling period start 

date between years. Mean nestling age was not correlated with Julian date (P = 
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0.93); however, the number of nestlings in the nest on the day of observation 

was negatively correlated (P = 0.03) meaning that older clutches were likely to 

be smaller as a result of nestling deaths. To check the robustness of models A 

and B and whether these variables were interchangeable GLMMs were also run 

with the number of nestlings and mean nestling age independently (referred to 

as ‘nestling number without age’ and ‘age without nestling number’ in Appendix 

3.C and 3.D) and with the number of nestlings and Julian date independently 

(referred to as ‘nestling number without Julian date’ and ‘Julian date without 

nestling number’ in Appendix 3.C and 3.D). Given that we did not know the 

identity of individual birds our models assume that each ‘nestbox’ was 

independent. Starlings are known to be highly site faithful (Coleman 1974) and 

therefore we also assumed all birds nesting in the same box in different years 

were the same individuals.  

 

3.3 Results 

 

3.3.1 Diet of nestling Starlings 

In total 7401 separate prey items were recorded: 3856 Tipulidae larvae (52%), 

354 earthworms (5%), 805 winged insects (11%), 415 beetle larvae (6%), 407 

caterpillars (5%) and 1562 unidentified items (21%) (see Table 3.1).  Nestling 

Starling diet consisted predominantly of Tipulidae larvae irrespective of whether 

that was expressed as the abundance of dietary items (see Table 3.1) or on a 

per-nest basis (Appendix 3.B).  

The results supported our earlier findings that Tipulidae larvae were the 

dominant prey item by length (58%), dry mass (77%) and the total energy 

provided (48%). Tipulidae larvae were also the source of the highest 

percentage of indigestible material, i.e. ash content (73%), due to them 

representing the largest percentage of the diet in terms of dry mass (77%). 

Compared to Tipulidae larvae (12% per gram), earthworms contain a higher 

percentage (19% per gram) and winged insects a similar amount (11 % per 

gram) of ash; however, both make up a smaller percentage of the overall dry 

mass of the diet (see Table 3.2). 

 Overall our findings suggest that whether abundance, percentage or 

energetic content is measured Tipulidae larvae dominate the diet of farmland 

Starlings on our sites during the study period. However, as we did not measure 
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availability of prey this might have determined this pattern. We thus explored 

further patterns within our data. 

 

3.3.2 Factors determining the adult provisioning rate of Tipulidae larvae  

A. There was a significant curvilinear relationship between the number of 

Tipulidae larvae units per nestling per day and the number of nestlings in the 

nest on the day of observation (number of nestlings2: P = 0.01) (Appendix 3.C). 

The number of Tipulidae larvae units per nestling dropped initially as number of 

nestlings per nest increased and then levelled off (Fig. 3.2). Older nestlings 

tended to receive fewer Tipulidae larvae (Fig. 3.3), but the relationship was not 

significant (P = 0.07) (Appendix 3.C). There was a significant negative 

relationship with Julian date (P = 0.04). The results were supported by the 

independent GLMMs (Appendix 3.C). Although the number of nestlings and 

nestling age were significantly negatively correlated they were not 

interchangeable within the full model, neither were the number of nestlings and 

Julian date.  

B.  There was no significant relationship between the percentage of Tipulidae 

larvae per nestling per day and the number of nestlings (P = 0.68) (Fig. 3.2) 

(Appendix 3.D). As mean nestling age increased the percentage of Tipulidae 

larvae units in the diet decreased (Fig. 3.3), but the relationship was not 

significant (P = 0.07) (Appendix 3.D). Although the number of nestlings and 

nestling age were significantly negatively correlated they were not 

interchangeable within the full model. However, Julian date and the number of 

nestlings were interchangeable. When Julian date was dropped from the model 

the negative relationship between mean nestling age and the percentage of 

Tipulidae larvae units became significant (P = 0.03) (Appendix 3.D). 
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Figure 3.2 Mean number of prey units per individual (± se), measured against 
adult beak length in the daily diet of Starling nestlings at Wytham, Oxfordshire, 
UK in relation to the percentage of the overall diet and number of nestlings 

present in the nest on the day of observation. One prey unit is equivalent to one 

adult Starling beak length. 
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Figure 3.3 Mean percentage of Tipulidae larvae units per individual (± se) in the 
daily diet of Starling nestlings at Wytham, Oxfordshire, UK, in relation to total 
number of prey units (± se) and nestling age. One prey unit is equivalent to one 
adult Starling beak length. The percentage of Tipulidae larvae in the diet was 
not related to nestling age (P = 0.07).  
 

3.4 Discussion 

 

Tipulidae larvae consistently formed the majority (between 48-77%) of the 

nestling diet whether data were analysed as abundance, prey lengths, dry mass 

or energy (kJ) (Table 3.2). This concurred with a range of previous studies (e.g. 

Dunnet 1955, Tinbergen 1981, Westerterp 1982, Wright et al. 1998) and 

suggests that for our study populations below-ground prey, Tipulidae larvae in 

particular, form the majority of the diet of Starling nestlings. However, it should 

be noted that prey availability in our study areas was not measured and thus 

the patterns of provisioning we report may simply be a result of local prey 

abundance. 

 The total number of prey units per nestling was negatively correlated 

with brood size: more mouths means less food per nestling. The overall quantity 

of Tipulidae larvae per nestling declined with increasing brood size (Fig 3.2 – 

grey bars). Although nestling age had no effect on the number of Tipulidae 

larvae delivered to the nest, these results suggest that given the opportunity 

adults would increase the provisioning of Tipulidae larvae with nestling age, as 
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found in other studies (Dunnet 1955, Westerterp 1973, Tinbergen 1981). 

However, it seems likely that they are constrained by brood size (Fig 3.4). 

 

Figure 3.4 Mean number of Tipulidae larvae units per individual (± se) in the 
daily diet of Starling nestlings at Wytham, Oxfordshire, UK in relation to nestling 
age and brood size. One prey unit is equivalent to one adult Starling beak 
length. The number of nestlings and mean nestling age were negatively 
correlated (P = 0.01) meaning that older clutches were likely to be smaller as a 
result of nestling deaths. The data suggests that parents of older larger (4-6 
nestlings) broods are unable to provision at the same rate per nestling as older 
smaller (1-3 nestlings) broods. 

 

Despite being large prey items, earthworms (5%) and caterpillars (5%) 

represent a small percentage of the daily diet in terms of numbers. Earthworms 

are large and have a higher level of indigestible ash content than Tipulidae 

larvae, possibly due to the soil in their gut (Wright et al. 1998). An increase in 

the number of earthworms may result in a significant reduction in lipid content of 

the nestling diet and may explain why earthworms were not exploited more by 

parents with larger broods. Caterpillars are more digestible than Tipulidae 

larvae, due to their lower ash content (Wright et al.1998) and, given the choice, 

provisioning Starlings in the Netherlands selected caterpillars over Tipulidae 

larvae (Tinbergen 1981). Our study suggests an opposite pattern, although this 

may simply reflect the availability of caterpillars in the environment.  
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Our results are consistent with the idea that below-ground invertebrates 

form the key dietary items for Starling nestlings. However, it is unclear how 

environmental variation (e.g. in soil moisture, vegetation structure) alters 

provisioning rates and consequent reproductive performance in Starlings. This 

information is critical to determining management of habitats to enhance below-

ground prey abundance and accessibility (e.g. Devereux et al. 2004; 

Whittingham & Devereux 2008).  
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Appendix 3.A 

The number of Starling nestboxes observed at each of four nest box colonies 

near Wytham, Oxfordshire, UK between 2005 and 2008. Not all nextboxes were 

occupied in any one year, out of a possible 53 monitored next boxes data were 

recorded in 42. 

 

   
Number of nest boxes occupied 

 

  
Observation period 
 

 
Colony 1 

 
Colony 2 

 
Colony 3 

 
Colony 4 

 
2005 

 
5

th
 - 30

th
 May 

 

    
5 

 
2006  

 
9

th
 - 20

th
 May 

 

 
3 

  
3 

 
4 

 
2007  

 
29

th
 April - 7

th
 May 

 

 
3 

 
1 

 
3 

 
10 

 
2008  

 
14

th
 - 26

th
 May 

 

 
1 

 
1 

 
3 

 
5 

 
Total number of available nestboxes 
  

 
5 
 

 
3 

 
9 

 
36 
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Appendix 3.B  

Percentage of the total number of prey items in the Starling nestling diet per nest per day averaged for each year (mean value (± se) at 

Wytham, Oxfordshire, UK (n=number of nests). 

 

 
Tipulidae 

Larvae 
Lumbricidae Winged insects Coleoptera Larvae Lepidoptera 

Larvae 
Unidentified 

2005 (n=5) 45.98 ± 8.73 7.90 ± 2.79 1.59 ± 1.23 4.12 ± 1.73 4.65 ± 1.61 35.76 ± 5.99 

2006 (n=10) 40.45 ± 4.04 6.50 ± 2.60 1.64 ± 0.60 8.33 ± 4.53 12.02 ± 2.41 31.06 ± 3.54 

2007 (n=17) 59.31 ± 3.59 2.37 ± 0.48 18.80 ± 3.73 2.94 ± 0.98 4.70 ± 1.24 11.88 ± 1.33 

2008 (n=10) 58.02 ± 6.47 8.73 ± 1.78 5.62 ± 1.23 9.70 ± 3.88 2.83 ± 0.93 15.00 ± 3.60 

All years (n=42) 52.82 ± 2.87 5.86 ± 0.88 8.50 ± 1.58 6.47 ±1.66 5.82 ± 0.88 20.53 ± 1.99 
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Appendix 3.C 

Results of a generalized linear mixed-effects model (GLMM) of the number of 

Tipulidae larvae units delivered by parents per nestling per day (n = 64) as a 

function of the number of nestlings present in the nest on the day of observation 

and mean nestling age, accounting for variations in Julian date between years. 

The GLMM was fit using the Laplace method. 

  

Fixed Effects Estimate se df z P 

Full model 
a      

Intercept   6.25 1.07 1   5.84 < 0.001 
Number of nestlings on the day of observation - 1.43 0.47 1 - 3.07 0.002 
Number of nestlings on the day of observation²   0.16 0.06 1   2.57 0.01 
Mean nestling age - 0.07 0.04 1 - 1.79 0.07 
Julian date - 0.27 0.13 1 - 2.04 0.04 

Nestling number without age 
b      

Intercept   5.01 0.85 1   5.90 < 0.001 
Number of nestlings on the day of observation - 1.32 0.47 1 - 2.79 0.005 
Number of nestlings on the day of observation²   0.16 0.07 1   2.43 0.01 
Julian date - 0.21 0.13 1 - 1.59 0.11 

Age without nestling number 
c      

Intercept   2.77 0.49 1   5.62 < 0.001 
Mean nestling age - 0.027 0.04 1 - 0.70 0.48 
Julian date - 0.19 0.14 1 - 1.35 0.18 

Nestling number without Julian date 
d      

Intercept   5.73 1.07 1   5.34 < 0.001 
Number of nestlings on the day of observation - 1.41 0.48 1 - 2.94 0.003 
Number of nestlings on the day of observation²   0.17 0.07 1   2.62 0.009 
Mean nestling age - 0.05 0.04 1 - 1.25 0.21 

Julian date without nestling number 
e      

Intercept   2.77 0.49 1   5.62 < 0.001 
Mean nestling age - 0.03 0.04 1 - 0.70 0.48 
Julian date - 0.19 0.14 1 - 1.35 0.18 

 

a   
AIC: 219, Random effects (variance): nest box = 0.07 , individual level = 0.54. 

b   
AIC: 220, Random effects (variance): nest box = 0.10 , individual level = 0.54. 

c   
AIC: 226, Random effects (variance): nest box = 0.17 , individual level = 0.59. 

d   
AIC: 221, Random effects (variance): nest  box= 0.08 , individual level = 0.57. 

e   
AIC: 226, Random effects (variance): nest  box= 0.17 , individual level = 0.59



 75 

Appendix 3.D 

Results of a generalized linear mixed-effects model (GLMM) of the percentage 

of Tipulidae larvae units delivered by parents per nestling per day (n = 64) as a 

function of the number of nestlings present in the nest on the day of observation 

and mean nestling age, accounting for variations in Julian date between years. 

The GLMM was fit using the Laplace method.  

 

Fixed Effects Estimate se df z P 

Full model 
a      

Intercept   1.55 1.02 1   1.53 0.13 
Number of nestlings on the day of observation - 0.06 0.15 1 - 0.41 0.68 
Mean nestling age - 0.08 0.05 1 - 1.81 0.07 
Julian date   0.21 0.17 1   1.23 0.22 

Nestling number without age 
b      

Intercept   0.03 0.58 1   0.06 0.95 
Number of nestlings on the day of observation   0.06 0.13 1   0.46 0.64 
Julian date   0.30 0.17 1   1.78 0.07 

Age without nestling number 
c      

Intercept   1.20 0.53 1   2.25 0.02 
Mean nestling age - 0.08 0.04 1 - 1.82 0.07 
Julian date   0.24 0.16 1   1.51 0.13 

Nestling number without Julian date 
d      

Intercept   2.03 0.95 1   2.13 0.03 
Number of nestlings on the day of observation - 0.13 0.14 1 - 0.94 0.35 
Mean nestling age - 0.10 0.05 1 - 2.21 0.03 

Julian date without nestling number 
e      

Intercept   1.20 0.53 1   2.25 0.02 
Mean nestling age - 0.08 0.04 1 -1.82 0.07 
Julian date   0.24 0.16 1   1.51 0.13 

 

a   
AIC: 183, Random effects (variance): nest box = 0.72 , individual level = 0.39. 

b   
AIC: 184, Random effects (variance): nest box = 0.75 , individual level = 0.40. 

c   
AIC: 181, Random effects (variance): nest box = 0.71 , individual level = 0.40. 

d   
AIC: 182, Random effects (variance): nest box = 0.69 , individual level = 0.43. 

e   
AIC: 181, Random effects (variance): nest box = 0.71 , individual level = 0.40.   
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4.0 Abstract 

 

Capsule Decreased soil moisture can have a detrimental effect on reproductive 

success via changes in fledgling survival.  

Aims (i) To describe Starling nestling diet on lowland farmland. (ii) To 

determine the effects of natural variation in soil moisture on diet composition 

(iii) To determine the effects of natural variation in soil moisture and Tipulidae 

larvae provisioning on fledging success  

Methods Over 4 years, we observed parental food provisioning at 24 nests on 

lowland farmland in Oxfordshire, UK using nestbox video recorders. Mean daily 

volumetric soil moisture content surrounding the nest sites was recorded and 

related to Tipulidae larvae provisioning and fledgling survival. 

Results Tipulidae larvae were the most frequent prey item recorded in 

provisioning loads (51%). Estimates of prey lengths, dry mass and total energy 

content also confirmed that Tipulidae larvae were the key prey source. 

Generalized linear mixed-effects models showed a curvilinear relationship 

between the number and percentage of Tipulidae larvae in the diet per nestling 

per day and volumetric soil moisture content. Both initially decreased as 

volumetric moisture content increased between 20% and 30% and then 

increased as the volumetric soil moisture content increased above 35%. 

Tipulidae larvae provisioning was not related to fledgling success. However, 

fledgling success responded in a similar manner as Tipulidae larvae 

provisioning to variations in volumetric soil moisture content. 

Conclusion Our results support the idea that below-ground invertebrates form 

the key dietary items for Starling nestlings and that decreased soil moisture can 

have a detrimental effect on reproductive success via changes in fledgling 

survival. 
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4.1 Introduction 

 

In lowland England, summer droughts are becoming more common and climate 

models predict further increases in their frequency due to a combination of 

decreased summer rainfall and rising temperatures, especially in the southeast 

of the country (Hulme et al. 2002). Agricultural and recent semi-natural 

grasslands appear to be particularly sensitive to drought (Morecroft et al. 2002). 

A number of species that probe the ground for invertebrate prey are associated 

with lowland grasslands during the breeding season (Starling Sturnus vulgaris 

L. - Feare 1984, Chough Pyrrhocorax pyrrhocorax L.- McCracken et al. 1992, 

Lapwing Vanellus vanellus L. and Redshank Tringa totanus L. - Ausden et al. 

2003, Lapwing - Baines 1990, Golden Plover Pluvialis apricaria L. - Pearce-

Higgins & Yalden 2003, Snipe Gallinago gallinago L.- Green 1986) and 

informed land management of their preferred habitats is crucial to successful 

targeting of these species. For conservationists aiming to manage grasslands to 

benefit populations of ground-probing bird species it is key to understand the 

significance of an increase in the frequency of drought conditions during the 

breeding season.  

 Here we focus on a target species, the Starling, that has undergone 

substantial declines in the UK (Robinson et al. 2002, 2005) and Europe 

(PECBMS 2010) since the 1980s. Currently, Starlings are Red-listed in the UK 

owing to their breeding population size experiencing a severe ‘longer- term’ 

decline since 1969 (i.e. since the first Birds of Conservation Concern review) 

and declining by more than 50% during the past 25 years (Gregory et al.2002, 

2004; Eaton et al. 2009). It is thought that this decline is a result of decreasing 

survival rates, particularly of first-year birds (Freeman et al. 2002, 2007). 

 During the breeding season, soil dwelling Tipulidae spp. larvae (crane-fly 

larvae) have been found to be the dominant prey item in the diet of Starling 

nestlings (Dunnet 1955, Tinbergen 1981, Westerterp 1982, Wright et al. 1998, 

Rhymer et al. 2012 (Chapter 3)). Food is known to be a limiting factor to 

reproductive success (Martin 1987) and in a number of altricial species, 

including the Starling (Westerterp et al. 1982), experimental studies have shown 

a consistent increase in the size and survival of the young when brood sizes are 

artificially reduced or food supply is increased. On most soils, the lowering of 

soil moisture levels reduces soil penetrability making the ground too hard for 

http://onlinelibrary.wiley.com/doi/10.1111/j.0269-8463.2004.00896.x/full#b2
http://onlinelibrary.wiley.com/doi/10.1111/j.0269-8463.2004.00896.x/full#b3
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surface probing (e.g. Green et al. 1990). Therefore, access to below-ground 

prey, such as Tipulidae larvae, may be restricted during periods of drought 

lowering the reproductive success of the species. In Europe, Tipulidae have 

been identified as an important dietary item for farmland birds (Holland et al. 

2006), with up to 50% of lowland birds consuming Tipulidae larvae in the 

breeding season (Wilson et al. 1999). Thus, the mechanisms by which soil 

moisture affects reproductive success in the Starling may also apply to a range 

of species. 

 This study uses soil moisture as a proxy for access to below-ground prey 

and has two main aims. First, identify the relationship between Tipulidae larvae 

provisioning rates and soil moisture. Second, examine the relationship between 

Tipulidae larvae provisioning, soil moisture and fledging success. 

