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The gravitational force is the oldest force known to man and the least understood.(90)
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Abstract

This thesis investigates two very different aspects of quantum gravity.

In the first - and main - section, we examine the question of quantum gravitational contri-

butions to the running of a coupling parameter alongside the various problems and issues

that this raises. We treat quantum gravity as an effective field theory and use pertur-

bative methods to address issues. Specifically, we look at a λϕ4-type scalar coupling. In

a gauge-invariant way, we consider a non-minimally coupled, massive scalar field, with

non-constant background, in the presence of a cosmological constant and contrary to most

of the literature, we also calculate all derivative terms. An effective action is constructed,

renormalization counterterms calculated, and we find that, within certain bounds, gravity

leads to asymptotic freedom of scalar field theory.

Furthermore, we investigate whether considering quadratic divergences in gravitational

calculations can tell us anything useful. In this case we find non-vanishing quadratic

divergences. However, we also recognise the possibility that quadratic divergences are

somewhat of a red herring and that by suitable field redefinitions, we can eliminate these

from our calculations.

The second section of the thesis addresses the possibility of superfluidity in a quark gluon

plasma. We use the framework of AdS/CFT, with knowledge of black hole thermody-

namics, to consider the duality between a black hole in anti-de Sitter space and a fluid

existing on the boundary. Initially, we look at a simple case of a black hole possessing only

mass and charge in AdS spacetime and calculate such properties as the entropy, tempera-

ture and specific heat capacity, identifying a telltale sign of a phase change (specific heat

capacity tending to infinity) and of points of vanishing viscosity (corresponding with a

zero entropy). After confirming that such a boundary exists, we take a different approach

where we calculate and interpret the solutions to a relativistic Gross-Pitaevskii equation

on a sphere. On projection back to R3, the solutions are seen to be tori, which we choose



to interpret as vortex rings in analogy to the expected feature of those which are known

to appear in a real superfluids.
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Chapter 1

Introduction

1.1 Preface

A complete theory of quantum gravity is currently unknown. Although we have a good

understanding of small length scales provided to us by the Standard Model of particle

physics, and similarly at large length scales an understanding courtesy of Einstein’s general

relativity, efforts to find a single theory of quantum gravity are met abruptly with the

problem of non-renormalizability.

The first analysis was performed in the classic paper of ’t Hooft and Veltman (1) in

which they considered a scalar field coupled to gravity at one-loop order in a traditional

background field method and encountered the non-renormalizability of gravity. Later

work by Deser and van Nieuwenhuizen (2), (3), (4) examined the coupling of gravity

to an electromagnetic field and to fermions and the same problem appeared. Although

higher derivative gravity was found to be renormalizable (8), it was discarded as a proper

description of gravity because it was not found to be unitary.

Whilst a theory such as M-theory or loop quantum gravity may yet provide hope of

progress towards a complete theory, one may take the viewpoint that the high energies

where these theories should start to be uniquely testable, likely the order of the Planck

mass, MP (≈ 1019 GeV), may never be attainable (cf. the highest energies available to
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Chapter 1. Introduction

us at the Large Hadron Collider ≈ 104 GeV) and as such study of the combination of

quantum mechanics and gravity in a low energy limit may be more insightful.

That said, it was Donoghue (5)(6) who first realised that it was possible to treat gravity

as an effective field theory. Here, using a perturbative approach, increasing order terms

are tamed by increasing powers of the Planck mass (a comprehensive review can be found

in (7)).

The flaw is obvious of course: as we approach energies of the order of the Planck mass,

the effective theory will break down. However, as long as we restrict ourselves to energies

E << MP , we find a theory that allows us to make quantitative predictions on the

quantum gravitational corrections to whichever field theory we require. Indeed, it has

been suggested that quantum gravitational effects could be found at energies on the order

of those achievable at the LHC (12), (16), (13).

Moreover, we can take a more Popperian viewpoint (51). We suggest that in light of the

falsafiability of the effective field theory approach juxtaposed with a model such as string

theory which is not accessible to testing (or, more accurately, very hard to test as discussed

above), we might suggest that effective field theory is the more complete model.

Building on the framework of Donoghue, an important result by Robinson and Wilczek (9)

came to light which suggested that by coupling gravity to a Yang-Mills field and allowing

the gauge coupling to run, the effect of gravity is such that we are led to asymptotic

freedom (the shape of the running was given by them in Figure 1.1; Gogoladze et al

(12), gave a slightly different graph in their work (see Figure 1.2)). That is to say that

the gauge coupling vanishes for sufficiently high (but crucially sub-Planck scale) energy.

The analagous situation of asymptotic freedom in the absence of gravity is, of course,

well known and celebrated (10; 11). The result is most significant due to the completely

different behaviour for theories which are not normally asymptotically free, such as QED

and ϕ4-theory.

0We shall be liberal when referring to couplings, coupling constants and coupling parameters, which will
all be taken to mean the same idea of the strength of the interaction under investigation.

3



Chapter 1. Introduction

Figure 1.1: Robinson and Wilczek showed how the various couplings of the standard model would
all become asymptotically free at an energy a few orders of magnitude below the Planck scale.

Figure 1.2: Gogoladze and Leung predicted the form of the running of the standard model cou-
plings.
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Chapter 1. Introduction

The result of (9) is very significant for numerous phenomenological reasons. Naturally,

there is interest in any result which offers us an alternative to the typically unwieldy

methods for many particle interactions at high energy. The ability to treat any gauge

theory as a free theory in the presence of gravity would allow huge simplifications.

There are also potential implications for cosmology, particularly in the very early universe

where one might imagine gravity to be comparative in strength to the other forces and

where high particle densities are very difficult to deal with numerically.

Therefore, if we are able to grasp a better knowledge of the techniques employed in the

field of running couplings and develop an understanding of the pitfalls which we must

be wary of, then we could feasibly have a model with widespread application in particle

physics phenomenology.

Alas, subsequent work by Pietrykowski (18) cast doubt on this result. By performing the

calculation in a different choice of gauge, then arriving at a different result, he clearly

demonstrated that the result of (9) was gauge-dependent. Several other papers using

different approaches followed which all led to different conclusions, and also confirmed

this gauge-dependency. Amongst these was the work of Ebert et al (20) who performed

a traditional Feynman diagram calculation considering those diagrams which involved a

coupling between the graviton and gauge fields, and thus would account for a difference

with the known non-gravitational result. A paper by Tang and Wu (21) used a new tech-

nique known as loop regularization which first took into account quadratic divergences

concluding that quadratic divergences were non-zero and should not be discarded when

considering running of gauge parameters. Work by Toms (19) tried to clarify the situation

by adopting a different approach which was inherently gauge independent and gauge con-

dition independent. For an Einstein-Maxwell case, he showed that the result was certainly

dependent on the gauge condition. The error in the original calculation (9) was that they

used an off-shell flat background without an appropriate connection, the advantage of

working off shell being that the gravitational metric can be as trivial as one wishes and

the calculations simplified tremendously; the method of (19) allows for such a connection

5



Chapter 1. Introduction

to be introduced.

Other work in the subject looked at the effect of a cosmological constant in (26) where it

was noted that the presence of such a cosmological constant could dominate the running

behaviour of a gauge theory.

A particularly interesting application of the theory was in extra-dimensional theories (22;

23; 24).

Yet further work looked at different types of particles, with various literature investigating

the effect of gravity on Yukawa couplings (25; 31; 32) and scalars (47). More obscurely,

the methods were used to predict the running of spacetime dimension itself (14)

Two distinct problems are apparent in this work in light of contrasting results.

The first problem lies in the observation that the choice of method can lead to various

gauge problems. Traditional Feynman diagram methods yield different answers to the

works of e.g. (19), while the methods in the asymptotic safety regime also have gauge

dependence problems but offer hope of a complete theory of quantum gravity. Yet gauge

condition dependence can affect the values of measureable quantities so this is clearly a

difficulty that should be overcome.

The second problem was that the choice of regularisation scheme could be important,

since the popular choice of dimensional regularisation retains only logarithmic divergences,

whereas (21) used methods which retained the quadratic divergences.

A solution to both these problems was presented in (29). In that paper, the Vilkovisky-

DeWitt method was again used to avoid any gauge problems, but rather than resorting to

dimensional regularisation to compute the integrals, a heat kernel method with a proper

time method was employed which kept the quadratic divergences intact while retaining

gauge invariance and gauge-condition independence.

At around the same time, work by He et al (33) also addressed the problems using a

technique which was free of gauge issues and which treated the quadratic divergences by

using dimensional reduction in two dimensions. Such a dimensional reduction must be

6



Chapter 1. Introduction

careful of the pathological nature of gravity in two dimensions; however, it appeared that

the authors were careful to avoid such issues.

The interpretation of the results was called into question by (54) and (55).

Donoghue et al (54) questioned whether the idea of a running coupling was a useful

concept, rather than a more traditional S-matrix approach, and whether the omission of

higher derivative terms in the preceding work led to unphysical results. As the authors

pointed out in (54), it is perfectly acceptable in theories such as pure QED or pure QCD

to examine the running coupling by focussing only on those diagrams which contribute

to e.g. the vacuum polarization. In (19) for example, a constant background field was

chosen to simplify the calculations with the reasoning that the term proportional to the

charge parameter varied quadratically in the background field and did not depend on any

derivatives of the field, validating the calculations. When this approach is naively applied

to a theory including gravity, Donoghue et al claim the technique to be inappropriate.

That said, it is unclear how this does carry through to gravity and what sense one can

make of a running coupling in gravitational theories; although it is suggested that one

should simply include all possible terms which could contribute to the running coupling,

including derivative terms.

Ellis (55) meanwhile argued that the results were unphysical on the grounds of the necessity

of using the S-matrix to perform a physical calculation; though having made this argument,

they do not offer a way to proceed (as noted in (30)). They also suggested, perhaps more

correctly, that one must be careful to make sure the conclusions are still intact after field

redefinitions.

Further criticism of the general method was raised by Nielsen (56) who suggested that

the proper time method may need to be adjusted to ensure gauge independence of the

quadratically divergent terms.

This thesis continues to examine the quantum gravitational contributions to the running of

coupling constants and hopefully addresses some of the concerns raised by other authors,

particularly by including all possible terms which could contribute to the running coupling.

7



Chapter 1. Introduction

1.1.1 Asymptotic Safety

The main calculation of this thesis will be focussed on the claim that gravity can introduce

asymptotic freedom into theories which may or may not already exhibit such behaviour.

In this scheme, the coupling parameter of the theory under investigation falls to zero at

higher energies due to some interaction with the gravitational field. We have highlighted

that this is an attractive feature for the theory to possess since it avoids the problem

of many theories that the coupling strength approaches infinity as we go to ever smaller

distances which would otherwise invalidate perturbation theory.

However, having the coupling parameter fall away to zero is not the only solution to this

problem. Another possibility is that at short distances the coupling strength approaches

a fixed, non-zero value. The field theory does not become free - the coupling strength

does not vanish - but it is still safe from high-energy catastrophes; hence this is termed

asymptotic safety and it is, in a way, the non-perturbative equivalent of our work. Cru-

cially, this is still a UV complete theory. Such a model for gravity was first promoted by

Weinberg (60). See (74; 75) for useful reviews.

The major difference between our work and the tools of asymptotic safety is that they use

a non-perturbative approach and their central object of study is the functional renor-

malization group equation (FRGE). A wealth of literature has built up in this field

(69; 70; 71; 72; 73; 76).

Of particular recent interest in the field, was a paper (78) which calculated the expectation

value of the Higgs in a region hinted at by experiment. Donoghue (54) still notes problems

for the ideas of running couplings in asymptotic safety.

1.2 Outline of Chapters

We begin in the first section by recalling the traditional background field method and the

need to be careful when working off-shell. We then discuss a gauge invariant and gauge

condition independent approach which will allow us to work with whichever background

8



Chapter 1. Introduction

metric we desire. This approach is the Vilkovisky-DeWitt formalism. We will also in-

troduce some of the tools that we will require such as the results for some dimensionally

regularised integrals.

In the second section, we apply the Vilkovisky-DeWitt method to a scalar field model

coupled to gravity. We will seek to keep the model fairly general, allowing the scalar

field to be massive, contain a self interaction and some non-minimal coupling between

the scalar field and the metric field. We will also work in the presence of a non-zero

cosmological constant to keep the result more general. There will be no assumption that

the background scalar field is constant and hence all derivative terms will be calculated.

Furthermore, the choice of gauge will not be fixed until the end of the calculation so that

it is always clear how any gauge dependent terms could affect the result. The work in this

section will utilise dimensional regularisation. As such, the second section only provides

the logarithmic divergences.

Following on naturally from the calculation in the second section, the goal of the third

section is to find the quadratic divergences while still remaining free of gauge issues.

We present a different method which relies on a heat kernel description and a normal

coordinate expansion which are outlined in turn. It will then be important to discuss why

this treatment of quadratic divergences has been found to be flawed, and how we may

demonstrate that the quadratic divergences may be a significant feature of the model.

The fourth section will contain the discussion of these results, with attempts at interpreting

their meaning and a comparison to the various literature on the subject and to demonstrate

that with appropriate limits we can recover the well-known results in the absence of gravity.

A final section at first glance perhaps stands laterally to the rest of the work. A calculation

using an interesting result of string theory, the duality of AdS/CFT, is presented in this

section. We describe how a black hole existing in an n-dimensional anti-de Sitter spacetime

can be used, at least qualitatively, to explain features of a fluid existing on the n − 1-

dimension boundary. We will discuss the consequences of this for heavy ion collisions.

Some discussion of black hole thermodynamics will also be included here. Of course, if

9



Chapter 1. Introduction

we look at the calculation holistically, we recognise that the calculation is simply another

demonstration of performing high energy calculations via a simpler approach, and again

of the interplay between quantum mechanics and gravity.

The appendices at the end will contain some details on the computer algebra employed

throughout, in particular an explanation of the most important sections of the FORM

code. It will also include numerous derivations not made explicit in the main body of the

text.

1.3 Conventions

We use the Einstein convention that a repeated index signifies summation over that index.

We use a flat Euclidean background metric with signature (1, 1, 1, 1).

We use natural units, c = ~ = 1.

Round and square brackets will indicate symmetrization and anti-symmetrization respec-

tively:

T(µν) =
1

2
(Tµν + Tνµ) , (1.1)

T[µν] =
1

2
(Tµν − Tνµ) . (1.2)

We shall be using the Riemann tensor defined as

Rµναβ = ∂αΓ
µ
νβ − ∂βΓ

µ
να + ΓµσαΓ

σ
νβ − Γ

µ
σβΓ

σ
να (1.3)

with the Ricci tensor contracted as

Rµν = Rαµαν . (1.4)

The shorthand h = hαα will be employed.

10



Chapter 1. Introduction

We will use the notation that a comma and a semicolon represent an ordinary derivative

and a covariant derivative respectively.
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Chapter 2

The Background Field Method

2.1 Vilkovisky-DeWitt method

In quantizing a gauge theory, there are two problems which must be overcome. First, we

require invariance in the fundamental gauge transformations of the theory. In a back-

ground field theory, this is an easy problem to solve. In a traditional Feynman diagram

approach the Slavnov-Taylor-Ward-Takahashi identities must be satisfied.

Second, we require that our calculation does not depend on the choice of gauge condition.

This is an important feature since gauge condition dependence should not alter the values

of physical observables. We introduce the gauge condition to avoid double-counting field

configurations which are related to others by gauge transformations when integrating out

the fields in the functional integral. One would usually choose a gauge condition and also

their associated Faddeev-Popov ghost fields. How this gauge condition permeates through

to our final result will be made explicit by keeping the gauge condition arbitrary until the

end of the calculation.

In the background field method, it will be necessary to expand about a background field

that is not a solution of the classical equations of motion. This is one possible source of

gauge condition dependence. Therefore, it would be much better to modify the background

field method from the start to ensure gauge condition independence in the effective action.
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Chapter 2. The Background Field Method

This was the approach of Vilkovisky and DeWitt and is the technique which we will follow

in this work. It is helpful to outline some of the details of the method to refer to later. In

what follows, we will follow the notation employed in (39).

When talking about arbitrary fields, it is invaluable to use the DeWitt notation. We will

consider bosonic gauge fields denoted ϕi where the single index i contains all the labels of

the fields relating to spacetime or to the gauge and also includes the spacetime coordinate.

Summation will follow the usual Einstein convention except that we also integrate over

any repeated coordinate.

We shall denote the classical action functional of our theory as S[ϕ]. We will assume that

our theory is gauge invariant for some underlying infinitesimal parameters δεα. Then we

can write our infinitesimal gauge transformations as

δϕi = Ki
αδε

α (2.1)

where the Ki
α are identified as generators of the gauge transformations. If we are requiring

gauge invariance then the condition is

S[ϕ+ δφ] = S[ϕ]. (2.2)

Now we expand this equation and require it hold to first order in the parameters δεα and

we are led to the statement of gauge invariance

Ki
α[ϕ]S,i[ϕ] = 0 (2.3)

where the comma notation S,i[ϕ] denotes a derivative of S[ϕ] with respect to the field ϕi.

