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Abstract 
 

Interest in biodiesel has been growing due to its potential role in moderating global 

climate change by lowering net CO2 emissions from fuels used for transportation. Most 

biodiesel fuels are currently synthesized by transesterification using alkaline catalysts 

and methanol. Heterogeneous transesterification catalysts have begun to be considered 

as alternatives, but many drawbacks remain. The costs of production and environmental 

concerns resulting from the ester washing step: neutralization of residual catalyst, 

removal of soap, glycerol, methanol and absorbent in some cases have prompted the 

search for more environmentally friendly processes and solid catalysts. Therefore, it is 

desirable to replace homogeneous or heterogeneous transesterification with the use of 

heterogeneous catalysts in direct thermocatalytic cracking. In principle, this could 

reduce the cost of biodiesel production, as it removes the need for alcohol and numerous 

downstream processing steps which add to the substantial running costs of 

transesterification. In addition the problem of glycerol in the product is eliminated.  

 

Four sulphated zirconia catalysts were synthesized via conventional wet-precipitation 

and solvent-free methods with different molar ratios of the sulphating agent. Their 

activity for direct thermocatalytic cracking of rapeseed oil was evaluated at a 

temperature of 270
o
C and atmospheric pressure. The nature and concentration of the 

active Brønsted and Lewis acid sites on the catalysts were examined. Brønsted acid sites 

were found to be important in the catalytic reaction. The catalysts at this temperature 

exhibited different selectivities towards formation of saturated and unsaturated methyl 

esters. The solvent-free catalysts were more active with a conversion of 78% in 2
1
/2 

hours, while the wet-precipitated catalysts had a maximum of 66% conversion after two 

hours. The catalysts prepared by the solvent-free method had 59% yield for methyl 

ester, with 75% of these being unsaturated. The wet-precipitated catalysts exhibited a 

lower yield for methyl esters (maximum: 32%), but within this a greater proportion 

(68%) were saturated. After regeneration, the solvent-free catalysts regained their 

catalytic properties, whereas the conventional catalysts did not. Three of the catalysts 

exhibited substantial leaching, with one of the conventional catalysts losing 100% of the 

sulphate responsible for its activity. Thus, to improve their properties the catalysts were 

supported with meta-kaolin which resulted in higher Brønsted acidity and better 

stability. 
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TG             triglyceride 

TGA        thermogravimetric analysis 

USDA       U.S. Department of Agriculture  

VGO       Vacuum gas oil 

XPS          x-ray photo spectroscopy 

XRD         x-ray diffraction 
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Chapter 1: Introduction 
 

1 Introduction 
 

Fossil fuels are the primary source of energy worldwide with global demand presently 

standing at about 12 million tonnes per day (84 million barrels oil equivalent a day) 

Pickett et al. (2008). Petroleum fuels have been a key factor in the growth of industry, 

transportation, the agricultural sector and many other areas serving basic human needs. 

The World’s energy is mainly supplied by fossil fuels estimated at about 35.3% of the 

total in 2008 (see  

Figure 1.1).   

 

 

 

Figure 1.1: World Energy Matrix in Percentage (IEA, 2008) 
 

 

Present projections suggest an increased demand to 16 million tonnes per day (116 

million barrels a day) by 2030. However, a global peak in oil production before 2035 

has been predicted. Currently 30% of global oil consumption is used for transport, but a 

report by the International Energy Agency (IEA, 2007) indicates that 60% of the rise in 

demand expected by 2030 will be mainly for transportation (Figure 1.2 below). With the 

expansion of the transport sector in most developed countries, as well as the 

industrialisation of emerging economies such as China and India, these figures may be 

an underestimate.  
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Figure 1.2: Trends in Consumption of Transport fuel Worldwide 

 

As sources of fossil fuel are finite, coupled with growing problems of environmental 

pollution problems owing to their use, there is a need for alternative sources that are 

technically feasible, economically competitive, environmentally acceptable, and readily 

available in order to meet the rising demand.  Several alternatives are currently being 

explored, amongst which crop-based fuels (biofuels) such as biodiesel and bioethanol 

have emerged as promising alternatives to the use of gasoline and conventional diesel in 

transportation. This study focuses on the advantages of biodiesel over other biofuels and 

survey various production processes, with emphasis on economic viability 

 

1.1 Background  

Biodiesel is a mixture of mono-alkyl esters of fatty acids derived from vegetable oils or 

animal fats which conforms to the ASTM D6751 requirements (see Table 1.1). It is the 

product of the reaction of vegetable oils or animal fats and an alcohol in the presence of 

an alkali catalyst, with glycerol as a co-product. Biodiesel is biodegradable, has a lower 

life cycle emission profile than petro-fuels and is non-toxic (Taufiqurrahmi and Bhatia, 

2011) 

.  
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Table 1.1: American Society for Testing and Materials (ASTM) Standards of Diesel and 

Biodiesel Properties (Kiss et al., 2008) 

Property Diesel Biodiesel 

Standard ASTM D975 ASTM D6751 

Composition  HC
a
 (C10-C21) FAME

b
 (C12-C22) 

Kinematic viscosity (mm2/s) at 40
o
C 1.9-4.1 1.9 – 6.0 

Boiling point(
o
C) 188 - 343 182 - 338 

Carbon weight (wt %) 87 77 

Pour point (
o
C) -35 to -15 -15 to 16 

Flash point (
o
C) 60 - 80 100 - 170 

Hydrogen (wt %) 13 12 

Water (vol %)  0.05 0.05 

Sulphur (wt %) 0.05 0.05 

Cloud point (
o
C) -15 to 5 -3 to 12 

Oxygen (wt %) 0 11 

Stoichiometric air/fuel ratio (AFR) 15 13.8 

(HFRR), High frequency reciprocating Rig 

(µm) 

685 314 

Ball-on-Cylinder Lubricity Evaluator  (g) 

(BOCLE), 

3600 >7000 

Life-cycle energy balance (energy units 

produced per unit energy consumed) 

0.83/1 3.2/1 

Ignition quality (cetane no) 40 - 55 48 - 60 

a 
Hydrocarbon,  

b
 Fatty Acid Methyl Esters 

 

 

Biodiesel has similar physical properties to petro-diesel, for instance, with canola oil. 

Biodiesel has attracted tremendous attention in recent years due to its environmental and 

technological advantages. Its technical advantages over petroleum-based fuels include: 

1) a higher cetane number and flash point, which results in better and safer 

performance; 2) higher lubricity, which prolongs engine life; and 3) the presence of 

oxygen (~10%), which  improves combustion and reduces carbon monoxide and 

greenhouse gas emissions. It also has various additional societal benefits, for instance, 

rural revitalization, the creation of new jobs, and less risk of contributing to global 

warming. Given the energy crisis during an era of growing energy consumption, 
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combined with an increase in greenhouse gas (i.e. CO2) concentrations from burning 

petroleum-based fuels, alternative fuels are being increasingly researched. Generally, 

biodiesel derived from crops, including sugar, starch and oil (edible feedstocks), using 

conventional technologies is referred to as first generation biofuels, the most common 

examples being biodiesel and bioethanol. Biodiesel produced from non-edible 

feedstocks, including algae, waste vegetable oils and fats, non-food crops and biomass 

sources are regarded as second generation biofuels as shown in Figure 1.3 (Luque et al., 

2010, Dupont et al., 2009). They are developing partly in an attempt to overcome the 

major shortcomings of the first generation biofuels feedstock. These include: 

competition between food security and energy and they are less costly to procure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The Biofuels Production from Different Feedstocks and Technologies 

(Luque et al., 2010) 
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Biodiesel combustion in engines results in a “closed carbon cycle”, since the amount of 

CO2 emitted is equivalent to that the plant absorbed during its vegetative phase (Puppan, 

2002).  Concern in society about the impact of greenhouse gases (GHG) led to the 

development of the United Nations Framework Convention on Climate Change (1992), 

which later resulted in the 1997 Kyoto Protocol to tackle the problem of greenhouse 

gases. In 2002 the European Union ratified the Kyoto Protocol, and the emphasis shifted 

to scientific innovation as a means of countering greenhouse gases emissions; however 

this is yet to be realised. Transportation has contributed immensely to GHG emissions 

over the last ten years accounting for 20% of global CO2 emissions, and 25% of UK 

emissions, with a predicted increase of about 80% in higher energy usage and carbon 

emissions by 2030 (Rogner et al., 2007). A major aim behind biodiesel production is to 

help mitigate climate change and to reduce the levels of CO, SOx, NOx and particulate 

matter being emitted into the atmosphere. Over the past few years many governments 

have put in place policies to support the switch from a petrol-based to a bio-based 

industry, so that in general a more secure energy supply can be guaranteed (Demirbas 

and Balat, 2006). The United States and several European Union (EU) member states 

already have biofuel policies (Puppan, 2002). The United Kingdom (UK) government 

initially set a target of 5% biofuel by volume of total road transport fuel sales by 2010 

(Smith et al., 2009) which has now been revised to 10% by 2020 as shown in Figure 

1.4.

 

Figure 1.4:  Targets for Biofuel Consumption in Transportation (%) in 2007, 2010 and 

2020 (Source: http://www.eea.europa.eu/data-and-maps/figures/) 
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In 2005, biodiesel was the leading biofuel used in the EU, representing 81.5% of a total 

of 3,184Mte produced. Among the EU member states, Germany had the highest 

proportion of  production of 52.4% (Zinoviev et al., 2007). Presently, biodiesel 

production can be found in over 28 counties, of which Germany and France are the 

world largest producers; however some countries are yet to meet their 2010 targets for 

reasons such as inadequate production processes, government policy, or feedstock 

availability.  

 

Traditionally, biodiesel is produced from a chemical reaction called transesterification. 

The most used feedstocks are virgin vegetable oils such as soybean oil, rapeseed oil, 

palm oil and linseed (Srivastava and Prasad, 2000). Non-edible oils waste vegetable oil 

and waste animal fat can be used, but the feedstock would need to undergo a pre-

treatment esterification before it could be used successfully in transesterification. This is 

due to their high free fatty acid (FFA) levels, which result in the formation of soap 

instead of the desired biodiesel in transesterification. Various drawbacks have 

contributed to high production costs, and so other approaches have been investigated 

such as the use of acid catalysts in transesterification (Lotero et al., 2005). Though these 

methods have been found to be useful for feedstocks with high level of free fatty acid, 

the rates of conversion are very slow and higher reaction temperatures and methanol to 

oil molar ratios are required. Enzymes as catalysts have been shown to exhibit good 

tolerance for free fatty acid, but they are expensive and unable to provide the degree of 

reaction completion required to meet the ASTM fuel specifications. This is because of 

the inhibitory effect of alcohols like methanol (Ranganathan et al., 2008). However, 

research dealing with the use of immobilize enzymes is presently in focus (Tan et al., 

2010). Despite the problems encountered,  the consumption of biodiesel has increased 

exponentially in the last few years, as reported by Luque et al. (2010) (see  Figure 1.5).   
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Figure 1.5: Biofuels Consumption in the EU27 (Source: Luque et al., 2010) 

 

The research frontier in the biodiesel field has now shifted from a situation where 

selling the product was the primary challenge. The present need is to identify suitable 

and appropriate catalysts that could facilitate the highly selective conversion of 

economically viable feedstocks into desired products in the existing infrastructure. This 

is the main concern of bio-based fuels: to solve ever-growing global energy concerns 

(Chew and Bhatia, 2008).  

 

1.2 Vegetable Oils as fuel 

Vegetable oils, also known as triglycerides comprise of 98% triglycerides and small 

amounts of mono- and di-glycerides. Triglycerides are esters made up of three 

molecules of fatty acids and one of glycerol and contain substantial amounts of oxygen. 

The fatty acids in triglycerides vary in their carbon chain length and in the number of 

double bonds.(Taufiqurrahmi and Bhatia, 2011; Barnwal and Sharma, 2005). 

Triglycerides are suitable for use as fuel because of their molecular structure (Figure 

1.6), containing sustainable carbon with high energy that can be converted into fuels 

(see Table 1.2) (Ma and Hanna, 1999; Ali and Hanna, 1994).  
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Figure 1.6:  Molecular Structure of Vegetable Oil (e.g. Rapeseed Oil). (Dupain et al., 

2007) 
 

 

The use of vegetable oils as alternative fuels began over a hundred years ago when 

Rudolph Diesel first tested peanut oil in his compression ignition engine. He concluded 

that: “The use of vegetable oils for engine fuels may seem insignificant today. But such 

oils may in the course of time be as important as petroleum and the coal tar products of 

the present time” (Meher et al., 2006).  

 

Table 1.2:  Physical and thermal properties of some vegetable oil (Dutta, 2007)  
Vegetable 

oil 

Kinematic 

viscosity 

(40°C) 

Cetane 

no 

Heating 

value 

(MJ/kg) 

Cloud 

point 

(°C) 

Pour 

point 

(°C) 

Flash 

point 

(°C) 

Density  

(Kg/l) 

Carbon 

residue 

(wt %) 

Sulp

hur 

(wt 

%) 

Corn 34.9 37.6 39.5 -1.1 -40.0 277 0.9095 0.24 0.01 

Cotton 

seed 

33.5 41.7 39.5 1.7 -15.0 234 0.9148 0.24 0.01 

Cramble 53.6 44.6 40.5 10.0 -12.2 274 0.9044 0.23 0.01 

Linseed 22.2 34.6 39.3 1.7 -15.0 241 0.9236 0.22 0.01 

Peanut 39.6 41.8 49.8 12.8 -6.7 271 0.9026 0.24 0.01 

Rapeseed 37.0 37.6 39.7 -3.9 -31.7 246 0.9115 0.30 0.01 

Salflower 31.3 41.3 39.5 18.3 -6.7 260 0.9144 0.25 0.01 

Sesame 35.5 40.2 39.3 -3.9 -9.4 260 0.9133 0.25 0.01 

Soyabean 32.6 37.9 39.6 -3.9 -12.2 254 0.9138 0.27 0.01 

Sunflower 33.9 37.1 39.6 7.2 -15.0 274 0.9161 0.23 0.01 

Palm 39.6 42.0 - 31.0 - 267 0.9180 - - 

Bahussa 30.3 38.0 - 20.0 - 150 0.9460 - - 

Tallow - - 40.0 - - 201 - 6.21 - 
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However there are many problems associated with the direct use of vegetable oil in 

diesel engines, especially direct injection engines, including: carbon deposition, 

lubrication difficulties and piston ring sticking (Knothe et al., 2005). Other 

disadvantages are a high viscosity of 35–60 cSt at 40°C, compared to 4 cSt for petrol 

diesel fuel, which is about 11-17 times less viscous.  Vegetable oils have lower 

volatilities, which causes formation of deposits in engines due to incomplete 

combustion and vaporization problems (Ali and Hanna, 1994), (Agarwal, 2007), 

(Demirbas, 2008). At high temperatures there could also be problems with the   

polymerisation of unsaturated fatty acid, which may result in cross-linking between 

molecules. This could cause agglomerations and gumming if the oils are used directly in 

engines. This may not be the case with fats, as they have a very low concentration of 

unsaturated fatty acids; however, they are known to have high melting points. The 

degree of saturation determines the boiling point of triglycerides. This is because most 

oils and fats contain at least some unsaturated fatty acids. The degree of saturation of a 

fatty acid can be determined from a simple formula, Cn: b, where ‘n’ refers to the carbon 

length and ‘b’ the number of double bonds (see Table 1.3). Modern direct injection 

engines are more vulnerable to vegetable oils of poor fuel quality. Therefore neat 

vegetable oils are not suitable for direct use as fuel in diesel engines. Instead they have 

to be modified under the right processing conditions in order to bring their combustion-

related properties closer to those of petroleum fuel. To date considerable effort has been 

devoted to upgrading vegetable oils and fats and their derivatives into bio-fuels that can 

be used in the existing transport infrastructure. The American standard ASTM D6751 

requires a kinematic viscosity of 1.9-6.0 mm
2
/s, and the European standard EN 14214 is 

3.5-5.0. To achieve these standards and reduce the operational problems associated with 

the direct use of vegetable oils, two main types of process are employed: thermo-

chemical processes and bio-chemical processes (Goyal et al., 2008). 
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Table 1.3: Typical Chemical Compositions of Some Vegetable Oils (wt %) (Ali and Hanna, 

1994)            

 

Vegetable oil 

 

Myristic 

 

Palmitic 

 

Stearic 

 

Behenic 

 

Oleic 

 

Erucic 

 

Linoleic 

 

Linolenic 

 

C n:b 14:0 16:0 18:0 22:0 18:1 22:1 18:2 18:3 

Corn 0.3 11.67 1.85 0.00 25.16 0.00 60.60 0.48 

Cottonseed 1.5 28.33 0.89 0.00 13.27 0.00 57.51 - 

Rapeseed 1.5 3.49 0.85 0.00 64.40 0.00 22.30 8.23 

Soybean - 11.75 3.15 0.00 23.26 0.00 55.53 6.31 

Peanut - 11.38 2.39 2.52 48.28 0.00 31.95 0.93 

Crambe - 2.70 0.70 0.80 18.86 58.51 9.00 6.85 

Sunflower - 6.08 3.26 - 16.93 0.00 73.73 - 

canola  6.00 2.50 - 66.90 - - 14.1 

palm 47.50 6.30 53.00 - 12.00 - 31.00 - 

linseed - 7.0 5.0 - 37.0 - 23.0 60.0 

 ‘n’ refers to the carbon length; ‘b’ the number of double bonds 

 

 

Various vegetable oils have been reported as being used as feedstocks. European 

biodiesel is typically made from rapeseed oil, whereas soybean oil is predominantly 

used in the US and palm oil in tropical countries. This is a reflection of natural 

agricultural practices as shown in Figure 1.7 and Figure 1.8.  

 

 

 

Figure 1.7:  World Production of Rapeseed Oil. Source of Data:(USDA, 2011) 
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Figure 1.8:  World Production of Soybean Oil. Source of Data:(USDA, 2011) 

 

With the first documented commercial production of biodiesel from rapeseed oil 

reported to have occurred in 1988 (Rbitz, 2001), two prominent conversion methods 

have been used: a low temperature liquid phase catalytic process (transesterification), 

and a high  temperature solid-catalysed cracking process. Recently, there has been 

increased interest in the latter, which can produce a wide range of liquid hydrocarbon 

fuels (Tian et al., 2008a; Huber and Corma, 2007; Meher et al., 2006). Vegetable oils 

used as feedstock have been characterised and found to consist of different 

compositions of triglycerides, as earlier shown in Table 1.2.  

 

1.3 Biodiesel Processing 

Several production methods are available, which employ the use of homogeneous, 

heterogeneous, or bio-catalysts. The most commonly used commercial technology for 

biodiesel production is the transesterification reaction of triglycerides of fatty acids with 

low molecular weight alcohols in the presence of homogeneous alkaline catalysts 

(usually sodium hydroxide). Its reaction is shown in Figure 1.9, which in practice is 

usually conducted at 60
o
C in the presence of excess methanol in order to push the 

equilibrium towards the reaction products (Ma and Hanna, 1999). Although biodiesel 

has been accepted worldwide as a solution to the heavily reliance on petroleum-derived 
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diesel oil, its current commercial production technology via homogenous 

transesterification has a lot of limitations.   

 

 

Figure 1.9:  Transesterification Reaction for Biodiesel Production 

 

In transesterification the feedstocks must be highly refined vegetable oils, otherwise 

undesirable products such as soap would be formed due to side reactions as a result of 

the presence of free fatty acids (FFAs) and water. A tolerable free fatty acid level in 

feedstock for the transesterification reaction is reported to be less than 1.0% (Haas, 

2004); otherwise a pre-treatment of the feed would be necessary. On the other hand, 

heterogeneous transesterification process appears to be less problematic with easy 

operations compared to homogenous and non-catalytic transesterification processes. 

However, reactivity of the heterogeneous catalysts has become a concern. Not many 

heterogeneous catalysts could produce high yield of fatty acid methyl esters (FAME) in 

the transesterification process. The production of large quantity of glycerol, a by-

product from transesterification process has presently become an issue. With these 

limitations the cost of biodiesel production is not economical. Hence, it becomes a 

challenge to design a durable and highly reactive heterogeneous catalyst which can be 

used in an alternative process other than transesterification.  

 

1.4 Advantages of Thermocatalytic Cracking for Biodiesel (FAME) Production 

The thermocatalytic cracking process achieves the direct cracking of oils or fats 

irrespective of the free fatty acid (FFA) level in the presence of solid catalysts, forming 

biodiesel without the use of alcohol. The process has been used to upgrade bio-oils from 

other processes (e.g. pyrolysis) to higher quality fuels and chemicals in the presence of 

hydrogen. The glycerol is catalytically cracked to value-added chemicals, thereby 
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eliminating the challenge posed by its large-scale production from the transesterification 

of triglycerides. In a recent review by Taufiqurrahmi and Bhatia (2011), thermocatalytic 

cracking of vegetable oils or fats has been described as an effective alternative to either 

transesterification or pyrolysis. Fundamentally, cracking of triglyceride mechanism 

during the thermocatalytic process, have not yet been fully explored. However, Maher 

and Bressler (2007) reported some mechanisms based on the type of feedstock, catalyst 

and operating conditions. These mechanisms were similar to the Gusmao et al. (1989) 

mechanism. They proposed two pathways depending on the operating conditions. Little 

is known about direct thermocatalytic cracking of vegetable oils to methyl ester 

(biodiesel) in the absence of hydrogen. Hence, its application in cracking triglycerides 

creates an exciting and promising research opportunity in biofuels catalysis and 

production. An additional advantage is that fewer process operations are required in the 

heterogeneously catalysed process (see Figure 1.10) compared to transesterification, 

thus reducing its capital costs.  

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Thermocatalytic Cracking Process for Biodiesel Production 

 

 

1.5 Sulphated Zirconia Catalyst 

Sulphated zirconia among other solid acid catalysts has been found to be a promising 

catalyst for organic reactions. It is conventionally synthesized by hydrolysing zirconium 

salt using aqueous ammonium hydroxide solution. The resulting zirconium hydroxide is 

impregnated with a suitable sulphating agent before calcination. However, the process 
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involves the use of aqueous medium at different stages as shown in Figure 1.11 and it 

takes 72 hours for completion.  

 

 

 
 

 

Figure 1.11: Conventional Wet-Precipitation Process of Sulphated Zirconia 
 

 

Other techniques such as co-precipitation, sol-gel processes, and hydrothermal synthesis 

have been used to synthesize sulphated zirconia. The multiple steps involved in these 

methods pose the possibility of scarce reproducibility of the textural and, consequently, 

of the catalytic properties of the synthesized sulphated catalyst (Melada et al., 2004). 

The drawback with sol–gel processes is that several parameters intervene in imposing 

the features of the catalyst, both concerning the ‘‘chemical’’ composition of the reacting 

mixture and also the temperature and time length of the hydrolysis-condensation steps 

involved (Melada et al., 2004). 

 

 

1.6 Research Objectives 

Extensive research has been performed on heterogeneous acid catalysts. However, there 

are few publications on the use of heterogeneous acid catalysts in thermocatalytic 

cracking for biodiesel production compared to transesterification. Likewise, the 

production of biodiesel using solid acids catalysts by thermocatalytic cracking is not yet 

established in industry. Showing a similar trend, the use of sulphated zirconia in 

cracking has been widely studied, but there are few reports on its use in the 

thermocatalytic cracking of triglycerides. New catalytic routes are consequently under 
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investigation to improve its competitiveness in different applications. However, less is 

known about directly synthesised sulphated zirconia in the thermocatalytic cracking of 

triglycerides for biodiesel/biofuel production. Hence, the overall goal of this research is 

to develop a heterogeneous catalyst; sulphated zirconia, with improved catalytic 

properties for biodiesel production in a thermocatalytic reaction. The specific objectives 

are as follows: 

 

1. To use an environmentally friendly method to synthesise sulphated zirconia 

catalysts, by completely eliminating the use of any aqueous medium 

2. To optimize the sulphated zirconia catalyst design to achieve improved overall 

activity compared to the conventional catalyst. 

3. To develop zirconium sulphated heterogeneous catalysts that can convert 

triglycerides to fatty acid methyl esters (FAMEs) in the absence of alcohol  

4. To investigate the kinetics of the reaction 

5. To look for other products of this reaction, this might have added value to the 

process. 
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Chapter 2: Literature Review 
 

 

 

 

2 Scope 

This chapter discusses the benefits of biodiesel as an alternative to petro-diesel, and 

considers current manufacturing techniques used for biodiesel production as well as 

various new technologies that are being developed. It primarily focuses on the 

development and application of catalysts, the problems associated with them and the 

benefits of different catalyst systems. The use of heterogeneous catalysts in 

transesterification for the production of biodiesel is reviewed. The need for and 

advantages of replacing the homogeneous catalyst-based transesterification process with 

heterogeneous catalysts in thermocatalytic cracking is explained. Details of some of the 

analytic methods available and those implemented in this work are also discussed. 

Finally, areas in this field of study which require further research are highlighted.   

 

2.1 Biodiesel Production 

The methods used to produce biodiesel can be categorised into three types: these are 

chemical catalytic (base- or acid catalysis), bio-catalytic (enzyme catalysis) and non-

catalytic processes. Several reviews of the different methods of biodiesel production 

from different feedstocks can be found in the literature (Marchetti et al., 2007; 

Mittelbach and Remschmidt, 2006). A very good overview comparing such 

technologies was given by Balat (2008) in Figure 2.1. Each of these processes gives a 

different range of products under different operating conditions. The choice of 

conversion process depends on the type and the desired form of energy, while the 

product range is a function of the catalyst used, the nature of the feed, pressure, reactor 

geometry, temperature and residence time. The most common biofuels used in Europe 

today are of the first generation of biodiesel. To date, most biodiesel processes use a 

soluble base as the catalyst in transesterification process, but the use of this type of 

catalyst complicates product recovery and purification. In 2007, around 19 biodiesel 

plants in EU member states were starting operations, or were under construction and in 

the planning stage. Currently, relatively large plants are found in Poland, Lithuania and 

Romania in addition to Germany and France (Luque et al., 2010). Solid or liquid 

catalysts are predominantly used in the two chemical catalytic processes 

(transesterification and pyrolysis) and in the case of the biological conversion the use of 

enzyme catalysis is employed.  
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Figure 2.1: Main Biomass Conversion Processes (Balat, 2008) 
 

 

2.1.1 Transesterification 

Transesterification, also known as alcoholysis, is the conventional methodology for the 

production of biodiesel. It involves the displacement of alcohol from an ester by another 

alcohol in a process similar to hydrolysis, except that an alcohol is used instead of water 

as shown in Figure 2.2. The product of the reaction is a mixture of methyl esters which 

are known as biodiesel and glycerol. This process has been widely used to reduce the 

viscosity of triglycerides. It is a reversible reaction and proceeds essentially via the 

mixing of triglycerides and alcohols (primary or secondary monohydric aliphatic 

alcohols with C1 to C8 atoms) in the presence of a catalyst. Methanol is the most 

commonly used alcohol due to its low cost.  
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Figure 2.2:  A Simple Transesterification Reaction  

 

 

where: 

 

R
1
, R

2
, and R

3
 are long-chain hydrocarbon (alkyl group), 

 R is where any two of the ‘R’ could be the same 

 

As a reversible reaction, excess alcohol is used to shift the equilibrium towards the 

formation of the esters. The stoichiometic ratio of alcohol to glycerides is 3:1; however 

in practice it is commonly 6:1–30:1 (Demirbas, 2003; Ma and Hanna, 1999). 

Homogeneous base catalysts such as NaOH, KOH, CH3ONa or CH3OK are used in the 

process. However, when these catalysts are used, feedstock selection is crucial to the 

success and economic feasibility of biodiesel production. This is because the catalysts 

require anhydrous conditions and level of free fatty acids (FFA) below 20% in the 

feedstocks. However, if the level of free fatty acid (FFA) in the feedstock is greater than 

20%, liquid acids such as H2SO4, HCl or H3PO4 are employed as catalysts in a process 

called esterification.  The liquid acid catalysts tend to show tolerance towards FFA, but 

the reaction may be very slow.  The reaction is carried out at temperatures above 100°C 

and it takes more than three hours to complete the conversion process (Meher et al., 

2006; Demirbas, 2005; Schuchardt et al., 1998). The water content in the feed is another 

issue of concern and should be kept below 0.06% (Demirbas, 2009b). It is important 

that the water and FFA content of the feedstock be at minimum since the presence of 

FFA can result in additional unwanted products such as soap as shown in Figure 2.3, 

while water reacts with the ester (see Figure 2.4) to form a primary alcohol in addition 

to soap. Therefore the presence of water and FFA increase the formation of by-products, 

making downstream processing much more difficult and leading to reduced product 

yield (Demirbas, 2009a; Vasudevan and Briggs, 2008; Ma and Hanna, 1999). The 
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negative effect of the presence of water have been reported at levels as low as 0.1% by 

Canakci and Van Gerpen (1999).  
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Figure 2.3: Saponification of Free Fatty Acid  
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Figure 2.4:  Saponification of Ester 

 

 

In order to boost the efficiency of the transesterification process and to eliminate some 

of its drawbacks, heterogeneous catalysts have been investigated on the basis that their 

use does not lead to the formation of soaps through the neutralization of FFAs or 

saponification of triglycerides and methyl esters. Furthermore, solid acid catalysts are 

particularly attractive, having the potential to simplify downstream operations and 

decrease overall production costs. The aim here is to improve the sustainability of the 

biodiesel production process by eliminating the corrosion problems associated with the 

use of and consequent environmental hazards posed by their liquid counterparts. 