 

4.2 Methods 

 

4.2.1 Experimental set-up  

Data were collected at the Sawmill colony next to Wytham Woods, Oxfordshire, 

UK (51°46'N, 01°19’W). From 36 nestboxes located around the colony, 21 

Starling pairs in 24 nestboxes providing food for their young were observed over 

a 4-year period (2005-2008). Capturing and colour ringing breeding adults in 

2005 resulted in high desertion rates. Therefore the identity of individual 

Starlings making each nesting attempt was unknown. Due to the potential for 

pseudoreplication (multiple records from individuals and/or pairs across years 

which we were unable to control for) we also examined patterns in each year 

individually (e.g. Table 4.1 split by year). 
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Tipulidae 

larvae 
Lumbricidae Winged 

insects 
Coleoptera 

larvae 
Lepidoptera 

larvae 
 

Unidentified 

 
2005 
 (n=5) 

 

 
677 

(49%) 

 
93 

(7%) 

 
13 

(1%) 

 
79 

(6%) 

 
49 

(4%) 

 
460 

(33%) 

 
2006 
 (n=4) 

 

 
283 

(43%) 

 
5 

(1%) 

 
24 

(4%) 

 
9 

(1%) 

 
114 

(17%) 

 
221 

(34%) 

 
2007 

(n=10) 
 

 
1162 
(61%) 

 
45 

(2%) 

 
394 

(21%) 

 
47 

(3%) 

 
75 

(4%) 

 
172 
(9%) 

 
2008 
 (n=5) 

 

 
238 

(34%) 

 
46 

(7%) 
 

 
38 

(5%) 

 
125 

(18%) 

 
51 

(7%) 

 
209 

(29%) 

 
All 

years 
(n=24) 

 

 
2360 
(51%) 

 
189 
(4%) 

 
469 

(10%) 

 
260 
(6%) 

 

 
289 
(6%) 

 

 
1062 
(23%) 

 

Table 4.1 Abundance of prey items delivered to nestlings by 21 Starling pairs at 
the Sawmill colony, Wytham, Oxfordshire, UK over the duration of one day. 
Data were collected from nestbox video cameras (see methods for further 
details). If a beak-load of food contained two Tipulidae larvae and one 
earthworm (Lumbricidae) then a count of two would be entered into the 
Tipulidae larvae column and one into the Lumbricidae column in the Table. 
Tipulidae larvae were clearly the key dietary prey item in each year of the study. 
(n = number of nests).  
 

Nestboxes were visited every 2-3 days from early April (pre-nest 

building) until mid-June and standard biometric and nest history data collected 

(CLD and M.J.H.D). Time-lapse video recorders were used to record the 

parental provisioning rates and the type and size of food items provided to 

nestlings in each nest. Each nest was videoed twice prior to fledging (mean 

nestling age on the first day of observation was 10.96 ± 0.47 and on the second 

observation day it was 14.50 ± 0.60). Cameras were fitted with motion-sensitive 

switches which recorded for a 10 second duration following any movement 

(continuous movement results in continuous recording). Cameras were 

attached to nestboxes after dusk once foraging had ceased. They recorded for 

a 24 hour period and were powered by12v battery. To aid with prey 

identification and estimation of prey size, a bird turner (clear tunnel) was 

permanently attached to the entrance of the nestboxes to ensure that birds 

always entered the nest facing in the direction of the camera.  
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The Sawmill colony (Colony 4, Appendix 3.A, Chapter 3) was chosen 

due to it having the closest proximity (approximately 650m) to the automatic 

weather station (AWS) located at John Krebs Field Station. Soil moisture was 

recorded (throughout our study) at the AWS using a ML2 ThetaProbe (AT 

Delta-T Devices Ltd, Cambridge, UK), which measures volumetric soil moisture 

content by responding to changes in the apparent dielectric constant (speed of 

electromagnetic waves) of moist soil, for a volume of 300mm³ (60mm long x 

26.5mm diameter), with ± 1% accuracy over the range of 0 to 60%.  Volumetric 

soil moisture content is the ratio between the volume of water present and the 

total volume of the soil sample and is expressed as a percentage (% volume) 

(Delta-T Devices Ltd. 1999). The probe is positioned at a depth of 20cm and the 

mean values used represent a mean of the hourly recordings of 5 second 

samples taken over each 24hour period. Data were supplied by the UK 

Environmental Change Network, Centre for Ecology and Hydrology, 

Wallingford, UK. 

 

4.2.2 Analysis 

Data from the 24 nests at the Sawmill colony were used to examine (1) the diet 

of nestling Starlings and (2) the relationship between variations in volumetric 

soil moisture content, Tipulidae larvae provisioning and fledgling success. 

Although the diet of Starling nestlings has already been described in an earlier 

chapter (Chapter 3 - for all colonies combined) it is important to check that the 

patterns found overall were also found at the Sawmill colony. From the 24 

nests, 473 hours of video recordings were collected and analysed from 36 video 

tape recordings (CMR). Random data were also cross-checked (MJW) (15 

video recordings) and both prey identification and size estimates were found to 

be consistent. The total number of recording hours (shown in brackets) varied 

between years: 2005(118), 2006 (85), 2007 (148) and 2008 (122). On average, 

each nest was observed for 13.14 ± 0.64 hours during each 24 hour period. 

Each observation video was analysed frame by frame by a single observer 

(CMR) and a number of variables were recorded: video date and duration, the 

identity of prey items delivered (Chinery 2009), prey number (where possible to 

estimate) and the number of prey units in relation to adult beak length. The 

average adult beak length was taken to be 25mm (Feare 1984). A prey item 
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that was the same length as the beak was therefore classed as measuring one 

unit. 

We had three main aims. First, describe the diet of Starling nestlings at 

the Sawmill colony. Tipulidae larvae are the key part of the diet for all four 

colonies combined (see Chapter 3, Table 3.1) and therefore it was expected to 

be the same for the Sawmill colony. Second, determine the effects of natural 

variation in soil moisture on diet composition, in particular, the percentage and 

quantity of Tipulidae larvae in the diet. Third, determine the effects of natural 

variation in soil moisture and Tipulidae larvae provisioning on fledging success. 

 

4.2.3 Diet of nestling Starlings at the Sawmill colony 

Provisioning data recorded from the 36 nestbox foraging videos (from 24 

nesting attempts) were analysed by a single observer (CMR). From these data 

the percentage of the total number of prey items made up by each prey type 

delivered per nest per day was calculated.  The size and percentage of prey 

items was also calculated, in relation to the total number of prey units in the 

nestling diet per nest per day. Neither is as good a score of information as 

biomass, but they give an indication of the key dietary requirements of the 

young. In addition, we were not able to record the abundance of the key dietary 

items in the surrounding areas to determine whether dietary items were taken at 

random or not. 

Although it was not possible to measure biomass or energetic value of 

the prey items directly we were able to approximate these values: (i) volume of 

prey was expressed as the number of units of each prey item as a percentage 

of adult beak length and (ii) mean dry mass, mean kilojoules per item and mean 

ash content were calculated for each prey species from data in the literature 

(see Table 3.2, Chapter 3). 

 

4.2.4 Soil moisture and Tipulidae larvae provisioning at Sawmill colony 

Tipulidae larvae have been shown to be the preferred prey item of provisioning 

adult Starlings at the study site. Because moist soils have a greater surface 

penetrability (Gerard 1967, Green et al.  2000) and support larger densities of 

soil invertebrates than dry soils (Milsom et al. 2000), it is probable that 

variations in soil moisture affect adult provisioning rates of Tipuldae larvae, as 

well as other below-ground prey. Therefore we explored the relationship 
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between volumetric soil moisture content and the (A) quantity and (B) 

percentage of Tipulidae larvae provisioned to Starling nestlings. These 

relationships were tested using Generalized Linear Mixed Models (GLMMs) 

(where the random effect is indicated by 1|x where x is the random effect) as 

follows: 

A. Total number of Tipulidae larvae units per nestling per day as the response 

variable with a poisson error structure and a log link function.  

Total number of Tipulidae larvae units per nestling per day = mean volumetric 

soil moisture content on the day of observation + mean volumetric soil moisture 

content on the day of observation ² + number of nestlings + number of 

nestlings2 + Julian date + 1|nest + 1|observation  

B.  Percentage of Tipulidae larvae units in the diet per nestling per day as the 

response variable with a binomial error structure and a logit link function. 

Percentage of Tipulidae larvae units per nestling = mean volumetric soil 

moisture content on the day of observation + mean volumetric soil moisture 

content on the day of observation ² + mean nestling age + 1|nest + 

1|observation 

 

4.2.5 Soil moisture and Starling fledgling success at Sawmill colony 

Since food is known to be a limiting factor to reproductive success (Martin 1987) 

we explore the relationship between soil moisture and Tipulidae larvae 

provisioning and fledgling success at the Sawmill colony. These relationships 

were tested as follows: 

C. Number of nestlings that fledged as the response variable with a poisson 

error structure and a log link function. 

Number of nestlings that fledged = number of nestlings that hatched + mean 

temperature over the nestling period + mean number of Tipulidae larvae units 

per nestling per day on the day of observation + mean volumetric soil moisture 

content over the nestling period+ mean volumetric soil moisture content over 

the nestling period ² + 1|nest 

  

All tests were performed using the program LMER in the lme4 package 

v.0.999375-42 (Bates et al. 2012) for R version 2.14.1 (R Development Core 

Team 2011). Generalized linear mixed-effects models were fitted using the 

Laplace method for estimating parameters. Individual nestbox identity ‘nest’ was 
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modelled as a random effect to acknowledge the hierarchical design of the 

dataset and to control for possible temporal and spatial effects. In models A and 

B, we included an individual-level random effect to control for overdispersion, by 

accounting for individual variability (Bates et al. 2012). Squared terms were 

dropped from models if on their own they did not explain a significant amount of 

deviance. Given that we did not know the identity of individual birds our models 

assume that each ‘nest’ was independent. Starlings are known to be highly site 

faithful (Coleman 1974) and therefore we also assumed all birds nesting in the 

same box in different years were the same individuals.   

 For model A, number of nestlings, number of nestlings² and Julian date 

were included as they are known to influence the provisioning of Tipulidae 

larvae (see section 3.3.2, Chapter 3). Julian date and volumetric soil moisture 

content were negatively correlated (P = 0.02), meaning that soil moisture 

decreased as the nestling period progressed.  To check the robustness of 

model A and whether these variables were interchangeable GLMMs were also 

run with volumetric soil moisture content and Julian date independently 

(referred to as ‘soil moisture without date’ and ‘date without soil moisture’ in 

Appendix4.B). In model C, the number of nestlings that hatched and the mean 

number of Tipulidae larvae units per nestling per day were positively correlated 

(P = 0.01), meaning that in terms of initial brood size individual nestlings in 

larger broods received more Tipulidae larvae units per day than those in smaller 

broods. To check the robustness of model C and whether these variables were 

interchangeable GLMMs were also run with the number of nestlings that fledged 

and Tipulidae larvae units per nestling per day independently (referred to as 

‘hatch without Tipulidae larvae units’ and ‘Tipulidae larvae units without hatch’ in 

Appendix 4.D and 4.E). In models C, mean temperature over the nestling period 

was included as it is known that ambient temperature influences fledging 

success (e.g. Dawson et al. 2005).  
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4.3 Results 

 

4.3.1 Diet of nestling Starlings at the Sawmill colony 

In total 4629 separate prey items were recorded at the Sawmill colony: 2360 

Tipulidae larvae (51%), 189 earthworms (4%), 469 winged insects (10%), 260 

beetle larvae (6%), 289 caterpillars (6%) and 1062 unidentified items (23%)  

(Table 4.1). As previously observed at all nest colonies, nestling Starling diet 

consisted predominantly of Tipulidae larvae irrespective of whether that was 

expressed as the abundance of dietary items (Table 4.1) or on a per nest basis 

(Appendix 4.A). At the Sawmill colony, Tipulidae larvae were also the dominant 

prey item by mean dry mass (76%), length (57%) and energy content (46%) 

(see Table 3.2, Chapter 3 for calculations).  

 Overall our findings suggest that whether abundance, percentage or 

energetic content is measured Tipulidae larvae dominate the diet of farmland 

Starlings at the Sawmill colony during the study period. However, as we did not 

measure prey availability this alone might have determined this pattern. 

Nevertheless the predominance of the main dietary items were below ground 

and thus we felt it reasonable to explore how soil conditions influenced nestling 

provisioning. 

 

4.3.2 Soil moisture and Tipulidae larvae provisioning at Sawmill colony  

A. Volumetric soil water content (%) ranged from 21.43 to 40.71 (Table 4.2). 

After the number of nestlings and Julian date had been taken into account, 

there was a significant curvilinear relationship between the number of Tipulidae 

larvae units per nestling per day and the volumetric soil moisture content at the 

Sawmill colony on the day of observation (volumetric soil moisture content: P = 

0.02, volumetric soil moisture content ²: P = 0.03) (Appendix 4.B). The number 

of Tipulidae larvae units per nestling initially dropped as the soil increased in 

volumetric moisture content (between 20 and 35%) then increased as the 

volumetric soil moisture content increased to above 35% (Fig. 4.1). The results 

were supported by the independent GLMMs (Appendix 4.B). Although the 

volumetric soil moisture content and Julian date were significantly negatively 

correlated they were not interchangeable within the full model.  
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 Mean Volumetric Soil 
Moisture Content (%) 
over Nestling Period 

Mean Volumetric Soil 
Moisture Content (%) 

at time of 
Observation 1 

Mean Volumetric  
Soil Moisture 

Content (%) at time 
of Observation 2 

Mean Daily 
Temperature (°c) 

Mean Daily Rainfall 
(mm) 

Mean Daily Surface 
Wetness (minutes 

per hr) 

2005 32.81 ± 1.01 33.09 ± 1.44 31.35 ± 2.21 10.85 ± 0.17 0.05 ± 0.01 28.95 ± 1.13 

2006 38.02 ± 0.06 38.27 ± 0.82 37.65 ± 0.13 13.21 ± 0.19 0.08 ± 0.02 32.67 ± 1.66 

2007 23.90 ± 0.15 22.83 ± 0.28 22.08 ± 0.65 11.17 ± 0.26 0.07 ± 0.03 19.78 ± 1.86 

2008 30.96 ± 0.09 30.64 ± 0.23 30.08 ± 0.85 10.80 ± 0.18 0.22 ± 0.06 29.53 ± 1.58 

All years 30.19 ± 0.88 29.16 ± 1.26 30.32 ± 1.49 11.36 ± 0.10 0.10 ± 0.01 28.44 ± 0.75 

 

Table 4.2 Mean volumetric soil moisture content (%) (± se) over the entire nestling period and on the day of observation at the Sawmill 
colony, Wytham, Oxfordshire, UK. 
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B. There was a significant curvilinear relationship between the percentage of 

Tipulidae larvae units per nestling per day and the volumetric soil moisture 

content at the Sawmill colony on the day of observation (volumetric soil 

moisture content: P = 0.002, volumetric soil moisture content ²: P = 0.003) 

(Appendix 4.C). The percentage of Tipulidae larvae units per nestling initially 

dropped as the soil increased in volumetric moisture content (between 20% and 

30%) then increased as the volumetric soil moisture content increased to above 

35% (Fig 4.1).  

 

Figure 4.1 Mean number and percentage of Tipulidae larvae units per individual 
(± se), measured against adult beak length (i.e. 30 units on the y-axis is 
equivalent to 30 prey items equal to the bill length of the adult), in the daily diet 
of Starling nestlings at the Sawmill colony, Wytham, Oxfordshire, in relation to 
the volumetric soil moisture content on the day of observation.  
The number (volumetric soil moisture content: P = 0.02, volumetric soil moisture 
content ²: P = 0.03) and percentage (volumetric soil moisture content: P = 
0.002, volumetric soil moisture content ²: P = 0.003) of Tipulidae larvae were 
significantly related to volumetric soil moisture content, both declined initially as 
the volumetric soil moisture content of the soil increased between 20% and 30% 
then increased as the volumetric soil moisture content increased to above 35%. 
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 Number of 
Nestlings that 

Hatched 

Number of 
Nestlings that 

Fledged 

Number of 
Nestlings that 

Died 

Mean initial 
brood size per 

Nest 

 

Mean Number 
that Fledged per 

Nest 

Mean 
Percentage that 

Fledged per 
Nest 

Mean Number 
that Died per 

Nest 

2005 (n=5) 
 

24 17 7 4.75 ± 0.32 3.25 ± 0.37 72 ± 9.91 1.5 ± 0.60 

2006 (n=4) 
 

18 16 2 4.33 ± 0.21 4 ± 0.26 93 ± 6.67 0.33 ± 0.33 

2007 (n=10) 
 

48 37 11 4.75 ± 0.13 3.75 ± 0.37 80 ± 8.16 1. ± 0.41 

2008 (n=5) 
 

22 11 11 4.40 ± 0.16 2.2 ± 0.13 51 ± 4.27 2.2 ± 0.25 

All years  
(n =24) 

 

112 81 31 4.58 ± 0.10 3.25 ± 0.19 72 ± 4.47 1.33 ± 0.23 

 

Table 4.3 The number of Starling nestlings that hatched, fledged and died per year and the mean initial brood size (± se), number that 
fledged (± se), percentage that fledged (± se) and number that died (± se) per nest per year at the Sawmill colony, Wytham, Oxfordshire 
between 2005 and 2008.
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4.3.3 Soil moisture and Starling fledgling success at the Sawmill colony 

Clutch initiations are highly synchronous within Starling populations in the early 

part of the breeding season (Feare 1984). This behaviour was evident at the 

Sawmill colony:  2005 (151 ± 2.95), 2006 (153 ± 0.89), 2007 (143 ± 0.47) and 

2008 (161 ± 0.33) (numbers refer to the day of the year e.g. 26th May 2005 is 

day 146).  In total 112 nestlings hatched at the Sawmill colony: 24 in 2005 (17 

fledged, 7 died), 18 in 2006 (16 fledged, 2 died), 48 in 2007 (37 fledged, 11 

died) and 22 in 2008 (11 fledged, 11 died) (Table 4.3). 

C. After the number of nestlings that hatched and ambient temperature had 

been taken into account, there was no significant relationship between the 

number of nestlings that fledged and the mean number of Tipulidae larvae per 

nestling per day on the day/s that the nest was filmed (Tipulidae larvae units per 

nestling per day: P = 0.77) (Appendix 4.D, Fig. 4.2).  

 

 

Figure 4.2 The mean number of Starling nestlings that fledged (± se) and died 
(± se) and the mean percentage of nestlings that fledged (± se) at the Sawmill 
colony, Wytham, Oxfordshire, between 2005 and 2008, in relation to the 
number of Tipulidae larvae units provided to Starling nestlings on either one or 
two days of observation by video camera. There was no significant relationship 
between the number of nestlings that fledged and the mean number of 
Tipulidae larvae per nestling per day on the day/s that the nest was filmed 
(Tipulidae larvae units per nestling per day: P = 0.77). 
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There was a significant curvilinear relationship between the number of nestlings 

that fledged and the mean volumetric soil moisture content on the day of 

observation (volumetric soil moisture content: P = 0.04) volumetric soil moisture 

content ²: P = 0.04) (Appendix 4.D, Fig. 4.3).  