S,i[ϕ] = 0 is simply Hamilton’s principle of least action.

Now we address the problem of double-counting fields. We noted that quantizing gauge

theories using the usual Feynman path integral, integrating over the space of all fields, will

distinguish some fields from other fields to which they are related by a gauge transforma-

13



Chapter 2. The Background Field Method

tion, when they are in fact physically equivalent. We wish to eliminate these redundant

degrees of freedom. Geometrically speaking, if we have a space of fields F with some met-

ric tensor gij then we require only the physical configuration space given by F/G where

G, the set of gauge transformations, is factored out. It is worth pointing out at this stage

that the choice of metric is not unique. The gravitational part may generally take the

form

Gρσλτ =
1

2

(
δρλδστ + δρτδσλ − aδρσδλτ

)
(2.4)

where a is a free parameter which can be determined from consideration of the higher

derivative term in the classical action. It can be shown (57) that the Vilkovisky-DeWitt

effective action which we will encounter shortly can depend on a. Therefore, while the

Vilkovisky-DeWitt effective action will provide a gauge-independent tool, the price to pay

is a loss of generality in the choice of metric. However, we will work with a = 1
2 which

corresponds to Einstein gravitation and say no more on this.

To specify F/G choose (fix) a gauge,

χα[ϕ] = 0. (2.5)

If we expand this as

χα[ϕ+ δϕ] = 0 (2.6)

as δεα → 0 then we note that

Qαβ [ϕ]δεβ = 0 (2.7)

has the solution δεβ = 0 where we have defined

Qαβ [ϕ] = χα,iK
i
β[ϕ] (2.8)

and detQαβ 6= 0.

Our result does not depend on the choice of gauge condition, so we can choose whatever

expediates the calculations. Before continuing, let us add a bit more clarity. An important

14
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point to highlight is the work of Fradkin and Tseytlin (42), where it was shown that the

full Vilkovisky-DeWitt calculation is equivalent to a background field approach with the

inclusion of a connection term, when working in the Landau-DeWitt gauge. As this

is easier to work with, we will work in this simpler regime, rather than perform a full

Vilkovisky-DeWitt calculation. Therefore, we may expect to see a gauge parameter (which

will later be called ω) appear in the results but we should note that this is not a sign of

gauge dependence when we select a particular value for this parameter in the final step.

We opt then for the Landau-DeWitt gauge (also referred to as the background field gauge)

here, where

χα = Kαi[ϕ̄]ηi = 0. (2.9)

We begin by expanding the fields (still general at this stage) as some perturbations about

some background fields

ϕi = ϕ̄i + ηi (2.10)

The problem with the traditional background field method arises by expanding about a

metric which is not a solution of the classical equations of motion which was the problem

in (9).

Now we arrive at the crux of the method, the choice of connection on the space of fields.

We can calculate the connection by first considering a most general displacement in the

space of fields which we write

dϕi = ωi⊥ + ωi‖ (2.11)

where

ωi‖ = Ki
αdε

α (2.12)

and

ωi⊥ = P i jdϕ
i (2.13)

15
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which satisfies

gijω
i
⊥ω

j
‖ = 0. (2.14)

In (2.13) we introduced the projection operator

P i j = δij −Ki
αγ

αβKβj (2.15)

with Kβj = gijK
i
β as usual and γαβ being the inverse of

γαβ = Ki
αgijK

j
β. (2.16)

It follows simply that

P i jK
j
α = 0 (2.17)

and

P i jP
j
k = P i k. (2.18)

We interpret (2.17) as the projection operator P i j having the property of projecting

vectors perpendicular to the generators of gauge transformation. Now if we form the line

element, we have

ds2 = gijdϕ
idϕj

= gij

(
ωi⊥ + ωi‖

)(
ωj⊥ + ωj‖

)
= gij

(
ωi⊥ω

j
⊥ + ωi‖ω

j
‖

)
= g⊥ijω

i
⊥ω

j
⊥ + γαβdε

αdεβ (2.19)

with the second line following from (2.11), the third following from (2.14) and the final

line following from (2.12), (2.13) and (2.16). The first term is then the line element on

the space of fields and the second term is the line element on the gauge group.

This exhibits the local product structure F = (F/G)× G of the space of fields.
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In the last line of (2.19) we have introduced the metric on the space of distinct gauge

orbits

g⊥ij = P k iP
l
jgkl. (2.20)

In the Feynman functional integral, it is the space of distinct gauge orbits that is integrated

over. Therefore the natural choice of connection comes from the requirement

0 = ∇̄ig⊥jk = g⊥jk,i − Γ̄ lijg⊥lk − Γ̄ likg⊥jl (2.21)

with ∇̄ the covariant derivative with respect to the connection. It follows simply that

Γ̄ lijg
⊥
lk =

1

2

(
g⊥jk,i + g⊥ki,j − g⊥ij,k

)
. (2.22)

It would be usual to introduce the metric inverse to g⊥lk and multiply both sides by this

to arrive at an expression for our connection. However, g⊥ijK
j
α = 0 so g⊥lk is not invertible.

Therefore, Γ̄ kij is only determined up to some arbitrary multiple of Kk
α that vanishes when

it is contracted with g⊥lk. The form of Γ̄ kij can be shown to be (39)

Γ̄ kij = Γ kij + T kij +Kk
αA

α
ij . (2.23)

Here Γ kij is the usual Christoffel symbol for the metric gij ; T
k
ij is an expression involving

gij , K
i
α and its first derivatives Ki

α,β; and Aαij is entirely arbitrary. We will further address

this connection later.

Now, when the integration over the space of fields is carried out, the measure which follows

formally from (2.19) is

dµ [ϕ] =

(∏
i

ωi⊥

)(∏
α

dεα

)(
det g⊥ij

)1/2
(det γαβ)1/2 . (2.24)

In the present paper, we intend to calculate quantum corrections at one-loop order. We
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can simplify the measure using the identity for the delta function,

δ
[
χβ
]

= lim
α→0

(4πiα)−1/2 exp

(
i

2α
χβχβ

)
. (2.25)

At one loop order then, the Vilkovisky-DeWitt effective action is

Γ [ϕ̄] = S[ϕ̄]− ln detQαβ[ϕ̄] +
1

2
lim
α→0

ln det

(
∇i∇jS[ϕ̄] +

1

2α
Ki
α[ϕ̄]Kα

j [ϕ̄]

)
. (2.26)

where S[ϕ̄] is the classical action, Qαβ is the ghost term, Ki
α are the generators of gauge

transformations, and the covariant derivative is

∇i∇jS[ϕ̄] = S,ij [ϕ̄]− Γ̄ kijS,k[ϕ̄] (2.27)

with Γ̄ kij being the connection term that is crucial for obtaining a gauge condition inde-

pendent result.

Let us note a few things at this point. The arbitrary third term in (2.23) does not matter

at one-loop order because we will have a term proportional to Kk
αS,k = 0 which is simply

the expression of gauge invariance which we required from the start. It can be shown that

at one loop order, T kij takes the form (39)

T kij =
1

2
γαεγβσKαiKβj

(
Kn
ε K

k
σ;n +Kn

σK
k
ε;n

)
− γαβ

(
KαiK

k
β;j +KαjK

k
β;i

)
(2.28)

so that by repeated use of the Landau-DeWitt gauge condition, we find that

T kijη
iηj = 0 (2.29)

and hence T kij makes no contribution to the effective action for our particular choice of

gauge. Of course, at higher loop order and in different gauges, there will be a contribution

from T kij . As a result of these two observations, we can simply replace the connection Γ̄ kij

with the Christoffel connection Γ kij .

18



Chapter 2. The Background Field Method

Another important point should be made at this stage. If we are expanding the fields

around such background fields that are solutions to the classical equations of motion then

we have S,i = 0. In this case, terms in the effective action arising from the connection

also vanish. Conversely, if the background field is not a solution to the classical equations

of motion (for example, expanding the gravitational field about a flat metric) then the

connection must be included.

We can write (2.26) as an integration over the quantum fields η defined in (2.10),

Γ [ϕ̄] = − ln

∫
[dη]e−Sq (2.30)

where

Sq = lim
α→0

1

2
ηiηj

(
S,ij − Γ kijS,k +

1

2α
KαiK

α
j

)
. (2.31)

We now have a framework where we can choose a traditional action S and construct the

Vilkovisky-DeWitt action Γ [ϕ̄].

For the sake of clarity, lets us reiterate that η here is a quantum field and that

ΓG = − ln

∫
[dη]e−Sq

1

2
ln det

{
∇i∇jS[ϕ̄] +

1

2α
Ki
λ[ϕ̄]Kα

j [ϕ̄]

}
(2.32)

We will later calculate the ghost action,

ΓGH = − ln detQαβ = − ln

∫
[dη̄dη]e−η̄Q

α
βη

β

(2.33)

and it will be understood when we do so that η (and η̄) in this case represents a ghost

field, with Qαβ defined in (2.8).
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ϕ4-gravity

3.1 Logarithmic divergences of Einstein-ϕ4 theory

At this stage, we can stop using the DeWitt notation that was so useful for the formal

framework and begin to be more specific. We will choose an action then proceed to

calculate the three terms of equation (2.31).

S = SM + SG, (3.1)

where

SM =

∫
dnx|g(x)|1/2

{
1

2
∂µϕ∂µϕ+

1

2
m2ϕ2 +

1

2
ξRϕ2 + U(ϕ)

}
. (3.2)

is the scalar field action, and

SG = − 2

κ2

∫
dnx|g(x)|1/2(R− 2Λ), (3.3)

is the gravitational Einstein-Hilbert action with the inclusion of a cosmological constant

Λ. We have defined

κ2 = 32πG, (3.4)
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withG Newton’s gravitational constant. Here ξ represents a possible non-minimal coupling

to the curvature that we include for generality, and U(ϕ) is a potential term that we will

take to be

U(ϕ) =
λ

4!
ϕ4. (3.5)

We write the fields (from equation (2.10)) as

ϕi = (gµν(x), ϕ(x)), (3.6)

and the quantum fields

ηi = (κhµν(x), ψ(x)), (3.7)

with

gµν = δµν + κhµν , (3.8)

ϕ(x) = ϕ̄(x) + ψ(x). (3.9)

We have specified the background metric to be the flat metric which, we emphasise, is

not a solution of the classical equation of motion. The background scalar field ϕ̄ is kept

general at this stage. It is useful to also list two results that follow from (3.8). The inverse

metric is

gµν = δµν − κhµν + κ2hµλh
λν +O(h3) (3.10)

and the measure is

|g(x)|1/2 =

(
1 +

κ

2
h− κ2

4
hαβh

β
α +

κ2

8
h2

)
(3.11)

where g is the determinant of gµν .

We now calculate the generators Ki
α by considering the gauge transformations. For the

scalar field part, it is easy to show that for a change in coordinates,

x
′µ = xµ + εµ, (3.12)
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an infinitesimal change in the field is given by

δϕ = −δεµ∂µϕ (3.13)

whilst for gravity a consideration of the metric transformation under an infinitesimal

change of coordinates leads to

δgµν = −δελgµν,λ − δελ ,µgλν − δελ ,νgλµ. (3.14)

Writing now equation (2.1) in uncondensed notation and making the index associations

i→ ϕ(x), α→ λ, we have

δϕ =

∫
dnx′

{
K
ϕ(x)
λ (x, x′)δελ(x′)

}
(3.15)

and

δgµν =

∫
dnx′

{
K
gµν(x)
λ (x, x′)δελ(x′)

}
(3.16)

with the index associations i → gµν(x), α → λ. By comparison of (3.14) and (3.13) with

(3.15) and (3.16) we deduce

K
ϕ(x)
λ (x, x′) = −ϕ(x),λδ(x, x

′) (3.17)

K
gµν(x)
λ (x, x′) = −gµν,λ(x)δ(x, x′)− gµλ(x)∂νδ(x, x

′)− gλν(x)∂µδ(x, x
′) (3.18)

where δ(x, x′) is the symmetric Dirac delta function.

The gauge condition is then

χλ(x) =
2

κ
(∂µhµλ −

1

2
∂λh)− ω∂λϕ̄ψ, (3.19)

where we introduce a parameter ω that must be set equal to one for the gauge condition
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independent result (the Landau-DeWitt gauge). The first part of χλ(x) follows from

combining (3.18) and the DeWitt metric (3.21). We keep it general at this stage to

illustrate the gauge condition dependence of the standard formalism. In this way we can

easily compare our results at the end with other choices of gauge condition such as the De

Donder gauge (ω = 0).

For the computation of the connection term we consider the metric of the space of fields.

The natural line element is

ds2 =

∫
dnxdnx′

{
ggµν(x)gλσ(x′)dgµν(x)dgλσ(x′) + gϕ(x)ϕ(x′)dϕ(x)dϕ(x′)

}
(3.20)

where we have chosen the metric for the gravity fields to be the DeWitt metric

1

2κ2
|g(x)|1/2

(
gµλgνσ + gµσgνλ − gµνgλσ

)
(3.21)

and the scalar field metric is simply

gϕ(x)ϕ(x′) = |g(x)|1/2 δ(x, x′). (3.22)

The extra factor of κ−2 in (3.21) is necessary to ensure that both terms have the same

dimensions and that the line element has units of length squared.

Using the metric components from (3.20) we can calculate the Christoffel symbols. The

non-zero Christoffel symbols are

Γ
ϕ(x′′)
ϕ(x)gµν(x′) =

1

2

∫
dnx̄gϕϕ(x′′, x̄)

{
δgϕϕ(x, x̄)

δgµν(x′)
+
δggµνϕ(x̄, x′)

δϕ(x)
−
δgϕgµν (x, x′)

δϕ(x̄)

}
=

1

4

√
g(x′′)

√
g(x)gµν(x)δ(x′′, x)δ(x, x′), (3.23)
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Γ
gαβ(x′′)

ϕ(x)ϕ(x′) =
1

2

∫
dnx̄ggαβgµν (x′′, x̄)

{
δgϕgµν (x, x̄)

δϕ(x′)
+
δggµνϕ(x̄, x′)

δϕ(x)
− δgϕϕ(x, x′)

δgµν(x̄)

}
= −1

4

√
g(x′′)

{
gα(µ(x′′)gν)β(x′′)

+
1

2− n
gµν(x′′)gαβ(x′′)

}√
g(x)gµν(x)δ(x, x′′)δ(x, x′), (3.24)

and

Γ
gλτ (x′′)
gµν(x)gρσ(x′) =

1

2

∫
dnx̄ggλτgαβ (x′′, x̄)

{
δggµνgαβ (x, x̄)

δgρσ(x′)
+
δggαβgρσ(x̄, x′)

δgµν(x)
−
δggµνgρσ(x, x′)

δgαβ(x̄)

}
= δ(x′′, x′)δ(x′′, x)

[
−δ(µ

(λg
ν)(ρδ

σ)
τ) +

1

4
gµνδρ(λδ

σ
τ) +

1

4
gρσδµ(λδ

ν
τ)

− 1

2(2− n)
gλτg

µ(ρgσ)ν +
1

4(2− n)
gλτg

µνgρσ
]
. (3.25)

We need to multiply this by S,i, which are functional derivatives of equation (3.1). If

we consider once again the Taylor expansion of S[ϕ] about the background field ϕ̄i, the

required term can be deduced after some partial integration from the term linear in the

quantum fields ηi.

After some calculation, we arrive at the action (2.31),

Sq = S0 + S1 + S2 + S3 + S4, (3.26)

where the subscripts count the order of the background scalar field with

S0 =

∫
dnx

{
−1

2
hµν�hµν +

1

4
h�h+

(
1

α
− 1

)(
∂µhµν −

1

2
∂νh

)2

−Λ
(
hµνhµν −

1

2
h2

)[
1 +

v

2

(
n− 4

2− n

)]
+

1

2
∂µψ∂µψ +

1

2
m2ψ2 +

vnΛ

4− 2n
ψ2

}
, (3.27)
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S1 = κ

∫
dnx

{
1

2
(hδµν − 2hµν)∂µϕ̄∂νψ +

1

2
m2ϕ̄hψ + ξϕ̄(hµν,µν −�h)ψ

−ω
α

(∂µhµν −
1

2
∂νh)∂νϕ̄ψ − v

4
(−�ϕ̄+m2ϕ̄)hψ

}
, (3.28)

S2 = κ2

∫
dnx

{
1

2

(
hµλhλ

ν − 1

2
hhµν − 1

4
δµνhαβhαβ +

1

8
h2δµν

)
∂µϕ̄∂νϕ̄

+
1

2

(
1

8
h2 − 1

4
hµνhµν

)
m2ϕ̄2 +

1

2
ξ(R2 +

1

2
hR1)ϕ̄2 +

λ

4κ2
ϕ̄2ψ2 (3.29)

+
v

4
hµνhλσ

[
1

2
δµνT λσ2 − δµλT νσ2 +

1

4(n− 2)
T2

(
δµσδνλ + δµλδνσ − δµνδλσ

)]
− v

8(2− n)
T2ψ

2 +
ω2

4α
(∂µϕ̄∂µϕ̄)ψ2

}
, (3.30)

S3 = κ

∫
dnx

λ

12

(
1− v

2

)
ϕ̄3hψ, (3.31)

S4 = κ2

∫
dnx

{
λ

24
ϕ̄4

(
1

8
h2 − 1

4
hµνh

µν

)
− v

8(2− n)
T4ψ

2

+
v

4
hµνhλσ

[
1

2
δµνT λσ4 − δµλT νσ4 +

1

4(n− 2)
T4

(
δµσδνλ + δµλδνσ − δµνδλσ

)]}
.

