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Abstract 

 

The increasing use of recycled materials in asphalt pavements asks for prescriptive 

environmental assessment on associated impacts such as the energy and CO2 footprint. 

Accredited by a number of industries already, life cycle assessment (LCA) is being 

accepted by the road industry to measure and compare the key environmental impacts 

of its product or process throughout the whole pavement life time, and present the 

results for communication with stakeholders. 

 

This thesis reviews the technical performance of asphalt pavements containing 

recycled materials; searches for relevant LCA resources worldwide; identifies the gap 

for the road industry, and the key environmental impacts of recycling in asphalt 

pavements. It describes the development of a LCA model for pavement construction 

and maintenance that accommodates recycling practice and up-to-date research 

findings. Details are provided of both the methodology and data acquisition. 3 real 

case studies are carried out during the model development, and their findings 

described in this thesis. This is followed by a discussion of the challenges of applying 

LCA to road practice, and recommendations for further work. 

 

Data in this model come from a mixed source of UK plants, EU standards and 

relevant LCA results. Methodology follows the ISO14040 norms. Unit processes in 

asphalt pavement construction are analysed and represented in this LCA model. The 

most significant variables in the process are identified, followed by data analysis and 

sensitivity check. This LCA model can be further tested and calibrated as a decision 

supporting tool for the asphalt industry. In order to achieve sustainable construction 

however, environmental assessment must be placed alongside the outcome of 

technical and economic studies. 
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Chapter 1 : Introduction 

 

1.1. Background 

1.1.1. Quarrying and Waste - an “Inconvenient Truth” 

Great Britain quarries each year approximately 200 million tonnes (Mt) of primary 

aggregates from land sources. Around 90% are used by the construction industry 

(QPA 2007). In 2005, roads accounted for, by value, about 3.5% of all construction 

works in the UK (DTI 2006). Some 95% of UK roads are paved with asphalt 

materials (IAT 2006). The construction and maintenance of these roads require large 

amounts of aggregates, which typically represent more than 90%, by weight, of the 

asphalt mixtures. The European Asphalt Pavement Association (EAPA) estimates that 

UK produced in 2004 some 27Mt of hot mix asphalt (HMA) (EAPA 2005). Millions 

of tonnes of aggregates are extracted and transported each year for use in roads. The 

Highways Agency for instance, consumes between 20,000-60,000 tonnes of 

aggregates in laying one mile stretch of motorways in England (The Highways 

Agency 2003). 

 

Meanwhile in 2004, some 220Mt of waste were generated from industry and 

commerce, municipal/household and construction and demolition (C&D) in the UK, 

nearly 2/3 of the annual total of 335Mt (DEFRA 2006). A considerable percentage 

(industrial and commercial: 44%; municipal: 72%, etc) found its way to landfill, 

although the reuse and recycling rate is on the rise between 1998/9 and 2002/3 

(industrial and commercial: from 39% to 45%; C&D: from 45% to 50%, etc) (DETR 

2000; DEFRA 2006). 

 

 

Figure 1-1 Waste Arisings by Sector in the UK (DEFRA 2006)
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Such resource management does not seem to be in line with the Country’s strategy for 

sustainable construction that requires the environment to be protected and the 

consumption of natural resources minimised (DETR 2000). There is concern that high 

specification aggregates (HAS) from UK permitted extractions could be exhausted as 

early as 2020 (Parker 2004). The situation seems even more urgent for approved 

landfill sites, as they are expected to run out of space in the next 5-10 years (The 

Environment Agency 2007). Based on such pressures, the UK government introduced 

the Landfill Tax1  in 1996 and the Aggregates Levy2  in 2002, providing financial 

incentives to the recycling drive. The Waste and Resources Action Program (WRAP) 

was established in 2000 as part of the Government’s waste strategy to 1) create 

additional markets for recycled materials, 2) provide advisory services on recycling 

practice and, 3) encourage public participation in the nationwide recycling campaign 

(WRAP 2007). Besides these are peer pressure, Government’s purchasing power, and 

requirement for reporting of Company’s key performance, etc, in a concerted effort to 

prudent use of natural resources and effective management of waste, an essential step 

towards sustainable construction (Bird, Clarke et al. 2004). 

 

Therefore the aim of this thesis is to investigate what approach the road construction 

industry can take to mitigate this ‘quarry and waste’ situation; to review what 

progress the industry has made so far; and to assess the technical and environmental 

aspects of the recycling practice in order to verify whether it meets the requirements 

of sustainable construction. 

 

1.1.2. Use of Recycled Materials in Roads 

Aggregates other than primary are defined as ‘recycled’ or ‘secondary’. Recycled 

aggregates are reprocessed materials previously used in construction, recycled asphalt 

pavements (RAP) for example; secondary aggregates come from households or other 

industrial processes than construction, such as glass and steel slag (WRAP 2007). 

Table1-1 gives example of these types of aggregates. Apart from aggregates substitute, 

                                                 
1 A lower rate of £2/tonne applies to defined inert waste; a standard rate that increases every few years 
from £7/tonne as in 1996 applies to all the other taxable waste. 
2 A rate of £1.6/tonne is charged to all commercial extraction for construction aggregates including 
sand, gravel and stone. 
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a few recycled materials have the potential for replacing or modifying the bituminous 

or hydraulic binder in road structures. 

 

Table 1-1 Types of Recycled and Secondary Aggregates (FHWA 1997; DMRB 2004; WRAP 2007)
 

Recycled Aggregates Secondary Aggregates 

Recycled Aggregates 
Recycled Asphalt 
Recycled Concrete 
Recycled Roofing Shingle 
Spent Rail Ballast 

Blast Furnace Slag (BFS) 
China Clay Sand 
Coal Fly Ash (CFA) 
Colliery Spoil 
Foundry Sand 
Furnace Bottom Ash (FBA) 
Incineration Bottom Ash (IBA) 
Kiln Dusts 

Pulverised Fuel Ash (PFA) 
Recycled Glass 
Recycled Plastic 
Recycled Tyre 
Slate Aggregates 
Spent Oil Shale 
Steel Slag 

 

The use of recycled, instead of virgin, materials has the “dual sustainability benefits” 

of easing landfill pressure and reducing demand of extraction. This is an important 

means of getting the road industry on track towards sustainable construction. Design 

Manual for Roads and Bridges (DMRB) lists the permitted applications of recycled 

materials in road layers (DMRB 2004). The features of the road structure indicate that 

the lower courses (base, sub-base, etc) are able to absorb materials in larger quantity 

than upper layers. However, to maximise the proportion of recycled materials in 

construction supplies means more than quick burying of waste materials, possibly 

materials of greater value if used in other places. 

 

For instance, the superior performance of steel slag when used as aggregates in 

asphalt surfacing, including strength and skid resistance, would be wasted by using it 

to replace cheap stones in granular base. The balance between new roads and 

maintenance that highway authorities in the UK are dealing with has moved towards 

the latter in recent years; and maintenance works affect mainly the upper pavement 

layers. In addition, the cost of transport and processing waste materials to have the 

desired properties is more likely to be justified by using the recycled materials in 

value applications such as the asphalt surfacing. The technical performance of asphalt 

layers containing some of the commonly used recycled materials is reviewed, and the 

cost implications assessed, in this thesis. 
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1.1.3. Key Indicators beyond the “Landfill Scheme” 

The “dual sustainability benefits” are not to be achieved without a cost. 

Environmental concerns over recycling waste into pavement aggregates mainly have 

two aspects: 1) energy for transport and processing the waste in construction phase, 

and 2) leaching from recycled components in place during pavement life. Literature 

on these impacts will be reviewed in this thesis. Resource efficiency alone does not 

guarantee sustainable construction. Road works need to take into account a lot more 

social and environmental footprints than saving landfill space (WSP 2003). This is 

determined by the features of road works which include: 

 

� Large volumes of quarry products and energy input; 

� Long and linear geographic layout implying huge, as well as site specific, 

environmental and aesthetic impacts; 

� Regular maintenance work during the long service life; 

� Strong influence of technical performance on users’ cost. 

 

Well defined targets and indicators, against which companies can measure their 

progress towards sustainable construction, are paving the way for an on-time and on-

budget delivery of their ‘green’ goals. To put such a strategy into practice, companies 

need to identify, by means of hard evidence, the priority areas for action, and develop 

a set of targets and indicators for the best practice in all aspects and dimensions of the 

business. These then can be communicated to stakeholders, and used to benchmark 

their performance against competitors. 

 

According to the Construction Industry Research and Information Association 

(CIRIA), the ideal indicators should be: “1) relevant, 2) representative, 3) repeatable, 

4) responsive to change, and 5) reasonably easy to interpret” (CIRIA 2001). A 

consensus was recently formed around 6 key impact areas within the UK asphalt 

industry, based on the findings of a review workshop set up by the Refined Bitumen 

Association (RBA), the Quarry Products Association (QPA) and the Highways 

Agency, and published by the Transport Research Laboratory (TRL). These impact 

areas are (TRL 2005): 
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� Design for long-life pavements: promote resource efficiency by adopting quality 

paving materials and innovative maintenance techniques; 

� Increase re-use and recycling in road works: use recycled and secondary materials 

where possible; 

� Whole life cost analysis: address the life-time, rather than the short-term, cost 

considering both the agency’s and the users’ cost when selecting materials, layer 

thickness, interval of maintenance and the service level to restore, etc; 

� Implement an effective environmental management system (EMS): reduce site 

emissions, pollution incidents and the waste volume; reduce water and energy use; 

� Health and safety (H&S): improve H&S of the work place; provide employees 

with training and equal opportunities; enhance staff’s environmental awareness; 

� Responsible procurement, selling and marketing: know the clients’ expanding 

expectation; engage suppliers and contractors in commitment to sustainable 

practice; provide unequivocal and backed statement for stakeholders. 

 

1.1.4. A Life Cycle Approach to Sustainable Construction 

Of those indicators above, some are obvious and paramount; others may be marginal 

and traded, in a project, against one another. Companies aiming for environmental 

labelling need to ensure their pursuit of ‘green’ product or process will not end up 

with undesirable consequences caused by simply shifting problems elsewhere or 

trading off one for another, possibly worse, impact. Claims of ‘green practice’ simply 

based on a certain aspect like materials saving or energy reduction are disputable and 

hard to compare. A life cycle approach is gaining ground in meeting the needs of 

sustainable construction (WSSD 2002). The tool developed as an outcome of this PhD 

project will analyse by accredited assessment technique all the key environmental 

impacts involved in the construction, use and disposal of asphalt pavements; test and 

calibrate the tool to industry needs; and present the results in a standard format. 

 

1.2. Life Cycle Assessment (LCA) 

The increasing use of recycled and secondary materials in asphalt pavements needs 

up-to-date studies on associated environmental impacts including the energy use, 

emissions and leaching, etc. Simply diverting the waste, such as glass, from other 

industries to aggregates supply is already questioned for its energy and carbon dioxide 
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(CO2) footprint (Dacombe, Krivtsov et al. 2004; Grant Thornton and Oakdene Hollins 

2006; WRAP 2006). Procurement documents for pavement construction regarding the 

laying technique, materials and maintenance option ask for prescriptive environmental 

assessment.3  Already accredited by a number of industries, life cycle assessment 

(LCA) is being accepted and practiced by the road industry to measure and compare 

the key environmental impacts of its product or process throughout pavement life. 

These analyses provide the results for effective communication with stakeholders.  

 

1.2.1. History of LCA 

Life cycle assessment, developed in the 1970s, is a comparatively new technique. It 

objectively quantifies the total environmental burdens of a product across its life time 

from raw material acquisition, through production, use and final disposal: a cradle-to-

grave analysis. The US Society of Environmental Toxicology and Chemistry (SETAC) 

works on the coordinated development of LCA across Europe and the States. 

International standards regarding LCA (the ISO14040 series) have existed since 1997. 

Through its growth, LCA is actively practised by a number of industries, such as 

house-building materials in France (B.L.P.Peuportier 2001), the German automobile 

industry (Mildenberger and Khare 2000), and world-renowned chemicals and 

consumer goods companies (BASF, Proctor and Gamble, etc), to monitor and report 

their eco-efficiency and environmental stewardship (BASF and Proctor& Gamble 

2006). 

 

Application in civil engineering, initially as a tool for assessing solid waste 

management (SWM) options, has started only in the last decade. Relevant practice in 

roads and asphalt pavements, particularly when recycled and secondary materials are 

involved, is limited (see Chapter Two). Besides giving the knowledge of products’ 

environmental performance, LCA results are also able to support marketing or 

environmental labelling. For instance, the recently standardised Type III 

Environmental Product Declaration (EPD), which enables informed comparison 

between products fulfilling the same function, requires quantified environmental 

information based on independently verified LCA results (ISO14025 2006). 

                                                 
3 Personal communication with Bob Allen, Research Manager, Aggregate Industries UK Ltd on 25 
September 2006. 
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Figure 1-2 Role of LCA in Environmental Product Declaration (ISO14025 2006)
 

 

1.2.2. LCA Framework 

The main work in LCA includes the development of an inventory, in which all the 

significant environmental burdens (input and output) will be compiled and quantified. 

This is followed by an impact assessment, calculating and presenting results in a 

predefined way that supports comparison or further analysis. The four phases of LCA 

are described below (ISO14040 2006): 

 

1) Goal and Scope Definition – the first phase of LCA setting the boundary, level of 

detail, and time frame of the study. It also influences assumptions and options 

made throughout the study such as system boundary, data source and impact 

category. 

2) Life Cycle Inventory (LCI) analysis – a relatively objective step that collects and 

compiles data of environmental input (raw materials, energy, etc) and output 

(emissions, leaching, solid waste, etc) within the system defined previously. 

3) Life Cycle Impact Assessment (LCIA) – evaluation of LCI results during which 

an indicator and a characterization model will be selected for each impact 

category. LCI results assigned to the category are calculated using the 
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characterisation model, and the results presented by the indicator. This is a phase 

of LCA where some subjective choices are made to a particular application. It 

consists of both mandatory and optional elements that include: 

 

a) Impact Category Definition – select a set of categories to which LCI 

results are allocated, alongside the definition of category indicator and 

characterisation model. 

b) Classification – assign LCI results to impact categories. 

c) Characterization – calculate indicator results within each impact category. 

d) Normalization (optional) – calculate the magnitude of indicator results 

relative to reference information. 

e) Grouping (optional) – assign impact categories into predefined groups 

(descriptive) and possibly rank them (normative). 

f) Weighting (optional) – convert and possibly aggregate indicator results 

across impact categories using numerical factors based on value choice, a 

further step towards a single-numbered result. 

g) Data Quality Analysis (optional) – understand the reliability as well as 

drawback of data used in the study, and the sensitivity of indicator results 

in significant areas. 

 

4) Interpretation – a phase to compile, check and evaluate the results from LCIA or 

LCI phase, to form conclusion and recommendation. 

 

 

Figure 1-3 Framework of Life Cycle Assessment (ISO14040 2006)
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In general, the results of LCA can assist in the following areas: 

� Identify opportunities to improve the environmental performance of a product or 

process in the life cycle period; 

� Decision-making in industry, government body or non-governmental 

organizations (e.g. strategic planning, priority setting, policy making) and; 

� Marketing (e.g. environmental labelling, reporting, and product declaration). 

 

Therefore some form of LCA work will be needed in this thesis, as the methodology 

and application meet the needs of environmental assessment of recycling practice in 

roads. Units in the construction process will be analysed and represented in the LCA 

model. Including CO2 that makes the “inconvenient truth”, an environmental input-

output inventory will be established for calculation and presentation of LCI results. 

The thesis will describe the development of an LCA model on top of existing 

databases, and through real case studies. 

 

Chapter two reviews the technical performance of asphalt pavements containing 

recycled materials, availability of these materials and the cost implications. Also 

reviewed are the key environmental impacts of recycling in roads, the relevant LCA 

resources and the knowledge gap. Chapter three studies the unit processes in asphalt 

pavement projects; and describes the development of a LCA model (Excel 

spreadsheet) for pavement construction and maintenance. Details are provided of both 

the methodology and data acquisition. Chapter four includes a couple of case studies 

applying this LCA model to real asphalt paving projects in the UK. Chapter five 

introduces the micro-simulation model (VISSIM) and traffic emissions model 

(EnvPro), to compare the energy use and emissions of traffic to those of roadwork. 

This is followed by a discussion of the benefits of applying LCA to road practice and 

the risks of not doing it, the challenges in this application, and the scope of LCA and 

recommendations for further work (Chapter six and Chapter seven). Attached in the 

appendices are a couple of questionnaires completed by Aggregate Industries UK Ltd 

in response to data request for the case studies (Appendix One and Appendix Two), as 

well as a description of the calculation formulas, and relations between the 

worksheets, in this LCA model (Appendix Three). 
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Chapter 2 : Literature Review 

 

The technical requirements specified by the road industry need to be met, by the 

recycled materials intended for use in asphalt pavements. The waste materials should 

be available, affordably recycled, and safely playing a role in the pavement structure. 

Waste glass, steel slag, tyre rubber and plastics are selected for detailed study in this 

PhD project including their arisings, management and application in asphalt 

pavements (Huang and Bird 2005; Huang, Bird et al. 2007). Recycling of these 4 

materials for use in asphalt is commonly seen in practice. It is therefore assumed that 

similar research method can be taken for the study of other solid waste materials 

(SWM). Asphalt surfacing (surface and binder course) of the pavements is considered 

here to be a value application, as discussed in Chapter one, for these recycled 

materials. 

 

The key environmental impacts of using recycled materials in roads are reviewed. 

Energy, emissions and leaching are selected for in-depth research (Huang, Bird et al. 

2007). Relevant LCA resources worldwide are also reviewed, and the knowledge gap 

identified, for the asphalt industry. This will justify the need for the development of a 

new LCA model in Chapter three. 

 

2.1. Waste Arisings and Management 

The attributes of some waste materials from industry and commerce (steel slag, tyre, 

etc), municipal/household (glass, plastics, etc) and C&D (RAP, etc) sources give them 

potential for secondary use in road or building construction replacing natural 

aggregates. The waste arisings in the UK showed, in recent years, the sign of 

decoupling from economic growth (DEFRA 2007). The recycling rates have 

increased considerably since the Waste Strategy was put in place 7 years ago 

(DEFRA 2006), but the level of use of the recycled materials in transport 

infrastructure varies across the country, mainly due to the difference in local landfill 

space and access to natural quality aggregates (TRL 2001). 
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2.1.1. Waste Glass 

WRAP estimated that in 2003, some 3.4Mt of glass entered the UK’s waste stream of 

which about 2.4Mt (71%) was container glass, 0.76Mt (23%) was flat (or window) 

glass and the remaining 0.24Mt ranged from CRT (Cathode Ray Tube), fibre to 

lighting bulb. The recycling rate for container and flat glass was 36% and 30%, 

respectively. In total, some 1.1Mt (33%) of waste glass was recycled, among which 

0.73Mt (66%) was fed to glass container manufacturers and 0.14Mt (13%) used as 

secondary aggregates. The majority of 2.3Mt (67%) of waste glass was disposed to 

landfill (WRAP 2004). The EU Directive on packaging waste (The European Union 

1994) however, has led to a UK recycling target of 60% by 2008 for waste glass 

(British Glass 2004). 

 

The lack of collection infrastructure is blamed for sending the majority of waste glass 

to landfill in the UK (British Glass 2005). The recycling infrastructure serves not only 

as a passive receptor of recyclable waste, but as a visual motivation that influences 

people’s recycling behaviour (Gonzalez-Torre, Adenso-Diaz et al. 2003). Currently in 

the UK, Packaging Recovery Notes (PRNs) are acquired by ‘obligated businesses’ 

from ‘accredited re-processors’ as an incentive to recycle aluminium, glass, paper and 

plastics, etc. The value of PRNs fluctuates over time, and is currently (March 2007) 

about £21-25/tonne for glass (Letsrecycle.com 2007). The value is suggested to be 

raised high enough to cover the recycling cost (WRAP 2004). 

 

Glass can be recycled indefinitely without loss of product quality (British Glass 2005). 

Returning recycled cullet to a glassmaking plant saves energy and mineral resources 

in great quantity (Edwards and Schelling 1999; Krivtsov, Wager et al. 2004). Using 

waste glass to substitute aggregates is perceived less sustainable in terms of energy 

and CO2 footprint, based on the results of previous LCA studies of glass (Dacombe, 

Krivtsov et al. 2004; Grant Thornton and Oakdene Hollins 2006). However, the 

colour imbalance between glass production and waste arisings 4  encourages, in 

occasions even necessitates, seeking alternative markets for waste glass, such as use 

for aggregates (Hopkins and Foster 2003). Use of recycled glass as coarse aggregates 

                                                 
4 The largest volume of UK glass manufacturing is clear; the largest waste glass stream is green. The 
price of glass containers delivered to re-processors is in the descending order of clear > amber/brown > 
green > mixed. 
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in concrete gives rise to alkali-silica reaction (ASR) and as a result, cement 

replacement with PFA or ground granulated BFS was introduced to reduce the 

damaging ASR (BRE 2006). In addition to the above applications, waste glass can be 

used as aggregate in asphalt road construction should the technical specification as 

described later are being met. 

 

2.1.2. Steel Slag 

The amount of steel slag can be estimated based on the output from steel production 

process, assuming that the process is stable and the rate of slag generation consistent. 

According to US NSA (National Slag Association), steel slag accounts for, by weight, 

7.5-15% of the steel produced (NSA 2001). The marketable slag is estimated by 

USGS (US Geological Survey) at a rate of 10-15% steel production (USGS 2001). 

One advantage of recycling steel slag is that the slag can be collected from a low 

number of steel plants, making the collection more efficient than for most other solid 

waste materials. In addition, this gate-to-gate process makes it possible to achieve 

controlled and consistent quality of the recycled materials. TRL reported in 2003 that 

some 1Mt of basic oxygen steel (BOS) slag was produced annually in the UK, with 

about 4Mt in stockpiles (TRL 2003). Recently in 2007, the figures were updated to be 

0.75Mt and 1Mt, respectively (Roe and Dunford 2007). Owing to decades of research 

and practice, UK has now achieved a 100% recycling of steel slag, 98% of which are 

used as aggregates, mainly in concrete and asphalt (ODPM 2002). The UK’s steel 

production saw a decline from some 18Mt in 1997 to not even reaching 12Mt in 2002, 

before rising to around 14Mt in 2004 (UK Steel 2006). Although steel slag in the UK 

is 100% recycled, application in asphalt surfacing is valued thanks to its mechanical 

properties as described later. 

 

2.1.3. Waste Tyre 

TRL estimated that the UK generates nearly 0.44Mt of waste tyre per annum, 100% 

of which has potential for use as aggregates. The fact is that about 21% is shredded 

and used for that purpose, 22% sent for energy recovery, and around 34% is disposed 

to landfill, stockpiles or illegal dumps where it is mixed with other waste makes the 

recovery difficult (Viridis and TRL 2003; WRAP 2003). Approximately 0.04Mt (or 

9%) is combusted in cement kilns, as scrap tyres have a comparable energy value to 
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coal, and have been used as an alternative fuel in cement production (UTWG 2002). 

According to TRL, the high processing cost is responsible for the existence of 

unregulated tyres disposal (Viridis and TRL 2003). European Tyre Recycling 

Association (ETRA) estimated the transport cost of post consumer tyre at about 

£1/tonne/km in average (Shulman 2000). The use of scrap tyres in asphalt or other 

road structures needs to be subsidised to compete financially with established 

aggregates in meeting the technical requirements for that use (Washington DOT 

2003). 

 

2.1.4. Waste Plastics 

About 2.8Mt of waste plastics is generated per annum in the UK. Most of those 

reused or recycled (a total of around 5%) are from industry and commerce sectors; 

recycling from municipal sources (e.g. bottles) is less practised, for economic reasons 

(TRL 2004). An increase of recycling rate relies on the successful recycling of 

plastics mixed with other waste (British Plastics Federation 2006), and the support 

from robust environmental assessment method (Patel, Thienen et al. 2000). Similar to 

tyre rubber, a notable percent of waste plastics is recovered by retrieving its thermal 

content (38MJ/kg), comparing favourably to that of coal (31MJ/kg) and reducing 

energy as well as CO2 footprint (Patel, Thienen et al. 2000; British Plastics 

Federation 2006). 

 

Data from WRAP indicate that about 0.4Mt of waste plastics generated each year is 

suitable for aggregates use. Presently only 0.008Mt is being recycled for that purpose. 

Recycled plastics are mainly used in the form of street furniture, insulation, ducts and 

pipes, etc. Very little so far is used in pavement construction (WRAP 2003). Similar 

to glass, the low value of PRN is blamed for the low recycling levels (DTI 2004). 

Recycled plastic packaging accounts for over 90% of all the recycled plastics each 

year in the UK (British Plastics Federation 2006). Financial incentives are believed to 

be more effective than specifications in affecting the recycling activity (WRAP 2003). 

Use for asphalt pavements may provide an important outlet for recycled plastics. 
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2.2. Technical Requirements for Materials in Asphalt Pavements 

 

2.2.1. Requirements for Aggregates 

A European standard (BS EN 13043 2002) for the specification of aggregates for use 

in asphalt was introduced in 2004 into the UK market. This standard specifies the 

technical requirements for aggregates alongside relevant test methods. Therefore 

materials recycled for use as aggregates in asphalt mixtures are subject to the same 

requirements for property classification and testing as are virgin aggregates. Pavement 

engineers are now responsible for defining categories for the technical properties of 

aggregates relevant to their specific application, and benchmarking the quarrying 

industry and other material suppliers. Examples of the requirements for aggregates in 

asphalt surfacing are presented in Table2-1. 

 

Table 2-1 Requirements and Test Methods for Aggregates in Asphalt Surfacing (PD 6682-2 2003) 

Property Category Test Method Property Requirements 

Geometric BS EN 933 Grading, Fines Content, Flakiness Index 

Physical and Mechanical BS EN 1097 
Resistance to Fragmentation, Polished Stone 
Value (PSV), Aggregate Abrasion Value (AAV) 

Chemical BS EN 1744 Leaching 

Thermal and Weathering BS EN 1367 Water Absorption, Magnesium Sulphate Value 

 

2.2.2. Requirements for Asphalt 

To withstand the tyre and weather, pavement surface layers are made with the 

strongest and most expensive materials in road structure. Characteristics they exhibit 

like friction, strength, noise and ability to drain off surface water are essential to 

vehicles’ safety and riding quality. Some are already associated with a standard test 

method (BS EN 13036 2002). Apart from the nature of the component aggregates and 

binder, asphalt performance strongly depends on the mixture type. Selection of a type 

for surface layers has to consider a multitude of factors including traffic, climate, 

condition of existing surface, and economics. No single mixture type could provide all 

the desired properties, often some are improved at the expense of others, making the 

selection difficult and contentious. 

 

Stone mastic asphalt (SMA), porous asphalt or open graded friction course (OGFC) 

have a reputation for low tyre noise, high resistance to rutting and skidding, and 

therefore are preferred to hot rolled asphalt (HRA) for road surface that is subject to 
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heavy traffic in terms of volume and loading (NAPA and FHWA 2000). For both 

mixture types, a number of properties are required of the component (particularly the 

coarse) aggregates such as PSV, resistance to fragmentation, affinity with bitumen, 

etc. Dense bituminous macadam (DBM) is commonly used in binder course and base. 

 

2.3. Performance of Asphalt Pavements Containing Recycled Materials 

Federal Highway Administration (FHWA) published in 1997 a guide manual for 

using 19 types of waste materials in all possible pavement layers (FHWA 1997). 

Recycled Materials Research Centre (RMRC) was established in 1998 under the 

partnership between FHWA and University of New Hampshire. The mission is to test, 

evaluate and develop guidelines for the use of recycled materials in roads considering 

long-term technical and environmental performance (RMRC 2007). In the UK, 

WRAP and TRL have been developing the potential applications of recycled 

materials in road structures, taking both the technical and marketing approach. 

 

2.3.1. Waste Glass 

Satisfactory performance has been observed of asphalt pavements containing 10-15% 

crushed glass in surface course mixtures. 4.75mm is the maximum size commonly 

accepted considering a range of engineering properties including safety issues (skin 

cut, tyre puncture) for that application. Anti-strip agent, typically 2% hydrated lime, is 

added to retain the stripping resistance. Glass particles in asphalt of higher content 

and larger size are reported to have led to a number of problems, particularly low 

friction and bonding strength, therefore are considered more suitable for use in lower 

courses. In practice, the same manufacturing equipment and paving method as 

designed for conventional asphalt can be used for the ‘Glasphalt’ (CWC 1996; FHWA 

1997; Maupin 1997; Maupin 1998; Su and Chen 2002; Airey, Collop et al. 2004). 