Rattanaphra et al. (2010) recently reported the use of a heterogeneous solid acid catalyst 

in the simultaneous esterification of free fatty acids and transesterification of 

triglycerides, leading to high fatty acid methyl esters (FAME) yield.  However, there 

still appear to be some major limitations of this technique due to downstream 

separation, as shown in a simple schematic diagram of the transesterification process in 

Figure 2.4 
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Figure 2.5: A Simple Schematic Diagram of the Transesterification Process 
 

 

For a bio-refinery to thrive, a diverse range of processing catalysts must be available, in 

particularly those with the ability to selectively transform biomass feedstocks into 

specific products using chemical catalytic routes. With its versatility and robustness, 

heterogeneous catalysis can play a key role in the conversion of feedstocks into high-

value methyl esters and other chemical products. Heterogeneous catalysts and catalytic 

processes need to be developed in order to provide bio-refineries with the capability and 

flexibility to adjust and optimize performance in response to feedstock changes and 

market demand. One example is the Neste Oil Corporation, a producer of renewable 

diesel oil. Up to 2010, the Corporation used edible oil for approximately 87% of its 

feedstock, but hopes to move to 100% non-edible oil by 2020 as shown in Figure 2.6. In 

fact the company is currently conducting research into the potential of using algae oil, 

which has high levels of FFA, as a feedstock for producing biodiesel. If this is to be 

viable, then a stable and effective heterogeneous acid catalyst for the effective 

conversion of the free fatty acid in the feedstock is required.  
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Figure 2.6  Neste Oil Corporation Feedstock. Source: Neste Oil (2010) 
 

 

2.1.2 Pyrolysis 

Another method of chemical conversion is pyrolysis. This technique is used to convert 

biomass in the absence of oxygen or nitrogen into a valuable liquid derivative, known as 

bio-oil (Fukuda et al., 2001). Ali and Hanna (1994) defined this method as a severe 

form of thermal cracking, with a subsequent rearrangement of fragments which other 

authors have described as a “destructive” distillation of biomass. This is due to the high 

temperature that is usually employed (Goyal et al., 2008). Pyrolysis can be classified as 

slow, fast or flash depending on the operating conditions. Several studies on the 

pyrolysis of vegetable oils and animal fats have been reported (Adebanjo et al., 2007). 

Billaud et al.(1995) studied the pyrolysis of rapeseed oil diluted with nitrogen in a 

tubular reactor between 550 and 850°C. The principal products observed were linear 1-

olefins (C10-C14), n-paraffins, and short-chain unsaturated methyl esters, with a gas 

fraction containing CO, CO2, and H2. However, it should be noted that the product of 

pyrolysis, bio-oil, must be upgraded or blended before it can be used as fuel. The most 

significant problems with bio-oil are poor volatility, high viscosity, coking, 

corrosiveness, and cold flow problems (Czernik and Bridgwater, 2004). 
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2.1.3 Non-catalyzed Systems and Bio-chemical Methods 

The most common, non-catalysed process of biodiesel production process uses 

supercritical methanol via the simultaneous transesterification of triglycerides and 

esterification of fatty acids (Demirbas, 2006). High temperatures and pressures (350 to 

400°C and > 80 atm. or 1200 psi) are essential to obtain the desired products. The 

procedure has been claimed to be very effective, yielding high FAME within a very 

short reaction time (typically less than 30 minutes). Nevertheless, the supercritical 

method is capital-intensive, and requires a very large excess of methanol to oil ratio of 

(42:1) (Gerpen et al., 2004).  Furthermore, the reaction must be quenched very rapidly 

so that the products do not decompose. Clearly, while the results are very interesting, 

scale-up to a commercially useful process may be quite difficult. On the other hand 

Balat (2008) described bio-chemical conversion to bioethanol as slow to embrace due to 

the following reasons: (1) the high cost of the collection and storage of low density 

biomass feedstocks; (2) the resistance of the biomass to being broken down; (3) the 

variety of sugars that are released when the hemicellulose and cellulose polymers are 

broken down; and (4) the need to find or genetically engineer organisms to efficiently 

ferment these sugars. Another  problem with bioethanol as a fuel is that it absorbs water 

and is very volatile, making it difficult to store and transport (Smith et al., 2009).  

 

These disadvantages have led the attention of researchers to thermocatalytic cracking of 

triglycerides as an easier and more feasible process.  The technology involved is very 

similar to that of conventional petroleum refining, yet research in this area is nowhere 

near as advanced as it is in the transesterification of oil to biodiesel (Maher and 

Bressler, 2007). In addition, the thermocatalytic process can be used to upgrade the 

primary products from other processes such as pyrolysis so as to produce higher quality 

fuels and chemicals. 

 

2.2 Current Challenges for Biodiesel Production 

Although transesterification has the advantages of high conversion rates and short 

reaction times, the future potential of the process is controversial due to several 

associated drawbacks. The presence of free fatty acids and water in the feedstock causes 

soap formation, thereby restricting the range of potential feedstocks and leading to 

reduced yields of biodiesel. Secondly, the neutralization of the alkaline also forms soap, 

making it difficult to wash the glycerol. Moreover the transesterification process is far 

from being environmentally benign. The product stream needs careful separation, 
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neutralization and thorough washing. This generates a lot of waste water which needs to 

be further purified or treated and furthermore the homogeneous catalyst cannot be 

recycled. These factors certainly increase the total production costs of biodiesel even as 

the quality of its main by-product, glycerol, is reduced. The biodiesel itself must be 

subjected to further washing and at times drying to remove the traces of glycerol in 

order to meet EU quality standards (EN 14214) which prescribe 0.02% or lower 

glycerol content in the biodiesel. In some cases, however, homogeneous acid catalysts 

as an alternative to alkalis have been reported which achieve simultaneous esterification 

and transesterification conversion with up to 78% (Sharma et al., 2008).  It is also 

usually a slow two-step process at high temperatures above 100°C and taking more than 

three hours to complete the conversion (Demirbas, 2007; Schuchardt et al., 1998).  

Another limitation of the transesterification process is its production of glycerol. This is 

a valuable primary by-product, but has now become a subject of concern, because it is 

expected to become difficult to find suitable applications for large amounts of it in the 

near future (Dupain et al., 2007; Huber et al., 2006). Although transesterification is 

presently conducted on a large scale using crude feedstock in order to cut costs, the 

problems of energy and water consumption still face the industry (Dupont et al., 2009). 

Therefore, with the growing environmental concern about the use of homogeneous 

catalysts, heterogeneous catalysts have recently been introduced in transesterification. 

This is because their usage offers various advantages:   

 

 The catalyst may be recycled and subsequently employed again in the 

reaction,  

 The biodiesel product is assumed to have improved properties compared to 

those from the homogeneously catalysed process.  

 Pre-treatment steps in the case of feedstock with high level of free fatty 

acids are eliminated,  

 Waste is minimised 

 

However, the process has the removal of glycerol from the biodiesel as a major 

limitation, in order to meet the EEC regulations. For pyrolysis the challenge is that its 

liquid product cannot be used directly for transportation fuel because of unacceptable 

levels of carbon residues, ash, and poor pour points (Sharma et al., 2008; Fukuda et al., 

2001). Products are also less stable and less miscible with conventional fuels, and 
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usually need upgrading in order to improve their quality (Goyal et al., 2008). Therefore 

recent research has focused on ways to minimise or eliminate the above constraints, yet 

still achieve desired product of high quality.  

In summary, the greatest hurdle in commercializing biodiesel is the cost of production 

resulting from the cost of raw material, as well as costs incurred in the 

transesterification production method. The cost of production is still keeping the retail 

price of biodiesel too high for it to be an option for many users, and until these 

problems are resolved the cost of production will remain relatively high. To sustain 

biodiesel commercially and competitive with petroleum-based diesel, heterogeneous 

catalysts needs to replace the transesterification, which is time-consuming, high in 

capital costs and labour intensive. In a recent review by Taufiqurrahmi and Bhatia  

(2011), the thermocatalytic cracking of vegetable oils and fats has been reported as an 

ideal alternative to transesterification and pyrolysis. The process could significantly 

enhance the economic viability of biofuel production in general. Since replacing the 

liquid catalysts minimizes the separation process required, better quality biodiesel, easy 

catalyst recovery and reusability are all achieved. 

 

2.3 Catalytic Cracking of Vegetable Oil 

Catalytic cracking of vegetable oil entails the breaking down of the molecular structures 

of renewable feedstock in the presence of solid catalyst. This technology is similar to 

that of conventional petroleum refining and can be used in upgrading bio-oil produced 

by other processes to higher quality fuels and chemicals (Smith et al., 2009; Meng et 

al., 2005), at a lower temperature (300-450
o
C) than pyrolysis. Large molecules are 

degraded to smaller compounds by operations such as dehydration, dehydrogenation, 

deoxygenation, and decarboxylation. In addition, the process can be used to improve the 

thermal stability of cellulosic molecules as well as reducing their oxygen content. 

Compared with the hydrotreating process, catalytic cracking does not require the use of 

hydrogen, which is another advantage.  Furthermore, it is a process that can use any 

form of biomass to produce variety of biofuels in the existing oil-refineries as reported 

by (Huber and Corma, 2007).  

 

Besides, non-edible and used cooking oils have also received considerable attention 

recently in connection with this process. At present, catalytic cracking is considered to 

be the most convenient method of producing biofuels and chemicals from vegetable oils 

and fats. It does not only reduce costs but, compared to pyrolytic cracking, allows 
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flexibility in the adjustment of product distribution (Tian et al., 2008b; Meng et al., 

2005). The attempt is to replace both homogeneous catalysts and transesterification with 

heterogeneous catalysts in catalytic cracking process in order to minimize waste and 

sustain biofuel production and the environment in general. The use of acidic 

heterogeneous catalysts in organic reactions has long been well-documented, as 

indicated in an extensive review by Weisz et al (1979) and Corma (1995). However, 

such heterogeneous catalysts have only recently been used in biodiesel (FAMEs) 

production by catalytic cracking. Thereby creating exciting and promising research 

opportunities in biodiesel catalysis (Zabeti et al., 2009; Lotero et al., 2005). This has led 

to growing interest in the cracking of triglycerides into biofuels using different 

heterogeneous catalysts. Several heterogeneous catalysts have been used and compared 

for their activity in the catalytic cracking of triglycerides from various sources as 

reported in a review by Taufiqurrahmi and Bhatia (2011) and shown in Table 2.1.  

Katikaneni et al. (1996) performed catalytic cracking on canola oil at a temperature 

range of 400–500
o
C and reaction time of 1.8–3.6h

-1
. Their product spectrum contained 

organic liquid product (OLP), gas, water, and coke. The authors observed that the 

catalytic cracking of the canola oil resulted in 95wt% aromatics in the OLP mainly 

benzene, toluene, and xylenes. 
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Table 2.1:  Feedstocks, Catalysts and Operating Conditions used in the Study of Catalytic 

Cracking of Vegetable Oil (Taufiqurrahmi and Bhatia, 2011) 

 

Feed 

 

Catalyst 

Temperature    

(K) 

Palm/soy beans 

oil 

FCC equilibrium catalyst 838 

Cottonseed oil FCC  equilibrium catalyst 713-783 

Rapeseed  oil FCC equilibrium catalyst(REUSY coated with ZSM5) 823 

woody oil Al2O3/MCM-4l/CaO 723-773 

Calotropis 

procera oil 

Equilibrium FCC catalyst 733-793 

Soybean oil Na2CO3/K2CO3/Al2O3/MCM-4l 623-673 

Soybean oil HZSM-5/MCM-41/impregnated MCM-41 693 & 723 

Cottonseed oil FCC equilibrium 653-833 

Soybean oil Bauxite 653-673 

Fresh & used 

sunflower oil 

Hydro-cracking catalyst 653, 643 &  

663 

Canola oil HZSM-5, H-mordenite, H-Y, silicate, AL-PILC, 

SiO2Al2O3 

473-873 

Sunflower oil Alkali treated (NaOH) aluminium oxide (Al2O3) 460-630 

Soybean oil Alumina doped with tin and zinc 623-673 

Olive oil KOH, Na2CO3 540-630 

Palm/soybean oil CORH (main component USY zeolite) & LTB-2 (main 

component ZSM-5 zeolite) 

773 & 793 

Waste olive oil Dolomite 773-1073 

Rapeseed Equilibrium FCC catalyst/ZSM-5 758-858 

Glycerol from 

biomass 

FCC equilibrium catalyst/USY/ Al2O3/HZSM-5 773-973 

Used vegetable 

oil 

HZSM-5/sulphated zirconia/HZSM-5 & sulphated 

zirconia 

653-703 

Used vegetable 

oil 

Sulphated zirconia 673-703 

Soybeans/palm/ca

stor oil 

HZSM-5 623-673 

Fatty 

acid(ocatanoid 

acid 

Activated alumina 623, 648 & 

 673 

Used sun flower 

oil 

HZSM-5 673-693 

Used sunflower 

oil 

Na2CO3 673 & 693 

Canola oil HZSM-5/SiAl2O3/HS mix 673-773 

Canola oil HZSM-5, silicate, silica alumina, γ- alumina, CaO,  MgO 673 & 773 

Canola oil Potassium-impregnated HZSM-5 673-773 

Canola oil HZSM-5, H-mordenite, H-Y, silicate, AL-PILC, 

SiO2Al2O3 

648-773 

 

 

Similar Tian et al. (2008) studied the cracking of oils and fats on a mixture of solid acid 

catalysts in a two-stage riser fluid catalytic cracking (TSRFCC) reactor. The catalyst 

mixture comprised mainly of Ultra-Y (USY) zeolite and ZSM-5 (Zeolite Socony Mobil-

Five). The oils and fats tested were pure vegetable oils (palm oil and soybean oil), 

animal fats (chicken fat), and blends with vacuum gas oil (VGO). The reaction was 
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conducted at atmospheric pressure and two different temperatures. The first stage riser 

was operated at 500
o
C, catalyst to feed ratio of 6 and residence time of 1.4 sec. The 

second stage riser was at a temperature of 520
o
C for a residence time of 1.7sec and mass 

ratio of catalysts/feed of 8. They reported palm oil had the highest yield of LPG and 

light olefins among the three feeds with 97% conversion. The total liquid yield form the 

palm oil was 77.6%, 45% LPG and 23% propylene. Blending the palm oil with VGO 

resulted into a higher yield (79.2%) of liquid product but lower LPG (39.1%) and 

propylene (18.1%) yield. Oxygen content of the liquid products was very low (about 

0.5%), and were removed mostly as H2O and partly as oxides. Furthermore, vegetable 

oil and animal fat gave the sum of 83.6% aromatics and olefins; comprising of C5, C6 

olefins and C7, C8, C9 aromatics. On the other hand the palm oil yielded higher 

aromatics of 82.7% and only 6.3% olefins. The cracking of gasoline to olefin was 

mainly during the secondary cracking in the second stage in the reactor. However, 

nothing was reported on the comparison of the catalysts activity. The overall 

conversions of feed and product distribution are presented in Table 2.2 and Table 2.3. 

 

Table 2.2: Overall Product Distribution of TSRFCC Reactor (%, by mass) Tian et al. 

(2008) 
Feed Conversion LOP  

Product distribution 

 Dry gas LPG Gasoline Diesel 

oil 

Heavy oil Coke 

Chicken 

fat 

97.1 78.5 4.5 34.3 32.8 11.4 3.0 2.3 

Palm oil 98.3 77.6 7.2 45.0 28.1 8.9 2.0 2.2 

Soybean 

oil 

95.5 76.9 4.6 29.2 32.4 15.3 4.5 4.0 

PO/VGO 

(50/50) 

93.9 79.2 6.1 39.1 20.9 19.3 6.1 4.0 

 

 
 

Table 2.3: Product Distribution of Light oil and Olefin (%, by mass) Tian et al. (2008) 

 Yield of C2-C4 olefins 

Feed Light oil Ethylene Propylene Butylenes 

Chicken fat 45.2 3.7 16.4 15.2 

Palm oil 37.0 5.6 21.0 16.6 

Soybean oil 47.7 3.6 14.7 12.4 

PO/VGO (50/50) 40.2 4.9 18.1 15.7 
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In another study, Charusiri et al. (2006) studied the catalytic conversion of used 

vegetable oil to liquid fuel over some catalysts; HZSM-5, sulphated zirconia and hybrid 

of HZSM-5/sulphated zirconia. The reaction was performed in a batch microreactor 

over a temperature range of 380-430
o
C, in the presence of hydrogen gas at a pressure 

range of 10-20 bars, and reaction time range of 45-90min. Analysing the LOP in a 

simulated distillation gas chromatograph, revealed the highest yield of gasoline 

(26.57wt%) was by HZSM-5/sulphated zirconia (0.3: 0.7) at a temperature of 430
o
C, a 

pressure at 10 bars, and 90min reaction time. The addition of HZSM-5 to sulphated 

zirconia enhanced its activity by increasing acidity and the pore structure for effective 

aromatization. Leng et al (1999) showed that similar reaction can be carried out under 

atmospheric pressure. Calcined and uncalcined HZSM-5 catalysts were used in a fixed 

bed micro-reactor. The calcined catalyst showed a higher rate of cracking at a 

conversion of 70wt% after 2 h
-l
 (WHSV) at 400°C and atmospheric pressure. They 

showed that both temperature and space velocity affected the palm oil conversion. The 

highest conversion was at 390
o
C and a space velocity between 3 to 4 h

-1
, after which 

there was a decrease in conversion and liquid product. The catalyst was selective for 

aromatics and hydrocarbons in the gasoline, diesel and kerosene range. Other products 

include light gases, coke and water. They attributed the decrease in conversion to coke 

formation on the catalyst which reduced the acid sites available for cracking. Using 

different types of zeolite and its hybrid in a fixed bed microreactor at a reaction 

temperature of 350-450
o
C and atmospheric pressure, Twaiq et al. (1999) produce 

gasoline, kerosene, and diesel fuel in different yields of 28%, 9%, and 5%, respectively, 

from a palm oil feed. HZSM-5 catalyst gave the highest conversion of 99 wt% and a 

gasoline yield of 28wt% after 1h under a reaction temperature of 350
o
C.  From Table 

2.1, above, many of the research have been performed on FCC catalysts, zeolites, silica-

alumina and their hybrids at high temperatures.  However, the issue of catalyst choice is 

paramount for the effectiveness of the process. Therefore, there is need for more 

research into other types of potential catalysts for biofuel production by catalytic 

cracking at lower temperatures.  

 

2.3.1 Mechanism of the Catalytic Cracking of Triglycerides 

The catalytic cracking of triglyceride is a technique that involves the breaking of 

chemical bonds at various points within the molecule. Several publications are available 

that describe the successful catalytic cracking of vegetable oils into liquid bio-fuels 

(Kirszensztejn et al., 2009; Ooi et al., 2005; Idem et al., 1997; Katikaneni et al., 1996) 
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at high temperature. The detailed mechanism of the process is not well-established, 

however, various authors (Taufiqurrahmi and Bhatia, 2011; Dupont et al., 2009; Huber 

and Corma, 2007; Maher and Bressler, 2007; Idem et al., 1996) reported similar 

pathway for catalytic cracking of triglyceride molecule. Generally, it is initiated with a 

thermal cracking process by means of free radicals before catalytic conversion to 

oxygenated compounds. Depending on the reaction conditions; in the presence of a 

catalyst with active acid sites accessible for triglyceride molecules, the triglyceride 

decomposes by means of interaction of the oxygen bonding of the ester carbonyl groups 

with an acid site. In an earlier study, Gusmao et al. (1989) summarised the mechanism 

of catalytic cracking of vegetable oil to diesel-like fuel over Ni/SiO2 and sulphated Ni-

MO/γ-Al2O3 catalysts as shown in Figure 2.7. They reported the catalytic cracking 

reaction occurs via two steps: (i) decomposition of triglycerides to carboxylic acids, 

acrolein and ketenes. Acrolein (propenal) is the simplest unsaturated aldehydes, both 

acrolein and ketenes are unstable and very reactive. These compounds recombine at the 

reaction conditions to form esters, carboxylic acids and hydrocarbons; (ii) the 

carboxylic acids are decarbonylated or decarboxylated, producing, respectively, carbon 

monoxide, olefins and water or carbon dioxide and paraffins. 
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Figure 2.7: Catalytic Cracking of Triglycerides (Gusmao et al., 1989) 
 

The occurrence of the different reaction routes and other hydrocarbon products depend 

on the double bonds in the initial oxygenated hydrocarbon (Osmont et al., 2007). 

Similarly, Maher and Bressler (2007) reported the production of free radicals during 

triglycerides cracking. Although the positions at which cracking occurs along the chain 

length is not established, Suarez (2006) proposed the possibility of some positions 

where cracking could occur during primary or secondary cracking (see Figure 2.8).  
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Figure 2.8:  Proposed Cracking Positions on Triglycerides (Suarez, 2006)  
 

  

In a review, Maher and Bressler (2007) reported carboxylic acids, ketones, esters, 

acrolein and hydrocarbons as typical reaction products of triglyceride cracking. The 

organic liquid products (OLP) from the reaction is a mixture of oxygenated and heavy 

oxygenated hydrocarbons consisting  of compounds like olefins, paraffins, alcohols, 

acids, ketones, aldehydes, C6
+
 aliphatic hydrocarbons, C9

+
 aromatic hydrocarbons, and 

gases as reported by Idem et al. (1996). Other processes such as aromatization, 

alkylation, isomerisation, oligomerization, polymerization and condensation may occur. 

Similar reaction mechanism was reported by Melero et al. (2009) in catalytic cracking 

of mixtures of crude vegetable  oils and non-edible animal fats with vacuum gas oil. 

They reported that once the triglyceride molecule has been primarily cracked to heavy 

oxygenated hydrocarbons such as fatty acids, ketones, esters, and aldehydes, further 

reactions to reach other products start by means of the breaking of the C-O and C-C 

bonds by β-scission reactions. A beta scission is characterized by the scission of a bond 

beta (connected to an adjacent atom) to the atom bearing a radical. In another study 

Katikaneni et al. (1995a) proposed a reaction scheme from cracking of canola oil over 

zeolite as shown in Figure 2.9. They also reported that the heavy oxygenated 

hydrocarbons and oxygenates undergo further catalytic cracking to produce esters. 
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Figure 2.9:  Proposed Reaction Pathway for Catalytic Cracking of Canola over Zeolite 

Catalyst (Katikaneni et al., 1995a) 
 

 

Dupain et al. (2007) studied the catalytic cracking of rapeseed oil (pure and blended 

with conventional FCC feedstock) on commercial equilibrium catalyst (Ecat). They 

varied the process variables, reactor temperature and reactor length. The operating 

temperature was also varied from 480 to 585
o
C at reaction time between 8sec to 50min 

and a catalyst/oil ratio of 4: 1.The liquid product was subjected to GC/MS analysis; 

interestingly there was no evidence of ketones or aldehydes in the product mixture but 

the spectrum showed oxygenates (acid) and methyl ester (FAMEs). Not only was 

gasoline in large amounts (57 wt%) of aromatics and olefins formed, but also higher 

boiling-ranges of di-aromatics and tri-aromatics were distinctively present. The 

triglycerides were predominately converted within 50min between 485–585
o
C into fatty 

acids through radical cracking reactions. They reported that the formation of radicals 

was enhanced by the presence of catalyst external surface as compared to thermal 

cracking. They therefore proposed a cracking mechanism for the conversion of the 

rapeseed oil to gasoline and diesel boiling-range as shown in Figure 2.10. 
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Figure 2.10:  Proposed Mechanism for Catalytic Cracking of Rapeseed Oil  

(Dupain et al., 2007) 

 

 

In another study, Vonghia et al. (1995a) reported that triglyceride deoxygenation occurs 

via two mechanisms: γ-hydrogen transfer to produce alkenes and β-elimination to 

produce carboxylic acids and unsaturated glycol difatty acid esters (UGDEs). Their 

detailed mechanism of triglyceride deoxygenation is shown in Figure 2.11. 
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Figure 2.11: Proposed Pathway for Triglyceride Conversion 

 

 

The radical conversion of the triglyceride into the fatty acid, which is a relatively fast 

and stepwise process, is reported as temperature dependent. Depending on the operating 

condition and catalyst acidity the six-membered transition-state can either crack or 

interact further into other products. However, they concluded that it is not known 

whether radicals are formed directly from the triglyceride molecule or from the formed 
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intermediate free fatty acids. Dandik and Aksoy (1998) reported that during catalytic 

pyrolysis, the decomposition of triglycerides to heavy oxygenated hydrocarbons as 

carboxylic acids (RCOOH), ketones (RCOR), aldehydes (RCHO) and esters (RCOOR) 

are dominant steps in the cracking reactions and begins at 240–300
o
C.  

 

Generally, in solid acid catalysis, the reactions often proceed via a carbocation 

intermediate. However, the presence of an acid site is required to form a carbocation 

intermediate. They are very reactive intermediates that rearrange to form more stable 

species. The order of their stability usually follows the trend below (Bartholomew and 

Farrauto, 2006): 

 

 tertiary > secondary> primary 

 allyl > alkyl 

 

However, different feedstocks and catalysts may require different operating conditions, 

which could affect product quality and distribution. Therefore, when strong solid acids 

react with organic compounds, many different products can be created as a result of the 

type of intermediate formed.  Hence, to produce the desired product in the highest 

possible yield, the catalyst properties need to be tuned for the specific reaction. 

 

It is possible to control the product spectrum of catalytic cracking of vegetable oils to 

yield desired products if the chemistry, together with factors such as the choice of 

catalyst and reactor performance, are better understood (Huber et al., 2006). In order 

words, with the proper design of cracking catalysts, temperature and suitable oils, a 

desired biofuel can be produced. This is especially relevant for biodiesel, since the 

reaction temperature with the assistance of a catalyst determines product distribution 

(Taufiqurrahmi and Bhatia, 2011). Therefore, to produce the desired product at the 

highest possible yield, the catalyst must be designed in such a way so as to tune its 

catalytic properties to a specific reaction. 

 

2.4 Catalysis 

A catalyst is a chemical compound that increases the rate of chemical reactions which 

are thermodynamically feasible, yet the catalyst itself is not altered in any way at the 

end of the reaction. It can be defined simply as a reaction accelerant, which affects 

reaction products by enhancing the speed of one reaction pathway in favour of another. 
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Catalyst can be either a homogeneous base or acid or a heterogeneous base or acid.  

Heterogeneous catalysts provide a physical surface for reactants to come together. The 

following factors should be considered when choosing a catalyst for a particular task:  

 

 Acid or base sites or both 

 Acid/base site strength. 

 Acid/base site concentration. 

 Catalyst chemical composition. 

 Catalyst morphology. 

 Physical durability of the catalyst. 

 Shape selectivity of the catalyst. 

 Catalyst interaction with potential sources of de-activation. 

 

The universal requirements for a catalyst in bio-renewable conversion to fuels, 

according to Miller and Jackson (2004), are the abilities to selectively remove excess 

oxygenate functionality from feedstocks, and form products with liquid or gas 

properties suitable for fuel utilization. The most commonly used catalysts for 

transesterification are homogeneous (NaOH and KOH). Homogeneous catalysts are said 

to be more active because their active sites are in the liquid phase and are capable of 

moving freely among the reactants. Meanwhile, the active sites of heterogeneous 

catalysts are confined to their surface, limiting the reactions according to the effect of 

internal mass transfer resistance (Nijhuis et al., 2002). Given the limitations associated 

with homogeneous catalysis, suitable heterogeneous catalysts are a matter of urgency 

for green chemistry, as emphasised by Corma and Garcia, (2003). The use of solid 

catalysts in industrial transesterification is generally preferable because they are more 

environmentally benign. Ideally, the chemical composition of the catalyst should remain 

unchanged subsequent to reactions that it has catalysed, and thus stable and effective 

heterogeneous acid catalysts are needed for the production of biodiesel.  

However, physical or chemical changes may occur when either the protons or electrons 

used for catalytic action are removed. 