(3.32)

Here v is the parameter that counts the connection contribution. It should be set to

one for the correct gauge condition independent result and to zero to compare with the

(incorrect) traditional result. Tnµν for n = 2, 4 represents the energy-momentum tensor

terms of order ϕ̄2 and ϕ̄4 given by

T2µν = ∂µϕ̄∂νϕ̄−
1

2
δµν∂

αϕ̄∂αϕ̄−
1

2
δµνm

2ϕ̄2 + ξδµν(�ϕ̄2)− ξ∂µ∂νϕ̄2, (3.33)

T4µν = −δµν
λ

4!
ϕ̄4, (3.34)

T2 =
(

1− n

2

)
∂µϕ̄∂µϕ̄−

n

2
m2ϕ̄2 + (n− 1)ξ�ϕ̄2, (3.35)

T4 = −nλ
4!
ϕ̄4. (3.36)
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R2 + 1
2hR1 is the quadratic part of |g|1/2R given by

R2 +
1

2
hR1 = hµν�hµν − 2hµν∂

µ∂λhλ
ν − ∂λhλµ∂νhµν + ∂λhλ

µ∂µh+ hµν∂µ∂νh

+
3

4
∂λhµν∂λhµν −

1

4
∂λh∂λh−

1

2
∂λhµν∂µhλν +

1

2
h∂µ∂νh

µν − 1

2
h�h. (3.37)

The graviton and scalar propagators follow from S0 in the usual way. The terms in S1

and S2 will be treated as interactions. We can write the scalar propagator as

G(x, x′) =

∫
dnp

(2π)n
eip·(x−x

′)G(p), (3.38)

and the graviton propagator as

Gρσλτ (x, x′) =

∫
dnp

(2π)n
eip·(x−x

′)Gρσλτ (p). (3.39)

Using the result for S0 leads to

G(p) =
1

p2 +M2
, (3.40)

where

M2 = m2 +
nvΛ

2− n
= m2 − 2vΛ (3.41)

with n→ 4 in the second equality, and,

Gρσλτ (p) =
δρλδστ + δρτδσλ − 2

n−2δρσδλτ

2 (p2 − 2λ)
+

1

2
(α−1)

δρλpσpτ + δρτpσpλ + δσλpρpτ + δστpρpλ
(p2 − 2λ) (p2 − 2αλ)

,

(3.42)

where we have defined

λ = Λ+ vΛ

(
n− 4

4− 2n

)
. (3.43)

In our calculations of the pole terms, the Vilkovisky-DeWitt correction in (3.43) will make

no contributions to the poles when n → 4, and we may set λ → Λ in this limit. We use
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Wick’s theorem and the basic pairings

〈ψ(x)ψ(x′)〉 = G(x, x′), (3.44)

〈hρσ(x)hλτ (x′)〉 = Gρσλτ (x, x′), (3.45)

to evaluate the effective action to order ϕ̄2.

With these tools we can now proceed to work out terms in the effective action. We will

begin with the quadratic terms. These were calculated in this author’s earlier paper (47)

but we include the calculations here for completeness. Before we do so, let us discuss the

Wick rules and calculation of Feynman integrals.

3.2 Wick Rules

Wick’s theorem is a powerful tool that reduces a complicated expression containing many

quantum fields into a combinatorics problem. A product of quantum fields must be com-

bined in all possible combinations and to obtain the effective action we must remove any

expressions which relate to diagrams which are not one particle irreducible (1PI).

In the absence of any derivative operators, we can recognise that the expressions only take

on a handful of forms; when we reintroduce the derivative operators, these will appear as

prefactors to the resulting Green’s functions and will not affect the general structure of

the equations. To be more verbose, S1 essentially contains terms which look like hψ, S2

like hh or ψψ, S3 again like hψ and S4 again like hh or ψψ.

The simplest term is 〈S4〉 with the reduction into Green’s functions following immediately.

We have either

hAhB = GAB(x, x) (3.46)

(where the upper case index on the gravitons represent whatever indices may actually be

present) or

ψψ = ∆(x, x). (3.47)
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Figure 3.1: The curly line represents a graviton while a dashed line represents a scalar.

Figure 3.2: The possible diagrams in S4

Using the definitions giving in Fig 3.1, we can represent these possibilities by Fig 3.2.

Next, consider 〈S1S3〉. The basic structure of terms appearing in this expression are of

the form

hAh
′
Bψψ

′ (3.48)

where the primes indicate the coordinate, e.g. h′ ≡ h(x′). In this case, the application of

Wick’s Theorem is trivial. The result is

hAh
′
Bψψ

′ = GAB(x, x′)∆(x, x′). (3.49)

The relevant diagrams for this interaction are given in Fig 3.3.

Continuing on, consider
〈
S2

2

〉
. This time, the basic structure of the terms will be of the

form

hAhBh
′
Ch
′
D (3.50)
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Figure 3.3: The possible diagrams in S1S3

Figure 3.4: The possible diagrams in S2
2 . The boxed interactions are not 1-PI and so are not

counted.

and

ψψψ′ψ′. (3.51)

This time application of Wick’s theorem to (3.50) is not so simple. Recall that we seek

only to retain 1PI diagrams at one loop order, so that a term in (3.50) where we pair hA

with hB and hC with hD would be both two loop and disconnected; hence such terms are

discarded. The same argument applies to any term of the form hhψ′ψ′. The result for the

graviton part is

hAhBh
′
Ch
′
D = GAC(x, x′)GBD(x, x′) +GAD(x, x′)GBC(x, x′). (3.52)

Since the scalar fields carry no extra indices, the analogous expression for scalars is simpler.

The result is

ψψψ′ψ′ = 2∆(x, x′)∆(x, x′). (3.53)

The corresponding diagrams are given in Fig 3.4.

Moving onto
〈
S2

1S2

〉
requires us to be more careful. Now we either have terms
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hAh
′
Bψψ

′ψ′′ψ′′ (3.54)

or

hAh
′
Bh
′′
Ch
′′
Dψψ

′. (3.55)

Aside from a technical problem 1, we can apply Wick’s theorem again. (3.54) becomes

hAh
′
Bψψ

′ψ′′ψ′′ = 2GAB(x, x′)∆(x, x′′)∆(x′, x′′) (3.56)

and (3.55) becomes

hAh
′
Bh
′′
Ch
′′
Dψψ

′ =
(
GAC(x, x′′)GBD(x′, x′′) +GAD(x, x′′)GBC(x′, x′′)

)
∆(x, x′). (3.57)

Again, we have been careful to ignore terms of order above one-loop or terms that are

non-1PI 2. The relevant diagrams are in Fig 3.5.〈
S4

1

〉
is simpler in some regard than

〈
S2

1S2

〉
, in that all the terms again have the same

structure,

hAh
′
Bh
′′
Ch
′′′
Dψψ

′ψ′′ψ′′′. (3.58)

Applying Wick’s theorem to (3.58), we have

hAh
′
Bh
′′
Ch
′′′
Dψψ

′ψ′′ψ′′′ = GAB(x, x′)GCD(x′′, x′′′)∆(x, x′′)∆(x′, x′′′)+5more terms, (3.59)

where the extra terms not shown explicitly are those formed by matching up all the pairs

which do not lead to disconnected diagrams. Finally, the relevant diagrams here are in

Fig 3.6.

1In terms of coding,
〈
S2
1S2

〉
presents a unique difficulty in that we can not blindly apply Wick rules

without first identifying whether we have a term of type (3.54) or (3.55).
2In fact, because of the nature of our calculation - that the parts of our action we are considering are

all quadratic in the quantum part of the fields - it is not possible to have a term that is of two-loop order
whilst being 1PI
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Figure 3.5: The possible diagrams in S2
1S2. The boxed interactions are not 1-PI and so are not

counted.

Figure 3.6: The possible diagrams in S4
1 . The boxed interactions are not 1-PI and so are not

counted.

31



Chapter 3. ϕ4-gravity

3.2.1 Momentum space transformation

An important step in the calculation is to transform from coordinate space to momentum

space. For each term in the expansion of e−Sq , we need to be able to eliminate a momen-

tum from the exponential factor. This will be equivalent to selecting the momentum that

we want to integrate over, such that the remaining un-integrated momenta will multiply an

exponential containing those same momenta and will simply integrate to introduce Dirac

δ-functions and their derivatives. In doing so, we will reduce our expression to a single

variable.

Again, let us investigate each term in the expansion in turn.

For 〈S4〉, there is no need for any momentum shift. The term (3.46) transforms as

GAB(x, x) =

∫
dnk

(2π)n
GAB(k). (3.60)

Likewise, (3.47) transforms as

∆(x, x) =

∫
dnk

(2π)n
∆(k). (3.61)

Introducing our expressions for GAB(k) and ∆(k) from (3.60) and (3.61) promptly yields

a result for 〈S4〉.

For 〈S1S3〉, (3.49) transforms to

GAB(x, x′)∆(x, x′) =

∫ ∫
dnp

(2π)n
dnk

(2π)n
GAB(p)∆(k)ei[(k+p)·(x−x′)] (3.62)

and it is easily observed that either k → k−p or p→ p−k eliminates one of the momenta

from the exponential as we claimed was required. However, we will introduce an algorithm

for deciding which of these substitutions to make. To wit, the terms are ordered such that

the graviton terms are on the left; scalars to the right. Our convention is such that we

assign momenta from the right side of the expression with the labels k, p (then q then r

for the more complicated terms): to elucidate, in (3.62), reading from the right, we first
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need to assign a momentum space transformation to the ∆(x, x′) term, which we call k,

then assign a momentum to the GAB(x, x′) term which we call p. We then eliminate from

the exponential factor the momentum which appears leftmost in the expression (p in this

case) and integrate over this momentum. Therefore, we choose k → k − p so that

GAB(x, x′)∆(x, x′) =

∫ ∫
dnp

(2π)n
dnk

(2π)n
GAB(p)∆(k − p)ei[(k)·(x−x′)] (3.63)

A similar analysis applies to
〈
S2

2

〉
and, for example,

GAC(x, x′)GBD(x, x′) =

∫ ∫
dnp

(2π)n
dnk

(2π)n
GAC(p)GBD(k − p)ei[(k)·(x−x′)]. (3.64)

3.2.2 Summary of results

Taking altogether the steps of:

• applying Wick rules;

• switching to momentum space;

• applying an appropriate momentum shift;

it is possible to write rules which take us straight from an expression involving the quantum

parts h and ψ to a momentum expression which we can integrate to find our final answer.

3.3 Feynman integrals

It is useful to list some results which appear often in the calculation. They can all be

derived from the first integral

∫
dnp

(2π)n
1

(p2 + 2p · q +m2)α
= (4π)−n/2

Γ (α− n/2)

Γ (α)
(−q2 +m2)n/2−α (3.65)
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by repeated differentiation with respect to the momentum qµ and then setting qµ = 0

at the final step. The derivation of the first integral follows, for example, (50), with the

exception that we have a Euclidean metric rather than the Minkowski metric used therein.

We start with the integral

I(q) =

∫
dnp

(p2 + 2pq +m2)α
(3.66)

We choose polar coordinates for the spatial part so we have (p0, r, φ, θ1, θ2, ..., θn−3) and

so

dnp = dp0r
n−2drdφ sin θ1dθ1 sin2 θ2dθ2 . . . sin

n−3 θn−3dθn−3 (3.67)

= dp0r
n−2drdφ

n−3∏
k=1

sink θkdθk (3.68)

for

−∞ < p0 <∞

0 < r <∞

0 < φ < 2π

0 < θi < π.

We then have (after performing the simple integral over φ)

In(q) = 2π

∫ ∞
−∞

dp0

∫ ∞
0

rn−2dr

∫ π

0

∏n−3
k=1 sink θkdθk

(p2 + 2pq +m2)α
(3.69)

To do the integral over the θi we can use the formula

∫ π/2

0
(sin θ)2n−1(cos θ)2m−1dθ =

1

2

Γ (n)Γ (m)

Γ (n+m)
(3.70)
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which with m = 1
2 leads to

∫ π

0
(sin θ)kdθ = π1/2Γ

(
k+1

2

)
Γ
(
k+2

2

) (3.71)

hence we have

In(q) = 2π(n−1)/2 1

Γ
(
n−1

2

) ∫ ∞
−∞

dp0

∫ ∞
0

rn−2dr

(p2
0 + r2 + 2pq +m2)α

(3.72)

We now switch momentum variables to p′µ = pµ + qµ and choose to evaluate in the frame

qµ = (µ,0). Then we have

In(q) = 2π(n−1)/2 1

Γ
(
n−1

2

) ∫ ∞
−∞

dp′0

∫ ∞
0

rn−2dr

(p
′2
0 + r2 − q2 +m2)α

(3.73)

For convenience, we define M2 = p
′2
0 − q2 + m2 and use the definition of the Euler beta

function,

B(x, y) =
Γ (x)Γ (y)

Γ (x+ y)
= 2

∫ ∞
0

dtt2x−1(1 + t2)−x−y (3.74)

with

x =
1 + β

2

y = α− 1 + β

2

t =
s

M
(3.75)

to get the integral

∫ ∞
0

ds
sβ

(s2 +M2)α
=
Γ
(

1+β
2

)
Γ
(
α− 1+β

2

)
2(M2)α−(1+β)/2Γ (α)

. (3.76)

We use this first to perform the radial integral, then the time part (noting an extra factor
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of 2 due to the domain of p0 compared with r). We arrive eventually at the formula

In(q) = (π)n/2Γ (α− n/2)
(
−q2 +m2

)n/2−α
(3.77)

where we can insert the extra factor of 1/(2π) to get the formula (3.65).

Altogether, we have the useful integrals:

∫
dnp

(2π)n
1

(p2 +m2)α
= (4π)−n/2

Γ (α− n/2)

Γ (α)

(
m2
)n/2−α

(3.78)

∫
dnp

(2π)n
pµ

(p2 +m2)α
= 0 (3.79)

∫
dnp

(2π)n
pµpν

(p2 +m2)α
=

1

2
(4π)−n/2 δµν

Γ (α− 1− n/2)

Γ (α)

(
m2
)1+n/2−α

(3.80)

∫
dnp

(2π)n
p2

(p2 +m2)α
=

1

2
(4π)−n/2 n

Γ (α− 1− n/2)

Γ (α)

(
m2
)1+n/2−α

(3.81)

∫
dnp

(2π)n
pµpνpλ

(p2 +m2)α
=

∫
dnp

(2π)n
p2pλ

(p2 +m2)α
= 0 (3.82)

∫
dnp

(2π)n
pµpνpγpδ

(p2 +m2)α
=

1

4
(4π)−n/2

Γ (α− 2− n/2)

Γ (α)

(
m2
)2+n/2−α

×(δµνδγδ + δνγδµδ + δµγδνδ) (3.83)

Clearly, any odd power of the momentum p in the numerator results in an overall odd

integrand and thus leads to a zero integral.

36



Chapter 3. ϕ4-gravity

3.3.1 Feynman Parametrization

Now we need a technique that will allow us to solve such an integral as, for example,

(3.78); fortunately, such techniques exist. Feynman built upon the work of Schwinger

when he noted that the product of any two functions, say A and B, in a denominator can

be combined by observing that

1

AB
=

∫ 1

0
dx

1

[Ax+B(1− x)]2
. (3.84)

For example, consider the integral

I =

∫
dnp

(2π)n
1

(p2 − 2λ)

1

[(k − p)2 +m2]
. (3.85)

If we invoke the Feynman parametrization, then this can be re-expressed as

I =

∫
dnp

(2π)n

∫ 1

0

(
(p2 − 2λ)x+ ((k − p)2 +m2)(1− x)

)−2
. (3.86)

If we rewrite

(p2−2λ)x+((k−p)2 +m2)(1−x) = (p−k(1−x))2 +k2x(1−x)−2λx+m2(1−x) (3.87)

then by performing a momentum shift p→ p+ k(1− x), we end up with

I =

∫
dnp

(2π)n

∫ 1

0

(
p2 +M2

)−2
. (3.88)

where M2 = (k2x + m2)(1 − x) − 2λx. We can now use our standard results from the

previous section to perform the momentum integral. In dimensional regularization we

would take n→ 4 + ε and use the expansions of the gamma function, etc.