 

 

Figure 4.3 The mean number of Starling nestlings that fledged (± se) and died 
(± se) and the mean percentage of nestlings that fledged (± se) at the Sawmill 
colony, Wytham, Oxfordshire between 2005 and 2008, in relation to mean soil 
moisture during the nesting period. There was a significant curvilinear 
relationship between the number of nestlings that fledged and the mean 
volumetric soil moisture content on the day of observation (volumetric soil 
moisture content: P = 0.04, volumetric soil moisture content ²: P = 0.04). Soil 
moisture was measured as volumetric soil moisture content at the nestbox 
colony. The nestling period covered 16 days in each year. 
 

The number of nestlings that fledged initially dropped as the soil increased in 

volumetric moisture content (between 20% and 30%) and then increased as the 

volumetric soil moisture content increased to above 35%. The results were 

supported by the independent GLMMs (Appendix 4.D). Although the number of 

nestlings that hatched and the number of Tipulidae larvae units per nestling per 

day were significantly positively correlated they were not interchangeable within 

the full model. When model C was re-run, replacing the number of Tipulidae 

larvae per nestling per day with the percentage of Tipulidae larvae per nestling 
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number of nestlings that fledge remained insignificant (P = 0.63) (Appendix 4.E) 

(Fig.4.4). 

 

 

Figure 4.4 The mean number of Starling nestlings that fledged (± se) and died 
(± se) and the mean percentage of nestlings that fledged (± se) at the Sawmill 
colony, Wytham, Oxfordshire between 2005 and 2008, in relation to the 
percentage of Tipulidae larvae units per individual per day. The percentage of 
Tipulidae larvae in the diet per nestling per day as measured on the day/s on 
which the nest was filmed was not related to the number of nestlings that 
fledged. 

  

4.4 Discussion 

 

As was found in the larger population at John Krebs Field Station (Chapter 3), 

Tipulidae larvae formed the majority (between 46-76%) of the nestling diet at 

the Sawmill colony whether data were analysed as abundance, prey length, dry 

mass or energy (kJ). However, in contrast to all sites combined, nestlings 

received a similar proportion of winged insects, Coleoptera larvae and 

Lepidoptera larvae overall. This may reflect spatial variability in these prey 

items. 

 Between years, there was significant variation in mean daily volumetric 

soil moisture content over the nestling period (GLM: F 4, 3 = 1997.63, P < 0.001) 
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= 7.50, P < 0.001), temperature (GLM: F 4, 3 = 29.21, P < 0.001) and surface 

wetness (the number of minutes per hour during which the soil surface is wet at 

ground level) (GLM: F 4, 3 = 9.25, P < 0.001) over the nestling period between 

years (Table 4.2).  When all years were considered, the number and 

percentage of Tipulidae larvae in the diet initially decreased with increasing soil 

moisture and then increased. This is counter to the a priori prediction that both 

would increase with increasing soil moisture. This may be partly explained by 

the fact that soil moisture varies both spatially and temporally and is only one of 

the soil variables related to penetration resistance (Vaz et al. 2001). The 

strength of the surface layer soil is due its bulk density (mineral content and 

degree of compaction) as well as its water status (Whalley et al. 2007). It may 

also be due to the depth of the soil moisture recordings. ThetaProbes are 

positioned at 20cm below the soil surface. Foraging Starlings will probe up to a 

maximum of approximately 25mm (the average adult beak length) into the top 

layer of soil. Low soil moisture readings at 20cm depth may not reflect what is 

occurring at the soil surface. For example, surface wetness will be affected by 

microclimatic atmospheric variations during the day, such as changes in relative 

humidity, net radiation, wind speed and temperature (Magarey et al. 2005), as 

well as intermittent rain showers. Even in years with comparatively low soil 

moisture content the soil surface at the study site was ‘wet’ for a period of time 

during the day (e.g. in 2007 the mean daily soil surface wetness during the 

nestling period was 19.78 ± 1.86 minutes per hour) (see Table 4.2). Short 

periods of surface wetness, although not reliable, would allow birds access to 

below-ground invertebrate prey during periods of drought. 

 Starlings feeding nestlings mostly limit their foraging to areas within 500 

m of their nest (Feare 1984). The area of grassland and woodland within 500m 

radius of the Sawmill colony overlies top soils ranging from Elmton, a shallow 

fine loam over limestone to Denchworth, a slowly permeable clayey soil with 

fine loam (Kneale 1986, Farewell et al. 2011). Our results show that Tipulidae 

larvae numbers and percentages per nestling per day were initially high at low 

soil moisture levels (20-25%), decreased as soil moisture levels initially 

increased (25-30%) and then increased as volumetric soil moisture content 

reached 35-40 % (Fig 4.1).  These results are unexpected as penetration 

resistance i.e. the force required by a bird to probe the ground for prey is 

expected to decrease with increased soil moisture. However, in clay loam the 
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shear strength (soil adhesion/cohesion that binds together like structures in the 

soil) is weakest in very dry soils (< 12 %) and saturated soils (> 40%). 

Penetration resistance increases with moisture content, reaching a peak in the 

moisture content range 28-32%, and then decreases sharply to values similar to 

that of dry soil (Rajaram & Erbach 1998). During the Starling breeding season 

(April – June) Tipulidae larvae are at the third/fourth instar stage of development 

and are no longer prone to desiccation (Milne et al. 1965, Laughlin 1967, 

Blackshaw 2012). Their abundance and accessibility will not be affected by very 

dry soil, unlike other below-ground prey that are prone to desiccation (e.g. 

earthworms burrow deeper in dry soils and are thus likely to be out of reach for 

starlings). This is supported by our data which shows that at low soil moisture 

content (20-25%) earthworms decline in the diet while winged insects increase 

(Fig. 4.5). It should be noted, that the spatial patterns of Tipulidae larvae 

abundance may change as older larvae move to sites where the soil moisture is 

more favourable (wetter), particularly during extended periods of dry weather 

(Blackshaw 1999). Also, changes in the physical properties of clay loam soils 

will vary depending on the quantity of clay in the soil. 

 

 

Figure 4.5 The mean number of units (± se) of different prey types delivered by 
adult Starlings per nestling per day at the Sawmill colony, Wytham, Oxfordshire 
between 2005 and 2008, in relation to volumetric soil moisture content.  
One unit is equivalent to the average 25 mm adult Starling beak length. 
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 There is no direct statistical evidence of the link between soil moisture 

and fledgling success. Due to the highly synchronous hatching of Starlings at 

the Sawmill colony there was little within-year soil moisture variation to explore 

differences in reproductive success within years and so there was only between 

year variation to explore this parameter. However, Tipulidae larvae provisioning 

and fledgling success both respond in a similar manner to variations in 

volumetric soil moisture content. As Tipulidae larvae form the majority of the 

Starling nestling diet in terms of prey units (57%) these results are consistent 

with the idea that below-ground invertebrates form the key dietary items for 

Starling nestlings and that decreased soil moisture can have a detrimental 

effect on reproductive success via changes in fledgling survival.  

The findings suggest that on clay loam soils, intermediate soil moisture levels 

have the most impact on Tipulidae larvae provisioning.  Penetration resistance 

is highest as soils shift from being very dry to wet or vice versa. Evidence 

suggests that as clay loam soils go through several seasonal cycles of wetting 

and drying the shear strength of the soil will increase further, although this is 

dependent on the extent of drying stress (Rajaram & Erbach 1998). Therefore, 

the penetration resistance of soils at intermediate levels of soil moisture will be 

higher in those that have been subjected to regular drought. Maintaining a high 

water table throughout the spring/summer through the use of features such as 

footdrains or rills may prevent this (see Chapter 6, section 6.4.1). 

 Although the overall pattern was of an increase in provisioning at higher 

soil moisture levels and a concomitant increase in breeding success this needs 

to be placed within the context that the soils in this chapter were far from 

saturated (e.g. compare with data in Chapter 1 based on Autumn/Winter 

foraging). The subtle complexities of how soil moisture interacts with the soil 

type found on this site highlight that the straightforward a priori expectation of 

increased soil moisture being positively linearly related to higher provisioning 

and breeding success did not hold here. However, penetration resistance will 

typically decrease with an increase in soil water content (Francis et al. 1987, 

Tekeste et al. 2008) and therefore our results may be more an exception than a 

general rule.  

Future work needs to examine survival of young both before and after 

they leave the nest under differing soil moisture conditions with a sufficiently 

large number of samples to explore population level effects. Energy demands of 
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the young are greatest after leaving the nest, young that have experienced food 

shortages or poor quality food during the nestling stage may have post-fledgling 

survival compromised. In addition, drought conditions during the post-fledging 

period may have a negative impact on recruitment in the following year. These 

issues will be examined in Chapter 5. 
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Appendix 4.A  

Percentage of the total number of prey items in the Starling nestling diet per nest per day averaged for each year (mean value (± se) at 

the Sawmill colony Wytham, Oxfordshire, UK (n=number of nests). 

 
Tipulidae 

Larvae 
 

Lumbricidae Winged insects Coleoptera Larvae Lepidoptera 
Larvae 

Unidentified 

2005 (n=5) 
 

41.4 ± 10.9 19.97 ± 6.85  0.37 ± 0.25 3.80 ± 1.63 8.92 ± 3.91 25.63 ± 8.01 

2006 (n=4) 
 

53.53 ± 6.36 3.44 ± 1.80 0.95 ± 0.30 1.04 ± 0.72 20.43 ± 2.86 20.61 ± 5.11 

2007 (n=10) 
 

73.02 ±  3.14 5.49 ± 1.34 5.59 ± 1.46 2.46 ± 1.14 5.47 ± 0.98 7.97 ± 1.60 

2008 (n=5) 
 

39.31 ± 8.44 19.57 ± 3.29 4.22 ± 1.95 13.44 ± 5.64 8.53 ± 2.91 14.93 ± 4.65  

All years (n=24) 
 

53.37 ± 4.30 12.27 ± 2.18 3.28 ± 0.80 5.57 ± 1.80 9.58 ± 1.52 15.93 ± 2.57 
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Appendix 4.B  

Results of a generalized linear mixed-effects model (GLMM) of the number of 

Tipulidae larvae units delivered by parents per Starling nestling per day (n = 36) 

as a function of the mean volumetric soil moisture content on the day of 

observation, accounting for variations in Julian date between years. The GLMM 

was fit using the Laplace method.  

 

Fixed Effects Estimate se df z P 

Full model 
a      

Intercept   18.58 5.39 1   3.45 <0.001 
Number of nestlings on the day of observation - 3.37 1.18 1 - 2.86   0.004 
Number of nestlings on the day of observation²   0.44 0.15 1   2.89   0.004 
Mean volumetric soil moisture - 0.66 0.28 1 - 2.33   0.02 
Mean volumetric soil moisture²   0.01 0.01 1   2.23   0.03 
Julian date - 0.29 0.17 1 - 1.71   0.09 

Soil moisture without date 
b      

Intercept   17.74 5.59 1   3.17   0.002 
Number of nestlings on the day of observation - 2.98 1.21 1 - 2.47   0.01 
Number of nestlings on the day of observation²   0.40 0.16 1   2.57   0.01 
Mean volumetric soil moisture - 0.70 0.28 1  - 2.34   0.02 
Mean volumetric soil moisture²   0.01 0.01 1    2.33   0.02 

Date without soil moisture 
c      

Intercept   6.12 2.14 1   2.86   0.004 
Number of nestlings on the day of observation - 2.18 1.15 1 - 1.90   0.06 
Number of nestlings on the day of observation²   0.30 0.15 1   2.02   0.04 
Julian date - 0.21 0.16 1 - 1.31   0.19 

 

a   
AIC: 120.2, Random effects (variance): nest box = 0.03, individual level = 0.04. 

b   
AIC: 121, Random effects (variance): nest box =0.01, individual level = 0.04. 

c   
AIC: 121.8, Random effects (variance): nest box = 0.14 , individual level = 0.37. 
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Appendix 4.C  

Results of a generalized linear mixed-effects model (GLMM) of the percentage 

of Tipulidae larvae units delivered by parents per Starling nestling per day (n = 

36) as a function of the mean volumetric soil moisture content on the day of 

observation, accounting for variations in Julian date between years. The GLMM 

was fit using the Laplace method.  

Fixed Effects Estimate se df z P 

Full model 
a      

Intercept   17.77 5.45 1   3.26 0.001 
Mean volumetric soil moisture - 1.18 0.38 1 - 3.11 0.002 
Mean volumetric soil moisture²   0.02 0.01 1   2.99 0.003 
Mean age   0.01 0.05 1   0.20 0.84 

 

a   
AIC: 120.2, Random effects (variance): nest box = 0.51, individual level = 0.31. 
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Appendix 4.D  

Results of a generalized linear mixed-effects model (GLMM) of the number of Starling nestlings that fledged (n =36) as a function of the 

mean number of Tipulidae larvae units per nestling per day and volumetric soil moisture content over the nestling period, accounting for 

mean ambient temperature and the number of nestlings that hatched. The GLMMs were fit using the Laplace method.  

Fixed Effects Estimate SE df z P 

Full model 
a 

     

Intercept 9.44 4.17 1   2.27 0.02 
Number of Tipulidae larvae units per nestling per day - 0.003 0.01 1 - 0.30 0.77 
Mean volumetric soil moisture over the nestling period - 0.54 0.26 1 - 2.06 0.04 
Mean volumetric soil moisture over the nestling period ² 0.01 0.004 1   2.04 0.04 
Mean ambient temperature over the nestling period 0.004 0.05 1   0.08 0.93 
Number of nestlings that hatched - 0.04 0.20 1 - 0.24 0.81 

Hatch without Tipulidae larvae units 
b      

Intercept 9.44 4.11 1   2.30 0.02 
Mean volumetric soil moisture over the nestling period - 0.53 0.26 1 - 2.06 0.04 
Mean volumetric soil moisture over the nestling period ² 0.01   0.004 1   2.04 0.04 
Mean ambient temperature over the nestling period 0.01 0.05 1 - 0.16 0.87 
Number of nestlings that hatched - 0.09 0.16 1 - 0.57 0.57 

Tipulidae larvae units without hatch 
c 

     

Intercept 9.26 4.10 1   2.26 0.02 
Number of Tipulidae larvae units per nestling per day - 0.004 0.01 1 - 0.44 0.66 
Mean volumetric soil moisture over the nestling period - 0.54 0.26 1 - 2.06 0.04 
Mean volumetric soil moisture over the nestling period ² 0.01   0.004 1   2.05 0.04 
Mean ambient temperature over the nestling period 0.004 0.05 1   0.09 0.93 

 

a   
AIC: 26.53, Random effects (variance): nest box = 0. 

b   
AIC: 24.73, Random effects (variance): nest box = 0. 

c   
AIC: 24.58, Random effects (variance): nest box = 0.
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Appendix 4.E  

Results of a generalized linear mixed-effects model (GLMM) of the number of Starling nestlings that fledged (n =36) as a function of the 

percentage of Tipulidae larvae units per nestling per day and volumetric soil moisture content over the nestling period, accounting for 

mean ambient temperature and the number of nestlings that hatched. The GLMM was fit using the Laplace method.  

Fixed Effects Estimate se df z P 

Full model 
a 

     

Intercept   1.04 1.25 1 0.83 0.41 
Percentage of Tipulidae larvae units per nestling per day   0.01   0.01 1 - 0.49 0.63 
Mean volumetric soil moisture over the nestling period   0.001 0.02 1    0.06 0.96 
Mean ambient temperature over the nestling period   0.02 0.05 1    0.40 0.69 
Number of nestlings that hatched - 0.09 0.18 1   0.83 0.63 

Hatch without Tipulidae larvae units 
b      

Intercept   8.75 4.11 1   2.30 0.02 
Mean volumetric soil moisture over the nestling period - 0.50 0.26 1 - 2.06 0.03 
Mean volumetric soil moisture over the nestling period ²   0.01   0.01 1   2.04 0.03 
Mean ambient temperature over the nestling period   0.01 0.05 1 - 0.16 0.87 
Number of nestlings that hatched - 0.10 0.16 1 - 0.57 0.60 

Tipulidae larvae units without hatch 
c 

     

Intercept   9.70 4.10 1   2.26 0.02 
Number of Tipulidae larvae units per nestling per day - 0.02 0.01 1 - 0.44 0.50 
Mean volumetric soil moisture over the nestling period - 0.49 0.26 1 - 2.06 0.03 
Mean volumetric soil moisture over the nestling period ²   0.01   0.004 1   2.05 0.03 
Mean ambient temperature over the nestling period   0.03 0.05 1   0.09 0.89 

 

a   
AIC: 27.48, Random effects (variance): nest box = 0 

b   
AIC: 25.73, Random effects (variance): nest box = 0. 

c   
AIC: 25.58, Random effects (variance): nest box = 0.
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5.0 Abstract 

 

Capsule In Britain, soils have become increasingly drier from 1980-1999 and 

these changes are negatively correlated with Starling populations. 

Aims (i) To investigate changes in soil moisture deficit since the 1980s at a 

national scale. (ii) To examine the correlative effects of soil moisture deficit 

changes on Starling breeding populations.  

Methods Starling breeding population changes and mean spring (April - June) 

and summer (July-September) soil moisture deficit values were recorded at 132 

British Common Bird Census sites between 1981 and 2000.  

Results Generalized linear mixed-effects models showed that spring and 

summer soil moisture deficit increased from 1980-1999. Drier soils were 

correlated negatively with Starling breeding populations even when significant 

negative temporal effects (likely linked to agricultural intensification) were also 

taken into account. Starling populations did best in years with wet springs (April-

June) and dry summers (July-Sep). 

Conclusion Our results support the idea that the drying of soils over a 20-year 

period correlates with poor Starling breeding performance. 
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5.1 Introduction 

 

It is well established that farmland bird population declines are strongly linked to 

the land use and management changes associated with increased agricultural 

intensification (e.g. Chamberlain et al. 2000, Donald et al. 2001, and Gregory et 

al. 2004). The pressures of habitat destruction and management intensification 

are predicted to worsen over the course of the next century (Sala et al. 2000) in 

response to increasing demands for food by growing human populations (Green 

et al. 2005). In addition there are substantial effects predicted from climate 

change on species’ distribution and abundance (Parmesan & Yohe 2003, Root 

et al. 2003, Thomas et al. 2004, Hickling et al. 2006).    