 

2.4.1 Heterogeneous Cracking Catalysts 

Heterogeneous catalysts provide significant advantages over their homogeneous 

counterparts mainly in terms of environmental, handling and disposal problems. Other 
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advantages include the reduced corrosion of equipment, catalyst regeneration, easier 

product separation, and a lower likelihood of the contamination of waste streams 

released into the environment. However, mass transfer resistance becomes critical when 

micro-porous catalysts are employed in organic reactions. Maher and Bressler (2007) 

reviewed the various catalysts used in the catalytic cracking of biomass and grouped 

them into four categories: transition metals, molecular sieves, activated alumina and 

sodium carbonate. Heterogeneous acid catalysts typically contain acid sites with 

different strengths of Brønsted and/or Lewis acidity. It is generally difficult to evaluate 

the relative importance of a given site in a reaction (Zhao et al., 1999). Several variables 

should be considered when choosing a catalyst for a particular task. A good catalyst 

must possess both high activity and long-term stability, but its single most important 

attribute is its selectivity. This is a reflection of its ability to direct the conversion of the 

reactant along one specific pathway. 

 

2.4.1.1 Transition Metal Catalysts 

Their catalytic properties are easily modified by sulphate loading, the addition of other 

supporting metal oxides, and other methods of preparation. This has made them of great 

interest in catalysis. They are traditionally used for hydro-processing in the heavy oil 

industry at high temperatures (350-500°C). Depending on the metal involved, when 

used in conventional refining processes the products include gases, alkanes, aromatics 

and diesel (Charusiri et al., 2006; Yadav and Nair, 1999b). They have also found wide 

application in the cracking of vegetable oil and animal fats (Thomas and Thomas, 

2005). 

 

2.4.1.2 Molecular Sieves 

These are highly reactive and crystalline, porous, and exhibit size selectivity. They can 

be classified as micro-, meso- and macro- depending on the size of the pores which can 

be altered to obtain specific reaction products. One molecular sieve with wide 

application is zeolite, whose crystalline structure and tetrahedral shape offers significant 

advantages over amorphous silica–alumina catalysts. A typical example is HZSM-5, 

and a large number of studies have used this catalyst for the conversion of triglyceride 

oils and fats to hydrocarbons fuels (Twaiq et al., 2004; Twaiq et al., 1999; Katikaneni et 

al., 1996; Katikaneni et al., 1995b; Weisz et al., 1979). One of the first studies using 

HZSM-5 catalyst was by Weisz et al. (1979) to convert vegetable oils (corn and peanut 

oil) to hydrocarbons. The products were reported as:  C1 and C2 gas, liquefied petroleum 
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gas (C3 and C4), gasoline, and light distillate (jet fuel, kerosene, or light diesel and 

heating oil). Tian et al. (2008a) monitored the catalytic cracking of palm oil and animal 

fats over a Co-Rh catalyst containing ultra-stable Y (USY) zeolite and LTB-2 with the 

ZSM-5 zeolite as the active component. The authors achieved 47% yields of olefins, 

21% gasoline and high yields of liquid petroleum gas. When comparing molecular sieve 

catalysts, particularly zeolites, to metal oxides the former were found to give better 

product distribution and yield than metals because of their catalytic activity, which is a 

function of shape selectivity, acidity, porosity and surface area (Charusiri et al., 2006). 

However, they are quite expensive. 

 

2.4.1.3 Activated Alumina 

When pure these catalysts are not acidic and their main activity is dehydration. Alumina 

can exist in different forms depending on the method of preparation and treatment used.  

When activated, they are acidic and show high catalytic activity. A common example is 

activated γ-alumina, which is an effective catalyst for the decarboxylation of fatty acids 

at 450°C in atmospheric pressure. It has also been used in the production of alkanes and 

alkenes from sewage sludge containing triglycerides (Maher and Bressler, 2007; Billaud 

et al., 2001; Vonghia et al., 1995a). Kirszensztejn et al. (2009) investigated the use of 

alumina modified with boron oxide in the cracking of rapeseed oil. A mixture of water, 

carbon dioxide, hydrogen, aliphatic and aromatic hydrocarbons and a little liquefied 

natural gas (C2-C5) were produced. The major disadvantages of this catalyst are that: (i) 

the further treatment of the product via fractional distillation is required in order for the 

product to be suitable as fuel; (ii) it must be at moderate strength because most sites are 

buried in inaccessible locations; (iii) there is no shape selectivity and (iv) pore size is 

variable (Katikaneni et al., 1995a). Vonghia (1995b) studied the deoxygenation of 

triglycerides to aliphatic hydrocarbons (mainly monoalkenes) over activated alumina at 

450
o
C in a fixed bed tubular reactor. The intermediate products of the pyrolysis 

included methyl ketones, dodecyl aldehyde, and dodecanol. They concluded that the 

triglycerides can split out carboxylic acids by β-elimination or yield alkenes by a γ-

hydrogen transfer mechanism. 

 

2.4.1.4 Sodium Carbonate 

Several studies have reported the use of sodium carbonate in cracking vegetable oil into 

liquid organic products (Dandik and Aksoy, 1998; Zaher and Taman, 1993; Konwer et 

al., 1989). Pyrolysis of used sunflower oil was studied by Dandik and Aksoy (1998) in a 
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packed column reactor of different lengths: 180, 360 and 540mm at temperature range 

of 400 to 420
o
C in the presence of sodium carbonate catalyst with different percent (1, 

5, 10 and 20) based on the oil weight. They had as high as 83% conversion with 10% 

catalyst in 180mm column reactor at 420
o
C. The products of used oil consisted of gas 

and liquid hydrocarbons, carboxylic acids, CO, CO2, H2, and water. Increasing the 

catalyst and the temperature resulted in increased liquid hydrocarbon and gas products 

and decreased coke–residual oil. The major hydrocarbons in the liquid phase were C5 –

C11 with 36.4% yield. Konwer et al (1989) examined the effect of sodium carbonate on 

the pyrolytic conversion of  fatty acids  that  are  the  principal  constituents  of  Mesua-

ferrea  seed  oil to  hydrocarbons at 650
o
C. The samples were collected at various 

boiling range fractions of petroleum hydrocarbon and analysed. Depending on the 

temperature the liquid product comprised of gasoline, kerosene and diesel fuel, but a 

possible concern with the use of sodium carbonate is that traces of sodium may be 

present in the product (Maher and Bressler, 2007). 

 

2.4.1.5 Combined Catalysts 

In some cases a mixture of different types of these catalysts are used to enhance product 

selectivity. Dupain et al. (2007) studied the catalytic cracking of rapeseed oil using a 

commercial equilibrium FCC catalyst (silica–alumina matrix with zeolite crystals). The 

catalysts were found to be effective. The presence of double bonds in the molecular 

structure of the feedstock enhanced the formation of aromatics in gasoline and light 

cycle oil (LCO).  

Modified transition metal oxides have been found to be potentially active catalysts that 

could allow the same hydrocarbon conversion at lower temperatures than zeolites, when 

other operating conditions are similar (Charusiri et al., 2006; Idem et al., 1997). Despite 

this, current challenges include maximizing their efficiency by improving the pore size 

and stability. 

 

2.5 Solid Acid Catalysts 

These are of fundamental industrial importance because of their vital role in the 

petroleum industry where they are employed in various reactions to upgrade oil quality 

and chemical production.  Over three hundred solid acid catalysts have been developed 

within the last 40 years (Tanabe and Yamaguchi, 1994). Silica-alumina gels were 

among the first kinds of solid acid catalyst to be used industrially for cracking 

hydrocarbons (Corma, 1997). Furthermore, they can be designed to give higher activity, 
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selectivity, and longer catalyst life. A review by Yamaguchi (1990) classified solid acid 

catalysts in three groups:  (a) mounted acid, involving the fixation of a liquid acid such 

as SbF5 on supports of high surface area; (b) combined acids of metal halides with metal 

salts; and (c) sulphate-promoted metal oxides. Solid acid catalysts can be designed to 

give increased activity and selectivity in terms of site type and concentration available 

for reaction. Thermal stability is another characteristic that must be considered in 

choosing a solid acid catalyst for catalytic cracking. In recent years there has been keen 

interest in using heterogeneous catalysts such as sulphated metal oxide catalysts.  

 

2.5.1  Nature of Acid Sites:  

To design a solid acid catalyst for optimum performance for a specific reaction, 

important features are the concentration, strength, and accessibility of the acid sites. The 

concentration of acid sites on the surface of a solid acid plays a vital role in controlling 

its catalytic activity and is commonly expressed as the number of mmol of acid sites per 

unit weight or per unit of surface area of the solid (Mikhail and Robens, 1983). It is, 

however, important that the acid sites should be accessible rather than necessarily being 

high in strength. This is because the rate of reaction depends on the rate of desorption of 

products from the acid sites on the catalyst, and in some cases increased acid site 

strength can produce unwanted side reactions (Rosenberg and Anderson, 2002). Solid 

acid catalysts are easily characterised by the presence of Brønsted and/or Lewis acid 

sites. The formation of Brønsted acid is given in Equation 2.1. 

 

a) Brønsted Acidity  

A Brønsted acid is a proton donor, which donates a proton to a Brønsted base to 

generate the conjugate acid. 

 

 

                                                Equation 2.1 

 

 

where: 

A
-
 is the conjugate base of the acid HA and BH

+
 is the conjugate acid of base B. For 

example, the Brønsted acid of HCl in water is H3O
+
, as shown in Equation 2.2. A polar 

hydrogen chloride molecule donates a proton and a water molecule accepts it. 
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When HCl loses/donates a proton a chloride ion is left which is regarded as the 

conjugate base. The water (H2O) accepts/gains the proton to produce what is called the 

conjugate acid, H3O
+
. Typically Brønsted acidity can be formed in solid acids through: 

1) exchangeable H
+
 ions; and 2) exchangeable high charge-to-radius metal cations, as in 

Equation 2.3, which under conditions of limited hydration can hydrolyse water to H
+4

.   
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Equation 2.3 

 

In this case the H
+
 can further react with H2O to form H3O

+ 

 

b) Lewis Acid 

A Lewis acid accepts an electron pair; that is, it must have a vacant, low-energy orbital. 

Most metal cations are Lewis acids since they can accept a pair of electrons when they 

form a bond with a base (see Equation 2.4). 
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Given the acidic properties of heterogeneous solid acid catalysts, selectivity for any 

desired product can be achieved. Although many studies of different solid acid catalysts 

have been carried out, only a small number present data on their thermal stability. 

Among the few that do, sulphated zirconia has been found to be thermally stable for 

organic reactions, and it is well known for its super-acidity. However, the design of 

active solid acid catalysts which are environmentally benign in usage is a major 

challenge.  

 

2.5.2 Surface Area of Heterogeneous Catalyst 

The surface area of a catalyst is the only physical property which determines the extent 

of adsorption and catalytic reaction (Thomas and Thomas, 2005). The rate of product 

formation is a function of the available surface area of the catalyst. Support or promoter 

may be used to increase the surface area. The larger the surface area of a catalyst that is 

accessible to the reactants the greater the throughput. That is the amount of reactant 

converted to product per unit time per unit catalyst mass. If, on continuous use, the 

activity of a catalyst declines rapidly than any decrease in the surface area the catalyst is 

said to be poisoned (i. e. blockage of active sites). On the contrary, if the surface area 

reduces with reduced activity, then the catalyst is thermally deactivated. The pore 

structure is also important because it contributes to the total surface area; however, 

narrow pore structure limits reaction rate. The surface and pores of a catalyst are 

responsible for the catalytic reactions, and they must not be blocked so that the catalytic 

sites will be accessible to reactants. 

 

2.6  Sulphated Zirconia 

Zirconium (IV) oxide is a well known oxide with an extensive number of applications 

in industrial ceramics, and particularly in the catalysis area. Zirconia can exhibit 

difference phase transformation from one structure to another depending on temperature 

and pressure (Srinivasan et al., 1995). Addition of sulphate anions to zirconia plays an 

important role in stabilizing its structure by retarding the formation of oxo bonds 

between zirconium atoms and oxygen atoms. This prevents sintering at high 

temperature, and hence, prevents rapid phase transformation. Sulphated zirconia is 

zirconium oxide impregnated with sulphate from sulphuric acid or any sulphate source 

in order to enhance its acidity and thus its reactivity. Holm and Baily (1962) were the 

first to report that, when modified in the presence of sulphate groups and platinum 

crystallites, zirconia exhibited superior acidity (Song and Sayari, 1996). However, 
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detailed studies were not conducted until about twenty years later when it was 

discovered that sulphated zirconia (SZ) catalysts possessed acid sites that were stronger 

than those in zeolites as well as being stronger than 100% sulphuric acid.  As a result 

they have frequently been defined as solid super-acids. Hino et al. (1979) found that 

sulphated zirconia can be an active solid acid catalyst for organic reactions at 

temperatures as low as room temperature. According to these authors, if properly treated 

with sulphuric acid or ammonium sulphate, sulphated zirconia exhibits an acidity of H0 

=16, which is 10
4 
greater than that of 100% sulphuric acid by Hammet’s indicator. 

However it is also reported to have a relatively small surface area, which tends to limit 

its application.  

 

Efforts are being made to improve its catalytic and structural properties, one of which 

involves using it in its modified, sulphated form and preparation method. The presence 

of sulphates increases the thermal stability, as well as the active phase, of zirconia 

(Katada et al., 2000; Davis et al., 1994). Parvulescu et al. (1999) reported a direct 

correlation between sulphate loading and the chemical properties of sulphated zirconia 

catalyst. They also argued that strong acidity can be generated if the support is 

amorphous rather than crystalline. Parvulescu et al. (1999) and his group also identified 

that the pH and ammonia concentration under which its precursors are hydrolyzed 

determine the textural properties of the sulphated zirconia. This is in line with the 

findings of Davis et al. (1994), amongst other authors, who investigated and reported 

that the catalytic properties of sulphated zirconia are a strong function of its preparation 

method. Though sulphated zirconia was first reported by Hino et al. (1979) for 

isomerisation of n-butane at room temperature, it has been shown to be active in several 

other reactions including hydrocracking, alkylation, and isomerisation (Song and 

Sayari, 1996). It is also a reactive catalyst for long-chain hydrocarbons under mild 

conditions where other solid acid catalysts like zeolite will not be active (Permsubscul 

et al., 2007; Charusiri and Vitidsant, 2005; Reddy et al., 2005; Katada et al., 2000; 

Davis et al., 1994). Since its discovery as a strong solid acid catalyst, sulphated zirconia 

and its modified forms have found wide application in cracking (Dias et al., 2007; Sun 

et al., 2004; Zhou et al., 2003). It is known to possess the highest acidity amongst all 

known solid super-acids, though not all authors agree on its super acidic properties. 

Some claim that it is a Brønsted acid (Permsubscul et al., 2007; Parvulescu et al., 1999), 

while others claim it is a Lewis acid (Morterra et al., 1993a; Yamaguchi et al., 1987). 

Interestingly, Lunsford et al. (1994) and Waqif et al. (1992) reported evidence of the 
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existence of both Lewis and Brønsted acid sites on the surface of their prepared 

sulphated zirconia. Most recent studies agreed on the presence of Lewis as well as 

Brønsted acidity, especially for samples with high sulphate loading (Song and Sayari, 

1996; Chen et al., 1993; Nascimento et al., 1993).  

 

2.6.1 Acid sites on sulphated zirconia catalyst 

Series of models have been postulated in order to resolve the controversy surrounding 

how sulphation enhances the surface acidity and the nature of the active sites. The first 

model of sulphated zirconia was proposed  by Yamaguchi et al. (1986), where they 

claimed that only Lewis sites existed on the surface of the catalyst. Clearfield et al. 

(1994) proposed a dual Brønsted and Lewis model. Their model suggested that the 

uncalcined sulphated zirconia contains protons as bisulphate and a hydroxyl groups 

bridging the two zirconium ions. According to them, during calcination the water lost 

could result into two species (I and II), as shown in Figure 2.12. The Brønsted acid sites 

are formed as a result of the reaction of two adjacent hydroxyl groups. In both cases 

Lewis acid sites are formed as indicated by the asterisks. However in model I, the 

bisulphate remains intact.  
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Figure 2.12: Postulated Structures of Acid Sites in Sulphated Zirconia (Clearfield et al., 

1994) 
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Their assumption of Brønsted sites was based on the displacement of the bridge 

hydroxyl groups of hydrated zirconia as indicated by the circles.  The Lewis acid sites 

are formed due to the reaction of the bisulphate ions with an adjacent hydroxyl group. 

These bisulphate groups act as highly acidic Brønsted sites since the neighbouring 

Lewis acid sites tend to withdraw electrons from the bisulphate group, thereby 

weakening the SO-H bond. The authors reported that the combination of the bisulphate 

with the adjacent Lewis acid sites is responsible for the strong acidity of sulphated 

zirconia. Many other models have been proposed including tridentate and disulphate 

(S207). A slightly different model was proposed by Babou et al. (1995). They suggested 

that the protons of the sulphuric acid are trapped onto the surface of the zirconium 

hydroxide to form an ionic surface. The SO4
2-

 ions are then adsorbed on the positively 

charged surfaces. According to their report, during drying at temperatures below 200°C 

the first water molecule is loss and at temperatures further than 200°C the second water 

molecule is eliminated with formation of a chemisorbed SO3 group, see Figure 2.13. 
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Figure 2.13:  Model of Sulphated Zirconia Proposed by Babou et al. (1995) 
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However, Clearfield et al. (1994) models have gone a long way to explain the 

apparently contradictory results in the literature. For instance, concerning the nature of 

the acid sites, model I accounts for the presence of both Brønsted and Lewis acid sites. 

The location of the hydroxyl groups has also been an area of interest. Various models 

have the hydroxyl groups as part of the sulphate structure as shown in the  Clearfield et 

al.(1994) model (shown earlier in Figure 2.12). Ward and Ko (1994) on the other hand 

attached the hydroxyl groups to the zirconia, placing them adjacent to the sulphate 

groups as shown in see Figure 2.14.  
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Figure 2.14:  Model of Sulphated Zirconia Proposed by Ward and Ko (1994) 

 

It therefore becomes clear that Brønsted and Lewis acid sites must both be present on 

sulphated zirconia catalyst in order to be regarded as a catalyst with super-acidity 

properties, as proposed earlier in a similar model by Arata and Hino (1990). 

 

The type of acid site and other catalytic properties however, depend on the preparation 

method and activation procedure (Sun et al., 2005; Corma and Garcia, 1997; Song and 

Sayari, 1996; Morterra et al., 1993b). Therefore, a number of methods have been 

investigated for the preparation of SZ in terms of precursor type, supports, precipitating 

agents, type of sulphating agent, method of impregnation, and calcination temperature. 

Nevertheless, there is still no consensus on the correlation of SZ activity either with its 

sulphate nature and content, or its textural and structural properties. Therefore many 

studies have centred on the structural and catalytic properties of sulphated zirconia, as 

well as attempting to further improve its catalytic activity and stability.  

 

2.6.2 Conventional sulphated zirconia 

The preparation of sulphated zirconia has received considerable attention. Even though 

it has been extensively studied, the search continues for newer preparation methods that 

will further enhance its characteristics to achieve greater activity and selectivity. 
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Sulphated zirconia catalysts have typically been synthesized by inorganic wet chemistry 

techniques, such as precipitation, co-precipitation, sol-gel processes, hydrothermal 

synthesis or impregnation. The multiple steps involved in precipitation and co-

precipitation methods pose the possibility of scarce reproducibility of the textural and, 

consequently, of the catalytic properties of the synthesized sulphated catalyst (Melada et 

al., 2004). In the case of sol–gel processes several parameters intervene in imposing the 

features of the catalyst, both concerning the ‘‘chemical’’ composition of the reacting 

mixture and also the temperature and time length of the hydrolysis-condensation steps 

involved (Melada et al., 2004). Wet impregnation a two-step procedure before 

calcination is the most common method, perhaps due to its simplicity. However, the 

catalyst support must meet certain criteria, such as tolerance to synthesis and reaction 

solvents, high surface area and good catalytic properties. Yadav and Nair (1999b) 

reported various different procedures that have been used to synthesize sulphated 

zirconia, as shown in Table 2.4. For example, Arata et al. (1990), Nascimiento et al. 

(1993) and Davis et al. (1994) reported preparation method, activation temperature, 

sulphate loading, and the moisture content of the catalyst as important factors in 

determining the activity of sulphated zirconia catalysts.  

 

Table 2.4:  Different conventional procedures for the preparation of SZ (Yadav and 

Nair, 1999b) 

Starting material Precipitating 

agent 

Sulphating agent Calcination 

temperature 

(°C) 

Nature of 

phases
a
 

Surface 

area 

(m
2
/g)  

ZrOCl2 · 

8H2O/ZrO(NO3)2 

Liq. NH3 H2SO4/(NH4)2SO4 350 M A - 

   650 M T - 

 Urea H2SO4/(NH4)2SO4 850 M T +M - 

ZrCl4 Liq. NH3 H2SO4/(NH4)2SO4 200 A A 241 

   400 M A 

+C 

115 

  SO2, SO3, CS2 600 M 

+C 

A +C 19.6 

ZrOCl2 · 8H2O Liq. NH3 H2SO4 650 T  34 

  A: amorphous; M: monoclinic; C: cubic; T: tetragonal. 

 

 

For instance, at a calcination temperature of 500-650
o
C in air or oxygen, Tanabe (1994) 

reported a crystallographic phase change from amorphous to tetragonal. The active 
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crystalline phase of conventional sulphated zirconia was reported to be the tetragonal 

phase. It forms when the catalyst was calcined between 500°C and 700°C, while the 

monoclinic phase appears at 800
o
C (Song and Sayari, 1996).  

 

2.6.3 Modified sulphated zirconia 

Conventional sulphated zirconia catalyst is micro-porous with a relatively small surface 

area, Lewis acid sites, and prone to sulphate leaching. Hence, various modifications 

have been investigated to improve these properties. A variety of other novel methods of 

preparation have also been reported. For instance, Yadav and Murkute (2004) used 

chlorosulphonic acid dissolved in an organic solvent as a precursor, rather than the 

conventional sulphuric acid. This resulted in sulphated zirconia with a higher sulphate 

loading and increased resistance to leaching. It was found to exhibit higher catalytic 

activity for the esterification of p-tert-butylcyclohexanol with acetic acid than the 

conventionally prepared sulphated zirconia. Structural properties, such as meso-pores 

and morphology, were also enhanced when Yi et al. (2005) used zirconium nitrate and 

ammonium sulphate in an alcohol medium at a 120
o
C in a one-step method. The 

resulting catalyst was tested and found to be much more active in the isomerisation of n-

butane.  

 

The properties of catalysts have often been improved by the addition of other metals. 

Zhu et al. (2004) demonstrated this by modifying sulphated zirconia with silica in sol–

gel preparation in the presence of a cross-linking agent, triethoxysilane. The catalyst 

was dried at room temperature for two days, heated at 50°C for 5h, and then to 550°C at 

a rate of 10°C/h,  prior to calcination at 550°C for 3h. The modified catalyst exhibited 

superior catalytic activity compared to zeolites Y, β, and ZSM-5 in the alkylation of 

isobutane with 1-butene. Mesoporous sulphated zirconia with 2.0 to 4.0nm pores was 

prepared by McIntosh and Kydd (2000)  using amine templates (neutral templating 

method). The neutral templating method, involves the use of long-chain primary alkyl 

amines as the template. The approach was based on hydrogen bonding and self-

assembly between the neutral primary amine micelles and neutral inorganic pre-cursors. 

The template could be removed by ethanol extraction, due to the weaker interactions 

between it and the inorganic framework. They demonstrated that material with larger 

pores was significantly more active in the alkylation reaction of p-xylene with 

cyclohexene.   Silica has been found to be a good support for sulphated zirconia.  Chen 

et al. (2007) synthesized sulphated zirconia on silica SBA-15, and its catalytic 
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performance in the esterification of long-chain lauric and palmitic free fatty acids was 

investigated. Their findings on the effect of preparation on conversion agreed with those 

of Hino et al. (2006). In another report, Akkari et al. (2008) modified sulphated zirconia 

by grafting silica onto the surface using the aerogel technique, in order to examine the 

influence of the preparation parameters on the physicochemical properties of the 

catalysts in the isomerisation reaction of n-butane. A recent review by Arumugam et al. 

(2009) reported different levels of activity of sulphated zirconia and its modified forms 

depending on the method of  preparations. In general, a significant challenge for studies 

of the catalytic cracking of renewable feedstocks is the design of solid acid catalysts to 

selectively alter the functionality at specific molecular sites. This would make the 

manufacture of a wide variety of products possible, ranging from slightly modified to 

fully deoxygenated chemicals and fuels based on existing feedstocks and infrastructure. 

 

2.7 Characterization of Catalyst 

Numerous techniques are used for characterization. In this research they included: X-ray 

diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption 

and desorption for surface area (BET) and Pyridine- DRIFTS (Diffuse Reflectance 

lnfrared Fourier Transform Spectroscopy) for the measurements of the acidity, X-ray 

photoelectron spectroscopy (XPS) and EDX (Energy Dispersive X-ray).    

 

2.7.1 X-ray Diffraction (XRDP) 

X-ray diffraction is a characterization technique used to obtain the X-ray diffraction 

pattern of a catalyst. The technique is based on the fact that each compound in the 

catalyst produces a different diffractogram pattern. When a beam of x-rays comes into 

contact with a solid they are scattered by the electron clouds. A crystal lattice is usually 

made up of a regular pattern of atoms and planes which are separated by the same 

distance. When x-rays are reflected from successive planes of atoms, interference can 

occur which may be either constructive or destructive. When the interference is 

constructive a diffracted beam is produced, as shown in Figure 2.15. 

 

 

 

 

.  
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Figure 2.15: Scattering of X-Rays from a Parallel Set of Planes. 
 

 

In XRPD a powdered sample rather than a single crystal is examined. A powdered 

sample contains an enormous number of small crystallites which will randomly adopt 

the whole range of possible orientations. Hence, when an X-ray beam strikes a 

powdered sample, it is diffracted in all directions (according to Bragg equation) 

resulting in diffraction cones. Each of these cones is a set of closely spaced dots, and 

each dot corresponds to the diffraction from a single crystallite within the sample. The 

catalyst phases can usually be determined by comparing the intensity of a number of 

particular peaks to the intensity of the same peaks obtained from standard samples or 

simulated XRD. The overall diffraction pattern is usually a plot of the intensity of 

reflection versus angle of diffraction, 2θ, which satisfies the Bragg equation, Equation 

2.5, and is characteristic of a particular crystalline material. 

 

          

 

                                                      

                                  Equation 2.5 

 

 

where: 

 n is an integer number, i. e. the order of diffraction 

 λ is the wavelength of the beam, 

 d is the interplanar spacing and  

 θ is the diffraction angle  

 

θ 

C A 

θ 

d

k

l 

B 

   

 

 

 

d hkl 



 

 

50 

 

When the x-rays interact with the planes of atoms in the three-dimensional lattice, 

diffraction occurs from parallel sets of equally spaced planes.  Each set of the planes is 

described by the indices h, k, and l.  The spacing for the sets of planes (d) differ so that 

each set gives rise to a reflection at a characteristic angle theta (θ) according to the 

Bragg equation.  The overall diffraction pattern is determined by a plot of intensity of 

reflection against 2θ, and is characteristic of a particular crystalline material. 

 

2.7.2 Hammett indicators - titration methods   

The characterisation of the surface acidity of a catalyst involves measuring the acid site 

concentration, strength, and accessibility. For homogeneous catalysts this is relatively 

straightforward, and a simple pH scale can be used. However, this is not the case for 

solid acid catalysts, as the acid sites are located on the surface. Furthermore the acid 

strength is not simply a function of proton concentration. The pH scale is based on the 

assumption that the strength of individual H3O
+
 ions is fixed, as expressed in                                      

Equation 2.6: 

 

pH = log [H3O
+
]/[H

+
]  

or 

pH = -log aH+ 

                                                   

                                     Equation 2.6 

 

 

where:  

aH+ is the activity of H
+
.  

 

The main limitation of the pH method is that for highly concentrated aqueous acids, the 

possibility that the acid is fully dissociated and no longer exists in aqueous solution 

must be considered. There are various methods available for determining the acidity of a 

catalyst. 

 

The Hammett indicator scale expresses the acidity of concentrated acids or non-aqueous 

systems. The Hammett acidity function (Ho) is an extension of the pH scale and is 

related to the degree of transformation of a weakly basic indicator B to its conjugate 

acid form BH
+
, which defines the Brønsted acid strength. The equilibrium for the 

indicator is given below Equation 2.7: 
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BH+ H+  +    

B
 

                                                   

                                     Equation 2.7 

 

The equilibrium constant KBH+ is given as shown Equation 2.8 

               
    

  
                   

                                                 

                                     Equation 2.8 

 

where: 

 CB is the concentration of the indicator conjugate, (mmol/g) 

CBH+ is the concentration of the conjugate acid of the indicator (mmol/g) 

pKBH+ is a measure of the strength of the conjugate acid, BH
+
, of base B. It is a 

measure of the readiness with which BH
+
 will lose a proton. Therefore the 

smaller the numerical value, the stronger the acidity of BH
+
 and the weaker B is 

as a base. 

