
Enhancing Intrusion Resilience in Publicly
Accessible Distributed Systems

Dylan James Clarke

In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

School of Computing Science

Newcastle University

July 2012

Acknowledgements

I would like to thank everyone who has offered me support and advice during my
PhD, especially my supervisor Dr. Paul Ezhilchelvan, Professor Isi Mitrani and my
thesis committee Professor Santosh Shrivastava and Dr. Nigel Thomas.

2

Abstract

The internet is increasingly used as a means of communication by many businesses.
Online shopping has become an important commercial activity and many govern-
mental bodies offer services online. Malicious intrusion into these systems can have
major negative consequences, both for the providers and users of these services.

The need to protect against malicious intrusion, coupled with the difficulty of identi-
fying and removing all possible vulnerabilities in a distributed system, have led to the
use of systems that can tolerate intrusions with no loss of integrity. These systems
require that services be replicated as deterministic state machines, a relatively hard
task in practice, and do not ensure that confidentiality is maintained when one or
more replicas are successfully intruded into.

This thesis presents FORTRESS, a novel intrusion-resilient system that makes use of
proactive obfuscation techniques and cheap off-the-shelf hardware to enhance intrusion-
resilience. FORTRESS uses proxies to prevent clients accessing servers directly, and
regular replacement of proxies and servers with differently obfuscated versions. This
maintains both confidentiality and integrity as long as an attacker does not comprom-
ise the system as a whole.

The expected lifetime until system compromise of the FORTRESS system is compared
to those of state machine replicated and primary backup systems when confronted
with an attacker capable of launching distributed attacks against known vulnerab-
ilities. Thus, FORTRESS is demonstrated to be a viable alternative to building
intrusion-tolerant systems using deterministic state machine replication.

The performance overhead of the FORTRESS system is also evaluated, using both a
general state transfer framework for distributed systems, and a lightweight framework
for large scale web applications. This shows the FORTRESS system has a sufficiently
small performance overhead to be of practical use.

3

Contents

Acknowledgements . 2

Abstract . 3

1 Introduction 18

1.1 Our Approach . 20

1.2 Thesis Objectives . 21

1.2.1 Thesis Statement . 21

1.3 Thesis Contribution . 22

1.4 Thesis Structure . 23

2 Background and Related Work 26

2.1 Synchronous and Asynchronous System Models 27

2.2 Byzantine Consensus . 27

2.3 State Machine Replication . 28

2.4 Intrusion Tolerance . 28

2.5 Proactive Recovery . 29

2.6 Proactive Recovery Wormholes . 30

2.7 Distributed Attacks . 31

2.8 Code Injection Attacks and Defences 32

2.8.1 Code Injection Attacks . 32

2.8.1.1 Buffer Overflow Attack 33

2.8.1.2 SQL Injection Attack 34

2.8.2 Write or Execute Only Memory Pages 34

2.8.2.1 Return-to-libc Attack 34

2.8.3 Address Space Layout Randomisation 35

2.8.4 Instruction Set Randomisation 36

4

2.8.5 Canary Values . 37

2.8.6 Return Address Cloning . 37

2.8.7 Summary of Code Injection Defences 38

2.9 Proactive Obfuscation . 38

2.10 Secret Sharing Schemes . 39

2.11 Proxy Servers . 41

2.12 Additional Hardware . 42

3 The FORTRESS System 44

3.1 System Model . 44

3.2 Attack Model . 44

3.3 Real World Example . 46

3.4 Proactive Fortification of a Distributed Application 47

3.5 The FORTRESS System Model . 48

3.5.1 The Proxy Tier . 48

3.5.2 The Server Tier . 49

3.5.3 Replacement and State Transfer 49

3.5.4 Example of Execution . 50

3.6 Infrastructure for Proactive Obfuscation (IPO) 50

3.6.1 Name Server . 50

3.6.2 Reboot Server . 52

3.6.3 Server Farm . 52

3.6.3.1 Recovery Unit . 52

3.6.3.2 Spare Pool . 52

3.6.4 Controller Unit . 52

3.6.5 Digital Signature Scheme . 54

3.6.6 Secure Private Network . 54

3.7 Security Concerns Arising from the IPO 54

3.7.1 Attacks on the Name Server 54

3.7.2 Exhaustion of the Spare Pool 55

3.7.3 Rebooted Nodes Remaining Compromised 55

3.7.4 Attacks on the Controller Unit 56

3.7.5 Attacks on the Reboot Server 56

5

4 Modelling Intrusion Resilience 57

4.1 Choice of Modelling Methodology . 57

4.2 Modelling Attacks on a Server . 58

4.3 Obfuscation Schemes . 60

4.4 Diversity . 61

4.5 Evaluation Techniques . 62

4.5.1 Markov Chain Techniques . 62

4.5.2 Time Dependent Stochastic Process Techniques 62

4.5.3 Monte Carlo Methods . 63

4.6 Modelling Attacks on the FORTRESS System 65

4.6.1 Attack Model . 65

4.6.2 Server Compromise Probability in the SO and PR Cases . . . 66

4.6.3 Transition Matrices . 67

4.7 Modelling Attacks on the PB System 70

4.8 Modelling Attacks on the SMR System 71

5 Comparison of Intrusion Resilience with Other Systems 78

5.1 General Result . 78

5.1.1 SMR . 80

5.1.2 FORTRESS . 80

5.2 Comparison Without Indirect Attacks 81

5.2.1 Systems with SO or PR Obfuscation Schemes 82

5.2.2 Systems using the PO Obfuscation Scheme 83

5.3 On the Feasibility of Successful Indirect Attacks 89

5.3.1 Systems where Proxies and Servers have the Same Vulnerabil-
ities . 89

5.3.2 Filtering Out Malicious Requests 90

5.3.3 Filtering out Attack Feedback 90

5.3.4 Likelihood of Indirect Attack Impossibility 91

5.4 Intrusion Resilience when Indirect Attacks are Possible 91

5.4.1 Expected Lifetimes of the FORTRESS System with PO and
Indirect Attacks . 92

5.5 Discussion of Results . 97

6

6 State Transfer Support System 101

6.1 State Transfer Mechanisms . 101

6.1.1 Checkpointing and Information to be Transferred 102

6.1.1.1 Short-Lived Computations 102

6.1.1.2 Long-Lived Computations 103

6.1.2 State Transfer Mechanisms . 103

6.1.2.1 Single Transfer . 104

6.1.2.2 Progressive Transfer 104

6.1.2.3 Progressive Transfer with Primary Load Reduction . 105

6.1.2.4 Transfer with Trusted Components 106

6.1.3 Supporting Mechanism Requirements 106

6.2 Design . 108

6.2.1 Requirements . 109

6.2.2 Components . 109

6.2.3 Legacy Code . 110

6.2.4 Legacy Code Wrapper . 110

6.2.4.1 Intercepting Database Updates 111

6.2.4.2 Intercepting Transactions 111

6.2.5 Driver . 112

6.2.6 Timer . 113

6.2.7 Proxy . 113

6.2.8 Execution . 113

6.3 Architecture . 114

6.3.1 Implementation Environment 115

6.3.2 Objects . 115

6.3.3 Mapping Between Design and System Architecture Models . . 120

6.3.4 Execution . 121

7 State Transfer Overhead: A Small-Scale Application 126

7.1 Server Application Architecture: Simplifying Assumptions 126

7.2 Server Application System Architecture Components 128

7.3 Server Application Specific Fortress Components 129

7

7.4 Client Components . 130

7.5 Measurement Strategy . 130

7.5.1 Latency . 130

7.5.2 Throughput . 131

7.5.3 Correctness of Responses and State 131

7.5.4 Overhead Measurement System 131

7.5.5 Experimental Methods . 134

7.5.5.1 Update Interval . 134

7.5.5.2 Heartbeat Interval 135

7.5.5.3 Migration Interval 135

7.6 Results . 135

7.6.1 Update Interval . 135

7.6.2 Heartbeat Interval . 138

7.6.3 Migration Interval . 140

7.7 Summary . 141

8 Applying Proactive Fortification in a Large Scale Web Application
Context 143

8.1 Architecture . 144

8.1.1 Load Balancing . 144

8.1.2 Web Servers . 144

8.1.3 Load Balancing . 144

8.1.4 Application Servers . 145

8.1.5 Database . 145

8.2 Normal Operation . 145

8.3 Adding Proactive Fortification . 145

8.3.1 Consequences of Load Balancing on an Optimal Attack Strategy 147

8.3.2 Analysis of the Effect of a Load Balancer on Malicious Request
Distribution . 149

8.3.2.1 The Probability of Every Request Being Allocated Op-
timally for an Attacker 150

8.3.2.2 A Preliminary Result 151

8.3.2.3 Probability Simulations 152

8

8.4 Implementing a Proactive Fortification System Using the Apache Tom-
cat Application Server . 154

8.4.1 Fortress Timer . 155

8.4.2 Legacy Code Wrapper . 155

8.4.3 Proxy . 155

8.5 Apache Tomcat Implementation: Performance Overhead Evaluation . 155

8.5.1 Evaluation Set-up . 155

8.5.2 Measurement Strategy . 156

8.6 Overhead Measurement for a Simple Web Page with Sessions 156

8.6.1 Session Handling . 157

8.6.2 Heartbeat Interval . 157

8.6.3 Migration Interval . 159

8.7 Testing an Online Shopping Search Page 160

8.7.1 Session Handling . 161

8.7.2 Heartbeat Interval . 161

8.7.3 Migration Interval . 162

8.8 Summary . 165

9 Summary and Conclusions 166

9.1 Summary . 166

9.2 Conclusions . 168

9.3 Future Work . 169

A Procedures for Calculating Expected Lifetimes 177

A.1 Expected Lifetime for the SMR System using the SO or PR Obfuscation
Scheme . 177

A.2 Expected Lifetime for the PB System using the SO or PR Obfuscation
Scheme . 178

A.3 Expected Lifetime for the FORTRESS System using the SO or PR
Obfuscation Scheme . 178

A.4 Expected Lifetime for the SMR System using the PO Obfuscation Scheme180

A.5 Expected Lifetime for the SMR System using the PO Obfuscation
Scheme and Checkpointing Method CP2 181

9

A.6 Expected Lifetime for the FORTRESS System using the PO Obfusca-
tion Scheme . 183

A.6.1 Indirect Attacks Impossible 183

A.6.2 Indirect Attacks Possible . 184

B System Models with Checkpointing Methods CP1 and CP2 186

C Comparison Between Expected Lifetimes for SMR Systems using
the PO Obfuscation Scheme with En-masse Replacement and Check-
pointing Method CP2 188

D Transfer Mechanisms for Systems with State Machine Replication
in the Server Tier 190

D.1 Single Transfer . 190

D.2 Progressive Transfer . 190

D.3 Progressive Transfer with Primary Load Reduction 191

D.4 Transfer with Trusted Components 191

E Correctness, Liveness and Attack Resilience Analysis of State Trans-
fer Mechanisms 193

E.1 Correctness Assumptions . 193

E.2 Single Transfer . 194

E.2.1 Correctness . 194

E.2.2 Liveness . 194

E.2.3 Attack Resilience . 194

E.3 Progressive Transfer . 195

E.3.1 Correctness . 195

E.3.2 Liveness . 195

E.3.3 Attack Resilience . 195

E.4 Progressive Transfer with Primary Load Reduction 196

E.4.1 Correctness . 196

E.4.2 Liveness . 196

E.4.3 Attack Resilience . 197

E.5 Transfer with Trusted Components 197

E.5.1 Correctness . 197

10

E.5.2 Liveness . 197

E.5.3 Attack Resilience . 197

E.6 Hardware Requirements . 198

E.6.1 Single Transfer . 198

E.6.2 Progressive Transfer . 198

E.6.3 Progressive Transfer with Primary Load Reduction 198

E.6.4 Transfer with Trusted Components 198

E.7 Transfer Mechanisms for Systems with Active Replication in the Server
Tier . 199

E.7.1 Correctness . 199

E.7.2 Liveness . 199

E.7.3 Attack Resilience . 200

F State Transfer Overhead: Absolute Values 201

F.1 Update Interval . 201

F.2 Heartbeat Interval . 201

F.3 Migration Interval . 207

G Apache Tomcat Implementation: Absolute Values 210

G.1 Simple Web Page with Sessions . 210

G.1.1 Heartbeat Interval . 210

G.1.2 Migration Interval . 212

G.2 Online Shopping Page . 214

G.2.1 Heartbeat Interval . 214

G.2.2 Migration Interval . 217

11

List of Figures

2.1 Proactive Recovery Wormhole System 31

3.1 System Model . 45

3.2 Attack Model . 46

3.3 The FORTRESS System Model . 48

3.4 Example of Execution of a FORTRESS System 51

3.5 Components of The IPO . 51

4.1 The SMR System . 72

4.2 Reboot Intervals as 4 Varies . 74

5.1 Lifetime comparison. 79

5.2 Relative Expected Lifetimes of S0, S2 as Diversity Varies 89

5.3 EL with 23 Diversity . 93

5.4 EL with 24 Diversity . 93

5.5 EL with 28 Diversity . 93

5.6 EL with 216 Diversity . 94

5.7 EL with 232 Diversity . 94

5.8 EL with 240 Diversity . 94

5.9 EL with Infinite Diversity . 94

6.1 Single Transfer: Processing Phase . 104

6.2 Single Transfer: Transfer Phase . 104

6.3 Progressive Transfer . 105

6.4 Progressive Transfer with Load Balancing 105

6.5 Single Transfer with Trusted Components 106

6.6 Progressive Transfer with Trusted Components 107

12

6.7 System Components - Conceptual Level 109

6.8 Sequence Diagram Showing Normal Execution 114

6.9 Architecture of a Server Node . 116

6.10 Mapping Between Design and System Architecture Models 120

6.11 Activity Diagram of the Execution of the Fortress Timer 122

6.12 Activity Diagram Showing Execution of the Primary 123

6.13 Activity Diagram of Execution of Backup 124

7.1 Measurement - First Unit Time-Step 132

7.2 Measurement - Second Unit Time-Step 132

7.3 Measurement - Third Unit Time-Step 133

7.4 Percentage Increase in Latency as Update Interval Varies 136

7.5 Percentage Increase in Latency as Interval Between Last Scheduled
Update and Migration Varies . 136

7.6 Percentage Decrease in Throughput as Update Interval Varies 137

7.7 Percentage Decrease in Throughput as Interval Between Last Scheduled
Update and Migration Varies . 138

7.8 Percentage Increase in Latency as Heartbeat Interval Varies 139

7.9 Percentage Decrease in Throughput as Heartbeat Interval Varies . . 139

7.10 Percentage Increase in Latency as Migration Interval Varies 140

7.11 Percentage Decrease in Throughput as Migration Interval Varies . . 141

8.1 Large Scale Web Application Architecture 144

8.2 Optimal Allocation of Requests to Web Servers 147

8.3 One Possible Allocation of Requests to Web Servers with a Load Balancer148

8.4 Optimal Strategy for Allocation of Malicious Requests to Web Servers
for a Set of n Keys . 151

8.5 Probabilities of More Than 3 and Less Than 3 Web Servers Being
Successfully Targeted by a Malicious Client for 10 Keys 153