RMC (now CEMEX) UK has been using recycled glass in DBM for binder course 

and base, with a 30% replacement rate. 20mm seems to be the maximum size of 

processed glass particles. In 2002, HMA containing 10% recycled glass sand was 

used in a pilot resurfacing project by Tarmac Situsec. Economics in these UK 

applications was reported to be ‘cost neutral’ compared with conventional asphalt 

paving (WRAP 2005). 
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2.3.2. Steel Slag 

The angular shape, hardness and roughly textured surface give steel slag the 

characteristics to substitute coarse aggregates in asphalt to deliver the mix stability 

(resistance to rutting) and skid-resistance. Collaborative research carried out by US 

Strategic Highway Research Program (SHRP) and Universities in Saudi Arabia, 

found that mix durability (resistance to moisture, fatigue) was improved where coarse 

slag aggregates were used together with limestone filler and fine aggregates, and the 

bitumen prepared with polymer modification (Bagampadde, Wahhab et al. 1998; 

Khan and Wahhab 1998). Steel slag (≥9.5mm) after 3 years of aging (7-days 

expansion below 1%) replaced 62% of basalt aggregates in SMA mixtures in China 

laboratory. Surface performance (texture, friction, etc), resistance to rutting and low 

temperature cracking were improved, as a result (Wu, Xue et al. 2006). Nottingham 

Centre for Pavement Engineering (NCPE) studied the mechanical (resistance to 

rutting, cracking) and durability (susceptibility to aging, moisture) performance of 

asphalt containing slag aggregates. When 71% coarse steel slag particles were mixed 

with 21% fine BFS aggregates in SMA surfacing, the stiffness modulus was enhanced 

compared with the control mixture made of gritstone. However, the mix density and 

susceptibility to aging also increased (Airey, Collop et al. 2004). 

 

In 1994, trial section of asphalt surfacing with 30% steel slag was laid in Oregon, 

followed by field inspection of the ride and skid performance over a period of 5 years. 

The trial section did not exhibit higher rutting and skid resistance compared to the 

control section. The report attributed the lack of measurable improvement to the low 

content and small size (6.3-12.7mm) of the slag particles, and it mentioned the 

economic disadvantage of using slag aggregates due to the increased mix density 

(implying higher transport cost) and mixing temperature (implying higher energy 

input) (Hunt and Boyle 2000). In the UK, following a 3-year investigation, TRL 

reported that BOS slag produced from main UK sources can be used in pavement 

surface where a minimum PSV of 60 is required. However, the report suggested that 

when assessing the anti-skid properties of asphalt made with slag aggregates, 

traditional PSV test should give way to ‘known in-service performance under 

comparable situations’ (TRL 2003).  
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A study conducted at the Research Association of Iron and Steel Slags (FEhS, 

Germany) confirmed that BOS slag asphalt exhibits superiority in bearing and anti-

polishing performance over asphalt made with ‘established premium aggregates’ 

(basalt, flint gravel, etc) (Motz and Geiseler 2001). The presence of free Calcium 

oxide/Magnesium oxide (CaO/MgO) in slag makes it liable to expand in humid 

condition and therefore unsuitable for use in structures vulnerable to volumetric 

expansion. The common approach to overcome this problem is to expose the slag to 

spray water or natural weathering for a period of 12-18 months (FHWA 1997; Airey, 

Collop et al. 2004). The time span could be reduced if chemical treatment can be 

performed before the slag leaves the steel plant as is the practice in Germany (Motz 

and Geiseler 2001). European standard permits the use of steel slag in asphalt 

provided the 7-days volumetric expansion is no more than 3.5% (BS EN 13043 2002). 

Leaching is one of the main environmental concerns over the use of secondary 

materials in roads (Mroueh, Eskola et al. 2001). Research at FEhS has identified pH-

value, electrical conductivity and Chromium concentration in the leachate as the main 

concerns for using slag aggregates (Motz and Geiseler 2001).  

 

2.3.3. Waste Tyre 

Generally, there are two distinct approaches to using recycled tyre rubber in asphalt. 

One is to dissolve crumb rubber in the bitumen as binder modifier, the other to replace 

a portion of fine aggregates with ground rubber that is not fully reacted with the 

bitumen. These are referred to as the ‘wet process’ and the ‘dry process’, respectively. 

Modified binder from the ‘wet process’ is termed ‘asphalt rubber’; asphalt made by 

the ‘dry process’ is ‘rubberised asphalt’ (FHWA 1997).  

 

2.3.3.1. The Wet Process 

In the wet process, crumb rubber (0.15-0.6mm) is blended with bitumen, usually in 

the range of 18-22% bitumen weight, for a minimum of 45 minutes at elevated 

temperatures prior to contact with aggregates (Hicks 2002). Light fractions of bitumen 

transfer into the rubber making the rubber particles swell and the bitumen harden. The 

binder viscosity is increased allowing for higher bitumen usage, which in theory can 

help reduce top-down thermal cracking and bottom-up reflective cracking, and 

improve the mix durability (resistance to moisture, oxidation and fatigue, etc). 
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The modification effect can be influenced by a number of factors including the base 

bitumen composition, blending time and temperature, volume and gradation of crumb 

rubber, and the grinding method (FHWA 1997; West, Page et al. 1998). These 

variables were studied following the SUPERPAVE (SUperior PERforming asphalt 

PAVEment) method at NCPE and US Texas DOT (Department of Transportation) 

(Texas DOT 2000; Airey, Rahman et al. 2003). FHWA believed that rubber particles 

in the ‘wet process’ will reduce the resilient modulus of the asphalt mixture, and 

therefore its resistance to permanent deformation (FHWA 1997). The opposite was 

observed in Brazil and India where the asphalt rubber mixture had lower rutting 

potential because of higher stiffness and tensile strength at high temperatures 

(Bertollo, Bernucci et al. 2004; Palit, Reddy et al. 2004). A study at Kansas State 

University (KSU) found that an 18-22% of rubber content was optimum for the low 

temperature performance of asphalt, and that a change within this range was less 

significant in affecting the tensile and fracture performance of asphalt than varying 

the binder content between 6-9% (Hossain, Swartz et al. 1999). This was confirmed 

by study at Arizona State University (ASU) that longer fatigue life of the asphalt 

rubber mixture was largely due to the higher binder content (Zborowski, Sotil et al. 

2004). The University of Liverpool had the permissible rubber (0.3-0.6mm) content 

set at 10% of the binder made of pen-50 or pen-100 bitumen. Resistance to rutting, 

fracture and fatigue was increased as a result (Khalid and Artamendi 2006). 

 

Some projects have revealed problems from the use of asphalt rubber in road surface. 

Bleeding and loss of coarse aggregates were observed on a Virginia SAM (stress 

absorbing membrane) trial section where the surface treatment contained 20% crumb 

rubber in the binder. The SAM did not hinder reflective cracking as expected (Maupin 

and Payne 1997). A chip seal (or surface dressing) project in Iowa indicated that the 

use of asphalt rubber reduced the friction of the finished surface (Iowa DOT 2002). A 

project in Texas indicated that OGFC represented the best application for asphalt 

rubber in terms of cost, resistance to cracking and ravelling (Tahmoressi 2001). NCPE 

suggested that asphalt rubber should not be used together with polymer modified 

bitumen (PMB), because the PMB-rubber interaction compromised the rheological 

properties of the aged binder and as a result, the durability of the asphalt mixtures 

(Airey, Singleton et al. 2002). 
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The design method for conventional HMA can be used for asphalt rubber mixtures, 

with mix stability being the primary design factor. A rule of thumb is that if 20% 

crumb rubber is used in the binder, the binder content would be 20% higher than 

unmodified. The binder content is recommended even higher in spray applications, 

for instance, 45% higher in stress absorbing membrane interlayer (SAMI) than that 

required for conventional asphalt (FHWA 1997). Placement of asphalt rubber 

mixtures can be carried out using standard paving machinery except for pneumatic 

tyre rollers as asphalt rubber will stick onto the roller tyres under paving temperatures 

(Epps 1994). The main concerns include the narrowed paving temperature window 

(e.g. no laying with ambient temperature below 13ºC), and potential toxic emissions 

(Hicks 2002). 

 

Noise studies at Rubber Pavements Association (RPA) found that the use of tyre 

rubber in open-graded mixture reduced the tyre noise by at least 50% (RPA 2006). 

Rubber particles of multiple sizes were believed to have a better sound absorbing 

effect in spray applications (Zhu and Carlson 1999). A study by Emery demonstrated 

that by 1995 there was no such sign that mixing and paving asphalt rubber materials 

impose additional environmental burdens than conventional asphalt (Emery 1995). A 

more recent leaching test at Oregon State University (OSU) came to a different 

conclusion that about 50% of leachate contaminants from asphalt rubber mixtures 

were released into surface and ground water system within the first few days after 

laying, with 1,3-benzothiazole, Aluminium (Al) and Mercury (Hg) being detected at 

potentially harmful concentration level (Azizian, Nelson et al. 2003). 

 

Projects in the late 1980s showed that asphalt rubber in dense-graded mixtures helped 

reduce the asphalt layer thickness by 20-50% without compromising the pavement 

performance (Kirk 1991). The potential for thickness reduction was confirmed by 

accelerated load testing (ALT) at University of California Berkeley and South Africa 

(Hicks 2002). Another benefit of using asphalt rubber is believed to prolong the 

pavement life. A project in Brazil having 15% rubber in HMA overlay binder found 

that cracking was developed 5-6 times slower than in conventional asphalt; and the 

asphalt rubber mixture outperformed in surface deflection, interface strain and rut 

depth (Nunez, Ceratti et al. 2005). Similarly, binder of 15% rubber (size of 
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0.2/0.4/0.6mm) was used in dense-graded asphalt in Japan. The mixtures exhibited 

improved performance in dynamic stability, 48-hours residual stability, flexural 

strength and strain value. Asphalt containing 0.2/0.4mm-sized rubber in particular 

provided the best laboratory results (Souza, Himeno et al. 2005). 

 

On the other hand, FHWA stated that the production of crumb rubber modified 

asphalt is normally 50-100% more expensive than producing conventional asphalt 

(FHWA 1997). Practice by individual State DOT revealed a range of cost increase, 

presented by different means: 21% in Colorado (Harmelink 1999), 50-100% in 

Virginia (Maupin 1996), 25-75% for gap-graded and 80-160% for open-graded in 

Arizona (Way 1998), $10-15/tonne in Oregon (Hicks 2002), $16/tonne in California 

(Caltrans 2003), to name but a few. However, life cycle cost analysis (LCCA) was 

recommended by all practitioners for assessing the cost effectiveness of the use of 

asphalt rubber, taking an analysis period of 30-40 years including the maintenance 

and road users’ cost. LCCA was conducted at ASU and OSU using the World Bank’s 

Highway Development and Management model (HDM-4) and the FHWA’s LCCA 

method (FHWA 1998), respectively. According to their results, the use of asphalt 

rubber was ‘cost effective’. Meanwhile, both studies recognised that the results 

depend on many input variables which need to be studied on an individual basis 

(Hicks and Epps 2000; Jung, Kaloush et al. 2002). 

 

2.3.3.2. The Dry Process 

In the dry process, ground rubber (0.85-6.4mm) substitutes for fine aggregates in the 

asphalt, typically at a 1-3% replacement rate. 

 

Asphalt properties of particular interest in the dry process include resilient modulus 

and noise. Where there was a 10-20% increase of binder content required for 

rubberised asphalt, the resilient modulus was reduced implying the need for an 

increase of layer thickness, compared with conventional mixtures (FHWA 1997). 

Other laboratory results showed a reduction of permanent deformation (Reyes, Reyes 

et al. 2005; Selim, Muniandy et al. 2005). Acoustic analysis and field measurement 

confirmed that rubberised asphalt paving is effective in reducing traffic noise from 

light-duty vehicles (Sacramento County 1999). A leaching test indicated that by 
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replacing gravel of comparable size with rubber in the drainage layer, the nitrate 

concentration of leachate into ground water was reduced by more than half in sand-

based root zones (typically seen in sports and recreation fields) (Lisi, Park et al. 2004). 

 

The design method for conventional mixtures can be applied to rubberised asphalt 

containing 1-3% ground rubber particles. A target air void of 2-4% is the primary 

design factor (FHWA 1997). Both the time and temperature at which the bitumen 

reacts with rubber particles need to be controlled with care, to retain the physical 

shape and rigidity required for the dry process. A project in Turkey found that when 

Marshall stability, flow, VMA (voids in the mineral aggregate), unit weight and VFA 

(voids filled with asphalt) all were taken into consideration, the optimum technical 

parameters were: 0.95mm for tyre rubber gradation, 10% for tyre rubber ratio, 5.5% 

for binder ratio, 155ºC for mixing temperature, 15min for mixing time and 135ºC for 

compaction temperature (Tortum, Celik et al. 2005). However, rubberised asphalt 

generally does not show significantly improved performance to offset the additional 

cost (FHWA 1997; Hunt 2002). 

 

2.3.3.3. Other Applications in Pavement Structure 

Tyre shreds have applications in the foundation of roads. Compared with compacted 

soil, tyre rubber is of: 1) light weight, 2) low thermal conductivity, 3) high hydraulic 

conductivity and, 4) high shear strength at large strains. Leaching potential seems to 

be the main concern. ASTM-D6270 and EN12457 procedures are followed in the 

States and Europe, respectively, to measure and characterise the leachate. Constituent 

analysis of tyre sample indicated that although it contained leachable hydrocarbons 

(e.g. PAH), heavy metals (e.g. zinc) and respiratory dust, the released concentration 

was not of a concern to human health or surrounding environment under normal 

operating conditions (open air, neutral pH value, etc) (Edeskar 2004). Tyre rubber 

used in lower pavement layers can help reduce the depth of frost penetration in winter 

time. Processing of scrap tyres has a by-product: waste fibre, which was added into 

SMA mixtures to prevent the ‘drain down’ of bitumen from aggregates, where 

stabilising additives such as cellulose or mineral fibre are commonly used (Putman 

and Amirkhanian 2004). The EcoLanes project under EU Framework Program 6 (FP6) 

is looking at the use of steel fibres recovered from shredded tyres in roller compacted 
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concrete (RCC), with both laboratory works and demonstration projects planned 

ahead in 2007-2009 (EcoLanes 2007). 

 

2.3.4. Plastics 

Similar to tyre rubber, recycled plastics can either replace a portion of aggregates, or 

serve as a binder modifier in the asphalt. DBM with recycled plastics, mainly low 

density polyethylene (LDPE) replacing 30% of 2.36-5mm aggregates, reduced the 

mix density by 16% and showed a 250% increase of Marshall stability; indirect 

tensile strength (ITS) was also improved in the ‘Plastiphalt’ mixtures (Zoorob and 

Suparma 2000). Recycled LDPE of a size between 0.30-0.92mm replacing 15% 

aggregates in asphalt surfacing nearly doubled the Marshall quotient, and increased 

the stability retained (SR) by 15%, implying higher resistance to rutting and water 

ingress. A 20% increase of binder content was required in this case (Qadir and Imam 

2005). The blending of recycled LDPE to asphalt mixtures required no modification 

to existing plant facilities or technology (FHWA 1997). Flexural behaviour of asphalt 

containing recycled plastics (polyvinyl chloride-PVC bottle) was studied. Bending 

strength was increased by adding 2-6% of the mixture weight of plastic particles; 

further investigation was suggested to depict a curve of the ‘bending strength against 

plastics content’ (Ergun, Iyinam et al. 2005). Recycled plastics (PE film) used at 0.4% 

of mixture weight (or about 8% of binder weight) as bitumen modifier, increased the 

Marshall stability before and after water logging (60ºC, 24hrs) by 3.3 and 2.6 times, 

respectively (Justo and Veeraragavan 2002). 

 

2.4. Environmental Impacts of Recycling in Asphalt Pavements 

Environmental impacts of using recycled and secondary materials in roads have two 

aspects. One is the energy used to transport and process the waste into desired 

properties; the other is the impact (e.g. leaching) on the environment from those 

materials in place. Evaluation of these impacts in Nordic countries has extended the 

view from merely studying the leaching behaviour to a wide spectrum of 

environmental items and in longer time span, consistent with the LCA approach (Roth 

and Eklund 2003; Petkovic, Engelsen et al. 2004). Nevertheless, energy use and CO2 

emissions are studied more than other impacts, for global warming (climate change) 

causes the most concern, and energy use usually a good indicator of key emissions 
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(SO2, NOx, CO2, etc) (Bjorklund and Finnveden 2005). The impacts of recycling are 

also assessed against such factors as leaching, quarry saving, and diversion of waste 

from landfill. 

 

For instance, LCA on the use of MSWI (municipal solid waste incinerator) bottom 

ash replacing crushed stones in the sub-base indicated that while energy use and 

emissions in construction stage were reduced, leaching was still a risk, and the LCA 

results were sensitive to transport distance and the conditions that affect the leaching 

behaviour (nature of recycled materials, previous treatment, liquid to solid (L/S) ratio 

and pH value, etc) (Birgisdottir, Pihl et al. 2006; Olsson, Karrman et al. 2006). 

 

2.4.1. Energy Use and Emissions 

Recycling can save energy, and consequently the CO2 emissions. This is more 

pronounced in countries where electric power is generated from thermal power (fossil 

fuels) plants (Pimenteira, Pereira et al. 2004). However, from a life time perspective, 

the operational energy needs, maintenance requirements and recycling potential of the 

products all need to be considered, rather than merely the energy input at construction 

stage (Thormark 2006). The UK Institution of Civil Engineers (ICE) suggests that 

CO2 be adopted as the measure of resource efficiency when assessing the different 

waste management options (ICE 2006). Results from energy analysis speak more 

favour of close-loop recycling than alternative use such as aggregates. A case study of 

waste glass for example, carried out at University of Southampton indicated that 

returning cullet to glass furnace can reduce energy input by up to 6.6-8.4%, while use 

as aggregates gives a rise of that energy input by 4.5% (Dacombe, Krivtsov et al. 

2004). A study at Manchester Metropolitan University showed a 4-5GJ/tonne energy 

saving with closed-loop recycling, compared to a saving of 70MJ/tonne when used for 

construction aggregates (Butler and Hooper 2005). The figure is close to a previous 

LCA study of glass at Loughborough University in which an energy reduction (the 

furnace temperature in glass manufacturing was lower than melting virgin materials) 

of 3.3-3.7GJ/tonne glass was observed in close-loop recycling (Edwards and 

Schelling 1999). 
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Glass for recycling is normally collected from bottle banks, after consumer transport 

(kerbside collection) and local transport. The fuel consumption for the two stages of 

transport was estimated at 0.25MJ petrol and 0.15MJ diesel per kg glass, respectively. 

The underlying assumption was that the glass is the only waste carried in both 

transport. If other waste (e.g. aluminium, paper, plastics) are included, the fuel 

consumption allocated to glass is expected to be less than the above (Edwards and 

Schelling 1999). 

 

Relevant publications normally consider specific environmental loadings of the 

recycling applications. For instance, research at TGCE-LCPC (Division for Civil 

Engineering and Environmental Technologies, the French Public Works Research 

Laboratory) studied the emissions of VOC, PAH and odour from laying asphalt 

containing 10-30% of RAP. Results saw the emissions of VOC and PAH increased 

with the recycling rate, while the odour emission decreased (Jullien, Moneron et al. 

2006). Over 100 compounds emitted from bitumen were measured at Auburn 

University from 23 PG (paving-grade) bitumen sources throughout the US under 

varying temperatures. Emissions from production and placement of HMA under 

170ºC were found well below the occupational exposure levels (OELs). The 

concentration and speciation of emissions increased with the operating temperature; 

VOC and PAH became of major concern when it exceeded 190ºC (Lange 2006). 

Exposure to vapours and aerosols of bitumen was examined across bitumen-related 

industries (road paving, roofing, etc) in Germany. The similar temperature 

dependency was found, for the emissions level at 180ºC or below (Ruhl 2006). 

 

2.4.2. Leaching 

University of Nottingham concluded that besides materials characterisation, a number 

of factors have effect on the leaching behaviour of materials in road structure, such as 

the level of compaction, binder type, pH value and moisture content of the 

surrounding environment, etc (Hill, Dawson et al. 2001) (see Figure2-1). Static, or the 

less time consuming dynamic, leach test was carried out at Shell Research and 

Technology Centre Amsterdam to measure the aqueous concentration of PAH from 

the leachate of road asphalt. The PAH level was found well below the EEC’s 

(European Economic Community’s) limit on surface and potable water (Brandt and 
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Groot 2001). Similarly, very little amount of heavy metals was detected in the leach 

test by Lulea University of Technology on natural aggregates (Tossavainen and 

Forssberg 1999). Bitumen emulsion was used in the Czech Republic for its stabilising 

effect as a barrier against the leaching of certain heavy metals (e.g. Ni, Cd) from 

industrial solid waste (Sild, Vondruska et al. 2004). The retention capacity of Lead 

(Pb) was found 3-10 times higher than normal along highway corridors in Canada, 

although the Pb’s mobility in highway soils was restricted mainly to the top 0.3m (Li 

2006). 

 

 

Figure 2-1 Factors That Affect Leaching from Materials in Roads 

 

Some recycled materials, when used as aggregates in roads, may cause excess 

leaching into soil and ground water. Batch and column leach tests were carried out at 

LCPC on samples of asphalt containing RAP. It was found that the concentration of 

PAH and heavy metals were influenced by such factors as the grain size of RAP and 

the flow rate of percolating water. This was confirmed by field test of asphalt samples 

containing 10% and 20% of RAP (Legret, Odie et al. 2005). Chromium (Cr) and 

Vanadium (V) were of concern when BOS slag was used as road aggregates in France, 

with the V being in more toxic form and more mobile during natural aging (Chaurand, 

Rose et al. 2006). Leaching of heavy metals from asphalt containing recycled rubber 

increased at high temperature or low pH value, but generally below detrimental level 

(Vashisth, Lee et al. 1998), except for Hg which in OSU’s study was released in 

potentially harmful amounts (Mohammad, Nelson et al. 2003). 
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Most leaching studies so far were focused on the MSWI bottom ash. Generally, 

MSWI bottom ash was assessed as ‘environmentally safe’ in road structure with 

regard to the leaching potential (Bruder-Hubscher, Lagarde et al. 2001; D'Andrea, 

Bonora et al. 2004). According to DTU (Technical University of Denmark), the 

leaching of Copper (Cu), Cadmium (Cd), Pb, and Zinc (Zn) was higher than control 

concrete where MSWI bottom ash was used in base layer (Cai, Bager et al. 2004). 

Compared with gravel by Lulea University of Technology, MSWI bottom ash in road 

fills beneath asphalt or granular layers led to higher loads of Cu, Cr and Chloride (Cl) 

in the leachate; and the L/S ratio and pH value were attested the conditions that 

dictate the materials’ leaching behaviour (Aberg, Kumpiene et al. 2006; Ecke and 

Aberg 2006). An array of treatment was tried in Belgium to reduce the concentration 

of Sb, Mo and Cu (assessed as critical substances) in the leachate from granular layers 

containing MSWI bottom ash including washing, heating and carbonation, with mixed 

effect on the leaching of those substances (Gerven, Keer et al. 2005). 

 

2.4.3. Environmental Impacts for LCA Study of Asphalt Pavements 

Environmental impacts selected for analysis in this LCA model are limited to a few 

categories as listed in Table2-2. This selection is based on the findings of previous 

LCA studies concerning the significance of the many environmental impacts involved 

in the life time of asphalt pavements (Mroueh, Eskola et al. 2001; Stripple 2005), the 

key pollutants listed in UK’s Air Quality Strategy (DETR 2000), as well as the 

availability of data. 

 

Table 2-2 Environmental Impacts of Asphalt Pavement Construction 

Materials 
resources 

Crushed stone (coarse aggregates), Gravel/Sand (fine aggregates), 
Limestone filler, Bitumen (paving grade, foamed, emulsified), 
Recycled materials (RAP, glass, plastics, tyre rubber, steel slag, 
etc), Water1 

Environmental 
inputs 

Energy 
resources2 

Electricity, Natural gas, Petroleum products (LPG, diesel, heating 
oil, etc), Coal, Renewable energy (biomass fuel, nuclear, hydro, 
wind, etc) 

Emissions to 
air 

SO2, NOx (total of NO and NO2), CO, CO2, HC (hydrocarbons), 
CH4, NMVOC (non-methane VOC), N2O, Particulate, NH3, Heavy 
metals3 

Discharges 
to water 

BOD (biological oxygen demand), COD (chemical oxygen 
demand), Phosphate, Nitrate, Nitrogen total, HC (hydrocarbons), 
Oil, Heavy metals3, Chloride, Sulphate 

Environmental 
outputs 

Products and 
wastes 

Asphalt pavement surface, Solid wastes (Inert, Hazardous) 
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Notes: 

1. Water is not normally represented in the building blocks of pavement structures 

except for the concrete at 150-230kg/m3 (Deng and Huang 2001). When recycled 

materials are involved, water use might become significant due to the consumption in 

recycling process. 

2. Petroleum, natural gas and electricity account for 47.5%, 32.5% and 17.5%, 

respectively, of UK’s energy consumption in 2004 (DTI 2006). Energy from other 

sources, traditional (e.g. coal) or renewable (e.g. biomass fuel, nuclear, hydro, wind), 

contributes only to some 2.5% and is therefore assumed of low consumption by the 

asphalt industry. An exception is the coal which is the major type of energy input in 

cement production (Stripple 2001).  

3. Living organisms need trace amount of some heavy metals such as copper (Cu), 

manganese (Mg) and zinc (Zn). Other heavy metals are threats to human well-being 

such as mercury (Hg), lead (Pb), arsenic (As) and cadmium (Cd) (UN System-Wide 

Earthwatch 2006). When this study mentions heavy metals, it is referring to the latter 

harmful group. 

 

2.5. LCA Resources for the Asphalt Industry 

Based on previous discussion, the main tasks that UK road industry has now are to 

maintain and repair the existing road networks. The concept of design for long-life 

pavements in the light of resource efficiency (materials, energy, etc) and the 

requirement for speed repair would make road works in the future confined to the top 

few layers of pavements only (TRL 2005). Recycled and secondary materials are 

increasingly used in new or rehabilitated pavement structures. An operating LCA 

model shall therefore reflect the maintenance and recycling in roadwork; and data 

specific to UK road industry are preferred. An ideal LCA model represents all the 

significant environmental impacts of asphalt pavement through its entire life time. On 

the other hand, to keep the amount of work manageable, a boundary needs to be set up, 

and assumptions made to informed users and audience. In summary, a working LCA 

model should be: 

 

� Internationally recognised, including the methodology and supporting database; 

� Populated with relevant and up-to-date data; 



Page 28 of 173 

� Having as many as possible variables represented in the road practice; 

� Easy to use and understand by industry; 

� Flexible for data revision and model development in the future. 

 

2.5.1. Previous LCA Models and Databases 

US Environmental Protection Agency (EPA) is hosting an index of LCA resources 

worldwide including books and journals, websites and conference proceedings, 

software and databases, and case studies since 1998 (EPA 2007). EPA’s pilot study in 

the late 1990’s demonstrated that LCA can help select the environmentally preferable 

method for asphalt pavement treatment, even on a tight budget and time schedule 

(Schenck 2000). A hybrid I-O (input-output) model was used in Japan looking at the 

life cycle emissions of CO2 from a motorway covering both the construction and 

operation stage (Inamura 1999). The potential values of ‘generic data sets’, 

‘technology assessment’ and ‘marketing’ are viewed by the cement industry as ‘high’ 

or ‘mid-high’ in using LCA (WBCSD 2002). In addition to compliance with the 

standards (the BS EN ISO14040 series), a practical LCA study must also be supported 

by good quality data, which normally come from LCA databases or previous studies. 

 

In 1993-1995 IVL (Swedish Environmental Research Institute) developed the first of 

its kind LCI model of road construction and maintenance for Swedish National Road 

Administration. The 2nd version was released in 2001 (Stripple 2001). A LCI study 

focused on asphalt pavements, including the use of recycled materials (RAP), was 

initiated in 1998 by EAPA (European Asphalt Pavement Association) and Eurobitume. 

IVL was commissioned to carry out the project. The 3rd draft was released in 2005 

(Stripple 2005). Meanwhile, Eurobitume in 1997-1999 carried out a partial LCI study 

on bitumen (straight run, paving grade 50/70), covering the life period from crude oil 

extraction to refinery deposit (Eurobitume 1999). VTT (Technical Research Centre of 

Finland) published in 1996 a comparative LCA study on environmental impacts of 

asphalt and concrete pavements (Hakkinen and Makela 1996). Later in 2001 a LCA 

model was developed by VTT for Finnish National Road Administration addressing 

the use of industrial by-products (coal fly ash, blast furnace slag, etc) in roads 

(Mroueh, Eskola et al. 2001). In 2005, a LCA model of road construction including 

the use of MSWI bottom ash was developed by DTU (Technical University of 
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Denmark) (Birgisdottir 2005). In the UK, BRE (Building Research Establishment) 

published the ‘Environmental Profiles’ in 1998 providing a database on 

environmental performance of building materials and products, as well as the 

methodology for applying LCA to the construction sector (Howard, Edwards et al. 

1999). More details of relevant LCA models including the strength and weakness of 

each are described below: 

 

� BEES (Building for Environmental and Economic Sustainability) model, 

developed by National Institute of Standards and Technology (NIST), USA. It 

measures the economic and environmental performance of building products 

following the ISO14040 norms. Initially designed for the entire building industry, 

it does not provide much data relevant to asphalt paving. Version 4.0 updated in 

2007, together with technical manual and user guide is now available to download 

and use free of charge (NIST 2007). 

� PaLATE (Pavement Life-cycle Assessment Tool for Environmental and 

Economic Effects), a Microsoft Excel model developed by University of 

California Berkeley, USA. It takes user inputs for the design, construction and 

maintenance of pavements (materials, layer thickness, equipment use, etc), and 

presents outputs for the life cycle costs and environmental effects (energy, 

emissions, leaching, etc) (UC Berkeley 2007). 