 

This method has certain limitations, and one difficulty is in visually determining the 

colour change, especially with dark catalysts. Water can also be a contaminant, as it 

competes with the indicator for the acid sites.  It is also not suitable for solid catalysts 

with very small pores where the indicator molecules may be unable to penetrate. 

Furthermore, the method gives only the sum of Brønsted and Lewis acid sites and not 

separate values for each.  

 

2.7.3 Vibration spectroscopy methods 

Raman and Infrared (IR) spectroscopy have often been used to investigate the acidity of 

solid acids (Katada et al., 1997). IR is a powerful technique, especially for revealing the 

numbers of hydroxyl groups present either directly or through adsorbed probe 

molecules. The frequencies of molecular vibrations lie within the infrared region of the 

spectrum (4000-400cm
-1

).  The infrared  spectra  of  solids are  usually  complex  with  

a  large  number  of  peaks,  each  corresponding to  a  molecular  vibration.  However,  

only  vibrations  giving  rise  to  a change  in  dipole  moment  are  observed in  infrared  

spectroscopy . Therefore it is possible to identify species by their infrared spectra.   

 

Furthermore, the acid type on heterogeneous catalyst is best determined by infrared 

spectroscopy of adsorbed pyridine on the catalyst. This is because the interactions of 

pyridine can be sensitively detected by monitoring the ring vibration modes. This is via 
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the nitrogen lone-pair electrons with aprotic (Lewis) and protonic (Brønsted) acid sites. 

Adeeva et al. (1995) proposed a complex surface on which Brønsted and Lewis acid 

sites are in close proximity, as shown below in Figure 2.16:  
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Figure 2.16:  Pyridine on Sulphated Zirconia indicating Brønsted and Lewis Sites 

(Adeeva et al., 1995) 
 

 

In principle, the concentration of hydroxyl groups is equivalent to the concentration of 

Brønsted acid sites and can be determined from the corresponding IR bands, where the 

frequency of -OH bonds is inversely proportional to acid strength. IR bands for 

adsorbed pyridine are in the region 1400–1700cm
-1

. Data from this region provide 

valuable information about the nature of the hydroxyl group. An important feature of IR 

spectroscopy is that it provides distinct bands for pyridine at Lewis acid and Brønsted 

acid sites. An estimate of the acid strength distribution profile is possible if IR is 

combined with temperature programmed desorption (TPD). Pyridine and ammonia have 

been widely used as probe molecules, but pyridine is preferred because it is weaker than 

ammonia (pKb of pyridine is ~9 compared to ~5 for ammonia) so it is less likely to react 

with weak acid on the catalyst (Rosenberg and Anderson, 2002). However, there must 

not be an excessive amount of water on the catalyst, because this would pose problems 

with the infrared spectrum in this region. Therefore the catalysts to be examined must 

be thoroughly dried and maintained in a dry state throughout the process of spectrum 

acquisition.  

The vibration of the hydroxyl group is associated with Brønsted acidity on the catalyst, 

and the calculation of the number of Brønsted and/or Lewis acid sites on the catalyst is 

usually determined using    Equation 2.9.         
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   Equation 2.9 

 

where:  

Nt is the total number of micromoles of pyridine per gram of the sample 

adsorbed, (mmol/g) 

B and L are the integrated absorbance of the IR bands that are due to pyridine 

adsorbed at Brønsted and Lewis sites respectively 

A is the cross sectional area of the pressed disc 

m is the mass of the pressed disc 

εb and  εl are the molar absorption coefficients for pyridine at Brønsted and 

Lewis sites respectively.  

 

 

2.7.4 X-ray Photoelectron Spectroscopy (XPS) 

The XPS technique is based on the properties of photoelectrons emitted from a sample 

on irradiation with X-rays as shown in Figure 2.17. The principle involves the precise 

measurement of the kinetic energy of these emitted electrons which is characteristic of 

both the electron energy level from which it originated and the energy of the incident 

radiation. Photoelectrons can be emitted from valence electrons (those which take part 

in chemical bonding) and from core energy levels (those not involved in chemical 

bonding). The  basic mechanism  behind  an  XPS  instrument  is  the use of photons  of 

a  specific  energy to  excite   the  electronic  states  of atoms  below the surface of the 

sample.  
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Figure 2.17:  Schematic Diagram of an X-ray Photoelectron Spectrometer with 

Monochromator 

 

Those photoelectrons that are emitted from core levels have kinetic energies which are 

characteristic of the atoms from which they originated. However, small changes do 

occur in the detected binding energies (chemical shifts), and these changes depend on 

the chemical environment of these atoms. Valuable information concerning the 

chemical characteristics of a sample under investigation can be gathered from the 

chemical shift data. XPS is used in this research to study the effect of sulphate species 

on the acidity of the catalyst by measuring the kinetic energy of photoelectrons emitted 

from the surface atoms after the X-ray irradiation of the uppermost atomic layers of the 

catalyst. A typical XP spectrometer is shown in Figure 2.18 
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Figure 2.18:  Kratos Analytical X-ray Photoelectron Spectrometer (courtesy NEXUS, 

Newcastle University UK)  
 

 

XPS can also be used to characterize surface acid sites, particularly for determining the 

acidity of solid acid catalysts that are opaque to IR irradiation. The only problem with 

using this technique for acid site determination is the requirement of a vacuum 

therefore, the technique is best for the determination of sulphate species.  

 

2.7.5 Nitrogen adsorption and adsorption isotherms 

The quantity of gas taken up by a solid sample is proportional to the mass (m) of the 

sample, the temperature (T), the pressure (p) of the gas as well as the nature of both the 

solid and the gas. The adsorption  isotherm is a graph reflecting the amount of  adsorbed  

gas against  pressure  or  relative  pressure  at  constant  temperature. It is  usually  

expressed  as  the  amount  of  adsorbate  per  gram  (or volume)  of  adsorbent  to  each  

equilibrium  pressure  of  the  gas  at  a  constant  temperature. Adsorption isotherms are 

used to measure the specific surface area of a solid, the size of pores in a porous solid 

and their distribution if not uniformly distributed. Liquid nitrogen is most often used 

rather than other inert gases, so the technique is usually known as nitrogen adsorption. 

The general principle involves increasing the pressure of nitrogen at equilibrium with 

the adsorbent from zero to its saturated vapour pressure, which for N2 is conducted at -

196 °C and a saturated vapour pressure of 1.0 atm. The concept involved is an extension 

of Langmuir theory, it is the simplest, most commonly used model for interpreting 
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adsorption isotherms, and is based on monolayer molecular adsorption with three 

hypotheses: 

a) Gas adsorption on the solid surface cannot proceed beyond monolayer coverage, 

and only one adsorbate molecule occupies each surface site. 

b) The energy for adsorption and the ability of the molecule to adsorb is independent 

of the number of the surrounding sites that are occupied, and 

c) The surface is uniform and adsorption sites are equivalent 

 

An adsorption isotherm is constructed by plotting the amount of nitrogen adsorbed 

against relative pressure, (p/po), where po is the saturated vapour pressure. There are six 

main types of isotherm known for adsorption systems, as shown in Figure 2.19. Each 

adsorption system has its own characteristic adsorption isotherm, most of which can be 

classified into one of six categories.  

1. Type I isotherms the amount adsorbed increases steadily with pressure until it 

reaches a plateau at θ = 1. At this point it is believed that all sites are populated 

by the adsorbate, which is true for micro-porous solids.  

2. Type II isotherms the monolayer plateau region is reached at point B. However 

there is a further increase in the amount adsorbed and many layers are ultimately 

adsorbed as p/po = 1 is approached. This type of isotherm is associated mainly 

with non-porous solids.  

3. Type III isotherms are characteristic of weak gas-solid interactions usually 

associated with multilayer formation.  The isotherm lies convex to the x-axis 

(p/po) and does not exhibit a point B. An example of this type is the adsorption 

of nitrogen on polyethylene.  

4. A type IV isotherm follows the same shape as type II isotherm in the low-

pressure region. At a certain point it begins to deviate upwards, until at higher 

pressures the slope begins to decrease. As the saturation vapour pressure is 

approached, the amount adsorbed shows little variation. The characteristic 

feature of type IV isotherm is its hysteresis loop, which is associated with 

evaporation and condensation in meso-porous material as commonly found in 

catalysts. The shape of the hysteresis curve often indicates the size and type of 

pore in the catalyst.  

5. The type V isotherm is uncommon and has the same shape as a Type III isotherm 

in that the adsorbent-adsorbate interaction is weak. 
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6. The type VI isotherms represent a stepwise multilayer adsorption on uniform 

non-porous surfaces, and are indicative of adsorption on homogenous and non-

porous surfaces such as graphitised carbon black at liquid nitrogen temperature.  

 

 

 

Figure 2.19:  Six Main Types of Isotherm Classification according to the IUPAC. 

 

 

 

 

 

 

 

Calculation of surface area based on the Langmuir equation assumes adsorption is 

limited to one monolayer of adsorbate.  However, in some cases there is need to account 

for multilayer of adsorbate; as seen in Type II and Type IV isotherms, where instead of 

the isotherm levelling off to a saturated value at high pressures, it rises beyond it. The 

most widely used isotherm dealing with multilayer and determination of surface areas 

of porous materials is the BET adsorption theory. In addition to the Langmuir major 

assumptions, BET model assumed the following: 

θ = Fraction of surface sites occupied by adsorbate 

p = Pressure 

po = Standard pressure (equal to saturated vapour 

pressure of the adsorbate) 

              Adsorption branch 

              Desorption branch 
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1. Unrestricted multilayer formation may take place. 

2. Only the uppermost layers of molecules in the multilayer system are in dynamic 

equilibrium with the vapour. 

3. Enthalpies of adsorption of the second and higher layers are equal to the 

enthalpy of condensation. 

4. Desorption can only occur from the uppermost exposed layer 

The interpretation of adsorption isotherms is usually based on two main theories, 

Langmuir adsorption theory (Equation 2.10, below) and Brunauer-Emmett-Teller (BET) 

adsorption theory (Equation 2.11): 

 

             
   

 
   

  

  
   

 

   
                                            

 

              Equation 2.10 

 

where: 

 

 A plot of Pa/V against Pa gives a straight line of slope 1/Vm and an intercept of 

1/KVm 

 

 

 

        
   

 

    
   

     

   
   

 

  
 

 

                       Equation 2.11 

 

 

where, 

P and Po are the equilibrium and saturation pressure of adsorbates at the temperature of 

adsorption 

V is the volume adsorbed at P (cm
3
) 

Vm is the volume adsorbed at monolayer coverage (cm
3
/g) 

C is the BET constant. 

A plot of P/V(Po-P) against P/Po gives a gradient (C-1)/(VmC), and an intercept 

1/(VmC). From these, Vm can be calculated. The BET isotherm is widely used to 

determine surface area, at relative pressure of p/po = 0.05-0.30 since it does not work at 

all pressures. 
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2.7.6 Environmental scanning electron microscope (ESEM) and Energy Dispersive X-

ray (EDX) 

ESEM is an acronym for Environmental Scanning Electron Microscope. In this 

technique a gaseous environment can be used, whereas other conventional scanning 

electron microscope techniques operate in vacuums. Electrically non-conductive 

specimens do not require preparation techniques (such as the deposition of a thin gold 

or carbon coating or other treatments) to render the surface conductive, as in SEM. A 

prototype is shown in Figure 2.20, and its principle of operation is to employ a scanning 

electron beam, where electromagnetic lenses are used in focusing and directing beams 

on the specimen surface in the same way as in the conventional scanning electron 

microscope.  

 

  
 

Figure 2.20:  A Prototype and Schematic of an ESEM (Stokes, 2008) 

 

 

The ESEM has specialized electron detectors and differential pumping systems that 

allow the transfer of the electron beam from high vacuum in the gun area to the high 

pressures attainable in its specimen chamber. It is suitable for imaging specimens in 

their natural state. The beam electrons interact with the specimen surface layer to 

produce various signals which give information about the specimen that is collected 

with appropriate detectors. The beam electrons interact with the specimen surface layer 

http://upload.wikimedia.org/wikipedia/commons/d/d8/ESEMsystem.jpg


 

 

60 

 

to produce various signals which give information about the specimen that is collected 

with appropriate detectors.  

 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used in 

conjunction with ESEM, but it is not a surface science technique, but is rather used for 

the elemental analysis of the chemical composition of the sample. It operates on the 

interaction of x-ray excitation on the sample. To stimulate the emission of characteristic 

X-rays from a specimen, a high-energy beam of charged particles such as electrons or 

protons is focused on the sample. The incident beam could excite an electron in an inner 

shell, ejecting the electron from the shell and thereby creating an electron hole, which is 

usually filled by an electron from an outer higher-energy shell. The difference in energy 

between the higher-energy shell and the lower shell is released in the form of an X-ray 

photon. The number and energy of the X-rays emitted from the specimen are measured 

by an energy-dispersive spectrometer, allowing the elemental composition of the 

specimen to be determined.  

 

2.8 Liquid Product Characterization 

Various types of equipment and different methods can be used in analysing biodiesel in 

the liquid mixture, but only those relevant to this study are discussed here. These 

include gas chromatography (GC), gas chromatography-mass spectroscopy (GC-MS), 

and titration. The water content was determined by Karl Fischer Titration. 

 

2.8.1 Gas chromatography (GC) 

Gas chromatography is a technique illustrated in Figure 2.21 that is used to separate 

mixtures of gases or liquid. A small micron (~1µl) of the sample is injected through the 

injector port onto the column; where it is vaporized and allowed to move slowly 

through the column by the flow of inert gas. The column itself can be a packed or 

capillary type which contains a liquid stationary phase which is adsorbed onto the 

surface of an inert solid. The carrier gas, usually N2, He, or CO2, must be chemically 

inert.  
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Figure 2.21: Schematic Diagram of Gas Chromatography (extracted from Prichard and 

Stuart (2003) 
 

 

There are several types of detectors, but the flame ionization detector is used for most 

organic samples. The effluent from the column is ignited after having been mixed with 

hydrogen and air to produce ions and electrons that are capable of conducting electricity 

through the flame. The resulting current is measured by the recorder. The components 

of the mixture are recorded as a sequence of peaks as they leave the column. Each 

component reaches the detector at a characteristic time, known as its “retention time”. 

The area under the peaks is proportional to the amount of each component in the 

sample. 

 

2.8.2 Gas chromatography-mass spectrometry (GC-MS) 

This is a combination of two techniques to form a single method used for analysing 

mixtures of chemicals, as shown in Figure 2.22. The gas chromatography separates the 

components in the mixture using the principle explained in section 2.8.1 while the mass 

spectroscopy characterizes each of the components individually. As the individual 

compounds elute from the GC column, they enter the electron ionization detector in the 

mass spectroscopy, from where they are bombarded with a stream of electrons causing 

them to break apart into fragments.  
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Figure 2.22:  Schematic Diagram of a GC-MS (extracted from De Hoffmann and 

Stroobant (2007) 

 

The fragments are measured in terms of their mass–to-charge ratio (m/z) but most 

fragments have a charge of 1
+
, and therefore m/z usually represents the molecular 

weight of the fragment. 

 

2.8.3 Karl Fischer titration 

Karl Fischer titration is an analytical method widely used to determine trace amounts of 

water content in substances.  Its principle is based on the quantitative reaction of water 

with iodine and sulphur dioxide in the presence of a lower alcohol such as methanol and 

an organic base such as pyridine. The popularity of the Karl Fischer titration lies in its 

several practical advantages over other methods of moisture determination. These 

include: 

 High accuracy and precision 

 Selectivity for water 

 Small quantity of sample required 

 Ease of preparation of sample  

 Short duration of analysis 

 It can measure a nearly unlimited range of levels of water (from 1ppm to 100%)  

 It is suitable for the analysis of solids, liquids and gases  

 It operates independently of the presence of other volatile compounds in the sample 
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The Karl Fischer titration cell consists of an anode solution of alcohol, sulphur dioxide 

and iodine, and a cathode immersed in the solution. However, the anode and cathode are 

separated by an ion-permeable membrane. Alcohols such as diethylene glycol 

monoethyl ether can also be used in place of methanol. The two determination methods 

are volumetric titration and coulometric titration. In the latter, the sample to be analysed 

is added to the pyridine-free Karl Fischer reagent, whose principal components are 

iodine ions and sulphur dioxide. Its fundamental principle is based on the Bunsen 

reaction between iodine and sulphur dioxide in an aqueous medium shown below in 

Equation 2.12:  

 

I
2
+ SO

2
+2H

2
O → 2HI+ H

2
SO

4
        Equation 2.12 

 

The iodine is generated electrolytically at the anode and it reacts with water in the 

sample. The amount of iodine generated is in direct proportion to the quantity of 

electricity, according to Faraday's Law.  A mole of iodine is said to react quantitatively 

with one mole of water. Based on this principle, the water content in the sample can be 

determined directly from the quantity of electricity required for electrolysis. Volumetric 

titration is based on the same principles, except that the anode solution is used as the 

titrant solution. In this case the iodine is added mechanically to a solvent by the 

titrator’s burette during titration. The volumetric titrator usually performs three key 

functions: 

 1.)  Dispensing the KF titrating reagent which contains iodine into the cell using the 

burette;  

2.)  Detecting the endpoint of the titration with the aid of the double platinum pin 

indicator electrode  

3.)  Calculating the end result using the on-board microprocessor based on the volume 

of KF reagent dispensed. 

 

The amount of water is quantified on the basis of the volume of Karl Fischer reagent 

consumed during the titration. For the method to be effective, the water has to be 

accessible and easily brought into methanol solution, the Karl Fischer reagent. A major 

disadvantage is in the case of solids where the water is released slowly or with difficulty 

into the solution. In either volumetric or coulometric titration, the amount of sample 



 

 

64 

 

used depends on the anticipated water content and the degree of accuracy that is desired. 

Table 2.5 shows the relationship between water content and sample size. 

 

Table 2.5:  Relationship between water content and proper sample size (Poynter and 

Barrlos, 1994) 

Sample water content 

(%) 

Volumetric sample size (g) Coulometric sample size 

(g) 

100 0.02 to 0.05 Not recommended 

50 0.05 to 0.25 0.01 

10 (100,000 PPM) 0.25 to 0.50 0.01 to 0.05 

5 (50,000 PPM) 0.50 to 2.50 0.05 to 0.10 

1 (10,000 PPM) 2.50 to 5.00 0.10 to 0.50 

0.5 (5,000 PPM) 5.00 to 7.25 0.20 to 1.00 

0.1 (1,000 PPM) 7.25 to 10.00 1.00 to 2.00 

0.01 (100PPM) 10.00 to 15.00 2.00 to 5.00 

0.001 (10 PPM) 15.00 to 20.00 5.00 to 10.00 

0.0001 (1 PPM) Not recommended 10.00 or more 

 

 

2.9 Summary 

Heterogeneous catalysis can play a major role in the catalytic conversion of 

triglycerides into biodiesel. The catalytic cracking of triglycerides using solid acids is 

not yet well-established in industry, since it is much more difficult to find a solid acid 

that is suitably active and chemically and thermally stable. The advantages of using 

heterogeneous acid catalysts compared to their homogeneous counterparts cannot be 

over-emphasized. Although many studies of different solid acid catalysts have been 

carried out, only a small number have presented findings relevant to their use in the 

catalytic cracking of triglycerides for fatty acid methyl esters (FAMEs).  

 

Sulphated zirconia has been found to be thermally stable, but exhibits a high degree of 

leaching and reduced surface area if prepared by conventional methods. However, a 

number of studies have proven that its catalytic properties can be enhanced by methods 

of preparation. With the proper design of parameters such as type of precursor, pH, 

calcination temperature, amount of sulphating agent and preparation route, an active 

sulphated zirconia catalyst with both Lewis and Brønsted acid sites can be synthesised 

for use in catalytic cracking at mild reaction temperatures. 



 

 

65 

 

 

Catalytic cracking using a sulphated zirconia catalyst may conveniently improve the 

production of biodiesel to meet the 2020 UK RTFO targets, since the process is similar 

to petro-cracking and can be carried out in existing refineries. 
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Chapter 3: Materials and Methods 

 

 

3 Materials and Methods 

3.1 Synthesis of Sulphated Zirconia Catalysts (SZ) 

The focus of this research is to develop a chemically, thermally stable and most 

probably commercially viable catalyst for biodiesel production by triglycerides 

cracking. The first step to achieving this goal was to identify different heterogeneous 

acid candidates from literature and sulphated zirconia was found to be a super- acid 

catalyst suitable for organic reactions, whose catalytic activity is a function of its 

preparation method.  Different methods of catalysts preparation were employed but 

same procedure was followed for testing their activities. Using two main different 

preparation methods; the conventional wet precipitation method and non-aqueous 

method, four different sulphated zirconias were synthesized, by varying the molar ratio 

of sulphating agent. The catalytic activities of the catalysts were tested in a 100 ml batch 

reactor using triglycerides. In an attempt to further improve the surface area and 

activity, the catalysts were modified by doping with dealuminated kaolin (i.e. 

metakolin). The synthesized catalysts can be grouped into three categories depending on 

preparation and molar ratio of reactants used. The characterization of the catalysts from 

each of these methods will be discussed. 

 

3.1.1 Non-aqueous Method of Sulphated Zirconia Synthesis (SFM) 

This method does not involve the use of any aqueous medium. In preparing the catalyst, 

Zirconium oxychloride (ZrOCl2.8H2O) and ammonium sulphate (NH4)2SO4 were 

carefully weighed to achieve a molar ratio of 1: 6 (Sun et al., (2005) and 1:15 

respectively. The mixture was ground for 20 minutes at room temperature (23°C) and 

left for 18 hours at room temperature before calcinations for 5 h at 600°C.  

 

3.1.2 Conventional Method of Sulphated Zirconia Synthesis (CM) 

The conventional method according to Yadav and Nair (1999a); Zirconium oxychloride 

(ZrOCl2.8H2O) was hydrolysed with 25% ammonium hydroxide at pH 9. The resultant 

gel was stirred for 4 h and filtered. The resultant zirconium hydroxide was thoroughly 

washed with water to remove all chloride salts before drying at 100
o
C for 24 h. 0.5 N 

AgNO3 was used to test for the presence of chloride. The zirconium hydroxide was 
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impregnated with 1 M H2SO4 (15 ml H2SO4 per 1g of Zr(OH)4) under constant stirring 

for 2 h. The solution was filtered and the residue was dried at 100
o
C for 24 h and 

calcined in air at 650
o
C for 3 h. The same procedure was repeated with molar ratio of 1: 

6 of zirconium hydroxide and sulphuric acid respectively.   

 

3.1.3 Modified Sulphated Zirconia with Metakaolin  

Dealumination of kaolin was according to Colina et al., (2002) and Caballero et al., 

(2007). A known weight of uncalcined kaolin was mixed with a standard analytical-

grade 36 N sulphuric acid (H2SO4) solution at a molar ratio of 1: 5. Aliquot of the 

mixture was placed in open quartz crucible, which was heated in a furnace at 500
o
C, 

ramped at 5
o
C/min for one hour. Once the reaction temperature was reached the crucible 

was left in the furnace for 6 h. The resulted material (metakaolin) was doped with 

zirconium oxychloride and sulphated with ammonium sulphate (NH4)2SO4 at a molar 

ratio of 0.5: 1: 6 in the case of non-aqueous synthesis and 0.5: 1: 15 molar ratio for the 

conventional method of preparation.  

 

3.2 Characterization of Sulphated Zirconia Catalysts 

The freshly prepared and spent sulphated zirconia were characterized by X-ray 

diffraction (XRDP) powder patterns, Infrared (IR) spectroscopy, Scanning Electron 

Microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-ray 

(EDX), Fourier Transform Infrared Spectroscopy with pyridine as probe molecule (Py- 

DRIFTS), chloride determination, Thermogravimetric Analysis (TGA) and Brunauer-

Emmett-Teller (BET) nitrogen desorption measurements for the surface areas. 

 

3.2.1 Fourier Transform Infra-Red Spectroscopy (FTIR) 

FTIR measurements were performed in a Varian 800 (Scimitar series) spectrometer to 

determine the functional group of the catalyst. The spectra were produced at a resolution 

of 2 cm
-I 

between 4000cm
-1

 and 400cm
-1

 using a Pike Technologies diamond crystal 

plate ATR. Catalysts samples were finely ground and approximately 2 mg of each was 

transferred to a mechanical disk press assembly and subjected to pressure of 

approximately 10 tons. With this technique, vibrational excitation of bonds as a result of 

interaction between certain wavelength of infrared radiation and molecules of the 

catalysts are observed depending on the functional group of the compound. The types of 
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bond excitation that can occur are stretching (higher energy) and bending (lower 

energy) vibrations.  

 

3.2.2  X- ray diffraction powder studies (XRDP) 

The X- ray Diffraction technique was used to determine the phases and crystallinity of 

the various catalysts synthesized and compared with the XRDP pattern of zirconia of 

the database of lnternational Centre of Diffraction Data (ICDD). The XRDP was 

performed using a Panalytical X’Pert Pro Multipurpose Diffractometer (MPD) fitted 

with an X'Celerator and a secondary monochromator which accelerates the speed of the 

scan. The diffractograms were recorded with a divergent slit of 0.38 mm using Cu Kα 

radiation with a wavelength of λ = 1.54 Ǻ generated at a voltage of 40 kV and 40 mA 

from 2
o
C to 100

o
C. The catalyst samples were prepared for analyses in powder form 

and dispersed on glass slides for continuous scans set to cover a range of 2
o 

to 70
o
. Their 

crystallite sizes were calculated using data from X-ray diffractogram and X’pert data 

viewer software in the Scherrer's formula Equation 3.3.1. The X-ray diffraction powder 

was carried out by Maggi white of Materials and Analytical Unit, Newcastle University.   

 

                      λ
    θ                  Equation 3.3.1 

 
 

where 

       K Scherrer’s constant 

       λ is the wave length of X-ray 

       B is instrument broadening (FWHM) 

       θ is half of the Bragg angle  

 

The most common values for K are 0.94 for FWHM of spherical crystals with cubic 

symmetry and 0.89 for integral breadth of spherical crystals or cubic symmetry 

 

3.2.3 Surface area measurements (BET) 

The catalytic surface areas of the catalysts were obtained from N2 adsorption isotherms 

determined at 77K using the Coulter
TM

 (SA 3100
TM

 series). The samples were 

outgassed under high vacuum for 2 h at 200°C (Akkari et al., 2007) prior to the 

analysis. The dry weight of the sample was used to obtain the final value of the specific 

surface area. In the case of the sulphated zirconia modified with metakaolin, they were 
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degassed at 300
o
C for 24 h. The equipment could not be used to determine the pore 

sizes of the catalysts; however an alternative method adopted, the ImageJ software with 

SEM images. 

 

3.2.4 Scanning electron microscopy and elemental analysis (SEM, EDX) 

The size and morphology of the catalyst were obtained by using environmental 

scanning electron microscope (ESEM Model: XL30) called JEOL 5300 LV fitted with 

Rontec and energy dispersive X-ray detector (EDX). The advantage of the ESEM is that 

it can be operated at both low and high vacuum. Both detectors, (i. e. ESEM and EDX) 

were operated under liquid nitrogen. The SEM was done under high vacuum while the 

qualitative elemental analysis (Energy Dispersive X-ray; EDX) was run at low vacuum 

and a voltage of 25 kV. For good images samples were coated with gold. This scanning 

electron microscopy and energy dispersive X-ray was carried out by Pauline in the 

Materials Analytical Unit, of Newcastle University. 

 

3.2.5 X-ray photoelectron spectroscopy (XPS) 

XPS technique is used to investigate the chemistry of catalysts at the surface. X-ray 

photoelectron spectroscopy experiments are based upon the properties of photoelectrons 

emitted from a sample on irradiation with X-rays.  The XPS spectra were performed 

using CasaXPS 2.3.15 software on Kratos analytical system, Figure 3.1 equipped with a 

monochromator AlKα1, 2 X-ray sources of 1486.6 eV and 0.85 eV widths. The binding 

energies were referenced by setting the CHx peak maximum in the resolved C 1 s 

spectra to 284.6 eV. The samples were loaded into the slab and attached mechanically to 

the specimen mount. These were left in the system for 48 hours under a high vacuum 

(10
-10

 mbar). For the purpose of chemical state identification for quantitative analysis 

and peak de-convolution, processing of the results were on wide and detailed scans. The 

X-ray photoelectron spectroscopy was performed in chemistry department of Cardiff 

University, UK. 
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Figure 3.1:  Kratos Analytical X-ray photoelectron spectrometer (courtesy Chemistry 

Department University of Cardiff, UK)  

  
 

3.2.6 Chloride determination 

The presence of chloride in the non-aqueous catalysts was determined using ion 

chromatography, a Dionex ICS-1000 with an AS40 autosampler and IonPac AS14A 

analytical column. 0.5g of each sample was dissolved in 10 ml of deionised water and 

refrigerated for 24 h before they were filtered using 0.2 micron filters. 5 ml of each 

sample was used for the analysis. The instrument detects the sample via a conductivity 

cell that measures the electrical conductance of the sample ions as they emerge from a 

suppressor thus producing a signal based on specific chemical/physical properties of the 

analyte of interest. The system is based on measuring negatively charged ions (anions) 

in samples. The eluent is 8.0 mM Na2CO3/1.0 m M NaHCO3 solution at a flow rate of 

1ml/min. The concentration of chloride present in the sample was calculated in mg/kg 

using Equation 3.2. 