8.6 Probability of Less Than 3 Web Servers Being Successfully Targeted
by a Malicious Client for 20 Keys. 154

8.7 Probability of More Than 3 Web Servers Being Successfully Targeted
by a Malicious Client for 20 Keys. 154

8.8 Increase in Latency as Heartbeat Interval Varies 158

13

8.9 Decrease in Throughput as Heartbeat Interval Varies 158

8.10 Increase in Latency as Migration Interval Varies 160

8.11 Decrease in Throughput as Migration Interval Varies 160

8.12 Increase in Latency Caused by Proactive Fortification as Heartbeat
Interval Varies - 100s Migration Interval 162

8.13 Decrease in Throughput as Heartbeat Interval Varies 162

8.14 Increase in Latency as Migration Interval Varies 164

8.15 Decrease in Throughput as Migration Interval Varies 164

F.1 Latency as Migration Interval Varies 202

F.2 Throughput as Migration Interval Varies 202

F.3 Latency as Heartbeat Interval Varies 203

F.4 Throughput as Heartbeat Interval Varies 204

F.5 Latency as Heartbeat Interval Varies 206

F.6 Throughput as Heartbeat Interval Varies 206

F.7 Latency as Migration Interval Varies 208

F.8 Throughput as Migration Interval Varies 208

G.1 Latency as Heartbeat Interval Varies 210

G.2 Throughput as Heartbeat Interval Varies 211

G.3 Latency as Migration Interval Varies 213

G.4 Throughput as Migration Interval Varies 213

G.5 Latency as Heartbeat Interval Varies 215

G.6 Throughput as Heartbeat Interval Varies 215

G.7 Latency as Migration Interval Varies 217

G.8 Throughput as Migration Interval Varies 218

14

List of Tables

5.1 Expected Lifetimes of Systems with SO and PR Obfuscation Schemes 84

5.2 Expected Lifetimes of Systems with Proactive Obfuscation 85

5.3 Expected Lifetimes of Systems with Proactive Obfuscation 87

5.4 EL of FORTRESS System with 23 Diversity and α = 0.00001 as κ Varies 95

5.5 EL of FORTRESS System with 24 Diversity and α = 0.00001 as κ Varies 95

5.6 EL of FORTRESS System with 28 Diversity and α = 0.00001 as κ Varies 95

5.7 EL of FORTRESS System with 216 Diversity and α = 0.00001 as κ Varies 96

5.8 EL of FORTRESS System with 232 Diversity and α = 0.00001 as κ Varies 96

5.9 EL of FORTRESS System with 240 Diversity and α = 0.00001 as κ Varies 96

5.10 EL of Fortress System with Infinite Diversity and α = 0.00001 as κ
Varies . 96

7.1 Correlation Coefficients - Migration Interval 137

7.2 Correlation Coefficients - Migration Interval 138

7.3 Correlation Coefficients - Heartbeat Interval 139

7.4 Correlation Coefficients - Migration Interval 140

8.1 Probability of Successfully Trying a Key Against 2 Servers with i or
Less Requests . 149

8.2 Maximum Latencies as Heartbeat Interval Varies 159

8.3 Maximum Latencies as Migration Interval Varies 161

8.4 Maximum Latencies as Heartbeat Interval Varies 163

8.5 Maximum Latencies as Migration Interval Varies 163

C.1 Expected Lifetimes of Systems with Proactive Obfuscation 188

F.1 95% Confidence Intervals for Latencies of the FORTRESS System . . 203

15

F.2 95% Confidence Intervals for Throughput of the FORTRESS System 204

F.3 95% Confidence Intervals for Latencies of the FORTRESS System . . 205

F.4 95% Confidence Intervals for Throughputs of the FORTRESS System 205

F.5 95% Confidence Intervals for Latencies of the Primary-Backup System 205

F.6 95% Confidence Intervals for Throughputs of the Primary-Backup System207

F.7 95% Confidence Intervals for Latencies of the FORTRESS System . . 209

F.8 95% Confidence Intervals for Throughput of the FORTRESS System 209

G.1 95% Confidence Intervals for Latencies of the Proactively Fortified System211

G.2 95% Confidence Intervals for Latencies of the Primary-Backup System 211

G.3 95% Confidence Intervals for Throughputs of the Proactively Fortified
System . 211

G.4 95% Confidence Intervals for Throughputs of the Primary-Backup System212

G.5 Correlation Coefficients - Heartbeat Interval 212

G.6 95% Confidence Intervals for Latencies of the Proactively Fortified System213

G.7 95% Confidence Intervals for Throughputs of the Proactively Fortified
System . 214

G.8 Correlation Coefficients - Migration Interval 214

G.9 95% Confidence Intervals for Latencies of the Proactively Fortified System214

G.10 95% Confidence Intervals for Latencies of the Primary-Backup System 215

G.11 95% Confidence Intervals for Throughputs of the Proactively Fortified
System . 216

G.12 95% Confidence Intervals for Throughputs of the Primary-Backup System216

G.13 Correlation Coefficients - Heartbeat Interval 216

G.14 95% Confidence Intervals for Latencies of the Proactively Fortified System217

G.15 95% Confidence Intervals for Throughputs of the Proactively Fortified
System . 218

G.16 Correlation Coefficients - Migration Interval 218

16

Glossary of Notation and Abbreviations

SMR A replicated system using state machine replication for intrusion tolerance.

PB A replicated system using primary-backup replication for fault tolerance.

SO Start-up only Obfuscation

PR Proactive Recovery

PO Proactive Obfuscation

EL Expected Lifetime until System Compromise

17

Chapter 1

Introduction

Distributed systems have become an important part of many businesses, with the In-
ternet being used as a primary means of communication. Online shopping is common
both as an additional service offered by traditional businesses, and as a sole means
of trading. Governmental bodies increasingly offer services online, both to the public
and to other parts of the government, ranging from web forms allowing litter to be
reported, through to systems allowing authorised staff to access sensitive personal
information. Many organisations even access their own internal records through a
distributed application, allowing mobile and off-site working.

This proliferation of distributed systems has resulted in a need for increased security.
Malicious intrusion into one of these systems can have huge negative consequences
for the organisation involved. An attacker who successfully compromises an online
shopping site may be able to defraud the business of large amounts of merchandise,
but this is likely to be one of the smaller concerns of the business owners. More
seriously, an attacker can significantly impair the capability of the business to sell
products. This has the potential to ultimately result in the failure of the business.

For example, an attacker who corrupts the contents of an online shopping site may
cost the business a significant number of sales while the site is unavailable, destroy
or alter records of orders in progress and steal the personal information of customers,
thereby damaging the reputation of the business. Even more seriously, an intruder
into a governmental system may be able to steal or alter health or criminal record
information, potentially resulting in breaches of privacy, the commission of further
crimes, or even the death of the subjects of the records if medical information is
changed, or records of convictions for serious crimes are made public.

This need for increased security is amplified by the fact that the internet is used to
access these systems. The nature of Internet communication means that the systems
are accessed via TCP/IP and packets of data may take arbitrary routes between
sender and receiver. This, coupled with the incredibly large numbers of machines
connected to the Internet, and the public availability of Internet connections, means

18

that anyone who wishes to can attempt to attack these systems, from any location
they choose.

The attacks that may be launched against a distributed system can be grouped into
three categories based on the attributes of a dependable system they attempt to
compromise. We note that originally six attributes of a dependable system were
identified in [17], but only three of these are likely targets for malicious attackers.
The first of these categories is made up of attacks that attempt to compromise the
integrity of a system. These attacks aim to alter existing system data or code in
such a way that the system no longer performs as intended, either due to functioning
incorrectly, or functioning correctly with incorrect data. The second category consists
of attacks that attempt to compromise the confidentiality of a system. These attacks
aim to get unauthorised access to data.

Finally, the third category consists of attacks that attempt to compromise the avail-
ability of a system. Here an attacker will try and prevent the system being available
for use. This can either be through an attack on system integrity that aims to be so
damaging that the system is no longer usable, or by attempting to generate a sufficient
number of malicious requests that the system is unable to handle any other requests
that are sent to it. The latter is known as a denial of service attack.

We note here that the attacks against integrity and confidentiality involve gaining
some sort of unauthorised control over the system being attacked, to change or read
some aspect of the system state. Attacks against availability do not have to have
this characteristic, and can purely be caused by overloading the system with what are
otherwise valid requests.

This distinction results in a corresponding distinction in how these attacks can be
dealt with. Attacks against availability can be mitigated against by increasing the
amount of processing power available until all of the requests can be handled, by
filtering out malicious requests, or by identifying and blocking the attacker. Once
this has been accomplished, the system will continue to perform as before.

Attacks against integrity or confidentiality, in contrast, are not mitigated against
by detecting and stopping them after they succeed. Once an attack is halted, any
corrupted system state is still corrupted, and any stolen information has been stolen,
and in the case of sensitive personal information may now be public knowledge.

This leads to a different strategy having to be used in the case of attacks against
integrity and confidentiality; prevention rather than mitigation once an attack has
succeeded. However, this is complicated by the extreme difficulty of making sure
that software is free of vulnerabilities that may be exploited, and the sheer number
of potential attackers that a distributed system on the Internet may be exposed to.
This results in a need for intrusion tolerance; that is, a system that can withstand the
situation where a vulnerability is exploited and some part of the system is maliciously

19

intruded into, without integrity or confidentiality being compromised.

One key issue with intrusion tolerance is that, as the system needs to be tolerant of
intrusions making use of arbitrary and unknown vulnerabilities, the general assump-
tion is that intrusion involves the attacker managing to take complete control of the
machine intruded into. This includes access to any data held on the machine, and the
ability to do anything that the machine was capable of doing, including altering any
system data. Hence, intrusion tolerant systems require agreement among a number
of diverse machines before any action can be taken, allowing them to survive some
finite number of malicious intrusions.

The number of messages exchanged in the protocols used to make these decisions
grows rapidly as the number of machines increases, so there is a need to keep the
number of machines reasonably small. This is compounded by the cost and difficulty
of writing many diverse versions of the same software, and acquiring sufficient diverse
operating systems and hardware on which to run them.

The need for agreement also results in a need for each of these diverse machines to
produce identical states when given a set of identically ordered inputs. This leads to a
requirement to either remove, or handle the outcomes of all sources of non-determinism
in the system.

1.1 Our Approach

The availability of cheap off-the-shelf hardware has made hardware costs a relatively
small part of IT system costs in general. One way of exploiting this trend to aid in
preserving integrity and confidentiality is to use many in place of one and make it
harder for an attacker to intrude more than a threshold.

Obviously, the many replicas should be non-identical; otherwise the attacker would
succeed using the same strategy for all, once that strategy is worked out. Random-
isation techniques such as those detailed in sections 2.8.3 and 2.8.4 help to generate
diverse replicas with minimal effort. Even then, an attacker, given time, could work
out appropriate strategies to intrude more than the threshold. To prevent this, ran-
domisation ought to be changed regularly for diversity to be replenished.

This technique is termed as proactive obfuscation [45].

There are however two barriers to the use of large amounts of proactively obfuscated
hardware to produce systems with a high degree of intrusion resilience. Firstly, the
number of messages exchanged between replicas will become prohibitively high as
the number of replicas increases. Secondly, the comparison of states between a large
number of differently randomised systems may result in a significant overhead in
marshalling and unmarshalling system states.

20

We attempt to circumvent these issues, and other practical issues around the use of
replication strategies for intrusion tolerance, by instead considering intrusion resilience
schemes that separate machines into two types of node, tolerating intrusions in one
type, while protecting the other type from direct attack. This, coupled with the use
of proactive obfuscation and additional cheap off-the-shelf hardware will be used to
design a protocol that decreases the likelihood of a system being maliciously intruded
into to the point that confidentiality or integrity are compromised.

1.2 Thesis Objectives

The objectives of this thesis are:

• To design an intrusion resilience protocol that can leverage proactive obfusca-
tion techniques and the availability of cheap off-the-shelf hardware. The protocol
should be able to be used to augment existing systems without a need to sig-
nificantly re-write these systems to remove determinism. The protocol should
also be usable in addition to any existing crash or intrusion tolerance measures.

• To statistically evaluate the intrusion resilience of systems using this protocol
across a variety of likely conditions, and compare it to the existing state-of -art
crash and intrusion tolerant protocols. This will allow us to

– (i) identify situations where this protocol is the best choice for intrusion
resilience,

– (ii) identify the trade-offs present in other situations where there is no
overall best protocol

– (iii) identify any situations where this protocol would not be a viable choice.

• To develop an implementation framework for this protocol which will be as
lightweight as possible in terms of overhead and development time required to
use it with a particular system. It will be designed to allow customisation to
any given legacy system.

• To measure the efficiency overhead of this protocol both in relatively small scale
distributed applications and large scale web applications.

These objectives can be summarised in the following thesis statement.

1.2.1 Thesis Statement

This thesis designs an intrusion resilience protocol utilising proactive obfuscation tech-
niques to augment intrusion resilience in existing systems and demonstrates the ap-
plicability of this protocol in a variety of situations through assessing the degree of

21

intrusion resilience and determining the efficiency overhead using an implementation
framework and two specific implementations of test systems.

1.3 Thesis Contribution

The contributions made by this thesis are 4-fold.

The first contribution is to design a novel technique for adding intrusion resilience
to distributed systems. This technique, proactive fortification, which implements
proactive obfuscation, can be used to augment the intrusion resilience of systems
without the necessity to remove all sources of non-determinism. It can also be added
to systems that already make use of another replication strategy to provide fault
tolerance or intrusion tolerance. Furthermore, proactive fortification goes beyond the
usual goal of intrusion tolerance, and helps to guard against losses of confidentiality,
as well as losses of integrity.

The second contribution is a corollary of the first contribution. We show that intrusion
resilience and crash tolerance in distributed systems can be orthogonal issues. It is
possible to augment intrusion resilience with a scheme such as proactive fortification,
allowing the system to survive intrusions into publicly accessible nodes, which may
have already been designed, and even deployed, as a fault-tolerant system. So, what
is on offer is a free choice as to which fault-tolerant replication strategies may be used.

The third contribution is a general comparison of the degree of protection that passive
replication, active replication and proactive fortification can give to a distributed
system. This comparison is performed in such a way that it is abstract enough to
be relevant for a large spectrum of real world attacks. A large range of probabilities
of successful intrusion is considered, without reference to the combination of local
defences and attack techniques that lead to these probabilities. This leads to a model
that is more general than those in [34, 39], allowing replication schemes to be compared
separately from the defences that may be deployed on the individual machines used
in the scheme.

The fourth contribution is an efficiency evaluation of proactive fortification systems.
This consists of two cases. First we evaluate the latency and throughput of a proactive
fortification framework with a sample application running on a common middleware
platform and compare this to the latency and throughput of the same application run-
ning without proactive fortification. Then, we evaluate the latency and throughput
changes when we augment an online shopping application running on Apache Tomcat
web servers with proactive fortification. This second evaluation involves the use of
clustering features available in Apache Tomcat to provide state transfer and heart-
beat messages. This provides a lightweight implementation of proactive fortification,

22

showing that the introduction of proactive fortification can make use of beneficial
features of existing software.