 A number of bird species associated with lowland farmland grassland 

feed predominantly on soil dwelling invertebrates and so will be sensitive to 

changes in soil conditions (e.g. waders such as Common Snipe Gallinago 

gallinago L. - Green 1986; Common Redshank Tringa totanus L. and Northern 

Lapwing Vanellus vanellus L. - Baines 1990, Ausden et al. 2003; European 

Golden Plover Pluvialis apricaria L. - Pearce-Higgins & Yalden 2003; corvids 

such as Chough Pyrrhocorax pyrrhocorax L. - McCracken et al. 1992 and 

passerines such as Song Thrush Turdus philomelos L. - Peach et al. 2004 a, b 

and European Starlings Sturnus vulgaris - Dunnet 1955, Tinbergen 1981, 

Rhymer et al. 2012 (see Chapter 3)). 

 Climate change is likely to have a significant impact on ground water 

levels and thus the availability of suitable feeding habitat for species that probe 

the ground for food (Hulme et al. 2002). Raised water levels keep the surface 

soil moist, increase soil surface penetrability (Gerard 1967, Green et al. 2000) 

and reduce vegetation growth when surface water is present (Ausden et al. 

2001). In general, moist soils support larger densities of soil invertebrates than 

dry soils (Milsom et al. 2000). Moisture is one of the main factors determining 

earthworm abundance in the top 5–10 cm of soils (Gerard 1967, Green et al. 

2000, Peach et al. 2004a) and influences pupation rates and larvae survival of 

terrestrial invertebrates (Meats 1974). The lowering of field water levels reduces 

soil penetrability making the ground too hard for surface probing. As the soil 

surface dries out, earthworms descend deeper into the soil and become less 

accessible to foraging birds. Laboratory and field studies have shown that 

Tipulidae paludosa larvae, an important prey item for the Starling nestlings (e.g. 
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Dunnet 1955, Tinbergen 1981, Rhymer et al. 2012), will move to preferred 

moisture levels (Blackshaw 1999). Egg and early instar larval survival are 

favoured by wet soil conditions associated with prolonged damp weather 

(Coulson 1962, Milne et al.1965, Meats 1974) or irrigation of pastures (Jackson 

& Campbell 1975) during late summer and early autumn. They are adversely 

affected by desiccation if the soil dries out quickly at a vulnerable stage in their 

life-cycle (McCracken et al. 1995, Bale et al. 2002). The lowering of field ground 

water levels will reduce both abundance and accessibility of food.  

 Increasing temperatures and accelerating evaporation through the spring 

and summer are known to lead to a progressive drying of the soil and the 

creation of a soil moisture deficit (SMD) (the amount of water in millimetres 

needed to bring the soil moisture content back to field capacity) (Hough & 

Jones 1997).  Across all seasons, all regions of the UK have experienced an 

average increase of between 1.0 and 1.7 °C in annual average temperatures 

between 1961 and 2006 (http://ukclimateprojections.defra.gov.uk/21809). This 

combination of reduced precipitation and increased temperature (and the 

subsequent increased evapo-transpiration by plants: a 3°C increase in soil 

temperature can cause a 30% increase in evapo-transpiration and a 25% 

decrease in soil moisture (Harte et al. 1995)) will have had marked effects on 

soil moisture deficits.  

 In the future, rising mean annual air temperatures, increased evapo-

transpiration and reduced summer precipitation, are predicted to combine to 

increase the frequency of intense short-term (3–6 month) summer desiccation 

in southern and eastern England over the next 100 years (Parry et al. 2004). 

Under the high emissions scenario, annual moisture content of soils is liable to 

decrease by 10-20% across the UK by the 2080s, with 20- 50% reductions in 

average summer soil moisture content occurring in South East England 

compared with a 0-20% in the North West (Bisgrove & Hadley 2002). Higher 

temperatures may also reduce the water holding capacity of soils; the lower the 

capacity, the greater the sensitivity to climate change (IPCC 2001). 

 Climate has become an increasingly important driver of bird populations 

since the mid-1980s (Devictor et al. 2008, Gregory et al. 2009) with food supply 

as a key determinant of local population density (e.g. Newton 1998). Thus, 

informed management of their preferred habitats is crucial to successful land 

management targeting these species. For conservationists aiming to manage 
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habitats to benefit populations of a target species it is key to understand the 

effects of increasing spring and summer soil moisture deficit on breeding 

populations. Here we focus on a model species, the Starling, that has 

undergone substantial declines in the UK (Robinson et al. 2002, 2005) and 

Europe (PECBMS 2010) since the 1980s. Currently, Starlings are Red-listed in 

the UK owing to their breeding population size experiencing a severe ‘longer- 

term’ decline since 1969 (i.e. since the first Birds of Conservation Concern 

review) and declining by more than 50% during the past 25 years (Gregory et 

al. 2002, 2004, Eaton et al. 2009).  

 This study tests the hypothesis that Starling populations have responded 

to changes in soil moisture deficit conditions from 1981 to 2000 by examining 

yearly population estimates across 132 survey sites. Insights from this one 

species could potentially inform management for a range of species that forage 

by probing the ground for invertebrate prey. This will be explored in the 

discussion and subsequent review chapter (Chapter 6, Rhymer et al. 2010). 

 

5.2 Methods 

 

5.2.1 Data collection 

Changes in the abundance of breeding Starlings were assessed through the 

analysis of UK annual census data from 1981 through to 2000. Data were 

collected by volunteers participating in the British Trust for Ornithology Common 

Birds Census (CBC) (Marchant et al. 1990). The CBC method requires seven to 

ten visits per site per breeding season to record the number and distribution of 

all the birds seen or heard (Marchant et al. 1990). It provides a precise 

assessment of the number of breeding bird territories occupied at individual 

sites (Marchant 1983, Marchant et al. 1990). The CBC has a number of 

limitations; census plots are biased in favour of the south and east of England 

where observer density is greatest, are few in number (approximately 200) due 

to time-consuming surveying and mapping, do not cover upland or urban areas 

well, are limited in sparsely populated regions, are variable in size and are not 

formally randomised (Marchant et al. 1990, Gregory et al. 2000). However, the 

CBC plots are considered representative of most of the lowland farmland within 

southern England, and more accurate than their successor, the Breeding Bird 

Survey, at monitoring site level population changes (Freeman et al. 2007). From 
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200 CBC plots, 149 plots were found to have Starling territories. Breeding 

numbers were estimated through a combination of nest counts and number of 

singing males recorded at each site. Only plots that had been surveyed for a 

minimum of 5 years (not always sequential) were include in the analysis (132) 

(Fig. 5.1).  

 

Figure 5.1 Location of 132 Common Bird Census sites used in this study that 
contained Starling breeding pairs between 1981 and 2000  
(note circles are overlaid). 
 

 Soil moisture deficit (SMD) data for the period 1980 to 1999 were 

obtained from the Meteorological Office Rainfall and Evaporation Calculation 

System (MORECS). SMD estimates, measured in millimetres (mm),  for the UK 

are calculated from a modified form of the Penman–Monteith method (Monteith, 

1973, Monteith & Unsworth 1990) using synoptic weather data (rainfall, 

sunshine, temperature, vapour pressure, wind speed), from a network of more 

than 200 stations across Britain, as well as soil type and land use information. 

The total moisture store of a soil is a pre-defined amount (the maximum 

available water capacity) which depends on the soil type and the rooting depth 

(the deeper the root system the greater the amount of water that can be 

extracted e.g. under deciduous trees much greater SMDs can be attained than 
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under grassland). A SMD is defined when the actual water amount falls below 

the maximum due to evaporation exceeding rainfall. A zero soil moisture deficit 

is called field capacity, although this is known to be an approximation, 

especially for clay soils (Hough 2003).The soil available water capacity data in 

MORECS comes from the Land Information System developed by the Soil 

Survey Land Research Centre. For each MORECS square up to 1600 values 

are used to find the mean values for the square. MORECS provides a UK-wide 

assessment of general soil moisture status, divided into 40 km2 areas based on 

general land cover and soil type (Hough & Jones 1997).  

 Soil type specific to the central grid reference provided for each CBC 

site, was obtained from Cranfield University’s National Soil Research Institute 

Soilscapes (http://www.landis.org.uk/soilscapes/). A simplified version of the 

1:250,000 scale Digital National Soil Map for England and Wales that includes 

27 soil classes (Farewell et al. 2011). 

 

5.2.2 Analysis 

From 132 CBC sites, located within 67 MORECS squares, 1077 breeding 

territory estimates were made between 1981 and 2000. The total number of 

MORECS squares and CBC sites surveyed varied between years (Appendix 

5.A). On average, 56.68 ± 1.56 (± se) CBC sites were surveyed within 37.37 ± 

0.82 (± se) MORECS squares each year (each MORECS square contained 

1.97 ± 0.18 (± se) CBC sites). Each CBC site was surveyed for 8 ± 0.35 (± se) 

years. For each CBC site a number of variables were recorded: number of 

breeding pairs, habitat type (farmland, woodland or other (lowland wetland or 

urban open spaces), soil type (for analysis purposes they were classified into 

the following categories: freely draining loamy soils, freely draining sandy soils, 

loamy and clayey soils, sandy and loamy soils or peat soils), mean altitude, 

mean area (hectares), Easting and Northing. Mean spring (April to June) and 

summer (July to September) SMD estimates were also recorded for each 

MORECS square per year. SMD estimates assume medium available water 

holding capacity soil (Loamy Sand, Sand, Loamy Fine Sand, Fine Sand, Sandy 

Loam, Fine Sandy Loam, Loam, Silty Loam, Clay Loam, Sandy Clay Loam, 

Silty Clay Loam, Sandy Clay, Silty Clay, Clay) with grass cover.  
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5.2.3 Variation in soil moisture deficit across MORECS sites 

Central England Temperature has risen by about a degree Celsius since the 

1970s while summer precipitation has decreased (Jenkins et al. 2009). It is 

therefore probable that spring and summer soil moisture deficits will have 

increased over the period 1980 to 1999.  In addition, because soil moisture 

deficit varies both temporally and spatially (IPCC 2001) it would also be 

expected that mean spring and summer soil moisture deficit will vary according 

to location. These relationships were tested with GLMMs (with MORECS 

square as the random effect) as follows: 

A. Mean April to June soil moisture deficit as the response variable with 

Gaussian errors and an identity link function. 

Mean April to June soil moisture deficit = year + year 2 + 1|MORECS square 

B. Mean July to September soil moisture deficit as the response variable with 

Gaussian errors and an identity link function. 

Mean July to September soil moisture deficit = year + year 2 + 1|MORECS 

square 

  

5.2.4 Variation in soil moisture and Starling breeding population changes 

In the UK, the mean laying date of Starlings advanced between 1968 and 2008, 

from the 27th to the 22nd April 

(http://www.bto.org/birdtrends2010/wcrstarl.shtml#population). Fledging occurs 

at around 21 days and the parents feed the young for two weeks afterwards. A 

second clutch may be laid 40 to 50 days after the first clutch (Crick et al. 2002). 

Soil dwelling Tipulidae larvae are a key resource for adult Starlings provisioning 

their young on lowland farmland (e.g. Tinbergen 1981, Rhymer et al. 2012). 

Below ground invertebrate prey continue to be an important dietary source for 

juveniles throughout the summer, as well as arboreal invertebrates and fruit 

(Crick et al. 2002). During the early spring, Tipulidae larvae are located close to 

and sometimes on the soil surface. However, from mid-June onwards larvae 

stop feeding and move down to approximately 2-5 cm below the soil surface 

(Blackshaw 1999). Dry spring and summer soil conditions force larvae and 

other invertebrate prey (e.g. earthworms) to descend deeper into the soil, thus 

reducing prey abundance and accessibility during the breeding and post-

fledging period forcing ground-probing bird species to switch to potentially less 

nutritional invertebrate prey (Gruar et al. 2003). 
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 Starlings are known to be highly site faithful, returning to the same 

general area each year to breed (Feare 1984). While some females breed in 

the year after fledging, males do not start to breed until the next year (Coulson 

1960, Feare 1984). It is therefore assumed that factors relating to post-fledging 

survival in one year may apply to changes in population size between that year 

and the following two years. The hypothesis that an increase in soil moisture 

deficit (drier soils) will reduce breeding population sizes by means of increased 

mortality through reduced parental and juvenile foraging opportunities was 

tested by modelling annual variation in Starling breeding population as a 

function of spring and summer soil moisture deficit one and two years 

previously. Soil moisture deficit was partitioned into spring (April to June) and 

summer (July to September) to acknowledge the difference between parental 

provisioning (spring) and post-fledging foraging (summer) as well as 

behavioural differences in Tipulidae larvae between these periods. The 

response variable was the number of Starling pairs breeding at 132 sites from a 

minimum of five years (between 1981 and 2000). These relationships were 

tested with various combinations (see below) of the following overall GLMMs as 

follows: 

C. Total number of breeding pairs per site as the response variable with a 

Poisson error structure and a log link function. 

Total number of breeding pairs per site = April to June SMD one year ago+ April 

to June SMD one year ago 2 + July to September SMD one year ago+ offset 

(log of the previous year’s breeding pair numbers) + site area + year + habitat 

category + soil type +1|site 

D. Total number of breeding pairs per site as the response variable with a 

Poisson error structure and a log link function. 

Total number of breeding pairs per site = April to June SMD two years earlier + 

July to September SMD two years earlier + July to September SMD two years 

earlier 2 + + offset (log of the breeding pair numbers two years earlier) + site 

area + year + habitat category + soil type + 1|site. 

 

All tests were performed using the program LMER in the lme4 package 

v.0.999375-42 (Bates et al. 2012) for R version 2.14.1 (R Development Core 

Team 2011). Models were generalized linear mixed-effects models (GLMMs) fit 

using the REML (models A and B) and Laplace (models C and D) methods for 

http://beheco.oxfordjournals.org/content/16/4/805.full#ref-23
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estimating parameters. Change in breeding bird numbers was modelled by 

incorporating the natural log of the previous years’ count as an offset. The 

analysis therefore models the log-ratio of change from year to year (Pearce-

Higgins et al. 2010) and also controls for density-dependence and survey error 

(Yalden & Pearce- Higgins 1997, Freckleton et al. 2006). Individual site identity 

‘site’ was modelled as a random effect (written as 1|site above) to acknowledge 

the hierarchical design of the dataset and to control for possible temporal and 

spatial effects (Robinson et al. 2002). Site area was included in the models to 

take account of the variation in the area surveyed between sites. Population 

declines are known to have been greatest in woodland (Robinson et al. 2002, 

2005) and therefore habitat category (woodland, farmland and other) was 

included to take account of this. Sites within the same MORECS square may 

have different soil types. Different soil types have different field capacities 

(Richards & Weaver 1944) and will have different soil moisture deficits from the 

average for the 40km2 area. In addition, the relationship between soil moisture 

and penetration resistance can differ between soil types. Therefore, soil type 

(five classes: loamy, sandy, loamy and clayey, sandy and loamy and peat 

(http://www.landis.org.uk/soilscapes/) is accounted for in the models. 

 Mean April to June SMD (P < 0.001) and July to September SMD (P < 

0.001) were positively correlated meaning that July to September SMD is likely 

to be higher as a result of high April to June SMD. Mean April to June (P < 

0.001) and July to September SMDs (P < 0.001) were also positively correlated 

with year meaning that both increased between 1980 and 1999. To check the 

robustness of model C and D and whether these variables were 

interchangeable GLMMs were also run with April to June SMD and July to 

September SMD independently (referred to as ‘April to June SMD without July 

to September SMD’ and ‘July to September SMD without April to June SMD’ in 

Appendix 5.D and 5.E) and with and without year (referred to as ‘Full model 

with year’ and ‘Full model without year’ in Appendix 5.D and 5.E). To investigate 

whether April to June SMD in model C or July to September SMD in model D 

explained variation in breeding pairs best, models C and D were also run 

omitting squared terms and year. The parameter estimates of these models 

were compared to determine which predictor variable explained the most 

variation. To justify the use of squared terms in a model, when the main effect 

was not significant, models were run first with both terms (main effect and main 

http://www.bto.org/about-birds/birdtrends/2011/utilities/references#Robinsonetal02
http://www.bto.org/about-birds/birdtrends/2011/utilities/references#Robinsonetal05a
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effect 2) and then without both terms. The models were then compared using a 

maximum likelihood test to determine the best fit model.  

 

5.3 Results 

 

5.3.1 Variation in soil moisture deficit across MORECS sites 

Over the nineteen year period, mean April to June SMD was 54.99 mm ± 0.82 

(± se) and mean July to September SMD was 89.3 mm ± 1.06 (± se). As 

predicted, soils did indeed become drier through time: SMD increased across 

both the spring and summer from 1980-1999 across the 132 study sites (see A 

and B below). There was also significant difference in April to June SMD (GLM: 

F 4, 3 = 4.80, P < 0.001) and July to September SMD (GLM: F 5, 4 = 15.82, P < 

0.001) between soil types (Table 5.1). July to September SMD (GLM: F 3, 2 = 

6.25, P = 0.002) varied between habitats, however, April to June SMD did not 

(GLM: F 3, 2 = 1.57, P = 0.21) (Table 5.2).  

 

 
 

 
Number of 
CBC Sites 

 
Mean April to 
June Soil 
Moisture 
Deficit (mm) 

 
Mean July to 
September  Soil 
Moisture Deficit 
(mm) 
 

 
Mean Number of 
Breeding Pairs 
per Hectare 

 
Loamy soils 

 

 
28 

 
53.4 ± 1.81 

 
83.05 ± 2.54 

 
0.08 ± 0.01 

Sandy soils 

 
 

5 
51.2 ± 3.57 90.87 ± 4.61 0.03 ± 0.01 

Loamy and clay soils 

 
90 55.60 ± 0.99 91.50 ± 1.21 0.15 ± 0.01 

Sandy and loamy soils 

 
7 63.91 ± 3.61 104.77 ± 3.1 0.09 ± 0.01 

Peat soils 

 
2 36.28 ± 4.88 43.72 ± 8.3 0.10 ± 0.01 

Table 5.1 Mean soil moisture deficit and number of Starling breeding pairs per 
hectare (± se) in relation to Common Bird Census site (n=132) soil type. 

 

 

 

 

 

 

 



 
 

118 

 Number 
of CBC 
Sites 

Mean April to June 
Soil Moisture 
Deficit (mm) 

Mean July to 
September  Soil 
Moisture Deficit 
(mm) 

Mean Number of 
Breeding Pairs per 
Hectare 

Farmland 85 56.06 ± 1.03 88.01 ± 1.32 0.08 ± 0.01 

Woodland 41 53.11 ± 1.44 89.54 ± 1.94 0.19 ± 0.02 

Other 6 52.54 ± 3.82 106.24 ± 3.22 0.33 ± 0.06 

 
Table 5.2 Mean soil moisture deficit and number of Starling breeding pairs per 
hectare  (± se) in relation to Common Bird Census site (n=132) habitat. 

 
A. There was a significant curvilinear relationship between April to June soil 

moisture deficit and year (P < 0.001) and year 2 (P < 0.001) (Appendix 5.B). 

The soil moisture deficit initially increased then levelled off (Fig. 5.2).  