� Life Cycle Inventory of Asphalt Pavements spreadsheet model, developed by IVL. 

It builds up the life cycle inventory of asphalt pavement object with a statement of 

the source of data selected for use; and allows input of alternative data to their 

particular project. Due to confidential restriction in the industry, it has only been 

distributed by and inside EAPA.5 

� BRE ‘Environmental Profiles’, developed in partnership with the Government and 

24 trade associations in UK’s construction sector. It aims to provide a consistent 

approach for applying LCA to, and a UK database on environmental performance 

of, building related materials and products. Similar to the BEES model above, it is 

not specific to road asphalt materials. 

� Boustead model, developed by Boustead Consulting UK Ltd. It consists of 

software and a database covering a number of materials and fuel production 

                                                 
5 Email communication with Håkan Stripple, IVL on 08 June 2004. 
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processes that enable the user to develop a life cycle inventory for a particular 

process. Boustead is a leading company in the UK specialising in emissions 

modelling for many years.6 Version5.0 is now available for purchase (Boustead 

Consulting Ltd. 2007). 

� Life Cycle Assessment of Road Construction model, developed by VTT in a two-

stage study on the applicability of using secondary materials in earthworks. It 

builds up the life cycle inventory of use of industrial by-product (coal fly ash, 

crushed concrete, blast furnace slag, etc) in roads and earth works, and compares 

with that of using natural aggregates only, with a focus on energy use and 

atmospheric emissions. 

� Road-RES model, developed with C++ programming at DTU. It is used as a tool 

to support decision making for both the road construction and disposal of bottom 

ash from municipal solid waste incinerator. Issued in 2005 containing a MSWI 

residues’ leaching profile, the model is looking to data improvement and 

application in real projects. 

 

2.5.2. Need for a New LCA Model 

There are a few important findings from those LCA studies above, which can be taken 

as a starting point for applying LCA to the road and asphalt industry. These findings 

include: 

 

� Environmental loadings of asphalt and concrete materials vary considerably 

depending on the bitumen and cement content, respectively, as the bitumen and 

cement production are the energy intensive processes in the construction stage; 

� Transport is an important variable with significant influence on the LCA results, 

particularly where recycled materials are involved. The break-even point, whether 

the recycling saves energy and CO2, is often sensitive to the transport distance and 

fuel efficiency during the waste collection; 

� Environmental loadings that are assessed as being significant in a pavement 

project, particularly when recycled materials are involved (see Table2-2); 

                                                 
6 Personal communication with Professor Tom Donnelly, Newcastle University on 27 April 2005. 
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� As a whole, emissions and energy use by traffic vehicles on the road represent the 

majority of the total environmental loadings from a road, compared to materials 

production, transport, placement and maintenance. 

 

Nevertheless, the problems of simply applying one or another of those LCA models to 

the UK road sector are summarised in Table2-3 (Huang, Bird et al. 2006). 

 

I. Low relevance to the road and asphalt industry; 

II. Data from non-UK sources may not comply with the UK’s industry average; 

III. Some data are quite old, and the underlying assumptions and calculation formulas 

not clearly stated; 

IV. The models above are normally focused on one or a few environmental impacts, 

such as energy and air emissions in the VTT model, leaching in the DTU model; 

V. The inclusion of recycled materials are varied, but generally limited (e.g. RAP in 

the IVL model, MSWI bottom ash in the DTU model); 

VI. Some models are not accessible, due to commercial restriction. 

 

Table 2-3 Summary of Relevant LCA Models 

Model/Database Sector Origin 
Year of 

Release 

Recycled 

Material 
Accessibility Limitation

1
 

BEES Construction 
NIST, 
USA 

Current 
version: 
4.0 

 Free I, II 

Boustead Transport 
Boustead 
Consulting 
Ltd, UK 

Current 
version: 
5.0 

 Commercial I 

BRE 
Environmental 
Profiles 

Construction BRE, UK 
Data 
updated 
to: 2004 

 Free I 

LCI of Asphalt 
Pavements 

Asphalt 
pavements 

IVL, 
Sweden 

Draft3: 
2005 

RAP 
EAPA 
internal use 

II, V, VI 

LCI of Road Road 
VTT, 
Finland 

2001 
BFS, 
CFA 

No access by 
public 

II, , IV, V, 
VI 

PaLATE Pavements 
UC 
Berkeley, 
USA 

Unknown Unknown 
No access by 
public 

II, VI 

Road-RES Road 
DTU, 
Denmark 

2005 IBA 
PhD thesis at 
DTU 

II, IV, V 

Note: Limitation refers to the text above. 
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2.6. Summary of Literature Review 

The use of waste glass, steel slag, tyre rubber and plastics in asphalt layers have been 

reviewed in this Chapter. Their availability for use, satisfactory performance in roads 

and at what content these performance was observed, are confirmed. These will help 

define the asphalt recipe, an important pavement parameter that needs to be brought 

into the LCA model. Also reviewed are the key environmental impacts of using 

recycled materials in roads and asphalt. These will help keep the life cycle inventory 

analysis (LCI) within manageable amount. It can be argued, after the review of 

existing and developing LCA resources, that there is nothing suitable to meet the 

needs of UK road industry available on the market, which justifies the need for 

developing a new LCA model. 
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Chapter 3 : LCA Model Development 

 

In this Chapter, the unit processes in asphalt pavement construction will be defined. 

They make the units in the LCA model for which data will be obtained, from site 

engineers as well as literatures, and analysed. Following the ISO14040 guidelines 

described briefly in Chapter1, an LCA model is developed, based on the review of 

environmental impacts in Chapter2, to measure and present the key environmental 

loadings in an input-output inventory, and interpret the results by assigning them to, 

and characterising in predefined impact categories. This is followed by a discussion of 

the scope of this LCA model and what further work is needed. 

 

3.1. Unit Processes in Asphalt Pavement Project 

Depending on the nature and deliverables, asphalt pavement projects differ from one 

another in terms of materials and equipment use, transport and placement method. 

The construction and maintenance of asphalt pavements can be characterised having 

the following processes (waste glass taken as an example of secondary aggregates). 

 

 

Figure 3-1 Construction and Maintenance of Asphalt Pavements 
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3.1.1. Production of Natural Aggregates 

The common processes and machinery involved in quarrying aggregates are described 

by Quarry Products Association (QPA). Rock in a quarry is blasted from the working 

face (about 15,000t each time) with explosives, transported by truck or conveyor to 

crushing equipment where it is crushed and sieved into a range of sizes (with noise 

and dust control) to clients’ needs. Sand and gravel sites are excavated from deposits 

in river valleys, usually by simple excavation. Action of the river has often done the 

grading, so particles tend to be of more similar size, and less crushing and sieving are 

required. However, crushed rocks from quarry are preferred by the road industry, due 

to their angular shape which provides higher friction and bonding with the bitumen. In 

addition to land quarries, marine dredging provides significant proportion of Britain’s 

sand and gravel supplies (QPA 2007). 

 

 

Figure 3-2 Production of Natural Aggregates for Use in Asphalt Production 
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Figure 3-3 Production of Bitumen for Use in Asphalt Production 

 

3.1.3. Production of Recycled and Secondary Aggregates (glass for example) 

Waste glass is obtained through kerbside collection, bottle banks and commercial 

collection. Contaminants are removed before the glass is crushed to the required size 

for use as aggregates in asphalt. Waste glass for close-loop recycling (re-melt glass 

cullet and feed to glass making furnace) has more technical restriction such as colour 

sorting and impurity content (Hopkins and Foster 2003; Letsrecycle.com 2006). 

Energy data on thermal recycling of glass is available in the BUWAL250 database in 

SimaPro7 (PRe Consultants 2006). Depending on the goal and scope, the LCA study 

can include the environmental impacts of waste glass further upstream to raw 

materials acquisition for glass making. 

 

 

Figure 3-4 Production of Glass Aggregates 
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Figure 3-5 Life Cycle of Glass 
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recycling (Read and Whiteoak 2003; Wirtgen 2004; REAL 2006). 
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Figure 3-6 Production of Asphalt Rubber 

 

3.1.5. Production of Asphalt 

Aggregates are dried and heated before mixing with bitumen, in a batch or drum mix 

plant. Recycled aggregates (RAP, glass, etc) can be added providing the grading and 

binder content will meet the specification for use. Bitumen emulsion and foamed 

bitumen are able to mix with the natural or recycled aggregates without heating them 

(Read and Whiteoak 2003). 

 

 

Figure 3-7 Production of Hot and Cold Mix Asphalt 
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and, 4) be milled and sent to landfill. This is followed by laying and rolling fresh 

asphalt materials at controlled temperature (TRL 2005). 

 

 

Figure 3-8 Treatment of Pavement Surface and Placement of Asphalt 
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Another type of pavement maintenance is the overlay of asphalt mixtures on existing 

concrete surface. Fractured concrete slab is broken by some breaker equipment (saw 

cutting first in the case of reinforced concrete pavements), compacted with pneumatic 

tyre roller, and then applied with the asphalt overlay. The broken concrete layer then 

will serve as the base or sub-base in the rehabilitated pavement structure, depending 

on its condition at the time of maintenance. In projects, where the concrete slab 

remains intact, an interlayer (e.g. stress absorbing membrane interlayer, SAMI) will 

be applied before laying the asphalt overlay. Alternatively, the ‘saw cut and seal’ 

treatment can be carried out on the asphalt overlay. Reflective cracking is a pavement 

defect commonly seen in asphalt overlaying concrete surface. The treatment 

categories and guidance, and machinery use are described in TRL report (TRL 2006). 

 

 

Figure 3-9 Laying Asphalt Overlays on Concrete Surface 
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In pavement maintenance, crack sealing or crack filling may be applied to cracks of 3-

25mm wide. The sealing or filling materials can be applied hot such as PMB and 

asphalt rubber, or they can be applied cold like bitumen emulsion. If the cracks are 

less than 3mm wide, chip seal or slurry seal applies and if greater than 25mm, 

structural maintenance (patching or even full depth reconstruction) will be required 

(Lavin 2003). The processes and materials involved in maintenance and repair works 

are the same as placement of new layers, which are described above. The difference is 

that maintenance and repair works are carried out on existing roads, usually leading to 

land closure or diversion of traffic. This will cause additional fuel consumption and 

emissions from the traffic as a consequence, which are measured in this thesis using 

micro-simulation and traffic emissions model, and compared to those from road 

works (see Chapter5). 

 

3.2. LCA Model Description 

This section explains how the analysis of unit process in asphalt pavement projects, as 

described above, is applied in the LCA model. A Microsoft Excel spreadsheet (the 

computing tool) is developed alongside, with the calculation formulas in it described 

in more details in Appendix3. 

 

3.2.1. Overview of the Model 

Microsoft’s spreadsheet, Excel, is a flexible computing tool that offers opportunities 

for modelling and graphic presentation. Also it is a widespread program that can be 

found on most computers therefore no need for investment in bespoke software. It is 

selected for calculating and presenting the LCI in this model. 

 

This LCA model contains 5 worksheets: ‘process parameters’, ‘pavement parameters’, 

‘energy and emissions inventory’, ‘inventory results’ and ‘characterisation results’. 

Data in the ‘process parameters’ and ‘pavement parameters’ are primary inputs and 

likely to change between different pavement projects. Worksheet ‘energy and 

emissions inventory’ contains formulas and presents the life cycle inventory of unit 

process. The results of the calculation for each pavement project are shown in the 

‘inventory results’ worksheet. For impact assessment, the inventory results are 

characterised; the characterisation model and factors can be found in the 
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‘characterisation results’ worksheet. Data in these worksheets are linked by 

calculation formulas. For instance, when energy data on a pavement process are 

altered, the inventory and characterisation results change accordingly. Only primary 

input data can be changed manually, others can not without changing the underlying 

calculation formulas. Data are provided alongside the statement of their source. 

 

Table 3-1 Structure of the LCA Model 

Worksheet Description Sub-worksheet 

Process Parameters 

Data on transport distance and fuel 
efficiency, energy consumption of unit 
processes in a pavement project 

‘Energy in transport’ 
‘Energy in materials production’ 
‘Energy in pavement construction’ 
‘Transport distance’ 

Pavement 

Parameters 

Data on pavement dimension and 
materials recipe, determine the materials 
tonnage in a pavement project 

‘Pavement dimension’ 
‘Materials recipe’ 
‘Pavement life time’ 

Energy and 

Emissions Inventory 

Inventory data available for ‘primary’ 
processes are presented. LCI figures for 
unit operation of transport, materials 
production and pavement construction 
are calculated with formulas 

‘Energy production’ 
‘Combustion of fossil fuel’ 
‘Transport vehicle operation’ 
‘Construction vehicle operation’ 

Inventory Results 

LCI data on ‘energy and emissions’ are 
aggregated into the unit of the pavement 
project 

‘Production process’ 
‘Transport process’ 
‘Construction process’ 

Characterisation 

Results 

LCI results assigned to defined impact 
categories, characterised by selected 
model and presented by category 
indicators 

‘Global warming’ 
‘Acidification’ 
‘Photo-oxidant formation’ 
‘Human toxicity’ 
‘Eco-toxicity’ 
‘Eutrophication’ 

 

Considering the features of a road project, the way the model is structured is for the 

purpose of convenient use, and in accordance with the ISO14044 (ISO 14044 2006). 

The units of calculation are presented in Figure3-10. 
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Figure 3-10 Structure of LCA Model and Procedures for Inventory Analysis 
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3.2.2. Process Parameters 

The ‘process parameters’ worksheet includes data on transport distance (km), fuel 

efficiency in transport (litre/km or litre/km*tonne) and energy consumption per unit of 

materials production (MJ/tonne) and construction (MJ/m2) in a pavement project. 

Energy data include both the amount and breakdown of energy types. Parameters can 

be grouped into sub-worksheets of ‘energy in materials production’, ‘energy in 

transport’ and ‘energy in pavement construction’. 

 

A group of calorific values are fixed in the model for converting the volume of 

combusted fossil fuels into universal energy unit (MJ): 

 

Table 3-2 Calorific Values of Fossil Fuels (DTI 2006) 

 Electricity Diesel Heating (gas) oil LPG Natural gas Coal 

Unit MJ/kWh MJ/l (MJ/kg) MJ/l (MJ/kg) MJ/kg MJ/m3 MJ/kg 

Value 3.6 43.3 (45.6) 41.1 (46.2) 49.4 39.6 26.7 

 

Note: 

The density of diesel and gas oil is assumed to be 950g/l and 890g/l, respectively. 

 

3.2.2.1. Energy in Materials Production 

Data are presented in the unit of ‘tonne materials’. Life cycle inventories for 

production of bitumen, bitumen emulsifier and limestone filler per unit are available 

in the ‘energy and emissions inventory’ worksheet. 
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Table 3-3 Energy in Materials Production 

Materials production Unit Quantity Data source 

Production of crushed stone MJ/tonne stone 42.16 

Electricity in production MJ/tonne stone 21.19 

Diesel for vehicle/equipment operation Litre/tonne stone 0.48 

IVL, Sweden 

Extraction of sand/gravel MJ/tonne sand/gravel 27 

Electricity in excavation MJ/tonne sand/gravel 11 

Diesel for vehicle/equipment operation MJ/tonne sand/gravel 16 

IVL, Sweden 

Production of all-size aggregates
1 

MJ/tonne aggregates 41.85 

Electricity in quarry kWh/tonne aggregates 2.62 

Diesel for vehicle/equipment operation Litre/tonne aggregates 0.753 

Aggregate 
Industries Ltd. 
(AI), UK 

Production of bitumen emulsion MJ/tonne emulsion 118.0 

Electricity in emulsion plant MJ/tonne emulsion 21.2 

Combustion of heating oil MJ/tonne emulsion 96.8 

IVL, Sweden 

Production of bitumen
4 

LCI results N/A Eurobitume 

Production of emulsifier LCI results N/A 
Akzo Nobel, 
Sweden 

Production of limestone filler
5 

LCI results N/A VTT, Finland 

Production of hot mix asphalt MJ/tonne asphalt 400.8 

Electricity in asphalt plant MJ/tonne asphalt 23.56 

Combustion of heating oil in plant MJ/tonne asphalt 360 

Diesel for loading asphalt Litre/tonne asphalt 0.4 

EAPA’s BAT7 

Production of hot mix asphalt MJ/tonne asphalt 389.6 

Electricity in asphalt plant kWh/tonne asphalt 7.48 

Combustion of heating oil in plant Litre/tonne asphalt 8.39 

Diesel for loading asphalt Litre/tonne asphalt 0.5 

Aggregate 
Industries Ltd. 
(AI), UK 

Production of cold mix asphalt MJ/tonne asphalt 45.51 

Electricity in asphalt plant MJ/tonne asphalt 1.27 

Combustion of heating oil in plant MJ/tonne asphalt 5.81 

Diesel for electricity to mobile plant MJ/tonne asphalt 21.1 

Diesel for loading asphalt Litre/tonne asphalt 0.4 

IVL, Sweden 

Production of cold mix asphalt MJ/tonne asphalt 36.4 

Electricity in asphalt plant kWh/tonne asphalt 1.7 

Diesel for electricity to mobile plant Litre/tonne asphalt 0.7 

Aggregate 
Industries Ltd. 
(AI), UK 

RAP pre-processing MJ/tonne RAP 50.55 

Diesel for excavation Litre/tonne RAP 0.29 

Diesel for wheel loader transport Litre/tonne RAP 0.25 

Diesel for crushing in plant Litre/tonne RAP 0.63 

IVL, Sweden 

Production of cement
10 

MJ/tonne cement 4290.6 

Electricity in cement plant MJ/tonne cement 390 

Diesel for vehicle/equipment operation MJ/tonne cement 40.6 

Combustion of coal MJ/tonne cement 3860 

Cementa AB, 
Sweden 

Production of concrete
10 

MJ/tonne concrete 76.93 

Electricity in concrete plant MJ/tonne concrete 16.72 

Diesel for vehicle/equipment operation Litre/tonne concrete 1.39 

Cementa AB, 
Sweden 

Production of glass aggregates MJ/tonne glass 441.85  

Transport from household to recycling MJ/tonne glass 40011 Loughborough 
University 

Electricity in production kWh/tonne aggregates 2.612 

Diesel for vehicle/equipment operation Litre/tonne glass 0.7512 

Aggregate 
Industries Ltd. 
(AI), UK 

 

Notes: 
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1. Aggregates of required grading are often produced from a single quarry site, 

including coarse, fine and limestone filler components. Energy use is allocated by 

weight ratio to these components. Energy consumed in explosive production, drilling 

and blasting is excluded due to the relatively small amount (Hopkins and Foster 2003).  

2. Mean value of Greenwich plant (2.8kWh/tonne) and Durham plant (2.4kWh/tonne). 

3. Mean value of Greenwich plant (0.8Litre/tonne) and Durham plant (0.7Litre/tonne). 

4. LCI data on bitumen (straight run PG50/70) did not include pre-combustion of 

heating oil and natural gas. 40% of LCI burdens of petroleum products are allocated 

to bitumen and 60% to lighter products, again based on the assumed weight ratio 

(Stripple 2005).  

5. LCI data on limestone filler included the transport of products to asphalt plant 

(Hakkinen and Makela 1996). 

6. Mean value of 18-29MJ/tonne. 

7. EAPA’s best available techniques (BAT) (EAPA 1996). Energy data on production 

of hot mix asphalt vary significantly between countries. Table3-4 has some examples. 

 

Table 3-4 Energy Use in Hot Mix Asphalt Plant (Stripple 2005) 

 Unit 
A modern plant 
in Scandinavia 

IVL, 
Sweden 

EAPA’s 
BAT 

The 
Netherlands 

The 
UK 

Singapore 

Electricity 
MJ/tonne 
asphalt 

25.2 36 18-29 38 32 

Fuel oil 
MJ/tonne 
asphalt 

251.3 285 360 310 340 

320-390 

 

8. Mean value of Greenwich plant (7.5kWh/tonne) and Durham plant (7.3kWh/tonne). 

9. Mean value of Greenwich plant (9Litre/tonne) and Durham plant (7.6Litre/tonne). 

10. A feature of energy use in cement production is the high percent of input from 

coal combusted in clinker (about 90% of the energy input). A feature in concrete 

production is the take-up of CO2 by concrete in the carbonation process during its 

lifetime (estimated at 686g/kg cement or 274kg/m3 concrete) (Stripple 2001). 

11. 0.25MJ/kg glass (petrol) for consumer transport; 0.15MJ/kg glass (diesel) for local 

transport. 

12. Energy input for processing glass aggregates is assumed the same as processing 

natural aggregates in a quarry. 
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Data on ‘energy in materials production’ are also available from other sources, 

including US Department of Energy, National Crushed Stone Association (NCSA), 

and Canadian National Research Council (NRC), etc (Zapata and Gambatese 2005). 

Data on some recycled materials by close-loop recycling are available in SimaPro7. 

BRE methodology suggests that the environmental burdens of recycled materials from 

open-loop recycling be allocated based on the residual value of the waste stream 

compared to the value of the product stream (Howard, Edwards et al. 1999). 

 

3.2.2.2. Energy in Transport 

Data for transport distance are presented in the unit of ‘km’. Mileage and vehicles for 

transport vary between pavement projects, so does the fuel efficiency presented in 

litre/km or litre/km*tonne. In the diagram below, the ‘surface dressing’ can also 

represent processes for unbound (or granular) layers (without emulsion), or 

application of tack coat (or adhesion layer). 

 

 

Figure 3-11 Transport in Asphalt Pavement Construction 

 

When calculating the diesel consumption, transport vehicles are assumed to run at 

‘full load’ and ‘empty on return’. 
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FC (MJ/km, F+E): fuel consumption (MJ/km, full load + empty on return) 

FC (l/km, FL): fuel consumption (l/km, full load) 

FC (l/km, EL): fuel consumption (l/km, empty load) 

 

In the IVL’s study, 14t truck and 32t truck were selected for short and long distance 

transport, respectively. Also provided, was the energy for cargo transport (Stripple 

2001). In Aggregate Industries UK Ltd’s project, railway locomotive was used for 

long distance haulage of aggregates. 

 

Table 3-5 Transport Vehicle Specification and Fuel Consumption 

 Load limit 
(tonne) 

FC (l/km, 
FL) 

FC (l/km, 
EL) 

FC (MJ/t*km, 
F+E) 

Data Source 

Distribution truck 14 0.39 0.29 1.05 IVL, Sweden 

Long distance truck 32 0.47 0.29 0.51 IVL, Sweden 

Cargo ship n/a n/a n/a 0.13 IVL, Sweden 

Railway Locomotive 1729 n/a n/a 0.171 AI, UK 

 

Note: 

1. The fuel efficiency is 0.85litre/tonne for a transport of 120 miles. 

 

3.2.2.3. Energy in Pavement Construction 

Data are presented in the unit of ‘m2 surface’, except for local transport vehicles 

(wheel loader, excavator, etc). Normally, more than one figure is available for a 

process, depending on the vehicle/equipment in use in that project. Table below 

presents the available ones as an example. 
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Table 3-6 Energy in Pavement Construction 

Pavement construction Unit Quantity Data source 

Application of tack coat MJ/m
2
 applied surface 0.59 

Ramp width m 2 

Application speed km/hr 0.22 

Fuel consumption litre/hr 6 

Aggregate 
Industries Ltd. 
(AI), UK 

Application of chippings MJ/m
2
 applied surface 0.7 IVL, Sweden 

Excavation of asphalt pavement
1 Litre/m

2
 excavated 

surface 
0.35 IVL, Sweden 

Cold asphalt milling
1 

MJ/m
2
 milled surface 2.20 

Diesel for milling machine MJ/m2 1.75 

Diesel for sweeping machine MJ/m2 0.45 

IVL, Sweden 

Remixing MJ/m
2
 remixed surface 42.99 

Diesel for heater MJ/m2 0.5 

Diesel for remixer MJ/m2 1.0 

LPG for heating MJ/m2 41.49 

IVL, Sweden 

Paving
2
 MJ/m

2
 paved surface 0.71 

Width of screed m 4.9 

Laying speed m/hr 300 

Fuel consumption Litre/hr 16.87 

Diesel for paver MJ/m2 0.533 

LPG for heating screed MJ/m2 0.11 

Aggregate 
Industries Ltd. 
(AI), UK 
IVL, Sweden 

Rolling
2
 MJ/m

2
 rolled surface 0.45 

Width of roller4 m 1.7 

Rolling speed m/hr 6000 

Number of passes  6 

Fuel consumption Litre/hr 12.5 

Aggregate 
Industries Ltd. 
(AI), UK 

Slip form paver Litre/m
2
 paved surface 0.12 IVL, Sweden 

Slip form paver (base stabilisation) Litre/m
2
 stabilised surface 0.03 IVL, Sweden 

Concrete milling (12mm)1
 Litre/m

2
 milled surface 2.06 IVL, Sweden 

 

Notes: 

1. Fuel consumption varies with the depth of excavation. 

2. Effective working time is assumed 50min/hr for paver and roller. Equation below is 

used to determine the upper limit of the paver speed provided the roller speed is 

known in the laying assembly, for the sake of a quality and efficient laying (Lavin 

2003).  

 

Paver speed ≤ roller speed x 0.9 / number of roller passes 
 
3. Calculated figure. 

4. Effective rolling width is assumed 85% of the roller width. 
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3.2.3. Pavement Parameters 

The ‘pavement parameters’ worksheet includes data on pavement dimension and 

materials recipe. It contains information on materials tonnage and together with data 

in ‘process parameters’, will determine the workloads in a pavement project, for LCI 

calculation. Parameters in it can be grouped into ‘pavement dimension’, ‘materials 

recipe’ and ‘pavement life time’ as described below. 

 

3.2.3.1. Pavement Dimension 

Data include pavement surface area and layer thickness. Thick pavement layers may 

be laid and rolled in more than one pass. ‘Swelling factor’ is the ratio of materials 

volume in loose state against that in compacted state (>1), and is used for the 

calculation of transport where the truck’s loading capacity is dictated by materials 

volume, rather than weight. A value of 1.3 was used, and the asphalt density assumed 

2.3tonne/m3, in the IVL’s study (Stripple 2005). 

 

Table 3-7 Pavement Dimension 

Pavement structure Unit Surface Binder Base 

Pavement area m2 Project Specific Data (PSD) 

Pavement length m PSD 

Pavement width m PSD 

Layer thickness mm PSD PSD PSD 

Asphalt density tonne/m3 2.3 

Swelling factor  1.3 

 

Alternatively, data on asphalt tonnage can be obtained from materials supplier, as was 

in both case studies in Chapter4. 

 

3.2.3.2. Materials Recipe 

Data include materials tonnage and composition. This model is using the ‘conditional 

formatting’ which is able to warn the user of any non-logical data input, e.g. the sum 

of components tonnage (or percentage) does not equal the total weight (or 100%). 

 

Table 3-8 Hot and Cold Mix Asphalt Composition (%) 

 Crushed stone 
(coarse) 

Sand/Gravel 
(fine) 

Limestone 
filler 

Bitumen Bitumen 
emulsion 

Recycled 
(specify) 

Hot mix PSD PSD PSD PSD N/A PSD 

Cold mix PSD PSD PSD N/A PSD PSD 
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Bitumen emulsion can be applied to tack coat, chip seal, slurry seal and cold mix 

asphalt. Both the bitumen and emulsifier content vary between these applications. 

Emulsion usage in tack coat and chip seal is measured in the unit of ‘kg/m2’, whilst in 

slurry seal and cold mix asphalt, by weight ratio. Data in the table below come from 

IVL’s study (Stripple 2005). 

 

Table 3-9 Bitumen Emulsion Use 

 Unit Tack coat Chip seal Cold mix asphalt 

Bitumen content % 501 65 60 

Emulsifier content kg/tonne emulsion 3 1.5 2.85 

Emulsion usage kg/m2 0.12 1.0-1.53 (%) 

Chipping usage kg/m2 N/A 153 N/A 

 

Note: 

1. Bitumen content in the emulsion of Aggregate Industries’ project was 60%. 

2. Emulsion in the tack coat of Aggregate Industries’ project was applied 0.4kg/m2. 

3. The usage of emulsion and chipping in chip seal depends on the substrate and the 

nominal size of the chippings (Lavin 2003). 

 

3.2.3.3. Pavement Life Expectancy 

Mix design is out of the scope of this study, yet mixture properties and layer thickness 

are factors that, together with traffic and foundation strength, are used to predict the 

pavement life. Different service life should be applied to different pavement layers, 

e.g. 12yrs for surface course, 15yrs for binder course, etc. Pavement life expectancy is 

a key factor affecting the LCA results, as the functional unit is normally defined as 

below. This enables the comparison between asphalt layers of different life span. 

 

Functional unit = pavement project / service life (yr) 
 

3.2.4. Energy and Emissions Inventory 

In the ‘energy and emissions inventory’ worksheet, a life cycle inventory (LCI) is 

built up for the processes in a pavement project. Inventory data that are available for 

some ‘primary’ processes (e.g. energy production, vehicle/equipment engine 

operation) are presented first, followed by progressive calculations to get the LCI data 

on other processes in the pavement project. Emission from a process has two parts. 
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One comes from the process itself (e.g. diesel engine, gas oil combustion), the other 

from the production of energy consumed in that process. The energy consumption 

figures of vehicles and equipments come from the ‘process parameter’ worksheet. 

This worksheet can be grouped into ‘energy production’, ‘combustion of fossil fuel’, 

‘transport vehicle operation’ and ‘construction equipment operation’. These are dealt 

with in turn below. 