These efficiency evaluations indicate that proactive fortification is a practical solution
to increasing intrusion resilience which can be easily added to a variety of real-world
systems.

1.4 Thesis Structure

The thesis consists of four main parts:

1. Background and related work are considered in Chapter 2.

2. Central concepts are introduced and theoretical performance analysis is carried
out in Chapters 3, 4 and 5.

3. Implementation requirements are identified and system architecture is specified
in Chapter 6.

4. Performance testing is presented in Chapters 7 and 8.

A more detailed summary of the sections is as follows:

• Chapter 2 considers the key issues in system replication and intrusion toler-
ance, then examines common attacks used to intrude into distributed systems.
Current defences to these attacks are considered, as are counter-attacks against
these defences. Protection of integrity is shown to be the main concern of in-
trusion tolerance, with secret sharing schemes providing a method of improving
confidentiality that also has some drawbacks. Finally, the use of proxy servers
as an intrusion resilience mechanism and the costs of using additional hardware
to increase intrusion resilience are considered.

• Chapter 3 begins by considering common design patterns used in building dis-
tributed applications and how systems using these patterns can be proactively
fortified. It then goes on to present the design of the Fortress system, the con-
ceptual model for a proactively fortified system. The modelling assumptions
and system requirements are specified, along with an analysis of the potential
threats introduced by these system requirements.

• Chapter 4 describes our model for assessing the intrusion resilience of a distrib-
uted system. We begin by modelling attacks on an single server system, and
then expand this into models for attacks on the FORTRESS system, SMR sys-
tem and PB system. Evaluation techniques such as Markov Chain Analysis,
Time-Dependent Stochastic Process Analysis and Monte Carlo Simulation are
discussed.

23

• Chapter 5 Uses the models and techniques in Section 4 to compare the intrusion
resilience of the FORTRESS, SMR and PB system. An analytical result is
proved about the relative performance of the active replication systems and
proactive fortification systems under certain conditions. Then, the intrusion
resilience of the three systems is compared more generally. Next, the assumption
that attacks are only possible against publicly accessible nodes is relaxed to allow
attacks to be made against all nodes that handle client requests. The intrusion
resilience of the FORTRESS system is calculated in this case and compared
to the SMR and PB systems analysed previously. Finally, the differences in
intrusion resilience are discussed, illustrating the advantages and disadvantages
of the systems in a variety of different circumstances.

• Chapter 6 examines the requirements for system checkpointing in systems with
short or long lived computations, and hence the requirements for state trans-
fer. It goes on to define four state transfer schemes and consider the advant-
ages and disadvantages of each. It then presents the design of a state transfer
framework for proactive fortification. The software processes required for the
controller unit, proxies and server nodes are defined, along with the interactions
between them. Then, this design is refined to the level of individual objects
within these processes. The implementation environment in which our FORT-
RESS framework was produced is discussed, along with implementation de-
cisions made for each of the components.

• Chapter 7 presents the server application and client components designed for
evaluating the overhead of our FORTRESS framework. Then the evalu-
ation strategy used for determining the overhead of the proactive fortification
framework is detailed. It then presents an analysis of the change in latency
and throughput caused by proactive fortification as the intervals at which state
transfer, system heartbeat and migration occur are varied. Finally, the findings
about the efficiency and practicality of proactive fortification for distributed
applications are summarised.

• Chapter 8 examines the possibility of applying proactive fortification to a large
scale web application. The differences in system architecture between such
an application and the smaller distributed systems we have considered previ-
ously are outlined. The changes these differences may make to our previous
calculations of intrusion resilience are analysed and the likelihood of intrusion
resilience being equal or greater to that of the FORTRESS systems considered
previously is shown. It then presents the design for a proactive fortification of
an Apache Tomcat based online shopping system. This proactive fortification
makes use of the clustering features of Apache Tomcat, and the load balancing
features of Apache HTTP server. Efficiency testing is presented for the online

24

shopping system; latency and throughput are measured and compared to an
unfortified system, both for simple web pages and shopping cart pages that
contain personalised dynamic content. Finally, the findings about the efficiency
and practicality of proactive fortification for large scale web applications are
summarised.

• Chapter 9 summarises the findings of this thesis, and draws conclusions as to
the practicality of proactive fortification as an intrusion resilience mechanism.
Finally, possible future work is discussed.

25

Chapter 2

Background and Related Work

This chapter begins by examining intrusion tolerance techniques and the theory that
underpins them. First, system models using synchronous and asynchronous timing
assumptions are examined (Section 2.1). Next, the nature of Byzantine behaviour
and consensus in the face of possible Byzantine failure is considered (Section 2.2),
then state machine replication is introduced (Section 2.3), and the combination of the
two to provide intrusion tolerance is detailed (Section 2.4). The need for proactive
recovery to bound the time-period in which an attacker has to complete an attack
is then considered (Section 2.5), along with the temporal requirements this adds to
system assumptions, and the need for schemes like proactive recovery wormholes to
provide these requirements (Section 2.6).

The nature of common system attacks and the tools attackers have at their disposal
are considered next. The use of distributed attacks as means to increase attacker
power are considered (Section 2.7) , followed by code injection attacks as an example
of a common specific attack encountered by distributed systems (Section 2.8).

Section 2.8 then catalogues defences against buffer overflow attacks, and the attacks
that in turn have been developed to defeat these defences. These defences are then
summarised, showing a general picture of more uncertainty being added into attacks
as more defences are added.

The concept of proactive obfuscation is shown to be a generalisation of the use of
defences that involve randomisation, and also a way of producing large numbers of
artificially diverse versions of a system (Section 2.9).

The fact that the intrusion tolerance methods considered so far only address integ-
rity is noted, and secret sharing schemes are considered as a possible way of adding
confidentiality to intrusion tolerant systems. The limitations of current secret sharing
schemes are highlighted (Section 2.10).

The use of proxy servers as a way to protect servers from attack by malicious clients
is considered (Section 2.11) . Finally, the use of additional hardware in providing

26

intrusion tolerance or resilience is considered, along with a discussion of where the
major costs in running a system will be found (Section 2.12).

2.1 Synchronous and Asynchronous System Models

A synchronous system model is a distributed system model where all processes have
access to a shared global time, all messages between processes are delivered within a
known time bound, and all local processing operations are performed within a known
time bound [61]. An asynchronous system model is a distributed system model where
there is no shared global time and no timing assumptions are made about message
delivery or local processing [61].

2.2 Byzantine Consensus

Byzantine behaviour is defined as a process performing arbitrary behaviour, which
may include sending messages with arbitrary content to other processes [61]. The
idea of a group of processes, some of which may exhibit Byzantine behaviour, needing
to reach agreement was introduced in [40], although the term Byzantine Generals
Problem, from which Byzantine behaviour is derived, was first used in [33].

Many algorithms have been presented to produce consensus among a group of pro-
cesses in which some may exhibit Byzantine behaviour. Both [40] and [33] provide
algorithms to produce Byzantine consensus.

In [22] it was proven that deterministic consensus is not possible in an asynchronous
system in which one or more processes may crash; this is commonly referred to as
the FLP impossibility. As Byzantine behaviour could include mimicking a crash, this
means that deterministic consensus is also not possible in an asynchronous system
when one or more processes may exhibit a Byzantine fault. This leads to Byzantine
consensus algorithms falling into two main categories;

1. Randomised algorithms.

2. Oracle based algorithms.

Randomised algorithms circumvent the FLP impossibility by being probabilistic: they
have a probability of terminating within any given time period, and this probability
converges to 1 as the time period increases. Examples of randomised Byzantine con-
sensus algorithms include those in [6, 7, 11, 12, 62, 42].

Oracle based algorithms require certain timing assumptions to hold for a sufficiently
long period of time which may not be known a priori. This allows them to use time-
outs to differentiate between non-responsive faulty processes and correct processes

27

that have yet to respond. This technique is known as using an oracle or failure
detector. Using failure detectors to solve consensus is tricky and involves avoiding
incorrect execution steps when the timing assumptions do not hold. The consensus
algorithm was first presented in [15]. Other examples of oracle based algorithms for
Byzantine consensus include those in [5, 19, 20, 24, 31, 35].

Wormholes, which we discuss in the context of intrusion tolerance in Section 2.6,
implement timing assumptions by using a synchronous network for special messages,
alongside an asynchronous system for other messages.

2.3 State Machine Replication

State machine replication involves a service being replicated as several deterministic
state machines [48, 49]. That is, several copies of the service are made that, given
identical inputs, will reach identical states. These replicas may be running identical
software, or may be running diverse executables that respond with logically identical
states when given the same inputs.

All sources of non-determinism must be removed or their outcomes be resolved for
replicas to produce identical states, given that an identically ordered set of inputs is
supplied. This can be a relatively hard task in practice, as sources of non-determinism
include time-stamps, results of system calls, multi-threading and task scheduling.

2.4 Intrusion Tolerance

Intrusion tolerance strategies combine the techniques shown in Sections 2.2 and 2.3
to prevent a loss of integrity when faced by a malicious intruder. The system to
be protected is replicated as a set of deterministic state machines, and a Byzantine
consensus algorithm is used to reach consensus on the order in which client requests
are processed by these replicas. As Byzantine behaviour is completely arbitrary,
the actions of a malicious intruder are simply a worst-case example of Byzantine
behaviour.

Any requests sent to the system are executed by all replicas in an agreed order. The
need for ordering requires the group to achieve consensus on the order in which the
requests are to be executed. This allows the system to maintain integrity when up
to some pre-set number n of replicas have come under the control of a malicious
intruder, as, for small enough n, all correct replicas will still reach consensus on
the correct order of processing, and all correct replicas will process these requests
correctly. Similarly, while a replica under the control of a malicious intruder may
return an incorrect response to a client, the client will receive enough correct, and

28

hence identical, responses to have a majority of correct responses. Hence the client
can trust the majority value to be correct.

Notable among intrusion tolerant systems are those presented in [13, 30, 43]. Among
these systems, there is a requirement for synchrony to hold, starting from an arbitrary
moment for a sufficiently long duration, an assumption that may be unrealistic in real-
world systems prone to attacks.

One major criticism of these intrusion tolerant systems is the danger of any assumption
about the number of replicas that can be compromised failing to hold over a sufficiently
long period of time. A determined attacker may be prepared to continue compromising
replicas without performing any other malicious action until they have compromised
more than the number of intrusions that the system can tolerate. Given a sufficiently
long running system, an attacker that is capable of compromising one replica, an
assumption without which intrusion tolerance would not be needed, will eventually
be able to compromise enough replicas to compromise the system.

This criticism is addressed in [14] and the concept of proactive recovery is introduced.
It is also noted in [64] that, while state machine replication techniques help to provide
integrity they can actually impact confidentiality negatively. This happens because
each replica contains the full system state, and hence one intrusion results in the
attacker obtaining this system state.

A second practical problem with existing intrusion tolerant systems is the need for
state machine replication. The requirement to remove all non-determinism from the
system can add significant time, cost and complexity to a project, and may in some
cases result in the abandonment of intrusion tolerance in favour of crash tolerance
and an attempt to make the system as attack resistant as possible.

2.5 Proactive Recovery

Proactive recovery [14] involves replicas in an intrusion tolerant system being periodic-
ally recovered from a possibly compromised state. After a period of time, each replica
is rebooted, terminating any malicious code and causing any malicious intruder who
has access to the system to lose that access. This reboot may also involve a refresh
of the system software to remove any alterations made to the system by an intruder.
Then, system state is restored to the consensus of the other replicas, eliminating any
past influence of the malicious intruder.

This process happens on a timer whether intrusion of the replica is suspected or not,
removing any risk of an intruder evading the mechanism by concealing the intrusion.
The use of proactive recovery makes an important change in the assumptions made
about an intrusion tolerant system. Instead of the original, possibly unrealistic, as-
sumption that the system will only have up to n replicas intruded in its operational

29

lifetime, the assumption now becomes that the system will have up to n replicas in-
truded during the period of time between proactive recoveries. As this period of time
is bounded, this allows a sufficiently large number of replicas to be included in the
system to ensure that an attacker will not be able to compromise enough of them to
compromise the whole system.

An alternative approach to rebooting replicas and then immediately using them again
is found in [66]. Here, a pool of spare replicas is maintained and when a replica is due
to be rebooted a spare takes its place. The replica then reboots and becomes part of
the pool of spare replicas.

There have been two key criticisms levelled at proactive recovery. Firstly, the assump-
tion that an attacker has a fixed period of time in which to compromise replicas may
be violated by attacks which prevent or slow down the recovery mechanism. This
problem cannot be addressed in an asynchronous system model as time is explicitly
excluded from the model [53, 54].

Secondly, reboot and refresh may not always be enough to return a replica to an
uncompromised state. An attacker who has successfully compromised a replica may
have gained sufficient knowledge in doing so that a simple replay of the attack will
compromise the replica again. In this case, the system will essentially only be as
intrusion tolerant as if proactive recovery was not used.

2.6 Proactive Recovery Wormholes

Wormhole based systems involve the use of a hybrid system model, where a payload
system (that may be synchronous, partially synchronous or asynchronous) and a set
of synchronous wormhole systems coexist, as shown in [56]. The wormhole systems
may also have a synchronous method of communication with each other.

Proactive recovery wormholes [56] are a practical method of using wormholes to ensure
that reboot and refresh in proactive recovery systems does occur within a bounded
time from when it is expected. Each replica has a local proactive recovery wormhole,
a tamper proof hardware module running a real time operating system with a clock
separate from that of the replica. A secure private channel is provided between these
wormholes such that there is timed point-to-point reliable communication between
every pair of wormholes and timed reliable atomic broadcast from one wormhole to
all others is possible. The wormhole clocks are synchronised within a known bound.

Proactive recovery wormholes are assumed only to fail by crashing and at most f
wormholes can crash during the lifetime of the system, where f is the number of
intrusions that can be tolerated by the system. The failure of a wormhole is assumed
to cause the crash of the corresponding replica.

30

Figure 2.1: Proactive Recovery Wormhole System

The payload system performs the normal tasks of processing client requests and reach-
ing consensus in a state machine replicated intrusion tolerant system. The proactive
recovery wormholes govern the proactive recovery of each replica, preventing an ad-
versary from increasing the recovery interval, and preserving availability by ensuring
that the number of replicas rebooting at any given time is smaller than a pre-set
bound.

Figure 2.1 illustrates the structure of a proactive recovery wormhole system with 4
replicas.

2.7 Distributed Attacks

Distributed attacks involve an attacker using multiple pieces of hardware to generate
malicious requests for use in some other form of attack against a publicly accessible
server. These attacks can use much larger numbers of machines than a typical attacker
could be expected to buy, by using entities such as bot-nets [1]. Here an attacker first
compromises a large number of easily compromisable machines and uses them to
launch malicious requests. This is a relatively easy task, as the attacker can target
any machines connected to the Internet, so has a very large pool of systems from
which to find vulnerable ones. Another option for an attacker is to pay for access to
a bot-net created by a third-party for the purpose of selling access.