B. There was a significant curvilinear relationship between July to September 

soil moisture deficit and year (P = 0.05) and year 2 (P = 0.05) (Appendix 5.C). 

The soil moisture deficit initially increased then levelled off (Fig. 5.2). 

 

 

Figure 5.2 Mean number of Starling breeding pairs per hectare per year (± se) 
on 132 CBC sites in Britain in relation to mean April to June and July to 
September soil moisture deficit (± se). Between 1981 and 2000 the number of 
breeding pairs decreased (P < 0.001), whilst on the 67 40km 2 MORECS 
squares containing the CBC sites April to June (year: P < 0.001, year 2: P 
<0.001) and July to September (year: P = 0.05, year 2: P = 0.05) soil moisture 
deficit increased. 

0

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
o

il
 M

o
is

tu
re

 D
e
fi

c
it

 (
m

m
) 

M
e

a
n

 N
u

m
b

e
r 

o
f 

B
re

e
d

in
g

 P
a

ir
s

 p
e

r 
H

e
c

ta
re

 

Year 

Breeding Pairs April to June Soil Moisture Deficit

July to September Soil Moisture Deficit



 
 

119 

5.3.2 Variation in soil moisture and Starling breeding population changes 

Over the twenty year period, the mean number of breeding pairs per hectare 

across our study sites was 0.12 ± 0.01(± se). There was a significant difference 

in the number of breeding pairs per hectare between soil types (GLM: F 5, 4 = 

5.17, P < 0.001) (see Table 5.1) and habitats (GLM: F 3, 2 = 31.47, P < 0.001) 

(see Table 5.2). 

 

 
Figure 5.3 Mean number of Starling breeding pairs per hectare (± se) in relation 
to the mean soil moisture deficit of the Common Bird Census survey site 
(n=132) from April to June and July to September one year previously. The data 
suggests that the number of breeding pairs decreased as soil moisture deficit 
increased during April to June (April to June SMD: P = 0.12, April to June SMD2: 
P < 0.001, both main effect and squared term together: ANOVA: X 2

11,13 
 = 

11.06, P = 0.004), but increased with increased soil moisture deficit during July 
to September (P = 0.09).  
 

C. There was a significant curvilinear relationship between April to June SMD 

the year before and breeding pair numbers per CBC site (April to June SMD: P 

= 0.12, April to June SMD2: P < 0.001) (Table 5.3) (Appendix 5.D) (both main 

effect and squared term together: (ANOVA: X 211, 13 
 = 11.06, P = 0.004)). The 

number of breeding pairs per CBC site was initially stable and then declined as 

SMD increased (Fig. 5.3). The number of breeding pairs per CBC site tended to 

increase with increased July to September SMD, but the relationship was not 

significant (P = 0.09) (Fig. 5.3). The number of breeding pairs tended to 

decrease on sandy soils (Fig. 5.4), but the relationship was not significant (P = 

0.06) (Table 5.3, Appendix 5.D). There was a significant negative relationship 

between the number of breeding pairs per CBC site and woodland (P < 0.001) 
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and year (P < 0.001) (Table 5.3, Appendix 5.D). The number of breeding pairs 

per CBC site declined between 1981 and 2000 (Fig. 5.2). 

 

 With Year in 
the Model 

Without Year in 
the Model 

One Year 
  

April to June Soil Moisture Deficit  
m + m

2
 ** 

m *(-)    m
2 
*** 

AJ .(-)    AJ
2 
*** 

July to September Soil Moisture Deficit  m *(+)     

Area   

Habitat   

Woodland *** (-) ***(-) 

Other    

Soil Type   

Sandy soils . (-) .(-) 

Loamy and clayey soils    

Sandy and loamy soils   

Peat soils   

Year m ***(-)  

Two Years 
  

April to June Soil Moisture Deficit  m * (-) 

July to September Soil Moisture Deficit m ***(+)    m
2 
* m *** (+)    m

2 
* 

JS *(+) 

Area   

Habitat   

Woodland ***(-) *** (-) 

Other    

Soil Type   

Sandy soils   

Loamy and clayey soils    

Sandy and loamy soils   

Peat soils   

Year ***(-)  

 
. < 0.1, * < 0.05, ** < 0.01, *** < 0.001 
(-) = negative relationship, (+) = positive relationship 
m = main effect m

2 
= squared term 

Squared terms for April to June soil moisture deficit, July to September soil moisture deficit and year were fitted. Only 
the best fit models are reported.  
April to June (P <0.001) and July to September (P <0.001) soil moisture deficits are inter-correlated. Models were 
therefore run with each variable dropped in turn.  
AJ and AJ

2 
= April to June SMD without July to September SMD.  

JS and JS
2 
= July to September SMD without April to June SMD. 

 

Table 5.3 Results of Generalised Linear Mixed Effects Models investigating the 
effect of spring (April to June) and summer (July to September) soil moisture 
deficit on Starling breeding populations at Common Bird Census survey sites 
(n=132) at a national scale between 1981 and 2000 with a one and two year 
lag. 
 

 Although April to June SMD and July to September SMD were 

significantly positively correlated they were not interchangeable within the full 

model, neither was April to June SMD and year. However, July to September 
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SMD and year were interchangeable within the full model. When year was 

dropped from the model the positive relationship between July to September 

SMD and breeding pairs per CBC site became significant (P = 0.03) (Table 5.3, 

Appendix 5.D).  

 

 

 

Figure 5.4 Mean number of Starling breeding pairs per hectare (± se) in relation 
to soil type on the Common Bird Census survey site (n=132). The number of 
breeding pairs tended to decrease on sandy soils, but the relationship was not 
significant (P = 0.06). 
 

D. There was a significant relationship between July to September SMD two 

years earlier and breeding pair numbers per CBC site (July to September SMD: 

P < 0.001) (Table 5.3, Appendix 5.E).  The number of breeding pairs per CBC 

site was initially stable and then increased as SMD increased (Fig. 5.5). The 

number of breeding pairs per CBC site tended to decrease with increased April 

to June SMD (Fig. 5.5), but the relationship was not significant (P = 0.27). There 

was a significant negative relationship between the number of breeding pairs 

per CBC site and woodland (P < 0.001) and year (P < 0.001) (Table 5.3, 

Appendix 5.E). The number of breeding pairs per CBC site declined between 

1981 and 2000 (Fig. 5.2). 

  Although April to June SMD and July to September SMD were 

significantly positively correlated they were not interchangeable within the full 

model. When April to June SMD was dropped from the model July to 

September SMD squared term was no longer significant. The effect of July to 

0

0.04

0.08

0.12

0.16

0.2

Loam Sand Loam and
Clay

Sand and
Loam

Peat

B
re

e
d

in
g

 P
a

ir
s

 p
e

r 
H

e
c

ta
re

 

Soil Type 



 
 

122 

September SMD on its own was stronger than July to September SMD main 

effect and squared term combined. Therefore, only the results of the main effect 

were reported. July to September SMD and year were not interchangeable. 

However, April to June SMD and year were interchangeable within the full 

model. When year was dropped from the model the negative relationship 

between April to June SMD and breeding pairs per CBC site became significant 

(P = 0.01) (Table 5.3, Appendix 5.E). 

 

 

Figure 5.5 Mean number of Starling breeding pairs per hectare (± se) in relation 
to the mean soil moisture deficit of the Common Bird Census survey site 
(n=132) from April to June and July to September with a two year lag. The data 
suggests that the number of breeding pairs decreased as soil moisture deficit 
increased during April to June (P = 0.27), but increased with increased soil 
moisture deficit during July to September (July to September SMD: P < 0.001).  
 

5.4 Discussion 

 

The widespread declines of farmland birds have generally been linked to 

agricultural intensification and there is evidence of a temporal link between the 

two since the 1970s (Chamberlain et. al. 2000). Population effects could arise 

from reduced breeding productivity (Siriwardena et al. 2000), reduced survival 

(Siriwardena et al.1998), or a combination of the two. The mechanisms by 

which changes in management have affected ground-probing bird populations 
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are diverse. In terms of reduced foraging opportunities during the breeding 

season there are known links to the loss of permanent pasture, the preferred 

foraging habitat of species such as the Starling, and the intensification of 

livestock management (Robinson et al. 2005). Specifically, the widespread 

spraying of grass fields to control Diptera spp. (Campbell & Cooke 1997; 

Garthwaite et al. 1997, Vickery et al. 2001), the decline in cattle and 

subsequent increase in sheep numbers that has resulted in different sward 

structures (Chamberlain et al. 2000, Fuller & Gough 1999, Devereux et al. 

2004), the increased use of fertilizer that promotes taller, denser swards 

(Paoletti 1999) and the drainage of grassland (e.g. Smart et al. 2008). Starling 

population declines are thought to be as a result of decreases in survival rates, 

particularly of first-year birds over winter (Freeman et al. 2002, 2007). Here we 

show an additional independent correlative effect of soil moisture deficit (drier 

soils) during the spring (negative) and summer (positive) on Starling population 

changes at a national scale.   

 April to June soil moisture deficit was negatively correlated with Starling 

population change. These results concur with conclusions of previous chapters 

and are consistent with the idea that the drying of soils correlates with poor 

breeding performance (e.g. Song Thrush Turdus philomelos L. - Peach et al. 

2004b, Chough Pyrrhocorax pyrrhocorax L. - Reid et al. 2008). Dry conditions 

result in fewer Tipulidae larvae prey and may result in more less nutritional 

items being provisioned to nestlings (see Chapter 4).  

Contrary to a priori predictions, breeding numbers increased with July to 

September soil moisture deficit. An increased soil moisture deficit will occur as 

a result of decreased precipitation and increased temperature. Chick growth 

rate is known to be positively correlated with mean minimum temperature 

(Pearce-Higgins & Yalden 2002). In addition to the thermoregulatory costs of 

rain (e.g. Tinbergen & Dietz 1994), evidence suggest that birds reduce foraging 

during the rain and that feeding declines as rainfall becomes heavier (e.g. 

Kluijver 1950). Therefore, warm and dry conditions are preferable. During this 

time juveniles Starlings still feed predominantly on the ground but they will also 

gleen surface-dwelling invertebrates and fruit and may roam quite widely (Feare 

1984). Overall it appears that a combination of wet (soil moisture deficit below 

80 mm) spring and drier summers (soil moisture deficit over 80 mm) is best 

(Fig. 5.6).  
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Figure 5.6 Mean number of Starling breeding pairs per hectare (± se) on 
Common Bird Census sites (n=132) in relation to April to June and July to 
September soil moisture deficit one year and two years earlier. Common Bird 
Census sites that experience wet conditions April to June followed by dry 
conditions July through to September have more breeding pairs per 
hectare.(Note – April to June soil moisture deficit refers to sites with 0-80mm 
and over 80mm to both one and two years earlier)  
 

 From these results it may be concluded that, although warm, dry 

summers appear to be beneficial to fledgling Starlings, future increases in 

spring SMD, as predicted by the IPCC (2001), will have a continued detrimental 

effect on Starling breeding populations, as well as those of other ground 

probing birds. Due to the spatial resolution of our MORECS data (40km2), 

varying effects of soil type were not apparent. However, previous results have 

highlighted a complex relationship between soil type (hydraulic conductivity), 

soil moisture deficit and penetration resistance (see Chapter 4). For example, 

sandy soils can have greater penetration resistance when wet than dry and on 

clay loam the penetration resistance of soils at intermediate levels of soil 

moisture will be higher than those that have been subjected to water logging or 
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drought (Rajaram & Erbach 1998).  This relationship will vary with soil texture 

and relative compaction (Whalley et al. 2007).  

 A recent study by Eglington and Pearce-Higgins (2012) modelled the 

annual variation in population growth of 18 farmland bird species in the UK 

since the 1960s as a function of measures of land-use intensity and climate 

(inferred from weather trends). They concluded that despite more stable land-

use intensity since the 1990s land use change has continued to be the 

dominant driver of farmland bird population changes. However, in the future, the 

effects of climate change may exceed that of agriculture intensification. This 

information is therefore critical to determining management of habitats to 

enhance below-ground prey abundance and accessibility (e.g. Devereux et al. 

2004; Whittingham & Devereux 2008). If precipitation is low in the breeding 

season (spring), maintaining a high water table is likely to be crucial for ground 

probing birds, whilst avoiding waterlogging in the summer is also likely to 

benefit this group. A series of features such as footdrains or rills could be used 

to control water levels and these practical management options will be 

discussed in the next chapter. 
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Appendix 5.A 

The number of MORECS squares and Common Bird Census (CBC) sites 

included in the analysis by year. 

 

Year Number of 
MORECS 
Squares 

Number of  CBC 
Sites on 
Farmland 

Number of CBC 
Sites on Other 

Number of 
CBC Sites on 
Woodland 

1980 40    
1981 37 28 6 19 
1982 38 27 6 20 
1983 37 30 6 20 
1984 37 29 6 21 
1985 33 30 6 18 
1986 37 33 6 18 
1987 35 28 2 17 
1988 32 27 2 18 
1989 37 41 0 13 
1990 41 43 0 18 
1991 41 44 2 16 
1992 43 48 2 17 
1993 43 42 2 17 
1994 38 47 1 16 
1995 38 44 1 17 
1996 41 45 1 16 
1997 33 40 1 21 
1998 38 33 1 19 
1999 38 32 2 17 
2000 30 26 1 16 

Total Number 
of Available 

Sites 

67 85 6 41 
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Appendix 5.B 

Results of a generalized linear mixed-effects model (GLMM) of the mean April 

to June soil moisture deficit at MORECS squares (n= 67) as a function of year. 

The GLMM was fit using the REML criterion method. 

 

Fixed effects Estimate SE df t P 

Intercept 4.03 0.45  9.02 < 0.001 
Year 194.79 21.13 1 9.22 < 0.001 

Year 
2 

-192.38 20.89 1 -9.21 < 0.001 

  

AIC: 2691, Random effects (variance): square= 030. 

 

 

 

 

 

Appendix 5.C 

Results of a generalized linear mixed-effects model (GLMM) of the mean July to 

September soil moisture deficit at MORECS squares (n= 67) as a function of 

year. The GLMM was fit using the REML criterion method. 

  

Fixed Effects Estimate se df t  P 

Intercept 0.65 0.38  1.72 0.09 
Year 33.80 17.56 1 1.93 0.05 

Year 
2
 -33.40 17.36 1 -1.92 0.05 

  

AIC: 2338, Random effects (variance): square= 0.56. 
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Appendix 5.D 

Results of a generalized linear mixed-effects model (GLMM) of the number of 

Starling breeding pairs at Common Bird Census sites (n= 132) as a function of 

April to June and July to September soil moisture deficit (SMD) one year earlier, 

site area, habitat type and soil type, accounting the previous year’s count as an 

offset. The GLMM was fit using the Laplace method. 

Fixed Effects
 

Estimate SE z P 

Full model  with year 
a 

    

Intercept -0.36 0.05 -7.25 < 0.001 

April to June SMD  -0.03 0.02 -1.54 0.12 

April to June SMD
2 

0.04 0.01 3.50 < 0.001 

July to September SMD  0.04 0.02 1.68 0.09 

Site area 0.02 0.02 0.76 0.45 

Year -0.07 0.02 -4.13 < 0.001 

Habitat category – other -0.02 0.09 -0.26 0.80 

Habitat category –woodland -0.24 0.06 -4.04 < 0.001 

Sandy soils -0.35 0.18 -1.91 0.06 

Loamy and clayey soils  0.07 0.05 1.24 0.21 

Sandy and loamy soils 0.14 0.10 1.40 0.16 

Peat soils 0.06 0.14 0.44 0.66 

Full model without year 
b
 

    

Intercept -0.36 0.05 -7.31 < 0.001 

April to June SMD  -0.05 0.02 -2.60 0.01 

April to June SMD
2 

0.04 0.01 3.47 < 0.001 

July to September SMD  0.05 0.02 2.15 0.03 

Site area 0.02 0.02 0.97 0.33 

Habitat category – other 0.04 0.09 0.41 0.68 

Habitat category –woodland -0.20 0.06 -3.49 < 0.001 

Sandy soils -0.33 0.18 -1.80 0.07 

Loamy and clayey soils  0.07 0.05 1.40 0.16 

Sandy and loamy soils 0.14 0.10 1.37 0.17 

Peat soils 0.10 0.13 0.75 0.46 

April to June SMD without July to 
September SMD 

c
 

    

Intercept -0.36 0.05 -7.28 < 0.001 

April to June SMD  -0.03 0.02 -1.68 0.09 

April to June SMD
2
  0.04 0.01 3.22 0.001 

Site area 0.02 0.02 0.99 0.32 

Habitat category – other 0.07 0.09 0.80 0.42 

Habitat category –woodland -0.19 0.06 -3.29 0.001 

Sandy soils -0.32 0.18 -1.74 0.08 

Loamy and clayey soils  0.08 0.05 1.49 0.14 

Sandy and loamy soils 0.15 0.10 1.54 0.12 

Peat soils 0.06 0.14 0.45 0.66 
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July to September SMD without  
April to June SMD 

d
 

    

Intercept -0.31 0.05 -6.63 0.003 

July to September SMD 0.02 0.02 1.12 0.26 

Site area 0.02 0.02 0.85 0.40 

Habitat category – other 0.06 0.09 0.67 0.51 

Habitat category –woodland -0.20 0.06 -3.47 0.001 

Sandy soils -0.33 0.18 -1.79 0.07 

Loamy and clayey soils  0.07 0.05 1.33 0.19 

Sandy and loamy soils 0.14 0.10 1.37 0.17 
Peat soils 0.13 0.14 0.93 0.35 

 

a  
AIC: 1441, Random effects (variance): site= 0.02. 

b  
AIC: 1455, Random effects (variance): site= 0.01. 

c  
AIC: 1455, Random effects (variance): site= 0.01. 

d  
AIC: 1465, Random effects (variance): site= 0.01. 
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Appendix 5.E 

Results of a generalized linear mixed-effects model (GLMM) of the number of 

Starling breeding pairs at Common Bird Census sites (n= 132) as a function of 

April to June and July to September soil moisture deficit (SMD) two years 

earlier, site area, habitat type and soil type, accounting for the previous year’s 

count as an offset. The GLMM was fit using the Laplace method. 