 

3.2.4.1. Energy Production 

Data on production of electric power come from EURELECTRIC (Union of the 

Electricity Industry), using the average of 15 European countries with an assumed 

distribution loss of 5% (EURPROG 1998). It is noted that the emissions rate 

(emissions per kWh electric power generation) from UK power plants has declined 

since the early 1970s, thanks to the reduced use of coal (33%) in favour of natural gas 

(40%) and uranium (19%), as well as the emissions abatement measures at power 

plants (DTI 2006). A later version of 2005 is available, only to EURELECTRIC 

members (EURPROG 2006). Data on the production of diesel (pre-combustion) come 

from mixed sources in Norway covering extraction, refining and transport to the 

consumer (see Table3-10). LCI loadings for production of LPG are assumed to be the 

same as diesel (Stripple 2005). 

 

Alternative sources of emissions data on energy production (electric power, natural 

gas, petroleum oil) include the NAEI (National Atmospheric Emissions Inventory) 

report (NAEI 2005), and the BUWAL250 (database in SimaPro7). This model did not 

include data from these two sources, for data presented in there are difficult to use for 

the LCI study. 
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Table 3-10 Inventory (selected items) for Energy Production 

Energy (MJ) Emission to air (g) Discharge to water (g) Solid waste (g) 
Energy 
type 

Unit 
Electricity 

Natural 
gas 

Petroleum 
oil* 

SO2 NOx CO CO2 NMVOC N2O Particulate COD 
N-
total 

HC Oil Inert Hazardous 

Electricity MJ 1 0.337 0.375 0.646 0.306 0.0281 137 0.0697  0.19  
9.57E-
04 

0.0101  19.6 5.32 

Diesel/Fuel 
oil 

MJ   0.1 0.0036 0.01 0.0017 3.22  
3.03E-
03 

8.86E-06 
4.62E-
06 

8.75E-
07 

 
4E-
04 

  

* Petroleum oil includes LPG, diesel and heating (gas) oil 
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3.2.4.2. Combustion of Fossil Fuel 

Natural gas and petroleum oil (LPG, gas oil, etc) are combusted in production plants 

(asphalt, emulsion, etc) and construction equipments (paver, remixer, etc) for heating 

purpose. Of the key pollutants, emissions of SO2, heavy metals and organic 

compounds are correlated with the content of certain components (e.g. sulphur) in the 

fuel, CO emissions are related to the combustion condition, and CO2 emissions 

mainly depend on the fuel consumption. The same principle applies for fossil fuels 

consumed by diesel engine (see 3.2.4.3 and 3.2.4.4) (EEA 2005; Stripple 2005). 

 

Relevant data are specified in EEA’s (European Environment Agency’s) standard 

Group3 – ‘combustion in manufacturing industry’, using the lower limit of Corinair90 

data on combustion plant with thermal capacity of >300MW, 50-300MW and 

<50MW, regardless of the boiler type (EEA 2005). 

 

Table 3-11 Emissions from Combustion of Fossil Fuel (CORINAIR90) 

g/MJ NOx NMVOC CH4 CO CO2 N2O Heavy metals* 

Gas oil 0.05 0.0015 0.0001 0.01 57 0.0006 3.8 

Natural gas 0.022 0.002 0.0003 0.00005 44 0.0001 0.05x10-6 

LPG 0.035 0.002 0.001 0.01 57 0.002 n/a 

* Data on ‘heavy metals’ refer to the total of As, Cd, Hg and Pb. 

 

IVL data on those emissions did not differentiate the thermal capacity of the 

combustion plant either. The emissions level (emissions per MJ energy combusted) 

between different types of energy combustion was in the ascending order of: 

LPG/natural gas < fuel oil for general heating < fuel oil for heating in asphalt plant 

(Stripple 2005). 

 

Table 3-12 Emissions from Combustion of Fossil Fuel (IVL) 

g/MJ SO2 NOx CO CO2 VOC Particulate 

Fuel oil in asphalt plant 0.05 0.05 0.52 78 0.196 0.026 

Natural gas in asphalt plant 0.002 0.038 0.38 56 0.006 0.013 

Fuel oil for heating, general 0.05 0.16 0.013 78 n/a 0.01 

LPG for heating, general 0.002 0.038 0.38 56 0.006 0.013 

 

Data from Corinair90 and IVL are aggregated for use in this LCA model. Corinair90 

data are preferred, for: 1) The figures in Corinair90 are lower, which represent the 

tightening requirements under the EU Directive 2005/55/EC, and 2) Data sources in 
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Corinair90 are easier to identify. Where Corinair90 data are missing, IVL data are 

used. The aggregated data for use in this model do not differentiate the location of the 

combustion. 

 

Table 3-13 Aggregate Data on Emissions from Combustion of Fossil Fuel (CORINAIR90, IVL) 

g/MJ SO2 NOx CO CO2 CH4 NMVOC VOC N2O Particulate 

Fuel oil 0.05 0.05 0.01 57 0.0001 0.0015 0.196 0.0006 0.01 

Natural gas 0.002 0.022 0.00005 44 0.0003 0.002 0.006 0.0001 0.013 

LPG 0.002 0.035 0.01 57 0.001 0.002 0.006 0.002 0.013 

Data in orange indicated IVL’s data. 

 

3.2.4.3. Transport Vehicle Operation 

LCI loadings for transport include two aspects: the vehicle engine, and the production 

of diesel it consumes. A number of vehicle features (fuel type, age, mileage, etc), 

operational condition (load, road layout, speed, acceleration, traffic flow, congestion 

level, etc) as well as environmental factors (altitude, ambient temperature, etc) have 

an effect on the vehicle’s exhaust emissions level (TRL 2000). The many influencing 

factors were studied by TRL in 2006 for mapping the emission in west London (TRL 

2006). To avoid confidentiality restriction and the difference between truck 

manufacturers, EU limit (effective from October 2005) on emissions from heavy-duty 

diesel engines is used in this LCA model as emissions from diesel engine operation 

(European Union 2005). An engine efficiency of 40% is assumed. Missing data on 

emissions (of SO2, CO2 and N2O) come from IVL study (Stripple 2005). 

 

Table 3-14 EU Emission Standard (Euro IV) for Heavy-Duty Diesel Engines 

Tier Unit Test Emission 

CO HC NOx PM 
Smoke 
(m-1) 

SO2 CO2 N2O Euro 
IV 

g/kWh ESC&ELR* 

1.5 0.46 3.5 0.02 0.5    

g/MJ (40% engine efficiency) 0.167 0.0511 0.389 0.00222 0.0556 0.024 75 0.0021 

* ESC: European Stationary Cycle; ELR: European Load Response 

 

LCI loadings on transport vehicle operation (g/km) can be calculated by multiplying 

fuel consumption (MJ/km) by the sum of engine emission (g/MJ) and pre-combustion 

(g/MJ). 
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LCI of transport (g/km) = FC (MJ/km) * [engine (g/MJ) + pre-combustion (g/MJ)] 

 

 

In the ‘energy and emissions’ worksheet, LCI data on IVL trucks are divided by their 

loading capacity, to obtain estimates in the unit of per km*tonne. Lower emissions 

level in unit of ‘g pollutants/ (km distance* tonne loading)’ comes from heavier trucks. 

This complies with the inventory data from ESU-ETHZ (PRe Consultants 2006). 

 

Other modes of transport in a road project may include the ship (coast freight) and 

railway (locomotive). The diesel consumption is assumed (see in Table3-5) to be 

0.13MJ/tonne*km and 0.17MJ/tonne*km, respectively. Their engine emissions 

(g/tonne*km) are presented in the table below (Stripple 2005). It is acknowledged that 

an alternative type of limit on emissions from diesel engine (including CO2, CO, HC, 

NOx and particulates) is presented by ACEA (European Automobile Manufacturers 

Association) and UNECE (United Nations Economic Commissions for Europe) in the 

unit of ‘g/km’. The relevant documents however, did not go into the same level of 

detail as this model does (UNECE 1999; ACEA 2007). 

 

Table 3-15 Energy Use and Emissions for Diesel Ship and Locomotive (IVL) 

Emission (g) 
Mode Unit Diesel use 

CO HC NOx SO2 CO2 

Ship t*km 0.13 MJ 0.027 0.0075 0.252 0.063 9.5 

Locomotive t*km 0.17 MJ (source: AI) 0.049 n/a 0.4 0.018 18 

 

3.2.4.4. Construction Equipment Operation 

Similar to transport vehicles, an energy efficiency of 40% is assumed for the diesel 

engines in construction equipments. In cold mix asphalt plant, environmental burdens 

from ‘diesel for producing electricity to mobile plant’ are assumed to be the same as 

those from diesel consumed in construction equipments. The type and amount of 

energy consumed per unit by construction vehicle/plant can be found in Table3-16. 

 

Table14 Table10 
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Table 3-16 Energy Consumption of (selected) Construction Vehicle/Plant 

 Paver Roller Excavator 
Tack coat 
applier 

Chipping 
applier 

RAP pre-
processing 

Cold 
milling 

Remixing 
Crushed 
stone 
production 

Sand/Gravel 
extraction 

Emulsion 
production 

Hot asphalt 
production 

Cold 
asphalt 
production 

Unit MJ/m2 MJ/m2 MJ/m2 MJ/m2 MJ/m2 MJ/tonne MJ/m2 MJ/m2 MJ/tonne MJ/tonne MJ/tonne MJ/tonne MJ/tonne 

Electric 
power 

        21.19 11 21.2 23.5 1.27 

Diesel 0.53 0.40 13.57 0.53 0.7 45.23 2.2 1.5 18.76 16  15.5 36.6 

Fuel oil           96.8 360 5.81 

LPG 0.11       41.49      
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Again, EU standard on emissions from diesel engine is used in here. Relevant data are 

specified in Group8: ‘other mobile sources and machinery’. Formulas were used to 

calculate the emissions and fuel consumption (FC) of diesel engines, both varying 

with the engine power (P) (EEA 2005). The construction equipments are assumed to 

run at ‘operating capacity’. Missing data on emissions (of CO2 and SO2) come from 

the IVL’s study (Stripple 2005). The impacts of these assumptions on the final 

inventory results can be tested by data sensitivity check (see Case Study in Chapter4). 

 

Table 3-17 EU Emission Standard (Corinair) for Stage II Controlled (20kW<P<560kW) Diesel 

Engines 

Emission 
Unit 

Engine 
power 
(kW) 

NOx N2O CH4 CO NMVOC PM NH3 SO2 CO2 
FC 

0-20 14.1 0.35 0.05 8.38 3.82 2.22 0.002 n/a n/a 271 

20-37 8.50 0.35 0.05 5.50 1.50 0.80 0.002 n/a n/a 269 

37-75 8.00 0.35 0.05 5.00 1.30 0.40 0.002 n/a n/a 265 

75-130 7.00 0.35 0.05 5.00 1.00 0.30 0.002 n/a n/a 260 

130-
560 

7.00 0.35 0.05 3.50 1.00 0.20 0.002 
n/a n/a 

254 

g/kWh 

>560 14.4 0.35 0.05 3.00 1.30 1.10 0.002 n/a n/a 254 

0-20 1.57 0.0389 0.00556 0.931 0.424 0.247 0.000222 0.024 75  

20-37 0.94 0.0389 0.00556 0.611 0.167 0.0889 0.000222 0.024 75  

37-75 0.89 0.0389 0.00556 0.556 0.144 0.0444 0.000222 0.024 75  

75-130 0.78 0.0389 0.00556 0.556 0.111 0.0333 0.000222 0.024 75  

130-
560 

0.78 0.0389 0.00556 0.389 0.111 0.0222 0.000222 0.024 
75 

 

g/MJ 
(40% 
engine 
efficiency) 

>560 1.60 0.0389 0.00556 0.333 0.144 0.0111 0.000222 0.024 75  

 

Similar to transport vehicles, LCI loadings for construction vehicle/plant include both 

those from engine operation and pre-combustion of the diesel consumed. For 

processes where LPG or gas oil is combusted for heating, LCI data on both the 

combustion and production of the LPG or gas oil are included. Most road machinery 

work at an engine power of 20-560kW; LCI data for operation of vehicle/equipment 

are calculated in the worksheet assuming a P value of 130-560kW. Sensitivity check 

can be carried out on this variation. 

 

In VTT’s LCA study, inventory data (energy, emissions) were provided on production 

of materials, namely hot mix asphalt (SMA, asphalt concrete), bitumen, crushed stone 

and gravel (see Table3-18). Also provided in the study were inventory data on asphalt 

paving, and maintenance in 50 years time span (Hakkinen and Makela 1996). Those 
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data are not used in this model, for materials recipe in the VTT’s study was fixed (see 

Table3-19), and details of some processes and machinery in use were not stated. 

 

Table 3-18 Inventory Data for Materials Production (VTT) 

Emission to air Discharge to water Energy 
 

CO2 SO2 NOx CO VOC CH4 
Heavy 
metals 

Particles COD Oil N-total 

Solid 
waste 

Fossil 
fuel 

Electricity 

Unit g/kg MJ/kg 

SMA 51 0.19 0.41 0.043 0.17 0.044 
9.2E-
06 

0.052 0.0062  0.00031 0.011 0.78 0.061 

Asphalt 
concrete 

43 0.18 0.34 0.036 0.13 0.035 
8.6E-
06 

0.044 0.0044  0.00022 0.010 0.68 0.039 

Bitumen 330 0.8 2.9 0.1 2.0  0.3 0.1 0.03 0.005 1.9 6.0 

Crushed 
stone 

2.0 0.0065 0.012 0.0025 0.0047 0.0043 
0.21E-
06 

0.0019     0.011 0.041 

Gravel 1.7 0.0018 0.014 0.0031 0.0026 0.0017 
0.43E-
06 

0.0027    0.003 0.0024  

 

Table 3-19 Asphalt Recipe (VTT) 

Aggregates, of which 
% Bitumen 

Crushed stone Sand Limestone filler 
Cellulose Fibre 

SMA 6.2 88.8  4.7 0.3 

Asphalt concrete 4.4 90.8 4.8   

 

3.2.5. Inventory Results 

In the ‘inventory results’ worksheet, inventory data in ‘energy and emissions 

inventory’ are aggregated into the unit of the pavement object, based on the 

workloads calculated from ‘pavement parameters’ (for materials tonnage and 

pavement area) and ‘process parameters’ (for transport distance). The results can be 

grouped into ‘materials production’, ‘transport’ and ‘materials placement’. At the end 

of the worksheet is the total of each environmental input (e.g. energy, aggregates) and 

outputs (e.g. CO2, PM) in that pavement object. If needed, the percentage that each 

process contributes to the total can be presented. 
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Table 3-20 Process Groups in Inventory Results (selected) 

Materials Production 

Natural aggregates 
Recycled aggregates (specify) 
Bitumen 
Emulsion/Foamed bitumen 
Hot mix asphalt 
Cold mix asphalt 

Transport 

Aggregates to asphalt plant 
Bitumen to asphalt/emulsion plant 
Emulsion to asphalt plant 
Asphalt to road site 
Emulsion to road site 
RAP to asphalt plant (ex-situ recycling) 

Materials Placement 

Planing 
Applying tack coat 
Paving 
Rolling 
Remixing/Repaving (cold in-situ recycling) 

 

3.2.6. Life Cycle Impact Assessment (LCIA) 

Energy, emissions and solid waste measured in mega joules, grams or tonnes do not 

tell how the human or natural environment is affected by these loadings. Also, 

information users normally want the meaning rather than reading the list of chemicals 

quantities from the inventory (Mundy 2006). This requires a method that can compile 

and interpret the inventory results, in a consistent and recognised way for decision-

making. The life cycle impact assessment is able to perform such a function. It 

consists of both mandatory and optional elements as specified in ISO 14040. 

 



Page 65 of 173 

 

Figure 3-12 Procedures for Life Cycle Impact Assessment (Acidification for example)
 

 

3.2.6.1. Mandatory Phases 

A consensus was recently formed around 6 key impact areas within the UK asphalt 

industry, based on the findings of a review workshop set up by the RBA, QPA and the 

Highways Agency, and published by the TRL (TRL 2005). The 1999 Gothenburg 

Protocol simultaneously addressed acidification, eutrophication and ground-level 

ozone by setting emission ceilings for 2010 on four pollutants: sulphur, NOx, VOCs 

and NH3 (UNECE 1999). SO2, PM10, NOx, CO and lead are defined in 1997 by 

Department of Environment as the air quality strategy pollutants (NAEI 2005). Based 

on the review of existing LCIA methods (Pennington, Potting et al. 2004), and the 

methods recommended by BRE and ISO standard (Howard, Edwards et al. 1999; ISO 

14047 2003), a group of impact categories are selected for use in this model, 

alongside are presented the available or selected assessment method (characterisation 

model and characterisation factor). 

 

Impact category 
 
 
 
 
 
 

Category indicator 

Characterisation model 

Characterisation 
factors 

Normalisation 

Grouping and weighting 

Inventory results 

Indicator results 

SO2, NOx, NH3, etc 

kg SO2 equivalent 

Proton (H+) release 

Acidification 

Optional 

Data quality analysis 

Mandatory kg SO2-eq./kg emission 

Life Cycle Interpretation 

Life Cycle Inventory Analysis 
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Table 3-21 Methodology for LCIA
7
 

Impact Category Characterisation 

Model 

Category Indicator Characterisation Factor 

Depletion of minerals   tonne aggregates/bitumen 

Depletion of fossil fuels   TOE (tonnes of oil 
equivalent)1 

Global warming2 IPCC model Increase of infrared 
radiative forcing 
(W/m2) 

kg CO2-eq./kg emission 
(kg CO2 equivalent per kg 
emission) 

Stratospheric ozone 
depletion 

WMO model Increase of 
stratospheric ozone 
breakdown 

kg CFC11-eq./kg emission 

Acidification IIASA model: 
RAINS 

Release of hydrogen 
ion (H+) 

kg SO2-eq./kg emission 

Photo oxidant (ground-
level ozone) formation 

CML model3 Increase of 
tropospheric ozone 
formation 

kg C2H4-eq./kg emission 

Human toxicity CML model4 Predicted daily intake kg 1,4-dichlorobenzene-
eq./kg emission 

Eco-toxicity CML model Predicted concentration kg 1,4-dichlorobenzene-
eq./kg emission 

Eutrophication CML model Deposition of N/P 
equivalent in biomass 

kg PO4-eq./kg emission 

Noise5 SAEFL model Health impairment Disability adjusted life 
years (DALY) 

Depletion of landfill 
space 

  m3 landfill space 

 

Notes: 

1. 1 TOE = 41868 MJ (Howard, Edwards et al. 1999). 

2. GWP100: global warming potential with a time horizon of 100 years. 

3. Another recognised model is the UNECE model: EMEP. 

4. Another recognised model is the RIVM model: USES4.0. 

5. Current European Directive 2001/43/EC (relating to tyres for motor vehicles, their 

trailers and fitting) is considered not strict enough for the tyre industry to limit tyre 

noise on the road (Prof 2007). 

 

The selection of impact categories needs to consider also the availability of inventory 

data. Some pollutants (e.g. CO2) are present in only one impact category; others (e.g. 

SO2) may contribute to more than one impact category. There is a difference in 

                                                 
7 IPCC: Intergovernmental Panel on Climate Change; WMO: World Meteorological Organisation; 
IIASA: International Institute of Applied System Analysis; RAINS: Regional Air Information and 
Simulation; CML: Institute of Environmental Sciences, Leiden University; UNECE: United Nations 
Economic Commission for Europe; EMEP: Convention on Long-range Transboundary air pollution; 
RIVM: National Institute for Public Health and the Environment; USES: Uniform System for the 
Evaluation of Substances; SAFEL: Swiss Agency for the Environment, Forests and Landscape; DALY: 
Disability Affected Life Years. 
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pollutant concentration at the endpoint if the pollutant goes through a serial process or 

a parallel one (ISO 14047 2003). As the mechanism for allocating pollutants to 

parallel processes is unknown, substances in this model are allocated in their full 

amount to relevant categories as if they all go through the serial processes. Similarly, 

the characterised results of an impact category (e.g. Global Warming) may come from 

two or more pollutants (see Figure3-13, air emissions inventory taken as an example). 

 

 

Figure 3-13 Assignment of Inventory Results (Classification) 

 

The inventory loadings assigned to an impact category need to be characterised, by 

converting them to equivalents of indicator for that category. The characterisation 

factors in a category indicate the ‘severity’ of an emission to that category. 
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Table 3-22 Characterisation Factors for Emissions 

Impact Category Emissions 
Characterisation 

Factor 
Quantity Source 

CO2 1 

N2O 23 Global warming 

CH4 

kg CO2-eq. (100yrs) 

296 

IPCC (IPCC 2001) 

Stratospheric ozone 
depletion1 

 kg CFC11-eq.  
WMO (WMO 
2006) 

SO2 1 

NOx 1.07 (0.7)2 Acidification 

NH3 

kg SO2-eq. 

1.88 

IIASA (Huijbregts, 
Schopp et al. 2000) 
(BRE) 

SO2 0.048 

NOx 
-0.427 
(0.028)2 

CO 0.027 

CH4 0.006 

Photo oxidant (ground-
level ozone) formation 

NMVOC 

kg C2H4-eq. 

1.0 

CML (CML 2004) 

SO2 0.096 

NOx 1.2 

CO 2.4 

HC3 5.7E+05 

NMVOC 0.64 

PM10 0.82 

NH3 0.1 

Emission to 
air 

Heavy metals4 5.1E+05 

HC3 2.8E+05 

Human 
toxicity 

Emission to 
fresh water Heavy metals4 

kg 1,4-
dichlorobenzene-eq. 

2.4E+03 

CML (CML 2004)  

NMVOC 3.2E-11 

HC3 1480 
Emission to 
air 

Heavy metals4 8.6E+05 

HC3 1.1E+04 

Eco-
toxicity5 

Emission to 
fresh water Heavy metals4 

kg 1,4-
dichlorobenzene-eq. 

1.9E+05 

CML (CML 2004) 

NOx 0.2 (0.13)2 

NH3 0.35 

COD 0.022 

Phosphate 1 

Eutrophication 

Nitrate 

kg PO4-eq. 

0.1 

CML (CML 2004) 

Noise 
Noise/1000 
vehicle*km 

DALY 
1.3(26)E-
036 

SAEFL (Muller-
Wenk 2002) 

 

Notes: 

1. The main ozone depletion substances (CFCs, Halons, CCl4, CH3CCl3, HCFCs, 

CH3Br) identified by WMO are not quantified in emissions inventory. 

2. Figure in the bracket is for NO2 and is used in this model as for NOx; figure out of 

the bracket is for NO. 

3. Figure for carcinogenic PAH (polycyclic aromatic hydrocarbons). 

4. Figure for the total of As, Cd, Hg and Pb. 

5. Figures in Eco-toxicity are the mean characterisation factor of ‘freshwater aquatic 

eco-toxicity’, ‘marine aquatic eco-toxicity’ and ‘terrestrial eco-toxicity’. 
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6. Figure in the bracket is for night-time (10pm-6am) journey (sleep disturbance); 

figure outside the bracket is for daytime (6am-10pm) journey (communication 

disturbance). As for comparison, the DALY of truck emissions (CO, NOx, HC and 

PM10) per 1000 vehicle kilometre is 1.14E-03. If the time of the day of the transport is 

unknown, a day/night time split of 95:5 is assumed. If the road traffic data are 

provided in the unit of tonne*kilometre, the following loading factors are assumed for 

conversion: 3.8tonne for a 16tonne truck, 7.0tonne for a 26tonne truck and 10.8tonne 

for a 40tonne truck (Muller-Wenk 1999). 

 

The characterised result for an impact category is the total of all the individually 

characterised loadings allocated to that category. For example, in an inventory in 

which the SO2, N2O, CH4 and CO2 loadings are 25g, 17g, 4g and 520g, respectively, 

the characterised result (category indicator result) for ‘Global Warming’ (N2O, CH4 

and CO2 have a contribution) will be 17x23 + 4x296 + 520x1 = 1503g CO2 equivalent. 

 

i

i

i orsationFactCharacteriLoadingsultsationCharacteri ×=∑Re  

 

There are LCI loadings that have not been assigned to, and characterised in, any of the 

impact categories. Impact assessment of these loadings is expected in light of on-

going development of environmental assessment techniques (the LCIA method). Most 

emissions to water (except HC and heavy metals) are of this type. 

 

3.2.6.2. Optional Phases 

In normalisation, the characterisation result of an impact category is divided by a 

reference value, which normally is the total input or output per UK capita. This model 

uses the latest data that can be sourced from literatures. 
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Table 3-23 Normalisation Factors 

Impact Category Indicator Result UK Total Year Data Source Per UK 

Capita 

Depletion of 
minerals 

Aggregates 214 Mt 2004 QPA (QPA 2007)  

Depletion of fossil 
fuels 

TOE 246,884 TOE 2005 DTI (DTI 2006)  

Global warming CO2 559.223 Mt 2004 NAEI (NAEI 
2006) 

 

Stratospheric ozone 
depletion 

CFC11 88,000 t1 2003 WMO (WMO 
2006)  

 

Acidification SO2 979 t 2003 NAEI (NAEI 
2005)  

 

Photo oxidant 
(ground-level 
ozone) formation 

NMVOC (replace 
C2H4)

2 
1089 t 2003 NAEI (NAEI 

2005) 
 

Human toxicity NH3 (replace 1,4-
Dichlorobenzene)2 

300 t 2003 NAEI (NAEI 
2005) 

 

Eco-toxicity Heavy metals (replace 
1,4-Dichlorobenzene)2 

339.479 t3 2001 EA (EA 2004)  

Eutrophication NOx (replace PO4)
2 1570 t 2003 NAEI (NAEI 

2005) 
 

Noise DALY 499.4 billion 
vehicle*km 

2005 DfT (DfT 2006)  

Depletion of 
landfill space 

Landfill disposal 75 Mt4 2002 EA (The 
Environmental 
Agency 2007) 

 

UK Population  60,209,500 2005 ONS (Office of 
National Statistics 
2007) 

 

 

Notes: 

1. Global figure. 

2. UK total emissions of C2H4 and PO4 are difficult to obtain. Therefore, in LCIA 

where the normalisation phase is needed, NMVOC and NOx are appointed instead as 

the indicator for ‘ground-level ozone formation’ and ‘eutrophication’, respectively. 

Characterised result presented as C2H4-equivalent and PO4-equivalent is then 

converted, using the characterisation factor in that impact category, into NMVOC-

equivalent and NOx-equivalent, respectively. For the same reason, NH3 and Heavy 

Metals are used to replace 1,4-Dichlorobenzene as the indicator for ‘human toxicity’ 

and ‘eco-toxicity’, respectively. 

3. Same as in the model, data on heavy metals refer to the total of As, Cd, Hg and Pb, 

the data on which are presented below: 
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Table 3-24 UK Total of Heavy Metals to Air and Water (The Environmental Agency 2004) 

        (Unit: tonne) 

 Arsenic Cadmium Mercury Lead Total 

Emission to air N/A 5.070 8.820 194.000 207.89 

Release to water 110.560 1.074 19.710 0.245 131.589 

Total 110.560 6.144 28.530 194.245 339.479 

 

4. Total tonnage of waste sent to landfill. 

 

There is no scientific basis for presenting the LCA results with a single number (ISO 

14044 2006). A consensus between all levels of decision makers within an industrial 

sector is normally needed for further assessment of normalisation/characterisation 

results. This model proposes a grouping and weighting method as in the table and 

figure below, in accordance with the ‘Eco-points’ developed by BRE through an 

expert panel for the UK construction industry (Dickie and Howard 2000). However, it 

should be noted that the weighting is not recommended by standards for use in 

comparative LCA study (ISO 14044 2006). 

 

Table 3-25 Grouping and Weighting for Environmental Impact Categories
 

Impact Category Impact Area Weighting (%) 

Depletion of minerals Regional 3 

Depletion of fossil fuels Regional 11 

Global warming Global 35 

Stratospheric ozone depletion Global 8 

Acidification Regional 5 

Ground-level ozone formation (fog) Regional 3.5 

Human toxicity Local 8.5 

Eco-toxicity Local 4 

Eutrophication Regional 4 

Noise Local  

Depletion of landfill space Regional 6 

Others Water, Freight 12 

Total  100 
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Figure 3-14 Grouping and Weighting for Environmental Impact Categories 

 

Results of sensitivity analysis can be used to identify and, if needed, exclude life cycle 

stages or unit processes from the system that are demonstrated to have low 

significance to the LCA results. Also identified, is the significance of the many 

environmental impacts in a LCA study. The system boundary, or even the goal and 

scope, of the LCA study can then be refined based on these results (see Figure3-10). 

 

3.3. Summary of LCA Model Development 

This Chapter outlines the unit processes in the construction and maintenance of 

asphalt pavements; waste glass is given as an example of secondary aggregates in the 

practice. An Excel spreadsheet is built up as the computing tool for the LCA model. 

Case study of a real project will therefore be able to map the materials and processes 

to the units in this model, and replace default numbers in the spreadsheet with data 

specific to that project. Amends to the model and/or the spreadsheet will be made in 

each individual study to meet the particulars of that project, as shown in the case 

studies in Chapter4. 
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Chapter 4 : Case Study 

 

A couple of case studies were carried out during the development of this LCA model, 

to 1) test the model’s completeness and its ability to represent the environmental 

loadings in a real asphalt pavement project, 2) identify the significant elements in a 

pavement project and assess their sensitivity to the input variables, and 3) build up the 

scope and database of the model for further development. 