The possibility of launching distributed attacks means that, except for incredibly large
scale systems, an attacker will generally be able to launch sufficiently many attacks
from a sufficiently diverse set of machines to send malicious requests to as many
system nodes as are available, at a constant rate. For example, the rate at which an
attacker can launch malicious requests against each of four publicly accessible nodes
will be the same as the rate at which an attacker can launch malicious requests against
each of eight publicly accessible nodes.

This means that merely increasing the number of nodes that have to fail before an

31

attacker has compromised the integrity of a system is not a sure way of increasing
the intrusion-resilience. In general the attacker’s rate of launching malicious requests
will just increase as more nodes are made available.

This does not mean however that the attacker’s rate of launching malicious requests
towards each node will be arbitrarily high. In distributed denial of service attacks
it is often the case that bot-nets are used to produce as many requests as possible
[23]. Distributed denial of service attacks specifically attempt to disrupt availability
of a system; generally this is done by using a sufficient volume of requests, TCP
connections or UDP packets to exhaust the system’s capacity to process them. The
distributed attacks that we consider are attacks which attempt to breach the integrity
or confidentiality of a system. Here an attacker does not want to flood the system
with requests to the point that it shuts down. The attacker’s goal actually requires
the system to be sufficiently available to allow them to use it to read or alter system
state.

This results in an upper limit to the number of requests sent in a given period of
time. In practice this upper limit is likely to be set either by the number of requests
the system can process, or the number of malicious requests that can be sent without
causing suspicion among system administrators that will result in additional defences
being applied or legal action being initiated.

2.8 Code Injection Attacks and Defences

Here we catalogue common code injection attacks against vulnerabilities in distributed
systems, and defences that have been developed to stop them. This shows that, while
the techniques developed so far have been unable to eliminate code injection attacks,
they have caused the individual malicious requests launched during code injection
attacks to succeed with a very small probability, necessitating an attacker to launch
a large series of malicious requests before success is likely.

2.8.1 Code Injection Attacks

Code injection attacks involve an attacker generating malicious client requests in an
attempt to run their own code on the machine being attacked. These requests are
designed to take advantage of vulnerabilities in either the code processing the client
requests or the software that runs this code such as a web server or operating system.
Typically, the attacker will be trying to use a vulnerability to cause the operating
system on the client machine to interpret part of the malicious request as being part
of the code it is running. Two common examples of this are the buffer overflow attack
and the SQL injection attack.

32

2.8.1.1 Buffer Overflow Attack

Buffer overflow attacks involve the attacker providing a parameter that is larger than
the buffer allocated for it by the system. The expected behaviour when this happens
would be some sort of error state and a refusal of the request. This is generally what
happens with type-safe languages and defensively programmed systems.

However, in some cases the size of the parameter may not be checked and instead it
is copied into a buffer that is too small for it. One example of where this is possible is
with the string copy function strcpy when programming in C [38]. This function, for
efficiency reasons, leaves bounds checking to be carried out by the programmer using
it, when it is required. Similar efficiency concerns may result in programmers not
performing bounds checking, as they believe that it will have already been performed
on the data before their code receives it. This issue, or simple programmer error, can
result in buffer overflow causing client specified data to be written past the end of the
buffer.

Other common C functions that do not perform bounds checking and can cause this
type of overflow include the string concatenation function strcat, the gets function
which reads a line from the standard input and stores it in a buffer and the sprintf
function which prints to a buffer [38].

When client data is written past the end of the buffer, this will cause other data on
the stack to be overwritten. It is also possible, with a sufficiently long buffer overflow
to overwrite the return pointer for the function handling the data. This then allows
the attacker to include his own return pointer in the overflowed data, causing the
execution of whatever code this pointer targets.

If an attacker includes malicious code in the data which will overrun the buffer and
a new return pointer that points to this code then the code will be run, potentially
allowing the attacker to do anything that the legitimate code had permission to do
on the target system. This use of this procedure is demonstrated in [38].

The attacker does have to know the correct address of the malicious code to send
the return pointer to. This is fairly easy to determine in practice however, using
knowledge of the system architecture and trial and error over a relatively small set
of possible values. The set of values can be further reduced by using a technique
known as a NOP slide or NOP sled [57]. Here a large number of NOP instructions,
instructions that have no effect on the system state, are included before the working
part of the malicious code. Then, if the attacker’s guess for the start address of the
code is anywhere within this region of NOP instructions the malicious code will be
executed just as if the attacker had successfully guessed the address of the start of
the code.

Similar attacks can be produced by overflowing data structures on the heap such as
in [4].

33

2.8.1.2 SQL Injection Attack

SQL injection attacks involve the attacker including control characters in a parameter
so that an attempt to use this parameter in an SQL query will cause the part of the
parameter after the control characters to be interpreted as a new SQL query, entirely
defined by the attacker [26]. This can result in the modification or deletion of any of
the contents of the database that the system has permission to modify.

Normally, SQL injection attacks require the attacker to know the structure of the
database used by the target systems, as queries will only be successfully executed if
they contain the correct names for tables and fields. However, a determined attacker
can use blind SQL injection techniques to attempt to discover names of fields and
tables. This involves crafting SQL injection attacks in such a way that a normal
response will occur if the field or table name is guessed correctly, and a recognisably
different response will occur if the field or table name is guessed incorrectly [26]. Then,
a brute force or dictionary based scheme can be used to attempt to determine the
actual table and field names.

We will mainly consider buffer overflow attacks in this thesis, but it is worth noting
that there are sufficient similarities between buffer overflow attacks and SQL injection
attacks to allow proactive fortification to be effective against SQL injection attacks.

2.8.2 Write or Execute Only Memory Pages

Write or execute only memory pages are a simple technique used to attempt to stop
buffer overflow attacks. Every memory page is given a bit value to mark it as either
writeable or executable [60]. Hence, when the attacker puts malicious code into a
buffer, the memory pages containing this code will be marked as writeable. This
means that when the overwritten return pointer directs control flow to this code it
will not be executed and will instead cause a segmentation fault.

While write or execute only memory pages do stop the standard buffer overflow attack
from succeeding, there is a modified type of buffer overflow attack that they do not
prevent. This is the return-to-libc attack.

2.8.2.1 Return-to-libc Attack

The return-to-libc attack [18, 51] does not place malicious code in the overflowed
buffer. Instead, it overwrites the return pointer with the address of the system function
in the standard C library. This will cause the system function to be executed, in turn
executing whatever kernel function is passed to the system function as a parameter.
The system function will be marked as executable, and no attempt will be made to
execute the malicious code in the buffer, simply to pass its contents to the system

34

function. This allows the attacker to bypass the protection provided by write or
execute only memory pages.

This technique requires the attacker to know or guess the address of the standard C
library. However, this is fairly easy in practice using knowledge of standard system
architecture combined with trial and error over a relatively small set of values.

2.8.3 Address Space Layout Randomisation

Address space layout randomisation (ASLR) involves randomising the positions of
important areas of data within the execution space for a process [59]. This results
in an attacker having to guess the positions of the stack and standard libraries when
attempting a buffer overflow or return-to-libc attack. This means that any given
buffer overflow or return-to-libc attack has a very small chance of success, and can
generally be expected to cause a system crash rather than the execution of malicious
code.

[51] evaluates the effectiveness of ASLR. This evaluation shows that address space
layout randomisation is relatively easy to defeat in practice using brute force methods
when considering 32-bit system architectures. The attack method presented in [51]
makes use of the fact that, in systems designed for high availability, a new process is
usually spawned when an existing process crashes. For example, the Apache HTTP
web server application has a daemon which forks a new process every time a process
crashes. This allows the attacker to launch attacks using each possible randomisation
key in turn until the one that results in the malicious code running is found. Every
unsuccessful guess simply results in the process handling the request crashing and a
new process being spawned.

The average time until a machine using ASLR was compromised in the experiments
performed in [51] was 210 seconds. This shows both that ASLR is insufficient as a
defence mechanism in itself, at least where 32-bit system architectures are concerned,
but is capable of significantly increasing both the time taken for return-to-libc attacks
to succeed and the number of malicious requests required.

A similar method to address space layout randomisation can be used as a defence
against SQL injection attacks. We mentioned in Section 2.8.1.2 that launching a
successful SQL injection attack requires the names of database tables and fields to
be known or guessed. This can be made both more difficult, and unique to each
particular execution of a process, by randomising the names of tables and fields at
run-time. Both the table and field names used in the database and in the code of the
process are identically randomised, so that SQL queries in the code work as normal,
but an attacker has to guess a set of names unique to this process. An alternative to
randomising the database can be used if multiple processes need to access the same
database. A database proxy can be used that makes use of a SQL parser to extract

35

the table and field names from the query and applies the de-randomisation algorithm
to them. Any Table or field names that has been injected into the query will be
de-randomised and, unless the attacker has correctly determined the randomisation
key, will be transformed into invalid table or field names.

2.8.4 Instruction Set Randomisation

Instruction set randomisation [29] involves using an encryption key to encrypt the
machine code instructions that make up each process when it is started. These in-
structions are then decrypted as they are executed. This results in a situation where
anybody wishing to generate valid instructions for a process will need to know the
encryption key. Hence an attacker is not able to inject a runnable code without
determining the encryption key.

One limitation of instruction set randomisation is that it is vulnerable to return-to-
libc attacks, as the return-to-libc attack does not involve injecting code. When a
return-to-libc attack takes place, a system call will be made with the name of a kernel
function, typically one to open a shell, as a parameter. This does not involve the use
of machine code instructions, so will not be affected by instruction set randomisation.

Another major vulnerability of instruction set randomisation are carefully crafted
incremental attacks such as the one detailed in [57]. Here, brute force methods are
used with a 1-byte or 2-byte instruction to discover the part of the key relating to
these one or two bytes. Once this is found, the attacker can then move on to the
next byte, optimising the process by using longer instructions when the keys for a
number of bytes are already known. The experiments performed in [57] showed that
even large randomisation keys resulted in intrusion times of less than an hour using
this technique.

We note that this technique, as with that in [51], significantly increases both the time
taken for an attack to succeed and the number of malicious requests needed. There is
also a requirement for the attacker to be able to determine whether an attempt has
been successful or not, in this case by the monitoring of an open TCP connection.

A method analogous to instruction set randomisation is available as a defence against
SQL injection attacks. SQL instructions can be separately randomised for each ex-
ecutable and de-randomised before being executed. The de-randomisation mechanism
will apply the de-randomisation algorithm to every value that is not semantically iden-
tified as a variable in the SQL statement. Therefore any malicious requests generated
by a SQL injection attack will be de-randomised, and, unless the attacker has suc-
cessfully guessed their randomisation key, this will result in them being invalid SQL
commands, and hence rejected. Alternatively, as in [9], a database proxy can be used
with a SQL parser that has the standard SQL keywords replaced by the randomised
ones. This parser will reject any query that it sees as invalid, including any SQL

36

statement that has been injected without the correct randomisation key being used.
If it receives a valid query then it will simply replace every randomised keyword with
the un-randomised equivalent and pass it to the database.

2.8.5 Canary Values

Canary values (e.g. StackGuard [63]) are a technique to prevent buffer overflow at-
tacks: A value is inserted before each return pointer, and the system checks that this
value is still correct before allowing the function to return. If the value is not correct
then a segmentation fault occurs. This prevents an attacker from overwriting the
return pointer, as they are unable to overwrite the values before it.

There are however two common ways to defeat canary values. The first is to overwrite
the canary value with itself, usually by including the value as part of a string or array.
This does however require the attacker to know the canary value, which can itself be
overcome by using random canary values.

The second method is to overwrite a pointer before the canary value in such a way
that it points to the return pointer, and use this pointer to alter the return pointer.
This can, in turn, be prevented by making the canary value a function of the return
address. Then, any change in the return address would result in the canary value
becoming invalid.

One attack that has been suggested in [10] against canary values that are a function of
the return address is to use overwritten function pointers to determine how the canary
value is calculated from the return address and then overwrite the canary value with
a canary value calculated for the new address.

Other attacks against canary value based systems are demonstrated in [44].

2.8.6 Return Address Cloning

This technique involves copying the return address of a function to a special area of
memory before the function is entered. When the function is about to return there are
two possible actions, depending on the particular implementation of return address
cloning. The first possibility is that the return address in the table is used rather than
the return address on the stack, negating any effect of the return address on the stack
being changed. The second possibility is that the two return addresses are checked,
and if they do not match then execution is terminated.

One way of defeating the first possibility is for the attacker to use a pointer based
attack similar to the ones in [10] to overwrite the values in the return address table,
as suggested in [44]. This will then have the same result as overwriting the return
pointer in an unprotected system. Similarly, the second possibility may be defeated

37

by overwriting both the values in the return address table and the return pointer.
Another attack that is suggested in [44] is making use of the way that execution is
terminated in some implementations of return address cloning to run malicious code
as part of the termination process.

2.8.7 Summary of Code Injection Defences

The defences against code injection considered in Sections 2.8.2-2.8.6 and the attacks
devised to circumvent them show two key trends. As more defences are added to a sys-
tem, attacking that system becomes more complicated and more uncertainty is added
into the outcome of an individual attack attempt. Techniques such as Address Space
Layout Randomisation and Instruction Set Randomisation explicitly add randomised
elements into the system which have to be determined by the attacker. Techniques
such as Canary Values, Return Address Cloning and Write or Execute Only pages con-
strain the types of attacks that can be launched, requiring more complicated attacks
that in turn require more of the randomised structure to be determined.

2.9 Proactive Obfuscation

In [45], schemes such as address space layout randomisation and instruction set ran-
domisation are generalised to produce the concept of proactive obfuscation.

Proactive obfuscation combines two techniques: program obfuscation and periodic re-
obfuscation. An obfuscater takes two inputs, a program P and a secret obfuscation
key k and outputs a program P ′ that is semantically equivalent to P . A vulnerability
in P is also present in P ′; it cannot however be exploited without knowing k.

Program obfuscation is essentially randomization of executables obtained through a
variety of techniques, such as address space layout randomization (ASLR) and instruc-
tion set randomization (ISR), or a combination of them.This then allows artificially
diverse executables to be produced from one piece of code, by applying the chosen set
of randomisations.

Program obfuscation within an SMR system works as follows. All server replicas
have obfuscated executables obtained from a common software P , but each replica is
obfuscated with a distinct, randomly selected obfuscation key. Consequently, if the
SMR system is designed to tolerate at most f intruded replicas, then at least (f + 1)

of the keys used must be determined by the attacker before the vulnerability in P can
be exploited and the system intruded into. Thus, given that the key selection process
is securely carried out, the amount of work required of an attacker to compromise the
SMR system is (f + 1) times the work needed to intrude a single replica.

38

Even though the key-space is large, an attacker can deduce the keys used within
an SMR system over time by launching a series of de-randomization attacks (dis-
cussed in Sections 2.8.3 and 2.8.4). This is mitigated against by the use of periodic
re-obfuscation; replicas are periodically shut down, rebooted, randomized with a dif-
ferent, newly selected k, and initialized with the correct service state. Thus, if an
attacker manages to deduce the key used in a replica, then that advantage is erased
once that replica is re-obfuscated with a different key.