We can generate similar integrals to 3.84 by simply differentiating, for example

1

A2B
= − ∂

∂A

∫ 1

0
dx

1

(Ax+B(1− x))2
= 2

∫ 1

0
dxx

1

(Ax+B(1− x))3
. (3.89)
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By repeated differentiation we simply find

1

AnB
= n

∫ 1

0
dx

1

(Ax+B(1− x))n+1
. (3.90)

Similar equations hold for a higher number of functions. When we consider the full ϕ4

calculation, we will encounter terms with far more functions in the denominator (in fact,

as many as eight).3

However, its should be pointed out at this stage that this is an increasingly unwieldy way

to perform the calculations. While this method will give us exact results for both the finite

and pole parts, we are only interested in the pole parts. If we are able to ignore the finite

parts, then there exists a simpler (and more attractive to computer modelling) technique

which we may employ.

3.3.2 Retaining only pole parts

As we claimed in the previous section, there is a easier way to calculate the Feynman inte-

grals if we are only interest in the pole part. Since we are integrating over all momentum

(call it p), p2 � m2 and we can expand the integral in powers of p. For example,

1

(k − p)2 +m2
=

1

p2
+

2k · p
p4

+
3k2 −m2

p4
+ . . . (3.92)

and, using dimensional regularization, we will only retain the logarithmically divergent

terms, defining the basic logarithmically divergent integral to be (in four dimensions)

L =

∫
d4p

(2π)4

1

p4
. (3.93)

3For completeness, let us state the expression for n such terms:∫
dnp

1

A1(p) . . . An(p)
= (n− 1)!

∫ 1

0

dz1 . . .

∫ 1

0

dzn

∫
δ(z1 + · · · + zn − 1)

(z1A1 . . . znAn)n
(3.91)
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For example, the pole part (PP) of the integral relating to 3.92 expression is

PP

(∫
d4p

(2π)4

1

(k − p)2 +m2

)
= (3k2 −m2)L. (3.94)

Hereafter, we will proceed to calculate integrals in this fashion. However, by way of

examples, let us consider the integrals for S2
1 which appear in the quadratic calculation

in the case using Feynman parametrisation, retaining only the pole part. We have terms

such as 〈
h(x)ψ(x)h(x′)ψ(x′)

〉
=

3− α
16π2ε

δ(x, x′), (3.95)

〈
h(x)ψ(x)∂′α∂′αh(x′)ψ(x′)

〉
= −3− α

24π2ε
m2δ(x, x′), (3.96)〈

h(x)ψ(x)∂′α∂′βh
β
α(x′)ψ(x′)

〉
=
−3 + 2α

48π2ε
m2δ(x, x′), (3.97)

〈
h(x)ψ(x)h(x′)∂′µψ(x′)

〉
= −3(3− α)

8π2ε
∂µδ(x, x

′), (3.98)

〈
h(x)ψ(x)hµν(x′)∂′µψ(x′)

〉
= −3α− 2

16π2ε
∂µδ(x, x

′), (3.99)〈
h(x)ψ(x)∂α

′
h(x′)ψ(x′)

〉
= −3− α

8π2ε
∂αδ(x, x′), (3.100)

〈
h(x)ψ(x)∂µ′h

µα(x′)ψ(x′)
〉

=
2α− 3

16π2ε
∂αδ(x, x′), (3.101)

〈
∂µ∂µh(x)ψ(x)∂ν∂′νh(x′)ψ(x′)

〉
=

3− α
48π2ε

m2(m2 − 2∂µ∂µ)δ(x, x′), (3.102)〈
∂µ∂µh(x)ψ(x)∂α

′
∂β′h(x′)ψ(x′)

〉
=

3− 2α

96π2ε
m2(m2 − 2∂µ∂µ)δ(x, x′), (3.103)

〈
∂µ∂µh(x)ψ(x)∂′νh(x′)ψ(x′)

〉
=

3− α
8π2ε

m2

(
17

6
m2∂µ +

7

3
∂µ∂

ν∂ν

)
δ(x, x′), (3.104)

〈
∂µ∂µh(x)ψ(x)hαβ(x′)∂′βψ(x′)

〉
=
α− 1

8π2ε

(
1

6
m2∂µ − 5

6
∂µ∂ν∂ν

)
δ(x, x′), (3.105)

〈
∂µ∂µh(x)ψ(x)∂α

′
h(x′)ψ(x′)

〉
= −3− α

8π2ε
m2(3m2∂α + 2∂α∂µ∂µ)δ(x, x′), (3.106)〈

∂µ∂µh(x)ψ(x)∂′αh
αβ(x′)ψ(x′)

〉
=

2α− 3

48π2ε
m2∂µδ(x, x′), (3.107)〈

∂α∂βh
β
α(x)ψ(x)∂ρ

′
∂′σh

σ
ρ (x′)ψ(x′)

〉
=

3− 4α

192π2ε
m2(m2 − 2∂µ∂µ)δ(x, x′), (3.108)
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〈
∂α∂βh

β
α(x)ψ(x)h(x′)∂′µψ(x′)

〉
=

3− 2α

8π2ε
∂µδ(x, x

′), (3.109)〈
∂α∂βh

β
α(x)ψ(x)hµν(x′)∂′νψ(x′)

〉
=

2α− 1

96π2ε
(5∂µ∂ν∂ν +m2∂µ)δ(x, x′), (3.110)〈

∂α∂βh
β
α(x)ψ(x)∂λ

′
h(x′)ψ(x′)

〉
=

3− 2α

48π2ε
∂λδ(x, x′), (3.111)

〈
∂α∂βh

β
α(x)ψ(x)∂′µh

µν(x′)ψ(x′)
〉

= − m2

48π2ε
∂νδ(x, x′), (3.112)

〈
h(x)∂µψ(x)h(x′)∂′νψ(x′)

〉
=

3− α
8π2ε

(
1

3
∂µ∂ν +

1

36
δµν +

m2

12
δµν

)
δ(x, x′), (3.113)

〈
h(x)∂µψ(x)hαβ(x′)∂′βψ(x′)

〉
=

1

16π2ε

[
1

12
(−38α+ 42)∂α∂µ +

1

36
(20α− 21)δαµ∂

ν∂ν

+
1

12
(2α− 1)δαµm

2

]
δ(x, x′), (3.114)

〈
h(x)∂µψ(x)∂α

′
h(x′)ψ(x′)

〉
=

α− 3

192π2ε
(m2)2δαµδ(x, x

′), (3.115)

〈
h(x)∂µψ(x)∂′νh

να(x′)ψ(x′)
〉

=
2α− 3

16π2ε

(
1

36
δαµ∂

ν∂ν −
1

12
δανm

2 +
4

3
∂α∂µ

)
δ(x, x′),

(3.116)

〈
hµν(x)∂νψ(x)hλτ (x′)∂′τψ(x′)

〉
=

1

16π2ε

[(
− 17

144
− 10

144
α

)
δµλm2 +

(
80

36
− 83

36
α

)
∂µ∂λ

+

(
515

432
− 518

432
α

)
δµλ∂ν∂ν

]
δ(x, x′) (3.117)

which are the terms which contribute to just the quadratic term. This is clearly a cum-

bersome approach, hence the earlier introduction of the technique of identifying only the

pole parts.
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3.4 Quadratic part from scalars and gravitons

Now we are in a position to be able to put all the previous sections together and calculate

the various parts of the effective action. The quadratic gauge field contribution is

ΓG2 = 〈S2〉 −
1

2
〈S2

1〉. (3.118)

After some calculation we find

〈S2
1〉 = κ2L

∫
d4x

{
A2(�ϕ̄)2 +B2ϕ̄�ϕ̄+ C2ϕ̄

2
}
, (3.119)

where

A2 = −3

8
v2 +

1

4
ωv +

1

8
αv2 +

1

2
ξ +

3

4
v +

1

2
ω − 1

2
αv, (3.120)

B2 =
3

2
αξ2m2 − 3

2
ξm2 +

3

2
ξm2v − 9

4
m2v +

3

4
m2v2 − 1

2
ωm2 − 1

4
ωm2v + αm2v

−1

4
αm2v2 +

3

2
m2 − Λω2 − 3Λξv2 − 2αm2 + 2Λαω − Λα2

−Λω
2v

α
+ 2Λωv − Λαv +

ω2m2

2α
+ 3Λξ, (3.121)

C2 = −3

2
m4 +

3

2
m4v − 3

8
m4v2 +

1

2
αm4 − 1

2
αm4v +

1

8
αm4v2 − 6Λξm2

−3Λξm2v + 3Λξm2v2 + 3ξm4 − 3

2
ξm4v − 6Λ2ξ2 + 3Λξ2m2 − 6Λ2ξ2v

−3

2
ξ2m4 + 6Λξ2m2v − 6Λ2ξ2v2. (3.122)

Note that we cannot take α→ 0 in this expression.

For 〈S2〉 we find the form of (3.119) but with

A2 = 0, (3.123)

B2 =
1

8
v2Λ− 1

16
vm2 − ω2vΛ

2α
+
ω2m2

4α
, (3.124)

C2 = −3

2
Λm2 − Λα2m2 − 3ξΛ2 +

λvΛ

2κ2
− λm2

4κ2
− 1

4
Λm2v2 +

1

8
m4v. (3.125)

Now we form ΓG2 in (3.118) and note that the 1/α terms cancel out as they must so that
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we can take the α→ 0 limit in the expression for the effective action. This leaves the form

of (3.119) but with

A2 =
3

16
v2 − 1

8
ωv − 1

16
αv2 − 1

4
ξ − 3

8
v − 1

4
ω +

1

4
αv, (3.126)

B2 =
1

8
v2Λ+

17

16
vm2 − 3

4
αξ2m2 +

3

4
ξm2 − 3

4
ξm2v − 3

8
v2m2 +

1

4
ωm2 +

1

8
ωm2v

−1

2
αm2v +

1

8
αm2v2 − 3

4
m2 +

1

2
Λω2 +

3

2
Λξv2 + αm2 − Λαω +

1

2
Λα2

−Λωv +
1

2
Λαv − 3

2
Λξ, (3.127)

C2 = −3

2
Λm2 − Λα2m2 − 3ξΛ2 +

λvΛ

2κ2
− λm2

4κ2
− 1

4
Λm2v2 − 5

8
m4v +

3

4
m4 +

3

16
m4v2

−1

4
αm4 +

1

4
αm4v − 1

16
αm4v2 + 3Λξm2 +

3

2
Λξm2v − 3

2
Λξm2v2 − 3

2
ξm4

+
3

4
ξm4v + 3Λ2ξ2 − 3

2
Λξ2m2 + 3Λ2ξ2v +

3

4
ξ2m4 − 3Λξ2m2v + 3Λ2ξ2v2. (3.128)

The ghost action is also

SGH =

∫
dnx

{
− 2

κ2
η̄λ�ηλ + ωη̄ληµ∂

µϕ̄∂λϕ̄

}
. (3.129)

There is no contribution to the quadratic part of the effective action. There is a contri-

bution to the quartic part that is

ΓGH4 =
1

2
〈(SGH2)2〉 = −1

8
ω2κ4L

∫
d4x (∂µϕ̄∂µϕ̄)2 . (3.130)

It remains to calculate the scalar and graviton contributions to the quartic effective action.

3.5 Quartic part from scalars and gravitons

The quartic expression for the effective action (apart from the ghost terms) is

ΓG4 =

〈
S4 − S1S3 −

1

2
S2

2 +
1

2
S2S

2
1 −

1

24
S4

1

〉
. (3.131)
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For 〈S4〉 we find

〈S4〉 =
κ2λ

24
L

∫
d4xϕ̄4

{
v

4
m2 − Λ(2α2 + 3 +

v2

2
)

}
. (3.132)

For 〈S1S3〉 we find

〈S1S3〉 =
κ2λL

12

(
1− v

2

)∫
d4x
{
ϕ̄4
[
− 3m2 +

3

2
vm2 + αm2 − 1

2
αvm2

−6ξΛ− 6vξΛ+ 3ξm2
]

+ϕ̄3�ϕ̄
[
6ξ − 3

2
v +

1

2
ω +

3

2
αξ +

1

2
αv − 6ξ +

3

2
− α− 3

2
αξ
]}
. (3.133)

3.5.1 Calculation of the λ divergence

To simplify the calculations we first assume that ϕ̄ is constant. This is sufficient to consider

the renormalization of λ since the relevant pole is proportional to ϕ̄4.

For 〈S2
2〉 we find (with ϕ̄ constant)

〈S2
2〉 = κ4L

∫
d4xϕ̄4

{( 3

16
+

1

8
α2

)
m4 +

3

2
ξm2Λ+

λ2

8κ4

−λvm
2

16κ2
+
v2m4

32
+

9

2
ξ2Λ2

}
. (3.134)

For 〈S2S
2
1〉 we find (with ϕ̄ constant)

〈S2S
2
1〉 = κ4L

∫
d4xϕ̄4

{3

2
ξ

(
1

2
m2 − v

4
m2

)2

+
3

2
ξm2

(
1

2
m2 − v

4
m2

)
+ξ2

(
1− v

2

)(
3Λm2 − 3

4
m4 − 3

2
Λm2α2 − 3

2
αΛm2 +

3

4
αm4 +

3

2
vΛm2 − 3

2
vαΛm2

)
+ξ

(
λ

κ2
− v

2
m2

)(
3

4
vm2 − 3

2
m2

)
+ ξ2m2

(
−3

2
Λ+

3

8
m2 − 3

4
Λv

)
+ξ3

(
3

16
m4 − 3

4
vΛm2 +

3

4
v2Λ2 − 3

4
Λm2 +

3

2
vΛ2 +

9

4
Λ2

)
+ξ2

(
λ

4κ2
− v

8
m2

)(
−6Λ+ 6m2 − 12vΛ

)}
. (3.135)
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For 〈S4
1〉 we find (with ϕ̄ constant)

〈S4
1〉 = 6κ4L

∫
d4xϕ̄4

{
ξ2m4

(
27

2
− 3

2
α− 27

2
v +

3

2
αv +

27

8
v2 − 3

8
αv2

)
+ξ3Λm2(36 + 18v − 18v2) + ξ3m4(9v − 18) +

27

4
ξ4m4

+ξ4Λ2(27 + 36v + 27v2) + ξ4Λm2(−18− 27v)
}
. (3.136)

Putting these all together, and dropping the derivative terms to keep only the ϕ̄4 term

gives

ΓG4 = κ4L

∫
d4xϕ̄4A, (3.137)

where A is given by

A = − λ2

16κ4
+

λ

κ2

(
ξ Λ

2
+
m2

4
+
v2m2

16
− α v2m2

48
− ξ Λ v2

4κ2
+
α vm2

12
+
ξ Λ v

4
− 3ξ2Λ

4κ2

+
3ξ2m2

4
+
vξ m2

2
− 3ξ2Λv

2
− 5vm2

24
− Λ

8
− ξ m2 − αm2

12
− Λv2

48
− Λα2

12

)
−75

8
ξ3Λm2 +

3

4
ξ3vΛ2 +

3

8
ξ3v2Λ2 +

3

4
ξ2m2Λ− 1

16
m4α2 +

9

16
ξ m4 − 27

4
ξ4Λ2

−57

16
ξ2m4 +

147

32
ξ3m4 +

9

8
ξ3Λ2 +

51

16
ξ2m4v +

3

4
ξ2m4α− 9

64
ξ m4v2 − 27

32
ξ2m4v2

−9

4
ξ3m4v − 9 ξ4Λ2v − 27

4
ξ4Λ2v2 +

9

2
ξ4Λm2 − 3

4
ξ2m2Λα2 − 3

4
ξ2m2αΛ− 3

8
ξ2m2Λvα

+
3

8
ξ2m2vΛα2 − 9

16
ξ2m4α v +

3

8
ξ2m2Λv2 +

3

8
ξ2m2Λv2α− 39

8
ξ3Λvm2 +

3

32
ξ2m4α v2

+
9

2
ξ3Λm2v2 +

27

4
ξ4Λm2v − 1

64
v2m4 − 9

4
ξ2Λ2 − 3

32
m4 − 3

4
ξ m2Λ− 27

16
ξ4m4. (3.138)

For the correct case α = 0, v = 1 we have

A = − λ2

16κ4
+

λ

κ2

(
−ξ m

2

2
− 7Λ

48
+

3ξ2m2

4
+
ξ Λ

2
+

5m2

48
− 9ξ2Λ

4

)
−45

2
ξ4Λ2 − 3

4
ξ m2Λ+

27

64
ξ m4 − 9

4
ξ2Λ2 − 27

16
ξ4m4 − 7

64
m4 +

9

4
ξ3Λ2

+
9

8
ξ2m2Λ− 39

4
ξ3Λm2 +

45

4
ξ4Λm2 − 39

32
ξ2m4 +

75

32
ξ3m4. (3.139)

3We refer, of course, to our technique as correct. α = 0 is the limit that must be taken in our expression
for the effective action whilst v = 1 is the case where we include the connection term, which we explained
was crucial, being off-shell.
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In the minimally coupled case (ξ = 0) this becomes