 

Two projects were selected for analysis: a road inlay at Wolverhampton, and asphalt 

paving on an access road at London Heathrow Terminal 5 (LHR T5). Data in both 

studies came from site engineers from Aggregate Industries UK Ltd (AI). The case 

studies are presented the way they were first written, as a progress log of this LCA 

model. The road inlay was a simple exercise that built up the LCA framework and 

mechanism for data collection. The LHR T5 study went into more depth of the road 

project, and developed the LCA model into a more complex as well as flexible 

computing tool. Both case studies were supported by site visit and questionnaire (see 

Appendix1 and Appendix2). Lessons learned from the first case study were applied in 

the second one. Findings of both case studies are discussed separately. At the end of 

this Chapter is a discussion that compares the methodology and outcomes of the two 

case studies, indicating how the LCA model was improved during the progress. 

 

4.1. Road Inlay at Chapel Ash, Wolverhampton 

 

4.1.1. Project Background 

From 16 January to 01 February 2005, Aggregate Industries UK Ltd supplied and laid 

materials replacing the asphalt surface and binder course on an urban junction at 

Chapel Ash, Wolverhampton. This case study investigated, using LCA, the 

environmental impacts of the process proposed by AI using company branded asphalt 

products (Bardon Superflex14), and made a comparison with the original thicker 

pavement and materials option proposed by Wolverhampton City Council (WCC). 

This case study described the analysing process and results, and provided advice on 

what measures can be taken to reduce the environmental impacts of the inlay process. 
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It used the collective findings of previous work and, where available, the real on-site 

data from the contractors. The LCA report was submitted on 02 November 2005 to 

Aggregate Industries UK Ltd (Huang and Bird 2005; Huang, Bird et al. 2006). 

 

4.1.2. Process Analysis, Scope and Assumptions 

The life time of asphalt pavement projects can be defined containing the following 

processes: 

 

 

Figure 4-1 Life Time Processes of Asphalt Pavements 

 

For each unit in the flowchart, the data on materials and energy that contribute to the 

Life Cycle Inventory (LCI) were as follows: 

� Input: minerals, energy, water; 

� Output: emissions to air, discharge to water, solid waste. 

 

The normal processes and machinery commonly used in minerals quarrying are 

described by Quarry Products Association (QPA). Processes not specific to this 

project (e.g. restoration after quarrying) were not included in this LCA study. Bitumen 

is one of the many co-products of the oil refining industry (Shell 2005). 

Environmental burdens can be allocated between these products on a pre-defined 

basis: by volume of the product (ISO 14041 1998). 
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Table 4-1 Average Yields of Main Products from Crude Oil Refinery (API 2002) 

Product LPG 
Gasoline 
(petrol) 

Kerosene 
(jet fuel) 

Diesel 
(gas 
oil) 

Industrial 
fuel oil 

Lubricating 
oil and wax 

Coke Bitumen Others Total 

Yield 
(%) 

4.5 46.2 10.7 23.1 4.5 1.2 4.8 3.3 1.7 100 

 

The type and amount of work prior to paving fresh asphalt materials depends on how 

the existing pavement surface is disposed. In this project, tack coat was applied after 

the top 100mm had been removed by cold planing. In alternative scenarios, recycling 

for instance, scarified pavement materials might be recycled in-situ, or taken off-site 

for processing at an asphalt plant. 

 

 

Figure 4-2 Disposal of Existing Pavement Surface 

 

The two-step (Classification, Characterization) ‘Environmental Problems’ approach 

developed by CML (Institute of Environmental Sciences, Leiden University, the 

Netherlands) and SETAC (The Society for Ecological Toxicology and Chemistry, US) 

in the early 1990s for life cycle impact assessment (LCIA) was adopted by the ISO 

14040 standards. This case study followed this approach. The methodology of ‘BRE 

Environmental Profiles’ also fits well with the ISO standards (Howard, Edwards et al. 

1999). The scope and assumptions made in this LCA study are specified below: 
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Table 4-2 Scope and Assumptions in LCA of Wolverhampton Project 

Inventory data  

Source and quality of data  AI, supplemented by industry average 

Temporal coverage See ‘Project Background’ 

Geographic coverage See ‘Project Background’ 

Technical coverage See Table4,5 below 

Product systems AI proposal vs. Wolverhampton CC proposal  

System boundary Construction + in-service period 

Functional unit 10,150m2 of asphalt surface for 1 year’s service 

Allocation procedure ISO 14040 and BRE allocation principle 

Recycling No recycling or use of recycled materials 

Method of impact assessment CML-SETAC-BRE methodology 

Format of report BRE format 

 

4.1.3. Life Cycle Inventory Analysis 

4.1.3.1. Procedure for Establishing the Inventory 

Based on the BRE’s Inventory Data Handling Checklist, the steps below were 

followed to establish the life cycle inventory:  

1) Define the principal product(s); 

2) Collect data from unit processes or defined process groups, and aggregate them; 

3) Allocate the data to principal product(s); 

4) Convert, where needed, the data to standard units (SI); 

5) Divide the data by the principal product(s) in tonnes to obtain per tonne data. 

 

4.1.3.2. Environmental Impacts for Analysis 

According to the IVL’s and VTT’s research (Mroueh, Eskola et al. 2001; Stripple 

2005), the environmental impacts of road construction for LCA case study can be 

limited to a few categories: 

 

� Use of aggregates (virgin, secondary) and bitumen; 

� Energy (gas, diesel, electricity, etc) consumption; 

� Atmospheric emissions: CO2, CH4, NOx, SO2, N2O, VOC, TOC, CO, HC, PM, etc; 

� Leaching into soil and water (surface, ground, marine): heavy metals, chloride, 

sulphate, BOD, COD, N-total, HC, oil, etc; 

� Others: noise, dust, land use, solid waste, etc. 
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The reasons for excluding other than the above environmental impacts were either the 

significance of those loadings was low, or the relevant data were not sufficient for 

further analysis (Mroueh, Eskola et al. 2001). If a different construction process is 

involved, (e.g. recycled rather than virgin aggregates only, maintenance rather than 

new construction), the category list would be expected to change. 

 

Table 4-3 Emission Factors for Energy Production and Use (Howard, Edwards et al. 1999) 

Grams/MJ CO2 CH4 NOx N2O SO2 VOC CO PM10 

LPG 67.81 0.019 0.092 0.00009 0.014 0.0656 0.0069 0.0030 

Gasoline 74.23 0.021 0.088 0.00003 0.048 0.0702 0.0116 0.0058 

Diesel 76.70 0.021 0.091 0.00059 0.107 0.0702 0.0117 0.0070 

Electricity 150.4 0.404 0.422 0.00558 1.234 0.0175 0.1665 0.0328 

Natural gas 53.88 0.112 0.093 0.00010 0.002 0.0090 0.0027 0.0011 

 

4.1.3.3. Construction Parameters 

The life cycle inventory is made of data presented in the tables below. This is a 

comparative LCA study. Unless stated otherwise, these process data were collected 

from contractors in charge of that process, such as the haulage companies (e.g. H&D 

Haulage), the construction contractors (e.g. Power Plane Ltd., HR International 

Crushing& Screening Ltd.) or the materials suppliers (e.g. Aggregated Industries UK 

Ltd). 

 

Table 4-4 Pavement Parameters 

Pavement parameter WCC proposal AI proposal  

Life time expectancy 12 yrs 15 yrs 

Area 10,150m2 10,150m2 

Depth 40mm 40mm 

Mixture weight1 970t 969t Surface course 

Mixture composition 
(coarse:fine:filler:bitumen) 

0/14mm SMA2 
72.4:12.7:8.9:6.0 

Bardon Superflex14 
(64.5:23:7.6:4.9) 

Area 10,150m2 10,150m2 

Depth 110mm 60mm 

Mixture weight 2668t 1454t Binder course 

Mixture composition 
(coarse:fine:filler:bitumen) 

0/20mm HDM2 
66.7:20.0:8.6:4.7 

Bardon Superflex14 
(64.5:23:7.6:4.9) 

 

Notes (assumptions): 

1. The bulk density of surface course asphalt equals that of the binder course, in both 

proposals. 
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2. The materials breakdown of the surface and binder course asphalt in WCC’s 

proposal equals the mean value in British Standard for 0/14-surface course (BS 594-1 

2003) and 0/20-binder course (BS 4987-1 2003), respectively. 

3. The weight of planed pavement materials equals that of the compacted fresh 

materials, in both proposals. 

 

Table 4-5 Process and Machinery Parameters 

Process Make& Model 
Operating 
capacity 

Engine 
power 

Work load (AI 
proposal) 

Bitumen to 
asphalt plant 

Volvo FM12 28t*(56mph) 
340-

460hp 
293.1Km*118.7t 

Asphalt to 
road site 

Volvo A25D 20t*(53Km/hr) 300hp 60.7Km*2423t 
Lorry 
transport 

Waste to 
disposal 

Hino FY420 20t*(58mph) 420hp 14.5Km*2423t 

Excavating 
Volvo 
EC460B 

400t/hr 306hp 2304.3t 

Volvo L220E 352hp 

Volvo L330E 502hp Loading 

Cat 980G 

400t/hr 

311hp 

2304.3t 

Volvo A40 426hp 
Conveying 

Cat D250 
300t/hr 

 
2304.3t 

Metso LT125 800t/hr 430hp 

Mesto HP300  300hp Crushing 

Mesto HP500  500hp 

2304.3t 

Mesto ST356  148hp 
Screening 

HRI 250t/hr 45kw 
2304.3t 

Materials 
production 

Asphalt 
mixing 

Benninghoven 16t/76kw 2423t 

Planing Wirtgen2.2 2.2m*(5Km/hr) 800hp 10,150m2 

Paving 
ABG 
Titan273 

(40m/min)*7.5m
 

152hp 2 pass*10,150m2 

Bomag 
BW161 AC-4 
(8-10t) 

1.68m*4.96Km/hr 99hp 6 pass*10,150m2 Road laying 

Rolling 
Hamm 
HW90B (8.8-
11t) 

79in*4.96Km/hr 74hp 6 pass*10,150m2 

 

Notes: 

1. Aggregates for this project were quarried and processed from the same plant. 

2. In the case that ‘project specific’ data are not available, data on ‘operating capacity’ 

and ‘engine power’ were obtained, based on the knowledge of ‘make& model’, from 

the manufacturers’ (e.g. Volvo, Wirtgen) product brochures, and shown in italic in the 

table. If a machine’s operating parameters were not available from any sources, it was 

excluded from this LCA study (crossed out in the table). The average figure was used 



Page 79 of 173 

for a process if machines of multiple make and/or model were used in that process 

(shaded in the table). 

 

(Assumptions made in the table): 

3. The original WCC proposal was not put into practice. The transport distance and 

vehicles in that proposal were assumed identical to those in the AI proposal, had the 

materials supply been won by AI for that proposal. 

4. Transport vehicles were run at ‘maximum load’, ‘full legal speed’ and ‘empty on 

return’. Road planer, paver and roller were run at ‘full speed’ and ‘full working width’. 

 

4.1.3.4. Calculation and Establishment of the Life Cycle Inventory 

This study used EAPA’s LCI data on bitumen production in which the environmental 

loadings were allocated among the refinery products: 40% to bitumen and 60% to 

lighter products (Eurobitume 1999). 

 

Table 4-6 Eco-profile of PG50/70 Bitumen Production 

Energy (MJ/kg) Air emissions (g/kg) 

Diesel Gas Electricity CO2 NOx SO2 CO PM10 
Inventory for straight run PG50/70 
bitumen production 

1.008 3.252 0.173 280 2.10 1.80 0.14 0.22 

 

Energy use (fuel consumption) was then calculated based on the operating capacity, 

the engine power, the work load, and assumptions made in the tables above. Other 

environmental inputs and outputs were also calculated. The scope of this inventory 

was determined by the available data from Wolverhampton contractors and the BRE’s 

database. 
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Table 4-7 Summary of Energy Consumption and Solid Waste 

 WCC proposal AI proposal 

Process 
Energy 
use(GJ) 

Percent 
Solid 
waste 

Energy 
use(GJ) 

Percent 
Solid 
waste 

Aggregates 36.28 2.49% 24.33 2.73% 

Bitumen 899.90 61.89% 526.33 58.99% Manufacture 

Mixing 62.21 4.28% 

N/A 

41.43 4.64% 

N/A 

Bitumen to 
asphalt plant 

50.71 3.49% 29.66 3.32% 

Asphalt to road 
site 

335.78 23.09% 222.64 24.95% 
Transport 

Waste to storage 63.87 4.39% 

N/A 

42.54 4.77% 

N/A 

Planing 1.98 0.14% 3638t 1.98 0.22% 2423t 

Paving 0.13 0.01% 0.13 0.01% Placement 

Rolling 3.16 0.22% 
N/A 

3.16 0.35% 
N/A 

Total 1454.00 100% 3638t 892.19 100% 2423t 

 

Table 4-8  Inventory Data of Wolverhampton Project 

 WCC proposal AI proposal Saving 

12 15 -25% 
Life expectancy (yr) 

1 2* 1 2
* 

1 2 

INPUT 

Stone 2091.90 174.33 1562.84 104.19 25.3% 40.2% 

Sand 1033.15 86.10 574.25 38.28 44.4% 55.5% 

Filler 309.96 25.83 184.15 12.28 40.6% 52.5% 
Mineral (t) 

Total 3435.00 286.25 2321.23 154.75 32.4% 45.9% 

Bitumen (t) 203.00 16.92 118.73 7.92 41.5% 53.2% 

Diesel 696.53 58.04 444.12 29.61 36.2% 49.0% 

Gas 660.14 55.01 386.10 25.74 41.5% 53.2% 

Electricity 97.33 8.11 61.97 4.13 36.3% 49.1% 
Energy (GJ) 

Total 1454.00 121.16 892.19 59.48 38.6% 50.9% 

OUTPUT 

CO2 103.63E+03 8.64E+03 64.19E+03 4.28E+03 38.0% 50.4% 

CH4 127.88 10.66 77.61 5.17 39.3% 51.4% 

NOx 165.85 13.82 102.47 6.83 38.2% 50.6% 

SO2 195.95 16.33 124.76 8.32 36.3% 49.0% 

N2O 1.02 0.09 0.65 0.04 36.6% 49.3% 

VOC 56.54 4.71 35.74 2.38 36.8% 49.4% 

CO 26.14 2.18 16.56 1.10 36.7% 49.3% 

Emissions to 

air (kg) 

PM10 8.79 0.73 5.57 0.37 36.7% 49.4% 

Solid waste 

(t) 

Pavement 
materials 

3638 303.167 2423 161.533 33.4% 46.7% 

 

Note: 

Figure in Column 2 is the result of dividing Column 1 figure by life expectancy. 
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4.1.4. Life Cycle Impact Assessment (LCIA) 

4.1.4.1. LCIA methodology 

A summary of the impact categories and characterisation methods is shown in Table4-

9. It takes into account the selections by ISO standard (ISO 14047 2003), BRE 

(Howard, Edwards et al. 1999), and review of LCIA by Nordic countries (Pennington, 

Potting et al. 2004). 
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Table 4-9 Methodology for Life Cycle Impact Assessment 

Impact Category Characterization Model Category Indicator Characterization Factor 

Depletion of mineral 

resources 
 

Quantity of minerals 
consumed 

Inventory of Depletion Potential (DP) for extraction: 
DP/kg extraction 

Fossil fuel depletion  
Quantity of energy 
consumed 

Tonnes of oil equivalent (TOE) 

Global warming (climate 

change) 

IPCC (Intergovernmental Panel on Climate Change) 
Model 

Increase of infrared 
radiative forcing (IRF) 
(W/m2) 

GWP100 (Global Warming Potential for time horizon of 
100 years) for each GHG (greenhouse gas) emission: kg 
CO2-eq./kg emission 

Acidification 

IIASA (International Institute of Applied System 
Analysis) Model: RAINS (Regional Air Information 
and Simulation) 

Hydrogen ion (H+) 
release 

Acidification Potential (AP) for each acidifying emission 
to air and water: kg SO2-eq./kg emission 

Stratospheric ozone 

depletion 
WMO (World Meteorological Organization) Model 

Increase of stratospheric 
ozone breakdown 

Ozone Depletion Potential (ODP) for each emission: kg 
Chlorofluorocarbons (CFC)-11-eq./kg emission 

Photo-oxidant (-chemical) 

formation (low level ozone 

creation) 

UNECE (United Nations Economic Commission for 
Europe) Trajectory Model 

Increase of tropospheric 
ozone formation 

Photochemical Ozone Creation Potential (POCP) for 
each toxic emission to air: kg ethylene (C2H4)-eq./kg 
emission 

Aquatic eutrophication 
Relative carbon/nitrogen/phosphorous ratio (the Redfield 
C/N/P = 106:16:1) 

Terrestrial eutrophication 

Stoichiometric procedure 
Deposition of N/P 
equivalent in biomass Eutrophication Potential (EP) for each eutrophicating 

emission: kg nitrogen oxide (NOx)-eq./kg emission 

Human toxic effect Predicted daily intake 
Disability-Affected Life Years (DALYs) for each toxic 
emission: DALYs/kg emission 

Eco-toxic effect 

RIVM (National Institute for Public Health and the 
Environment, the Netherlands) Model: USES2.0 
(Uniform System for the Evaluation of Substances) 

Predicted environmental 
concentration 

Ecotoxicity Potential (ETP) for each toxic emission: kg 
1,4 dichlorobenzene-eq./kg emission 

Land use  
Land occupation or 
transformation 

Units of area multiplied by time (m2*yr) for land 
occupation; units of area (m2) for land transformation 

Others (odour, noise, etc)   DALYs per unit 

Solid waste  
Quantity of solid waste 
generated 
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Characterised results are shown in the table below. 

 

Table 4-10 Characterisation Results 

Environmental loading 

Inventory figure 
Characterisation 

factor (CF) 

Characterised 

results Impact category Loading 
(kg) WCC AI  WCC AI 

Climate change  
kg CO2-eq. 

(100yrs) 
 

CO2 8.64E+03 4.28E+03 1 

CH4 10.65 5.17 23 
Source: 
IPCC2001 

N2O 0.09 0.04 296 

8.91E+03 4.41E+03 

Acidification  kg SO2-eq.  

SO2 16.33 8.32 1 Source: 
CML2002 NOx 13.82 6.83 0.71 

26.00 13.10 

Low-level ozone 

creation 
 kg C2H4-eq.  

SO2 16.33 8.32 0.048 

CO 2.18 1.10 0.04 

VOC 4.71 2.38 1.0 

Source: 
CML2002 

CH4 10.65 5.17 0.007 

5.66 2.86 

Eutrophication  kg PO4-eq.  

Source: 
CML2002 

NOx 13.63 6.74 0.132 1.84 0.91 

Human toxicity  

kg 1,4-

dichlorobenzene-

eq 

  

PM10 0.73 0.37 0.82 

NOx 13.82 6.83 1.2 

SO2 16.33 8.32 0.096 

Source: 
CML2002 

VOC 4.71 2.38 0.64 

21.76 10.82 

 

Notes: 

1. Acidification CF for NO and NO2 is 1.07 and 0.7, respectively. 

2. Eutrophication CF for NO and NO2 is 0.2 and 0.13, respectively. 

 

Research is carried out by BRE to provide a consistent weighting for those impact 

categories addressed in LCIA, based on the broad agreement between expert panels 

within the construction industry. The results of environmental assessment of different 

activities and impacts might by this means, be compared to one another, and presented 

by a single score named ‘Ecopoints’ (Dickie and Howard 2000). 

 

4.1.4.2. Calculating and Presenting LCIA Results 

The selection of categories for impact assessment in this study was limited by the 

inventory data (Table4-8). In the ‘emissions to air’ inventory, some pollutants (e.g. 

SO2) contribute to more than one impact category in LCIA (parallel processes). The 
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substance in that case was allocated in its full amount to these categories as if it goes 

through the serial processes (ISO 14047 2003). Similarly, the characterised result of 

an impact category (e.g. global warming) may come from two or more pollutants. 

 

 

Figure 4-3 Assignment of LCI Results 

 

Table 4-11 LCIA Results of Wolverhampton Project 

Impact category Units 
WCC 

proposal 

AI 

proposal 
Saving 

Quarrying 
products 

Tonne 286.25 154.75 45.9% Depletion of 
minerals 

Bitumen Tonne 16.92 7.92 53.2% 

Energy consumption GJ 121.16 59.48 50.9% 

Global warming kg CO2-eq. (100yrs) 8.91E+03 4.41E+03 50.5% 

Acidification kg SO2-eq. 26.00 13.10 49.6% 

Low-level ozone creation kg C2H4-eq. 5.66 2.86 49.4% 

Eutrophication kg PO4-eq. 1.84 0.91 50.6% 

Human toxicity 
kg 1,4-
dichlorobenzene-eq 

21.76 10.82 50.3% 

Solid waste generation Tonne 303.17 161.53 46.7% 

 

4.1.5. Discussion 

The use of Bardon Superflex14 in Wolverhampton inlay project reduced the asphalt 

input by 1/3, and the energy use by nearly 40%. (Table4-8) ‘Bitumen production’ and 

‘transport asphalt to site’ stood as the energy intensive processes in the project, 

representing about 59% and 25%, respectively, of the total energy required (Table4-7). 

As a number of key emissions are correlated with energy consumption (Table4-3), 

asphalt of low bitumen content and in-situ recycling seem therefore more beneficial 

by environmental means. From a technical point of view however, the surface quality 

(e.g. skid resistance) and durability of the asphalt shall not be compromised as a result. 

 

CO2 
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VOC 

CO 
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A number of process parameters in the two proposals were assumed to be the same in 

this study, making the two proposals differ basically in the quantity of materials in use. 

This is reflected in the LCI and LCIA results (Table4-8 and Table4-11). This study 

did not deal with non-energy related environmental burdens. Rather, it identified 

mainly the energy use through the project processes, and calculated the associated 

emissions using BRE’s Emissions Factors database (Table4-3). Availability of data 

inhibited the otherwise more comprehensive and accurate LCA study. A detailed 

environmental profile for the asphalt associated products is therefore needed. This 

study showed the benefits of liaising with contracting partners to identify the 

environmental issues involved in the project processes, and to obtain relevant data in 

support of a more robust analysis in the future. 

 

For the same product or process, substantial difference can be expected in the data 

from different sources, which has been illustrated by other LCA studies (Zapata and 

Gambatese 2005). This also highlights the importance of two elements in LCA: 1) the 

source and quality of data and, 2) a sensitivity check for evaluation. Three issues were 

mentioned in the Journal Editorial as the ‘classical methodological problems in LCA’ 

(Editorial 2005). These problems were indeed encountered in this study, and highlight 

the need for more research to increase environment knowledge of the asphalt products 

and processes, and to implement the developing LCA in the road building industry. 

 

� How to allocate environmental burdens among the products in a process; 

� How and how far to interpret the LCI results; and 

� How to proceed with the analysis in absence of required data. 

 

As defined in the ‘functional unit’ (Table4-2), environmental loadings in this study 

were divided by service life (in years) of the asphalt layers. This made the difference 

between the two proposals more distinctive by another 11-15% in the final LCI results 

(Table4-8). This confirms the TRL’s advice that ‘design for more durable roads’ 

represents one of the asphalt industry’s best strategies towards sustainable 

construction (TRL 2005). It also confirms the suggestion made by SETAC that further 

research is needed to study the relations between service life and life time 

environmental effects for the building and construction sector (SETAC 2003). 
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4.1.6. Review 

A review note was submitted by the author on 12 January 2006 to Aggregate 

Industries UK Ltd., in which the data source and quality, calculation techniques and 

assumptions made in the LCA of Wolverhampton project were reviewed (Huang and 

Bird 2006). The summary table (see Table4-12) is presented below. Some reasonable 

estimates are also made in the LCA of LHR T5 project; while flaws are learned and 

avoided, which include: 

 

� Fuel consumption, measured in litre/hr or litre/km, rather than the engine power, 

should be used to measure the energy consumption of transport vehicles and 

construction equipment; 

� For a process, data from different sources need to be compared, and the most 

appropriate one selected for use in the model, rather than relying on data from one 

source; 

� The computing tool needs to be ready at the time of case study for data revision 

and sensitivity check, for efficiency and quality reasons; 

� More knowledge is needed of how the processes and machinery are arranged on 

site in asphalt pavement projects; 

� Improve the presentation of LCA results, and review afterwards. 
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Table 4-12 Review of Data and LCA Model in Wolverhampton Project 

 Data Source and Quality Assumption Calculation Technique 

Bitumen 
Production 

1. Business annual data is 
unsuitable for scientific 
analysis. 
2. Inconsistency of data 
source. 
3. Unit processes are not 
defined the same way as 
LCA requires. 
4. Life time boundary is 
not stated. 

Energy use and emissions 
allocated by mass to oil 
refinery products (40% to 
bitumen, 60% to lighter 
products). 

 

Pavement 
and 
Materials 

1. Materials composition 
in WCC proposal refers to 
BS average figure. 
2. Technical data are 
needed to replace arbitrary 
speculation on pavement 
life expectancy. 

1. Same bulk density for 
surface and binder course 
materials. 
2. Same weight of planed and 
inlay materials. 
3. Same life time for surface 
and binder course. 

 

Vehicle 
and 
Equipment 

A number of data on 
‘working capacity’, 
‘engine power’ and ‘fuel 
type’ are sourced from 
manufacturers’ website. 

1. Fuel type is diesel unless 
stated otherwise. 
2. Same transport distance and 
vehicles for a process in both 
proposals. 
3. Transport vehicles run at 
‘maximum load’, ‘full legal 
speed’ and ‘empty on return’. 
4. Road planer, paver and 
roller run at ‘full speed’ and 
‘full working width’. 

1. Average figure is used 
for calculation where 
machines of different 
parameters were used. 
2. Only machines of 
known parameters are 
counted in calculation. 
3. Transport distance is 
assumed proportional to 
work days. 

Energy-
related 
Emissions 

NAEI 1999 data for total 
emissions; DTI 1997 data 
for ‘upstream’ emissions. 

 

Total emissions from 
database OR ‘upstream’ 
emissions from database 
+ combustion data from 
manufacturer. 

Energy 
Use of 
Transport 
Vehicles 

  

Diesel consumption 
under ‘full-load’ and 
‘empty-load’ was not 
differentiated. 
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4.2. Asphalt Paving at London Heathrow (LHR) Terminal 5 

 

4.2.1. Project Background, Goal and Scope Definition 

Previous LCA study has questioned the environmental benefits of using waste glass 

for construction aggregates in terms of carbon footprint (Grant Thornton and Oakdene 

Hollins 2006), especially when the recycling involves a transportation of waste glass 

of more than 30-40km (Hopkins and Foster 2003). This case study is to investigate, 

by using the LCA model, the environmental impacts of asphalt paving at LHR 

Terminal-5 in which natural aggregates were partially replaced with waste glass, 

incinerator bottom ash (IBA) and reclaimed asphalt pavement (RAP), and compare to 

those had the pavement of the same size and function been laid using virgin 

aggregates only. This is followed by a discussion and data analysis (completeness 

check, sensitivity check and consistency check) referring to the most significant 

variables in the project. This case study is to test and calibrate the LCA model 

described in Chapter3. The findings, presented as inventory (LCI) and 

characterisation results (LCIA), can be beneficial to road engineers or researchers 

dealing with recycling in roads. The LCA report was submitted on 09 February 2007 

to Aggregate Industries UK Ltd (Huang and Bird 2007). 

 

4.2.1.1. Data Source and Quality 

The same as in the first case study, data needed in this LCA study are obtained firstly, 

and as much as possible, from material suppliers and contractors of the project. The 

missing data come from those justified for use in the model described in Chapter3, 

which are a combination of literatures and other European LCA databases. Analysis 

of data quality for this case study is seen in the ‘interpretation’ phase below. 

 

4.2.1.2. System Boundary 

Product systems are defined as the asphalt layers (surface course, binder course and 

base) in the LHR Terminal-5 project constructed partially using glass, IBA and RAP 

(referred as ‘AI proposal’), compared to the asphalt layers of the same size and 

function but containing virgin aggregates and binder only (referred as ‘conventional 

proposal’): this is a comparative LCA study. It is assumed that using those recycled 
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materials has no measurable effects on the asphalt layers’ life expectancy or technical 

constraints on reuse or recycling when theses layers are replaced. Asphalt layers in 

future maintenance will be recycled as the RAP into new pavement structures, same 

as was the practice in this project.8 

 

The upstream boundary for recycled materials is set at the collection point: bottle 

banks for glass, incinerators for IBA and road site of the old asphalt pavement for 

RAP. Alternative ways of disposal of these materials include the transport to landfill. 

Boundaries, assumptions and options made for conventional materials and processes 

are described above in the model. The transport of bitumen and emulsifier to emulsion 

plant is not included in this study (dashed arrow in the figure), for 1) data are not 

available and, 2) tonnage of those materials are low (indicates the significance of the 

omission would be low to the final results). This study also refers to the agreement 

made in 05-06/2005 between Aggregate Industries and the author (see Appendix1). 

 

 

Figure 4-4 System Boundary of LHR T-5 Project 

 

4.2.1.3. Functional Unit 

The function of asphalt surface is to provide a safe, durable, comfortable and 

economical driving. Functional unit is defined as the 30,000m2 of the asphalt surface. 