 

      
   

 
    

                                                                                                                                     

                                                                        

Equation 3.2 

 

 

where 

         A is the amount of ion found in sampl in ppm 

         V is the final volume of sample in ml 

         W is the weight of dry sample used 
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3.2.7 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis is an analytical technique used to determine the volatile 

components of a compound by monitoring the weight loss as a function of either time or 

temperature as the material is heated. The surface sulphate and thermal stability of the 

catalysts were monitored by thermogravimetric (TG) analysis as a function of mass loss 

with respect to temperature. The TGA studies were performed on a Pyris STA 6000 

Model under flowing helium at constant rate of 30 ml/min with temperature ramped 

10
o
C/min in 30–1000

o
C range. The TGA consists of an electronic microbalance and a 

ceramic container suspended with platinum hanged down the centre of the furnace. The 

sample initial mass, temperature and final mass loss were monitored by computerised 

control unit. 

 

3.2.8 Fourier Transform Infrared Spectroscopy with pyridine as probe molecule 

(DRIFTS) 

The acid properties of the catalysts were determined by Pyridine- DRIFTs (diffuse 

reflectance infrared Fourier transform spectroscopy). Pyridine was used instead of 

ammonia because it is a relatively strong base, it is weaker than ammonia; so might not 

react with weak acid on the catalyst; therefore it is better probe. According to 

Rosenberg and Anderson (2002), the use of pyridine as probe gives a narrow width 

band on spectroscopy, thereby giving a good resolution of the vibrational modes to 

distinguish between Brønsted and Lewis acid. Prior to measurement the samples were 

diluted in KBr by 5% dilution. This was done to avoid absorption saturation at low 

wave numbers and the mixed was thoroughly ground together. Each of the mixed 

samples (catalysts and KBr) was divided into two equal halves.  A portion each of the 

mixed samples was exposed to pyridine vapour for 24 hour in a desiccator, after which 

they were outgassed under vacuum of 0.13mPa for 2 hours to remove any unadsorbed 

pyridine. Measurements were carried out using self-supported wafer. Firstly, the spectra 

of the samples without pyridine were recorded, followed by samples that were exposed 

to pyridine. In each case, the sample was referenced against a blank KBr. The X-ray 

photoelectron spectroscopy was performed in chemistry department of Cardiff 

University, UK.  

 

3.3 Catalytic Studies  

The catalysts screening for activity were tested in a thermocatalytic reaction using a 100 

ml batch reactor (Model: 4560) equipped with a magnetic stirrer, auto sampler and an 
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external heating mantle, Figure 3.2. The process conditions were controlled by WinISO 

software. The reactions were performed using known weight (67g) of feed (rapeseed 

oil), different weight percent of catalysts and operating temperature of 270°C and 

conversion monitored against time as indicated in Table 3.1. However the screening of 

the catalysts could not be done at higher temperature for safety reasons as the reactor 

maximum temperature was 320°C. The feed was heated from ambient room 

temperature to 269°C before each injection of the catalysts. Samples were taken from 

the reaction mixture at time interval of 60, 30 and 15 minutes.   

 

 

 
 

 

Figure 3.2:  Catalytic Reactor (HEL automate system) 

 

 

After these the products were subjected to analytical methods to determine Methyl 

esters, diglycerides, monoglycerides, free fatty acids and glycerol. Another set of 

experiments was carried out at higher temperature of 300
o
C in a different reactor 

(Figure 3.3) without a sampling port, while some were also performed at a lower 

temperature range of 210-240
o
C in another reactor. All experiments were repeated at 

least three times. 
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Figure 3.3:  Parr High Temperature Reactor (Model, 5500)  
 

 

3.3.1 Experimental set 

The following experimental matrices were performed to determine the activities of the 

catalyst using triglycerides, and their effectiveness was compared with respect to the 

method of preparation. 

 

 Table 3.1 Experimental Matrix for Catalysts Testing in the Batch Reactor (A-F) 

 

 

A 

Catalyst 

type 

Reaction temp. 

(
o
C) 

Sampling time 

(min) 

Amount of catalyst 

used 

(wt % feed) 

SFM 270 60 2 

CM 270 60 2 
SFM is solvent-free method; 

 CM conventional method 

 

 

 

 

 

B 

Catalyst 

type 

Reaction temp. 

(
o
C) 

Sampling time 

(min) 

Amount of catalyst 

used 

(wt % feed) 

SFM 270 15 2 

CM 270 15 2 

SFM* 270 15 2 

CM* 270 15 2 
SFM is solvent-free method; CM conventional method 

SFM* is same ratio as CM; CM*same ratio as SFM 
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C 

Catalyst 

type 

Reaction temp. 

(
o
C) 

Sampling time 

(min) 

Amount of catalyst 

used 

(wt % feed) 

SFMM 270 15 2 

CMM 270 15 2 
SFMM is non-aqueous method doped with metakaolin; 

 CMM conventional method doped with metakaolin 

 

 

 

 

D 

Catalyst 

type 

Reaction temp. 

(
o
C) 

Sampling time 

(min) 

Amount of catalyst 

used 

(wt % feed) 

SFM 300 60 2 

CM 300 60 2 

SFM* 300 60 2 

CM* 300 60 2 
SFM is solvent-free method; CM conventional method 

SFM* is same ratio as CM; CM*same ratio as SFM 

 

 

 

 

 

E 

Catalyst 

type 

Reaction temp. 

(
o
C) 

Sampling time 

(min) 

Amount of catalyst 

used 

(wt % feed) 

SFM 240 15 2 

CM 240 15 2 

SFM* 240 15 2 

CM* 240 15 2 
SFM is solvent-free method; CM conventional method 

SFM* is same ratio as CM; CM*same ratio as SFM  

 

 

 

 

F 

Catalyst 

type 

Reaction temp. 

(
o
C) 

Sampling time 

(min) 

Amount of catalyst 

used 

(wt % feed) 

SFM 210 15 2 

CM 210 15 2 

SFM* 210 15 2 

CM* 210 15 2 
SFM is solvent-free method; CM conventional method 

SFM* is same ratio as CM; CM*same ratio as SFM  

 

3.3.2 Thermogravimetric analysis for gas determination 

It was difficult to collect gaseous samples from the batch reactor; however this was 

done using Teflon bag on a TGA, Pyris STA 6000 Model at reaction temperature 

reported above. The gas mixture was identified on a gas chromatography. The 

thermogravimetric (TGA) studies were performed on a Pyris STA 6000 Model under 

flowing helium at constant rate of 30 ml/min with temperature ramped 10
o
C/min in 30–

1000
o
C range. 
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3.4 Analysis of Products from the Reactions 

The reaction product was subjected to standard analytical method for biodiesel defined 

in BS EN 14103:2003. The presence of free glycerol and residual mono-, di- and 

triglycerides contents in the fatty acid methyl esters (FAMEs) was determined as 

indicated in EN 14105: 2003. The free fatty acid in the liquid products was evaluated by 

simple titration method as reported by Rattanaphra et al. (2010). Karl Fischer titration 

was used to measure the water content in the sample. Coke deposited on the spent 

catalysts was determined using Katikaneni et al. (2002) protocol. The products were 

also examined using Fourier Transform Infrared Spectroscopy (FTIR) to determine the 

presence of hydrocarbons in addition to fatty acid methyl esters (FAMEs). 

 

3.4.1 Determination of Fatty Acid Methyl Esters (FAMEs) by Gas chromatography  

The approach used was based on the standard method defined in BS EN 14103:2003. 

The BS EN 14103:2003 is a standard for determination of the ester content of fatty acid 

methyl esters intended for use as pure biofuel. In preparing the internal standard by this 

method, 500 mg of methyl heptadecanoate was dissolved in 50ml volumetric flask. 

Sample preparation was 250 mg of the sample and 5 ml of the stock solution of the 

internal standard in a 10 ml sample vial. 0.1µl of the prepared sample mixture was 

manually injected into the gas chromatography (GC). The gas chromatography was 

Hewlett Packard 5890 Series II gas chromatography with an FID detector and forte 

BPX70 column (SGE analytical science) with dimensions 0.32 mm i.d. and 50 m 

length. The temperature of the FID and injector was maintained at 250
o
C each. The 

carrier gas was helium at a flow rate of 18.75 ml/min and the column temperature was 

maintained at 210
o
C.     Equation 3.3 and Equation 3.4 were used to evaluate the 

concentration of total and individual esters content respectively; expressed as a mass 

fraction in percentage. The experiment was performed at least three times. 

 

 

  
        

   
  

      

 
      

 

       Equation 3.3 
 

 

 

  
  

        
                                 

                        
                        Equation 3.4 

   

 

 



 

 

76 

 

where 

ΣA is the total peak area on the chromatogram (C14 to C24:1) 

AE1 is the peak area corresponding to methyl heptadecanoate (IS) 

CE1 is the concentration in milligram per millilitre of the methyl heptadecanoate 

solution used. 

VE1 is the volume, in millilitre of the methyl heptadecanoate used. 

AL is the peak area corresponding to the individual ester of interest. 

m is the mass, in milligram of the sample 

 

3.4.2 Glyceride Analysis by Gas Chromatography and Mass Spectrometer (GC-MS)  

The reaction product was analysed by gas chromatography-mass spectrometer using EN 

14105: 2003 method. The method specifies a procedure for determination of free 

glycerol and residual mono-, di- and triglycerides contents in fatty acid methyl esters 

(FAMEs). Two internal standards were prepared and used to quantify the peak sizes. 

The first internal standard IS1 (1 mg/ml) was prepared by weighing 50 mg of 1, 2, 4 

butanetriol into a 50 ml volumetric flask with pyridine.  Secondly, 80 mg of 1, 2, 3 

tricaproylglycerol (tricaprin) was weighed into a 10 ml volumetric flask with pyridine 

(8 mg/ml) as internal standard (IS2). Prior to sample injection, calibration curves of 1-

monooleoylglycerol (monoolein), 1,3-didoleoylglycerol (diolein) and 1,2,3-

trioleoylglycerol (triolein) were constructed using standard stock solutions. Preparing 

the samples for analysis approximately 100 mg of each sample from the reaction 

product was accurately weighed into a 10 ml vial, 80 µl of IS1 and 100µI of IS2 were 

added. To this mixture 100 µI of MSTFA (Nmethyl-N-trimethylsilylfluoroacetamide) 

was added to silylate the OH bonds in the presence of pyridine thereby increasing the 

volatility of the sample. The mixture was shaken and left for 15 minutes at room 

temperature, after which 8 ml of heptane was added. 10 µl of each sample was put into 

sampling vials of an auto-sampler GC-MS equipped with capillary column (15 m × 0.25 

mm i.d. and 0.25 μm film thickness). The GC column temperature was ramped up 

linearly at 50°C per min from 180°C (hold 4 min) to 230°C (hold 4 min) to 370°C. The 

carrier gas was helium at a flow rate 1 ml/min, inlet line and source temperatures at 

270°C and 250°C respectively. The mass percent of the mono, di and triglycerides 

present in the sample can be calculated using Equation 3.5. 

 

                            
    

 
       

         Equation 3.5 
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where: 

Mi  is the mass percent of mono, do or triglycerides in the sample; 

ai  and bi  are the slope and intercept from the regression of the calibration curve; 

m   is the mass of sample used for the analysis in milligrams; 

∑Ai   is the sum of the peak area of the mono, di- and triglycerides; 

Aei2   is the peak area of internal standard (IS1 or IS2); 

Mei2   is the mass of internal standard used (IS1 or IS2) in milligram 

 

3.4.3 Determination of free fatty acids (FFA) 

A simple method of titration by Rattanaphra et al. (2010) was used to determine the 

fatty acid present in the product. The base NaOH was prepared by dissolving 0.5g in 

500 ml volumetric flask of distilled water to prepare 0.025N solution. 0.1g of each 

sample (from the reaction) was measured into a conical flask and 1ml of propan-2-ol 

was added as solvent, 2-3 drops of 0.2% of phenolphthalein indicator were added to 

each sample mixture and titrated with the prepared sodium hydroxide solution until the 

appearance of the first permanent pink colour which lasted for at least 30 seconds 

indicating completion of the reaction and the volume of the titre was recorded. Equation 

3.6 was used to evaluate the free fatty acid concentration in the samples from average 

titre. 

 

                    
          

      
                          

          Equation 3.6 

 

where:  

V is the volume of titre in ml  

N is the normality of the standard NaOH solution 

w is the weight of the sample of oil in grams 

282.52 is the molecular weight of oleic acid (MWacid) 

 

3.4.4 Determination of water content by Karl Fischer Titration  

The presence of water in the liquid product was determined by Karl Fischer Titration 

(Metrohm, model 701 Titrino), Figure 3.4. This equipment was used because of its 

effectiveness in determining micro amount of water in products, amongst other 

advantages such as accuracy, short analysis duration and small sample requirement. The 

Karl Fischer Titration kit was set up by adding 30 ml of solvent (methanol dry) into the 
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reaction vessel to cover the platinum electrode. The reagent was then introduced until 

the end point of 20µl/min was reached as indicated on the instrument. 

 

 

Figure 3.4:  Karl Fischer Titration 

 

At this point the sample 0.2g (approximately 0.16 ml) was injected into the reaction 

vessel with the aid of a 1 ml syringe and titrated with the Karl Fischer reagent under 

constant magnetic stirrer until a stable endpoint was achieved. The water content, in 

percentage by mass was calculated using  Equation 3.7. 

 

               
   

      
                                 

 Equation 3.7   

 

where: 

V is the volume (ml) of the Karl Fischer reagent used; 

D is the water equivalent (mg water/ml) of the Karl Fischer reagent, which is 5mg/ml; 

m is the mass (g) of the sample injected.  

 

3.4.5 Kinetic data of the reaction 

The kinetics of the reaction for each of the catalysts were calculated using isothermal 

data from the cracking of triglycerides with the catalysts on a TGA (Pyris STA 6000 

Model) at different reaction temperatures (210
o
C, 240

o
C, 270

o
C and 300

o
C) in the rate 

equation and the Arrhenius equation. In each reaction, the temperature was ramped. For 

Methanol dry 
Karl Fischer 

 reagent 

Reactor 
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instance, at 270
o
C the temperature was ramped up linearly from 30

o
C to 270

o
C at 

50°C/min and was held for 180 minutes at 270
o
C (a typical reaction temperature in the 

batch reactor) followed by cooling at 50°C/min. The rate of heating and the hold time 

were same for all the reactions at different temperatures. Using the isothermal data 

generated from the TGA, conversions at different time, t from each reaction were 

calculated using Equation 3.8.  

 

        
      

        
                                                                                        

 

 

where:  

mo is the initial mass of the sample 

mt is the mass of the sample at time, t and  

mf is the final mass of the sample in that reaction 

Assuming a first order reaction, the rate in terms of conversion is given by: 

 

  

  
            

 Equation 3.9 

 

Integrating the rate Equation 3.9 at the initial condition   = 0 at t=0, gives Equation 

3.10 

 

              Equation 3. 10 

 

The rate constant, k can be determined graphically from the gradient of a plot of 

In       vs. time t) which should give a straight line with slope =    . For each 

catalyst this value (k) was determined at four different temperatures. Subsequently, the 

values of the activation energy (Ea) and the pre-exponential factor (A) can be estimated 

from the slope and intercept of an Arrhenius plot. Taking the natural logarithm of the 

Arrhenius Equation 3.11, it gives Equation 3.12 similar to a straight line equation 

 

           
  

  
   

Equation 3.11 

 

 

where: 

A is the pre-exponential factor (the unit depends on the order of the reaction) 



 

 

80 

 

k is the rate constant (the unit depends on the order of the reaction) 

Ea is the activation energy (kJ/mol) 

R is the gas constant (JK
-1

mol
-1

) 

T is the temperature of reaction (K) 

 

       
   

 
 
 

 
        

Equation 3.12 

 

Plotting ln(k) versus T 
−1

 gives a straight line, the activation energy is given as (-R) 

multiplied by the slope of the plot and A is the exponential of the intercept.  

 

3.5 Other Analyses 

The catalysts were further subjected to more characterization and analyses to determine 

their reusability and leaching during the reactions. 

 

3.5.1 Determination of Coke on the Catalyst 

The amount of coke deposited on the catalysts was investigated by simple method as 

described by Katikneni et al. (2002). Spent catalysts were weighed after which they 

were washed with hexane to remove any triglycerides, thereafter they were weighed 

again. The washed catalyst were regenerated by calcinations in the furnace at 600
o
C for 

1 hour and weighed. The difference in weights of the washed and regenerated catalyst 

was calculated as the coke deposited on the catalysts for each reaction with respect to 

time.  

 

3.5.2 Test for Catalyst Leaching  

To investigate the sulphated zirconia catalyst for any leaching, Garcia et al. (2008) 

protocol was used. The spent catalysts were thoroughly washed with hexane to remove 

any tryglyceride and dried at 60
o
C for 1 hour. About 300 mg of the sample was stirred 

in 50 ml of distilled water and left for 24 h. the same procedure was repeated for flesh 

(un-used) catalyst, the suspension was filtered and reacted with barium chloride (BaCl2) 

solution. Samples from both suspensions were subjected to FTIR analysis to determine 

the presence of sulphate. 
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3.5.3 Regeneration and Characterization of the Regenerated Catalysts 

The washed catalysts from session 3.5.1 were regenerated by calcinations in the furnace 

at 600
o
C for 1 hour as described by Katikneni et al. (2002). The regenerated catalysts 

were subjected to XRPD, XPS, EDX, pyridine- DRIFTs analyses in order to validate 

their possible reusability. 

 

3.5.4 Error Analysis 

Error analysis was performed for the analytic methods used for the product mixture 

from the reaction. There are two types of error: the random error (εR) and the systematic 

error (εS). The measured values during an experiment are always subject to fluctuations; 

therefore the error due to this fluctuation is called the random error. It is calculated from 

the mean of the set of numbers of measured values during the experiment (see equation 

3.13 and 3.14). It is simply the standard deviation of the measured values. Whereas the 

systematic error is due to experimental equipment used such as inaccuracy of the 

equipment performance or the measuring device.  

 

        
 

 
           

  
 

   

 

   

            Equation 3.13 

and 

   
 

 
    

 

   

 
 

             Equation 3.14 

 

 

This is usually calculated from the scale resolution of the measuring device; mostly 

taken as ± half the scale resolution. The combination of both errors gives the overall 

error of the experiment; however, they cannot be added together since they are not the 

same. The overall error is calculated as the root mean square of the random and 

systematic errors as given in equation 3.15.  

 

       
      

    
 

                        Equation 3.15 
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Chapter 4: Results and Discussion 
 

 

 

4 Introduction 

The chapter comprises two sections; the first concerns the characterization of the 

catalysts produced by the two methods. The second evaluates the activity of the 

catalysts and their selectivity for methyl esters in the thermocatalytic cracking of 

triglycerides.  

 

4.1 Characterization of Catalysts 

The different preparation methods tested can be divided into two main categories: 

conventional and solvent-free methods. Six catalysts were synthesized, varying in 

sulphating agent, precursor and molar ratio used. The characteristics of the catalysts 

obtained from each method and preparation factors are discussed below. The catalysts 

were characterized by X-ray powder diffraction (XRPD) patterns, Infrared (IR) 

spectroscopy, energy dispersive X-ray (EDX), pyridine-DRIFTS (Diffuse Reflectance 

Infrared Fourier Transform Spectroscopy), X-ray photoelectron spectroscopy (XPS), 

thermogravimetric analysis (TGA) and nitrogen adsorption measurement. These 

characterizations yielded information about the morphology, sulphate content, elemental 

composition, acid type and surface areas of the catalysts. 

 

In the conventional preparation method, ammonium hydroxide (NH4OH) was the 

hydrolysing agent and sulphuric acid (H2SO4) the sulphating agent (see section 3.1.2). 

The procedure used in the solvent-free method is described in section 3.1.1. Here two 

different molar ratios were used.  For convenience, the catalysts prepared using the 

conventional method are designated as “CM” (1:15) and “CM*” (1:6), and those 

synthesized using the solvent-free method are “SFM” (1:6) and “SFM*” (1:15). The 

CM* means the method of preparation is same as CM but with same ratio of reactants 

as SFM while the SFM* is the same as method as SFM but same ratio of reactants as 

the CM.  

 

4.1.1 X-ray diffraction pattern (XRPD) 

The X-ray diffraction patterns of the catalysts derived from the conventional method 

(CM and CM*) and the solvent-free method (SFM and SFM*) calcined at 650
o
C and 

600
o
C respectively as reported in section 3.2.2 are discussed below.  
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4.1.1.1 Conventional method  

The X-ray patterns of non-calcined sulphated zirconia catalyst samples from both ratios 

(1:15 and 1:6) of zirconium hydroxide to sulphuric acid using the conventional method 

exhibit no peak of crystallinity. The X-ray pattern of non-calcined sample is amorphous 

with a broad peak between 25
o
 and 35

o
 (2θ), also typical of an amorphous material. 

When the sample was calcined in air at 650
o
C, there was a phase transformation from 

amorphous to tetragonal crystalline phase indicated by the change in various peak 

intensities at 30
o
, 35

o
, 52

o
, 60

o
, 82

o
 and 95

o
. The peaks at the mid-angle are of higher 

intensities, as shown in Figure 4.1 and Figure 4.2.  
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Figure 4.1: XRPD Patterns for CM Sulphated Zirconia by Conventional Method 

compared with its Non-calcined Sample 

 

 

The intensity of the peaks tends to decrease along the angle. In the CM and CM* 

samples the peaks observed at 30
o
, 35

o
, 52

o
 and 60

o
 are common peaks that can be 

indexed as (1 0 1), (1 1 0), (1 1 2) and (2 1 1), assuming a tetragonal unit cell and are 

similar to zirconia (see appendix A).  
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Figure 4.2: XRPD Patterns for CM* Sulphated Zirconia by Conventional Method 

compared with its Non-calcined Sample  

 

 

Comparing the diffractograms in Figure 4.3, additional peaks were observed at a low-

angle X-ray diffraction pattern in the CM* sample (ratio 1:6), indication of monoclinic 

phase of zirconium oxide (see appendix B). These peaks at 28
o
 24

o
 and 31

o
 can be 

indexed as (-1 1 1), (0 1 1) and (1 1 1) respectively. When the ratio of sulphating agent 

was reduced from 1:15 to 1:6, the intensities of the tetragonal reflections were reduced 

by 50% as seen with CM*, but the width of the peaks are much narrower than that of 

CM. This suggests that zirconia particles in CM are much smaller than those in CM*. 

The monoclinic peaks were much larger in size (based on by Scherrer’s equation). The 

diffractograms indicate that reducing the amount of sulphate during preparation causes a 

different crystalline phase of zirconia to form, as both tetragonal and monoclinic forms 

begin to be observed. The appearance of the monoclinic phase at this calcination 

temperature of 650
o
C agrees with the findings of Li et al. (2001) 
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Figure 4.3: XRPD Patterns for CM (1:15) and CM* (1:6) by Conventional Method  

 

 

Li et al. (2001) observed the transformation of amorphous to tetragonal zirconia at a 

calcination temperature range of 300-400
o
C, and tetragonal to monoclinic phase 

between 400-500
o
C. Although, Comelli et al. (1995) had earlier reported that the 

calcination temperature for the transformation of the tetragonal to the monoclinic phase 

is slightly higher than 500
o
C for zirconia that contains sulphate.  

 

4.1.1.2 Solvent-free Preparation Method  

In contrast to the conventionally prepared catalysts, the X-ray diffraction pattern of the 

non-calcined sulphated zirconia from the solvent-free method was crystalline, as shown 

in Figure 4.4 and Figure 4.5, below. The crystallinity observed on the diffractogram is 

due to the presence of (NH4)2SO4 and NH4Cl in the non-calcined catalyst. The X-ray 

diffraction patterns of the calcined samples SFM and SFM* at 600
o
C exhibited similar 

XRD patterns, indicating that neither the monoclinic nor tetragonal phases were present, 

but a completely amorphous zirconia phase, as shown in Figure 4.4. This indicates that 
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the method of preparation reduced the appearance of monoclinic or tetragonal phase of 

the zirconia.   
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Figure 4.4: XRPD Patterns for SFM Sulphated Zirconia by Solvent-Free Method 

Compared with its Non-calcined form 

 

 

The direct method of sulphation allowed for increased sulphate content on the 

precursor, which tends to hinder the crystalline phase of the zirconia. It was expected 

that, during calcination, the NH4Cl would have decomposed. Ammonium chloride 

sublimes at temperature above 200
o
C and after sublimation it dissociates into the 

gaseous phase of ammonia and hydrochloric acid (Olszak-Humienik, 2001). Hence, it is 

clear that the sintering of zirconia crystallites during the calcination process using the 

solvent-free method is delayed by the presence of sulphate ions on the surface of the 

catalyst. The XRD pattern of the non-calcined and the calcined SFM* are shown in 

Figure 4.5. 
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Figure 4.5: XRPD Patterns for SFM* Sulphated Zirconia by Solvent-Free Method 

compared with Non-calcined Sulphated Zirconia 

 

The phases observed were identified by matching the peaks on the XRPD trace with the 

known diffraction patterns contained in the database published by the lnternational 

Centre of Diffraction Data (ICDD). The solvent-free catalysts’ XRD patterns did not 

change due to calcination (Figure 4.6). The presence of zirconium oxide and zirconium 

sulphate oxide were identified using the database. 
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Figure 4.6: XRPD Powder Patterns for Solvent-free Sulphated Zirconias  
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The BET surface area, crystallite size, scanning electron microscopy (SEM) and 

elemental analysis (EDX) were performed according to sections 3.2.3 and 3.2.4. A 

sample of the BET data analysis from the BET equipment (Coulter
TM

, SA 3100
TM

 

series) is in Appendix C and the EDX spectra in Appendix D. The elemental analysis 

revealed that the solvent-free catalysts had higher percentages by weight of sulphur than 

the conventionally prepared catalysts. In addition the solvent-free method was found to 

increase the surface area of the catalysts. The crystallite size measurements obtained 

from the X-ray diffraction for the conventionally treated sulphated zirconia are shown in 

Table 4.1. In order to verify the reproducibility of the catalysts, they were synthesized at 

least five times throughout the period of the research and characterized. Their 

percentage errors were calculated from their elemental analysis (EDX) for the major 

components in the catalysts.  

 

Table 4.1: Textural Properties and Elemental Analysis of the Synthesized Catalysts 

 

Catalyst 

 

BET 

(m
2
/g) 

 

Crystallite 

size 

(nm) 

 

Elemental analysis (wt%) 

 

Zr O S Zr/S 

       CM 65 10.5
T
 49.9±0.4 43.1±0.1 7.0±0.9 7.13 

CM*  79 17.3
T
 48.2±0.3 47.4±0.3 4.5±0.6 10.71 

SFM 168 A 35.5±0.1 51.6±0.3 12.9±0.4 2.75 

  SFM* 108 A 42.1±0.4 49.2±0.4 8.7±0.1 4.84 

T = tetragonal phase, A= amorphous 

 

The SFM and CM* catalysts were synthesized using the same ratio of sulphating agent 

but the SFM catalyst retained more (> 170%) sulphur species on the surface than CM*. 

Likewise the CM and SFM* with SFM* having approximately 24% more than the CM. 

With the solvent-free method more sulphur was retained on the catalysts. It can be 

observed also that changes in the method of preparation increased the surface area, 

while change in molar ratio of sulphating agent affected the crystallite size of the 

catalysts. The scanning electron micrographs of the CM and CM* shown in Figure 4.7 

and 4.8, below revealed several particles stacked together to form agglomerates. It can 

be deduce from the percentage errors (see Table 4.1) that these catalysts can be 

reproduced without any major change in their properties.  
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Figure 4.7: SEM Micrograph of the CM Catalyst 

 

 

Figure 4.8: SEM Micrograph of the CM* Catalyst 

 

The SEM images of solvent-free catalysts (Figures 4.9 and 4.10) exhibited a 

substantially different morphology, of well-bonded aggregates rather than the detached 

particles of the conventional method catalysts.  
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Figure 4.9: SEM Micrograph of the SFM Catalyst 

 

However, the particles appeared denser in SFM* than the SFM as shown in Figure 4.10 

 

 

Figure 4.10: SEM Micrograph of the SFM* Catalyst 
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The SEM digital maps of the catalysts confirmed the presence of more oxygen and 

sulphur on the solvent-free catalysts than the conventional, see section 4.2.1.5. 