A = − λ2

16κ4
+

λ

κ2

(
−7Λ

48
+

5m2

48

)
− 7

64
m4. (3.140)

For the traditional case (v = 0), for pure gravity (Λ = 0), and with minimal coupling

(ξ = 0) we find

A = − λ2

16κ4
+
λm2

4κ2

(
1− α

3

)
− 3

32
m4 − 1

16
m4α2. (3.141)

This demonstrates the gauge condition dependence of the traditional result. Note that in

the absence of gravity we find the correct result (46) of

Γ =

∫
d4xϕ̄4 λ2

128π2(n− 4)
. (3.142)

3.5.2 Non-constant ϕ̄

Whilst considering ϕ̄ to be constant may be sufficient for considering the running of

the scalar coupling constant, we should complete the calculation for one loop order by

considering divergences resulting from the derivatives of ϕ̄. The same technique is applied

to significantly more terms and we find, in addition to the parts calculated in the previous

section, the non-constant parts

〈
S2

2

〉
= κ4L

∫
d4x

(2π)4
ϕ̄3�ϕ̄(m2(−3/16 + (1/4)α2 + ξ − (3/2)v) + Λ(1/2 + ξ(3/4))

+
λ

4κ2
(−1/4 + (1/2)v))

+κ4L

∫
d4x

(2π)4
ϕ̄2(�ϕ̄)2(3/2 + (1/8)α2 − (1/16)v + 3ξ(1/2)

−(1/16)v2) (3.143)
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〈
S2

1S2

〉
= κ4L

∫
d4x

(2π)4
ϕ̄3�ϕ̄m2((3/2)ξ − (1/4)v + (3/4)α+ (1/4)α2 + (1/2)αv)

+Λ(1− (1/2)v)(3/8− α− v + (1/4)α2 + ξ2) +
λ

4κ2
((1/2)v − 3/4− (1/4)α)

+
ω

α
(vm2 + ξv) + Λ(1− (1/2)v)(1 + v − (3/4)ξ2))

+κ4L

∫
d4x

(2π)4
ϕ̄2(�ϕ̄)2((3/2)α− 2ξ + (1/2)v − (1/4)v2 − (3/4)ξ + 1/4 +

ω2

α2
((1/2)v

+(3/4)α− 1/2)) (3.144)

〈
S4

1

〉
= κ4L

∫
d4x

(2π)4
ϕ̄3�ϕ̄(m2ξ2((3/2)α− (3/4)αv + (27/4)v2 + (3/4)αv2)

+Λ(ξ4(9− 18v) + ξ3(18 + 9v − 9v2)) +
λ

4κ2
((1/2)ξ + (3/4)α+ (1/2)v + (1/4)αv)

+
ω

α
(12m2v + 12m2ξ + Λ(12 + 6v − 6v2 − 9ξ2 + (9/2)ξv)))

+κ4L

∫
d4x

(2π)4
ϕ̄2(�ϕ̄)2(−(3/2)α(1− v + v2) + ξ4(18− 36v) + ξ3(18 + 9v − (27/2)v2)

+ξ2((3/2)α− (3/4)v + (27/2)v2) + ξ((1/2)αv + (27/4)v2 + (3/4)αv2)

+12
ω2

α2
((1/2)v − 1/2 + (3/4)α)) (3.145)

Putting these results together with those previously calculated, we find the term quartic

in the background field (recall that we have already calculated the corresponding ghost

term in 3.130) to be

ΓG4 = κ4L

∫
d4x

(
ϕ̄4A+ ϕ̄3�ϕ̄B + ϕ̄2(�ϕ̄)2C

)
, (3.146)

where
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A = − λ2

16κ4
+

λ

κ2

(
ξ Λ

2
+
m2

4
+
v2m2

16
− α v2m2

48
− ξ Λ v2

4κ2
+
α vm2

12
+
ξ Λ v

4
− 3ξ2Λ

4κ2

+
3ξ2m2

4
+
vξ m2

2
− 3ξ2Λv

2
− 5vm2

24
− Λ

8
− ξ m2 − αm2

12
− Λv2

48
− Λα2

12

)
−75

8
ξ3Λm2 +

3

4
ξ3vΛ2 +

3

8
ξ3v2Λ2 +

3

4
ξ2m2Λ− 1

16
m4α2 +

9

16
ξ m4 − 27

4
ξ4Λ2

−57

16
ξ2m4 +

147

32
ξ3m4 +

9

8
ξ3Λ2 +

51

16
ξ2m4v +

3

4
ξ2m4α− 9

64
ξ m4v2 − 27

32
ξ2m4v2

−9

4
ξ3m4v − 9 ξ4Λ2v − 27

4
ξ4Λ2v2 +

9

2
ξ4Λm2 − 3

4
ξ2m2Λα2 − 3

4
ξ2m2αΛ− 3

8
ξ2m2Λvα

+
3

8
ξ2m2vΛα2 − 9

16
ξ2m4α v +

3

8
ξ2m2Λv2 +

3

8
ξ2m2Λv2α− 39

8
ξ3Λvm2 +

3

32
ξ2m4α v2

+
9

2
ξ3Λm2v2 +

27

4
ξ4Λm2v − 1

64
v2m4 − 9

4
ξ2Λ2 − 3

32
m4 − 3

4
ξ m2Λ− 27

16
ξ4m4. (3.147)

B = − 1

384
(−24

λ

κ2
+ 47α

λ

κ2
+ 74

λ

κ2
v − 288Λξ4v + 144Λξ3v − 144Λξ3v2 − 96αvm2

+108ξ2v2m2 + 24ξ2αm2 − 24
λ

κ2
v2 + 2

λ

κ2
ξ − 31

λ

κ2
αv + 8

λ

κ2
vω + 8

λ

κ2
αv2 − 96ξm2

−240vm2 + 144ξΛ− 144αm2 + 144ξ4Λ+ 288ξ3Λ+ 96Λv(3/8− α− v + (1/4)α2 + ξ2)

−36m2 − 96Λ− 12ξ2m2αv + 12ξ2m2αv2 − 16ω
λ

κ2
) (3.148)

C = − 1

96
(60 + 2ξαv + 3ξαv2 − 72α− 6αv2 − 144ξ4v + 36ξ3v − 54ξ3v2 + 6ξ2α

−3vξ2 + 54ξ2v2 + 27ξv2 + 72ξ4 + 72ξ3 + 6α2 − 27v + 204ξ + 9v2) (3.149)

Note that there are no terms proportional to ϕ̄(�ϕ̄)3 or (�ϕ̄)4 as such terms, by virtue

of their high numbers of derivatives, are not able to be tamed with any dimensionful

quantities such that they can contribute to logarithmic divergences. Also note that, as

expected in the Vilkovisky-DeWitt method, although terms proportional to 1/α, 1/α2

appear in the individual expressions for the parts of the action, they vanish in our overall
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effective action, and we can take the correct limit α→ 0.

3.6 Renormalization

Now we proceed to calculate the counterterms. By comparing 3.142 with the original

action 3.1 we can read off the renormalized counterterms. This is the goal of this section.

We follow the standard renormalization techniques developed by ’t Hooft (45).

3.6.1 Beta functions

Now that we have calculated the counterterms, we are in a position to be able to calculate

the beta functions. In general, we have

β(g) = µ
∂g

∂µ
(3.150)

which relates the coupling strength, g, with the energy scale, µ. Inserting our renormalized

couplings, we have, for an energy scale E and a coupling parameter λ, the β-function

β(λ) = E
∂

∂E
λ. (3.151)

We should take an aside to develop some physical understanding of the β-function and of

the running of coupling parameters. It is perhaps instructive to consider a few illustrative

examples.

First, consider QED in the absence of gravity. It was found in (59) that the coupling

parameter for electromagnetism increases at shorter length scales. The energy of a single

central electron polarises the vacuum such that virtual pairs are created. If we consider the

virtual e+e− pair to form a dipole, then they align such that the positronic part shields the

charge of the central electron. Far from the electron then, the effective coupling strength

that is observed is lower than the actual coupling strength of the electron alone, due to

the screening of the positrons. As we go to shorter scales, we gradually see more of the
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force, so that, qualitatively, the coupling constant increases with decreasing length scale.

Now consider instead the case of QCD. In this case, the nature of the interaction between

the central particle and the virtual quark-antiquark pairs it induces should this time

screen the colour charge. However, the force carriers themselves, the gluons, carry a

colour charge so in fact the overall effect is such that there exists anti-screening whereby

the force field is augmented. In this case, as we move to ever shorter scales we will see

less of this augmentation and as such, qualitatively, the force lowers - in fact, vanishes -

with decreasing length scale. This is known as asymptotic freedom and corresponds to a

negative value of the β-function.

But how might one interpret gravity in this (anti-)screening regime? In pure quantum

gravity, it is known that gravity has an anti-screening effect. In (68), it was shown that

the behaviour of the β-function depended on the choice of gauge parameter, and that in

a physical gauge, antiscreening was calculated.

Of course, gravitational charges are masses, so any virtual pairs fluctuating into existence

will surely increase the mass. Therefore, an antiscreening effect due to gravity is to be

expected. Morever, when approaching the central mass, we see less of the surrounding

mass associated with the virtual pairs and therefore the gravitational force appears weaker

at shorter lengths; we can say gravity is asymptotically free. However, for any other field

polarising the vacuum, aside from electric charge, colour charge or whatever more exotic

charges they might carry, in all cases they share a fundamental property, mass. In some

sense then, it is not surprising that gravity is claimed to lead to the asymptotic freedom

of any gauge theory.

Having calculated the pole part of the effective action, we now seek to renormalize our

original action. We will use a counterterm procedure where our counterterms must com-

pensate for the pole parts. The bare masses are replaced by dimensionless renormalized

masses by the introduction of a counterterm factor and a length scale 4.

4Originally in (45), t’Hooft used a mass scale, typically denoted µ in most texts. Our length scale, l,
here is simply the reciprocal of that.
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Since the action itself should be dimensionless, we find first that the bare field should be

replaced by

ϕ̄B = l2−n/2Zϕϕ̄R (3.152)

where we have introduced a length l, the counterterm factor is Zϕ = 1 + δϕ and ϕ̄R is our

renormalized field.

Next, we look at the mass. We do not require any extra factor involving l in fron of the

mass parameter to correct the dimensionality of the mass term and so we simply have

m2
B = m2

R + δm2. (3.153)

Finally, consider the coupling to the ϕ4. Dimensional considerations lead to

λB = l2(4−n)(λR + δλ). (3.154)

As a convenience, having introduced these expressions for the bare quantities, hereafter

we shall drop the subscript R for renormalized quantities.

3.6.2 Renormalization of the mass, m2

Using 3.152 and 3.153, we can see that

1

2
m2ϕ̄2

B →
1

2
(m2

B + δm2
B +m2

BδZϕ)l4−nϕ̄2. (3.155)

We find

δZϕ = − κ2B

4π2(n− 4)
(3.156)

δm2 = −κ
2(C +m2B)

4π2(n− 4)
(3.157)

with the values of B and C from the Γ2 calculation.
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3.6.3 Renormalization of the scalar coupling, λ

Using 3.152 and 3.154, we can see that

1

4!
λϕ̄4

B →
1

24
(λ+ δλ+ 2λδZϕ)l2(4−n)ϕ̄4. (3.158)

and with

Zϕ = 1 +
e1

(n− 4)
+

e2

(n− 4)2
+ . . . (3.159)

and following (27), we eventually are led to (with α = 0 and ω = 1, per our method)

βgravity =
λκ2

64π2
(5m2λ+ 2m2 − 21m4κ2) (3.160)

51



Chapter 4

Quadratic Divergences

Following the work of several authors (29; 33; 21), we now turn our attention to the issue

of quadratic divergences.

4.1 Heat Kernel Method

To deal with expressions like

L∆ =
1

2
ln det∆i

j (4.1)

we will use the heat kernel. The method we will employ is based on the proper time

method of Schwinger (79) which was developed by DeWitt (40). In this section we will

follow the framework of (27).

If we have an operator ∆i
j , then its heat kernel Ki

j(x, x
′; τ) is defined to be the solution to

the heat-type equation 1

− ∂

∂τ
Ki
j(x, x

′; τ) = ∆i
kK

k
j (x, x′; τ) (4.2)

with the boundary condition Ki
j(x, x

′; τ) = δijδ(x, x
′).

1We diverge slightly from (79) here. Schwinger referred to the parameter τ as the proper time and
solved a Schrodinger-type equation. We have Wick rotated to imaginary τ and hence solve a heat-type
equation.
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The Green function for ∆i
j is defined in the usual way by

∆i
kG

k
j (x, x

′) = δijδ(x, x
′) (4.3)

and related to the heat kernel by

Gij(x, x
′) =

∫ ∞
0

dτKi
j(x, x

′; τ). (4.4)

L∆ = −1

2

∫
dnx

∫ ∞
0

dτ

τ
trKi

j(x, x; τ). (4.5)

We can relate L∆ to the heat kernel by use of the asymptotic expansion as τ → 0,

Ki
j(x, x; τ) ∼ (4πτ)−n/2

∞∑
r=0

τ rEr
i
j(x) (4.6)

where n is the spacetime dimension and Er
i
j(x) are the heat kernel coefficients.

If we denote the divergent part of an expression as divp, then we can express the divergent

part of L∆ by

divp(L∆) = −1

2

∫
dnxdivp

{∫ ∞
τc

dτ

τ
trKi

j(x, x; τ)

}
(4.7)

with the proper time cut-off τc. If we use the asymptotic expansion (4.6) then we can

perform the integration. Recalling that the asymptotic expansion is only valid for τ → 0,

the upper limit of the integral is irrelevant. For n = 4 we find the divergent part to be

divp(L∆) = − 1

32π2

∫
d4x

{
1

2τ2
c

trE0 +
1

τc
trE1 − (ln τc)trE2

}
(4.8)

Now we will make a connection with a conventional energy cut-off. If we note that the

operator ∆i
j has units of (length)−2, then from (4.2), τc must have units of (length)2, or

units of (energy)−2 in ~ = c = 1 units. So we can replace the proper time cut-off τc by an
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equivalent energy cut-off Ec. We then have

divp(L∆) = − 1

32π2

∫
d4x

{
1

2
E4
c trE0 + E2

c trE1 − (lnE2
c )trE2

}
. (4.9)

Before we proceed further, let us compare this technique with dimensional regularization

which we employed earlier. Applying dimensional regularization to (4.5), we find (for

n = 4 + ε) a simple pole at

divp(L∆) =
1

16π2ε

∫
d4xtrE2. (4.10)

We were able to take the lower limit of the proper time integration at τ = 0 here since we

regulated the integral by the usual analytic continuation in ε.

Comparing this result with (4.9), it is clear that the coefficient of the ε−1 term from

dimensional regularization matches that of the term multiplying the lnE−1
c term in the

proper time cut-off method. Significantly, the quartic and quadratic divergences are seen

not to appear in dimensional regularization; that is to say, they have been regulated to

zero. If the cut-off energy Ec is considered to be a fundamental scale in the effective field

theory then it may be folly to ignore the quadratic and quartic terms.

4.2 Normal Coordinate Expansion

If we want the quadratic divergences, then we need to find E1. This can be found by

working out the pole part of the Green function Gij in dimensional regularization, a result

found in (85), namely

divpGij(x, x) = divp

{∫ 1

0
dτKi

j(x, x; τ)

}
= − 1

8π2ε
E1

i
j(x). (4.11)

For clarity, the utility of dimensional regularization here is simply to identify the coefficient
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E1; the use of the cut-off described earlier stands alone from this. (Another, more general,

way to calculate the E1 coefficient without resorting to dimensional regularization is known

which leads to the same result).

The first step will be to adopt the local momentum space approach of (86). The operator

∆i
j is taken to have the general form

∆i
j = (Aαβ)ij∂α∂β + (Bα)ij∂α + (C)ij (4.12)

where the coefficients (Aαβ)ij , (Bα)ij and (C)ij can all depend on the background field.

Normal coordinates are introduced at the point x′ with xµ = x′µ + yµ. Expanding the

coefficients of (4.12) about yµ = 0, we find

(Aαβ)i j = (Aαβ0 )i j +
∞∑
n=1

(Aαβ µ1...µn)i jy
µ1 . . . yµn (4.13)

(Bα)i j = (Bα
0 )i j +

∞∑
n=1

(Bα
µ1...µn)i jy

µ1 . . . yµn (4.14)

(C)i j = (C0)i j +

∞∑
n=1

(Cµ1...µn)i jy
µ1 . . . yµn . (4.15)

Recall (4.3) and let the operator (4.12) act on the Green function,

Gij(x, x
′) =

∫
dnp

(2π)n
eip·yGij(p). (4.16)

A combination of the expansions (4.13), the realisation

yµ1 . . . yµneip·y = (−i)n ∂n

∂pµ1 . . . ∂pµn
eip·y (4.17)

and some partial integration to shift the momentum integrals from the exponential lead

to the result
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δki = −
∞∑
n=0

in(Aαβ µ1...µn)ij
∂n

∂pµ1 . . . ∂pµn
[pαpβG

jk(p)]

+i
∞∑
n=0

in(Bα
µ1...µn)ij

∂n

∂pµ1 . . . ∂pµn
[pαG

jk(p)]

+

∞∑
n=0

in(Cµ1...µn)ij
∂n

∂pµ1 . . . ∂pµn
[Gjk(p)] (4.18)

where the n = 0 terms in the sum are defined to be the first terms in the expansions

(4.13).