Unlike the first case study in which a difference in pavement life is expected (15yrs 

                                                 
8 The underlined text indicates the assumptions made in this LCA study, which needs to be agreed by 
the users of the LCA results. 
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rather than 12yrs), this case study assumes the same durability of asphalt layers. This 

is reflected in the definition of functional unit that it includes factors in only the 

construction stage. The pavement layers included for study consist of 35mm SMA 

surface course, 77mm HMB binder course and 205mm HMB base. This involves the 

use of quarry aggregates, bitumen and emulsion, waste glass, IBA and RAP (see 

Figure4-5). 

 

4.2.1.4. Allocation 

Allocation of environmental burdens between products, where data are inherently 

integrated and not possible to separate, can be done by either physical property (e.g. 

weight, volume) or economic value of the product (ISO 14044 2006). In bitumen 

production, the system boundary is expanded to account for the oil refining process 

collectively. Similarly in aggregates production, the boundary is expanded to include 

the production of all sizes of aggregates. Then the inventory loading or energy use is 

allocated between quarry products based on the tonnage. 

 

For recycled materials (glass for example), allocation has two approaches: 1) LCI 

burdens of producing glass are partitioned by the residual value of waste glass, and 

included in the LCA study. 2) As the inherent properties of glass have not been 

changed, waste glass is counted in the LCA study as raw materials input the same way 

as stone aggregates. Embedded energy in glass manufacturing is therefore not 

included in the LCA study. This case study takes the second approach. 

 

4.2.1.5. Method of Impact Assessment 

The two-step (Classification, Characterization) ‘Environmental Problems’ approach 

developed by CML and SETAC in the early 1990s is adopted by the later 

international standard on LCA as the mandatory elements for impact assessment, and 

is followed in this model development. 
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4.2.2. Inventory Analysis 

4.2.2.1. Pavement Parameters 

Data on asphalt tonnage and recipe are provided by Aggregate Industries UK Ltd 

upon data request (see Appendix2). Calculation methods and assumptions made are 

the same as in the model above. 

 

 

Figure 4-5 Pavement Structure in LHR T5 Project 

 

Table 4-13 Pavement Parameters 

Pavement Parameter Conventional Proposal AI Proposal 
 

Pavement area 30,000m2 30,000m2 

Life expectancy 12 yrs 12 yrs 

Layer thickness 35mm 35mm 

Mixture weight 1890t 1890t 
Surface 

course 
Asphalt recipe 
(coarse:fine:filler:bitumen) 

0/14mm SMA  

(73:15:6:6) 

Bardon Smatex 0/14mm 
(73:15:6:6)1 

Emulsion usage 0.4 L/m
2 0.4 L/m2 

Tack coat 
Bitumen content 60% 60% 

Life expectancy 15 yrs 15 yrs 

Layer thickness 65mm 77mm 

Mixture weight 4100t 4100t 
Binder 

course 
Asphalt recipe 
(coarse:fine:filler:bitumen) 

0/20mm HMB 

(58.6:34:3:4.4) 

HMB 0/20mm 
(58.6:34:3:4.4)2 

Emulsion usage 0.4 L/m
2 0.4 L/m2 

Tack coat 
Bitumen content 60% 60% 

Life expectancy 15 yrs 15 yrs 

Layer thickness 205mm 205mm 

Mixture weight 12,915t 12,915t Base 

Asphalt recipe 
(coarse:fine:filler:bitumen) 

0/28mm HMB 

(58:34:4:4) 

HMB 0/28mm 
(58:34:4:4)2 

 

Notes: 

1. The SMA used PG-50 (40/60) bitumen with 0.4%, of total mix, of (cellulose) fibre. 

The mixing-paving temperature window for unmodified PG-50 is 180~190ºC. 

35mm Smatex 
0/14mm 
(73:15:6:6) 

77mm HMB 
0/20mm 
(58.6:34:3:4.4) 

205mm HMB 
0/28mm 
(58:34:4:4) 

0.4 L/m2 tack 
coat emulsion, 
60% bitumen 

Surface course 

Binder course 

Base 
10% glass 
10% IBA 
25% RAP 
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Detailed technical assessment is seen in TRL report (TRL 2000). HMB in binder 

course and base used PG-35 (30/45) bitumen. 

2. 10% IBA and 10% glass was used to replace coarse and fine aggregates, 

respectively, in both binder course and base. In addition, 25% RAP (48% coarse, 47% 

fine, 5% binder) was used in both layers. 

3. Figures in Italic are assumed the same as those in the project, for conventional 

proposal. 

 

A breakdown of materials usage in this project can be calculated accordingly: 

 

Table 4-14 Materials in LHR T-5 Project (unit: tonne) 

Natural aggregates  

Coarse Fine Filler Total 

Glass IBA RAP Primary 

bitumen 

Emulsifier Fibre 

Surface 
course 

1379.7 283.5 113.4 
(105.8) 

1776.6 
(1769.0) 

N/A N/A N/A 113.4 N/A 7.61 

Tack 
coat 

N/A N/A N/A N/A N/A N/A N/A 7.22 0.0363 N/A 

Binder 
course 

2402.6 1394 123 2530.2 139.4 240.3 10254 165.2 N/A N/A 

Tack 
coat 

N/A N/A N/A N/A N/A N/A N/A 7.22 0.0363 N/A 

Base 7490.7 4391.1 516.6 8021.8 439.1 749.1 3228.84 476.2 N/A N/A 

AI proposal 

Total 12328.6 578.5 989.3 4253.8 769.2 0.072 7.6 

Conventional 
proposal 

Total5 
 

18094.6 N/A N/A N/A 824.8 0.072 7.6 

 

Notes: 

1. Fibre used in SMA surface is counted as filler. 

2. Specific density of bitumen and emulsion is assumed to be 1kg/litre. 

3. Emulsifier usage is assumed to be 3kg per tonne emulsion. 

4. NCHRP research indicated that residue binder in the RAP might need to be counted 

as ‘active’ binder when the replacement rate of RAP exceeds 20% (NCHRP 2001). 

TRL suggested a 50% recovery rate of the binder in porous asphalt that is recycled 

into thin surfacing accounting for up to 30% of the new mixture (TRL 2005). In this 

case study, 50% residue binder in the RAP is assumed to be recovered in the new 

asphalt mixture. The rest 50% is counted as hardened ‘black rock’, the aggregates 

portion of the new mixture. 

5. Materials usage for asphalt layers made using virgin aggregates only. 
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4.2.2.2. Process Parameters 

Data on transport distance and energy consumption of construction vehicles are 

provided by Aggregate Industries UK Ltd. upon data request (see Appendix2). 

 

Table 4-15 Transport Parameters 

Freight Origin Destination Mileage Vehicle 
type 

Fuel 
consumption 

Payload Fuel 
efficiency 

Aggregates Bardon Hill 
quarry 

West 
Drayton 

120mi 
(193.1km) 

Train 8-9 L/mi 
(5.0-5.6 
L/km) 

1729t 0.85 L/t1 

Bitumen Southampton West 
Drayton 

80mi 
(128.7km) 

Truck  

Emulsion2 York (to 
Crawley 
first) 

LHR T5 230mi 
(370.1km) 

Truck  

Asphalt West 
Drayton 

LHR T5 4mi 
(6.4km) 

Truck  

Glass2 Brentford West 
Drayton 

11mi 
(17.7km) 

Truck  

IBA2 Edmonton West 
Drayton 

20mi 
(32.2km) 

Truck 

Data Missing, data on 

14t truck from IVL 

are used for 

calculation 

 

 

Notes: 

1. Fuel consumption in empty journey is counted in the calculation of fuel efficiency. 

2. The suppliers of emulsion, glass and IBA are Colas, Day Group Ltd. and Ballast 

Phoenix Ltd, respectively. 

3. The transport of bitumen and emulsifier to emulsion plant is not included in the 

study, for data are not available. 

4. Fuel consumption for collection of waste glass is 0.4MJ/t (see in the model). The 

processes (crushing, screening, etc) and energy for making glass aggregates are 

assumed the same as for making natural aggregates in a quarry. 

 

Table 4-16 Machinery Parameters 

 Width of screed/roller (m) Working speed (m/hr) Fuel consumption (L/hr) 

Emulsion applier 2 220 6.0 

Paver 4.9 3001 16.87 

Roller 1.7 60002 12.5 

 

Notes: 

1. The paver runs at a speed of 10-12m/min for surface and binder course, and 8-

10m/min for the base. 

2. The roller will pass up and down over the freshly laid material for a certain number 

of passes as specified for that material. It must roll before the temperature drops too 
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much, so it can never get too far behind the paver, or too close where the material is 

still too soft.9 

3. Paving and rolling is finished in 2 passes on the base with a total thickness of 

205mm. 

 

4.2.2.3. LCI Calculation 

Environmental inputs (raw materials, energy) and outputs (emissions to air and water, 

solid waste) are calculated for the T-5 project, as well as the hypothetical proposal in 

which only virgin aggregates were used. Individual processes are grouped into 

‘materials production’, ‘transport’ and ‘asphalt placement’, based on the features of 

road projects. Grouped LCI results can be presented in either amount or percent of the 

total, or both. Results of key processes and LCI loadings for both proposals are 

presented for comparison. Complete inventory results are shown in the spreadsheet. 

 

Table 4-17 Life Cycle Inventory of LHR T-5 Project (selected environmental loadings) 

LCI of pavement object where recycled materials are used 

Aggregates(t) Bitumen(t) Energy CO2(kg) SO2(kg) NOx(kg) 
Solid 
waste(t) 

Process 

  GJ %     

Aggregates 12328.6  807 6.05 43800 84.4 318 2.3 

Glass aggr. -578.5 

IBA aggr. 
Data Missing 

-989.3 

RAP aggr.   212 1.59 15100 5.31 152 -4253.8 

Bitumen  754.8 3460 26.0 215000 1380 1610 6.1 

Emulsion1  14.4 8.6 0.06 253 0.5 0.5  

Production 

Asphalt2   7950 59.5 412000 615 756 9.9 

Aggregates   447 3.35 44200 44.3 957  

Glass aggr.   10.6 0.08 754 0.3 3.9  

IBA aggr.   33 0.25 2350 0.8 12  

Bitumen   101 0.75 7160 2.53 36.5  

Emulsion   9.2 0.07 654 0.2 3.3  

Transport 

Asphalt   126 0.95 8960 3.16 45.7  

Tack coat   34.9 0.26 2480 0.9 25  

Paving   85 0.64 5810 1.8 51  Placement 

Rolling   53.1 0.40 3780 1.33 38  

Total  12328.6 769.2 13300 100 763000 2150 4010 -5803.3 

 

                                                 
9 Personal communication with Roger Bird on 09 February 2007. 
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Table 4-17 Life Cycle Inventory of LHR T-5 Project (selected environmental loadings) - 

continued 

LCI of pavement object where only virgin materials are used 

Aggregates(t) Bitumen(t) Energy CO2(kg) SO2(kg) NOx(kg) 
Solid 
waste(t) 

Process 

  GJ %     

Aggregates 18094.6  1180 8.5 64300 124 466 3.3 

Bitumen  810.4 3710 26.7 230000 1480 1730 6.6 

Emulsion1  14.4 8.6 0.06 253 0.5 0.5  
Production 

Asphalt2   7950 57.0 615 756 412000 9.9 

Aggregates   656 4.7 64800 65.1 1400  

Bitumen   108 0.8 7690 2.71 39.2  

Emulsion   9.2 0.07 654 0.2 3.3  
Transport 

Asphalt   126 0.9 8960 3.16 45.7  

Tack coat   34.9 0.3 2480 0.9 25  

Paving   85 0.6 5810 1.8 51  Placement 

Rolling   1180 0.4 83900 29.6 845  

Total  18094.6 824.8 13900 100 802000 2300 4560 19.8 

 

Notes: 

1. LCI includes the loadings from production of the emulsifier. 

2. LCI does not include the loadings from production of the aggregates and bitumen. 
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Key Emissions and Waste
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Figure 4-6 Comparison of Key Environmental Loadings 

 

As for comparison, the tonnage of glass, IBA and RAP in the asphalt is in turn set to 

zero, hypothetically, to see how the LCI loadings change as a result. It can be seen 

from the table and figure below that RAP replacement has the greatest effects, 

compared with glass and IBA, for: 1) its tonnage, and 2) its dual effects of replacing 

aggregates and reducing the input of primary bitumen, an energy hungry product. 

 

Table 4-18 Effects of Glass, IBA and RAP Replacement on LCI Results 

Selected Environmental Loadings in LCI of Pavement Object Scenario of 
Using Recycled 

Materials 
Aggregates(t) Bitumen(t) 

Energy 
(TOE) 

CO2(t) SO2(kg) NOx(kg) 
Solid 
waste(t) 

Glass, IBA, 
RAP as in T5 

12328.6 769.2 317 763 2150 4010 -5803.3 

IBA, RAP as in 
T5, no glass 

12907.1 769.2 320 766 2150 4070 -5224.8 

Glass, RAP as 
in T5, no IBA 

13317.9 769.2 320 767 2150 4100 -4813.8 

Glass, IBA as 
in T5, no RAP 

16526.8 824.8 330 794 2280 4220 -1548.3 

Virgin 
materials only 

18094.6 824.8 332 802 2300 4560 19.8 
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Energy and CO2 Loadings for Comparison
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Figure 4-7 Comparison of Energy and CO2 between Recycling Scenarios 

 

4.2.3. Impact Assessment 

Life cycle impact assessment is not carried out in this case study, for: 1) it would be 

purely an environmental assessment process which does not rely on any inputs from 

road engineers once the inventory is complete and, 2) most of the procedures would 

repeat those in the LCA study of Wolverhampton project. 

 

4.2.4. Interpretation 

4.2.4.1. Identification of Significant Areas 

In the LHR T-5 project, asphalt mixing, bitumen and aggregates production consumed 

approximately 60%, 26% and 6%, respectively, of all the energy and as a result, 

released more pollutants than other processes. The introduction of recycled materials 

did not have an effect on the environmental burdens of asphalt production or 

placement, yet it reduced, by about 7%, the input of primary bitumen. Another 

significant benefit of using recycled materials (glass, IBF and RAP) in LHR T-5 was 

the saving of more than 5,700 tonnes of natural aggregates, and diverting 579t and 

989t of waste glass and IBA, respectively, from landfill. 

 

Transport of aggregates accounted for over 61% of all diesel use in transport. This is 

due to the long haulage distance (120miles) and materials tonnage. Railway 

locomotive with a higher fuel efficiency (0.17MJ/t*km) than trucks (0.46-

0.94MJ/t*km) was used for aggregates transport. RAP, glass and IBA were obtained 

from local sources; the haulage of RAP which was applied on site was not included in 
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the analysis. Given the tonnage of glass and IBA, an increase of transport distance 

will not be significant in affecting the total energy use or emissions. On the contrary, 

hot mix asphalt was transported for a short distance of 4miles in this project, which 

explains why it represented only 17% of diesel use in transport. The energy consumed 

in main phases of the construction process is illustrated in the figure below (refer to 

Table4-17). 
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Figure 4-8 Energy Consumption of Main Processes in LHR T-5 Project 

 

4.2.4.2. Completeness Check 

The completeness check attempts to ensure that data on all products and processes 

required for LCA study of the project have been obtained, and any data gap or the 

need for further data acquisition is identified. 
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Table 4-19 Completeness Check on Data Source and Quality 

Unit process group Data source Complete? 
Limitation/Action 
required 

Aggregates AI √ No 

Glass aggregates 
Day Group 
Ltd. 

X 

Energy data on 
recycling glass for 
aggregates use are 
needed 

IBA aggregates 
Ballast 
Phoenix Ltd. 

X 

Energy data on 
recycling IBA for 
aggregates use are 
needed 

RAP aggregates IVL √ No 

Bitumen Eurobitume √ 
LCI data on 
straight run 50/70 
bitumen only 

Emulsion IVL √ No 

Materials production 

Asphalt AI √ No 

Aggregates AI √ No 

Glass aggregates AI, IVL X 

IBA aggregates AI, IVL X 

Bitumen AI, IVL X 

Emulsion AI, IVL X 

Transport 

Asphalt AI, IVL X 

Mileage is known 
from AI, but fuel 
efficiency has to 
use that for 14t 
truck from IVL 

Tack coat AI √ No 

Paving AI √ No Asphalt placement 

Rolling AI √ No 

 

4.2.4.3. Sensitivity Check 

The sensitivity check aims to determine the influence of variations in data source, 

methodology and assumptions on the inventory results. Normally it is carried out after 

the identification of significant areas, on the most significant variables in the project. 

 

Materials production accounted for in the LHR T-5 project the largest proportion of 

energy use and emissions, particularly the production of aggregates, bitumen and 

asphalt. It can be seen in the Model (see in Chapter3) that this is also the area in which 

many alternative data exist. Therefore, sensitivity check is carried out, on the effect of 

data source on the key environmental impacts (energy, CO2, etc). A variation of 10% 

is considered significant. 
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Table 4-20 Sensitivity Check on Data Source and Mixing Method for Asphalt Production 

Total energy use in the project 
(103GJ) 

Hot mix 
production 

Cold mix 
production 

Deviation 
(103GJ, %) 

Sensitivity 

AI data 14.5 7.5 -7, -48.3% Significant 

EAPA data 15.9    

IVL data  6.5 -9.4, -59.1% Significant 

Deviation (103GJ, %) +1.4, +9.7% -1, -13.3%   

Sensitivity Insignificant Significant   

 

Table 4-21 Sensitivity Check on Data Source for Bitumen and Aggregates Production 

 Total CO2 emissions in the project (tonne) 
Deviation 
(tonne, %) 

Sensitivity 

Eurobitume data VTT data   Data on production of 
bitumen 843 881 +38, 4.5% Insignificant 

AI data VTT data   Data on production of 
aggregates 843 824 -19, -2.3% Insignificant 

 

Sensitivity checks above indicate that the source of data on production of asphalt, 

bitumen or aggregates does not have significant effects on the total of energy use or 

carbon footprint of the project. The only exception is the energy total when data on 

cold mix production come from IVL compared with AI. However, the project’s 

energy total can be almost halved had the aggregates and bitumen (emulsion) been 

mixed by the ‘cold’ method. The reduction can be greater at nearly 60% if data on the 

‘hot mix production’ and ‘cold mix production’ come from EAPA and IVL, 

respectively. This is of course, based on the assumption that aggregates grading and 

bitumen content of the cold mix asphalt equal those of its hot mix counterparts. 

 

Apart from data source and mixing method, according to ISO14044, sensitivity check 

may also be carried out on other alternatives in the scope definition, such as the 

allocation rule, system boundary, assumptions, and methodology for impact 

assessment (e.g. selection of impact categories and characterisation factors). 

 

4.2.4.4. Consistency Check 

Different to the completeness check, the consistency check is to find out whether and 

how far the data used for the LCA study share comparable characteristics or the same 

level of details. These may include: age, accuracy, temporal, spatial and technical 

coverage of the data. 
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Table 4-22 Consistency Check on Data Source and Quality 

Unit process group Data source Age Accuracy 
Time-, geography-, and 
technology-related coverage 

Aggregates AI 
1998-
2006 

√ 
Mean value of AI’s HMA plant at 
Greenwich and Durham, weekly 
average1 

Glass 
aggregates 

Day Group 
Ltd. 

 X 
Data unavailable, glass recycling 
plant (for aggregates use) at 
Brentford 

IBA 
aggregates 

Ballast 
Phoenix Ltd. 

 X 
Data unavailable, IBA aggregates 
production plant at Edmonton 

RAP 
aggregates 

IVL 2000 √ A diesel driven mobile plant 

Bitumen Eurobitume 
1997-
1999 

√ 
Partial LCI study on straight run 
PG50/70 bitumen 

Emulsion IVL 2000 √ 
An emulsion plant, LCI for 
emulsifier: Akzo Nobel 

Materials 
production2 

Asphalt AI 
1998-
2006 

√ 
Mean value of AI’s HMA plant at 
Greenwich and Durham, weekly 
average1 

Aggregates AI 2006 √ Diesel locomotive for 120mi 

Glass aggr. AI, IVL  X 

IBA aggr. AI, IVL  X 

Bitumen AI, IVL  X 

Emulsion AI, IVL  X 

Transport 

Asphalt AI, IVL  X 

Data unavailable, use fuel 
consumption of 14t truck from 
IVL, empty return assumed; 
mileage from AI 

Tack coat AI 2006 √  

Paving AI 2006 √ 
Effective working time: 50min/hr, 
laying speed does not differentiate 
between base and surface layers 

Asphalt 
placement 

Rolling AI 2006 √ 
Effective rolling width: 85% 
roller width; effective working 
time: 50min/hr; 6 passes assumed 

 

Notes: 

1. Data come from ‘plant weekly operating report’. 

2. Alternative LCI data are available from VTT on production of crushed aggregates, 

gravel, limestone filler and bitumen. 

 

4.2.5. Discussion 

Production of bitumen and hot mix asphalt together consumed more than 78% of all 

the energy in LHR T-5 project. Transport in total accounted for only about 5%. This is 

because the transport process was either of short distance, or of long haulage but done 

by fuel efficient mode. Alternative data to those used in this case study are available, 

on materials production including aggregates, bitumen and hot/cold mix asphalt, etc. 
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Sensitivity analysis indicated that it was the asphalt mixing method, rather than the 

data source, that had significant effects on the energy or CO2 total. 

 

Not all required data for the LCA study of LHR T-5 project was available from 

contractors. Some (e.g. transport) can be obtained from industry average not specific 

to this project, other data deficiency (e.g. glass/IBA aggregates) may affect the 

definition of system boundary for this LCA study. Data used in this case study were 

of mixed age, accuracy and applicability. A full life cycle inventory of the products or 

processes in constructing the asphalt pavements is ideally welcome for LCA use; very 

often however, only energy data are available. 

 

Old asphalt planings is the most desirable type of recycled aggregates, taking into 

consideration the quantity, transport, resource efficiency and recyclability of the 

asphalt layers. Compared with such industrial waste like glass, whose secondary use 

in roads is relatively new, far more research has been done on the RAP (FHWA and 

Ohio DOT 2002). The results from on-going laboratory work and trials can expect to 

predict the pavement life on a more scientific basis (TRL 2005).  
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Chapter 5 : Model Extension 

 

The cost of road maintenance works has two aspects. One is the direct cost incurred 

by contractors (agency’s cost) in carrying out the work, the other is the cost borne by 

road users during the roadwork. Similar principles apply to the environment footprint 

of road maintenance works. The computer program QUADRO (QUeues And Delays 

at ROadworks) is introduced in DMRB Volume14 to compare the full cost of 

alternative maintenance options including the agency’s and users’ cost (DMRB 2002). 

Through a case study of a rehabilitation project on a 2-lanes dual carriageway, this 

thesis introduces the concept of using LCA and EnvPro (packed with VISSIM), 

respectively, to measure the environmental impacts of roadwork and the traffic on it. 

These impacts will be assessed for their significance to the total emissions from the 

road. This thesis therefore makes an equivalent environmental assessment to the 

QUADRO. 

 

5.1. Environmental Impacts from the Traffic 

A number of energy and LCA studies of roads have indicated that the construction of 

pavement structures contributes to only a light fraction (e.g. less than 10%) of the 

energy or emissions total. The majority of environmental loadings come from the 

trafficking vehicles during the pavement life time (Hakkinen and Makela 1996; 

Inamura 1999; The Highways Agency 2003). Although the study of energy and 

emissions from traffic is not in the scope of this PhD study, the speed of delivery of 

road maintenance works certainly has an effect on the fuel use and emissions by the 

traffic, and therefore needs to be addressed in the LCA study of roadwork. 

 

5.2. Introduction of VISSIM and EnvPro 

Micro-simulation model, VISSIM (Visual Simulation), is able to analyse urban traffic 

and transit operations in given context of lane configuration, traffic volume and 

composition, traffic signals and transit stops, etc. Among the main applications is to 

evaluate and compare the many design alternatives such as signalised or stop-sign-

controlled intersection, traffic diversion or traffic sign setting, etc. The aim is to 

optimise traffic operations in a combined network of coordinated and actuated traffic 
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signals (PTV 2005). When used for assessment of the environment footprint of road 

works, micro-simulation results may help to evaluate the traffic management options 

such as the time of roadwork, lane closure and traffic diversion, with an aim to reduce 

disruption to traffic and as a result, the overall fuel use and associated emissions. 

 

Statistical data such as travel time and queue length are gathered and presented as the 

simulation results. In order to make the results ready for LCI analysis, traffic 

emissions model is needed to convert the results into emissions inventory. EnvPro 

(Environmental Program), developed jointly by PTV AG and Newcastle University 

(Transport Operations Research Group, TORG), is able to estimate pollutions from 

the traffic using the simulation results of VISSIM. VISSIM4.1 and EnvPro1.6 are 

responsible for traffic simulation and emissions modelling, respectively in this study. 

 

 

Figure 5-1 Consideration of Disturbance to Traffic by Roadwork 

 

5.3. Case Study – Rehabilitation of Pavement between Hanford Roundabout on 

A34 to City of Stoke-on-Trent Boundary 
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5.3.1. Background 

A full reconstruction was proposed, and materials options reviewed, for pavement 

between Hanford Roundabout on A34 to City of Stoke-on-Trent Boundary. The 

pavement construction involved HDM base and DBM binder course, with HRA 

forming the surface layer. The primary aim was to evaluate the recent changes to 

pavement design in DMRB (HD26/06), to see how alternative asphalt mixture (EME2) 

can affect the layer thickness (TRL 2005). 

 

Table 5-1 Materials Options for Pavement Rehabilitation at Stoke-on-Trent 

Pavement 
Layer 

Option1 Option2 Option3 Option4 

 Materials 
Type 

Thickness Materials 
Type 

Thickness Materials 
Type 

Thickness Materials 
Type 

Thickness 

Surface 
Course 

HRA 50mm HRA 50mm HRA 50mm HRA 50mm 

Binder 
Course 

EME2, 
14mm 

70mm EME2, 
14mm 

70mm Bardon 
Superbase14 

70mm Bardon 
Superbase14 

70mm 

Base EME2, 
20mm 

120mm EME2, 
14mm 

120mm Bardon 
Superbase20 

140mm Bardon 
Superbase14 

140mm 

Foundation Surface stiffness modulus 120MPa required Standard unbound Type I sub-base permitted 

 

This case study however, deals with what effect the speed of delivery of the roadwork 

had on the traffic and, as a result, the fuel use and emissions. The roadwork was 

2.6km long and carried out on a 2-lane dual carriageway. Rather than 8 day as 

originally proposed, the project was finished in 5 days. This case study uses VISSIM 

to simulate the traffic flow in normal time and during the roadwork, and was based on 

the knowledge of traffic data and road configuration. The outputs from the traffic 

model are the inputs to EnvPro, and then the difference can be seen by comparing the 

fuel use and emissions inventory. Energy and relevant emissions from the roadwork 

itself is addressed by LCA (with assumptions made on the asphalt products and 

processes). 

 

5.3.2. LCA of Roadwork 

Majority of the roadwork deal with surface course only, the rest have binder course 

and/or the base involved. The mileage divide is summarised in the table below. Also 

presented are the pavement parameters. 
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Table 5-2 Mileage Divide of Roadwork in Stoke-on-Trent Rehabilitation Project 

 Asphalt type Asphalt 
recipe1 

Layer 
thickness 

Accumulated 
mileage3 

Surface course type I 0/14mm HRA, 50pen 64.5:23:7.6:4.9 50mm 4014m 

Surface course type II Super Hitex 64.5:23:7.6:4.9 40mm 491m 

Binder course 0/20mm DBM 64.5:23:7.6:4.9 60mm 491m 

Base 0/28mm HDM 64.5:23:7.6:4.9 200mm 440m 

 

Notes: 

1. Asphalt recipe is presented as ‘coarse: fine: filler: bitumen’. The asphalt recipe in 

SuperflexTM (data come from Wolverhampton project, see Chapter4: Case Study) is 

assumed the recipe for all layers of this roadwork. Emulsion recipe and usage for tack 

coat between asphalt layers come from LHR T5 project. No recycled materials are 

assumed to be used. 

 

 

Figure 5-2 Pavement Structure in Stoke-on-Trent Rehabilitation Project 
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Assume the transport mode (a combination of 14t truck and rail locomotive) and 

workload (aggregates: 120mi; bitumen: 80mi; emulsion: 230mi; asphalt: 4mi) equal to 

those in LHR T5 project. Run these process and pavement data through the LCA 

model. The estimated figures of energy and emissions from the roadwork can be 

worked out by this simplified LCA process. 