 

4.1.2 Infrared Spectroscopy 

The sulphate content of the catalysts after calcination at 650
o
C and 600

o
C for 

conventionally prepared and solvent-free catalysts respectively was estimated using 

Infrared (IR) spectroscopy as described in section 3.2.1. The spectra were produced at a 

resolution of 2cm
-I 

between 4000cm
-1

 and 400cm
-1

.  

 

4.1.2.1 Conventional samples 

The IR spectra of CM and CM* are shown in Figure 4.11. The CM spectrum exhibited 

a broad peak in the region 3750–2750cm
-1

, corresponding to the O-H bond vibration of 

the adsorbed water on the surface of the zirconia. The intensity of this peak reduced 

with the decrease in the amount of sulphate used during CM* catalyst preparation, as 

seen in the IR profile in Figure 4.11. This is followed by weaker absorption at
 
1580-

1640cm
-1

, which is assigned to the bending mode (δ-OH) of coordinated water. The 

sulphate content present on the catalysts is evidenced by the sulphate stretches in the 

spectra in the range 1300-900cm
-1

.  
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Figure 4.11: IR Spectra of Catalysts from the Same Method of Preparation 

(conventional wet-precipitation)  
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4.1.2.2 Solvent-free samples 

The same trend as the conventional catalysts was observed in the IR spectra for the 

solvent-free catalysts (see Figure 4.12). They exhibited similar intensities of O-H bond 

vibration at wave numbers 3750–2750cm
-1

 whereas the conventional had different 

intensities. The sulphate absorptions are very similar, indicating the same sulphur 

species.  

 

4000 3500 3000 2500 2000 1500 1000 500

65

70

75

80

85

90

95

100

A
b

so
rb

a
n

ce
 (

%
)

Wave number (cm
-1
)

 sfm

 sfm*

 

Figure 4.12: IR Spectra of Catalysts from Solvent-free Method of Preparation  

  

4.1.2.3 IR of samples with the same ratio  

The intensities of absorbance within the sulphate region for catalysts with the same ratio 

of sulphating agent (1:15), CM and SFM* are compared in Figure 4.13, below. A closer 

look at the spectrum of the CM sample within the wave numbers 980cm
-1 

and 1250cm
-1 

shows five IR absorption dips at 1250, 1140, 1060, 1030 and 1000cm
-1

, whereas for 

SFM*, a single dip is indicated. This change is presumably due to the formation of 

polynuclear sulphate compounds on the CM sample. However, they are the 

characteristic peaks for the S=O and S-O stretching modes of the vibration of the 

coordinated SO4
2-

 species on the surface of the catalysts. According to Parvulescu et al. 

(1999), the peaks at 1250cm
-1

 and 1140cm
-1 

are typical of S=O stretching modes in 

chelating bidentate sulphate species coordinated to the zirconium cation. 



 

 

93 

 

 

1600 1400 1200 1000 800

80

85

90

95

100
A

b
so

rb
a

n
ce

 (
%

)

Wave number (cm
-1
)

SFM*

CM

 

Figure 4.13: IR Spectra in the Sulphate Region of the Sulphated Zirconias with 

the same ratio of Zr(OH)4/SO4
2-

 (1:15) 

 

 

The bands at 1060, 1030 and 1000cm
-1 

correspond to the S-O stretching frequency in 

bridged bidentate sulphate species. Furthermore the SFM* catalyst revealed a higher 

absorbance of 20%, whereas for CM it was 7.5% even though the same ratio of sulphate 

agent was used. This difference in the retained sulphate on the SFM* catalyst and the 

CM is due to the synthesis method. These results are in agreement with those of thermal 

analysis described in section 4.1.3.  

 

In the case of samples with the ratio of 1:6 (shown in Figure 4.14), the sulphate-

stretching frequencies are very similar but have different intensities. The intensity of the 

absorbance of the SFM sample was 30% and that of CM* 15%. The solvent-free 

method ageing period of 18h appears to allow a sufficient time for contact between the 

zirconium source and the sulphate ions for enhanced sulphate retention on the catalysts.  
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Figure 4.14: Infrared Spectra in The Sulphate Region of the Sulphated Zirconias 

with the same ratio of Zr(OH)4/SO4
2-

 (1:6) 

 

 

Furthermore, another characteristic peak for the vibration mode S=O was observed at a 

frequency of 1310cm
-1

 on the SFM catalyst, but this was not evident for the SFM*. This 

band presumably occurred due to the increase in the concentration of the surface 

sulphate group. It is worth mentioning that the conventional catalyst, CM*, with 

reduced sulphate during preparation retained more sulphate on the precursor than its 

counterpart, CM. Based on the IR analysis, it seems that the solvent-free method 

enhanced the retention of sulphate on the catalysts irrespective of the ratio of sulphate 

used or its source as shown in Figure 4.15.  

 

 



 

 

95 

 

cm cm* sfm sfm*
5

10

15

20

25

30

35  Absorbance

A
b

so
rb

a
n

ce
 (

%
)

catalyst

 

Figure 4.15: Absorbance of Infrared Spectra of the Catalysts (%) 

 

4.1.3 Thermal gravimetric analysis (TGA) 

Thermal gravimetric analysis was performed on the catalyst samples, as described in 

section 3.2.7, in order to confirm the calcination temperatures and to monitor sulphate 

decomposition. Figure 4.16 shows the TGA profiles for the non-calcined samples. 

These suggest that the samples thermally decomposed in a stepwise manner. In the first 

step, the weakly bonded water molecules were lost (100-200
o
C), and with further 

heating (300-600
o
C) excess sulphate was lost until at higher temperature (> 600

o
C), the 

decomposition of the sulphated metal oxide occurred to give zirconium oxide and the 

volatile by-products sulphur dioxide and oxygen. The phenomena observed are in 

accordance with the findings of Strydom and Pretorius (1993) on thermal 

decomposition of zirconium sulphate hydrate.  
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Figure 4.16: Thermogravimetric Analysis Profiles for the Non-calcined Sulphated 

Zirconias 
 

However additional weight loss was noticed with the solvent-free catalysts. Weight 

losses within the temperature range of 200-250
o
C and 300-400

o
C as seen in Figure 4.17 

can be attributed to the loss of water molecules and the loss of ammonia and chloride 

ions, probably as HCl due to the decomposition of NH4Cl on the samples.  
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Figure 4.17: Thermogravimetric Analysis of Non-calcined Solvent-free Sulphated 

Zirconia 
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This is on the basis that Olszak-Humienik (2001) had reported that ammonium chloride 

decomposes between 300-400
o
C. The unreacted (NH4)2SO4 on the surface of the 

catalyst could also decompose to gaseous NH3, SO3 and H2O because ammonium 

sulphate decomposes between 200-280
o
C (Yilmaz et al., 1994). The presence of NH4Cl 

on the solvent-free catalysts was revealed earlier by the X-ray diffraction patterns of the 

non-calcined solvent-free samples shown in Figure 4.4 and Figure 4.5.   

 

The amounts of sulphate on the calcined catalyst samples were also monitored by 

thermogravimetric analysis. The profiles are similar to those of non-calcined samples, 

but with different weight losses. The mass losses corresponded to the amount of 

sulphate on the catalysts with the highest being from the solvent-free catalysts (see 

Figure 4.18). The SFM* catalyst showed higher losses of weakly bonded water 

molecules than SFM between 100
o
C to 200

o
C. In the region of 600-900°C, the weight 

losses of samples CM and CM* were 1.4% and 13% respectively. These percentages 

show that CM* had more sulphate on the catalyst than CM. The weight losses due to the 

decomposition of zirconium sulphate with SFM and SFM* were 40% and 28% 

respectively.  
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Figure 4.18: Thermogravimetric Analysis of Calcined Sulphated Zirconia 
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A comparison based on the same ratio of sulphating revealed that 35wt% of the catalyst 

was sulphate on SFM* whereas CM had only 7wt% of sulphate in the total weight of 

the catalyst (see Figure 4.19).  
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Figure 4.19: TGA Profiles for Samples with the Same Ratio (1:15) of Sulphating Agent  
 

Figure 4.20 compares samples SFM and CM* (same ratio 1:6), showing that a total 

weight loss of 41% was sulphate on the SFM catalyst sample whereas for CM* it was 

13wt%.  
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Figure 4.20: TGA Profiles of Samples with Same Ratio (1:6) of Sulphating Agent  
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Based on the chemical composition of the catalysts and decomposition temperature of 

sulphate which was reported as 600
o
C by  Bear and Mumme (1970); the only element 

responsible for the weight loss at the temperature of the thermal decomposition (900
o
C) 

is sulphate decomposition. Generally, the results of the thermogravimetric analysis 

revealed higher weight loss on the solvent-free method. Therefore it is a more effective 

method than the conventional method in terms of sulphate retention on the surface of 

the catalysts.   

 

4.1.4 Pyridine-DRIFTS (Diffuse Reflectance Infrared Fourier Transform 

Spectroscopy) 

Measurements of the acidity of the synthesized sulphated zirconia catalysts were 

conducted using pyridine-DRIFTS in accordance with the procedure described in 

section 3.2.8. The spectra of adsorbed pyridine on the samples at room temperature 

revealed characteristic bands in the region 1400 to 1600cm
-1

 on the different catalyst 

samples prepared by the conventional method (CM and CM*) and the solvent-free 

method  (SFM and SFM*) (see Figure 4.21).  
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Figure 4.21:  FT-IR Spectra of Adsorbed Pyridine on the different Catalysts 
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Generally the spectra showed typical pyridine-IR absorption bands for sulphated metal 

oxides (Sun et al., 2005; Morterra et al., 1993a). Bands at 1545cm
-1

 are due to adsorbed 

pyridine interacting with Brønsted acid sites (Song and Sayari, 1996). There were also 

well-defined adsorption bands around 1445 and 1488cm
-1 

of Lewis acid sites and 

pyridinium ions (Parvulescu et al., 1999). However, the intensity of the bands changed 

from one catalyst to another according to the preparation method and the molar ratio of 

the sulphating agent used for sample preparation. The band at 1488cm
-1

 is a weak band 

which is assigned to pyridine adsorbed on Lewis acid sites.  

 

Comparison of the spectra revealed a strong Lewis acid sites band at 1445cm
-1

 on the 

conventional catalyst samples (see Figure 4.22). This band is more well-defined on the 

CM sample than on the CM*, and it shifted to a higher wave number of 1450cm
-1

 on the 

CM* catalyst. This shift in band is probably due to a weakening of the S=O bonds, 

which may be induced by the increase in electron density as a result of the pyridine 

molecule interacting directly with the sulphated species on the surface of the CM 

catalyst (Babou et al., 1994).  However, the band was not pronounced on CM* and was 

completely absent from the solvent-free samples. The band at 1488cm
-1

 is a weak Lewis 

band and is common to all the catalyst samples.  
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Figure 4.22:  IR-py Spectra of Conventionally Prepared Catalysts 

 



 

 

101 

 

The difference in sulphate ratio between samples CM and CM* did not result in any 

shift of wave number. It seems the increase in the overall amount of sulphate used in 

CM preparation resulted in enhanced S=O stretching modes in chelating bidentate 

sulphate species coordinated to the zirconium cation. The second band at 1488cm
-1

 

corresponding to Lewis acid sites was common to both samples, although its absorbance 

varied. The CM sample’s absorbance is 10% for band at 1488cm
-1

 and 2% for CM*. 

The intensity of the Brønsted acid sites band at 1545cm
-1

 was 6% for the CM sample 

and 2% for the CM* sample , as the Lewis acid site. Catalyst samples prepared by the 

solvent-free method SFM and SFM* showed similar wave numbers (as shown earlier in  

Figure 4.21) irrespective of the molar ratio of the sulphate used during preparation. 

Therefore there was no effect of the ratio of sulphating agent on the type of acid sites on 

the catalysts. Generally, solvent-free catalyst samples did not exhibit a band at 1445cm
-

1
, indicating the absence of strong Lewis acid sites. Furthermore, the solvent-free 

samples had higher band intensities at 1545cm
-1

, compared to the conventional 

catalysts. The intensities of the bands at 1488cm
-1

 and 1545cm
-1

 were 15% and 14% 

respectively for SFM whereas for SFM* they were 14% and 13%. However, the areas 

of the bands varied: SFM had the highest for both bands, followed by the SFM*, 

whereas CM* had the least. This means that higher concentrations of the acid sites were 

present on the SFM catalyst despite the lower ratio of sulphate used for its synthesis, 

indicating that the solvent-free method of preparation has a better atom efficiency. 
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Figure 4.23:  IR-py Spectra of Solvent-free Prepared Catalysts 
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Another interesting finding is the sizeable difference in the percentage of Brønsted acid 

sites on the CM sample to about 13% that of the SFM* sample, despite the same 

amount of sulphate being used for both catalysts. The percentage of integrated area of 

Brønsted acidic was 46% for SFM* and 33% for CM. (see Figure 4.24). The percentage 

for Lewis acid site was 67% on CM catalyst. This implies that the double bond in S=O 

in CM is much stronger than a simple metal sulphate bond and has contributed to the 

increased Lewis acid by its inductive effect in the structure of the catalyst. The presence 

of polynuclear sulphates observed in Figure 4.13 under section 4.1.2.3 is another reason 

for increased Lewis acid sites on the CM catalyst Parvulescu et al. (1999).  
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Figure 4.24:  Percentages of Integrated Area of Brønsted and Lewis Acid on each of the 

Catalysts 

 

 

Although CM* tends to have more percentage of Brønsted acid sites (~ 70%) than SFM; 

the peak area and the acid site concentrations was much smaller. Generally, therefore, 

comparing the decrease in the band intensity with the amount of sulphate used, such a 
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reduction could suggest that the solvent-free method facilitates a stronger interaction 

between the sulphate groups with the zirconia cations. The samples prepared by the 

solvent-free technique (SFM and SFM*) exhibited higher concentrations of Brønsted 

rather than Lewis acid sites. The reverse was the case in the CM catalyst, but CM* had 

more Brønsted acid sites than the CM, as shown in Figure 4.25 compared with their 

total acid site concentrations. 

 

 

 
Figure 4.25: The Figure Indicating the Amount of the Total Acid and its corresponding 

Brønsted and Lewis acid sites on the Catalysts 

 

In all the samples it is evident that the method of preparation had a more direct effect on 

the total and individual concentrations of the various types of acid sites. In other words 

the amount of sulphate retained on the catalyst is not only determined by the amount of 

sulphate used but much more the method of preparation. Secondly the type of acid site 

depends on the displacement of the bridge hydroxyl groups of hydrated zirconia and 

bisulphate ions with an adjacent hydroxyl group, as reported by Clearfield et al. (1994).  

From the characterization results, particularly the FTIR and the IR-py, the S=O bond 

was predominant and stronger in CM whereas it was S-O bond in solvent-free catalysts. 

Based on these the dominant bonding structure in the solvent-free catalysts as well as in 

the CM* sample can be represented as shown in Figure 4.26 (a) and Figure 4.26 (b) for 

the CM catalyst. 
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Figure 4.26: Showing the S-O and S=O bonds responsible for the Brønsted (a) and 

Lewis (b) Acid Sites respectively on the catalysts 
 

 

With the solvent-free method, it seems reasonable to suspect that the bridge hydroxyl 

groups on the hydrated zirconia were displaced while the bisulphate remains intact 

during calcination. In the case of conventional method most of the hydroxyl groups on 

the bisulphate were involved in the reaction during calcination; resulted into Lewis 

acidity. These resulted structures agreed very much with the models described by 

Clearfield et al. (1994) and  Babou et al. (1995). 

 

4.1.5 X-ray photoelectron spectroscopy (XPS) spectra 

The X-ray photoelectron spectroscopy data were generated using the procedure reported 

in section 3.2.5. The characteristic peaks for sulphur, oxygen and zirconium were found 

in the XPS Handbook; Moulder et al. (1995) and Wagner et al. (2000). The relative 

sensitivity factors were used to scale the measured peak areas and the accuracy of the 

reported binding energies (BE) can be estimated to be ±0.2eV. 

 

4.1.5.1 Zirconium 

Figure 4.27 shows doublet pairs spectra for both 3d
5
 and 3d

3 
corresponding to zirconium 

in the IV oxidation state. Doublet pairs are due to the splitting of energy levels as a 

result of the presence of an electron sub-shell with unpaired electrons in the final state 

of the electronic system.  
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Figure 4.27:  XPS Zr 3d Spectra of the Various Catalysts 

 

 

The binding energies for CM and CM* were similar at 182.9eV and 185.3eV for 3d
5
 

and 3d
3
,
 
respectively. The same energy of 2.40eV was recorded between the split of 

each doublet for all the catalysts. The binding energies for 3d
5
 and 3d

3 
were 183.1eV 

and 185.5eV for the solvent-free samples SFM and SFM*. Interestingly, the only shift 

observed in the binding energy of the catalysts at the 3d
5
 and 3d

3 
bands

 
is based on the 

different method used for the catalysts preparation. The conventional method catalysts 

(CM and CM*) exhibited similar Zr 3d Spectra and the solvent-free catalysts (SFM and 

SFM*) exhibited the same pattern. The reason for the observed shift is attributed to the 

weakening of the S=O bonds which may be induced by electron transfer from the 

pyridine molecule (strong base) towards a Zr4+ cation (Lewis site). It could also be 

attributed to direct interaction of the pyridine molecule with the sulphated species as 

reported by Babou et al. (1995). These data, suggest that CM and CM* catalyst samples 

are very similar, while the Zr in SFM sample is electron deficient in-line with the higher 

sulphate content in this sample. The SFM* Sample has an intermediate sulphate content 
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giving rise to the Zr 3d being comprised of two zirconium environments. The various 

samples showed the same acidic zirconium species.  

 

The method of preparation seems to have had minimal effect on the Zr states. However, 

although, the oxidation states of the zirconium ion in the four samples were the same, 

the quantitative areas under the peaks varied in the following order: SFM < SFM* < 

CM* < CM for both 3d
5
 and 3d

3
. This implies that the conventional samples had more 

zirconium oxide on their catalysts. 

 

4.1.5.2 Sulphur 

The binding energies of sulphur were recorded in the region of 2p energies, as presented 

in Figure 4.28. The peak corresponding to the S2p species exhibited a pronounced 

asymmetry. Processing and quantification of the spectra was performed on CasaXPS 

software. The deconvolution of these peaks using the software led to two different 

peaks, one located around 169.8eV and another at 170.8eV irrespective of the method 

and the amount of sulphating agent used for preparation. These peaks are attributed to 

the S 2p1/2 and 2p3/2 respectively.    
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Figure 4.28:  XPS S2p Spectra of the Various Catalysts 
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These binding energies correspond to the sulphur in sulphate species on the sample, 

which agrees with the findings of other authors  (Melada et al., 2004).  From the 

deconvolution of the S2p spectra and Parvulescu et al. (1999) findings, it is assumed 

that the sulphur species located around 169.8eV may correspond to the protonated 

sulphated species, whereas those around 170.8eV would correspond to the deprotonated 

species. From such assumption, the protonated sulphate groups tend to dominate the 

samples prepared using the solvent-free method. This could be a consequence of a more 

interaction of sulphate groups with the zirconium species (Marcus et al., 2003). Thus, 

the solvent-free catalysts exhibited higher intensities at 169.8eV, which correspond to 

increases in the protonated species population, as shown in Figure 4.29. This was due to 

the enhanced interaction of sulphate groups with the zirconium oxide support that was 

possible because of the method of preparation. 
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Figure 4.29:  XPS S2p Spectra of Solvent-free Catalysts showing the Protonated (----) 

and Deprotonated (-) Species 
 

 

On the contrary, deprotonated species exist to a large extent in the catalysts prepared via 

impregnation of zirconium hydroxide, particularly the CM. That this assumption is 

correct is clearly demonstrated in Figure 4.30, which compares the moles of sulphur 
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used during preparation and those retained on the catalysts after calcination at 600
o
C for 

solvent-free catalysts and 650
o
C for conventional catalysts.  
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Figure 4.30:  Comparing Number of Moles of Sulphate used during Preparation and 

Sulphur retained on the Catalysts after Preparation. 

 

 

The calculated values of sulphur on the calcined catalysts agreed with the intensity of 

the sulphate reported by the IR spectra in section 4.1.2. 

 

4.1.5.3 Oxygen 

The binding energies of oxide and sulphate oxygen for all samples were consistent, as 

shown in Figure 4.31 however, the spectra are different in intensities. The binding 

energy indicating the oxide oxygen of the zirconia is evident at 530.5eV and the 

shoulder peak at binding energy 532.5eV is assigned to sulphate oxygen on the surface 

of the catalysts. According to the XPS Handbook (Hino et al., 2006; Moulder et al., 

1995) the O1s spectra indicated the sulphur is in the SO4
2−

 form.  
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Figure 4.31:  XPS O1s Spectra of the Various Catalysts 

 

The peak at 530.5eV is higher for samples prepared by the conventional method, with 

CM catalyst having the highest. Also, samples produced by the solvent-free method 

exhibited higher peaks at binding energy 532.5eV, with SFM sample being the highest. 

This is better illustrated in Figure 4.32 and Figure 4.33 below. The de-convoluted oxide 

oxygen peak was highest for samples prepared by the conventional method, with the 

CM catalyst showing the higher peak as demonstrated in Figure 4.32.  
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Figure 4.32: Deconvoluted Peaks of O1s showing the Oxide Oxygen Peaks of the 

Catalysts 

 

 

On the other hand, the highest peak at a binding energy of 532.5eV, which is sulphate 

oxygen, was more pronounced in the samples prepared by the solvent-free method.   
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Figure 4.33: Deconvoluted Peaks of O1s showing the Sulphate Oxygen Peaks of the 

Catalysts 
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The percentage of sulphate oxygen was higher in solvent-free catalysts; SFM had 93% 

and SFM*, 81% as shown in Figure 4.34. The high percentages of sulphate explain why 

the highest number of Brønsted acid sites are found on the solvent-free catalysts, as was 

evident from the pyridine-DRIFTS analysis in section 4.1.4. 
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Figure 4.34: Percentages of Oxide Oxygen and Sulphate Oxygen on the Catalysts from 

the Deconvolution of the O1s Spectra 

 

Although, the conventional catalysts had lower percentages of sulphate oxygen but 

notably the CM* had higher sulphate oxygen (58%) than the CM (46%). This could be 

the reason for the high Brønsted acid site on the CM* catalyst whereas, the CM is 

higher in Lewis acidity. This is probably due to the difference in the volume of 

sulphating agent used in the preparation rather than the method itself. The 15ml of 

H2SO4 used per gram of zirconium hydroxide for CM resulted into more zirconia than 

zirconium sulphate on the catalyst, while the 3ml of H2SO4 used for the CM* was 

enough to produce  more sulphate oxygen than the oxide oxygen. These observation 

were further demonstrated by relating the sulphate oxygen on the catalysts and their 

corresponding protonated species as shown in Figure 4.35, which caused the high levels 

of Brønsted acidity exhibited by the solvent-free catalysts, relative to the CM and CM* 

samples. 
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Figure 4.35: Sulphate Oxygen and Protonated Species of the Sulphur on the Catalysts 

(Note: scales are not the same) 

 

4.1.5.4 Sulphur-to-Zirconium Ratios 

The sulphur to zirconium ratios of the catalysts prepared by the solvent-free method was 

higher than those from the conventional method (see Table 4.2). Obviously the 

conventional method causes a diminution of this ratio, this being evident in samples 

with the same sulphate ratio but different methods of preparation. Solvent-free catalysts 

reflected values higher than 1.0 with a higher ratio observed in the SFM catalyst. These 

mean that the conventional catalysts have more zirconia on their surfaces. Also the ratio 

of the protonated to deprotonated sulphur indicted higher S-O bond than S=O bond on 

the solvent-free catalysts. The values of the ratios buttress the proposed catalysts’ 

structures earlier proposed in Figure 4.26. 

.   
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Table 4.2: XPS Parameters of the Various Catalysts Samples  

Sample Binding energy 

(eV) Zr 

Binding energy  

(eV) S2p 

Binding energy  

(eV) O1s 

 Zr 

3d
5
 

Zr 3d
3
 S2p cps of 

169/170 

O1s cps of O2 

of SO4
2-

/ 

O2 of Zr 

XPS 

CM 183.4 185.5 169.7/170.7 1.3 530.5/532.5 0.6 0.3 

CM* 183.4 185.7 169.7/170.9 1.5 531.0/532.5 1.1 0.6 

SFM 184.0 186.5 169.8/170.8 2.2 531.0/532.5 10.5 2.0 

SFM* 183.5 186.0 169.8/170.9 1.8 531.0/532.5 3.2 1.3 

 

 

The same trend is evident in Figure 4.36. Irrespective of the preparation variant, the 

values obtained from XPS measurements have the same trend as those determined from 

chemical analysis by EDX.  

 

CM CM* SFM* SFM
0.0

0.5

1.0

1.5

2.0

2.5

 EDX

 XPS

S
/Z

r 
ra

tio

Catalyst

 

Figure 4.36:  S/Zr Ratios of the Catalysts determined by XPS and EDX 
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Interestingly, the XPS and the EDX elemental results differed by only 0.1%. The SEM 

digital maps of all the catalysts revealed the density of each of the major elements of 

interest in the various catalysts.  The SFM digital maps confirmed the presence of more 

sulphur on the solvent-free catalysts than the conventional (see Appendix F). The same 

trend of increased oxygen (SFM > CM > CM*) is observed on the digital maps for 

oxygen on the surface of the catalysts as shown in Appendix G. However, the zirconia 

on the catalysts did not follow the same trend. There was more zirconia on the solvent-

free catalyst, followed by the CM* and the least was on the CM catalyst as revealed in 

Appendix H.  

 

Based on the two sulphate ratios used in preparing the catalyst samples in this work, the 

presence of excess sulphating agent had no enhancement effect on the nature of the acid 

sites. One could conclude that the amount of sulphate used for CM and SFM* was 

greater than the threshold value of H2SO4 needed per gram of Zr(OH)4 as reported by 

Farcasiu et al. (1997), hence the lower retention of sulphate on the catalyst. The authors 

reported that at higher sulphate loading the sulphate moves into the bulk phase of the 

catalyst rather than remaining on the surface.  From the XPS and elemental analyses the 

formulae for the species on the catalysts surface are given as follows (see Table 4.3 

below): 

 

Table 4.3: Proposed Formulae for the Various Catalysts 

Catalyst Formula 

CM ZrSO4.4ZrO2 

CM* ZrSO4.3ZrO2 

SFM Zr.SO4 

SFM* ZrSO4.ZrO2 

 

 

Deducing from the formulae it is evident why the solvent-free catalysts were higher in 

both acid concentrations and Brønsted acidity particularly the SFM catalyst. The surface 

of the SFM catalyst was purely sulphate bonded to zirconia whereas zirconium oxide 

was present on other catalysts in the following order: SFM*< CM* < CM. It is observed 

from the formulae that the difference in the chemical composition between catalysts 

with same amount of sulphation is three ZrO2 species (see CM and SFM*; SFM and 

CM*).  
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4.2 Meta-kaolin-supported Sulphated Zirconia Catalysts 

The sulphated zirconia catalyst was supported on meta-kaolin in an attempt improve the 

properties of the catalyst. Supporting the catalyst appropriately should prevent the 

sintering of the zirconia particles and provide a higher surface area. Meta-kaolin was 

prepared from kaolin by a process known as “dealumination”, described in section 

3.1.3.  

 

4.2.1 Characterization of kaolin and dealuminated kaolin (meta-kaolin)  

Kaolin was used because it is inexpensive, so could be an economically viable support, 

and because and the ratio of aluminium to silicon can easily be modified by the process 

of dealumination. The textural properties and elemental analysis of the kaolin and the 

dealuminated kaolin (meta-kaolin) are given in Table 4.4. For convenience kaolin is 

designated as ‘K’ and meta-kaolin as ‘MK’.  

 

Table 4.4: Textural and Elemental Composition of Kaolin and Meta-Kaolin 

 

Catalyst 

 

Crystallite 

size 

(nm) 

 

Elemental analysis (EDX) (wt%) 

 

O 

 

Si 

 

Al 

 

P 

 

Fe 

 

S 

K (kaolin) 42.06 57.8 21.5 18.0 1.9 0.9 - 

MK (meta-

kaolin) 

- 57.3 36.5 2.4 2.9 - 0.9 

 

 

The elemental analysis shows that the aluminium content was reduced by 86% and the 

silicon increased by 74%. However, the level of oxygen remained relatively constant. 