The actual degree of diversity produced by program obfuscation may vary relative to
particular attacks that are attempted against the system.

For example, if address space layout randomisation with δ possible randomisation keys
and instruction set randomisation with ε randomisation keys are used then, from the
point of view of an attacker using a buffer overflow attack where the return pointer
is redirected to malicious code on the stack, there are δε possible executables as this
attack will need to determine both keys.

However, from the point of view of an attacker using a return-to-libc attack there
are δ possible executables. This is because the attack will require determining the
correct address space layout randomisation key to succeed, but will be unaffected by
instruction set randomisation.

The availability of brute force and incremental attacks against randomised systems
suggests that Proactive Obfuscation cannot guarantee complete protection against
buffer overflow attacks. Instead, Proactive Obfuscation has two key aims; to increase
the time taken to compromise a particular executable, and to make the compromise
of different executables independent from each other.

This then allows an active replication system to be produced where individual ex-
ecutables can be replaced by new executables frequently enough that an attacker is
unlikely to be able to compromise sufficient replicas between replacements to com-
promise the system.

While we have considered randomisation as a scheme to reduce the effectiveness of
buffer overflow attacks in this thesis, it is worth noting that randomisation can also
be applied to the structure and naming of SQL tables. This means that Proactive
Obfuscation can also be used as a valid defence against SQL injection attacks.

2.10 Secret Sharing Schemes

Secret sharing, introduced in [8, 52], is a method for maintaining the confidentiality
of a piece of information when malicious intrusion is possible. We noted in Section 2.4
that the state machine replication techniques do not generally improve the likelihood
of confidentiality and in many cases reduce it due to an intrusion into just one replica

39

exposing the full system data to the intruder. In contrast, secret sharing schemes
distribute data in such a way that the data of several replicas will be required before
any meaningful information can be extracted.

Secret sharing has been used in a quorum system to improve the confidentiality of
time-stamped files in [28]. However, as noted in [64], this technique is not generalisable
to storing data that requires processing. If processing is required then, normally,
the data would have to be recovered from the shares, processed and then re-shared.
Hence an attacker could simply compromise one machine and then make a request to
process data. We note that, in some cases, techniques have been produced to allow
encrypted data to be processed without decryption, such as those detailed in [2, 47],
suggesting that techniques for processing shares of data without recovering the data
may be possible. However, the techniques currently available for processing encrypted
data do not allow arbitrary processing, and instead are very limited in the range of
operations that can be performed. e.g. It is possible to perform arbitrary arithmetic
operations on two pieces of encrypted data, resulting in a third piece of data that is an
encryption of the result, but this requires that homomorphic encryptions of these two
pieces of data are individually supplied, rather than being part of a bigger document.

There may also be problems in some application domains with the right to modify
data when secret sharing is used. The quorum system considered in [28] has au-
thorised clients retrieving files and submitting newer versions. Here it is clear that
the client owns the file and is authorised to make arbitrary changes. However, in
some commercial applications there may be a need for authorised clients to be able
to read confidential information and only make certain specified changes to it. The
enforcement of these conditions will be required to sit on the server side, otherwise
an error or malicious behaviour from the client could result in an undesirable system
state occurring. However, this then requires one or more servers to have access to the
unshared data, meaning that compromise of this server will result in confidentiality
being compromised.

An attempt has been made to use secret sharing to protect confidentiality, integrity,
and some cases of availability in [65]. This involves generating shares of values to be
protected and storing them in memory locations generated from each other, making
it hard for an attacker to find the locations of all shares or to reconstruct the values
without recovering enough shares. The alteration of critical values by an attacker,
including some values used in buffer overflow attacks can also be detected through
the use of these shares. However, this scheme will not protect the confidentiality,
or integrity, of data if the entire system is compromised. Instead, it gives added
protection against certain types of intrusion being successful, and protection against
an attacker accessing data without fully compromising the system.

40

2.11 Proxy Servers

Proxy servers present themselves to clients as the system to be accessed. They receive
client requests, pass these requests to the servers that will process the requests, receive
the response from the servers and pass this back to the clients as their own response.
A malicious intrusion into a proxy server does not compromise confidentiality or
integrity as the proxy server does not store system state, it merely passes requests and
responses between client and server. Furthermore, a malicious intrusion into a proxy
server does not compromise availability, as long as there are still other uncompromised
proxy servers available and the client is aware of this.

However, a malicious intrusion into a proxy server may still cause the following un-
desirable consequences:

1. Servers may be given incorrect client requests by an intruded proxy server.

2. Clients may be given incorrect responses by an intruded proxy server.

3. Intruded proxy servers may be used to launch attacks against servers.

Consequence 1 may be discounted in a well designed system, as servers need to be
able to handle and reject incorrect client requests. If this is not the case, then a
malicious third-party could simply generate malicious client requests and pass them
to a correct proxy server to pass to the server with the same effect.

Consequence 2 can be mitigated by the use of digital signatures to allow the client
to check that the response they have received is the response that was sent by the
server. This will however necessitate that the proxy servers are not able to mislead
the client about the public key of the server.

Consequence 3 is essentially unavoidable. However, if the servers are designed with
possibly malicious proxy servers in mind, then this situation is no different from that
encountered by a server that directly receives malicious requests from clients. There
is also a possibility that proxy servers may be harder to intrude than the servers
they pass requests to. This is because proxy servers are likely, in many cases, to be
considerably simpler pieces of software than the servers that actually process client
requests.

Another possible avenue for a malicious intruder when faced by proxy servers is to
attempt to bypass them. That is, to attempt to treat the proxy servers as part of the
communication channel that malicious requests are delivered by, and concentrate on
attacking the servers themselves. We note that, while the de-randomisation attacks
detailed in Sections 2.8.3 and 2.8.4 involve sending a series of malicious requests, and
hence individual requests may bypass proxy servers, the whole attacks are less likely
to.

41

Both of these attacks require the attacker to monitor a TCP connection to see if the
attack has been successful or not, and neither a successful nor unsuccessful attack will
return a valid result. Instead, a successful attack will cause the TCP connection to
stay open longer than an unsuccessful attack. When proxy servers are introduced, the
immediate termination of a TCP connection by the server, as opposed to a short delay
before the connection terminates will not be directly measurable, and the response of
proxy servers may well be identical in both cases.

One possible way of modifying the attacks to provide the needed feedback is to have
the server send a response directly to the client if the attack has been successful.
There are however two practical problems with this. Firstly, system firewalls may
be configured in such a way that this is not possible, and the proxy servers may be
able to screen for invalid responses that are sent via them. This may however be
avoidable if responses are sent via the proxy servers that appear to be valid, but
have some property that is meaningful to the malicious intruder in them. Secondly,
both attacks make use of the injection of very small and simple pieces of code. The
injection of much larger pieces of code to generate a response to the client would not
fit the requirement of one or two byte instructions in the attack against instruction
set randomisation. Similarly, generating a message that can be successfully sent via
a proxy to a particular client may not be possible via a return-to-libc attack, or may
require a much higher level of trial and error than just finding the location of the
system libraries.

2.12 Additional Hardware

Schemes involving state machine replication or the use of proxy servers may require
additional hardware to that used in unreplicated systems without proxies, although
proxies are often already present for use in load balancing. This introduces additional
cost due to the need to purchase, run and maintain this hardware, and also the need
to modify software for schemes like state machine replication. This cost can be split
into five key areas:

1. Hardware purchase cost - The cost of purchasing the additional hardware, in-
cluding any installation and delivery costs. This cost will be an initial expense
in setting up an intrusion tolerant or resilient system.

2. Software purchase cost - The cost of purchasing any additional software licences
and installing this software. This cost will be an initial expense in setting up
an intrusion tolerant or resilient system.

3. Hardware running cost - The cost of energy usage in running the additional
hardware. This cost will be an ongoing expense in running an intrusion tolerant
or resilient system.

42

4. Hardware maintenance cost - The cost of physically maintaining and managing
the additional hardware. This cost will be an ongoing expense in running an
intrusion tolerant or resilient system.

5. Software development cost - The cost of developing custom software or modi-
fying existing software to comply with the requirements intrusion tolerance or
resilience schemes. This cost is both an initial expense in setting up an intrusion
tolerant or resilient system, and an ongoing expense. The ongoing portion of
the expense is caused by the need to make sure that any changes to existing
software maintain compliance with the intrusion tolerant or resilient scheme.

Hardware and software purchase costs are generally fairly low compared to the costs
of running hardware, and developing or modifying software. Hardware maintenance
costs are also relatively low compared to the costs of running hardware and devel-
oping or modifying software, especially when large amounts of similar hardware are
used, allowing economy of scale to be leveraged. This suggests that, while the costs
of additional hardware and software will contribute to the overhead of intrusion tol-
erance or resilience, the majority of the financial overhead will come from running
the additional hardware and making modifications such as removing determinism for
state machine replication.

We note that the costs of running additional hardware are far higher when this hard-
ware is active than when it is in a power saving mode. This means that machines
actively taking part in an active or passive replication protocol or acting as proxies
will contribute far more to the financial overhead than machines that are waiting to
be used as system nodes at a future time.

We also note that often proxy servers are required for other purposes, such as load bal-
ancing, in large systems, and that these servers may be usable for intrusion-resilience
purposes without additional hardware costs.

43

Chapter 3

The FORTRESS System

This chapter presents the system model for the FORTRESS system.

We begin by defining our system model for a publicly accessible distributed system,
followed by the attack model for a publicly accessible distributed system facing the
threats that the FORTRESS system is designed to provide intrusion resilience against.
The system model is illustrated by a real world example. We then present the system
model for the FORTRESS system.

Next, we detail the infrastructure for proactive obfuscation (IPO) a set of supporting
mechanisms needed to enable a FORTRESS system to function. Finally, we consider
the possibilities that these supporting mechanisms may open up to attackers.

3.1 System Model

We define a publicly accessible distributed system to consist of a server with an
internal state. This server accepts and processes requests from clients. When a request
is processed, the server may make changes to its internal state and/or send a response
to the client. The nature of the state change or response is dependent on the identity
of the client, the nature of the request and the current state of the server.

All requests are sent from the clients to the server via unauthenticated channels, so
client identity can only be determined by authentication protocols carried out in the
requests and responses. This system model is illustrated in Figure 3.1

3.2 Attack Model

We consider an attacker with the following objective:

• To modify the system state in a specific unauthorised manner (an attack against
integrity).

44

Figure 3.1: System Model

The attacker is aware of a vulnerability in the server and can attempt to exploit
this vulnerability by sending malicious requests to the server from many malicious
clients that he controls. When a malicious request is processed there are two possible
outcomes. Either the server will be compromised, allowing the attacker to achieve his
objective, or some degradation of performance will occur but the server will not be
compromised. The second outcome will occur if the attacker has failed to correctly
determine details of the server internals needed to exploit the vulnerability.

The attacker may make use of many clients to send repeated malicious requests to
the server. However, the rate at which these requests are sent will not be arbitrarily
fast, as there will be a limit to the rate at which the client can process requests. The
attacker will continue to send malicious requests until the server is compromised.

The attack model is illustrated in Figure 3.2.

The attacker’s strategy may include compromising the authentication details of a
legitimate client through an attack on that client. However, if this results solely
in the performance of actions that the attacked client was authorised to perform,
this model does not consider this a successful intrusion. Instead, it is seen as an an
attack on the client, which is an orthogonal issue. Denial of service attacks are also
considered as an orthogonal issue; they serve as an attack against availability rather
than integrity.

Non-classic attack models can involve attackers targeting system administrators or
users of the same internal network as the server with social engineering or malware

45

Figure 3.2: Attack Model

attacks (e.g. the attacks detailed in [58]) and then using their machines to launch
attacks or gather information to be used in attacks. Attacks against availability, or
attacks designed to partially exhaust system resources, can be used to provoke system
administrators to fail-over to a less secure system, as discussed in [3], or to deploy
mitigation strategies that weaken the intrusion resilience of the system.

This attack model does not consider the use of attacks against availability to weaken
intrusion resilience. Social engineering and malware attacks are not explicitly included
in the model, but some classes of these attacks are implicitly included. We assume
that the attacker knows a vulnerability in the system and has all of the necessary
information to exploit it other than some details of the system internals. The origin
of this knowledge is not specified and could stem from the use of one of these non-
classic attack techniques.

3.3 Real World Example

We illustrate the use of the preceding system model and attack model by mapping
them to an online shopping system with a buffer overflow vulnerability.

Here, the server in the system model refers to a physical machine running a web server
that executes an online shopping application. Client requests may perform three key

46

activities; requesting a product web page, making an order or checking the status of
an existing order. All of these requests will result in the server returning a response
and a request to make an order will result in a change in system state if successful.

System state will include details of all products that are available for purchase and
details of all current and previous orders.

The known vulnerability in the system is an unchecked buffer that will receive the
contents of the “additional delivery information” field from an order request. Mali-
cious requests will consist of order requests in which the “additional delivery field”
is long enough to overflow the buffer and contains malicious code and return pointer
information to attempt to execute this code. Each malicious request will cause the
server to give the attacker full access if that request contains a correct memory offset
in the return pointer information and will cause the execution of this request to fail
if the request contains an incorrect memory offset in the return pointer information.

3.4 Proactive Fortification of a Distributed Applica-

tion

The FORTRESS concept can be used to proactively fortify a system conforming to
the system model presented in Section 3.1. We note that the system model assumes
that all state is stored within the server, and hence will be replicated if the server is
replicated. In many systems there is likely to be a need to transfer information that is
held in persistent storage as well as information about the current application state.
There may also, if a transactional database is used, be a need to transfer transaction
information. This will be considered when we examine state transfer mechanisms,
using a technique similar to that in [41].

Some real-world systems are constructed using the three-tier architecture design pat-
tern. Here the server tier is split into an application-tier and a data-tier. The data-tier
handles any persistent storage that is required on the server side. The application tier
receives requests from the client, and processes them, making requests to the data-tier
to retrieve or update persistent information. When considering a system built using
the three-tier architecture design pattern it may be necessary take the application-tier
as the basic unit for proactive fortification and replication. This leaves the data-tier
unreplicated by our scheme, although we note that it would be possible to use other
replication schemes at the server-tier such as that in [32].

47

Figure 3.3: The FORTRESS System Model

3.5 The FORTRESS System Model

The FORTRESS approach requires introducing a new tier of nodes, which we call
the proxy tier, in front of the server/application tier in two/three tier systems. The
proxy tier, together with infrastructure for proactive obfuscation (IPO) described in
Section 3.6, offer, like ramparts, a defensive platform against attacks on the server
system (hence the name FORTRESS). The system model is illustrated in Figure 3.3.

3.5.1 The Proxy Tier

The proxy tier consists of three proxy nodes. Each of these proxy nodes has an
internal state that includes identities of the nodes in the server tier. The proxy nodes
receive requests from clients and forward these requests to the server tier, and receive
responses from the server tier and forward these to the corresponding client. As proxy
nodes are periodically replaced, each node has a unique identity that enables clients
to send requests to that node. Clients are able to discover the identities of the current
proxy nodes via the IPO, as discussed in Section 3.6.