 

Table 5-3 Energy Use and Key Emissions from Stoke-on-Trent Rehabilitation Project 

Process  CO NOx HC CO2 PM Energy 

 Unit gram gram gram gram gram GJ 

Aggregates 72.2E+03 159E+03 22.8E+03 21.3E+06 13.9E+03 386 

Bitumen 41.6E+03 625E+03 386E+03 83.2E+06 65.4E+03 1340 

Emulsion 28.4 202 152 0.1E+06 82.2 3 
Production 

Asphalt 77.4E+03 268E+03 68.3E+03 152E+06 52.5E+03 2900 

Aggregates 53.1E+03 433E+03 7.2 20.1E+06 1.8 226 

Bitumen 6.8E+03 16.1E+03 2.1E+03 3.2E+06 89.8 44.3 

Emulsion 1.1E+03 2.6E+03 328 0.5E+06 14.3 7.1 
Transport 

Asphalt 6.7E+03 15.8E+03 2.0E+03 3.1E+06 88.6 43.7 

Tack coat 1.4E+03 2.7E+03 0.12 0.27E+06 77.2 3.8 

Paving 1.5E+03 3.0E+03 0.16 0.34E+06 92.8 4.9 Placement 

Rolling 1.1E+03 2.2E+03 0.10 0.22E+06 63.1 3.1 

Total  263E+03 1530E+03 482E+03 284E+06 132E+03 4970 

 

5.3.3. Micro-simulation (VISSIM) 

The roadwork was carried out on a 2.6km long, 2-lanes dual carriageway between 

A34 Strongford (Hanford roundabout) to City of Stoke-on-Trent boundary. The 

northbound traffic is 12,410 vehicles per day and the southbound 14,083. 10 

Distribution of traffic by time of day is described by DfT in Transport Statistics 

Bulletin (DfT 2006). This thesis uses the profile for all vehicles during weekdays 

(Monday to Friday). The traffic on north- and south-bound carriageway is allocated to 

each hour period. 

                                                 
10 Traffic data is the daily average in June. During simulation, a 60%:40% ratio between car traffic 
(60km/hr) and HGV traffic (50km/hr) is assumed. 
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Table 5-4 Traffic Distribution by Time of Day 

Time of Day 
DfT’s Traffic Profile  

(all vehicles, workday) 
Northbound Southbound 

0--1 17 82 93 

1--2 12 58 66 

2--3 10 48 55 

3--4 11 53 60 

4--5 17 82 93 

5--6 39 188 214 

6--7 95 459 521 

7--8 178 860 976 

8--9 193 933 1058 

9--10 158 764 866 

10--11 147 710 806 

11--12 149 720 817 

12--13 152 735 834 

13--14 156 754 856 

14--15 163 788 894 

15--16 176 851 965 

16--17 199 962 1091 

17--18 204 986 1119 

18--19 163 788 894 

19--20 114 551 625 

20--21 80 387 439 

21--22 60 290 329 

22--23 45 217 247 

23--24 30 145 165 

Total 2568 12410 14083 
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Figure 5-3 Daily Traffic Profile 

 

The procedures of running VISSIM to simulate the traffic movements on a road 

include the following steps: 
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1) Load the AutoCAD drawings in VISSIM as background (convert the map to 

VISSIM supported format if needed) and scale it; 

2) Draw the links on top of, and in line with, the road alignment; 

3) Assign the lane number and traffic data to those links; 

4) Generate the links for traffic in the opposite direction,  use the function that 

VISSIM provides for this step but make amends to the road alignment on the map;  

5) Repeat 3) for the links; 

6) Run the simulation. 

 

5.3.4. Emissions Modelling (EnvPro) 

The .fzp file (Vehicle Record) produced by VISSIM is brought into EnvPro as input. 

The output of EnvPro (the .em file) opens with Notepad or WordPad. It includes an 

emissions inventory of CO, NOx, CO2, HC, PM and FC (fuel consumption), presented 

in g or g/km (litre or litre/km for FC). This inventory refers to the fuel use and 

emissions by the traffic on that length of road during the simulation period. EnvPro 

estimates the pollutions based on two models developed under EU project in the early 

1990s: QUARTET and MODEM (PTV and TORG 2004). 

 

 

Figure 5-4 Inputs and Outputs of EnvPro (PTV and TORG 2004)
 

 

5.3.5. Inventory from the Traffic 

Firstly, run the data for traffic in normal time through VISSIM and EnvPro in turn, 

and get the fuel consumption and emissions by the traffic in one day. 

 

Table 5-5 Fuel Use and Emissions by Traffic per day during Normal Time 

 CO NOx HC CO2 PM FC 

Unit gram gram gram gram gram litre 

QUARTET model 5.98E+05 3.87E+05 2.33E+05    

MODEM model 4.70E+05 7.01E+04 4.54E+04 1.40E+07 1.23E+06 4.68E+03 

Variation 21.4% 81.9% 80.5%    

.em file .fzp file 

EnvPro 
 

VISSIM 

CO, NOx, HC 
(QUARTET) 

 
CO, NOx, HC, CO2, 
PM, FC 

(MODEM) 

Envpro.cfg 

Current_vehicle_licencing
_statistics.txt 
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The principles and measures of lane closure for roadwork on dual carriageways are 

described in DfT’s Traffic Sign’s Manual (DfT 2006). This case study assumes that 

the two lanes are closed on an alternate basis over the entire length of the roadwork. 

This means during the time of the roadwork, only one lane is effectively carrying the 

traffic, in both directions of the dual carriageway. Close one lane in both directions of 

the traffic in VISSIM, run the model and then input to the EnvPro, to simulate 

emissions during the period of the road works. 

 

Table 5-6 Fuel Use and Emissions by Traffic per day during Roadwork 

 CO NOx HC CO2 PM FC 

Unit gram gram gram gram gram litre 

QUARTET model 5.98E+05 3.91E+05 2.37E+05    

MODEM model 4.85E+05 7.01E+04 4.79E+04 1.44E+07 1.26E+06 4.82E+03 

Variation 18.9% 82.1% 79.8%    

 

5.4. Discussion 

Obviously the difference in results from the two models is substantial. The 

QUARTET (Quadrilateral Advanced Research on Telematics for Environment and 

Transport) model estimates traffic emissions based on an average speed/flow. On the 

other hand, MODEM is an instantaneous and continuous emissions model, providing 

estimates of fuel consumption and emissions in presence of accelerations, 

decelerations, stop and go phenomena, typically seen in urban and congested traffic. 

Therefore, the MODEM model is better able to compute on a micro-scale (second by 

second) emissions.  An interesting result from this modelling exercise is that the 

QUARTET estimates are systematically higher than the MODEM estimates for all 

pollutants. The reason for this is not clear and should be a subject of future research.  

 

This case study uses the results from the MODEM model for discussion. Compare the 

inventories in Table5-5 and Table5-6. It can be seen from Table5-7 that the traffic 

during roadwork consumes 3% more fuels, and the emissions increase from 0.1% for 

NOx to 5.5% for HC. 
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Table 5-7 Comparison of Fuel Use and Emissions by Traffic per day 

 CO NOx HC CO2 PM FC 

Unit gram gram gram gram gram litre 

Traffic in Normal Time 4.70E+05 7.01E+04 4.54E+04 1.40E+07 1.23E+06 4.68E+03 

Traffic in Roadwork Time 4.85E+05 7.01E+04 4.79E+04 1.44E+07 1.26E+06 4.82E+03 

Increase 0.15E+05 0.7E+02 0.25E+04 0.04E+07 0.03E+06 0.14E+03 

Increase (%) 3.2% 0.1% 5.5% 2.9% 2.4% 3.0% 

 

The reduction of the duration of roadwork from 8 days to 5 days in this project saved 

fuels and emissions by the traffic. Figures can be estimated by multiplying the 

‘increase’ in Table5-7 by 3 (8-5). The fuel use and emissions by the traffic in normal 

time for one year can be estimated by multiplying the inventory figures in Table5-5 

by 365. These results are compared with the LCA results of the roadwork (Table5-3). 

 

Table 5-8 Comparison of Fuel Use and Emissions by Traffic, Roadwork and Speed Construction 

 CO NOx HC CO2 PM Energy 

Unit gram gram gram gram gram litre 

Traffic per year in normal 
time 

1.72E+08 2.56E+07 1.66E+07 5.11E+09 4.49E+08 1.71E+06 

Roadwork (LCA results) 2.63E+05 1.53E+06 4.82E+05 2.84E+08 1.32E+05 1.19E+051 

Savings due to speed 
construction (3 days) 

4.50E+04 2.10E+02 7.50E+03 1.20E+06 9.00E+04 4.20E+02 

Note: 

1. Density of the fuel is assumed to be 1.0E+03 litre/tonne. 
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Figure 5-5 Comparison of Fuel Use and Emissions by Traffic, Roadwork and Speed Construction 
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It can be seen from Figure5-6 that savings of CO and PM due to speed delivery of the 

roadwork are comparable to those coming from the roadwork itself. This indicates the 

significance of reducing the disturbance to traffic during roadwork. The speed 

construction does not have significant effect on the HC, CO2 and energy loadings. The 

saving of NOx is minimal. 

 

It can be seen from Figure5-6 that NOx, CO2 and energy figures between roadwork 

and traffic per year are comparable; while the difference in CO and PM is of 3 orders 

of magnitude. Although approximations were made in the calculation, it can be safely 

argued that the majority of fuel use and CO2 comes from the trafficking vehicles on 

the road. 

 

There are a couple of previous LCA studies of roads that have similar conclusion: 1) 

CO2 from construction stage accounts for about 5% of the total including construction, 

maintenance and operation period (Inamura 1999) and, 2) the energy used for 

constructing the road equals that consumed by traffic on that road for about one year 

(The Highways Agency 2003). Moreover, this case study builds up the framework of 

applying LCA and VISSIM, two of the most influential tools in the transport area, to 

measure and compare the energy and key emissions on a road during its lifetime. 

 

5.5. Limitations of Case Study 

A number of pavement and process parameters for LCA of the roadwork are assumed 

the same as in Wolverhampton or London Heathrow T-5 project. The only traffic data 

available in this case study are daily average. It was distributed to each hour period, 

based on the UK profile (for all vehicles and for weekdays). For VISSIM simulation, 

data for peak hours may need to be detailed to every quarter hour, because vehicles on 

road during that time are affected more by one another which will change the overall 

travel delay and queue length.11 One limitation of the EnvPro1.6 is that the speed of 

traffic for simulation must be lower than 70-80km/hr (43-50mi/hr) for most of the 

time (PTV and TORG 2004); on dual carriageways in the UK however, the speed 

limit is 50-70mi/hr (DSA 2004). In practice, when a roadwork is carried out that 

seriously brings down the traffic flow, vehicles on the affected road are normally 

                                                 
11 Personal communication with Sergio Grosso on 19 June 2007. 
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looking for diversion which will reduce the actual number of vehicles. This is more 

pronounced in urban areas. 

 

It is not necessary to run the VISSIM and EnvPro for assessment of environmental 

impacts in every road project, notably where the roadwork has no significant effects 

on the traffic. For example, where the roadwork is carried out at night time (see traffic 

profile in Figure5-3), or a reasonable diversionary route within the area is available, 

there will be little disturbance to the traffic. Knowledge of the road network and 

traffic management by the contractor is needed to make a more accurate simulation. 
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Chapter 6  : Discussion 

 

6.1. Waste Arisings and Use in Asphalt Pavements 

The level of recycling in roads varies in the UK, due to the difference in, access to 

suitable natural aggregates and the capacity of local landfills. Other than technical 

barriers exist, for example, lack of infrastructure to collect the material, alternative use 

of the recycled material, and additional cost may inhibit the waste from being 

recycled into road structure. The government encourages recycling through legislation, 

purchasing power and grants that are offered to companies to help initiate recycling 

locally (QPA 2004). The use of recycled materials in asphalt pavements must have a 

value-added prospect; and is likely to be practical where there is a surplus that is 

otherwise destined for landfills. 

 

From a technical perspective, asphalt in which well crushed glass (e.g. ≤4.75mm) 

replacing a few percent (e.g. 10-15%) of fine aggregates should not be excluded from 

use in asphalt surface layers, as glass particles are ground too finely to present any 

safety risks, and the PSV, AAV and affinity requirements apply only to coarse 

aggregates in the mixtures. However, this may pose a non-technical barrier as fine 

aggregates are only used in moderate amount in SMA and OGFC, where recycled 

SWM that can be used in larger size (e.g. steel slag) makes a better choice because of 

less processing requirements and a higher replacement rate. It is recognised that the 

replacement rate should be allowed to vary to the size of glass particles in use, and 

vice versa.  

 

Steel slag should be used in place of coarse aggregates in surface asphalt, to make 

best use of its mechanical strength and skid resistance. Large particle size and high 

replacement rate are recommended by laboratory and trial results. The drawback is the 

high specific gravity of steel slag (3.2-3.6), if used in stone-dominated mixtures like 

SMA or OGFC, will drive up the overall mix density, implying an increase of 

transport cost. Volumetric stability (un-weathered slag particles tend to absorb 

moisture and expand) and leaching (of heavy metals) behaviour caused the most 

concerns. Precautionary treatment, e.g. natural weathering, is practised to reduce the 
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free CaO/MgO content of steel slag prior to use as aggregates; and regular (e.g. twice 

a year) leaching test is recommended for use in roads and hydraulic structures. 

 

In general, tyre rubber is used in asphalt mixtures to reduce cracking, improve 

durability and mitigate noise. Depending on the application, different variables need 

to be considered when assessing the technical performance of asphalt containing tyre 

rubber: binder properties in the wet process, and asphalt properties in the dry process. 

So far, most laboratory and field work has been focused on the ‘wet’ trial. It is 

generally agreed that asphalt rubber mixtures improves durability and low-

temperature performance. On high-temperature performance, there are mixed views in 

the States ranging from better, equal or comparable, to worse. Results from the ‘dry’ 

trial so far are of limited number, and are far from conclusive. The wet process is 

more tolerant, whilst the dry process requires extra care in materials selection, mix 

design and asphalt manufacture. The economic break-even point in both applications 

is whether the increased cost (e.g. waste processing, higher binder usage) can be 

warranted by a return through longer pavement life. Life cycle cost analysis can be 

helpful to find out when and where the use of tyre rubber in asphalt is cost effective. 

 

Recycled LDPE can substitute a portion of 15-30% of aggregates depending on its 

particle size and if properly designed, the rutting, cracking and aging performance of 

asphalt mixture may improve. Recycled PE accounting for 8% of the binder as a 

bitumen modifier, may also increase the mixture’s mechanical stability. Similar to 

tyre rubber in the ‘dry process’, a number of asphalt properties when using recycled 

plastics are yet to be reported. In addition, the cost and environmental implications are 

unclear due to the limited practice to date. 

 

Table 6-1 Waste Arisings in the UK and Application in Asphalt Pavements 

Waste 
arisings 

Recycling 
rate 

Use as 
aggregates 

Use in asphalt pavements 
 

Mt/yr % % Aggregates 
Replace 
rate (%) 

Binder 
Replace 
rate (%) 

Glass 3.4 33 4.1 √ 10-30 X  

Steel 
slag 

0.75 100 98 √ 30-62 X  

Scrap 
tyre 

0.44 21 N/A √ 1-3 √ 18-22 

Plastics 2.8 5 0.29 √ 15-30 √ 8 

√ indicates an option; X indicates not an option. 
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6.2. Introducing LCA to Asphalt Industry – Risks and Benefits 

To date, the use of LCA in the Construction and Building Materials industry is mainly 

practised by the cement/concrete sector and in ‘vertical’ construction. Results and 

findings so far are of mixed value to the road building industry. Asphalt and concrete 

have been competing for use in road building for decades. There are some threats to 

the asphalt industry, or a company in their asphalt business, from not adopting LCA, 

especially when recycled materials are involved and alleviation of Company’s 

environment footprint is on their business agenda. The risks include (Bird, Clarke et 

al. 2004): 

 

� Lack of reliable and objective measures of Company’s sustainability level in 

business development; 

� ‘Green-pursuit’ actions or claims dwarfed by competitors whose efforts are 

backed by industry-accredited techniques; 

� Loss of market share under client pressures (e.g. green procurement requirement); 

and 

� Wrongly made ‘green’ claims can lead to bad publicity and even criminal liability. 

 

In contrast, the benefits of initiating LCA studies can be as follows (Bird, Clarke et al. 

2004): 

 

� Provide an assessment tool to review and improve Company’s supply chain 

management, and back their environmental declaration and labelling; 

� Support Company’s reporting on their products with a tool that can impartially 

and completely measure the environmental performance and compare against 

competing materials, rather than relying on existing models or databases that quite 

often are developed by commercial rivals with built-in bias or lack of transparency. 

Particular benefits of image arise if the Company’s LCA tool becomes globally 

accepted as the industry standard; 

� Increase market share by providing stakeholders with in-depth knowledge of the 

products and Company’s sustainability objectives; and 

� Provide a complementary dimension to the technical and economic studies, all 
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contributing to Company’s life cycle management (LCM). 

 

6.3. Summary of LCA Model and Key Points 

Relations between worksheets in this model are described in Figure6-1. It can be seen 

that they are not parallel. Data in ‘Energy and Emissions Inventory’ need the input 

from ‘Process Parameters’. Then the ‘Inventory Results’ are calculated into the unit of 

pavement object based on the input from ‘Pavement Parameters’ and ‘Transport 

Distance’. The serial relations between data are also found within the same worksheet, 

such as the ‘Energy and Emissions Inventory’, in which the inventory of engines 

contributes to the inventory of transport vehicles and construction equipments. 

 

 

Figure 6-1 Relations between Worksheets in LCA Model 

 

Fuel consumption in this model is presented in the unit of litre/km for trucks, and 

litre/hr for construction vehicles (e.g. roller). Relevant data normally are not found in 

manufacturer’s manual or product brochure, but have to come from contractors on site, 

which makes the data acquisition in real case studies subject to commercial restriction. 

It is important to get the primary data correct (e.g. fossil fuel combustion, diesel 

engine emissions), as these data are used in a number of later calculations therefore a 

minor deviation at the beginning may lead to cumulative difference in the inventory 

results. The data quality fortunately, can be tested by the sensitivity check afterwards, 

like the LHR T-5 case study in Chapter 4. 
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Generally, Energy consumption in production of materials per tonne is in the 

descending order of: emulsifier (58.7GJ) > cement (5.1GJ) > bitumen (4.5GJ) > hot 

mix asphalt (0.42GJ) > emulsion (0.18GJ) > concrete (0.12GJ) > aggregates (0.07GJ) 

> cold mix asphalt (0.052GJ) > RAP (0.050GJ). 14t truck has the lowest fuel 

efficiency in terms of litres of diesel per tonne kilometre (0.94MJ/t*km), followed by 

the heavier 32t truck (0.46MJ/t*km), railway locomotive (0.17MJ/t*km) and cargo 

ship (0.13MJ/t*km). The data illustrated below refer to Table3-3 and Table3-5. 
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Figure 6-2 Energy Consumption in Production and Transport 

 

It is useful to have the above knowledge in mind when design and deliver the project, 

as this will be the ‘pro-active’ approach to sustainable construction. There are certain 

trade-offs to consider when selecting the materials for a project. For example, cold 

mix asphalt saves gas oil for heating aggregates, while it consumes emulsifier which 
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comes from energy hungry processes. More importantly, the selection of mixing 

method and bitumen content has to consider such issues like the durability of the 

asphalt product. Selection of transport mode and vehicles are often restrained by 

availability and the economics. Apart from the unit figures above, the energy input to 

a component material also depends on the tonnage of that material in the project. In 

transport process, the mileage might be a dictating factor. 

 

A flowchart of the main phases in an asphalt pavements project is illustrated below: 

 

Figure 6-3 Unit Processes in Asphalt Pavement Project 

 

It can be seen from the data acquisition above that, the key points in obtaining data for 

a LCA study include: 
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� Identify the appropriate data source; data should be up-to-date, recognised and the 

reference accessible; 

� The boundary of data and any assumptions made should be unambiguously stated. 

Pay extra attention when data required in a process come from more than one 

place, as the data boundary and underlying assumptions in there may be different; 

� In the case the required data are available from more than one source, state which 

one was selected for use in the model, and justify the selection. It is advisable to 

keep the rest active in the model (linked with other data by formulas), in addition 

to those selected, for sensitivity check and future data review; 

� State the source of data wherever there is a data input. 

 

One feature of this LCA model is that it breaks down the construction process to units 

on a level that data can be: 1) specific to a pavement object therefore the hypothesis is 

minimal and, 2) easy to collect and aggregate. Another advantage is that this model, 

during its development, is applied to, and tested by, real case studies that in return 

build up the scope of the model. Methodology and data sources in this model are not 

meant to be complete, but they provide a useful starting point. 

 

 

Figure 6-4 Snapshot of the LCA Spreadsheet in Microsoft Excel 
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6.4. Improvement through Case Studies 

It can be seen from the two case studies in Chapter4 the improvement of this LCA 

model during the development, what other details were considered in the asphalt 

pavement project, how the second case study learned from the first one and applied 

the findings, and how the LCA model and case studies will benefit from each other’s 

advancement. The main improvements include: 

 

� While the first case study built up the framework of LCA model and the 

mechanism for data collection; the second one focused on the technical details of 

the project, the accuracy of analysis, and improvement of the model; 

� The communication skills with contractors, make concise and to-the-point 

questionnaire (see Appendix1 and Appendix2); 

� The level of details and sophistication of the model, when the calculation process 

becomes swift and more adaptive at the same time; 

� The incorporation of up-to-date and alternative data sources, rather than rely on a 

low number of references which is prone to limit the scope and accuracy of any 

LCA study; 

� The presentation of results, featured by graphic illustration and data quality 

analysis (check for completeness, sensitivity and consistency); 

� The development of LCIA phase, provide both the mandatory and optional 

elements addressed in the ISO 14040 series. 
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Figure 6-5 Elements for a Successful LCA Study of Asphalt Pavements 

 

6.5. Challenges and Further Work 

In general, energy related emissions can be calculated with relatively high accuracy, 

by tracing the energy consumption through the process. Non-energy related emissions 

(e.g. emissions from hot asphalt) however, are difficult to measure and quantify. For 

instance, emissions and dust are the major concerns in environmental regulation of an 

asphalt plant (Read and Whiteoak 2003), yet the life cycle inventory of production of 

hot mix asphalt in this model did not include those loadings, for relevant data are not 

available. 

 

One of the essences of LCA is transparency. That is, a user or future developer of the 

model will be able to tell where data in the model came from, and what assumptions 

were made. This is achieved in this model by providing the data alongside a 

description of the source of that data, assumptions made, and data quality check at the 

end of the case study (see Chapter4). 

 

More processes in road works need to be studied, and relevant data included in the 

model. Continue to collect data, on both the new processes (e.g. cold in-situ recycling) 

or materials (e.g. Sasobit), and those already represented in the model but being 

outdated. As for secondary aggregates, materials associations are potential sources of 
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(energy and emissions) data to the waste recycled for use as aggregates, as 1) it is an 

open-loop recycling, and 2) the collection and recycling process normally deals with 

more than one type of solid waste. 

 

This study mainly quantified the energy use through the construction processes, and 

calculated the associated environmental loadings. The main scope is that it did not 

include many inventory data on non-energy related impacts, for instance, the 

emissions from freshly paved hot asphalt when it cools down from 180ºC to 20ºC. 

Fortunately, the asphalt industry (roofing, road paving) has begun to quantify those 

impacts with a concern over the effects they have on occupational health (BG 

Academy 2007). Research results and publications are likely to shed a light on the 

improvement of inventory data on such non-energy related impacts in the future. 

Company’s IPPC (Integrated Pollution Prevention and Control) application 

documents for their sites or plants also could be potential sources of data on those 

‘process related’ emissions.12 The EU IPPC Directive of 1996 is based on several 

principles, namely: 1) an integrated approach, 2) best available techniques (BAT), 3) 

flexibility, and 4) public participation. The progress that each individual industry is 

complying with this Directive can be found at the EU IPPC Bureau’s website (EU 

IPPC Bureau 2007). 

 

The reasons for focusing on the structural aspects of asphalt pavements are 1) to give 

the prediction of pavement life time on scientific basis, and 2) to reduce subjective 

factors related to locality  (e.g. noise) or value choices (e.g. anti-skid requirement). 

Earthworks (site clearance, drainage system, etc.) are not included in the model. This 

model deals mainly with asphalt materials and down to the base layer in pavement 

structure. It is recognised that new construction and some deep recycling may involve 

foundation and concrete materials laid before. 

 

The use of recycled materials in asphalt pavements is relatively new in practice, with 

limited information on the materials behaviour over time and at what frequency the 

pavement needs to be repaired. This explains the difficulty in predicting pavement life, 

a key factor affecting the workloads in a road LCA study. Although fuel consumption 

                                                 
12 Personal communication with Professor Tom Donnelly on 30 May 2006. 
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by traffic on the finished roads was included in VTT’s study, it was noted to vary with 

too many factors, such as mixture type, surface unevenness (roughness), season in a 

year, pavement age, tyre type and travel speed, to name only a few. Therefore it is 

advisable to assume it equal in comparative LCA studies. 

 

Some engineering performance (e.g. the rolling resistance) of the pavement has the 

effect not only on riding quality or fuel efficiency, but durability of the pavement 

itself, as it changes the impact from traffic tyres on the pavement surface (Cebon 

1999). Maintenance during service life normally causes traffic delay due to lane 

closure or route diversion, and subsequently additional fuel use and tailpipe pollution. 

To include this factor in the LCA model needs the inputs from micro-simulation 

model and traffic emissions model. Little information so far is available on the 

recyclability of pavement containing secondary materials. These variables might be 

included in the road LCA model in the future, provided the relevant information 

required for a LCA study becomes conclusive. 
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Chapter 7 : Conclusion and Recommendations 

 

7.1. Conclusion 

 

The scale of resources used, and waste generated has placed the construction industry 

in the position where it can either greatly contribute to, or considerably impede, 

society’s progress towards sustainable development. Recycling in roads is an 

important means by which the asphalt industry could play a role in sustainable 

construction. Simply taking recycled materials does not guarantee a sustainable or 

‘green’ outcome, but it is commonly perceived as a means to that end. Approval for 

use in pavement structure is given by road authorities to an expanding list of recycled 

materials, although the cost of recycling, in both financial and environmental terms, 

calls for high-end uses of those recycled materials. For any attempted application, 

both the specification and technical properties of the material need to be studied, to 

ensure the physical integrity of pavement structure will not be compromised as a 

result of the recycling. 

 

Replacing natural aggregates with recycled and secondary in asphalt pavements 

reduces landfill pressures and quarrying demands, complements other solid waste 

management efforts providing an alternative outlet for the waste otherwise destined 

for landfill (e.g. the excess of colour mixed glass when supply exceeds the capacity of 

colour sorting facilities). Waste materials from local sources or even on-site (e.g. the 

RAP) can reduce the transport required for virgin aggregates; some components (e.g. 

revitalised bitumen in the RAP) reduce the input of materials whose production is 

made of energy intensive processes. These environmental benefits however, need to 

be quantified and compared against those ‘penalties’ that must be paid by the 

recycling if it requires additional transport and processing efforts. Procurement 

documents for pavement construction regarding the laying techniques, materials and 

maintenance options ask for prescriptive environmental assessment. Comparative 

studies are needed to investigate the many impacts that arise from alternative practices, 

to ensure that the pavement project is carried out with the least environmental impacts 

in terms of energy use, emissions and leaching, etc. 
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Life cycle assessment makes an important part of the ‘life cycle thinking’ as a tool to 

support decision making. To duly reflect the current practice in road construction, the 

LCA model should encapsulate maintenance and recycling scenarios, with data 

specific to the UK road industry. The ideal model should be flexible enough to add, 

delete, combine and divide component units to adapt to a particular pavement object, 

with minimum repetitive work. To achieve that, the model should represent as many 

variables in a pavement object as possible, whilst remaining flexible for data update 

and formula revision in the future. A practical model must be populated with good 

quality data. The key environmental loadings specific to a pavement object should be 

present in the inventory. A practical model must also be tested and calibrated through 

real road projects. Data in this LCA model come from a mixed source of UK plants, 

EU standards and relevant LCA results and databases. Methodology follows the 

ISO14040 series and BRE’s ‘Environmental Profiles’. LCA practice in road 

construction by Nordic institutions (IVL, VTT, DTU, etc) is referred by this thesis. 

 

It is the case studies that built up the scope and capacity of this LCA model during its 

development. This LCA model is applied, during its development, to 3 case studies of 

asphalt paving in the UK. The first case study (the Wolverhampton) established the 

framework of the LCA model and the mechanism for data collection. The second one 

(the LHR Terminal-5) focused on the technical details of the project, the accuracy of 

analysis, and the calibration of the model. The third one (Stoke-on-Trent) compared 

the energy and emissions of the roadwork measured by LCA, with those coming from 

the disturbed traffic due to the roadwork. The scope of the model is built up, and the 

accuracy of modelling and computing capacity enhanced, as a result. 

 

LCA has its limitations. Firstly, it displays no sensitivity to location. PM10 emissions 

for example, the health and environmental impacts can be quite different if it comes 

from an asphalt plant where it is normally retained and treated, other than released 

from tail pipe in an unleashed state. The receiving media and its bearing capacity 

therefore need to be considered. Secondly, it has no sensitivity to time. High level of 

emissions for a short period will have the same LCA results as low level of emissions 

for a long period as long as the total amount equates. Complementary tools (e.g. risk 

assessment) might be welcome to the particular needs in a project through a ‘hybrid’ 

approach. Thirdly, the methodology for some stages of LCIA is yet to be developed 
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and agreed. Finally, aiming to provide an objective assessment tool, subjectivity 

literally exists in every phase of LCA; and being more comprehensive goes easily to 

greater potential of bias. Based on these limitations, LCA is likely to be better 

received within a company or trade union, where there is shared agreement on 

methodology, assumptions and value choice. 