The presence of 0.9 wt% sulphur in the meta-kaolin is due to the sulphuric acid that was 

used during the dealumination of the kaolin. The dealumination was clearly successful, 

as the SiO2/Al2O3 ratio of the kaolin, which was initially 1:2 increased to 15.0 (see EDX 

analysis in Table 4.5 below and spectra in Appendix D). The meta-kaolin has more 

silica and less alumina than the kaolin. 
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Table 4.5: Elemental Analysis and Textural Properties of Support  

Sample Si/Al (wt%)  S/Zr (wt%) XRD pattern 

K (kaolin) 1.2 N/A Crystalline 

MK (meta-kaolin) 15.0 0.9 (S
6+

) Amorphous 

N/A implies  not applicable 

 

The XRPD pattern of the kaolin was crystalline with three phases identified (kaolinite, 

quartz and mica) however the quartz and mica were minor (see appendix E). In the X-

ray diffraction pattern of meta-kaolin, there were no kaolinite crystalline peaks. The 

disappearance of these major peaks gave way to amorphous material with a very broad 

band within the low-range angle 15-35
o
 2θ as in shown in Figure 4.37. Belver et al. 

(2002) described the broad band as an amorphous phase of silica (SiO2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37: XRPD patterns of kaolin (blue) and meta-kaolin (green) 

 

The effect of dealumination on percentage composition of the Si/Al ratio is also shown 

by XPS analysis. The Al 2p spectra for kaolin and the meta-kaolin at the same binding 

energy of 74.5eV (see Figure 4.38), correspond to aluminium (III) oxide.  
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Figure 4.38:  XPS Spectra of Al 2p of Kaolin and the dealuminated kaolin (meta-kaolin)  

 

The silicon (Si2p) spectra of kaolin and meta-kaolin were very similar around 103.3eV 

(the binding energy of silicon), as shown in Figure 4.39. This indicated that it was Si
4+

 

in silicon oxide.  
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Figure 4.39:  XPS Spectra of Si 2p of Kaolin and the dealuminated Kaolin (Meta-

kaolin) 
 

 

With meta-kaolin as the support, two new sulphated silica-zirconia catalysts were 

synthesized by the conventional and solvent-free methods. The sample from the 
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conventional method is now designated as ‘CMM’ and ‘SFMM’ is the sample from the 

solvent-free method. 

 

4.2.2 Preparation of modified catalyst samples (CMM and SFMM) 

In synthesising the catalyst samples, the ratios of zirconium to sulphate in both 

conventional and solvent-free methods were the same as in the previously prepared 

SFM and CM, but the ratio of meta-kaolin to zirconia was 0.5:1 in both cases. The 

catalysts were then prepared by the same procedures as used for CM and SFM, and then 

characterised.  

 

4.2.1.2 Infrared Spectroscopy 

The infrared spectrum of the CMM sample shows similar bands to that of the CM 

catalyst between 4000cm
-1

 and 400cm
-1

. The sulphate spectrum on the CMM sample 

corresponded to that of the CM sulphate within the same wave number of 900-1200cm
-

1
,
 
but with a significant increase in its absorbance as shown in Figure 4.40.  
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Figure 4.40: IR Spectra of CMM and CM Catalysts  
 

This implies that the addition of meta-kaolin enhanced the retention of sulphate on the 

catalyst. A similar trend was found with the SFMM and SFM catalyst samples (see 

Figure 4.41). The band for the SFMM sample has an absorbance of 46% as against 30% 

for the SFM.  
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Figure 4.41: IR Spectra of SFM and SFMM Catalysts 

 

 

In addition, a small but conspicuous band at 800cm
-1

 was observed for the SFMM 

sample. According to Rosenberg et al. (2003), the band is due to S-O single bond 

vibration sulphite bound to a metal through oxygen. The SFM sample does exhibit this 

band, but at a lower wave number with a very weak absorbance. Generally, the addition 

of meta-kaolin enhanced the physicochemical properties of the catalysts irrespective of 

synthesis method, and an improved retention of sulphate on the catalysts was indicated 

by the infrared analysis. This is much clearer in Figure 4.42 and Figure 4.43, which 

show the comparison in percentages of sulphate retained on the six catalysts according 

to method of preparation.  
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Figure 4.42: Percentage of Sulphate Present on the Conventional Catalysts (from FTIR) 
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Figure 4.43: Percentage Sulphate Present on the Solvent-free Catalysts (from FTIR) 

  

 

The SFM* probably lost some of its sulphate during calcination. The lost of sulphate on 

the CM was during the preparation and calcination. 
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4.2.1.3 Pyridine-DRIFTS (Diffuse Reflectance Infrared Fourier Transform 

Spectroscopy) 

The spectra of adsorbed pyridine on the modified samples had characteristic bands in 

the region of 1445cm
-1

, 1488cm
-1 

and 1545cm
-1

, as shown in Figure 4.44. The bands at 

1488cm
-1 

and 1545cm
-1 

are common to both CMM and SFMM and correspond to 

adsorbed pyridine on Brønsted acid and Lewis acid sites respectively. The band at 

1445cm
-1 

on the CMM catalyst is similar to that on the CM sample, indicating strong 

Lewis acid sites.  
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Figure 4.44: FT-IR Spectra of Adsorbed Pyridine on SFMM and CMM Catalysts 

 

However, the intensity of this band has changed: it was 33% for CM whereas for CMM 

it was 20%. The number of acid sites on the modified catalysts was estimated from their 

IR spectra for adsorbed pyridine. The modified catalysts have increased concentrations 

of Brønsted acid sites than their counterparts (CM or SFM), as revealed by the py-IR 

analysis and shown in Figure 4.45. The SFMM had about 42mmol/g more Brønsted 

acid sites than the SFM but with fewer Lewis acid sites (12mmol/g).  
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Figure 4.45: Comparison of Brønsted and Lewis Acid Sites Concentration on the 

Catalysts based on Method of Preparation 

 

It is not surprising that the CMM had a reduced concentration of Lewis acid sites of 

138.9mmol/g compared to CM having145.9mmol/g. This follows from the decreased 

intensity and area of the band at 1445cm
-1 

on CMM, corresponding to strong Lewis acid 

sites. The increased sulphate on the modified samples, as revealed by the IR spectra in 

section 4.2.1.2, was due to the presence of the meta-kaolin support on the catalysts 

allowing for more interaction between the pyridine and both types of acid site. Another 

observation is that the CMM and SFMM had a higher total acid concentration than their 

counterpart; CM and SFM. Higher Brønsted acid concentration was evident particularly 

the CMM, approximately 15% whereas SFMM had 5% (see Table 4.6).  

 

Table 4.6: Brønsted and Lewis Acidity of the Meta-kaolin-supported Sulphated Zirconia 

Catalysts  

Catalyst Brønsted acid concentration 

(%) 

Lewis acid concentration 

(%) 

CM 38.3 61.7 

CMM 52.8 47.2 

SFM 56.8 43.2 

SFMM 62.2 37.8 
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4.2.1.4 X-ray diffraction Pattern (XRPD) of CMM and SFMM 

In Figure 4.46 the CMM catalyst exhibited tetragonal crystalline phase of zirconia, 

similar to that of the CM sample, and very low peak intensities of silicon oxide around 

22-25
o
 2θ. On the other hand, the X-ray diffraction pattern of SFMM showed a broad 

hump over the range 18-35
o
 corresponding to silicon oxide at lower angle and a reduced 

tetragonal peak at 30
o
, broad peaks at 50

o
 and 60

o
 2θ corresponding to zirconia. The 

broad hump indicates an extremely small crystallite size, which could be amorphous for 

the phases of the compound identified. 
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Figure 4.46: Comparison of XRPD Diffractograms of Metakaolin (MK) and Sulphated 

Zirconia doped with Metakaolin (CMM and SFMM) from Conventional and Solvent-

free Methods  

 

4.2.1.5 Physical properties of CMM and SFMM 

Doping the samples with meta-kaolin increased the BET surface area of the modified 

catalysts. The surface area increased from 65m
2
/g in CM to 83m

2
/g in CMM. The 

SFMM sample had a relatively large surface area of 101m
2
/g but this was lower than 

SFM and SFM* samples. The largest average crystallite size of 17.5nm was observed 

for the CM* catalyst, whereas the SFM had the lowest, at 3.4nm. The ratios of 



 

 

124 

 

SiO2/Al2O3 and SO4/Zr of the modified catalysts are shown in Table 4.7. The SFMM 

tends to have more silica and sulphate than the CMM. The EDX analyses of the samples 

indicated the presence of potassium 

 

Table 4.7: Elemental Analysis and Textural Properties of Meta-kaolin-supported 

Sulphated Zirconia Catalysts 

Catalyst Si/Al S/Zr XRD pattern 

CMM 8.8 0.3 T 

SFMM 12.1 1.7 A 

 T is tetragonal, A is amorphous 

 

The possible formulae for the kaolin-supported sulphated zirconia catalysts as deduced 

based on the elemental analyses are given in Table 4.8. However there were traces of 

potassium in the samples; 1.2 wt% and 1.01 wt% in CMM and SFMM respectively. 

 

Table 4.8: Proposed Formulae for the Meta-kaolin-supported Sulphated Zirconia 

Catalysts 

Catalyst Formula 

CMM 2ZrSO4.4ZrO2.SiO2.Al2O3 

SFMM 6ZrSO4.SiO2SO4.Al2O3.14SiO2 

 

 

The SFMM had more sulphate bonded to zirconia and silicon oxide on the surface than 

CMM however, the increased acid concentration on the CMM than the CM is evident 

from the formula. This no doubt is expected to increase the catalytic activity of the 

catalysts. 

 

4.3 Chloride Determination in All Solvent-free Samples 

The solvent-free method involved the use of zirconium oxychloride (ZrOCl2.8H2O) as 

one of the reactants during the preparation. It therefore became necessary to determine 

the level of chloride in the catalysts in order to be sure of their safety in the application 

of biodiesel production. The determination was performed as described in section 3.2.6. 

The values of the chloride ions in mg/kg found in the solvent-free samples are quite 

negligible as revealed by the analysis and shown in Table 4.9. 
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   Table 4.9: Chloride ion Content in the Solvent-free Catalysts 

Catalyst Concentration  of Chloride ion 

(mg/kg) 

SFM 0.2 

  SFM* 0.8 

 SFMM  0.8 

 

The negligible values of chloride ion in the solvent-free method catalysts are indications 

that the method is not detrimental to the applicability of the catalysts. 

 

4.4 Analysis of the Liquid Product  

In this section the different analytical methods used in determining the activity of the 

catalysts are evaluated with regards to the procedure employed and the reproducibility 

of results.  

 

4.4.1 Gas chromatography 

The determination of methyl ester in the product mixture was carried out as described in 

section 3.4.1. A typical chromatogram from the ester GC analysis is shown in Appendix 

I. It shows traces of the different esters and the internal standard. Each of the peaks 

could be attributed to a different ester. These were identified by analysing various 

standards of pure esters and noting their retention times. The dominant methyl ester in 

the mixture depended on the catalyst used for the cracking. In the case of the 

conventional sulphated zirconia catalyst, the main methyl ester was methyl myristate, 

and others were methyl oleate and methyl linoleate as is evident on the chromatogram. 

For the solvent-free catalyst, methyl oleate was the main ester present in the product 

mixture as revealed on its chromatogram in Appendix I. With the solvent-free catalyst, 

the mixture was composed mostly of unsaturated methyl ester. However, the 

conventionally prepared catalyst produced mainly saturated methyl esters. The peak 

with an asterisk (*) is the trans form of the methyl oleate, as revealed by running the 

trans and cis standards on the GC (see Appendix I). The mass spectra of peaks at a 

retention time between 10.4-13.8 minutes corresponded to methyl ester as identified 

from the GC-MS and compared with the software library showed the trans and cis 

methyl oleate in the sample mixture. This showed the difference in the activity of the 

solvent-free and conventional catalysts. However, more information about the product 
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mixture was obtained by glyceride analysis using GC-MS. This allowed the 

quantification of the triglyceride, diglyceride, monoglyceride and glycerol contents, 

whereas only the ester content was given by the GC. The time required for sample 

preparation and analysis was shorter for the GC than the GC-MS. The analysis took 25 

minutes for the GC and 45 minutes for the GC-MS.  

 

4.4.2 Gas Chromatography/Mass Spectrometry (GC-MS) 

Triglyceride, diglyceride and monoglyceride quantification was determined according 

to the procedure in section 3.4.2. A typical GC-MS chromatogram of a sample cracked 

by the solvent-free catalyst showing the composition of the mixture is shown in 

Appendix J.  Matching the various peaks on the chromatograms with the software 

library on the GC-MS identified the closest compounds exhibiting the mass spectrum. A 

typical mass spectrum of the methyl ester peak from the GC-MS is also shown in the 

same Appendix J. To quantify the glyceride content in the product samples, calibration 

curves were determined for the triglyceride, diglyceride and monoglyceride components 

in the sample in the presence of internal standards 1 and 2. The glyceride GC was 

required in order to obtain the concentrations of the partial glycerides in the reaction 

product mixture, which were needed to determine the kinetics of the reaction. The 

calibration curves were determined from the reference solution. A typical 

chromatogram of the calibration standard solution as well as the calibration curves 

based on peak area resulting from the monoglyceride, diglyceride and triglyceride 

content in terms of area are shown in Appendix J respectively. The R
2
 values for the 

mono-, di- and triglycerides are above those in the BS 14105:2003 specifications, which 

give an indication of the precision of the technique. The reproducibility of the analysis 

was checked by calculating the random error for the reference solutions of mono-, di- 

and triglycerides in three different runs and shown in Table 4.10.  

 

 

Table 4.10: Random Error in the Results of Repeated Analysis of the Calibration 

Glycerides Samples using GC-MS 

Standard Mean Standard deviation Error (%) 

Monoglyceride 2.12 0.028 1.32 

Diglyceride 1.27 0.036 2.83 

Triglyceride 2.58 0.057 2.20 
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For the analysis of glycerides, the use of an on-column injector on the GC-MS enhanced 

the reproducibility of the method (Schomburg et al., 1981). Therefore the data can be 

considered to be reliable and can be used in the study of the kinetics of the reaction. 

According to Schomburg et al. (1981); it is more suitable to operate with on-column 

rather than split injection. The on-column injector will not allow for “sample 

discrimination”. Sample discrimination in GCs is when high boiling-point components 

in the sample injected are not volatilized and are preferentially carried away instead of 

entering the column. This tends to occur more with the split column. Calibration curves 

were also produced for the following methyl esters from their standards: palmitate, 

heptadecanoate, stearate, oleate and linoleate (see Appendix J).  

 

The various peaks of methyl ester standard were calibration using GC-MS. However the 

GC-MS was not suitable for quantifying the methyl ester in the sample mixture because 

the esters peaks on the chromatogram overlapped, and it was therefore difficult to 

determine the area under each peak. For the case of accuracy and reproducibility 

therefore, the GC-MS was not used to quantity the methyl ester, but rather GC was 

used.  The random error of the results for the total methyl ester content of the product 

mixture using the GC was obtained by repeated manual injection of the samples, and 

was calculated to be +/- 2 wt%. The low percentage error shows that the method is 

acceptable for quantifying the ester concentration in the product mixture.  

 

4.5 Catalyst Screening 

This section is subdivided into three sections which discuss the conversion of 

triglyceride, and the production of methyl ester and other products that were identified. 

 

4.5.1 Triglyceride Conversion 

The catalysts were screened in a batch reactor for their activity in the catalytic cracking 

of triglycerides, as described in section 3.3.1, with the aim of finding the most active 

catalysts and highest selectivities for fatty acid methyl ester. Table 4.11 gives a 

summary of the maximum conversions achieved by the solvent-free and conventional 

catalysts over three hours.   
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Table 4.11:  Conversion in the Cracking of Rapeseed Oil with the Various Catalysts 

Catalyst Conversion 

 

Solvent-free method 

SFM 76 ± 3% 

SFM* 78 ± 4% 

 

Conventional method 

CM 62 ± 2% 

CM* 66 ± 2% 

 

Clearly, the catalysts were generally active in converting triglycerides to the products, 

as shown in the conversion profile in Figure 4.47. The conversion profiles within the 

reaction time of three hours are similar in pattern; however, with different values along 

the reaction time.  

 

 

Figure 4.47: Conversion Profile of Triglycerides with the four different Catalysts 

 

The SFM catalyst achieved 76% conversion of the triglycerides used.  Although Garcia 

et al. (2008) reported 98% and 92% conversion with the SFM catalyst but it was in the 

transesterification of soybean oil in the presence of methanol and ethanol respectively. 

To the best of our knowledge the SFM catalyst has not been used in thermocatalytic 

cracking of triglycerides before now. Li et al. (2010) achieved rate of 95% using 

modified sulphated zirconia (doped with titanium oxide) catalyst. Similarly Sun et al. 

(2005) used the SFM catalyst in the esterification of cyclohexanol with acetic acid and 
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reported a rate of 80.4%. However, little is known about its use in thermocatalytic 

cracking. The conventional catalyst, CM, has found wide applications, particularly in 

the isomerization reaction of n-butane to iso-butane with various conversion rates 

depending on the reaction condition. However, Li et al. (2010) achieved 95% 

conversion in the esterification of free fatty acid. The SFM* and CM* are novel 

catalysts in terms of the Zr(OH)4/SO4
2- 

ratio used during preparation and application. 

 

4.5.2 Methyl Ester Production 

The trend of methyl ester yield, as revealed in Figure 4.48, is quite different from the 

conversion pattern seen in Figure 4.47. Of all the catalysts, it was obvious that there was 

loss of methyl esters as the reaction progressed. However, this occurred at different time 

of the reaction and is discussed further in section 4.5.5. 

 

 

Figure 4.48: Methyl Ester Yields with Different Catalysts at 270
o
C within a Reaction 

Time of 3 hours 

 

The solvent-free catalysts exhibited significantly higher maximum yields for methyl 

ester production than the conventional catalysts: at approximately 59% for SFM and 

32% for the conventional catalyst (CM*) after 3 hours of the reaction. However, no 

previous study has revealed such a high yield of methyl esters from the direct cracking 

of triglycerides but with different yields of intermediate hydrocarbon fractions as 
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biofuels. Charusiri and Vitidsant (2005) recorded a rate of 24.5% as their highest yield 

of gasoline from spent vegetable oil over sulphated zirconia at high temperature (400-

430
o
C) and high pressure (10-30bars). There are many reports of the cracking of 

biomass/triglycerides to hydrocarbon fuels from using different types of catalysts, 

ranging from bio-gasoline to biodiesel, however, the yield has depended on the catalysts 

and operating conditions used. Some authors such as Twaiq et al. (1999), reported a rate 

of 28% of gasoline, Kubicka and Kaluza (2010) achieved 40% of n-heptadecane over 

NiMo/Al2O3 at 260
o
C, Ooi et al. (2004) reported 44.4% of gasoline and Tamunaidu and 

Bhatia (2007) achieved 35% yield of gasoline fraction. However, Katikaneni et al. 

(1995b) reported a higher yield of 53% of hydrocarbons using a silica-alumina catalyst 

in the presence of steam at 550
o
C. The differences in methyl ester profiles for each 

catalyst are due to the diverse properties of the catalysts, as described in section 4.1. The 

higher yields of methyl ester using the solvent-free catalysts are attributable to the 

higher concentration of Brønsted acid sites on the surface of the catalysts which is 

achieved through the method of preparation.  

 

Surprisingly, although the CM* catalyst was prepared by the conventional method with 

a smaller amount of sulphuric acid (3.4ml/g of Zr(OH)4 than CM (15ml/g of Zr(OH)4), 

it exhibits a higher maximum FAME yield (31%) than its counterpart (22%). The 

difference is due to the presence of more Brønsted acid sites on the CM* catalyst than 

CM as shown in Figure 4.49. This occurred as a result of a more controlled ratio of 

Zr(OH)4/H2SO4 used in the preparation of CM* rather than the conventional method. 

The pyridine-Brønsted integrated area was 68% of the total for CM* compared to 33% 

for the CM catalyst, as shown in Figure 4.49. This implies that Brønsted acid sites are 

more critical in the catalytic conversion of triglycerides to methyl esters. This is very 

clear in the comparison with the solvent-free catalysts with higher Brønsted acid sites 

and higher methyl ester yields. Generally the solvent-free catalysts have higher 

concentrations of acid sites. No doubt the Lewis acid sites are involved in the formation 

of other products, but its activity towards FAMEs in this reaction is lower as shown by 

the CM catalyst in Figure 4.49. 
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Figure 4.49: Percentages of FAME Yields Compared with the Brønsted and Lewis Acid 

Sites Concentration on the Catalysts 

 

From the above Figure (Figure 4.49), it has been shown that the activity and selectivity 

for methyl ester depend on the Brønsted sites available on the catalyst. The CM*, SFM 

and SFM* had higher percentage of Brønsted sites then the CM, which followed the 

same trend with their percentage yield in methyl ester. 

 

The drop in the yield of methyl ester after reaction times above 2h for the CM*, SFM 

and SFM* samples and above 1h 50min for the CM sample, as shown earlier in Figure 

4.48, is due to the further breakdown of the methyl ester into other forms. Maki-Arvela 

et al. (2007) also reported the catalytic deoxygenation of esters over Pd supported on 

carbon in the presence of hydrogen to hydrocarbons fuels at 300-320°C and 6-17.5 bar. 

They observed that the catalytic transformation of methyl esters proceeded mainly via 

the decarbonylation of the esters into fatty acids, carbon-monoxide and alkanes. They 

achieved a selectivity of 46% of n-heptadecane at 300
o
C. In another report, Kubickova 

et al. (2005) achieved 70% selectivity for n-heptadecane under the same reaction 

conditions; however, yield was not reported. The catalysts synthesized in this study 

were not just active for fatty acid methyl ester, but in addition exhibited some selectivity 

for esters depending on the type of bond present. Selectivity in the catalytic cracking of 

triglycerides to methyl esters was considered from two different angles under this study: 

(i) saturated and unsaturated methyl esters, and (ii) selectivity to individual methyl 



 

 

132 

 

esters composition. The solvent-free catalysts SFM and SFM* were more selective for 

unsaturated methyl esters at above 75% as shown in Figure 4.50.  
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Figure 4.50: Catalysts Selectivity for Unsaturated Methyl Ester in the FAME product 

Mixture  

 

On the contrary the conventional catalysts CM and CM* were more selective for 

saturated methyl esters, with CM* having a selectivity of approximately 68% after 2h of 

reaction.  

 

4.5.3 Effect of Catalysts on the Chain Length of the Feed (Rapeseed Oil)  

There was a substantial reduction in the percentage of oleic acid chain in the product 

sample compared to the feed. On the other hand there was an increase in the percentage 

of saturated acids compared to 7% in the feedstock as shown in Figure 4.51. This is 

clear evidence of the cracking of the triglyceride molecules, showing that the methyl 

esters produced by solvent-free catalysts comprised mainly of mono- and di-unsaturated 

esters. The catalytic activity of the catalysts is further demonstrated by a comparison of 

the carbon chain length composition of the feedstock with that of the methyl esters from 

the reaction product.  
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Figure 4.51: Percentages of Carbon Chain Length Distribution of Methyl Esters in the 

Product Compared with the Carbon Chain Length in the Feed (Rapeseed oil) 
 

4.5.4 Effect of the Catalysts on Methyl Ester Chain Length 

The average carbon chain length of methyl ester from each of the catalysts, as shown in 

Figure 4.52, further reveals that the CM and CM* were predominantly selective for 

saturated esters while the  SFM and SFM* catalysts were selective for unsaturated 

methyl esters.  

 

 

 

Figure 4.52: Overall Average Carbon Chain Length of Methyl Esters based on Catalyst  
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Furthermore, the carbon chain length distribution of the FAME composition after 

different reaction times clearly indicates the composition of the esters at each stage of 

the reaction. In Figure 4.53 and Figure 4.54 there is a trend of a decrease of C18:1, which 

is the main component in the composition of the feed used for the reaction. There was 

single and double C-C bond cleavage of saturated and unsaturated chains, followed by 

C-H bonds which resulted in chain length reduction as shown in the product profile.  

 

 

Figure 4.53: Selectivity of the CM catalyst to Different Methyl Esters at Different Time 

of the Reaction  
 

 

 

Figure 4.54: Selectivity of the CM* catalyst to Different Methyl Esters at Different 

Time of the Reaction 
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It is well established that radicals are very reactive. In addition to the cleavage of carbon 

bonds the solvent-free catalysts allowed for reactive radicals. With solvent-free 

catalysts, there is likelihood of most cleavage at the carbonyl-oxygen bonds. In addition, 

the availability of more Brønsted acid sites on the catalysts enhanced the different 

reaction of radicals as described by Vonghia et al. (1995a), producing a clearer and 

better distribution of methyl esters of lower molecular weight as shown in Figure 4.55 

and Figure 4.56 than with the conventional catalysts.  

 

 

Figure 4.55: Selectivity of the SFM Catalysts to Different Methyl Esters at Different 

Time of the Reaction 

 

 

Figure 4.56: Selectivity of the SFM* Catalysts to Different Methyl Esters at Different 

Time of the Reaction 
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The significant differences in the distribution of the methyl esters between the two 

classes of sulphated zirconia catalysts prepared are due to the different concentrations 

and strengths of their Lewis and Brønsted acid sites. Although information from the 

literature concerning the reaction mechanism in the direct thermocatalytic cracking of 

rapeseed oil to methyl ester compared to other biofuels is scarce, the following reaction 

schemes in Figure 4.57 could be suggested: 

 

Triglycerides fatty acids alcohols methyl esters

aldehydes

ketenes

catalyst

temp.

in the presence 

of fatty acids

 

 

Aldehydes ketenes  Alkenes
      +

Alkanes

CO H2O

CO2

+
+ ++

 

Figure 4.57: Proposed Mechanism for the Thermocatalytic Cracking of Rapeseed Oil to 

Methyl Esters by Thermocatalytic Cracking 
 

 

The average carbon chain length distribution of each catalyst revealed the selectivity of 

each catalyst to the type of methyl esters produced with respect to reaction time. The 

distributions shown in Figure 4.58 further confirm the differences in selectivity to 

saturated and unsaturated methyl esters at every sampling point in the reaction.   
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Figure 4.58: Average Carbon Chain Length of Methyl Esters in the Product Mixture at 

Various Reaction Times for Three Hours 

 

The reaction is expected to begin with the thermal decomposition of triglycerides into 

fatty acids, which is a relatively rapid and temperature dependent process. With the 

presence of a catalyst with active acid sites, the fatty acid decomposes or cracked into 

alcohols, aldehydes and ketones most of which are present as free radicals that react in 

various ways (Dupain et al., 2007; Katikaneni et al., 1995a). The number of radicals 

that can form in the system is large because triglycerides are a complex and large 

molecules with many C-H and C-C bonds. The alcohols in the reaction medium 

undergo further reaction to produce methyl esters. The formation of esters by this 

mechanism is one of the reaction pathways described  by Kubicka and Kaluza (2010) in 

deoxygenation of rapeseed oils to hydrocarbons in the presence of hydrogen. However, 

there must be high active acid site concentrations to favour the formation of esters, 

because the formation of alcohols, free fatty acids and methyl esters occurs 

simultaneously. The aldehydes, ketones and free fatty acids undergo further cracking 

and processes such as aromatization, alkylation, isomerisation, oligomerization, 

polymerization and condensation occur to form other hydrocarbons, of which some of 

those identified are discussed in section 4.5.5.  

One striking observation is the presence of the peak for methyl heptadecanoate (C17:0) 

in the GC chromatogram of the samples (see Appendix K) when it was analysed 
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without an internal standard. This was further confirmed by comparing the 

chromatogram for methyl heptadecanoate with that of the sample without the internal 

standard, as seen in same Appendix K. The peak at 11.18 minutes corresponded to the 

retention time of methyl heptadecanoate. Thus far no study has reported the production 

of methyl heptadecanoate from the cracking of vegetable oils.   

 

4.5.5 Other Products  

The product distributions shown in Figure 4.59 to Figure 4.62 reveal the presence of 

free fatty acid, diglycerides, other products and the change in the concentration of 

triglyceride in addition to methyl esters in the liquid product mixture. As earlier 

reported in section 4.5.2, there was some loss of methyl esters as the reaction progressed 

which were subsequently converted into hydrocarbons.  The observed reaction follows 

well the findings of various studies (Kubicka and Kaluza, 2010; Osmont et al., 2007; 

Kubickova et al., 2005) of the decarboxylation of vegetable oils, fatty acids and esters 

to hydrocarbon fuels. There is a clear correlation between later free fatty acid (FFA) 

formation and FAME loss. Except with the SFM and CM* catalysts, the higher the 

methyl ester loss the higher the free fatty acids formed. This is because the esters 

decomposed in the presence of radicals in the reaction mixture. As described by the 

mechanism shown in Figure 4.57, the formation of esters is a reversible reaction. 