Each proxy node runs identical software, and hence has identical vulnerabilities. How-
ever, each proxy node is obfuscated in such a way that exploitation of a vulnerability
will require an attacker to determine the unique obfuscation key for that proxy node.

The proxy tier are publicly accessible and hence open to malicious requests from any
client connected to the internet.

48

3.5.2 The Server Tier

The server tier consists of server nodes. Each of these server nodes is a replicated
version of the original server defined in Section 3.1. These server nodes may be
configured as a primary-backup system or an active replication system, or the server
tier may consist of a single, unreplicated node. The nodes in the server tier receive
requests from the proxy tier, process these requests, then send responses to the proxy
tier.

The replicated system used for the server tier will determine whether these server
nodes are obfuscated with identical or unique obfuscation keys; if active replication is
used then the nodes will be have unique keys, if primary-backup replication is used
then the nodes have identical keys. This is due to the fact that one intrusion on the
primary is all that is needed to compromise a primary-backup system, so there is no
benefit in having diversity between the primary and backups.

Nodes in the server tier are not directly accessible by clients. They will only accept
requests from nodes in the proxy tier, update messages from other nodes in the server
tier where appropriate, and control messages from the IPO as specified in Section 3.6.
Each server node has a unique identity that enables proxy nodes to send requests to
that server node and clients to determine that responses have originated from that
server node.

We note one large advantage of the FORTRESS system here. There is no intrinsic
need for the server nodes to be implemented as deterministic state machines, unless
the server tier is configured as an active replication system. This means that proactive
fortification can be used as an intrusion resilience strategy even when it is impractical
to remove all sources of non-determinism from legacy code that needs additional
intrusion resilience.

3.5.3 Replacement and State Transfer

After a set period of time the current proxy and server tiers will be replaced by new
nodes using new diverse executables. This needs to take place in such a way that the
following six requirements must be satisfied:

1. State information is passed from the current server tier to the new server tier
without loss, corruption or the possibility of an attacker maliciously changing
it.

2. All of the new nodes used to replace the server and proxy tiers are free of
malicious intrusions at least until they start processing client requests.

3. All of the nodes in the new proxy tier know the identities of all of the nodes in
the new server tier.

49

4. Clients know the identities of all of the nodes in the new proxy tier.

5. Clients know the public keys required to authenticate the digital signatures of
the new server tier.

6. The overhead of replacement and state transfer in terms of time in which re-
quests are not being processed is minimised.

3.5.4 Example of Execution

We show, in Figure 3.4, the normal execution of client requests for a FORTRESS
system with a server tier consisting of a primary node and 2 backup nodes. Client
requests are sent to the proxy nodes, these requests are in turn forwarded to the
server nodes. The current primary processes the requests, updates the backups in
the standard way for a primary-backup system and returns a response to the proxies
(Figure 3.4.3). Each proxy returns the response to the client (Figure 3.4.4).

The client is responsible for verifying the validity of responses and removing duplic-
ates. Verifying the validity of a response is relatively easy to achieve, as valid responses
will be digitally signed by the server that produced them. If active replication is used
in the server tier then there may also be invalid responses generated by a malicious
intruder who is able to digitally sign them. However, if active replication is used then
there will be more unique responses, as determined by the digital signatures used,
from uncompromised servers than from compromised servers, allowing the client to
choose the majority value as correct.

Removing duplicates is similarly easy, as each response will contain the unique ID
that was included in the request. Compromised proxies will not be able to change
response IDs as they will be digitally signed by the server along with the rest of the
response, and proxies do not have access to the private keys needed to produce valid
digital signatures.

3.6 Infrastructure for Proactive Obfuscation (IPO)

The following supporting mechanisms and the interactions between them are sum-
marised in Figure 3.5.

3.6.1 Name Server

A name server is required to allow clients to determine the identities of the current
proxy nodes and to verify that responses do originate from one of the current server
nodes. It must accept the identities of new proxy and server nodes from the controller

50

Figure 3.4: Example of Execution of a FORTRESS System

Figure 3.5: Components of The IPO

51

unit via a private channel. The name server must provide these identities to any client
that requests them.

In practice, these identities are likely to consist of the IP addresses of the current
proxy nodes, and the public keys of the server nodes for a digital signature scheme.

3.6.2 Reboot Server

The reboot server is a mechanism enabling the physical reboot and refresh of nodes
to ensure that compromised nodes do not remain compromised when they are later
re-used. The reboot server may also need to ensure that nodes choose new obfuscation
keys upon reboot. We assume that the reboot server is capable of instructing a node
to reboot in such a way that it will be rebooted even if it is compromised. This may
involve the use of a power switch that, on receipt of a message from the reboot server,
cuts off and then restores the power to each node after instructing it to shut down.
A mechanism of this type is suggested in [45].

3.6.3 Server Farm

The server farm consists of two sub-components, the spare pool and the recovery unit.
These sub-components, as well as the nodes that are used in the current proxy and
server tiers, are logically rather than physically distinct.

3.6.3.1 Recovery Unit

The recovery unit contains nodes that have been used in a previous server or proxy
tier and have not yet finished being rebooted and refreshed.

3.6.3.2 Spare Pool

The spare pool consists of physical machines available to be used as proxy or server
nodes. When the reboot server has rebooted and refreshed a node, it is removed from
the recovery unit and returned to the spare pool for future use. The controller unit
can keep track of which nodes are in which state as detailed in Section 3.6.4.

3.6.4 Controller Unit

The controller unit has four main functions that it performs periodically, based on
a timer. Firstly it instructs fresh nodes from the server farm to become proxy or
server nodes, and gives the identities of the server nodes to the proxy nodes. Then it
instructs the current server nodes to transfer their state to the new server nodes. Next

52

it provides the name server with the identities of the new proxy and server nodes and
instructs the name server to point clients to the new proxy nodes. Finally, it informs
the reboot server to reboot the old proxy and server nodes.

The server node identities provided to the name server will not enable the client to
send requests to the server tier. Instead, they will allow the client to verify that
responses originate from the server tier, using a digital signature scheme.

One key challenge in the design of the controller unit is the need to determine which
nodes are in the recovery unit and which nodes are in the spare pool, without risking
the controller unit accepting malicious requests from a compromised node. This
is especially problematic when handling proxy nodes or server nodes when active
replication is used in the server tier, as the system model assumes that these nodes
may have been intruded into without the overall system being compromised.

One way in which this challenge can be addressed is as follows:

A hardware module can be installed onto each node. This hardware module has three
actions it can perform. Firstly, it can receive ping messages via the secure private
network from anyone with access to that network. Secondly, it can respond to ping
messages via the secure private network. Thirdly, the hardware module can check if
the node it is installed onto is currently powered on and active.

As this module is hardware based and very simply designed, we can assume that is
considerably more attack resilient than our proxies or servers, and can hence discount
the possibility of an attacker compromising it and using it to send malicious requests
to the controller unit. There is a very real possibility of the hardware module being
unable to tell the difference between a compromised node and an uncompromised
node, however the scheme we propose does not need it to have this capability.

Instead, the controller unit uses the reboot server to send a reboot message that can
be guaranteed to cause the machine to reboot. Then, the controller unit simply uses
pinging the hardware module to find out whether the machine has finished rebooting.

Another way of addressing the challenge of determining which nodes are in the recov-
ery unit and which nodes are in the spare pool is to have the controller unit ping nodes
without the use of a hardware module. This is a riskier proposition, as the controller
unit will have to have an open channel of communication to possibly compromised
nodes. It may however be possible to have the controller unit refuse to accept any
messages from a node that has not yet been physically rebooted by the mechanism
discussed in Section 3.6.2, and to make use of properties of the network to ensure that
messages from such nodes are not spoofed by other compromised nodes.

53

3.6.5 Digital Signature Scheme

Each server makes use of digital signatures to allow the client to check that the
response was generated by the server. This prevents an attacker from compromising
a proxy node and using that proxy to impersonate the server. These digital signatures
will have to be unique to each server if an active replication scheme is used on the
server tier, as an attacker may intrude nodes and hence determine their private keys
without compromising the system. If a passive replication scheme or no replication
scheme is used then there will not be a need for unique private keys, as once the
attacker has intruded a node the entire system is compromised.

3.6.6 Secure Private Network

A secure private network is required that allows the controller unit to send messages
to the name server, reboot server and server farm nodes, and the reboot server to
send messages to the server farm nodes. This network must deliver messages within
bounded time due to timing assumptions on the speed of reboot.

3.7 Security Concerns Arising from the IPO

3.7.1 Attacks on the Name Server

A fundamental issue with the concept of periodically replacing vulnerable components
is that there will always need to be some sort of name server in place to provide
clients with the identities of the components that are currently in use. This then
gives the attacker the option of targeting the name server rather than the replaceable
components.

However, there are two major hindrances to an attacker. Firstly, a compromised name
server does not allow the attacker to compromise system state, or breach confidenti-
ality of the whole system, instead only denial of service or impersonation of the nodes
in the server tier are possible. Secondly, the name server is likely to be much more
resilient to attack than the servers or proxies, as it provides a read-only service to
the clients and will be far less complex than most distributed systems, having a very
limited range of requests it responds to.

We also note that an attack on the name server is analogous to a man-in-the-middle
attack over HTTP [50], or an attack on the DNS server [3]. In each case the client is
led to believe that they are receiving responses from the server when in fact they are
coming from elsewhere. This means that the danger of an attack on the name server
does not open up a new avenue of attack, and instead just reinforces the fact that
authentication of the server to the client is required.

54

The name server is only required to take one pre-set type of request from a client; a
request for the current IP addresses and public keys to be returned. The only other
request that the name server receives is a request from the controller unit to set the
IP addresses and public keys. This request is being sent from a trusted component,
and by a trusted network, so can be assumed to be free of malicious code.

3.7.2 Exhaustion of the Spare Pool

A replacement scheme requires that, at the end of each replacement period, there
is at least one node available in the spare pool for every node that is used during
normal execution of the system. If this number of nodes is not available then either
the system will have to stop processing client requests until the full number of nodes
are available, or some of the previous nodes will have to continue to be used, giving
an attacker a larger time period in which to attack them or make use of previously
compromised nodes.

Exhaustion of the spare pool is likely to be avoidable in practice as the relatively cheap
cost of hardware, coupled with known replacement periods and reasonably predictable
reboot times will enable a sufficiently large server farm to make this risk small. The
choice of a system in which processing stops in the event of exhaustion of the spare
pool will also make whatever small risk remains a risk of lack of availability, rather
than a risk of system compromise.

There is however the possibility that some business situations will require such high
availability that a system in which processing stops is a large financial risk. This is
mitigated by the likelihood of such situations involving sufficiently large amounts of
money to make extra hardware a relatively small expense.

We also note that, as explored in Section 2.12, the majority of costs in software sys-
tems come from system development or modification and hardware running costs.
Additional nodes in the spare pool will not require any additional software develop-
ment or modification costs. Nodes will not be required to perform any processing
while in the spare pool, so power management strategies can be used to significantly
reduce the running costs relative to those of active nodes.

3.7.3 Rebooted Nodes Remaining Compromised

One possible goal for an attacker could be to compromise nodes in such a way that
they stay compromised after they have been rebooted. This would allow the attacker
to gradually fill up the server farm with compromised nodes, resulting in an increasing
likelihood of a compromised node being chosen to be a server node.

The risk of this occurring can be reduced by physically forcing machines to reboot and
then reloading the operating system and all software onto each node from read-only

55

storage during refresh. One example of this is the method presented in [45] where
nodes were rebooted from a custom Linux CD which reloaded the operating system
and software onto the node. We also note that in some cases an attacker may be able
to exploit vulnerabilities to obtain sufficient access to run malicious code on a node,
yet still not have the level of access or the level of knowledge of system architecture
needed to alter the system in such a way that it remains compromised after reboot.

3.7.4 Attacks on the Controller Unit

The controller unit does not receive messages from any other component other than
ping messages generated by secure hardware, or nodes that are guaranteed to have
rebooted if one of the schemes described in Section 3.6.4 is used to check if possible
nodes have finished rebooting. There is a possibility, if the second scheme is used
that a compromised node can send malicious ping messages before it has rebooted.
However, the controller unit will reject these messages as coming from an invalid
sender, making them highly unlikely to be of use as a possible vector of attack.

The controller unit only sends messages via a secure private network and the software
it runs is relatively simple. Hence we discount the possibility of attacks against the
controller unit from an external attacker.

3.7.5 Attacks on the Reboot Server

The reboot server only receives messages from the controller unit, and these messages
are communicated via a secure private network. The software it runs is relatively
simple and all messages it sends are via a private network. Hence, as we are discount-
ing attacks on the controller unit from an external attacker, we also discount attacks
on the reboot server from an external attacker.

56

Chapter 4

Modelling Intrusion Resilience

This chapter presents our strategy for modelling systems and evaluating their intrusion
resilience.

We begin by detailing our choice of modelling methodology and how it compares to
other possibilities. Then, we consider how to evaluate the effectiveness of attacks on
an unreplicated system following the system model presented in Section 3.1 and the
attack model presented in Section 3.2. Next, we explore three techniques that can be
used to calculate the intrusion resilience from this attack model. We then build on
this attack model for an unreplicated system to model attacks against a FORTRESS
system, an SMR system and a PB system.

4.1 Choice of Modelling Methodology

When deciding how to evaluate the intrusion resilience of the FORTRESS system, we
considered two key possibilities:

1. Formal methods

Here a model is produced of the system expressed in a formal language. System
properties and relationships between the properties of different systems can then be
proven mathematically, or by model checking. Model checking involves examining
every possible state that the system can enter and checking that the desired properties
or relationships hold for each of these states.

The main advantage of formal methods is that, when all assumptions made in the
model hold, the system properties are proven to hold. However, when it is shown that
a particular property does not hold for several systems that are being compared, this
does not necessarily give any insight into the relative likelihood of the property being
violated for each system. This has led to statistical extensions being made to formal
models such as stochastic activity networks (SANs) being developed from Petri-nets.

57

The main disadvantage is that, even with the optimisations possible with current
model checking tools, it is often only possible to perform exhaustive model checking
for relatively simple systems as more complex systems can result in a state space
explosion that makes them uncheckable with current technology. This can result in
system models having to be considerably simplified from the real-world system that
they are modelling.

2 Statistical techniques

Statistical techniques involve modelling a system with probabilities attached to events
(e.g. the success of a particular malicious request in compromising a server) and
then calculating expected values or average times of key system properties. The
probabilities used can be experimentally derived from real-world systems, or a range
of probabilities can be considered. In either case, the probabilities chosen become an
implicit assumption of the system.

Statistical modelling of intrusion resilient systems often involves modelling various
stages of an intrusion (e.g. [34, 39]) with probabilities attached to each stage and to
actions such as intrusion detection.