 

Fixed Effects
 

Estimate SE z P 

Full model  with year 
a 

    

Intercept -0.39 0.07 -5.92 < 0.001 

April to June SMD  -0.02 0.02 -1.11 0.27 

July to September SMD
 

0.11 0.03 3.92 < 0.001 

July to September SMD 
2
  0.04 0.02 2.31 0.02 

Site area 0.00 0.03 0.06 0.95 

Year -0.13 0.02 -5.87 < 0.001 

Habitat category – other -0.13 0.12 -1.06 0.29 

Habitat category –woodland -0.43 0.08 -5.40 < 0.001 

Sandy soils -0.35 0.23 -1.52 0.13 

Loamy and clayey soils  0.07 0.07 0.97 0.33 

Sandy and loamy soils 0.13 0.14 0.94 0.35 

Peat soils 0.13 0.19 0.68 0.50 

Full model without year 
b
 

    

Intercept -0.39 0.06 -6.16 < 0.001 

April to June SMD  -0.06 0.02 -2.74 0.01 

July to September SMD
 

0.11 0.03 4.13 < 0.001 

July to September SMD 
2
  0.04 0.02 1.91 0.06 

Site area 0.01 0.03 0.30 0.76 

Habitat category – other -0.02 0.12 -0.13 0.89 

Habitat category –woodland -0.37 0.08 -4.78 < 0.001 

Sandy soils -0.30 0.23 -1.32 0.19 

Loamy and clayey soils  0.08 0.07 1.18 0.24 

Sandy and loamy soils 0.13 0.13 0.98 0.33 

Peat soils 0.19 0.18 1.09 0.28 

April to June SMD without July to 
September SMD 

c
 

    

Intercept -0.36 0.06 -5.79 < 0.001 

April to June SMD  -0.01 0.02 -0.61 0.54 

Site area 0.01 0.03 0.23 0.82 

Habitat category – other 0.07 0.12 0.61 0.54 

Habitat category –woodland -0.36 0.08 -4.46 < 0.001 

Sandy soils -0.28 0.23 -1.23 0.22 

Loamy and clayey soils  0.09 0.07 1.27 0.20 

Sandy and loamy soils 0.17 0.14 1.22 0.22 

Peat soils 0.15 0.18 0.84 0.40 
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July to September SMD without  
April to June SMD 

d
 

    

Intercept -0.38 0.06 -5.98 < 0.001 

July to September SMD 0.07 0.02 3.12 0.002 

July to September SMD 
2 

0.03 0.02 1.41 0.16 

Site area 0.01 0.03 0.20 0.84 

Habitat category – other 0.02 0.12 0.18 0.86 

Habitat category –woodland -0.36 0.08 -4.65 < 0.001 

Sandy soils -0.29 0.23 -1.26 0.21 

Loamy and clayey soils  0.08 0.07 1.23 0.22 

Sandy and loamy soils 0.13 0.13 0.96 0.33 
Peat soils 0.21 0.18 1.15 0.25 

 

a  
AIC: 1584, Random effects (variance): site= 0.04. 

b  
AIC: 1616, Random effects (variance): site= 0.04. 

c  
AIC: 1625, Random effects (variance): site= 0.04. 

d  
AIC: 1621, Random effects (variance): site= 0.04. 
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6.0 Abstract 

 

Capsule There is a limited base of evidence on which to assess the potential 

linkage between ecosystem services and habitat management for grassland 

birds that obtain their food predominantly by probing the soil, particularly for 

non-wading bird species. 

Aims (i) To describe the link between soil moisture, foraging by grassland 

waders and their macroinvertebrate prey, (ii) To examine evidence for 

population-level effects of soil moisture changes on waders and (ii) To review 

management options that could alter ecosystem services and habitat quality for 

farmland birds that derive the majority of prey from the soil. 

Methods We review published studies to show that changes in soil moisture 

levels have significant impacts on a range of wading bird species that use UK 

lowland grassland, including wet grassland, and obtain their food predominantly 

by probing the soil. We examine both the hydrological and ecological literature 

and review how management options could alter (A) ecosystem services (via 

water quality and flooding) and (B) habitat quality for wading birds. 

Results Combining biodiversity goals with broader ecosystem services has 

been widely advocated and we find that appropriate management at multiple 

scales (e.g. small-scale: ponds; large-scale: integrated washlands) could 

potentially provide both ecosystem services and habitat for wading grassland 

birds.  

Conclusion We suggest that future work be directed at identifying (i) how crop 

yield, ecosystem services and biodiversity relate to each other, (ii) the extent of 

land needed to be managed in order to benefit these multiple purposes and 

bring about measurable gain (e.g. one or two ponds may make significant 

inroads in reducing run-off and pollution but make little difference to wading 

birds) and (iii) solutions to the challenges of setting up management options on 

large spatial scales (e.g. catchments).  
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6.1 Introduction   

 

It is well established that farmland bird population declines are strongly linked to 

agricultural intensification (e.g. Donald et al. 2001) and that changes in climate 

are also predicted to affect these bird populations (Huntley et al. 2007). Climate 

change is likely to have a significant regional impact on groundwater levels and 

the availability of suitable feeding habitat, through a combination of changes in 

seasonal rainfall and rising sea levels (Hulme et al. 2002). In addition, 

agriculture, on a global scale, faces the challenge of providing food for 

approximately 50% more people by 2050 (Green et al. 2005). There is 

increasing interest in ecosystem services as a means of accounting for the full 

range of environmental, social and economic benefits provided by land 

management. A multi-functional farming landscape could potentially provide 

food, ecosystem services (e.g. flood control) and suitable habitats for 

biodiversity. Given that demands on land will increase, one key issue for the 

conservation of biodiversity is whether it can be linked directly to the provision 

of wider ecosystem services for which political pressure and budgets are often 

greater. This idea has been proposed in the literature many times (e.g. Morris et 

al. 2004, McInnes 2007). Here, we review the literature to provide examples to 

test this idea using birds feeding predominantly on soil invertebrates in lowland 

grass fields in the UK.  

 We reviewed the hydrological and ecological literature to describe (i) 

changes in soil moisture on lowland grassland, (ii) the link between soil 

moisture, foraging by farmland birds and their macro-invertebrate prey, (iii) 

evidence for population level effects of soil moisture changes on birds and (iv) 

how changes in climate, via rainfall patterns and rising sea levels, may alter 

grassland. We reviewed 251 papers resulting from a literature search  in the ISI 

Web of Knowledge (up to 18 September 2009) using a combination of search 

terms including the keywords ‘UK, grassland, breeding/wintering birds, 

invertebrates, flooding, pollution, legislation and wetland’. The initial aim of the 

review was to consider all bird species living on farmland. However, most of the 

relevant literature identified focused on waders. Therefore, the study focuses on 

this group, with reference to studies of other bird species in the discussion. 

Finally, we summarise how proposed management options may affect both 

hydrology and farmland birds that derive the majority of their invertebrate prey 
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from the soil. We consider how these management options could be applied in 

two different situations: (1) protected areas in which the main focus is nature 

conservation and (2) the wider countryside in which the focus of land-use is 

varied but typically focuses on agricultural yield.  

 

6.2 Mechanisms leading to the decline in area and suitability of lowland 

grassland habitat 

 

6.2.1 Direct effects of land drainage 

The main aim of lowering the water table of wet grasslands was to facilitate 

reduced water-logging in the upper layers of soil to increase the length of the 

grazing season (Bradbury & Kirby 2006). By the end of the 19th century most of 

lowland England’s wetlands (Werritty 2006) and 5 million hectares of lowland 

floodplains (Smout 2000) had been drained and converted into productive 

agricultural land. Many of these drainage systems fell into disrepair during a 

period of agricultural recession, following a collapse in farm prices after World 

War I (Dobbs & Pretty 2004). To prevent further recession (Dobbs & Pretty 

2004) and promote national self-sufficiency in food production (O’Connell et al. 

2004), the UK government encouraged intensification and modernisation of 

British agriculture from 1930 onwards. Existing drainage systems were restored 

and, to increase agricultural output, the drainage of additional wetlands was 

encouraged through government subsidies (Acreman et al. 2007). In the 1970s, 

the practice reached a peak of around 100 000 ha/year and was particularly 

common in the clay-dominated arable areas of eastern England (Green 1979). 

In addition, complex ditch networks, which naturally divided wetlands into small 

fields (Thompson 2004) and maintained high water tables, were removed to 

create larger fields. Few of the remaining ditches retain moisture throughout the 

year due to under-field drainage.  

 On grassland, loss of botanical heterogeneity and invertebrate species-

richness is often associated with improved drainage and the subsequent 

increased use of fertiliser, reseeding with ryegrass mixes, increased stocking 

densities and earlier grazing seasons (Morris 2000, Wilson et al. 2005). Short 

periods of high-intensity stocking on clay grazing marshes and the use of heavy 

machinery result in the formation of a hard surface mat of vegetation and 

compaction of the soil, leading to high surface penetration resistance 
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(Armstrong 2000, Hamza & Anderson 2005). Increased fertiliser application is 

likely to (1) have a negative impact on the existing soil moisture deficit because 

increased availability of nitrogen for plant uptake increases plant growth and  

evapotranspiration (Garwood 1988) and (2) reduce plant diversity and 

consequently the range of invertebrate prey present in the sward (McCracken & 

Tallowin 2004). These reduce both abundance and accessibility of food for 

wading birds. In addition, nests and chicks are vulnerable to trampling by 

livestock (e.g. Green 1988) and the timing of stock turn-out and mowing is 

known to inhibit re-nesting and therefore limit breeding success (Beintema & 

Muskens 1987). 

 Widespread land drainage over the last 200 years has resulted in a 

reduction in the quantity of grassland through conversion of wetland habitats to 

arable farmland. Subsequent intensive management of the remaining grassland 

resource means that it is of limited quality for wading birds through reductions in 

suitable nesting habitat, direct effects of trampling on nests/chicks, soil 

degradation and compaction and reduced abundance, availability and access to 

invertebrate prey. 

 

6.3 Current policy 

 

Grassland systems outside areas managed specifically for other purposes (e.g. 

nature reserves focused on biodiversity needs) primarily produce agricultural 

goods (mainly grass for fodder). These agricultural grass fields could potentially 

yield a range of indirect benefits, including flood protection, biodiversity and 

high water quality. Funds previously committed to support farm output are 

increasingly diverted to encourage land managers to deliver these 

environmental benefits (Defra 2002). A number of specific measures promoted 

by these policies are likely to become increasingly important in the conservation 

and protection of water resources. However, the voluntary nature of the 

schemes may result in poor uptake (Davey et al. 2010). Also, if payments are 

not considered sufficient, farmers will be reluctant to install measures that they 

may perceive to be detrimental to their livelihoods. Currently, there is little 

research on the trade-offs between agricultural yield, ecosystem services and 

biodiversity (e.g. Vickery et al.1994, Morris et al. 2008) upon which to base 

policy decisions and guide levels of compensation schemes. 
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 Increasingly, government and conservation agencies now recognise the 

benefits of a systematic approach to conservation, with clear objectives and 

measurable targets, and the need to integrate grassland management with 

wider issues relating to water management (e.g. flood mitigation) (Benstead et 

al. 1997).  For example, the governmental strategy for flood risk management in 

England, ‘Making Space for Water’, emphasises the need for integrated land 

and water management through ecological enhancement and non-structural 

solutions (e.g. wetlands), to ‘reduce the threat to people and their property and 

deliver environmental, social and economic benefit consistent with sustainable 

development principles’ (Defra 2005a). The ecosystem approach was first 

adopted by the Convention for Biological Diversity (CBD), in 1992. It provides a 

framework for the integrated management of land, water and living resources to 

achieve a number of CBD objectives, including the conservation of biodiversity 

and the sustainable use of its components. Since then it has been adopted 

across the European Union (EU) as an approach through which to deliver 

several environmental directives, strategies and agreements (Apitz et al. 2006, 

McInnes 2007) and to achieve sustainable development, through the 

maintenance of fully functioning ecosystems (Laffoley et al. 2004). The 

ecosystem services approach is now more widely recognised and reflects the 

emphasis placed on the benefits that society can derive from ecosystems: 

provisioning, regulating, supporting and cultural (Millennium Ecosystem 

Assessment (MEA) 2005).  Within the EU, the Water Framework Directive 

(WFD) promotes the integration of land-use and water policy and the positive 

use of floodplains through the development of River Basin Management 

Programmes, by member states. To meet the ecological water standards set by 

the WFD, member states are required to address issues relating to sustainable 

water resource management in individual river basin management systems. In 

England, projects such as the Fens Floodplain Project, part of the EU’s Wise 

Use of Floodplains Project, assess how floodplain wetlands contribute to water 

resource management and identify ways to help implement the WFD 

throughout the EU. Catchment Flood Management Plans have also been 

developed by the Environment Agency to monitor the effects of factors such as 

changes in land management, loss of habitat and climate change on floods at 

the river catchment scale, with an aim to identifying effective methods of long-

term integrated flood risk management (Environment Agency 2004). Because of 
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the need to comply with multiple objectives that may be the remit of different 

government and non-governmental organisations and departments, partnership 

working and cross-stakeholder support is central to the successful application of 

the ecosystem services approach (ELP 2008). To understand how best to 

manage grasslands to achieve different goals, such as nature conservation, 

maximising agricultural yield (to maintain food security) and minimising flood 

risk, research needs to address how the different competing needs relate to 

each other. 

 

6.4 Soil moisture, wading birds and their prey 

 

6.4.1 Soil penetrability, wader foraging and habitat selection 

A range of wading species that feed predominantly on soil invertebrates are 

associated with lowland grasslands during the breeding season (Common 

Snipe Gallinago gallinago L. Green 1986; Common Redshank Tringa totanus L. 

and Northern Lapwing Vanellus vanellus L. Baines 1990, Ausden et al. 2003 

and European Golden Plover Pluvialis apricaria L. Pearce-Higgins & Yalden 

2003). These species feed on macro-invertebrates such as earthworms and 

tipulid larvae. Grassland also provides foraging opportunities for a number of 

species during the winter, including Golden Plover and Lapwing (Fuller 

&Youngman 1979, Tucker 1992). Permanent pasture (grass more than 5 years 

old) is of particular importance because of significantly higher earthworm 

biomass compared to other field types (e.g. bare till, winter cereal) (Tucker 

1992). 

Soil surface strength is correlated with soil moisture content. For most 

soils, this is associated with the water table depth from the surface (Armstrong 

2000). Raised water levels keep the surface soil moist, increase soil surface 

penetrability (Gerard 1967, Green et al. 2000) and reduce vegetation growth 

when surface water is present (Ausden et al. 2001). The lowering of field water 

levels reduces soil penetrability, making the ground too hard for surface 

probing. It should be noted, however, that the relationship between soil 

moisture and penetration resistance can differ between soil types. For example, 

sandy soils can have greater penetration resistance when wet than dry. Soil 

types can be differentiated by their hydraulic conductivity (Armstrong 1993). For 

instance, clay soils have low hydraulic conductivity; water will not move easily 
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through these soils and they tend to retain surface water for long periods. Peat 

soils tend to have highly variable hydraulic conductivity, influenced by soil 

particle size, shape and structure and degree of decomposition (Wong et 

al.2009). There is a range of other factors, such as aspect, slope and 

vegetation cover, that will further alter soil moisture. However, changes in the 

water table are likely to result in variations in soil moisture and have been 

shown to have marked effects on waders. Green (1988) used a penetrometer to 

measure the maximum force (kgF) required to push a steel probe 10cm into the 

soil, mimicking the behaviour of  the beak of a Snipe and providing a measure 

of penetration resistance (Green 1986, 1988, Green et al.1990). Soil surface 

penetrability is an indirect measure of soil moisture that provides an indication 

of the difficulty a bird might be expected to have when probing the soil to forage 

(Armstrong 2000).     

Wet features, such as ponds, ditches, footdrains and rills (Table 6. 1) 

may retain water throughout the breeding season, maintaining a higher water 

table in the surrounding soil than in other parts of the field. The area affected is 

dependent on soil type. Milsom et al. (2000) established that the distribution of 

breeding Redshank and Lapwing on coastal grazing marshes is strongly 

positively influenced by the availability of rills that retained water in early June. 

Footdrains have been successful in maintaining localised shallow surface water 

in spring and the density of associated ‘footdrain floods’ positively influences 

field selection in Lapwings (Eglington et al. 2008). As birds concentrate on 

water margins to feed, the perimeter of these wet features is more important 

than their area.  Redshank breeding densities are positively correlated with wet 

feature length, the combined total of rills, footdrains and pools (Fig. 6.1) (Smart 

et al. 2006). The success of any scheme of wet feature creation is dependent 

on the ability to maintain wetness throughout the breeding season. In the case 

of breeding Snipe, drying out can lead to limited opportunities for replacement 

nesting after early breeding failures, as breeding ceases when the penetration 

resistance exceeds 5.8 kgF (Green 1988). However, when good feeding 

conditions persist (e.g. penetration resistance is < 5.8kgF) Snipe will continue to 

initiate nests well into July, potentially doubling the number of chicks hatched 

(Green 1988). It is important to note two caveats: (1) above-ground prey (on 

which many wading species also feed) could also be an important influence on 
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distribution and (2) soil moisture can affect prey both within and above the soil 

surface.  

 

 Definition 

 
Pond 

 
A body of water, both natural and man-made, between 1-2 m² and 2 
ha in area, which may be permanent or seasonal (Davies et al. 2008a, 
Williams et al. 2008).  
 

Paired ponds 

 
Paired ponds, varying in size from 1.5m² to approximately 50m², 
located alongside field ditches. The upper pond is fed by water 
diverted from the ditch and the second pond is fed, via a vegetated 
buffer strip, from the first pond, before overflowing back to the ditch 
system (Bailey et al. 2007). 
 

Ditch    Man-made channel created primarily for agricultural purposes and 
which usually follow linear field boundaries (Davies et al. 2008a). 
 

Bunded ditch                                           

 
An existing ditch which has been dammed (bunded), to retain water 
(Bailey et al. 2007).           
                                                                                                                                                                                      

Footdrain 

 
A shallow channel historically used for drainage on grazing marshes 
(Eglington et al. 2008). 
 

Footdrain flood 

 
An area of surface flooding resulting from water spilling over from 
footdrains (Eglington et al. 2008). 
 

Rill 

 
Relict salt-marsh creek and drainage channels (Milsom et al. 2000). 

Small Constructed 
Wetland 
 

A wetland constructed in a terraced design to reduce downhill flow 
velocity by means of a series of weirs (Raisin et al. 1997). 
 

Wetland     ‘Areas of marsh, fen, peatland or water, whether natural or artificial, 
permanent or temporary, with water that is static or flowing, fresh, 
brackish or salt, including areas of marine water the depth of which at 
low tide does not exceed six metres’ (Ramsar Convention 1971). 
 

Washland ‘An area of the floodplain that is allowed to flood or is deliberately 
flooded by a river or stream for flood management purposes, with 
potential to form a wetland habitat’ (Morris et al. 2004). 

 Table 6.1 Definitions of wet feature types 
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Figure 6.1 The relationship between Redshank breeding density and the total 
length of wet features (footdrains, rills, pools and ditches) in fields occupied by 
breeding Redshank on grazing marshes (y= 0.005x + 0.052, R2 = 0.47, n=27, P 
< 0.001) (Smart et al. 2006 – reproduced with permission from J. Appl. Ecol).  
 