Therefore, there must be a high active acid site concentration on the catalyst to favour 

the forward formation of methyl esters.  
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Figure 4.59: CM Catalysed Reaction Profile, 2wt% Catalyst at 270
o
C, Indicating the 

Product Mixture at Different Reaction Time 
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Figure 4.60: CM* Catalysed Reaction Profile, 2wt% Catalyst at 270
o
C, Indicating the 

Product Mixture at Different Reaction Time 
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Figure 4.61: SFM Catalysed Reaction Profile, 2wt% Catalyst at 270

o
C, Indicating the 

Product Mixture at Different Reaction Time 
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Figure 4.62: SFM* Catalysed Reaction Profile, 2wt% Catalyst at 270

o
C, Indicating the 

Product Mixture at Different Reaction Time 
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These compounds were also identified by Idem et al. (1996) in the cracking of canola 

oil. Other products identified using GC-MS included ethyl iso–allocholate (C26H44O5), 

an aldehyde E-14-Hexadecenal (C16H30O) and long chain unsaturated fatty acid alcohol 

(1-Heptatriacotanol, C37H76O). This work is the first to report such long chain 

unsaturated fatty acid alcohol from catalytic cracking of triglycerides. The presence of 

these products could be due to the several reactions such as isomerisation, elimination, 

reduction, aromatization, dehydration and disproportionation that occurred. This was 

earlier reported by Vonghia et al. (1995a) in the deoxygenation of triglycerides to 

aliphatic hydrocarbons (see Figure 2.11) to various alcohols, ketones and hydrocarbon 

products. In addition, monoglycerides were observed in the product streams from the 

conventional catalysts, but these were not evident in the product stream of solvent-free 

catalysts. The reaction scheme for methyl esters decomposition to other hydrocarbon 

products could be described as given in Figure 4.63. This agrees with the study of Maki-

Arvela et al. (2007) in their study of catalytic deoxygenation of  fatty acids and esters to 

n-heptadecane. 

Methyl ester fatty acids hydrocarbons

alkanes

alkenes

aromatics

+
CO2

  or
CO  

Figure 4.63: Reaction Scheme for Methyl Esters and Free Fatty Acids Decomposition 
 

 

The gaseous products identified were methane, CO2, and CO; however, these were not 

quantified. The amounts of water present in the product samples were at negligible 

concentrations which could not be detected even with Karl Fisher reagent.  

 

It is evident from the present results that the production of methyl esters by the 

thermocatalytic cracking of rapeseed oil using sulphated zirconia catalyst is a selective 

reaction which depends on the active acid sites on the catalyst. The cracking of the 

triglycerides into methyl ester and other products in addition to carboxylic acids (FFAs) 

was clearly enhanced by the catalysts, because the thermal cracking of the same 

feedstock at the same temperature yielded only fatty acids without any methyl ester as 

revealed by the GC and GC-MS chromatograms.  
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4.6 Kinetics of the Reaction 

The Arrhenius activation energies of the catalysts were determined using the procedure 

described in section 3.4.5. The reaction rate constant is related to the reaction 

temperature through the Arrhenius equation, so that the overall reaction activation 

energy can be calculated from Equation 4.1 using the reaction rate constant at different 

temperatures. 

 

       
   

 
 
 

 
        

 

Equation 4.1 

 

where: 

A is the pre-exponential factor (the unit depends on the order of the reaction) 

k is the rate constant (the unit depends on the order of the reaction) 

Ea is the activation energy (kJ/mol) 

R is the gas constant (JK
-1

mol
-1

) 

T is the temperature of reaction (K) 

 

The kinetic data for the reaction were obtained by thermogravimetric analysis (TGA) at 

isothermal reaction temperatures of 210
o
C, 240

o
C, 270

o
C and 300

o
C with 2wt% 

sulphated zirconia. The reaction rate was found to increase with increased temperature.  

 

Figure 4.64: Arrhenius Plots for Triglyceride Cracking with SFM Catalysts  
 

 

Activation energies of the catalysts were determined by reformulating Equation 4.1 and 

plotting lnk vs 1/T. Based on the Arrhenius activation energy plots in Figure 4.64 to 
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Figure 4.65 the activation energy (Ea) and the pre-exponential factor (A) were 

determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.65: Arrhenius Plots for Triglyceride Cracking with CM Catalysts 

 

The turnover frequency of the catalysts was determined using Equation 4.2. The 

turnover frequency (often designated TOF) is a measure of the catalytic activity of a 

catalyst in a reaction. It is simply the number of times that the overall catalytic reaction 

takes place per catalyst site per time for a fixed set of reaction conditions. The kinetic 

data and the turnover frequency for the catalysts are given in Table 4.12.  

  

      
                                         

                                         
 

    Equation 4.2 

 

 

Table 4.12: Activation Energies and Catalytic Activities for the Catalytic Cracking of 

Triglyceride (rapeseed oil) 

Catalyst Activation energy (Ea) 

kJ/mol 

TOF* 

(10
-2

 min
-1

) 

CM 6.92± 2 2.33 

CM* 6.71± 2 4.34 

SFM 5.02± 2 7.41 

SFM* 6.53± 2 6.22 

* Based on the number of acid sites measured by pyridine- DRIFTS analysis 
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The solvent-free catalysts have higher turnover frequency (TOF) than the conventional, 

the SFM having the highest. However, and interestingly the CM* had nearly twice the 

turnover frequency of the CM catalyst. This is a clear indication that although the CM* 

was prepared in the same manner as the CM but the level of the Brønsted acid enhanced 

its catalytic reaction as shown by the turnover frequency. The catalysts were non-porous 

so there was no internal or external mass transfer. The high values of TOF obtained for 

the solvent-free catalysts further support the fact that, under the reaction conditions 

used, thermocatalytic cracking of triglycerides by the catalysts was kinetically 

controlled and no mass transfer limitations were present. 

 

4.7 Catalysts Characterization and Their Catalytic Activity 

Following the various characterization that were carried out on the catalysts the 

characterization results of XRD revealed the morphology of the conventional catalysts 

as crystalline and the solvent-free as amorphous. The FTIR identified their functional 

group as SO4
2- 

and particularly the IR-py, showed the presence of both Lewis and 

Brønsted acid sites on the catalysts. The Lewis sites is an indication that the S=O bond 

was predominant and this was stronger in the conventionally prepared sulphated 

zirconia whereas, it was S-O bond in solvent-free catalysts implying Brønsted acid sites. 

The bisulphate anions were probably responsible for the high Lewis activity of 

sulphated zirconia from the conventional method of preparation. This is attributed to the 

inductive effect of these bisulphate groups which withdraw electron density from the 

three-coordinate zirconium cation through the bridging oxygen. The XPS technique 

which was used to investigate the chemistry at the surface of the catalysts revealed the 

SFM catalyst surface was purely sulphate bonded to zirconia whereas zirconium oxide 

was present on other catalysts in the following order: SFM*< CM* < CM. The catalyst 

with the highest zirconium oxide on its surface was found to be the CM (see Table 4.3). 

Whereas the catalysts from the solvent-free method were found to retain more 

sulphates; with both Lewis and Brønsted acid sites being present, although a Brønsted 

acid site was predominant. Further analysis of the XPS sulphur spectra of the catalysts 

revealed protonated sulphur species on the solvent-free samples. On the other hand, 

deprotonated sulphur species exists on the catalysts prepared by the conventional 

method; however, CM* sample showed less of the deprotonated sulphate species than 

CM sample.  
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From the conversion profile the catalysts were all active in catalytic cracking of 

triglycerides irrespective of the type and the amount of acid sites (Lewis or Brønsted) 

on the catalysts.  The highest conversion was 78% by the solvent-free catalyst while the 

least was 62% by the conventional catalyst. However, the production of methyl ester 

(biodiesel) by these catalysts is quite different from the conversion. The solvent-free 

catalysts were more selective towards the production of methyl ester (59%) and more 

particularly towards unsaturated methyl ester. For the conventional catalysts, the methyl 

ester was of a lower yield (32%) and predominantly saturated. The differences in the 

reactivity and selectivity of these catalysts to producing methyl ester could be attributed 

to the difference in their morphology and acid sites concentration and its activity per site 

(as described in Table 4.12). The solvent-free catalysts were amorphous in nature; had 

more defects on the surface, and defects tend to be higher energy sites that are active for 

reaction and Brønsted-dominated. These imply more surface area and protonated 

sulphate available for the catalytic reaction. In other words more sulphate was on the 

surface of the catalysts. On the other hand, the conventional catalysts were Lewis-

dominated and crystalline. Their crystallinity resulted in lesser surface area that is 

available for the catalytic reaction compared to their counterpart, the solvent-free 

catalysts. The Lewis acid sites and surface sulphate which was predominantly 

deprotonated were responsible for their selectivity for saturated methyl ester. There is a 

relationship between the number of Brønsted acid sites, its activity and the amount of 

methyl ester produced. This was particularly demonstrated between the conventionally 

synthesized sulphated zirconia catalysts. The XPS showed that the CM had more S=O 

than S-O bonds on its surface, explaining its Lewis acidity. Meanwhile, the CM* had 

higher percentage of sulphate-oxygen, indicating more S-O than S=O bonds, which led 

to its Brønsted acidity that resulted into higher yield of methyl ester (32%) compared to 

21% for the CM. Notably, both the Lewis and the Brønsted acid sites were active for the 

catalytic conversion of triglycerides to methyl esters but the Brønsted acid sites was 

more active than Lewis acid sites for the selectivity of methyl ester.  Particularly, higher 

concentration and higher activity per site are needed for unsaturated methyl ester 

production. The study has revealed the possibility of controlling the degree of saturation 

of the methyl ester product by catalyst design. The differences in the characterization of 

the catalysts help to explain the variation in the yield of methyl ester as well as the 

enhanced activity of the solvent-free catalysts cum selectivity.  
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4.8 Coke Deposition and Catalyst Regeneration 

The coke deposited on the catalysts was determined as described in section 3.5.1. The 

coke deposition was presumably due to the adsorption of carbon and hydrocarbon 

molecules on the surface of the catalysts from the reaction mechanism. The results 

showed CM and SFM* had higher carbon weight deposit of 0.54g and 0.24g 

respectively than the SFM and CM*. The least amount of coke was recorded by SFM 

0.23g and 0.34g for the CM* catalyst. The coke deposition could have caused the 

catalysts to deactivate after several hours of the reaction by covering the active sites on 

the catalysts. The results showed 17% of the catalyst weight as carbon deposited on the 

SFM and 25% on the CM* catalyst. The SFM* and CM had 31% and 40% weight of 

catalyst respectively.  

 

4.8.1  Characterization of Regenerated Catalysts 

In order to test whether or not the catalysts could be reused they were regenerated as 

described in section 3.5.3 and characterized. The XPS results for the regenerated 

catalysts revealed similar results as the EDX indicating lost of sulphur from the 

catalysts.  The CM had zero percentage sulphur retention whereas the SFM had 98%. 

However, the SFM* lost a substantial amount of sulphur (20%). There was no change in 

the crystallographical pattern of the regenerated catalysts, the solvent-free catalysts 

were all amorphous and the conventional were crystalline. 

 

4.8.1.1 Test of Leaching 

A Leaching test was conducted as described in section 3.5.2 to determine whether or not 

the sulphate leached during the reaction. After the treatment the catalysts were subjected 

to FTIR and EDX analyses. The results in Figure 4.66 showed that the CM had lost all 

of the sulphate content (100%) after the reaction. Surprisingly, the CM* only lost 16% 

and the SFM* lost 18% whereas the SFM retained almost 100% of sulphur. The SFM 

experienced a loss of only 0.4%. This showed that the solvent-free method was 

appropriate in synthesizing an active catalyst that can be reused, although attention must 

be paid to the molar ratio of sulphate to zirconia. The presence of excess sulphate leaves 

some of the SO4
2-

 ions that are not bonded to the zirconia which allows leaching to 

occur, particularly in CM and SFM* which both had a higher ratio of sulphate of 1:15 

during the preparation. However, the addition of metakolin to the CM and SFM 

catalysts during preparation led to the improved retention of sulphur on the catalysts. 

This was particularly true for the CMM, which lost approximately 5.74% sulphur 
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compared to the CM which lost 100% after three hours of reaction. In other words, the 

bonds between the silicon and sulphate ions in the modified CM catalyst were strong 

enough to avoid the leaching of the sulphate during the reaction despite the preparation 

method used. In the case of the modified solvent-free catalyst (SFMM), there was only 

0.5% sulphur loss. Generally, the solvent-free method has proved to be an effective 

method of synthesizing sulphated zirconia with higher activity and with little or no 

leaching during use. 
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Figure 4.66: Comparison of Sulphur Content (wt %) in Catalyst Before reaction and 

After the Reaction. 
 

 

The leaching observed was not due to the method of preparation, but rather the amount 

of sulphating agent used during the preparation as explained in section 4.1.2.3. 

 

4.9 Varying the Reaction Conditions 

Mass of catalysts and reaction temperature were varied. A limited set of reactions were 

conducted at lower and higher temperatures as reported in section 3.3.1 using a 100ml 

batch micro reactor (Parr Instrument Company; Model 5500). The temperatures tested 

were 210
o
C, 240

o
C and 300

o
C. The reactor had no sampling port, so samples could not 

be collected at intervals as in the previous reactor used (HEL automate system; Model 
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4560). After each experiment it took the reactor 3½ hours to cool to room temperature 

before any sample could be taken. Another issue was the method of injecting the 

catalyst into the reactor. With the HEL automate system reactor, the catalyst was 

injected at the reaction temperature (isothermal reaction), but in the case of the Parr 

micro reactor the catalyst and the rapeseed oil were heated from room temperature to 

the reaction temperature. Although the temperature profiles shown in Figure 4.67 look 

the same, the reaction products are bound to be affected because of the difference in the 

time and temperature at which the catalyst was injected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.67: Temperature Profile for the Reactors  

 

 

From Figure 4.67, A is the HEL automate system and B is the Parr micro reactor. Using 

a GC, no FAME was identified. This could be due to further reaction of the FAMEs to 

other biodiesel/hydrocarbon products, since it was not possible to monitor the progress 

of the reaction within the reactor. Even when a sampling port was attached to the reactor 

there was no FAME in the liquid samples. Probably because the catalysts were added to 

the feed at the beginning of the reaction and different reactions would have taken place 

in the reactor before the 3 hours sampling time.  

 

4.10 Catalytic Activity of Doped Sulphated Zirconia with Metakaolin 

The GC analysis of the liquid product from the modified catalysts had very small peaks 

of methyl ester on the chromatogram. However the GC-MS chromatograms indicated 

clear peaks assigned to methyl esters in addition to other products. It could be that the 

presence of potassium in the modified catalysts resulted to catalyst poison. Further work 
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is required on the pre-treatment of the kaolin and the application of these catalysts as 

well as product analysis. 
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Chapter 5: Conclusions and Further Work 
 

 

5 Conclusions  

In this study conventional wet-precipitation and solvent-free methods were used to 

synthesize sulphated zirconia catalysts with different molar ratios of the sulphating 

agent. Their activity for the direct catalytic cracking of rapeseed oil under similar 

reaction conditions of temperature and pressure in a batch reactor was evaluated. When 

the intrinsic catalytic activities of all of the catalysts were compared on a rate per site  

basis by turnover  frequency (TOF), all  of the catalysts  exhibited  catalytic  activity,  

suggesting that they all have  acid  sites  capable  of  effectively catalyzing triglyceride 

cracking. Differences in the reactivity of the catalysts to give the desired product were 

attributed to their Brønsted acid site concentrations. It has also been shown that the 

tetragonal phase of sulphated zirconia is not necessarily required for Brønsted acid site 

formation, in contrast to the findings of studies reviewed by Song and Sayari (1996). 

The solvent-free method is more economical since no waste is involved in the 

procedure.  

 

5.1 Solvent-free Catalysts (SFM and SFM*) 

Two catalysts prepared by the solvent-free method were SFM and SFM*. The 

difference is in the ratio of sulphating agent to the zirconia during preparation. The 

Zr(OH)4/SO4
2 

ratios were 1:6 and 1:15 for SFM and SFM* respectively. These 

sulphated zirconia catalysts, calcined to 600
o
C, were found to be amorphous in nature 

with higher surface area than those produced by conventional wet methods. Their acid 

sites were principally Brønsted in nature. XPS studies showed that they had higher 

percentages of sulphate-oxygen than oxide-oxygen. The SFM had 93% and the SFM* 

81% of sulphate-oxygen on the surface of the catalyst. This indicated that most of the 

sulphate species bonded to zirconia is on the surface of the catalysts rather than within 

the bulk. This preparation method generated more S-O than S=O bonds on the surface 

of the catalysts, which led to higher Brønsted acidity. Both catalysts were active in the 

thermocatalytic cracking of triglycerides at 270
o
C. In three hours the SFM* achieved 

78% conversion of triglycerides and the SFM 76%. These catalysts were found not just 

to be active, but selectively active towards biodiesel (methyl esters) production. The 

maximum yields of methyl esters achieved by SFM and SFM* were 59% and 49% 

respectively after 2 hours of the reaction. There was a strong correlation between the 
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sulphate-oxygen level on the surface of the catalysts and their activity. The catalytically 

activity of sulphated zirconia has been shown in previous studies (Marcus et al., 2003; 

Zalewski et al., 1999) to be enhanced by the percentage of sulphate-oxygen on the 

catalyst. The catalysts can be regenerated after use; however, the SFM* catalyst was 

found to leach its active species into the reaction. Based on EDX analysis, there was a 

20% loss of sulphur from the SFM* and 0% for the SFM. The XRD pattern of the 

regenerated catalysts was similar to that of the fresh catalysts, indicating that there was 

no phase change in the catalysts during the reaction. The higher conversion and yield of 

SFM is due to the greater amount of pure Zr(SO4)2 on the surface of this catalyst.  

. 

5.2 Conventional Wet-precipitated Catalysts (CM and CM*) 

Based on the ratio of zirconia to sulphuric acid, two catalysts were prepared by 

conventionally wet-precipitated method. The catalyst with 1:6 ratio of Zr(OH)4/SO4
2 

was designated as CM* and CM for 1:15. These catalysts were demonstrated to be 

predominantly crystalline (using XRPD). The CM was tetragonal in nature, while CM* 

exhibited monoclinic phase in addition to the tetragonal phase. Their crystallite sizes 

were found to be 10.5nm and 17.3nm for CM and CM* respectively. The CM was 

Lewis acid-dominated, whereas the CM* was Brønsted acidic. When sulphated with 

15ml of H2SO4 per gram of Zr(OH)4 during preparation, the CM catalyst was found by 

XPS analysis to exhibit 46% sulphate-oxygen on the surface. CM* was sulphated with 

only 3ml of H2SO4, yet exhibited 58% of surface sulphate-oxygen. This showed that the 

CM had more S=O than S-O bonds on its surface, explaining its Lewis acidity. This was 

not the case for the CM* because of the high percentage of sulphate-oxygen, indicating 

more S-O than S=O bonds, which led to its Brønsted acidity. XPS and EDX recorded 

higher sulphur retention of the CM* than the CM, yet more sulphuric acid was used for 

CM during preparation. This clearly showed that the use of a large excess of sulphuric 

acid during preparation had no positive impact on the amount of sulphate retained on 

the catalyst surface. Farcas¸iu et al. (1997) had reported that at higher sulphate loading 

the sulphate moves into the bulk phase of the catalyst rather than on the surface.  

However, both catalysts were catalytically active in the thermocatalytic cracking of 

triglycerides at 270
o
C. The CM and CM* catalysts exhibited similar conversion rates of 

62% and 66%, but different yields of methyl esters. The yield of methyl ester for the 

CM* catalyst was 32% whereas for the CM catalyst it was only 21%. Although CM* 

had fewer Brønsted sites more than its Lewis sites, its activity per site was higher than 

CM for the desired methyl ester product. The difference in methyl ester yield was due to 
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the higher activity of the Brønsted sites on the CM* catalyst. Therefore, increasing the 

amount of sulphuric acid in the wet precipitation method to increase activity was 

counterproductive, as it actually decreased activity towards the desired product. The 

XPS and EDX results for the regenerated CM and CM* catalysts revealed that CM 

catalyst suffered higher sulphur loss during the reaction. The CM completely lost its 

sulphate whereas CM* lost only 16% after the reaction. This means the catalytic 

activity of CM catalyst was affected during the reaction because of sulphate leaching 

rather than carbon deposition on the active sites.  

 

5.3 Meta-kaolin-supported Sulphated Zirconia Catalysts 

The addition of meta-kaolin support was found to improve the physiochemical 

properties of the modified sulphated zirconia catalysts. The properties include: surface 

area, higher S/Zr ratios and acid sites concentration, particularly the Brønsted acidity.  

These properties were higher than those of the unmodified sulphated zirconias (i. e. 

CM, CM*, SFM and SFM*). High BET surface area and homogeneity were achieved 

with the solvent-free method. However the presence of potassium from the meta-kaolin 

on the catalyst poisoned the modified catalysts, which had an effect on their catalytic 

activity and selectivity for methyl esters. Although the catalysts had higher 

concentrations of both Brønsted and Lewis acid sites, their GC chromatograms had very 

small peaks of methyl ester.  

 

5.4 Summary  

Comparing the amount of sulphate used in the preparations, the reduction in methyl 

ester yield observed with the conventional catalysts suggests that the solvent-free 

method facilitates a better interaction between the sulphate groups and zirconia cations. 

In all of the samples it is evident that there is a direct relationship between the number 

of Brønsted acid sites and the amount of sulphate retained on the catalysts. However, it 

is clear that both the Lewis and the Brønsted acid sites were active in the catalytic 

conversion of triglycerides, but the Brønsted acid sites had a more significant effect than 

the Lewis acid sites on the selectivity towards methyl ester production.  

 

Another important observation is that the solvent-free sulphated zirconia exhibited 

higher selectivity for unsaturated methyl esters. Catalysts synthesized via the wet 

precipitation method produced a larger fraction of saturated methyl esters, albeit with a 

lower overall conversion to methyl ester. Hence, the research work has shown that 
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changing the method of catalyst preparation can change the selectivity to methyl ester 

and, within that, selectivity to degree of saturation. This opens up the possibility of 

controlling the degree of saturation of the methyl ester product by appropriate catalyst 

design, in order to produce more or less saturated fuels for different markets. In 

addition, methyl heptadecanoate, which is a commonly purchased internal standard for 

GC methyl ester analysis, was one of the various methyl esters identified in the product 

mixture from the direct cracking of the triglycerides. Another important industrial 

chemical identified is a long chain unsaturated fatty acid alcohol, 1-Heptatriacotanol 

(C37H76O). No previous study has reported the production of methyl heptadecanoate or 

the unsaturated fatty acid alcohol from the cracking of triglycerides.   

 

If selectivity is to methyl esters only, regardless of the saturation of the product, the best 

catalyst is that with the most Brønsted acid sites, that is, a catalyst produced by the 

solvent-free production method. The distinct differences found in this study are 

indications that excess sulphate may not be necessary for the preparation of an active 

catalyst, but rather that the method used is critical. The activation energies are 

consistent and in a narrow range (5-7kJ/mol), indicating that these catalysts probably 

used sites with similar characteristics to carry out the reactions. The direct 

thermocatalytic cracking of triglycerides is thus a promising process for methyl ester 

(biodiesel) production, since the need for alcohol in the conventional transesterification 

process is entirely removed, and there are potential synergies with the cracking of oil. 

Using these catalysts high selectivity for methyl ester is possible and the degree of 

saturation of the methyl esters produced can be tuned. 

 

5.5 Recommendation for Further Work 

The use of crude oils is important if the cost of production is to be kept to a minimum, 

and so the catalysts should be tested with waste and non-edible oils. Information 

obtained from batch reactions of thermocatalytic cracking is fundamental in the 

development of a continuous process. Further research into reaction conditions and the 

use of a continuous process would be beneficial considering that conversions are 

reported to be high, up to 78% in 2
1
/2 hours. Once the optimal conditions and reaction 

system have been identified at the batch level, it will be necessary to perform the 

reactions in a continuous reactor at various conditions in order to optimize the process. 
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Further investigation of the optimum reaction conditions to reduce the reaction time is 

required.  

 

Alternative techniques for the separation of the product mixture into different fractions 

have not been investigated here. Although gas chromatography and gas 

chromatography/mass spectroscopy have proven to be the most effective methods to 

analyse the full spectrum of the product mixture, they are not the cost-effective 

techniques for separation. There may be a need to try techniques such as distillation, 

which could add significant effectiveness to the process by given different product 

range. Further processing of the downstream into various products and chemicals is 

recommended as this will add impetus to the entire process.   

 

Further research on meta-kaolin-supported sulphated zirconia should be conducted to 

avoid the poisoning of catalysts by potassium. Potassium is soluble in water therefore it 

can simply be removed during the pre-treatment of the kaolin to meta-kaolin before 

using it as a support. Its hydroxide is an important industrial chemical and that can add 

value to the process. Unfortunately their catalytic activity yielded no good results 

because of the potassium therefore, their application in thermocatalytic cracking of 

triglycerides should be investigated. 

 

At present, the understanding of the full mechanism of the reaction involved in the 

thermocatalytic cracking of triglycerides to produce methyl esters is underdeveloped, 

and there thus exists the need to refine knowledge of the process ranging, from 

fundamental catalytic chemistry to process optimization performing series of 

experiment at different temperature and catalyst ratio.  
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Surface Area Report 

 

 

 

             BET Surface area              65.263 sq.m/g 

 

             Slope                       0.065920 

             Intercept                   0.000770 

             C_value                       86.648 

             Monolayer Volume             14.9948 cc/g (STP) 

             Correlation Coefficient      0.99998 

 

             One Point BET Surface Area  (Ps/Po=0.3)   63.552 sq.m/g 

 

 

             Analysis Data 

                   Ps/Po          BET Function     Vads  cc/g(STP) 

 

                  0.0536            0.004271             13.270 

                  0.0582            0.004584             13.470 

                  0.0632            0.004927             13.682 

                  0.0695            0.005359             13.943 

                  0.0796            0.006036             14.325 

                  0.1000            0.007392             15.033 

                  0.1196            0.008681             15.655 

                  0.1381            0.009883             16.209 

                  0.1582            0.011199             16.782 

                  0.1784            0.012519             17.351 

                  0.1984            0.013831             17.898 

 

             Interpolated Data 

                   Ps/Po          BET Function     Vads  cc/g(STP) 

 

                  0.0500            0.004066             12.945 

                  0.0800            0.006043             14.389 

                  0.1200            0.008680             15.710 

                  0.1600            0.011317             16.831 

                  0.2000            0.013954             17.916 
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EDX Spectra of the Catalysts 

 

 

SFM 

 

 
EDX Spectra of SFM Catalyst indicating the Various Elements  

 

 

 

 

SFM* 

 
 

EDX Spectra of SFM Catalyst indicating the Various Elements  
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CM 

 
EDX Spectra of CM Catalyst indicating the Various Elements  

 

 

 

 

 

CM* 

 
 

EDX Spectra of CM* Catalyst indicating the Various Elements  
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EDX Spectra of Modified Catalysts 

 

 

Kaolin 

 
EDX Spectra of Kaolin Catalyst indicating the Various Elements 

 

 

 

 

MK (Metakaolin) 

 
EDX Spectra of Matakaolin (MK) Catalyst indicating the Various Elements 
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NCM 

 
  EDX Spectra of NCM Catalyst indicating the Various Elements 

 

 

 

 

 

 

NSFM 

 
EDX Spectra of NSFM Catalyst indicating the Various Elements 
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The Spotted Blue on the Maps is the Indication of the 

Presence of Sulphur Distribution on the Catalysts 
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The Spotted Green on the Maps is the Indication of the 

Presence of Oxygen Distribution on the Catalysts 
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The Spotted Red on the Maps is the Indication of the Presence of 

Zirconia Distribution on the Catalysts 
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A Typical GC Trace from the Ester Analysis of the Product Mixture using Conventional 

Catalyst 

 

 

The 1
st
 peak is methyl myristate, 2

nd
 peak methyl palmitate, 3

rd
 peak methyl 

heptadecanoate, * peak methyl stearate, 4
th

 peak methyl oleate, and 5
th

 peak methyl 

linoleate. 

 

 

 

 
A Typical GC Trace in the Ester Analysis of the Product Mixture using Solvent-free 

Catalyst 
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The Gas Chromatogram of Standard Methyl Oleate for the Determination of Trans and 

Cis Methyl Oleate in the Sample Mixture 
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A Typical GC Chromatogram of the Product Mixture from GC-MS Analysis revealing 

the various compounds in the sample 
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Mass Spectrum of Methyl Ester from the GC-MS 
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A GC Chromatogram for Reference Glycerides Analysis from GC-MS used for 

calibration 

 

 
 

 
Calibration Curve for Monoglyceride from the Reference samples for GC-MS Analysis 
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Calibration Curve for Diglyceride from the Reference samples for GC-MS Analysis 

 

 

 

 

 
 

Calibration Curve for Triglyceride from the Reference samples for GC-MS Analysis 
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GC Chromatogram for Standard Methyl Esters Analysis from GC-MS used for the 

Calibration of Methyl Esters in the Sample 
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GC Chromatogram of Sample from the thermocracking analysed without Internal 

Standard, C17 (methyl heptadecanoate) but the chromatogram indicated the presence of 

methyl heptadecanoate (C17) 

 

 

 

 

 
 

Comparing the GC Chromatograms of Internal Standard and Sample without Internal 

Standard for the Confirming of the C17 Peak 