If we write the Green function as

Gjk(p) = Gjk0 (p) +Gjk1 (p) +Gjk2 (p) + . . . (4.19)

where Gjkn (p) ∼ p−2−n for large p, then we can work order by order to deduce Gjk(p).

Since we only need to find the pole part of the Green function in (4.11), then for n → 4

we only need to keep terms up to Gjk2 .

First, consider the p0 term in (4.18). We find

(Aαβ0 )ijpαpβG
jk
0 (p) = −δki (4.20)

to be the leading asymptotic behaviour of Gjk(p).

Now look at the term of order p−1. We find,

0 = −i(Aαβµ )ij
∂

∂pµ
(pαpβG

jk
0 ] + i(Bα

0 )ijpαG
jk
0 − (Aαβ0 )ijpαpβG

jk
1 . (4.21)

If we let Gjk1 = Gjl0 G̃
k
l we have

0 = −i(Aαβµ )ij
∂

∂pµ
[pαpβG

jk
0 ] + i(Bα

0 )ijpαG
jk
0 − (Aαβ0 )ijpαpβG

jl
0 G̃

k
l (4.22)
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and we can use (4.20) to simplify the final term, so that

G̃ki = i(Aαβµ )ij
∂

∂pµ
[pαpβG

jk
0 ]− i(Bα

0 )ijpαG
jk
0 (4.23)

and so

Gij1 (p) = Gil0 i(A
αβ
µ )lk

∂

∂pµ
[pαpβG

kj
0 ]−Gil0 (Bα

0 )lkpαG0kj . (4.24)

A similar analysis for the term of order p−2 leads to

Gij2 (p) = iGil0 (Aαβ µ)lk
∂

∂pµ

[
pαpβG

kj
1

]
− iGil0 (Aαβ µν)lk

∂2

∂pµ∂pν

[
pαpβG

kj
0

]
−iGil0 (Bα

0 )lkpαG
kj
1 + iGil0 (Bα

µ )lk
∂

∂pµ

[
pαG

kj
0

]
− iGil0 (C0)lkG

kj
0 (4.25)

4.3 Application to φ4-gravity

We follow the method of (29) for φ4 theory rather than electromagnetism with the differ-

ence that here we calculate all derivative terms. To begin, we will rewrite S in the more

convenient form

Sq =

∫
dnx

{
Aαβρσγδhαβ∂ρ∂σhγδ +Bραβσγδ∂ρhαβ∂σhγδ + Cαβγδhαβhγδ

+Dγδαβ∂γ∂δhαβψ + Eγαβ∂γhαβψ + Fαβγhαβ∂γψ

+Gαβhαβψ +Hαβ∂αψ∂βψ + Iψ2
}

(4.26)

where
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Aαβρσγδ = Pαβρσγδ0 + κ2Pαβρσγδ2 (4.27)

Bραβσγδ = Qραβσγδ0 + κ2Qραβσγδ2 (4.28)

Cαβγδ = Pαβγδ0 + κ2Pαβγδ2 + κ2Pαβγδ4 (4.29)

Dγδαβ = κP γδαβ1 (4.30)

Eγαβ = κQγαβ1 (4.31)

Fαβγ = κPαβγ1 (4.32)

Gαβ = κPαβ1 + κPαβ3 (4.33)

Hαβ = Pαβ0 (4.34)

I = P0 + κ2P2 + κ2P4 (4.35)

where P0, P1, etc. are given in the next section.

4.3.1 Redefined terms

We can rewrite S0 as

S0 =

∫
dnx

{
hαβ∂ρ∂σhγδP

αβρσγδ
0 (x) + ∂ρhαβ∂σhγδQ

ραβσγδ
0 (x)

+hαβhγδP
αβγδ
0 (x) + ∂αψ∂βψP

αβ
0 (x) + ψ2P0(x)

}
(4.36)
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where

Pαβρσγδ0 = −1

4
δρσ
(
δαγδδβ + δαδδγβ − δαβδγδ

)
(4.37)

Qραβσγδ0 =

(
1

α
− 1

)[
δρ(αδβ)(δδγ)α − 1

2

(
δα(ρδσ)βδγδ + δγ(ρδσ)δδαβ

)
+

1

4
δαβδρσδγδ

]
(4.38)

Pαβγδ0 = −Λ
(

1 +
v

2

(
n− 4

2− n

))(
δα(γδδ)β − 1

2
δαβδγδ

)
(4.39)

Pαβ0 =
1

2
δαβ (4.40)

P0 =
1

2
m2 +

vnΛ

4− 2n
(4.41)

We can rewrite S1 as

S1 = κ

∫
dnx

{
hαβ∂γψP

αβγ
1 (x) + hαβψP

αβ
1 (x) + ∂γ∂δhαβψP

γδαβ
1 (x) + ∂γhαβψQ

γαβ
1 (x)

}
(4.42)

where

Pαβγ1 (x) =
1

2

(
δαβδµγ − δαµδβγ − δαγδµβ

)
∂µϕ̄ (4.43)

Pαβ1 (x) =

[(
1

2
− v

4

)
m2ϕ̄+

v

4
�ϕ̄

]
δαβ (4.44)

P γδαβ1 (x) =
1

2
ξϕ̄
(
δαγδβδ + δαδδβγ − 2δγδδαβ

)
(4.45)

Qγαβ1 (x) = − ω

2α

(
δαγδβν + δβγδαν − δγν δαβ

)
∂νϕ̄ (4.46)

We rewrite S2 as

S2 = κ2

∫
dnx

{
hαβhγδP

αβγδ
2 (x) + hαβ∂ρ∂σhγδP

αβρσγδ
2 (x) + ∂ρhαβ∂σhγδQ

ραβσγδ
2 (x) + ψ2P2(x)

}
(4.47)
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where

Pαβγδ2 (x) =
1

2

[
1

2

(
δα(µδλ)βδγ(λδ

ν)δ + δγ(µδλ)δδα(λβ
ν)δ
)

−1

4

(
δαβδγ(µδν)δ + δγδδα(µδν)β

)
− 1

4
δµνδα(γδδ)β +

1

8
δαβδγδδµν

]
∂µϕ̄∂

νϕ̄

+
1

2
m2ϕ̄2

(
1

8
δαβδγδ − 1

4
δα(γδδ)β

)
+
v

4
[T2]µνλσ

1

2

(
δα(µδ

β
ν)δ

γ
(λδ

δ
σ) + δα(λδ

β
σ)δ

γ
(µδ

δ
ν)

)
Pαβρσγδ2 (x) =

1

2
ξϕ̄2

{
δρσδα(γδδ)β −

(
δρ(αδβ)(δδγ)σ + δσ(αδβ)(δδγ)ρ

)
+ δγδδα(ρδσ)β +

1

2
δαβδρ(γδδ)σ

−1

2
δαβδρσδγδ

}
(4.48)

Qραβσγδ2 (x) =
1

2
ξϕ̄2

{
−δρ(αδβ)(γδδ)σ +

1

2

(
δγδδα(ρδσ)β + δαβδγ(ρδσ)δ

)
+

3

4
δρσδα(γδδ)β − 1

4
δρσδαβδγδ

−1

2
δσ(αδβ)(δδγ)ρ

}
(4.49)

P2(x) =
λ

4κ2
ϕ̄2 − v

8(2− n)
T2 +

ω2

4α
(∂µϕ̄∂µϕ̄) (4.50)

We can rewrite S3 as

S3 = κ

∫
dnxhαβψP

αβ
3 (x) (4.51)

where

Pαβ3 (x) =
λ

12

(
1− v

2

)
ϕ̄3δαβ (4.52)

We can rewrite S4 as

S4 = κ2

∫
dnx

{
hαβhµνP

αβµν
4 (x) + ψ2P4(x)

}
(4.53)

where

Pαβγδ4 (x) =
λϕ̄4

192

(
δαβδγδ − 2δα(γδδ)β

)
+
v

8
[T4]µνλσ

(
δα(µδ

β
ν)δ

γ
(λδ

δ
σ) + δα(λδ

β
σ)δ

γ
(µδ

δ
ν)

)
(4.54)

P4(x) = − v

8(2− n)
T4. (4.55)

It should be noted that many of these terms may be made markedly simpler, however we
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have not considered the graviton hµν to be symmetric. (for technical reasons in the FORM

implementation), therefore any terms multiplying hµν can be simplified by just removing

any symmetry over the indices (α, β) in the above expressions.

4.3.2 A, B, Cs

Using the fields themselves as the index labels for these coefficients, we have

(Aαβ)hµνhλτ = −Gλτµνδαβ +

{
1− 1

α

}
Gσ

αµνGσβλτ +

{
1− 1

α

}
Gσ

βµνGσαλτ (4.56)

with the DeWitt metric

Gρσλτ =
1

2

(
δρλδστ + δρτδσλ − δρσδλτ

)
. (4.57)

(Aαβ)ψhλτ = Aαβhλτψ = Dαβλτ =
1

2
κξ((δαλδβτ + δβλδατ )− 2δαβδλτ )ϕ̄ (4.58)

(Aαβ)ψψ = −Hαβ (4.59)

(Bα)hµνhλτ = κ2ξϕ̄∂αϕ̄(
3

4
δµνδλτ − 7

8
δµλδντ − 7

8
δµτδνλ)

−κ2ξϕ̄∂µϕ̄(
3

4
δανδλτ − 7

16
δαλδντ − 7

16
δατδνλ)

−κ2ξϕ̄∂νϕ̄(
3

4
δαµδλτ − 7

16
δαλδµτ − 7

16
δατδµλ)

−κ2ξϕ̄∂λϕ̄(
3

4
δατδµν − 7

16
δαµδντ − 7

16
δανδµτ )

−κ2ξϕ̄∂τ ϕ̄(
3

4
δαλδµν − 7

16
δαµδνλ − 7

16
δανδµλ) (4.60)
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(Bα)hγδψ = κ∂αϕ̄δγδ(ξ +
1

2
− ω

2α
)

+κ∂γϕ̄δαδ(−ξ
2
− 1

2
+

ω

2α
)

+κ∂δϕ̄δαγ(−ξ
2
− 1

2
+

ω

2α
) (4.61)

(Bα)ψhγδ = κ∂αϕ̄δγδ(ξ − 1

2
+

ω

2α
)

+κ∂γϕ̄δαδ(−ξ
2

+
1

2
− ω

2α
)

+κ∂δϕ̄δαγ(−ξ
2

+
1

2
− ω

2α
) (4.62)

(Bα)ψψ = −∂βHαβ = 0 (4.63)

(C)ψhγδ = (C)hγδψ =
κ

2

[
ϕ̄δγδm2(1− v/2) +

ϕ̄3

6
λ(1− v/2)−�ϕ̄δγδ(1− v/2)

]
κ

2

[
−2ξ�ϕ̄δγδ + 2∂γ∂δϕ̄(1 + ξ + ω/α)−�ϕ̄δγδα/ω

]
(4.64)

(C)ψψκ
2 = κ2

(
ϕ̄2λ

4κ2
+

1

2
m2 + (∂ϕ̄)2 +

ω2

α

)
(4.65)

Now we proceed to calculate the required normal coordinate expansions of (Aαβ)ij , (Bα)ij

and (C)ij , following the approach of (28), and we use these to calculate the terms in the

Green function.

We start with Gij0 . From (4.20) we find, rather expectedly,
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Gψψ0 =
1

p2
(4.66)

and

G
hρσhλτ
0 =

Gρσλτ

p2
+

1

2
(α− 1)

δρλpσpτ + δρτpσpλ + δσλpρpτ + δστpρpλ

p4
. (4.67)

The leading order behaviour of our propagators is as expected.

We can then use (4.66) and (4.67) to calculate Gij1 . We find

Gψψ1 = iGψψ0 (Aαβµ )ψψ
∂

∂pµ
[pαpβG

ψψ
0 ]− iGψψ0 (Bα

0 )ψψpαG
ψψ
0 (4.68)

Gψhλτ1 = iGψψ0 (Aαβµ )ψhρσ
∂

∂pµ
[pαpβG

hρσhλτ
0 ]− iGψψ0 (Bα

0 )ψhρσpαG
hρσhλτ
0 (4.69)

G
hρσψ
1 = iG

hρσhλτ
0 (Aαβµ )hλτψ

∂

∂pµ
[pαpβG

ψψ
0 ]− iGhρσhλτ0 (Bα

0 )hλτψpαG
ψψ
0 (4.70)

and

G
hρσhλτ
1 = iG

hρσhγδ
0 (Aαβµ )hγδhπω

∂

∂pµ
[pαpβG

hπωhλτ
0 ]− iGhρσhγδ0 (Bα

0 )hγδhπωpαG
hπωhλτ
0 (4.71)

In turn, we can use these results to calculate Gij2 . Since we only want the trace, we need

only consider the diagonal terms.

Having calculated these terms, we suspected that this approach may be somewhat of a

red herring so we don’t dwell too much on the details. However, our final result for the

term that could contribute towards the running coupling, that is the constant background

field term, is (with ξ = Λ = 0)

Tr(E1) = ϕ̄4(
3

4
− 3ω

2
+

3ωα

4
− α

4
+

3ω2

16
). (4.72)
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4.3.3 Proof of equation (4.18)

Starting with 2

∆i
kG

k
j (x, x

′) = δijδ(x, x
′) =

∫
dnp

(2π)n
δije

ip·y (4.73)

with

∆i
j = (Aαβ)ij∂α∂β + (Bα)ij∂α + (C)ij (4.74)

we find after some rearrangement and a bit of partial integration of the RHS that we have

∫
dnp

(2π)n
δije

ip·y = −
∞∑
n=0

(Aαβ µ1...µn)

∫
dnp

(2π)n
∂n

∂pµ1 . . . ∂pµn
[pαpβG

k
j (p)]

+i

∞∑
n=0

(Bα
µ1...µn)

∫
dnp

(2π)n
∂n

∂pµ1 . . . ∂pµn
[pαG

k
j (p)]

+
∞∑
n=0

(Cµ1...µn)

∫
dnp

(2π)n
∂n

∂pµ1 . . . ∂pµn
[Gkj (p)] (4.75)

and hence (4.18).

2The expression to the right obviously following from the definition of the δ-function, taking the δij
term inside the integral for later comparison.
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Conclusions, Discussion and

Outlook

We now have the ability to compare our results with other literature. First, consider the

mass term. (31) worked in the Feynman gauge (with α = 1) and found

Zϕ4 − 1 =
κ2

16π2
4m2 2

n− 4
(5.1)

whereas we found

δZϕ = − κ2B

4π2(n− 4)
(5.2)

δm2 = −κ
2(C +m2B)

4π2(n− 4)
(5.3)

For the choices of the parameters used in (31), we find agreement for our expression for

δm2.

Next consider the λ coupling. We find (α = ξ = Λ = 0)

λB =
1

2π2(n− 4)

[
−3λ2 + κ2λm2(

3

8
ω − 16)) +

5

8
m2κ2 − 21

32
m4κ4

]
(5.4)
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We found an expression for the gravitational part of the beta function for the coupling

parameter λ. If we ignore any dependence on the derivative terms, we are led to (with

Λ = ξ = 0 and with our correct choice of the other parameters)

βgravity =
λκ2

64π2
(5m2λ+ 2m2 − 21m4κ2). (5.5)

Therefore, gravity makes λϕ4 theory asymptotically free only if |λ| < 1
5(2 − 21m2κ2).

Otherwise, the coupling will run to increasingly high values as we approach the Planck

scale. (For the special case when λ = 1
5(2−21m2κ2), there is no gravitational contribution

to the λ running). We do not agree therefore with the general result of (9) that gravity

always leads to asymptotic freedom.

However, as we have non-zero terms in our results proportional to e.g. ϕ̄3�ϕ̄, we can use

the field equation

�ϕ̄ = −m2ϕ̄− λ

6
ϕ̄3 (5.6)

to remove all terms containing �ϕ̄ but this will change the term multiplying ϕ̄4. Therefore,

it is clear that the derivative terms can affect the running of coupling constant as discussed

in (55). How the derivatives terms actually affect the renormalization counter terms is not

clear though and would be an important area of investigation in the future. However, by

naively using the field equation however, we will arrive at (relabelling the quadratic mass

term, also previously called B, to B2)

δλ =
κ4

2π2(n− 4)

(
1

4
m4C −m2 1

2
B +A+

λ

κ2
B2

)
(5.7)

and we can proceed to work out βλ from here following the renormalization techniques

above.