 
6.4.2 Soil invertebrates 

Moist soils support larger densities of soil invertebrates than dry soils (Milsom et 

al. 2000). Moisture is one of the main factors determining earthworm 

abundance in the top 5–10 cm of soils (Gerard 1967, Green et al. 2000, Peach 

et al. 2004a) and influences pupation rates and larvae survival of terrestrial 

(Meats 1974) and obligate aquatic invertebrates. As the soil surface dries out, 

earthworms descend deeper into the soil and become unavailable to foraging 

birds, forcing them to switch to potentially less nutritional invertebrate prey 

(Gruar et al. 2003). Important prey, such as crane flies (e.g. Tipula paludosa L.), 

can be adversely affected by desiccation if the soil dries out quickly at a 

vulnerable stage in their life-cycle (McCracken et al. 1995). The maintenance of 

high water tables until mid-summer is therefore important for ensuring that 

earthworms remain within reach of probing birds and that soil invertebrate 

larvae remain viable as prey. 
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 On sites subjected to flooding, the water-holding capacity and organic 

matter content of soil will have an influence over invertebrate survival because 

prolonged water-logging can have an adverse affect on soil-dwelling 

invertebrates and larvae (McCracken et al. 1995, Plum 2005). Tipulid larvae 

may die as a result of surface flooding (Meats 1970) and decaying vegetation 

on previously fertilised grassland can cause anoxic conditions harmful to the 

soil fauna (Ausden et al. 2001). Managed surface flooding is used to increase 

the area of shallow flooded grassland and soft, wet soil conditions available for 

breeding waders. However, prolonged surface flooding in winter and/or spring 

reduces the abundance of soil macro-invertebrates and can result in 

compaction and consolidation of the upper soil, making it difficult for birds to 

probe (Ausden et al. 2001).  

When flooding is (re)introduced in grassland, initially it can attract large 

numbers of wading birds as prey migrate to the soil surface, but numbers 

decline with time as terrestrial soil invertebrates species struggle to survive in 

soil with prolonged flooding. Ausden et al. (2001) found soil macro-invertebrate 

densities in unflooded pasture land were 10 times higher than in flooded wet 

pasture land. If flooding is at a large spatial scale, re-colonisation by macro-

invertebrates from unflooded refuges is unlikely to occur (Plum & Filser 2005) 

due to the negative effect of regular flooding on spring populations of soil 

macrofauna. To maintain viable populations of annelids, the time interval 

between two flood events should not exceed the development time from cocoon 

to adult of the earthworm species present (approximately 6 months) and during 

the spring, when earthworms serve as food for ground-probing birds, a new 

inundation in this recovery period should be avoided or kept short (Plum & 

Filser 2005). A trade-off therefore exists between maintaining optimum soil 

penetration resistance for probing birds and the adverse effects of too much 

flooding (Smart et al. 2008). Unflooded grassland provides a high biomass of 

soil macro-invertebrates beneath vegetation, whereas winter flooded grassland 

provides damp surface soil with short, open conditions for feeding.  

 Prime conditions for both invertebrate survival and reproduction and for 

foraging waders require a trade-off between soil conditions. Dry summer soil 

conditions result in the death of invertebrate larvae and force earthworms to 

descend deeper into the soil, thus reducing prey availability. Conversely, 

prolonged flooding results in invertebrate prey that are accessible but at low 
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abundance because excessive water-logging reduces populations. The exact 

requirements of different wading bird species at different times of year are likely 

to differ in the precise optima of this relationship but the general themes 

described above are likely to hold. 

 

6.5 Changes in soil moisture and wader populations 

 

Wet grassland breeding wader distribution is strongly related to site wetness 

(e.g. Green & Robins 1993, Vickery et al. 1997, Paillissona et al. 2002). In the 

Somerset levels, the range contraction of breeding Snipe and Redshank 

accompanied the acceleration of drainage improvement that began in the late 

1960s (Williams & Bowers 1987). Recent work has shown that Snipe breeding 

populations are more likely to have persisted in fields where the soil conditions 

are wet and soft (Fig. 6. 2, Smart et al. 2008). Despite the introduction of 

management aimed at improving conditions, breeding Snipe populations have 

continued to decline (Ausden et al. 2001, Ausden & Hirons 2002, Wilson et al. 

2004) with declines more marked on mineral soils and in the south and east of 

England (Smart et al. 2008).  
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Figure 6.2. The probability of breeding Snipe Gallinago gallinago populations in 
fields persisting (numbers maintained, gained or increased) or becoming extinct 
between episode 1 (1990/1991/1992) and episode 2 (2006) in relation to (a) the 
soil condition component which is the gradient from soft and wet to hard and dry 
soil conditions, (b) penetration resistance (mean visits 2 and 3, kgF) and (c) soil 
moisture content (mean visits 2 and 3, % water). Bars show the frequency 
distribution for fields where Snipe persisted (grey bars) and fields where Snipe 
became extinct (white bars). The line shows the fitted logistic regression curve 
(Smart et al. 2008 – reproduced, with permission, from Anim. Conserv.).  
 

 Wader population trends are affected by a range of factors e.g. 

conversion of grassland to arable (Robinson & Sutherland 2002). However, in 

England, declines of wader species have been so extreme that 64% of wet 

grassland wader populations are currently concentrated onto eight key wet 

grassland sites. These declines may have been driven by changes in wetness 

rather than land-use change because, since 1982, there has been little further 

loss of grassland habitat (Wilson et al. 2005).   
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6.6 Climate change and grassland 

 

Future UK climate change scenarios predict that, by the 2080s, annual average 

temperatures are likely to rise by more than 2ºC. In the southwest, summer 

precipitation may decrease by up to 40%, under the medium emissions 

scenario (Jenkins et al. 2009) and large parts of England may experience more 

than a 40% reduction in summer soil moisture (Hulme et al. 2002). It is likely 

that the UK will experience ‘higher water demand, more widespread water 

stress with increased risk of drought, more water quality problems, as well as 

more extreme downpours with a higher risk of flooding’ (Defra 2008). Flood 

protection and biodiversity will be lost as wetland habitats are destroyed or dry 

out (Defra 2008). Increased transpiration and evaporation and reduced rainfall 

in some regions will put further pressure on remaining wetland habitats, 

resulting in lower soil water table levels in late summer/autumn (pers. comm. 

Mike Acreman 2007, in Hume 2008). Increased frequency of winter/spring 

flooding or summer droughts could also have a detrimental affect on the 

suitability of remaining grazing marsh habitats (Ausden et al. 2001, Milsom et 

al. 2002). 

 In addition to the changes in climate, over 50% of grade one agricultural 

land, predominantly in the southeast of England, will be at risk of flooding due to 

rising sea levels (NFU 2005). Flooding, particularly by saline water, and water-

logging have major implications for land use, farming practices, productivity and 

farm incomes to the point where farming futures will be threatened (Morris et al. 

2003). Although most grasslands are in the west, rising sea levels will have a 

significant impact on coastal grasslands and grazing marshes (e.g. the UK 

extensive grazing marshes in Kent and Sussex). 

 

6.7 Options for grassland management 

 

We consider here potential land-management options for grassland and how 

they may, or have been shown to, affect wading bird species. We assess how 

these relate both to land managed specifically for conservation and land-

management options which are more likely to be useful when applied to the 

wider countryside. 
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6.7.1 Protected areas   

Raising water levels is known to affect waders positively. However, there are 

negative consequences for crop yields and so this type of option is more likely 

to be used in protected areas than in the wider countryside. There are several 

ways to raise water levels such as ditches and rills. 

  Ditches, modified to stay wet longer through the use of water-retaining 

structures such as penning boards, sluice gates or bunds, could display many 

of the same attributes as ponds (Bradbury & Kirby 2006). The Wetting Up 

Farmland for Birds and other Biodiversity project is currently examining the use 

of bunded (dammed) ditches (Table 6.1) to provide wet features for farmland 

birds (Bailey et al. 2007). Bunded ditches retain water and create wet areas 

alongside fields, creating greater availability of damp soil and more areas of 

permanent water, thus making water more available at critical times during the 

year. Ditches may be beneficial to farming systems by providing water for 

irrigation and stock.    

 Arterial drainage infrastructure influences the ability to manage water 

tables in field centres (Armstrong & Rose 1999). Eglington et al. (2008) 

described how by using a system of pumps and sluices, water levels could be 

raised in ditches and fed out into the centre of the grazing marshes using 

footdrains. Water levels can be raised to over-top footdrains, creating a mosaic 

of unflooded grassland interspersed with wet features and areas of shallow 

surface water, favoured by waders during the breeding season. An important 

feature of footdrains is that they provide a high level of control over surface 

water and cause little disruption to activities such as livestock management and 

sward production (Eglington et al. 2008), offering a management option that 

could be used on lowland wet grassland sites in the wider countryside. 

Footdrains could also act as water storage during drought periods and drainage 

channels during flooding events (Eglington et al. 2008). 

 

6.8 Wider countryside 

 

There are a range of options at different scales which could be used in the 

wider countryside. Flood risk management often relies on multiple management 

options, co-ordinated within a large catchment. The placement of these 
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management options offers the potential for gains for biodiversity, such as 

waders. We begin by looking at the small-scale options and then move on to 

the co-ordinated catchment scale options. 

 

6.8.1 Small-scale solutions  

Ponds serve two purposes: pollution control and reduction of flood risk. Their 

effectiveness in controlling pollution is subject to location. For example, 

upstream wetlands (Table 6.1) trap few nutrients, whereas downstream 

wetlands, in key watershed positions, can remove up to 80% of inflowing 

nitrates (Crumpton et al.1993, cited by Zedler 2003).  Yet, during large storm 

events, a number of small wetlands strategically placed in the upper reaches of 

catchments will have a greater cumulative nutrient interception rate and be 

more cost effective than larger downstream structures (Raisin et al. 1997). A 

combination of approaches may therefore be necessary. 

 The use of farm ponds is being increasingly encouraged to mitigate 

diffuse, land-based sources of pollution due to their ability to retain nutrients. 

Vegetation inside ditches has been shown to enhance mitigation of the impacts 

of herbicides and some insecticides (Moore et al. 2001). Sustainable Drainage 

Systems (SuDS), designed to manage run-off associated with urbanised areas 

(e.g. roads), regulate flow rate and water quality in stages. Techniques include 

the use of vegetated filter strips and swales (channels), retention ponds and 

wetlands, and have been shown to be effective in the filtration and 

sedimentation of pollutants (Lawrence et al. 1996). SuDS also make a 

significant contribution to macro-invertebrate biodiversity (Scher & Thiéry 2005, 

LeViol et al. 2009) and have the potential to provide habitat corridors and 

refuges. In agricultural landscapes, Small Constructed Wetlands (SCWs) (Table 

6.1), pond-like structures designed to promote the filtration and sedimentation 

of run-off in a similar way to SuDS, have been found to be very effective at 

reducing nitrogen export in sub-surface drainage from cattle-grazed pasture 

(Tanner et al. 2005) and if the subsurface water originates from hill slopes, the 

nitrate content can be reduced by up to 97% (Haycock & Burt 1993). When a 

number of ponds are placed in sequence, those receiving water that has been 

previously filtered may be of higher ecological value than those higher in the 

catchment (Stoate 2003). Nutrient interception and habitat quality may 

decrease as sediment accumulates and excess vegetation develops. 
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Performance will also vary seasonally (Thorén et al. 2004) and with changing 

hydraulic and pollutant loadings (Fink & Mitsch 2004).  

 Surface waters, such as streams, remain in ‘good ecological status’ (only 

slightly deviating from conditions expected in the absence or near absence of 

anthropogenic impacts) until agriculture exceeds 30-50% of the catchment area 

(Allan 2004). In Britain, permanent and temporary grasslands occupy 

approximately 7 million hectares, over 65% of the agricultural land (MAFF et al. 

1997). Vast areas would need to be de-intensified to reach the maximum 

threshold of 30-50% agricultural use of a catchment area. This is impractical 

where agricultural production is the primary goal.  Davies et al. (2008a) 

contrasted catchment characteristics among different water body types and 

concluded that de-intensification of agriculture at the scale of pond 

‘microcatchments’ is more feasible and effective than it is on the catchment 

scale of larger aquatic systems, such as rivers or lakes. To attain ‘good 

ecological status’, an average pond requires only 4 hectares (ha) to be de-

intensified, compared to 10, 086 ha for a river (Davies et al. 2008a).   

 In a modelling exercise, Heathwaite et al. (2005) found that small ponds 

that store water temporarily at the bottom of a field were effective in reducing 

overland flow following storm events. SuDs have demonstrated this ability 

(Mance et al. 2002, White & Howe 2002, Scholz 2003) and in Belgium, 

retention ponds were found to be very effective, reducing the peak discharge 

and total runoff volume by 40% (Evrard et al. 2007). It is likely that SCWs will 

function in a similar way. Small wetlands located high up in the catchment are 

also effective (Potter 1994). However, the value of small, widely distributed 

wetlands for flood control is dependent on the amount of storage relative to the 

volume of floodwater, as well as their capacity for evapotranspiration and 

infiltration (Potter 1994).  

Strategic placement of pond type structures therefore offers reduced 

flood risk, but what gains can they give for waders? On lowland grassland, high 

densities of breeding waders are associated with wet features and ponds with 

large perimeters and shallow sloping edges that provide significant areas of 

bare, damp soil suitable for foraging and habitat for obligate aquatic 

invertebrates. It is possible, therefore, to create ponds in all parts of Britain, 

including intensively managed agricultural landscapes. Williams et al. (2008) 

suggest that it may be possible to influence national breeding populations of 
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wading birds through the development of a number of small-scale pond creation 

schemes within grassland systems. In addition, preliminary results have shown 

that established paired ponds (Table 6.1) are likely to be an important habitat 

for a wide range of non-wading bird species, as they retain water for longer than 

conventional unbunded ditches (Bailey et al. 2007).  The schemes would 

consist of a waterbody mosaic in floodplain grassland including ponds that differ 

in size, substrate, water source and hydrological regime. Pond creation is most 

likely to be of benefit in open areas, such as field centres, where some wetland 

habitat already exists, for example, alongside rivers, in existing areas of damp 

grassland, or beside reservoirs and gravel pits. In these areas, some feeding 

habitat may already be available, even when habitats are unsuitable for 

breeding. 

 

6.8.2 Large-scale solutions - Wetlands 

Floods can be controlled or prevented through the ‘complementary roles’ played 

by wetlands of varying sizes and at different locations (Zedler 2003). For 

example, large wetlands located low down in the watershed can be managed to 

reduce peak flood levels (Potter 1994). In addition to flood mitigation, wetlands 

also regulate river flows and promote groundwater recharge, although the 

capacity to perform these functions varies across wetland types (MEA 2005).  

 The surface area, depth and shoreline complexity of new wetlands can 

also be constructed to aid both nutrient retention and biodiversity (waders and 

their prey). Shallow, large wetlands with high shoreline complexity are likely to 

attract waders and have high macro-invertebrate biodiversity (Thiere et al. 

2009) and nitrogen retention (Hansson et al. 2005). Conversely, small deep 

wetlands are less valuable for biodiversity but will have more efficient 

phosphorous retention (Hansson et al. 2005). Therefore, dual-purpose wetlands 

with high nutrient retention may not have a high potential for increasing 

biodiversity and vice versa (Zedler 2003, Hansson et al. 2005).  

A recent study concludes that, on average, ecosystems take 

approximately 50 years to recover from agriculture (Jones & Schmitz 2009), 

and that the stochasticity of natural systems means that they may never return 

to levels found in pre-perturbation conditions. New wetlands are unlikely to 

perform the same functions or support the same biodiversity as historic wetland 

habitat (MEA 2005) as it is difficult to recreate conditions in areas where 
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cultivation has altered topography, soil quality and biodiversity (Zedler 2003). 

To be successful, restored habitat must be sustainable, have comparable 

composition, productivity and nutrient retention to the ‘target habitat’ (Acreman 

et al. 2007), and be near to remnants of original habitats (Cedfeldt et al. 2000). 

 

6.8.2 Large-scale solutions - Washlands 

Washlands (Table 6.1) are typically found in areas of floodplain surrounded by 

river banks that provide a low level of flood protection (Morris et al. 2004). In a 

flood event higher than the banks the washland fills with water and acts as a 

flood storage area, significantly reducing flood peaks downstream (Acreman et 

al. 2003).  

 By storing floodwaters in their soils or on the surface, washlands have 

the potential to provide wetland habitat, determined by the dominant land use 

on the washland and the catchment as a whole (Morris et al. 2002, 2004). This 

will be greatest in grassland or woodland areas that typically experience more 

frequent flooding and wetter ground conditions compared to arable land that 

requires infrequent flooding and drained soils (Morris et al. 2004). Wetness 

regime, substrate type, vegetation structure, grassland management and 

disturbance can influence washland habitat biodiversity (Joyce & Wade 1998) 

and variations in these factors can result in a mosaic of habitats (Morris et al. 

2004).  

 Morris et al. (2004) describe three categories of washland: flood 

management washlands, integrated washlands and conservation washlands. 

These categories represent a range of flood management and biodiversity 

options. Where flood management is the primary objective of washland 

creation, biodiversity objectives will be met as long as they do not significantly 

compromise flood management purposes and vice versa. Integrated washlands 

give equal consideration to both. For breeding waders, flood duration and flood 

seasonality determine the suitability of a washland creation scheme and 

uncontrolled flooding can have a detrimental effect on breeding populations. For 

example, the Ouse Washes, designed originally for flood management, are now 

being managed as an integrated washland scheme (Morris et al. 2004). On 

integrated washlands emphasis is placed on the retention of surface water and 

soil wetness beyond the flood event period to create suitable habitat for 

breeding waders. However, since the 1980s, an increased frequency of flooding 
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at the site has compromised biodiversity benefits. In particular, a dramatic 

decline in breeding Snipe and Black-tailed Godwits Limosa limosa L. has been 

attributed to an increase in the frequency of spring and summer flooding, 

effectively rendering the site unavailable during some breeding seasons 

(Ausden & Hirons 2002, Ratcliffe et al. 2005).  

 Conservation washlands may offer the best option for breeding waders. 

On conservation washlands, the creation of wetland habitats is the key 

objective and the frequencies, depths and timings of flood events are managed 

so as to maintain habitat quality (Morris et al. 2004). Prohibitive flood 

management regimes give rise to wetlands that function as reserves rather than 

truly multifunctional landscapes. As a result, individual wetlands may offer 

limited contribution to flood management. However, the cumulative effect of a 

number of wetlands over a whole catchment may be significant.  

  

6.9 Discussion and Conclusions 

  

Future grassland management can potentially, at a range of spatial scales, 

provide some solutions for both ecosystem services (water quality and flood 

alleviation) and grassland bird conservation. Factors influencing the use of wet 

features as foraging and nesting habitat by ground-probing birds are 

summarised in Table 6.2. At present, the Environmental Stewardship scheme 

(Natural England 2010) provides opportunities for the restoration, creation and 

maintenance of wet grassland for breeding waders. Wet feature creation is not 

currently included as an option. However, ponds offer good potential for both 

ecosystem services (through pollution control and reduced flood risk) and, if 

designed with gentle sloping sides and placed in suitable areas, benefits to 

breeding waders. Higher Level Stewardship includes the option ‘to provide 

additional flood water storage and flood defence through the restoration and 

recreation of wetland habitat for other objectives’ (Natural England 2008). It also 

offers some possibility for the inclusion of catchment de-intensification as a 

method of improving the ecological condition of water bodies (Davies et al. 