Our modelling methodology: We mainly focus on statistical techniques as these
techniques allow a quantitative comparison between systems when security properties
do not hold with some probability. Our modelling of an intrusion does not involve
multiple actions in an intrusion, but instead treats the intrusion into a system as one
probabilistic event. We also provide a proof that the FORTRESS system is more
intrusion resilient than the SMR system when certain assumptions hold (in Section
5.1), and proofs that the state transfer protocols used in the FORTRESS system
satisfy the properties of safety and liveness (in Appendix E).

We note that it may be possible to produce formal proofs of the relationship between
the FORTRESS, SMR and PB systems in the cases we have considered statistically.
However, this was judged to be a considerably more time consuming process than the
statistical analysis performed, with no guarantee of success, and hence the statistical
analysis was produced instead.

4.2 Modelling Attacks on a Server

We model the susceptibility of an unreplicated server to attack in the following generic
manner:

We define a unit time-step with which to measure system lifetime until compromise.
When considering systems with proactive recovery or obfuscation, this unit time-step
is the period of time in which all servers are recovered.

58

We define the probability of the server being successfully compromised in unit time-
step i as p(i) = αi, 0 < αi ≤ 1.

The expected lifetime until system compromise is then calculated for a range of αi
values.

The rationale behind this modelling technique is a follows:

The attack model presented in Section 3.2 contains an attacker attempting to exploit a
known vulnerability in the server by sending malicious requests from malicious clients.
Whether a given malicious request succeeds in exploiting the vulnerability depends
on whether the attacker has successfully determined the details of the server internals
needed to correctly execute malicious code. These details will include the obfuscation
key when an obfuscated system is attacked.

One of the main difficulties in modelling intrusion attempts is the lack of information
about how an attack will take place. While it is possible to study attacks that have
occurred in the past, the attacks that will occur in the future will fall into two categor-
ies; exploitation of vulnerabilities of a known type that have not been found in testing,
and exploitation of new types of vulnerabilities that have not been encountered be-
fore. When an entirely new vulnerability is exploited there is, by definition, no data
available about the likelihood of success or the steps involved. Moreover, there is
a large variety of known vulnerabilities, with widely differing likelihoods of attacker
success and widely differing methodologies of exploitation. This difficulty is further
amplified by the fact that the rate at which malicious requests can be processed will
be dependent on characteristics of the system being attacked.

Even if we were to obtain reliable data from which to estimate αi values for past
vulnerabilities, we do not know which of these vulnerabilities a given system may
have, or whether it contains a new vulnerability with significantly different αi values.
This leads us to consider the system over a wide range of αi values, in an attempt to
cover all likely values.

There is of course the possibility that, for any range chosen, a vulnerability could
be discovered that has αi values outside of this range. We attempt to mitigate this
possibility by considering a large enough range of αi values that values at the higher
end give such a small lifetime until intrusion that a system would be compromised
immediately and that values at the lower end give an incredibly large lifetime with
regard to that expected in real systems. This then allows us to state that any vulner-
abilities that fall outside of the range considered for the parameters will either be so
serious that no intrusion tolerant or resilient system is likely to withstand them, or
so minor that even an unfortified system is likely to withstand them for a long time.

59

4.3 Obfuscation Schemes

In the preceding section we defined αi to be the probability of an unreplicated server
being compromised in unit time-step i. However, we did not show any relationship
between these α values. We now define three obfuscation schemes, and the relationship
between αi values for each scheme.

1. Proactive Obfuscation (PO): Here, the server is replaced at the end of each unit
time-step by a new server running code that has been obfuscated with a new
obfuscation key.

Here, we define αi = αj,∀i, j ≥ 0 .

This follows from the fact that there is a new obfuscation key chosen for each unit
time-step and hence the attacker will not have previously tried any possible keys
against this executable.

2 Proactive Recovery (PR): Here, the server is running code that has been initially
obfuscated. The server is rebooted at the end of each unit time-step without
any new obfuscation taking place.

Here, we define

αi =

 α0

1−iα0
(1− iα0) > α0

1 (1− iα0) ≤ α0

This is derived in the following manner:

We assume that the server has been obfuscated with one obfuscation key out of a set
of x obfuscation keys, and that the server can process y malicious requests in each
unit time-step. Hence, α0 =

y
x
.

If the server is not compromised during unit time-step 0 then y obfuscation keys have
been tried and found to be incorrect. Hence the attacker will be left with x−y possible
keys, so α1 =

y
x−y = y/x

1−y/x = α0

1−α0
.

Similarly,

αi =
y

x− iy
=

y/x

1− iy/x
=

α0

1− iα0

if there were more than y obfuscation keys left to try at the end of unit time-step
i−1. If there were less than y obfuscation keys left to try at the end of unit time-step
i− 1 then the correct key will be chosen in unit time step i and hence αi = 1.

60

3 Start-up Only Obfuscation (SO): Here the server is running code that has been
initially obfuscated. The server runs continuously without any reboots taking
place.

Here αi is defined the same as when PR is used. We note that this scheme is listed
separately from the PR scheme as when we consider replicated systems the PR and
SO schemes will not always have the same αi values.

4.4 Diversity

When we consider the proactive obfuscation case in the preceding section, the server
is replaced at the end of each unit time-step by a new server running code that has
been obfuscated with a new obfuscation key. As the system makes use of a single
server, we can guarantee that, until the entire system is compromised, the attacker
does not encounter code that is obfuscated with an obfuscation key that has been
discovered in the past.

However, later when we consider systems with more servers it is possible that an
obfuscation key may be re-used that has previously been discovered. Whether the
attacker can quickly determine that he is facing an obfuscation key he has previously
discovered depends on the nature of the obfuscation techniques used, but this may be
possible in some cases. Hence we define the diversity of the system as being one of
the following two cases:

1. When the attacker has no way to determine whether a server is using an ob-
fuscation key he has encountered before we say that the system has infinite
diversity.

We note that the actual number of obfuscation keys is finite, but as the attacker cannot
make use of the fact that one has been re-used, every key chosen can be treated as if
it had never been used before, making the pool of new keys effectively infinite.

2 When the attacker can determine whether the server is using an obfuscation key
he has encountered before we say that the system has x diversity where x is a
positive integer.

We note that some attack techniques may not require the exact value of the obfus-
cation key to be guessed, but instead simply a value near to it. In these cases the
amount of diversity may be smaller than the actual key space from which obfuscation
keys can be drawn.

61

4.5 Evaluation Techniques

4.5.1 Markov Chain Techniques

A Markov Chain is defined in the following way (from Chapter 11 of [25]):

We have a set of states {S1,S2, . . . , Sn}. The Markov Chain starts in one of these
states and moves into another state after each step. The probability of moving from
state Si to state Sj is denoted pij and is independent of any state that the Markov
Chain has been in before state Si.

We note that, as pi,j is independent of any state that the Markov Chain has been
in before state Si, it is also independent of the number of steps that have occurred
before reaching state Si. Hence this technique is only suitable in the cases where we
have constant probabilities for each state transition.

A transition matrix is defined as a matrix with n rows and n columns where the entry
in position i, j is pi,j. This transition matrix is valid for any unit time-step and can
be used to generate the expected lifetime using the following absorbing Markov Chain
method as detailed in Chapter 11.2 of [25].

1. All of the rows and columns relating to a compromised system compromise
are removed from the transition matrix to give a new non-absorbing transition
matrix N .

2. We calculate the expected lifetime

EL =
i=n∑
i=1

Q1i

where

Q = (N − I)−1

and I is the identity matrix.

4.5.2 Time Dependent Stochastic Process Techniques

We define a Time Dependent Stochastic Process to differ from a Markov Chain in
one key detail: Transition probabilities may depend on previous states, and hence on
time.

This allows us to generate a transition matrix for each unit time-step and use the
expected value formula E(X) =

∑x=∞
x=0 xp(x) where p(x) is the probability that the

system will be compromised during unit time-step x, but was not compromised in a

62

previous unit time-step. This allows us to iterate through the unit time-steps in order,
calculating the compromise probability from the transition matrix for each one, and
hence the corresponding term of the expected lifetime until system compromise for
each one.

The following steps are used to generate the expected lifetime until system comprom-
ise.

1. We produce N0 the transition matrix for the first unit time-step.

2. We calculate the probability of system compromise during the first unit time
step by taking p(0) =

∑
jεC N01j where C is the set of all states where the

system is compromised.

3. We produce N ′0, the non-absorbing transition matrix for the first unit time step
by removing all entries N0ij, iεC ∪ jεC from N0.

4. For unit time-step y + 1 we produce the transition matix Ny.

5. We calculate the matrix Q with entries Qij = Nyij
∑a=m

a=0 N
′y − 1ai where m is

the number of rows in N ′y − 1.

6. We calculate p(x) =
∑i=n

i=0

∑
jεC Qij where n is the number of rows in Q.

7. We produce N ′y, the non-absorbing transition matrix for time step y + 1 by
removing all entries Nyij, iεC ∪ jεC from y.

8. We continue this process until y is sufficiently large that
∑x=y

x=0 xp(x) converges.

4.5.3 Monte Carlo Methods

Monte Carlo methods are a sampling technique that can be used to statistically eval-
uate the expected lifetime of Markov chains and time dependent stochastic processes
(among other models).

The techniques shown in sections 4.5.1 and 4.5.2 can be used to calculate expected
lifetimes until system compromise for all of the systems we will consider. However,
there are practical considerations that prevent their analytical evaluation in a number
of cases.

The use of a transition matrix requires that, when there are n possible states, n2

transition probabilities are calculated. This can become problematic when the number
of states becomes very large.

We note that all of the systems we will consider have a small set of possible configur-
ations with regard to node compromise. However, when systems with finite diversity
for node replacement are considered, the state does not just include the configuration

63

of nodes, it also includes the amount of diversity that has been compromised in the
past, and the amount of uncompromised diversity available.

So, when we consider systems with large amounts of diversity, we end up with very
large numbers of states. For example, a system with 4 possible configurations and
216 diversity will have approximately 218 possible states and hence approximately 236

transition probabilities.

We also note that, when large but finite amounts of diversity are available, the trans-
ition probabilities are time dependent even if α is constant. This occurs because
only a small amount of the diversity can be exhausted in each unit time-step, as the
attacker can only attack the diverse executables that the nodes are currently using.
So, for example, the probability of moving from one node compromised in the first
unit time-step to one node compromised in the second unit time-step will be smaller
than the probability of moving from one node compromised in the 100th unit time-
step to one node compromised in the 101st unit time-step as there are likely to be
more previously compromised executables that could be chosen after one hundred
unit time-steps than after one unit time-step.

Hence, it is impractical to analytically calculate the expected lifetimes until system
compromise of systems when large but finite diversity is assumed, and Monte-Carlo
methods are used to evaluate the time-dependent stochastic processes instead. This
involves repeatedly simulating an attack on the system and using the results as a
random sample to estimate the expected lifetime until system compromise. The pro-
cedure is as follows:

1. We define d to be the amount of diversity available and c to be the amount of
diversity that has been compromised so far, and α to be the probability of a
node being intruded in the current unit time-step.

2. Every node is randomly assigned as being previously compromised or not pre-
viously compromised. This is achieved by picking a random integer xiε[0, d] for
each node i and declaring node i to be compromised if xi < c.

3. For each node i that is previously compromised a random decimal ziε[0, 1] is
chosen.

4. If zi < α then node i becomes compromised and c is incremented.

5. The configuration of nodes compromised and uncompromised at this point is
checked against the system compromise conditions.

6. If the configuration is a compromise configuration then the number of unit time-
steps the system survived is recorded.

7. If the configuration is not a compromise configuration then the procedure is
repeated for the next unit time-step.

64

4.6 Modelling Attacks on the FORTRESS System

We begin by extending the attack model in Section 3.2 to address the FORTRESS
system as defined in Section 3.5. This is followed by a derivation of the probabilities of
compromising the server in the SO and PR cases. Finally, we present the transition
matrices for the FORTRESS system under the obfuscation schemes and levels of
diversity considered, and the derivation of these transition matrices.

4.6.1 Attack Model

The attacker is aware of a vulnerability that is present in all of the proxy nodes, and
a vulnerability that is present in all of the server nodes. This may be a common
vulnerability to the proxy nodes and server nodes or a distinct vulnerability in each.
As the goal of the attacker is to compromise system integrity, the attacker wishes to
compromise one or more server nodes. This can be attempted in two ways:

1. Indirect attack - The attacker uses malicious clients to send malicious requests
to the proxy nodes. These requests are not designed to target a vulnerability on
the proxy nodes, but instead to be forwarded to the server and target a server
vulnerability.

2. Direct attack - The attacker uses malicious clients to send malicious requests to
the proxy nodes. These requests are designed to target a vulnerability on the
proxy nodes. Once one or more proxy nodes are compromised, the attacker can
use these proxy nodes to send malicious requests to the server.

We note that in many cases indirect attacks may not be possible, or may take longer
to execute then direct attacks. This is discussed in detail in Section 5.3 and motivates
the following probability definitions:

• αi is the probability of a proxy being compromised in unit time-step i.

This definition follows the same rationale as for the single server case in Section 4.2.

• αi is the probability of a server being compromised in unit time-step i, if at
least one proxy was compromised at the start of unit time-step i.

This definition follows the same rationale as for the single server case in Section 4.2,
as the server is being directly sent malicious requests by one or more compromised
proxy nodes.

• καi is the probability of a server being compromised in unit time-step i, if no
proxy nodes were compromised at the start of unit time-step i.

65

Here we define 0 ≤ κ ≤ 1 to be the indirect attack coefficient. The indirect attack
coefficient is a measure of how much less likely an indirect attack is to succeed then
a direct attack.

We assume that an attacker will simultaneously launch direct attacks against the
proxy nodes and indirect attacks against the server nodes until either the server is
compromised or one or more proxy nodes is compromised. Once a proxy node is
compromised the attacker will then launch direct attacks against the server.

We also expand the compromise conditions to include the case where an attacker has
managed to compromise every proxy node. While this does not allow the attacker to
compromise the integrity of the system state, it does allow the attacker to continue
to directly attack the server while having complete control of any path between a
legitimate client and the server. This condition is sufficiently undesirable that we
consider the FORTRESS system to have been compromised if it is reached.

4.6.2 Server Compromise Probability in the SO and PR Cases

When considering the FORTRESS system with start-up only obfuscation we will also
consider the fact that the attacker can only start to exhaust possible keys for the
server when one or more proxies have been compromised. Hence we will define αis
as the probability of the adversary successfully intruding the primary server in unit
time step i where:

α0s = α0

and

αis =

p(0, i− 1)α0 + (p(1, i− 1) + p(2, i− 1) + p(3, i− 1))αi−1s(1−(i−1)α0)
1−iα0

(1− iα0) > α0

p(0, i− 1)α0 + p(1, i− 1) + p(2, i− 1) + p(3, i− 1) (1− iα0) ≤ α0

where p(c, i) is the probability that c proxy nodes have been compromised and the
primary server has not been compromised at the start of unit time-step i.