Using our previously calculated expression for A, B, C and B2 (from (3.148), (3.149),
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(3.150) and (3.121)), and choosing Λ = ξ = α = 0, v = ω = 1, we find

δλ =
1

2π2(n− 4)

{
9

64
κ4m4 +

223

384
κ2λm2 − 1

16
λ2

}
(5.8)

and by the usual beta function procedure, we find

βλ =
1

2π2

{
223

384
κ2λ2m2 − 1

8
λ3

}
. (5.9)

5.0.4 More work

Having made our conclusions, let us finish by suggesting some ways in which the methods

outlined in this work may be applied to more situations and the phenomena we might

expect to see.

The most obvious extension is to apply the work here to another matter field coupled

to gravity. A fermion model coupled to gravity, already examined by a few authors in

simpler regimes, would be worth examining in more details using the Vilkovisky-DeWitt

technique but retaining all derivative terms. Then, in a composite model with fermions

and the scalars discussed here, we could examine the quantum gravitational contributions

to the running of the Yukawa coupling. And looking at the full Yang-Mills case coupled

to gravity is also an important extension (See Appendix for preliminary work on this).

A more involved calculation would involve a general curved metric tensor, which would

allow us to calculate the running of the gravitational parameter, κ. This would leave us in

a position to perform a full renormalization group analysis. This is the logical extension

of the work of this thesis. However, it has been noted that running of κ might not be

meaningful (89).

We could also extend the calculation to look at the case of two (or higher) loop diagrams.

However, as noted previously, the number of terms involved in such a calculation might

mean this is currently not technologically feasible to attempt and this author believes a

more thorough approach would be required to avoid any errors.
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5.0.5 Software Acknowledgements

The computationally intensive calculations of this thesis were performed with the assis-

tance of FORM (48), and some were crosschecked against results worked out independently

via Cadabra (49).
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Chapter 6

Black Hole Thermodynamics and

AdS/CFT

6.1 Black Hole Thermodynamics

There are striking analogies between the thermodynamics of fluids and the thermodynam-

ics of black holes. This connection is an important one in that it provides a clear link

between gravity and quantum mechanics.

In particular, we are able to write down a set of thermodynamic laws for black holes which

correspond closely to the well known laws for classical fluids. We consider these in the

first section.

6.1.1 Zeroth Law

First, consider the zeroth law for classical thermodynamics. This is a statement of constant

temperature at equilibrium throughout a classical fluid. Equally, we can search for a

constant for black holes - indeed, it is known that the surface gravity, κ of a black hole is

constant over its horizon.
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6.1.2 First Law

The first law is summed up in the mass differential of a black hole,

dM =
κ

8π
dA+ΩdJ + ΦdQ (6.1)

for mass M , surface gravity κ, horizon area A, angular velocity Ω, angular momentum J ,

electrostatic potential Φ and electrostatic charge Q (108). A similar law for the energy

differential of a fluid is well known and is

dE = TdS +ΩdJ + ΦdQ (6.2)

for energy E, temperature T and entropy S. If we match up the second and third terms

to their obvious counterparts - i.e. rotation and charge of the black hole correspond to

rotation and charge of a fluid - and use the result from the zeroth law, that the temperature

is equivalent to the surface gravity then we can surmise that there is a relationship between

the entropy and area. Indeed, the relationship between entropy of the black hole and its

area is well known (88) and is expressed by

S =
1

4
A. (6.3)

6.1.3 Second Law

The second law in classical thermodynamics is that entropy always increases. The same

holds true for black holes, or if we consider the analogous area instead, then the area of the

black hole must always increase, i.e. black holes must always increase in size. However,

if Hawking radiation (88) is to hold true, then a black hole can evaporate which leads to

a decrease in the black hole size. Instead there has been hypothesised the existance of a

generalized second law wherein the total entropy of the system is always increasing.
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6.1.4 Third Law

The third and final classical law is the statement that temperature can never reach absolute

zero. Likewise, the corresponding third law for black holes states that a black hole cannot

have vanishing surface gravity, κ. However, in extremal black holes - those with the

minimum mass possible given a charge and rotation - this is not the case, but no evidence

of such black holes have ever been observed.

6.2 AdS-CFT Correspondence

Maldacena (92) realised that there existed a duality between an n-dimensional anti-de

Sitter spacetime and a conformal field theory on its (n − 1) dimensional boundary, now

termed the AdS/CFT correspondence.

In particular, if we consider a black hole in such a spacetime then we can qualitatively

describe a thermal state of Super-Yang-Mills theory on the boundary (94; 95; 96; 98; 99;

100). Although this is a massless theory, if we are considering energies close to a phase

transition then quarks may behave as though they were massless (101; 102; 103). Such a

calculation then can provide insight into the dynamics of heavy ion collisions such as those

which occur at the Relativistic Heavy Ion Collider (RHIC) or in the ALICE experiment

at the LHC.

In such experiments, two heavy ions of Au (RHIC) (91) or Pb (ALICE) are collided

with centre of mass energies around the TeV scale. The energies are enough to overcome

confinement and the resulting soup of quarks and gluons is termed the quark gluon plasma

(QGP).

Experiments have suggested that the QGP formed from the collisions of heavy ions exhibits

a liquid state with a very small viscosity and that the viscosity observed may be close to

the AdS-CFT predictions (107). A relationship exist which relates the entropy (density),

s, to the viscosity, η given by
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Figure 6.1: Here, a black hole exists alone in anti de-Sitter spacetime. The radius of the cylinder
represents the length scale associated with anti-de Sitter spacetime.

Figure 6.2: We recognise 3 different regions on the graph with zero, one or two black hole solu-
tions. The vertical axis represents the temperature whilst the horizontal axis represents chemical
potential. The graph may also represent a baryon in a confined state in the lower left segment
becoming a sea of quarks and gluons given enough energy. The dashed line represents a critical
potential, µC , for which superfluidity may occur.

η

s
=

1

4π
. (6.4)

Therefore a state with zero entropy should be expected to have vanishing viscosity, which

would also be expected in a superfluid.

Using the AdS/CFT correspondence, we would encounter two black hole solutions. Typ-

ically, one would discard the smaller black hole. However, we could also consider the

two solutions to correspond separately to two components of a Landau fluid, with one

component existing in a condensate and the other existing as thermal excitations.
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Consider a Reissner-Nordström black hole in d = n+ 1 dimensional AdS spacetime. The

line element is (104)

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩn−1 (6.5)

where

V (r) = 1− m

rn−1
+

q2

r2n−4
+
r2

l2
(6.6)

for some factors q and m proportional to charge and mass and l the radius of curvature

of the AdS spacetime.

We can introduce the horizon r+ by grr = 0 or V (r) = 0 and use this to eliminate the

mass. We also have the surface gravity given by κ = 1
2V
′(r+). Also, we had T = κ

2π so

that

T =
nr2n−2

+ + (n− 2)l2r2n−4
+ − (n− 2)q2l2

4πl2r2n−3
+

. (6.7)

We can also introduce the electrostatic potential (which can be equated with the chemical

potential in the fluid case)

µ =
1

c

q

rn−2
+

(6.8)

with

c =

√
2(n− 2)

n− 1
(6.9)

to simplify further. We then have

nr2
+ − 4π2l2r+ + l2(n− 2)(1− µ2c2) = 0 (6.10)

with solutions

r+ =
2πl2

n

(
T ±

√
T 2 − 1

4l2
n(n− 2)(1− µ2c2)

)
. (6.11)

Clearly the sign of the expression under the square root dictates the number of solutions

with some boundary. If T 2− 1
4l2
n(n− 2)(1− µ2c2) is negative then we have no black hole

solutions and if it positive then two exist. When it is identically zero, then there is a single

solution, and this will represent a phase transition.
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Figure 6.3: Plot of the different regions for varying dimension n.

Figure 6.4: Fig 6.3, identifying just the dimensionality of interest, n = 3.

Therefore, we can construct a phase diagram with two clearly different regions (see Fig

6.2, Fig 6.3, Fig 6.4).

Another useful quantity to calculate is the entropy. Recalling that the entropy is equivalent

to the area of the event horizon, we can write

S =
ωn−1

4
rn−1

+ (6.12)

=
ωn−1

4

(
2πl2

n

)n−1
(
T ±

√
T 2 − 1

4l2
n(n− 2)(1− µ2c2)

)n−1

(6.13)

where

ωn =
16π

(n− 2)V ol(Sn−2)
. (6.14)

75



Chapter 6. Black Hole Thermodynamics and AdS/CFT

There is again a region in which two solutions exist which we may interpret as a two-fluid

system. In particular, there is a choice which can be made for the potential, µ = 1/c, for

which there exists both a zero solution S = 0 and a non-zero solution S = ωn−1

(
πl2T
n

)n−1

- the fluid-superfluid mixture we claimed.

6.2.1 Phase Change

We should now check that a phase boundary does indeed exist. The signature of a phase

transition is that the heat capacity changes abruptly. In classical thermodynamics, we

have the specific heat capacity given by

C = T

(
∂S

∂T

)
condition

(6.15)

where we can choose a set of conditions for our system, e.g. constant volume or pressure.

It is also well known that close to a phase boundary, the specific heat capacity behaves as

C ∼ |T − TC |−α (6.16)

for some critical temperature TC and with α > 0.

Hence, if we search for the value of the black hole parameters for which C → ∞, which

will occur for T = TC , then we should be led to an equation containing such parameters

for a phase boundary.

Let us look again at the Reissner-Nordström black hole where we will want to examine

the behaviour of the heat capacity

Cµ = T

(
∂S

∂T

)
µ

. (6.17)

We could write this is terms of Jacobians, as

Cµ = T
∂(S, µ)

∂(T, µ)
= T

∂(S, µ)

∂(r+, Q)

∂(r+, Q)

∂(T, µ)
(6.18)
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and then examine (
∂(r+, Q)

∂(T, µ)

)−1

= 0. (6.19)

If we were interested in a more general black hole with more properties, this would be a

useful technique, but since we are only interested in a fairly simple Reissner-Nordström

black hole, we can just perform the derivatives directly. Since T = κ/2π, we can write

Cµ = κ

(
∂S

∂κ

)
µ

= κ
ωn−1

4

(
1

nα2

)n−1

(n− 1)
[
κ±

(
κ2 − n(n− 2)α2(1− µ2c2)

)1/2]n−2

×
[
1± κ

(
κ2 − n(n− 2)α2(1− µ2c2)

)−1/2
]
. (6.20)

Thus,

κ2 − n(n− 2)α2(1− µ2c2)→ 0⇒ Cµ →∞ (6.21)

which occurs for TC = 1
2π

√
n(n− 2)α2(1− µ2c2), where we have labelled the critical

temperature TC .

6.3 A Super-Yang-Mills Superfluid

Let us consider a system containing massless quarks with a typical self-interaction term.

At high energies, we have a relativistic version of the Gross-Pitaevskii equation, or equiv-

alently the Klein-Gordon equation with an interaction term. We have a stationary con-

densate, so the usual time derivatives vanish. We have (see for example (110))

−∇2Ψ + g2
∣∣Ψ2
∣∣Ψ +m2

BΨ = µ2Ψ (6.22)

where g and mB are some coupling constants.

Let us make a brief aside to consider the geometry we will be working in. Here, we wish
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to work on a 3-sphere so we have

W 2 +X2 + Y 2 + Z2 = l2 (6.23)

where we identify the radius of the sphere, l, with the characteristic length scale of anti-de

Sitter space and W , X, Y , Z are the four coordinates mapping the 3-sphere. A useful

choice is to consider a Hopf fibration, which defines a point CP 1 = S2 and allows us to

choose

z0 = X + iY (6.24)

and

z1 = Z + iW (6.25)

and introduce the Euler angles (θ, φ, ψ) by

z0 = l sin
θ

2
ei(ψ+φ) (6.26)

and

z1 = l cos
θ

2
ei(ψ−φ). (6.27)

The line element on the 3-sphere can then be written down as

ds2 =
∣∣dz0

∣∣2 +
∣∣dz1

∣∣2
=

l2

4
(dθ2 + sin2 θdφ2) +

l2

4
(dψ + cos θdφ)2. (6.28)

The Laplacian acting on scalars in general is

∇2 =
1

g1/2

(
∂

∂xµ
gµνg1/2 ∂

∂xν

)
. (6.29)

If we choose an ansatz

Ψ = R(θ)eina(φ+ψ)/2+inb(φ−ψ)/2 (6.30)
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for some integer wavenumbers na and nb then the equation (6.22) reduces to an ordinary

differential equation

(1− z2)
d2R

dz2
− 2z

dR

dz
− n2

a

2(1− z)
R−

n2
b

2(1 + z)
R+ ν(ν + 1)R− 1

4
g2l2R3 = 0 (6.31)

where we have simplified somewhat by introducing z = − cos θ and introduced ν(ν + 1) =

1
4(µ2−m2

b)l
2. As ν is related to the chemical potential, we shall hereafter refer to it as the

energy parameter. The singular nature of this equation for R(z) dictates the boundary

conditions to be R(−1) = 0 for nb 6= 0 and R(1) = 0 for na 6= 0.

Finally, we can make the substitution

w =
1

2
Rgl (6.32)

to further simplify (6.31) so that

(1− z2)w′′ − 2zw′ − n2
a

2(1− z)
w −

n2
b

2(1 + z)
w + ν(ν + 1)w − w3

2
= 0. (6.33)

Before looking at solving this equation, let us make some important comments.

The Gross-Pitaevskii equation (6.22) can also be solved using relativistic fluid mechanics

(110) with a fluid-flux covector (nB, nBu). This is related to the wavefunction by

nB = 2µΨΨ∗, nBu = −i(Ψ∗dΨ − ΨdΨ∗). (6.34)

If we are expecting a superfluid, then one key property to search for is the appearance

of quantum vortices. If a vortex is present, then that solution will possess a circulation

around curves Γ given by

C =

∫
Γ
u. (6.35)
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For our choice of ansatz, the circulation is constant outside the vortex cores, and given by

Ca =
2πna
µ

, Cb =
2πnb
µ

(6.36)

for curves around the two possible axes of rotation. In the non-relativistic limit, µ = mB

and we recover the typical quanta of circulation. The quantised parts of our solution

are our wavenumbers which correspond directly to the angular momenta of some vortices

within the fluid,

Ja = na, Jb = nb. (6.37)

Most importantly, (6.37) exhibits the appearance of quantum gravity in our work where

the black holes dual to our fluid necessarily have quantised angular momenta. It has been

shown that black hole angular momentum may be quantised; AdS black holes in n = 3

can be expressed in terms of a conformal algebra suggesting states of quantised mass and

angular momentum (112).

Whilst we could now attempt to solve (6.31) numerically, we will instead examine two

particular cases for which analytic solutions exist.

6.3.1 na = nb

First, let us examine the situation where both the integers na and nb are equal. In this

case (6.31) becomes

(1− z2)
d2R

dz2
− 2z

dR

dz
− n2

a

(1− z2)
R+ ν(ν + 1)R− 1

4
g2l2R3 = 0 (6.38)

Making the substitution for w as above, it is possible to find an analytic solution here by

choosing w to be given by an expansion in terms of Jacobi polynomials, specifically
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Figure 6.5: A typical plot of the value of w against z for nb=na case, where the rotation and
circulation in each direction are equal.

Figure 6.6: The vortex width was defined as full width at half height. The vertical height represents
the value of the function R.

w =

∞∑
l=0

(1 + z)1/2alP
(nb,0)
l (−z) (6.39)

with

P
(nb,0)
l (−z) =

l∑
m=0

(
l

m

)
Γ (nb + l +m+ 1)

Γ (nb +m+ 1)

(
z − 1

z

)m
(6.40)

and al some coefficients to be determined.

An example of the output is Fig 6.5. Also, Fig 6.6 shows how we defined the width of a

vortex. A check on the results for the l = 0 mode is included in the appendix.
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Figure 6.7: A typical plot of the value of w against z for the nb=0 case.

6.3.2 nb = 0

Now let us turn to the situation where one of the integers is set equal to zero, e.g. let us

choose nb = 0. Now (6.31) is

(1− z2)
d2R

dz2
− 2z

dR

dz
− n2

a

2(1− z)
R+ ν(ν + 1)R− 1

4
g2l2R3 = 0 (6.41)

and again we can substitute for w. This time, w can be given by an expansion in terms

of associated Legendre functions:

w = (1− z2)
∞∑
l=0

alP
na
l (z), (6.42)

with the associated Legendre function given explicitly by

Pnal (z) =
(−1)na

2ll!
(1− z2)na/2

dna+l

dzna+l
(z2 − 1)l (6.43)

An example of the shape of this graph is Fig 6.7.
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Figure 6.8: The solutions for w, after projection back to R3, are tori which we interpret as vortex
rings.

6.3.3 Stereographic projection S3 → R3

To interpret the solution, it is useful to now project the solutions back into Euclidean

space. We use a change of coordinates

x =
sin θ

2 cos ψ+φ
2

1− cos θ2 sin ψ−φ
2

(6.44)

y =
sin θ

2 sin ψ−φ
2

1− cos θ2 sin ψ−φ
2

(6.45)

z =
cos θ2 cos ψ−φ2

1− cos θ2 sin ψ−φ
2

. (6.46)

When we do so, the solution is seen to be a series of tori (as a function of the potential

µ). We then suggest that these solutions may be vortex rings Fig 6.8. The relationship

between the energy of the vortices and their width is shown in Fig 6.10.