2008b). However, agri-environment schemes are taken up on a voluntary basis. 

Where areas identified for de-intensification or flood mitigation cross farm 

boundaries, cooperation between land owners and a coordinated approach 

would be necessary for success. A landscape-scale approach is essential to 
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avoid creating isolated fragments of high-quality habitats (Benton et al. 2003, 

Whittingham 2007) and, particularly as climates change, landscapes will be 

required to be increasingly permeable to allow species to shift and adapt their 

ranges. A landscape-scale approach to placement of ponds is also crucial to 

maximise benefit of flood risk and pollution control. It seems feasible that future 

new management options for farmland could include targeted schemes for both 

‘water’ issues and biodiversity. These schemes may focus on different scales to 

the current Agri-Environment Schemes (AESs). For example, schemes at a 

local scale may be useful in protected areas (e.g. footdrains) and perhaps there 

is the opportunity to develop these within future high-intensity AESs. However, 

if future AESs are to be linked to wider ecosystem service goals and 

biodiversity in the wider countryside (i.e. outside protected areas) then they will 

need to address the issue of co-ordinated implementation at the appropriate 

scale. For example, the placement of ponds within a catchment needs careful 

planning to maximise both reduction in pollution, flood control and benefit for 

waders and this is not likely to happen if determined solely by land-owner 

uptake. Thought is needed as to how these types of schemes could operate 

and the input of social scientists may be needed to help with this issue. 
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 Factors influencing habitat use 

 
Ponds 
 

 
Retention of water and moist soil for probing during the spring and summer

1
. 

Proximity to other wet habitats providing foraging and nesting habitat 
opportunities.  
E, V, P, W, L. 

 
Ditches 
 

 
Maintenance of water levels at mean field height throughout spring and 
summer to provide moist soil for foraging.  
Hydraulic conductivity of the soil².  
E, V, P, W, L. 

 
Footdrains 
 

 
Water levels in ditches feeding into footdrains. 
E, V, P, W, L. 

 
Wetlands 
 

 
Depth, size and shoreline complexity³.   
Previous land use; e.g. to recreate productive habitat it is beneficial to 

choose restoration sites next to remnants of original habitats⁴.  
 
Floodplain 
Washlands 
 

 
Abundance of soil invertebrate prey in relation to frequency, seasonality and 

prolonged surface flooding⁵
‚
⁶.  

Spatial scale of flooding and availability of refuge for soil invertebrate prey
5, 6. 

 
Previous field use; e.g. the flooding of previously fertilised grassland can 
result in anoxic conditions for soil invertebrates

5. 

V, P, W. 
 
Integrated 
Washlands 

 
The level of flood control during the nesting season; e.g. increased flooding 
frequency at the Ouse washes has shortened the nesting season for Snipe

7
.  

Abundance of soil invertebrate prey, as mentioned above
5, 6

.
 

V, P. 
 
Conservation 
Washlands 
 

 
Wetness regime and vegetation structure suitable for foraging and nesting. 
Grassland management and freedom of disturbance

8
.  

V, P.  
 

E, sloping edges for foraging; V, vegetation swards for nesting; P, pollutant loading; W, 
frequency and seasonality of high water flow during the nesting season; L, perimeter length.  
 
References:  

1
Bradbury et al. 2004; 

2
 Gavin 2003; 

3
Hansson et al. 2005; 

4
Cedfeldt et al. 2000; 

5
Ausden et al. 2001; 

6
Plum 2005; 

7
Ausden & Hirons 2002; 

8
 Joyce & Wade 1998. 

Table 6.2. Factors influencing the use of wet features as foraging and nesting 
habitat by ground-probing birds.   

 

 We have focused this review on waders due to the relative lack of 

studies on other bird species identified by our literature survey. However, there 

was some evidence for the effects of soil moisture on other species. Between 

the mid-1970s and the early 1990s the UK Song Thrush Turdus philomelos L. 

experienced a significant population decline, with approximately 70% of pairs 

lost on farmland alone (Baillie et al. 2001). Now only a fraction of the population 

lives on grassland. The timing and spatial distribution of the population decline 

is consistent with the pattern of land drainage in Britain, with the worst affected 
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areas being the arable-dominated counties of eastern England (Peach et al. 

2004b). Soil moisture is likely to be an important factor, but much of the effect 

may be in non-grassland areas. Although this does not necessarily imply 

causation of population decline it is consistent with this explanation. Compared 

to arable farmland, mixed farmland has areas of permanent pasture that retain 

damper soil conditions later in the breeding season, which in turn increases the 

length of time that earthworms, an important component of breeding season 

diet, are available (Gruar et al. 2003). During dry periods, provisioning adults 

forage further from their nest (Peach et al. 2004a) and the summer weights of 

chicks and adults are  negatively related to the dryness of surface soils (Gruar 

et al. 2003). The duration of summer droughts is also negatively correlated with 

annual variation in adult survival rates, a key demographic rate (Robinson et al. 

2004). Hot, dry weather is likely to affect Song Thrushes through the drying out 

of ditches and under hedges, thus reducing both above- and below-ground 

access and abundance of prey. Significant temporal and small-scale spatial 

variation in Chough Pyrrhocorax pyrrhocorax L. pre-breeding survival can also 

be linked to the effects of drier weather conditions on invertebrate prey 

abundance and accessibility (Reid et al. 2008). A range of other species, 

including the Mistle Thrush Turdus viscivorus L., also probe the ground for food, 

and soil moisture may act in similar ways for these species, although it is 

unlikely that the types of large-scale wet feature creation discussed here would 

be a viable option for wide-ranging and open grassland species. 

Land use in the ‘wider countryside’ needs to integrate crop yield, 

ecosystem services and biodiversity if it is to be truly multi-functional (Firbank 

2005). To date the extent of research in this area is limited (e.g. Vickery et al. 

1994). However, the combined pressure of global food production and climate 

change make it questionable if AESs in their present form can be sustained at 

high levels (Ausden & Fuller 2009). The schemes of the future may benefit from 

an integrated ecosystem services approach. By linking biodiversity objectives 

with other ecological objectives set out by policies, such as the Water 

Framework Directive, conservation targets can continue to be met. At present, 

there is a lack of direct evidence of the quantative impacts of management 

solutions on biodiversity and ecosystem services. However, there is the 

potential to help mitigate damaging effects of climate change and pollution and 

provide high-quality habitat for birds in both protected areas and  the wider 
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countryside via options such as appropriately designed and located ponds and 

for the latter (to a lesser extent) the use of integrated washlands. Not all water 

management options will benefit waders and the aims for any area need to be 

prioritised and co-ordinated at local, regional and national levels to maximise 

benefit for the different dimensions of land use.  

One note of caution for future schemes linking biodiversity and 

ecosystem services is that ultimately the latter can be viewed in terms of 

‘benefits’, such as clean drinking water, which are assessed in economic terms 

(Fisher et al. 2008). This carries with it some issues that impact on biodiversity. 

For example, the natural capital of the ‘biodiversity’ component may be identical 

but other factors may intervene. If a dam is built up-stream in a water 

catchment, the measures (such as biodiversity) to alleviate flood control 

downstream are then of less economic value. The spatial location of the 

resource is important; for example, a wetland next to a source of pollution that 

can act as a filter is of greater value than one that is not (Vira & Adams 2009). 

Whilst the ecosystem services agenda is likely to impact on current AES policy 

the devil may be in the detail in terms of the benefit for biodiversity.  

. 
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Chapter 7: Discussion 

 

The link between farmland bird population declines and agricultural 

intensification has been clearly demonstrated (e.g. Donald et al. 2001). In the 

future, climate change is likely to become an increasingly important driver of 

bird populations. A number of studies have investigated the large scale impacts 

of climate change on species’ distribution and abundance (e.g. Thomas et al. 

2004). However, few have examined, in detail, specific ecological impacts of 

climate change on bird demographics that would allow predictions of the effects 

of climate on bird populations (e.g. Great Tit Parus major Cresswell & McCleery 

2003, Golden Plover Pearce-Higgins et al. 2010). The overall aim of this thesis 

was to provide evidence of the link between variations in soil moisture, due to 

climate change, and population changes in ground-probing birds, using the 

Starling as a study species.  

 

Specific aims of the thesis were: 

 

1. To conduct detailed experiments to examine the effects of varying soil 

moisture and Starling foraging success (Chapter 2). 

2. To quantify the relationship between soil moisture and reproductive 

performance in the Starling (Chapter 3-4). 

3. To quantify the pattern between soil moisture and reproductive success 

at a national scale for the Starling (Chapter 5) 

4. To review management options that would alter soil moisture content to 

benefit both ground-probing birds and ecosystem services (e.g. flood 

mitigation (Chapter 6). 

 

 In Chapter 2, results of foraging experiments revealed a trade-off 

between soil moisture, prey abundance and accessibility for ground-probing 

birds. Soils with intermediate moisture provided the best foraging opportunities 

with both saturated and dry soils being suboptimal. Spring and summer would 

be the ideal time for such a study; it is easier to experimentally increase the 

small moisture levels on dry soils than decrease soil moisture levels on 

saturated soils. However, the study was conducted during the autumn and 
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winter so as to not interfere with birds during the breeding season. 

Nevertheless, results of the field experiments showed that soil moisture 

mediated intake rates of below-ground prey in wild-caught Starlings.  

 Previous studies of Starling nestling provisioning have shown that 

Tipulidae larvae were the dominant prey item in the diet (Dunnet 1955, 

Tinbergen 1981, Westerterp 1982, Wright et al. 1998). The findings in Chapter 

3 concur with previous studies and confirm that despite widespread spraying of 

grass fields to control Diptera spp. larvae over the past 30 years (Campbell & 

Cooke 1997, Garthwaite et al. 1997) Tipulidae larvae remain the key dietary 

item of nestling Starlings on farmland. This is in line with earlier studies which 

showed that Tipulidae have been identified as an important dietary item for 

farmland birds (Holland et al. 2006), with up to 50% of lowland birds consuming 

Tipulidae larvae during the breeding season (Wilson et al. 1999).  

Chapter 4 established that the delivery of below-ground prey, specifically 

Tipulidae larvae, was associated with changes in soil moisture and linked to 

Starling reproductive success via changes in fledgling survival.  At the study 

site, counter to a priori predictions, both Tipulidae larvae provisioning and 

fledgling success was highest on wet and dry soils, whereas in contrast 

intermediate soil moisture content was suboptimal. The study was conducted in 

the spring and soils were relatively dry compared to the conditions in Chapter 2. 

In addition, the observed soil type on the study site (clay loam) has been shown 

to have an unusual relationship between soil moisture and penetration (highest 

surface strength at intermediate levels of soil moisture), which matches the 

observations of starling foraging. Overall the results highlight the subtle 

complexities of how soil moisture interacts with the soil type. Chapter 5 

explored population level effects of differing soil moisture conditions on the 

survival of young both before and after they leave the nest. Analysis of fledgling 

success at a range of sites (n=132) provided evidence that an increase in the 

mean spring (April-June) soil moisture deficit over a twenty year period was a 

significant driver of Starling population dynamics in Britain. Starling populations 

did best in years with wet springs (April - June) and dry summers (July -Sep). 

This relationship was robust to the inclusion of temporal changes in Starling 

populations which are likely to be linked to agricultural intensification. 

Substantial changes in agricultural land-use occurred at the same time as the 

data used in Chapter 5; between the late 1960s and the late 1980s 
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management and productivity of improved grassland was transformed by an 

increase in use of fertilisers (86% of all grassland is now fertilized with inorganic 

N) and insecticides (Chamberlain et al. 1999, Chamberlain et al. 2000), 

changes in stocking densities and changes in crop type, from hay to silage 

(Fuller & Gough 1999, Fuller 1987,Stoate 1996)).  

 UK climate change projections suggest that annual moisture content of 

soils is liable to decrease by 10-20% across the UK by the 2080s, with 20- 50% 

reductions in average summer soil moisture content occurring in South East 

England compared with 0-20% in the North West, under the high emissions 

scenario (Bisgrove & Hadley 2002). These predictions are relative to a standard 

baseline climate period (1961-1990). In this study, spring soil moisture deficit 

(mean value from April-June) the previous year was found to have a curvilinear 

relationship with breeding pair numbers at CBC sites between 1981 and 2000. 

The number of breeding pairs per CBC site was initially stable, but then 

declined as soil moisture deficit increased above 80 mm (Chapter 5, Fig 5.3). 

Assuming that agricultural practices remain the same, predictions of how future 

spring soil moisture deficits may further affect UK Starling breeding populations, 

at these study sites, were made using a soil moisture deficit ‘baseline climate 

period’ of 1980 to 1990 (soil moisture deficit data for the study sites was only 

available from 1980 to 1999). Spring (April to June) soil moisture deficit values 

for increases of 10, 20, 30, 40 and 50% were calculated for the 67 MORECS 

squares, relative to the baseline climate period. Following the same model 

structure as described in Chapter 5 (section 5.2.4. C), five models were run 

using the 10, 20, 30, 40 and 50% increase soil moisture deficit values as the 

‘April to June SMD one year ago’ and an arbitrary baseline population value of 

1 for 1990. The back transformed (exponential) fixed effects parameter 

estimates from each of the models were then used to predict Starling population 

changes over the period 1990 to 2080:  

 Total number of breeding pairs per site as the response variable with a 

Poisson error structure and a log link function. 

Total number of breeding pairs per site = April to June SMD one year ago + 

offset (log of the previous year’s breeding pair numbers) + site area + habitat 

category + soil type +1|site 

 Under the high emissions scenario, populations of breeding Starlings 

would decline by 4.3% with a 10% increase in soil moisture deficit, 8.4% with a 
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20% increase, 12.3% with a 30% increase, 16% with a 40% increase and 

19.7% with a 50% increase by 2080 at the study sites (Fig. 7.1). Changes 

would vary by region and the relationship is likely to be more complex. For 

example, periods of stability at low population levels will be followed by periods 

of decline as a result of the cumulative effect of a number of years of high 

spring soil moisture deficits. Between 1981 and 1999 there was a 64% increase 

in mean April to June soil moisture deficit from 25.18 ± 1.23 (± se) to 40.59 ± 

3.09 (± se), across all 67 MORECS sites used in the analysis in Chapter 5. Put 

another way there was an increase of 61% when comparing the mean soil 

moisture deficit for the period 1980 to 1990 (53.50 ± 1.16 (± se)) with the mean 

for the period 1990 to 1999 (86.54 ± 1.53 (± se)). Starling breeding populations 

at these sites declined by 82% over the same period, from 0.22 ± 0.04 (± se) in 

1981 breeding pairs per hectare to 0.04 ± 0.01(± se) in 1999.  

 

 

Figure 7.1 Predicted Starling breeding population declines in relation to 
predicted spring (April to June) soil moisture deficit (SMD), ranging from 10 to 
50% (Bisgrove & Hadley 2002), at Common Bird Census sites (n=132). 
Breeding population decline values are relative to an arbitrary value of 1 in 
1990. Percentage increases in SMD are relative to the mean spring SMD of the 
period 1980 to 1990 (Bisgrove & Hadley 2002). Breeding populations will 
decline between 8 and 20% by 2080 dependent on the level of soil moisture 
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deficit. (y = exp (-0.00811 * x) + -0.31569)). April to June soil moisture deficit 
was negatively correlated with the number of breeding pairs per site, but the 
relationship was not significant (although the main effect and squared term was 
significant). 
 

 Although there is a significant effect of soil moisture in the models it is 

not clear what percentage of the decline in Starling populations can be 

attributed to increased soil moisture deficit because of the concomitant changes 

in other predictors. In particular, agricultural intensification (e.g. in the past 50 

years over 97% of lowland grassland has been improved (Fuller 1987, Vickery 

et al. 1999)) increased substantially over this period (Chamberlain et al. 2000). 

It should be noted that soil moisture deficits had already began to increase by 

the 1980s and therefore predictions for these sites, based on a baseline climate 

period of 1980 to 1990 will likely be higher than those based on the period 

1961-1990. However, even a 10% increase will result in a 4.3% decline in 

breeding populations independent of the effects of year (likely to be linked with 

agriculture). Chapter 5 identifies the link between soil moisture content, 

mediated by climate change, and possible future population declines in the 

Starling. It is likely that decreased soil moisture will have a detrimental effect on 

the reproductive success of other ground-probing species, via fledgling survival.  

 I have shown that soil moisture levels (which are a product of soil type, 

precipitation, wind, aspect, slope and vegetation cover) alter foraging 

conditions, reproductive success and population dynamics for a ground-probing 

bird species. How can soil moisture be manipulated by management to improve 

conditions for ground-probing birds? In Chapter 6, I conclude by discussing 

different management options to alter soil moisture levels on grassland to 

benefit both ground-probing birds and the impacts on a range of other 

ecosystem services (e.g. reducing flood risk). Combining biodiversity goals with 

broader ecosystem services has been widely advocated and following a review 

of the ecological and hydrological literature I establish that there is a limited 

base of evidence on which to assess the potential linkage between ecosystem 

services and habitat management for grassland birds that obtain their food 

predominantly by probing the soil, particularly for non-wading birds species. 

However, appropriate management at multiple scales (e.g. small-scale: ponds; 

large-scale: integrated washlands) could potentially provide both ecosystem 

services and habitat for wading grassland birds. On smaller scales 
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management of soils to alter their field capacity (e.g. by changing soil structure) 

can potentially yield significant improvements. For example, an on-going 

DEFRA project (BD5001) has shown on three different soil types that alleviating 

soil compaction via mechanical loosening (at 30cm depth) can improve water 

retention by up to 400% even two years after treatment with little effect on bird 

foraging or soil macro-fauna.  

 

Future research work on managing soil moisture may be profitably targeted at 

the following four areas.   

 

1. MACROINVERTEBRATE ABUNDANCE: What are optimal soil moisture 

conditions for dietary important macro-invertebrate species, such as Tipulid 

larvae and earthworms? Does this vary with soil type? How do these species 

respond to sub-optimal conditions, in relation to accessibility for ground-probing 

birds?  

2. SCALE:  Can small-scale management techniques (such as mechanical 

alleviation or grass margins) be effectively scaled up (e.g. to farm or catchment 

scale) and would such measures affect crop yield and ecosystem services?  

3. QUANTITY: the extent of land needed to be managed in order to benefit 

multiple purposes and bring about measurable gain (e.g. one or two ponds may 

make significant inroads in reducing run-off and pollution but make little 

difference to wading birds). 

4.  UPTAKE: what are the challenges faced when introducing these 

management options to land managers (e.g. see McKenzie et al. in press for a 

similar study focussed on biodiversity alone within agri-environment schemes). 
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