 

The aim of applying LCA to the road industry is not necessarily to argue for the use of 

recycled materials in whatever possible circumstances. Rather, it provides an 

objective and complete review of the many environmental impacts of asphalt 

pavements from materials quarrying and transport, to asphalt manufacture, placement 

and disposal. The aim is to reduce the environmental impacts by identifying the 

‘critical’ stages and aspects that make the priority areas upon which to act. Besides, 

the case studies indicate that LCA can play a role in a much wider context in the road 

industry, through other comparative studies. It is recognised however, that the LCA 

result alone does not make the final decision, that environmental assessment must be 

placed alongside the outcome of technical and economic studies. 

 

There are a couple of similarities between the economic and environmental 

implications of road maintenance works. One is that the majority of both impacts are 

borne by road users; the other is the reiterative nature of the assessment that requires 

the maintenance implications be taken into account when assessing alternative 

maintenance options for a particular maintenance task or a profile of tasks over the 

road’s lifetime. From this point of view, life cycle assessment (LCA) and whole life 

costing (WLC) or life cycle cost analysis (LCCA) share the same methodology. The 

measures that highway authorities could take to reduce the impacts from maintenance 

works on road users include effective traffic management (lane closure, traffic 

diversion) and phasing of maintenance works into off-peak hours (night work), etc. 

 

7.2. Recommendations for Further Work 

 

The use of recycled materials in road structures is relatively new in practice. The lack 

of sufficient historical data on pavement life using recycled materials calls for a 

method of prediction or estimation, on a scientific basis. Similarly, arguments exist 
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over the type, rate and position of the pavement structure that recycled materials 

should be applied. The findings for some recycled materials are yet to be conclusive. 

Again, to solve these disputes needs more laboratory and trial works, and long-term 

observation afterwards. Innovative pavement design method (e.g. the EME2) or 

revision of specification of highway materials might as a result, inspire some research 

and practice on the use, where appropriate, of other recycled materials in the asphalt 

pavements. 

 

The selection of data sources for the developing LCA model is a compromise between 

accuracy and simplicity. Still there is room for improving both the wealth and quality 

of data fed to a LCA study. LCA in road practice is relatively new, inventory data on 

some materials and processes are yet to be available. On the other hand, innovative 

materials (e.g. Sasobit) and techniques (e.g. ‘hot on hot’ - dual layer asphalt paving13) 

emerge in response to the industry improvement, which requires an expanding 

database for LCA practitioners that can accommodate these novelties. Often the 

required data for a unit process come from more than one source, in which case the 

compatibility (date, boundary, underlying assumptions, etc.) of the data needs to be 

studied. Data acquisition for LCA is further hurdled by the fact that some proprietary 

data (e.g. fuel consumption of trucks) are not available due to commercial restriction. 

In summary, the main challenges of LCA in road practice include: 

 

� Include non-energy (process) related emissions in the model; 

� Look for energy/inventory data on more recycled materials, pay particular 

attention to the most significant variables, such as the transport (distance, fuel 

efficiency, etc); 

� Predict the life expectancy, and the way of disposal, of pavement layers made 

using recycled materials; 

� Include the environmental impacts of road works (maintenance, repair, etc) in the 

model and, if possible, the effect of road works on traffic and subsequently the 

fuel consumption and emissions, using micro-simulation model (e.g. VISSIM). 

 

                                                 
13 The 4 biggest advantages of dual layer asphalt paving is thinner surface course, better bonding 
between surface and binder course, allow for cold weather work, and speed construction. 
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Despite the challenges above, the LCA is being accepted by the road industry to 

measure and compare the life time environmental impacts of its product or process, 

and use the results for internal review or environmental labelling. Recommended 

applications of LCA in road paving include the comparison of: 

 

� Different asphalt composition and materials usage (like the Wolverhampton case 

study); 

� Recycled materials with virgin aggregates (like the LHR T5 case study); 

� Different recycled materials (glass, RAP, etc.); 

� Different laying/recycling techniques (hot ex-situ, cold in-situ, etc.) and 

maintenance options (depth, interval, etc.); 

� Asphalt with concrete (standard recipe for both, same function in the pavement 

layer. 

 

Selections as above are normally restrained by the availability and economics. The 

LCA should aim to provide an environmental perspective to the decision making, 

where applicable, the multi-criteria analysis can be carried out considering the 

outcomes of technical, environmental and economic studies, all on a life cycle basis. 

 

Despite the ‘iterative’ nature of LCA that findings from a later phase may prompt 

some revision of earlier elements, and the difficulties in collecting data and making 

comparison between candidate proposals in a road project at the design stage, it is 

advisable to study by LCA the potential impacts of these alternatives prior to the 

practice. For example, how long is the maximum distance of waste haulage that can 

justify the recycling cost in a project? To do this requires the support from reliable 

technical data, as well as a sound analysis to enhance the level of acceptance of the 

results. The aim is to further test and calibrate the model, in an improvement context, 

as a decision supporting tool for the UK road industry. 

 

Despite that previous LCA studies have questioned the environmental benefits of 

recycling some waste (e.g. glass) for use as aggregates based on such impacts as 

carbon footprint, it is advisable to study by LCA the environmental effects of 

recycling in pavement projects, due to the ‘site specific’ characteristics of road works 

including materials selection and transport scenario. More importantly, these two 
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types of LCA studies normally do not share the same functional unit or system 

boundary. For instance, in LCA of glass, the functional unit is packaging a certain 

volume of liquid, while the functional unit in LCA of roads is the provision of a 

certain area of asphalt surface on the carriageway. Therefore, the LCA results of such 

‘close-loop’ recycling do not negate the environmental benefits of ‘open-loop’ 

recycling that could be identified by LCA using different functional unit. 
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Appendix 1: Data Request and Assumptions in the LCA Study of 

Wolverhampton Inlay Project Questionnaire 

 

To proceed with the research, some strategic as well as detailed information of the 

project is needed. Please refer to the document submitted on 27/04/2005 for context, 

and provide answers to following questions in greatest details at your best knowledge. 

Any comments and suggestions are welcome. In case the information to a particular 

question is not available, please give the name and number/email of the person who 

may possess the answer. 

 

1. What type of data is to be used in the project? 

A. Industry typical 

B. Project specific 

C. Both, but industry typical preferably 

D. Both, but project specific preferably 

Name and phone/email: __________________________ 

 

2. What is the end-point boundary of this LCA study? 

A. End of inlay work (finish rolling) 

B. End of proposed pavement service life (15 years ahead) 

C. Other, please specify _B above is almost correct but the proposed solution is 

intended to give a sound asphalt base/binder course so that future surfacing is limited 

to the top 35mm rather than repeating the 100mm plane out and replace maintenance 

cycle that existed previously 

Name and phone/email: __________________________ 

 

3. On what basis shall the environmental loadings of crude oil distillation be allocated 

among the many co-products? (This is to calculate the environmental costs of bitumen 

production) 

A. By volume of product 

B. By value per litre of product 

C. By volume times value/litre 

D. Other, please specify ______not sure I fully understand this one 
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Name and phone/email: __________________________ 

 

4. What is the treatment scenario of old pavement surface? (This is to define the type 

of vehicle used in that process) 

A. Repave, please provide details ________________________ 

B. Remix, please provide details ________________________ 

C. Tack coat before paving fresh asphalt, please provide details – K-140 at 0.2 kg / 

m2 of residual binder on bottom layer and 0.15 kg / m2 for upper layer 

D. Other, please specify _I will need to speak with you on scenarios A & B these were 

not proposed by WMBC to my knowledge 

Name and phone/email: __________________________ 

 

5. Do the environmental loadings specified (in Part 4 of the 27/04/2005 document) 

represent the most common and significant of those in the project? 

A. Yes, but reference behind should be detailed and justified 

B. Yes, but some additional need to be added in (please specify _______________) 

and some irrelevant to be deleted (please specify ________________) from the list 

C. No, we have our own list of the significant, please provide the detail ___________ 

D. No, we need to establish our own list of the significant 

Name and phone/email: __________________________ 

 

6. Are the assumptions made (in Part 6 of the 27/04/2005 document) appropriate? 

A. Transport distance and machinery used in both proposals are identical: Yes □ No □ 

Only Yes if supply was won by AI for both proposals 

B. Transport machinery is used at ‘maximum load’, ‘full speed’ and ‘empty return’: 

Yes □ No□ 

C. Road paver and roller are used at ‘full speed’ and ‘full width’: Yes □ No □ 

(Please specify your requirement if you give ‘No’ to an assumption ____________) 

Name and phone/email: __________________________ 

 

7. What is the composition of the asphalt? 

Surface course (coarse: fine: filler: binder): 64.5; 23; 7.6; 4.9 

Binder course (coarse: fine: filler: binder): as above 

Name and phone/email: __________________________ 
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8. Please provide the information of vehicles used in the inlay sequence: 

 Make &  Model 
Working  
Capacity 

Engine 
Power 

Agree with the 
assumptions in 6? 

Equipment   MJ 
Yes, 
calculated 
work hours* 

No, 
actual 
work 
hours 

Excavator  t/hr    

Loader (dumper 
truck, hopper) 

 t/hr    

Conveyor  t/hr    

Crusher  t/hr    

Screening machine  t/hr    

Oil refinery  litre/hr    

Lorry  
t * 

(Km/hr) 
   

Dryer and heater BENNINGHOVEN 240 t/hr    

Mixer AS ABOVE 240 t/hr    

Paver  
(Km/hr) * 
m 

   

Initial  
(Km/hr) * 
m 

   

Main  
(Km/hr) * 
m    Roller 

Finish  
(Km/hr) * 
m 

   

      
Others 

      

* indicates items to be completed by the author 

Name and phone/email: _try Dean Floyd
14

 at Kennedy’s for site information – I will 

inform you of most appropriate plant person 

 

9. In project where secondary aggregates (e.g. plastics, scrap tyres) are involved, to 

what stage in the life cycle shall the environmental loadings of the recycled material 

be traced? 

A. Raw material acquisition 

B. Waste collection 

C. Recycled product ready for aggregates use 

D. Other, please specify ________________________ 

Name and phone/email: __________________________ 

 

10. Is a commercial database/model considered for purchase and use in future work? 

A. Yes, Boustead Model 5.0 (£1,500) 

                                                 
14 Surfacing Estimator, Tel:  0121 568 7918. 
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B. Yes, but consider alternative product, please specify ______________ 

C. Yes, but talk about it later 

D. No, try to establish our own database 

Name and phone/email: __________________________ 

 

11. Comments and suggestions for future work: 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

 

 Questionnaire made By Yue Huang Yue.Huang@ncl.ac.uk 

At 19/05/2005 

 

Completed by Bob Allen15 on 01/06/2005 
 
 
The author also appreciates the time the following people took to provide data and 

advice for this case study: Dean Floyd, Doug Ross from Aggregated Industries UK 

Ltd., Ian Chattington from Power Plane Ltd., Danny Taylor from H&D Haulage, and 

Mr G. Pratt from HR International Crushing& Screening Ltd. 

 

                                                 
15 Research Manager, Aggregate Industries, Tel: 0133 537 2242. 
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Appendix 2: Data Request for LCA Study of London Heathrow 

(LHR) Terminal 5 Project to Aggregate Industries UK Ltd 

 

Data from materials supply side are needed for Life Cycle Assessment (LCA) study of 

London Heathrow Terminal 5 Project. Please provide data in following tables at your 

best knowledge. Any comments and suggestions are welcome. In the case a particular 

data is not available, please give the name and contact of the person who may have 

the answer. 

 

Table1. Pavement Parameters 

 Pavement Parameter Figure Unit 

Life expectancy 12 yrs 

Area 30,000 m2 

Layer thickness 35 mm 

Mixture type 
14mm 
smatex 

(e.g. 0/14mm SMA) 

Mixture weight 1890 tonne 

Surface Course 

Materials breakdown 73:15:6:6 (e.g. coarse:fine:filler:binder) 

Area 30.000 m2 

Emulsion usage 0.4 lts m2 kg/m2 Tack Coat I 

Bitumen content 60 % 

Life expectancy 15 yrs 

Area 30000 m2 

Layer thickness 65 mm 

Mixture type 20mm hmb (e.g. 0/20mm HDM) 

Mixture weight 4100 tonne Binder Course 

Materials breakdown 58.6:34:3:4.4 

(e.g. coarse:fine:filler:binder). 
Glass used in fines 10%, 
Incinerator bottom Ash used in 
coarse 10% 

Area 30000 m2 

Emulsion usage .0.4 lt m2 kg/m2 Tack Coat II 

Bitumen content 60 % 

Life expectancy 15 yrs 

Area 30000 m2 

Layer thickness 205 mm 

Mixture type 28mm hmb (e.g. 0/20mm DBM) 

Mixture weight 12915 tonne 
Base 

Materials breakdown 58:34:3:4 
(e.g. coarse:fine:filler:binder) Glass 
used in fines 10%, Incinerator 
bottom Ash used in coarse 10% 

 

Note: 

1. Please specify here if recycled materials (e.g. glass) were used including the type, 

grading, position in the pavement and replacement rate (percent of aggregates), etc. 

Note above for Glass and IBA inclusion. In addition 25% of RAP would have been 

used. This is 48 % coarse, 47% fine and 5% binder 
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2. Please specify here any particular nature of the binder (e.g. PMB) in use. 

Binder course and Base would have used 35 pen straight run binder. The SMA would 

be 50 pen straight binder with 0.4%, of total mix, of fibre.  

 

Table2. Transport Distance (unit: km) 

Materials From To Figure Application 

Coarse aggregates Quarry Asphalt plant  HMA 

Coarse aggregates Quarry Road site  Unbound 

Fine aggregates Quarry Asphalt plant  HMA 

Fine aggregates Quarry Road site  Unbound 

Filler Quarry Asphalt plant  HMA 

Filler Quarry Road site  Unbound 

Bitumen Refinery Asphalt plant  HMA 

Asphalt Asphalt plant Road site  HMA 

Bitumen emulsion Emulsion plant Road site  Tack coat 

 

Note: 

3. Please make changes in the Table if the origin/destination was different from 

indicated, or add in new items if additional materials (e.g. recycled, PMB) were 

involved. 

Distance by rail Bardon Hill quarry to West Drayton is 120 miles each way.  Fuel 

consumption of mainline locomotives is 8-9 litres/mile.  Payload of train to West 

Drayton is 1729t therefore 0.85 litres were used to transport a tonne of aggregate 

between BHQ and WD.16 

 

Table3. Vehicle/Plant Parameters 

Process Make&Model Capacity 
Fuel 

consumption 
Unit 

   F-load E-load  

Aggregates  tonne   litre/km 

Bitumen  tonne   litre/km 

Asphalt  tonne   litre/km 

Truck 

transport 

Bitumen 
emulsion 

 tonne   litre/km 

 tonne/kWh 
Aggregates production Quarry plant 

 tonne/litre 

Drying cost 
£2.65 

tonne/kWh 
Asphalt mixing Asphalt plant 

 tonne/litre 

Applying tack coat  Note5 6.0 litre/hr 

Paving  Note5 16.87 litre/hr 

Rolling  Note5 12.5 litre/hr 

 

                                                 
16 Email communication on 10/10/2006 with Simon Blake, National Rail Manager, Bardon Aggregates, 
Tel: 0145 528 8204, Mobile: 0777 028 3533. 
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Note: 

4. Transport trucks are assumed to be used at ‘full load’ and ‘empty on return’. 

5. Working capacity for emulsion applier, paver and roller includes the following 

parameters: 

 

 Unit Emulsion applier Paver Roller 

Width of screed/roller m Width 2m 4.9 m 1.7m 

Working speed km/hr 20 3.0 6.0 

 

6. Please provide other relevant information on materials and process of this project: 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

 

Data requested by Yue Huang on 19/09/2006 

Mobile: 07877379249, Email: Yue.Huang@ncl.ac.uk 

 

Completed by Mark Kirby17 and Phil Coupland18 on 21/12/2006 

                                                 
17 Contracts Manager, Associated Asphalt, Mobile: 0787 644 0758. 
18 Area Technical Manager, Bardon Aggregates, Mobile: 0774 093 4019, Tel: 0189 544 2852. 
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Appendix 3: Users’ Manual of LCA Model and Description of 

Formulas 

 

In Chapter 3, the structure of the LCA model is described together with the relations 

between worksheets in it. This manual will explain in greater detail how data in those 

worksheets are linked by formulas, and give advice on how to run the model, interpret 

and present the outputs. This manual mainly refers to contents in Chapter 3 and the 

LCA spreadsheet in Microsoft Excel. 

 

Table1. Worksheets in LCA Model 

Worksheet Description Sub-worksheet 

Process Parameters 

Data on transport distance and fuel 
efficiency, energy consumption of unit 
processes in a pavement project 

‘Energy in transport’ 
‘Energy in materials production’ 
‘Energy in pavement construction’ 

Pavement 

Parameters 

Data on pavement dimension and 
materials recipe, determine the materials 
tonnage in a pavement project 

‘Pavement dimension’ 
‘Materials recipe’ 
‘Pavement life time’ 

Energy and 

Emissions Inventory 

Inventory data available for ‘primary’ 
processes are presented. LCI figures for 
unit operation of transport, materials 
production and pavement construction 
are calculated with formulas 

‘Energy production’ 
‘Combustion of fossil fuel’ 
‘Transport vehicle operation’ 
‘Construction vehicle operation’ 

Inventory Results 

LCI data on ‘energy and emissions’ are 
aggregated into the unit of the pavement 
project 

‘Production process’ 
‘Transport process’ 
‘Construction process’ 

Characterisation 

Results 

LCI results assigned to defined impact 
categories, characterised by selected 
model and presented by category 
indicators 

‘Global warming’ 
‘Acidification’ 
‘Photo-oxidant formation’ 
‘Human toxicity’ 
‘Eco-toxicity’ 
‘Eutrophication’ 

 

1. General Principles in Worksheets 

1. In the spreadsheet, data in orange indicate raw data inputs. Data in green are 

specific to a project. Data in blue are either the total of a process, or the figure for 

calculation in following worksheets. Data in red are for checking purpose. 

2. Each raw data is manually put in the spreadsheet only once, and referred by 

formulas to all following calculations. Should the data be changed in the future, for 

example due to industry improvement or for sensitivity check purpose, it can be done 

by altering a single number in the spreadsheet. 

3. Calculated results are presented (not rounded) to the same decimal places as raw 

data in that process. 
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4. Data from contractors of a project (Aggregate Industries UK Ltd in both case 

studies) are preferred to alternatives for use in case study of that project. Raw data are 

presented alongside its source. 

5. Be aware of the comments attached to a cell for additional information. 

 

2. Process Parameters 

 

2.1. Calorific Value of Different Types of Energy 

‘Mega Joules’ (MJ) is the universal unit in this model for energy input including 

electric power, petroleum fuel (diesel, heating oil, LPG), natural gas and coal. These 

types of energy are normally measured in kWh, litre (or kg), m3 and kg, respectively. 

Conversion factors are given in DTI’s DUKE (Digest of UK Energy Statistics). The 

density of petroleum fuel (diesel, heating oil, etc) is assumed, as litre is prevailingly 

used for measurement of their consumption. (Table3-2 in Chapter 3) 

 

2.2. Energy in Materials Production 

In materials production, raw energy data (electric power, diesel, heating oil) presented 

other than in MJ/tonne are converted using the calorific value described above. 

(Table3-3 in Chapter 3) These types of energy have different environmental loadings 

in their production (see in ‘Energy and Emissions’ worksheet). This worksheet gives 

both the sum and individual type of energy consumed in a process. 

 

2.3. Energy in Transport 

Transport scenarios in a pavement project are illustrated in Figure3-11 in Chapter 3. 

The mode and length of transport vary between different projects. Distance measured 

in mile will be converted to km (conversion factor: 1.61). Fuel consumption is 

normally measured in litre/km. The difference is noted when the vehicle is full-loaded 

or on empty return and, if available, the average data should be used. 

 

2.4. Energy in Pavement Construction 

2.4.1. Applying Tack Coat 

Some parameters (e.g. ramp width, emulsion usage, applying speed) of an emulsion 

applier from IVL are presented in the worksheet for reference use. The applying speed 

is tired up with the emulsion usage. 
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)/()(

)/(
)/( 2

hrmeedApplyingSpmRampWidth

hrlptionFuelConsum
mlpreaderEnergyForS

×

=  

 

2.4.2. Asphalt Paving and Rolling 

The range of data is mentioned in the comment attached to a cell where a figure is 

selected to represent that process. Fuel consumption of paver and roller is calculated 

the same way as the emulsion applier above. Effective working time is assumed to be 

50min/hr. There is LPG consumption in the paving process, for heating the screed. 

The number of passes is a parameter for the rolling process. 

 

)/(
)/()(

)/(
)/( 22 mlLPG

hrmdPavingSpeemhScreedWidt

hrlumptionDieselCons
mlaverEnergyForP +

×

=  

ssesNumberOfPahrmedRollingSpemhRollerWidt

hrlptionFuelConsum
mlollerEnergyForR

××

=

)/()(

)/(
)/( 2

 

2.4.3. Other Processes 

Diesel and LPG are consumed in asphalt remixer (hot in-situ recycling) for engine 

operation and heating, respectively. Data on some other pavement processes (applying 

chippings, cold milling, slip form paving, etc.) are also available from IVL’s database. 

Make and model of the machinery in use however, are not stated. 

 

3. Pavement Parameters 

 

3.1. Pavement Life Time 

The pavement life expectancy in neither case study is definitive. In Wolverhampton 

project, the life time of surface and binder course is defined on an arbitrary basis. The 

scope of LCA of London Heathrow T5 project is constrained to the construction phase. 

An ideal functional unit for LCA of road construction is the total environmental 

loadings from construction and maintenance of the pavement in 40-50 years’ time, 

divided by pavement area or road mileage. Reliable data are needed to predict the life 

expectancy of pavement layers containing recycled materials, as well as the nature 

and amount of maintenance work in specified time period. 
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rfaceAreaPavementSu

ePeriodecifiedTimadingsInSprnmentalLoTotalEnvio
UnitFunctional =  

 

3.2. Pavement Dimension 

Knowing the dimension of pavement layers can help estimate the asphalt tonnage, 

although the tonnage is known in both case studies. Some thick layers (e.g. base) may 

be paved and compacted in more than one pass. This will affect the energy figures for 

paving and rolling these layers. 

 

3.3. Materials Tonnage 

Aggregates in asphalt layers come from two sources: natural aggregates and those 

secondary (glass, IBA, etc.) and recycled (RAP). Bitumen is made of primary bitumen 

and that recovered from revitalised binder in the RAP. For asphalt layers that have a 

number of types of materials input, a check of the total tonnage at the end is carried 

out, like in the LHR T5 case study. Again there is no conclusion on what percent of 

original binder in the RAP is counted as ‘active’ in the new asphalt mixture. 

 

Having the data on emulsion usage and emulsion recipe, the amount of bitumen and 

emulsifier in tack coat can be calculated. Also provided in the worksheet are data 

from alternative sources and data on other pavement processes (chip seal, cold mix 

asphalt, etc). 

 

ContentEmulsifierBitumeneaPavementArageEmulsionUsEmulsifierBitumen )()( ××=

 

4. Energy and Emissions Inventory 

 

4.1. Energy Production 

Life cycle inventory of production of electric power, petroleum fuel (refer to diesel, 

heating oil and LPG) and natural gas are available, from different sources although. 

These data are very important in the LCA, for 1) they will be used in all following 

unit calculations and, 2) the scope of the data will determine the scope of the final 

inventory, as very few non-energy related emissions are included in the study. 

 

4.2. Combustion of Fossil Fuels 
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Consumption of fossil fuels takes the following forms: 

� Combustion of heating oil and LPG for heating purpose; 

� Diesel engine operation for transport vehicles; 

� Diesel engine operation for construction vehicles. 

 

Emission limits on different combustion processes are specified in EMEP/CORINAIR 

Emission Inventory Guidebook. Below are the categories in it. Those relevant to this 

LCA study are shown in the table. 

 

� Group 1 Combustion in energy and transformation industries  

� Group 2 Non-industrial combustion plants  

� Group 3 Combustion in manufacturing industry  

� Group 4 Production processes  

� Group 5 Extraction & distribution of fossil fuels and geothermal energy  

� Group 6 Solvent and other product use  

� Group 7 Road transport  

� Group 8 Other mobile sources and machinery  

� Group 9 Waste treatment and disposal  

� Group 10 Agriculture  

� Group 11 Other sources and sinks  

 

Table2. Emission Standards for LCI of Consumption of Fossil Fuels 

Machinery in 
pavement project 

Reporting detail Name of SNAP/CORINAIR 
Activity 

Chapter 

Transport vehicles Heavy-duty (>3.5t) diesel 
engines 

Road transport Group 7: 
B710 

Materials production 
plant 

Combustion of LPG/heating oil 
for asphalt/cement production 

Cement/Asphalt concrete 
plant 

Group 3: 
B331 

Construction vehicles 
and equipment 

Diesel engines in crushing 
equipment, paver, roller, etc. 

Other mobile sources and 
machinery 

Group 8: 
B810 

 

Different emission limits apply for the above processes in the Guidebook, and are 

used in this worksheet as the emissions inventory for the energy consumption stage. 

Missing data are supplemented by IVL, who has separate inventory data for cargo 

ship and rail locomotive. An efficiency of 40% is assumed for diesel engines in both 

transport and construction vehicles. Required data for LCI of combustion in materials 
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production are not available from Group3 B331 (see Table above). Those data on 

combustion in energy and transformation industries (Chapter1 B111) are used instead. 

 

4.3. Transport Vehicles Operation 

Data on diesel consumption come from the ‘Process Parameters’ worksheet. Loadings 

in the ‘Energy and Emissions Inventory’ consist of two parts: the diesel engine 

operation and the production of diesel. 

 

InventoryoductionDieselneIDieselEngiumptionDieselConsnventoryTransportI )Pr( +×=

 

4.4. Construction Vehicles Operation 

Similar to transport vehicles, inventory loadings for construction vehicles (paver, 

roller, etc.) come from diesel engine operation and production of diesel, except that 

different emissions data for diesel engine operation apply. For convenience use, 

inventory data for engine operation of a power between 130-560kW are used for all 

calculation. A more precise way to do it is to know the engine power of each machine, 

and use the inventory data for that range accordingly. Some plants or construction 

vehicles burn LPG for heating, inventory loadings in this case will include those from 

production and combustion of LPG. Inventory loadings of production of electric 

power will be included in processes where electricity is consumed. 

 

ventoryoductionInyElectricit

onyConsumptiElectricitInventoryionLPGCombustoductionLPGtionLPGConsump

InventoryoductionDieselneIIDieselEngiumptionDieselConsyonInventorConstructi

Pr

)Pr(

)Pr(

×

++×+

+×=

 

The inventory data for production of some materials (bitumen, cement, emulsifier, etc.) 

are available. These data are indicated in this worksheet by the orange colour, and will 

be brought into ‘Inventory Results’ worksheet for calculation. 

 

5. Inventory Results 

The inventory results for a pavement project are worked out by multiplying the unit 

(Energy and Emissions) inventory by the relevant workload in that pavement project. 

The workload can be measured in materials tonnage, transport distance, or pavement 

area, based on the nature of the process. 
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Figure1. Relations between Worksheets in LCA Model 

 

5.1. Production Process 

The unit inventory of materials production comes from ‘Energy and Emissions’ 

worksheet; the tonnage of materials comes from ‘Pavement Parameters’ worksheet. 

 

)(PrPr tonnageMaterialsToductionoryForUnitInventoductionorInventoryF ×=  

 

5.2. Transport Process 

The unit inventory of materials transport comes from ‘Energy and Emissions’ 

worksheet; the tonnage of materials comes from ‘Pavement Parameters’ worksheet; 

the distance of transport comes from ‘Process Parameters’ worksheet. 

 

)(tan)( kmceisTransportDtonnageMaterialsTsportoryForTranUnitInventtorTransporInventoryF ××=

 

5.3. Construction Process 

The unit inventory of construction (materials placement) comes from ‘Energy and 

Emissions’ worksheet; the area of pavement surface comes from ‘Pavement 

Parameters’ worksheet. 

 

)( 2meaPavementArtructionoryForConsUnitInventtionorConstrucInventoryF ×=  
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6. Characterisation Results 

When inventory loadings are assigned to the appropriate impact category, the loadings 

are converted into equivalents of that category indicator. The selection of indicator 

and conversion factor depends on what characterisation model is used for that impact 

category. For example, loadings in the Global Warming category are characterised as 

below. Depending on the scope of the LCA study, the characterised results can go 

further into the normalisation and weighting phases (see in Chapter 3). 

 

)(Re ii

i

i GWPorsationFactCharacterioadingInventoryLsultssationCharacteri ×=∑  

 

7. Summary and Further Work 

The methodology and data sources for this LCA model are explained in Chapter 3. 

Calculation process including the formulas described above is found in the Microsoft 

Excel spreadsheet. Chapter 4 gives a couple of examples applying this model for 

assessment of real road projects. 

 

This model is developed using asphalt materials for example. In practice, recycled and 

secondary aggregates are also seen in concrete pavements. Energy and emissions data 

(or the LCI) are needed for products and processes in cement production and concrete 

laying. A couple of publications are available as a starting point for researching such 

databases. One is the WBCSD’s Cement Initiatives that publish reports on LCA tools 

for the cement industry (WBCSD 2002), the other is the WRAP’s LCA of recycling 

key materials in the UK that summarise results from case studies on environmental 

preference of waste management options based on the CO2 footprint (WRAP 2006). 

 