6.3.4 Calculation of bound on g

If we start with an expression for the conserved charge

NB = 2µ

∫
Ψ∗ΨdΩ3. (6.47)
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The ground state from the Gross-Pitaevskii equation is

Ψ0 =
(µ2 −m2

B)1/2

g
. (6.48)

We can write

NB(groundstate) =
4µ(µ2 −m2

B)π2l3

g2
, (6.49)

or

g2 =
4µ(µ2 −m2

B)π2l3

NB
. (6.50)

It is clear that (6.50) is maximal for fixed µ and mB = 0, i.e.

g2 <
4π2µ3l3

NB
. (6.51)

Now, for an SU(N) gauge theory, (92)

4π2l3 = N2, (6.52)

and so

g2 ≤
µ3
CN

2

NB
, (6.53)

where we have replaced the potential by the critical potential, µC .

By choosing values for the various free parameters in our Gross-Pitaevskii equation, we

can also show (see Fig 6.10) that there exists a power law relation between the energy

parameter, ν, and the vortex length, L.

6.4 Conclusions and discussion for AdS-CFT

By using results from AdS/CFT correspondence, we were able to make comparisons be-

tween a black hole in 5-dimensional anti-de Sitter spacetime and a fluid existing on its

4-dimensional boundary. We found that there exists solutions to the Gross-Pitaevskii
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Figure 6.9: Plot of the energy related parameter ν against the vortex width.

equation which took the shape of vortex rings. These are a key feature of quantum fluids

so this is good evidence of superfluidity of the quark-gluon plasma which is formed in heavy

ion collisions. We also noted that are two different black hole phases and correspondingly

there are two fluid phases. One phases corresponds to confined quarks (i.e. hadrons) while

the other corresponds to the free quarks of the plasma. However, there is also a point in

our phase space where entropy drops to zero and hence superfluidity occurs.
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Overall Conclusions

7.1 Overall conclusions

We have studied two aspects of quantum gravity in this thesis. In the first part we have

found that there is a prescription for describing gravity as an effective field theory, which we

suggest may be the true theory of quantum gravity, rather than a UV-complete description.

We studied ϕ4-theory and by trying to keep our action more general than other authors,

we hope to have side-stepped a lot of the problems highlighted in the introduction (such as

gauge-dependency) whilst picking out some interesting phenomenology. In particular, we

have shown that there exist a set of bounds for the scalar coupling constant between which

the theory is asymptotically free. Outside of these regions, scalar field theory has similar

behaviour to that in the absence of gravity. More than this, we have hinted at how the work

could be extended to other types of fields (section 5.0.4) and suggested some first steps

in combining Yang-Mills and gravity (Appendix A.4). We exposed the utility (indeed,

the necessity) of computer algebra packages such as FORM in this type of work. We also

considered quadratic divergences and looked at a heat kernel method for calculating such

terms. Yet we heeded the comments in the literature regarding field redefinitions where

it was explained that quadratic divergences can not contribute to the running behaviour

of a coupling parameter; moreover, in light of commentary in the literature, we have seen
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that gravity and its effect on other types of field is still a difficult problem and it is not

entirely clear how one should proceed, with different techniques often leading to different

answers.

The second part of the thesis looked at AdS-CFT correspondence and in particular the

duality between a black hole and a fluid. We compared different properties of the fluid with

those of the black hole and found that the black hole solution admitted different regions

which could tell us qualitatively about the particles in the fluid. Of note, it told us that

there were different phases which experiment tells us are the confined phase and the QGP

phase. A particular property we looked at was the entropy of the fluid, corresponding

with black hole area. We saw that this might lead to have a very low viscosity state, that

could be superfluid. From this, we investigated a relativistic Gross-Pitaevskii equation

under certain conditions. Our main result was that the solutions resembled vortex rings

which is a key feature of superfluid behaviour.
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Appendix

A.1 AdS/CFT calculation

A.1.1 Check for l = 0 Jacobi Polynomials

We do a manual check on the results, in the simple case where l = 0, hence P0 = 1.

We then have

w = (1 + z)1/2a0 , w′ =
1

2
(1 + z)−1/2a0. (A.1)

Substituting this into our action, we find

S =

∫ 1

−1

{
−(1− z2)(1 + z)a2

0 −
n2
a

2
a2

0 + ν(ν + 1)(1 + z)a2
0 −

(1 + z)2

2
a4

0

}
= a2

0(
−4

3
− n2

a + 2ν(ν + 1))− a4
0 (A.2)

which has a non-trivial minimum at

a0 =
1

2

√
4ν(ν + 1)− 8

3
− 2n2

a. (A.3)

For particular values of ν and na, we confirm that a0 here is the same as those calculated

using Maple with predefined hypergeometric functions.
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A.2 Scalar field-gravity calculation

This section of the appendix is intended as a manual to explain the function of various

parts of the code used to calculate the required terms in the effective action.

Here, in turn, particular segments of the code will be displayed, followed by discussion of

how it works and why such techniques were used. A few useful tricks will be outlined too.

First let us consider the code for scalar field theory coupled to gravity.

A.2.1 Declarations

As with many programming languages, in FORM we begin with some declarations. At

the very top, we define the dimension:

Dimension n;

We keep a general symbol n for the dimension until the point where we introduce dimen-

sional regularisation to calculate the integrals.

Symbols n, kappa, xi, m, ...

Indices x, alpha, beta, ...

Indices x1, alpha1, beta1, ...

Indices x2, alpha2, beta2, ...

Indices dummyS11, dummyS12, ...

Symbols are defined here. This includes our parameters v and ω that allow us to compare

with a traditional Feynman diagram method in various choices of gauge, which can be set

to whichever values we require at the last stage of the calculation.

Indices have also been defined here. It is easier to keep track of symbols if, for example,

in calculating a 3 point function, we label our functions with numbered indices to match

the corresponding coordinate (e.g. alpha1 for x1).
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We retain a number of dummy indices, which will be passed as arguments all the way

back to the top level function. This helps to avoid a situation where we might encounter

too many repeated (more than 2 of the same) indices.

Next up is our list of functions. A useful feature of FORM is that it allows us to declare the

functions to be commutative or non-commutative. This allows us to perform derivatives

by the use of a commutator relation. The prefactors which multiply the quantum fields

can be chosen to be commutative functions since these will generally involve only symbols,

delta functions and background scalar fields.

Another useful feature is the ability to allow a function to be (anti-)symmetric in its

indices. We have

Functions h(symmetric), gb(symmetric);

representing the graviton and background gravitational field. We keep the background

general, rather than choosing it to be flat, so that it is easier to write identities to set

derivatives of the field to be zero (if we set it to be a delta straight away, then it would

just raise or lower the index on the derivative operator).

A.2.2 Effective Action

The main task for FORM will be to calculate the expansion of the function

e−S ≈< S4 > − < S3S1 > − < S2
2 > +

1

2
< S2

1S2 > +
1

24
< S4

1 > (A.4)

where the angle brackets indicate the typical calculation using Wick’s theorem and we

expand to fourth order in the background fields. Note that we do not include anything to

represent an integral sign - as far as the FORM code is concerned, this is superfluous.
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A.2.3 Checking the form of S1, S2, ...

We can also use FORM to check our expressions for the various parts of the action S1, S2,

etc. Our top level local function is the sum of a function representing the classical part

of the action, a function representing the connection term and a function representing the

gauge-fixing term.

For the classical part, we can simply write down our classical action in the most obvious

way in FORM with appropriate identities for the metric tensor, the square of its determi-

nant, derivatives of the background field, and so on. We must be most careful where lots

of indices are contracted, such as with the curvature terms, R and 1
2ξRφ

2.

For the connection term, we use FORM to check that the Christoffel symbols (which can

contain many delta functions) multiply the first functional derivatives of the action to give

the correct terms.

For the gauge fixing term, FORM does not offer much advantage in checking the result,

but we include it so that it is easier to sum the terms to get the complete one-loop order

effective action.

A trick that is used in FORM is this: wherever a quantum field appears in our identities,

we multiply by a factor q. Then, when we want to collect those terms that are quadratic

in the quantum fields, we can simply set all other powers of q to be zero, and then set

q2 = 1. In this way, all that remains in our output is the term we are interested in. Of

course, we must also be careful of the cosmological constant term, containing no powers

of q and thus not vanishing, but this is easy to keep track of.

Similarly, we could multiply the background fields by such a factor, then order the terms

in our output by powers of this factor. This would separate S0, S1 and so on.

A.2.4 Pre-sorting

Ignoring the prefactors, we are essentially left with gravitons and quantum scalar fields,

and derivatives thereof. Since we defined the derivative operators and these fields as non-
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commutative, it is helpful to first write simple rules to place the gravitons on one side of

the equation, and the scalar fields on the other. An identity

id psi(x1?)*h(mu?,nu?,x2?) = h(mu,nu,x2)*psi(x1);

moves a graviton (with no derivatives) to the left of a scalar (with no derivative). Similar

terms exist to manipulate the derivatives. The equation is now more maleable but there

are still many terms to calculate. Consider S4
1 . S1 contains 4 terms; therefore, S4

1 contains

256 terms. While we could write 256 separate rules, we can reduce the number of rules

significantly. If we write the action in order of the derivatives of quantum fields (and at

most, we find there may be two such derivatives, say ∂µ∂νhαβ) then simple combinatronics

tells us that terms with a similar derivative structure number just 28 (14 each for the

gravitons and quantum scalar fields).

A.2.5 Propagators and Wick’s Theorem

Now we write the rules to convert the various products of quantum fields and their deriva-

tives into products of propagators with derivatives attached.

A.2.6 Transform to momentum space and performing derivatives

Each propagator in coordinate space can be transformed to momentum space by identities

such as

id partial(mu1?, x1?)*Gx(alpha1?,beta1?,alpha2?,beta2?,x1?,x2?)

= Gp(alpha1,beta1,alpha2,beta2, p1) *partial(mu1,x1)* exp(p1,x1,x2);

which assigns a particular momentum to a pair of coordinates. The derivative operator

contains a coordinate label to make sure it acts on the correct coordinate in the exponential

exp(p1,x1,x2) .
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A.2.7 Momenta integrals

Once we have products of momenta and propagators in momentum space, we resort to a

more familiar computer algebra package, Maple, to calculate the various integrals. In fact,

we need only calculate the pole part of each integral. Therefore, we simply Taylor expand

the propagators and retain only the terms of the order p−4. The results will be expressed

in terms of a basic logarithmic integral L.

A.2.8 Simplifying the answer

Our expressions at this stage will consist of numerical factors, the basic logarithmic integral

L and various powers and derivatives of the background scalar field.

A.2.9 Using the field equation

The final step is to note that the solution can be reduced using the field equation. We

have

�φ = −m2φ− λ

6
φ3 (A.5)

which in FORM is described by a rule such as

id Box(x)*phi(x) = -m^2*phi(x) - lambd/6*phi(x)^3

A.3 Quadratic divergences

In a similar vein to the final steps in the calculation of the logarithmic divergences, the

final steps of the calculation of the quadratic divergences are also computationally inten-

sive. Therefore, we once again seek the assistance of FORM in performing the lengthy

manipulations and calculations.

Once we have evaluated expressions for all the components of (Aαβ)ij , (Bα)ij and (C)ij ,

we can calculate, first Gij1 and then Gij2 .
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A.3.1 Calculating derivatives

Again, we use one of FORM’s most useful features - the ability to define functions as

non-commuting or commuting and to be able to switch between properties at different

stages of a calculation.

To perform derivatives we introduce a non-commuting function which we call delp which

represents the derivative with respect to a momentum p. delp carries an index which

corresponds to the index on the momentum we are differentiating with respect to, e.g.

delp(theta) would correspond to the operator ∂
∂pθ

.

We implement the following rules for derivatives

∂

∂pµ
pν = δµν , (A.6)

∂

∂pµ
p−n = npµp−n−2. (A.7)

In the final step of our calculations, with the derivative operators commuted all the way

to the right, we let delp = 0.

To sort the results, we employ the following trick. We let the momentum p change from

a non-commuting variable to a commuting variable. Doing so gathers all factors of p and

p−1 together within a term so that we can manipulate them. Of course, we only do this

after derivatives have been calculated otherwise correct order would not be maintained

between momenta and derivative operators.

Any other uses of FORM in this calculation echo those that we have already employed in

the logarithmic calculation, such as contracting equations with multiple Kronecker deltas,

and require no further discussion here.
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A.4 Yang-Mills-gravity calculation

Having considered scalar field theory in the previous section, let us now examine the effect

of gravity on another important class of fields - the Yang-Mills field. Yang-Mills gauge

theory is the study of fields which are related to an underlying SU(N) symmetry. For

example, in the standard model, SU(2) × U(1) describes electroweak interactions and

SU(3) describes quantum chromodynamics.

Here, we will consider Yang-Mills, in the sense of quantum chromodynamics, coupled to

gravity. The result is well known (indeed, Nobel prize-worthy (10; 11)) in the absence of

gravity.

Let us begin, as before, by writing down an action. We have

S = SM + SG (A.8)

where

SM =
1

4

∫
|g(x)|1/2FαβaFαβa (A.9)

with the Yang-Mills field strength tensor given by

Fαβa = ∂αAβa − ∂βAαa + gfa
bcAαbAβc (A.10)

for some vector potential Aαa, Yang-Mills parameter g (not to be confused with the metric

tensor g(x)) and Yang-Mills structure constants fa
bc.

As before,

SG = − 2

κ2

∫
dnx|g(x)|1/2(R− 2Λ). (A.11)

Introduce the quantum fields η = (aαa, hµν) by

gµν = δµν + κhµν (A.12)

Aαa = Āαa + aαa (A.13)
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so that the second functional derivative S,ij can be read off from the term quadratic in

the quantum fields.

Considering infinitesimal gauge transformations of the field we find

δAαa =

∫
dnx′Kαab(x, x

′)δεb(x′) (A.14)

.

allowing us to read off the generators K.

The only non-zero components of the field-space metric this time around are again the

diagonal components gAA and ggg.

We use the field space metric to construct the field space Christoffel symbols. The non-zero

components are

Γ
gλτ (x)
gµν(x′)gρσ(x′′) =

[
−δ(µ

(λg
ν)(ρδ

σ)
τ) +

1

4
gµνδρ(λδ

σ
τ) +

1

4
gρσδµ(λδ

ν
τ) −

1

2(2 + nc)
gλτg

µ(ρgσ)ν

− c

4(2 + nc)
gλτg

µνgρσ
]
δ(x′′, x′)δ(x′′, x), (A.15)

Γ
Aaµ(x)

Abν(x′)gλτ (x′′)
=

1

4
δab δ(x

′, x)δ(x′, x′′)(gλτδνµ − gνλδτµ − gντδλµ) (A.16)

and

Γ
gµν(x)

Aaλ(x′)Abτ (x′′)
=

1

2
δ(x′, x)δ(x′, x′′)δabδ

(λ
µ δ

τ)
ν (A.17)

Functional derivatives of (A.8) gives us

∂S

∂Aλb
= ∂µF̄

µλb + gf bcaF̄ λ νaĀ
ν
c (A.18)

and

∂S

∂gλτ
=

2

κ2
Λδλτ +

1

8
δλτ F̄αβaF̄

αβa − 1

2
F̄ λ αaF̄

ταa (A.19)
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The connection term is then

1

2
ηiηjΓ kijS,k =

=
1

2
ηiηj

[
Γ
gλτ (x)
gµν(x′)gρσ(x′′)

∂S

∂gλτ (x)
+ Γ

gµν(x)

Aaλ(x′)Abτ (x′′)

∂S

∂gµν(x)
+ Γ

Aaµ(x)

Abν(x′)gλτ (x′′)

∂S

∂Aaµ(x)

]
= F̄αβaF̄

αβaκ2

(
1

16
h2 − 1

8
hγδh

γδ +
1

16κ2
aγba

γb

)
+F̄αβaF̄γ

βaκ2

(
−1

4
hhαδ +

1

2
hαµhγµ −

1

4
aαb a

γb

)
+∂αF̄

α
βaκ

(
1

4
haβa − 1

2
hβγabγ

)
+F̄αβaf

bcaĀβc κg

(
1

4
haαb −

1

2
hαγa

γ
b

)
−Λ

(
h2 + 2hαβh

αβ +
1

κ2
aαaa

αa

)
(A.20)

Now combine the above equations, as with scalar-gravity, as

Sq = ηiηj
(
S,ij + Γ kijS,k +

1

2ξ
Kα
i Kjα

)
= S0 + S1 + S2 + S3 + S4. (A.21)

From S0, we can determine the propagators, then proceed as with the scalar case. With

the above calculations as a starting point, we could repeat the main calculation of this

thesis for Einstein-Yang-Mills.
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