We derive these probabilities as follows:

When we reach time-step i there are two possibilities. Firstly, no proxy has been
compromised by the start of unit time-step i− 1. In this case we start unit-time step
i with no keys exhausted for the server. The first term, p(0, i − 1)α0, is simply the
probability of no proxy nodes having been intruded by the start of unit time-step i−1

multiplied by the probability of successful intrusion if no keys had been exhausted for
the server by the start of unit time-step i.

The second possibility is that one or more proxy nodes had been successfully intruded
by the start of unit time-step i. In this case we know that some keys will have been

66

exhausted for the server due to malicious requests launched in unit time-step i − 1.
The second term (p(1, i− 1)+ p(2, i− 1)+ p(3, i− 1))αi−1s(1−(i−1)α0)

(1−iα0)
is the probability

of one or more proxy nodes having been successfully intruded by the start of the unit
time-step i−1 multiplied by the server intrusion probability in unit time-step i−1 and
the change in intrusion probability caused by keys being exhausted in unit time-step
i− 1.

The change in intrusion probability caused by keys being exhausted in until time step
i− 1 is calculated as follows:

The probability of intrusion during unit time-step i − 1 into a node that had been
receiving malicious requests from the beginning of unit time-step 0 is α0

1−(i−1)α0
. The

probability of intrusion during unit time-step i into a node that had been receiving
malicious requests from the beginning of unit time-step 0 is α0

1−iα0
. Hence, the change in

probability of intrusion from unit time-step i−1 to unit time-step i is α0

1−iα0
/ α0

1−(i−1)α0
=

(1−(i−1)α0)
(1−iα0)

when 1 − iα0 > α0. When 1 − iα0 ≤ α0 the number of remaining keys is
less than or equal to the number of keys that can be exhausted in one unit time-step
and hence the probability of an attack successfully intruding into the server is 1.

We note that this change in probability assumes that the server has been receiving
malicious requests from the start of unit time-step 0 and hence may result in a small
underestimation of the expected lifetime of the system. Hence we will be calculating
a lower bound for the expected lifetime of the FORTRESS system with the SO or PR
obfuscation scheme.

4.6.3 Transition Matrices

The SO and PR cases. These two cases are treated identically for the FORTRESS
system.

We define the following states:

0. No proxy nodes are compromised and the server node is uncompromised.

1. One proxy node is compromised and the server node is uncompromised.

2. Two proxy nodes are compromised and the server node is uncompromised.

3. Three proxy nodes are compromised and the server node is uncompromised.

4. No proxy nodes are compromised and the server node is compromised.

5. One proxy node is compromised and the server node is compromised.

6. Two proxy nodes are compromised and the server node is compromised.

7. Three proxy nodes are compromised and the server node is compromised.

67

We note that states 4-8 are the states in which the system is compromised.

The probabilities for the FORTRESS system with SO or PR are time dependent,
giving a time-dependent stochastic process with transition matrix

N =

a3c 3αia
2c 3α2

i ac α3
i c a3καis 3αia

2καis 3α2
i aκαis α3

iκαis

0 a2b 2αiab α2
i b 0 a2αis 2αiaαis α2

iαis

0 0 ab αib 0 0 aαis αiαis

0 0 0 b 0 0 0 αiαis

0 0 0 0 a3 3αia
2 3α2

i a α3
i

0 0 0 0 0 a2 2αia α2
i

0 0 0 0 0 0 a αi

0 0 0 0 0 0 0 1

a = 1− αi

b = 1− αis

c = 1− καis

αi =

 α0

1−iα0
(1− iα0) > α0

1 (1− iα0) ≤ α0

α0s = α0

αis =

p(0, i− 1)α0 + (p(1, i− 1) + p(2, i− 1) + p(3, i− 1))αi−1s(1−(i−1)α0)
1−iα0

(1− iα0) > α0

p(0, i− 1)α0 + p(1, i− 1) + p(2, i− 1) + p(3, i− 1) (1− iα0) ≤ α0

where p(m, i − 1) is the probability that m proxy nodes were compromised by unit
time-step i.

The FORTRESS system with the PO obfuscation scheme and infinite di-
versity.

Here we define two states

0. The system is not compromised and hence all proxy and server nodes are re-
placed by uncompromised nodes.

1. The system is compromised.

68

The probabilities for the FORTRESS system with PO and infinite diversity are time
independent, giving a Markov Chain with transition matrix

N =

[
(1− αi)3 + (1− καi) 1− ((1− αi)3 + (1− καi))

0 1

]

αi = αj = αis = αjs,∀i, j ≥ 0

The FORTRESS system with the PO obfuscation scheme and finite di-
versity.

Here we define d to be the total amount of diversity available and c to be the amount
of diversity already compromised. We can then define a transition matrix that is
dependent on c rather than time and then define the probability of each possible
change in c for each starting state. This allows us to evaluate the expected lifetime in
the same way as a time-dependent stochastic process, except that c is tracked rather
than time.

The states are identical to those used in the SO and PR cases.

The transition matrix is

N =

bD1D2D3

D0

3bD1D2c
D0

3bD1cc1
D0

bcc1c2
D0

καisD1D2D3

D0

3καiscD1D2

D0

3καiscc1D1

D0

καiscc1c2
D0

aD1D2D3

D0

3aD1D2c
D0

3aDcc1
D0

acc1c2
D0

αisD1D2D3

D0

3αiscD1D2

D0

3αiscc1D1

D0

αiscc1c2
D0

aD1D2D3

D0

3aD1D2c
D0

3aDcc1
D0

acc1c2
D0

αisD1D2D3

D0

3αiscD1D2

D0

3αiscc1D1

D0

αiscc1c2
D0

aD1D2D3

D0

3aD1D2c
D0

3aDcc1
D0

acc1c2
D0

αisD1D2D3

D0

3αiscD1D2

D0

3αiscc1D1

D0

αiscc1c2
D0

0 0 0 0 D1D2D3

D0

3cD1D2

D0

3cc1D1

D0

cc1c2
D0

0 0 0 0 D1D2D3

D0

3cD1D2

D0

3cc1D1

D0

cc1c2
D0

0 0 0 0 D1D2D3

D0

3cD1D2

D0

3cc1D1

D0

cc1c2
D0

0 0 0 0 D1D2D3

D0

3cD1D2

D0

3cc1D1

D0

cc1c2
D0

D0 = d(d− 1)(d− 2)

D1 = (d− c)

D2 = (d− c− 1)

D3 = (d− c− 2)

69

a = 1− αis

b = 1− καis

c1 = c− 1

c2 = c− 2

The probabilities of each change in c for each starting state are shown in the following
matrix:

C =

c = c

c = c+ 1

c = c+ 2

c = c+ 3

a3 a2 a 1 a3 a2 a 1

3αia
2 2αia αi 0 3αia

2 2αia αi 0

3α2
i a α2

i 0 0 3α2
i a α2

i 0 0

αi 0 0 0 αi 0 0 0

a = 1− αi

We note that system compromise occurs if either the system reaches any of the com-
promise states in the transition matrix, or a c change occurs such that the sum of the
change in c and the number of nodes compromised at the start of the unit time-step
is equal to 3, as this is the case when all three proxy servers are compromised.

4.7 Modelling Attacks on the PB System

The PB system consists of one primary server that processes requests and propagates
the results to backup servers that can take over processing if the primary server
crashes. The fact that only one server is processing requests at any given time means
that an attacker can only send malicious requests to that server. Similarly, if that
server is compromised then the attacker can compromise the system state that will
be propagated to the backups, and hence compromise the entire system.

This allows us to model the system as identical to that in Section 4.2.

We define two states

0. The server is not compromised.

1. The server is compromised.

70

The probabilities for the PB system with PO are time independent, giving a Markov
Chain with transition matrix

N =

[
1− αi αi

0 1

]

αi = αj,∀i, j ≥ 0

This transition matrix can be evaluated analytically to give the expected lifetime until
system compromise.

The probabilities for the PB system with SO or PR are time dependent, giving a
time-dependent stochastic process with transition matrix

N =

[
1− αi αi

0 1

]

αi =

 α0

1−iα0
(1− iα0) > α0

1 (1− iα0) ≤ α0

The psuedo-code for the evaluation of this time-dependent stochastic process is presen-
ted in Appendix A.

4.8 Modelling Attacks on the SMR System

The SMR system consists of 4 server nodes that process client requests. These server
nodes use an active replication scheme that ensures that system integrity is main-
tained when 1 of those server nodes is compromised. Hence, the system integrity is
compromised when 2 or more server nodes are compromised at the same time. All 4
server nodes are publicly accessible and involved in processing, allowing an attacker
to send malicious requests to all four.

The SMR system is illustrated in Figure 4.1.

When we consider an SMR system using the PR or PO obfuscation schemes we note
that there are several patterns of server reboot or replacement that may be used.
The standard pattern that we consider is when the system replaces rebooting servers
with spares that take their system state from the all nodes, including the exiting
one, as in [66]. This results in a situation analogous to that found in the PB and
FORTRESS cases, which we name en-masse replacement. However, many schemes
exist that involve the reboot of servers during the unit time-step with the recovering
server receiving its state only from the non-rebooting servers.

71

Figure 4.1: The SMR System

There are generally two ways in which the non-rebooting servers in an system can
provide the service state to a rebooted server:

1. CP1: A past checkpoint from before the server rebooted and a sequence of client
requests which includes those that the rebooted node could not receive while
being rebooted.

2. CP2: A checkpoint generated by the other servers that includes client requests
that the rebooted replica missed while rebooting and the first request to resume
processing with.

The key difference between these two checkpointing methods is that CP1 ensures that
every server processes every request, while CP2 allows some requests to be processed
by 3 of the 4 servers, while the other server is rebooting.

We note that, for modelling purposes, an SMR system using the SO obfuscation
scheme and an SMR system using the PR obfuscation scheme with en-masse replace-
ment are treated identically. This is due to the fact that an attacker who has once
compromised a node will be able to compromise it again at any point in the future.

Furthermore, an SMR system using the PR obfuscation scheme and checkpointing
method CP1 will be treated identically to an SMR system using the SO obfuscation
scheme (and hence the SMR system using the PR obfuscation scheme and en-masse
replacement). This is due to two characteristics of the SMR system using the PR

72

obfuscation scheme and checkpointing method CP1. Firstly, all requests (and hence
all malicious requests) are processed by every node. Secondly, the use of the PR
obfuscation scheme results in an attack that would be successful in one unit time-step
being successful in any unit time-step. Hence, if an attack that would have been
successful against a node is launched while that node is rebooting, then the attack
will still eventually be successful, and the attacker can then re-use it at any point in
the future.

Checkpointing method CP2 does not guarantee that every request will be processed
by every node, so the SMR system using the PR obfuscation scheme and checkpointing
method CP2 is modelled separately.

When considering the SMR system using the PO obfuscation scheme, en-masse re-
placement, checkpointing method CP1 and checkpointing method CP2 are considered
separately. We model en-masse replacement and a special case of CP2, and then show
that the expected lifetimes of all other cases of CP1 and CP2 fall between these values.

The transition matrices for the SMR system are as follows:

The SMR system with the SO obfuscation scheme (or the PR obfuscation
scheme with en-masse replacement or checkpointing method CP1):

Here we define states 0 to 4 to consist of the corresponding number of server nodes
currently compromised.

The probabilities are time-dependent giving a time-dependent stochastic process with
transition matrix

N =

(1− αi)4 4(1− αi)3αi 6(1− αi)2α2

i 4(1− αi)α3
i α4

i

0 (1− αi)3 3(1− αi)2αi 3(1− αi)α2
i α3

i

0 0 (1− αi)2 2(1− αi)αi α4
i

0 0 0 (1− αi) αi

0 0 0 0 1

αi =

 α0

1−iα0
(1− iα0) > α0

1 (1− iα0) ≤ α0

The SMR system with the PR obfuscation scheme with checkpointing
method CP2:

The transition matrix is identical to the transition matrix for the SMR system with
the SO obfuscation scheme, however αi is defined as:

αi =

α′0

1−iα′0
(1− iα′0) > α′0

1 (1− iα′0) ≤ α′0

73

Figure 4.2: Reboot Intervals as 4 Varies

α′0 = 1− (1− α0)
1−4

The αi values are derived in the following manner:

When the checkpointing method CP2 is applied, some requests will be not be pro-
cessed by every node. This reduction in the number of malicious requests pro-
cessed by each node will reduce the probability of the system being compromised
in each unit time-step. If we take 4 to be the proportion of the unit time-step that
each node spends on rebooting then the probability of system compromise will be
α′ = 1 − (1 − α)1−4 where α is the probability of compromising a node if CP2 was
not used. We note that 4 ≤ 0.25 as larger 4 values will result in two or more nodes
having overlapping reboot periods, invalidating the intrusion tolerance assumptions
of the system. This is illustrated in Figure 4.2.

The SMR system with the PO obfuscation scheme with en-masse replace-
ment and infinite diversity:

The states are

0. The system is not compromised and hence all servers are replaced by uncom-
promised servers.

74

1. The system is compromised.

The transition matrix is

N =

[
(1− αi)4 + 4αi(1− αi)3 1− ((1− αi)4 + 4αi(1− αi)3)

0 1

]

The SMR system with the PO obfuscation scheme with en-masse replace-
ment and finite diversity:

Here we define d to be the total amount of diversity available and c to be the amount
of diversity already compromised. We can then define a transition matrix that is
dependent on c rather than time and then define the probability of each possible
change in c for each starting state. This allows us to evaluate the expected lifetime in
the same way as a time-dependent stochastic process, except that c is tracked rather
than time.

We define the states as

0. No nodes compromised

1. One node compromised.

2. System compromised.

The transition matrix is

N =

(a4+4αia

3)D1D2D3D4

D0

4(a4+4αia
3)cD1D2D3

D0
1− S1

(1−αi)
3D1D2D3D4

D0

4(1−αi)
3cD1D2D3

D0
1− S2

0 0 1

αi = αj = αis = αjs,∀i, j ≥ 0

D0 = d(d− 1)(d− 2)(d− 3)

D1 = (d− c)

D2 = (d− c− 1)

D3 = (d− c− 2)

75

D4 = (d− c− 3)

S1 = (a4 + 4αia
3)D1D2D3D4/D0 + 4(a4 + 4αia

3)cD1D2D3/D0

S2 = (1− αi)3D1D2D3(D4 + 4)/D0

a = 1− αi

The probabilities of each change in c for each transition between states in which the
overall system is not compromised are shown in the following matrix:

C =
c = c

c = c+ 1

[
(1− αi)4 (1− αi)3

4αi(1− αi)3 −

]

The SMR system with the PO obfuscation scheme with checkpointing
method CP2 and infinite diversity:

As a different node is rebooting in each of 4 subsections of the unit time-step, the
transition matrix is defined for the transition between these subsections. A state
vector (a, b, c, d, e) is defined where a is the number of the current subsection, and
b, c, d, e correspond to the nodes 1,2,3,4, each holding the value 0 if the corresponding
node is not compromised and 1 if the corresponding node is compromised. This results
in a transition matrix of size 64. Hence, for ease of presentation we explain how this
transition matrix is calculated rather than present it.

1. The probability of node x being successfully compromised in subsection y is
calculated as 1− (1− α)0.25 if x 6= y and 0 if x = y.

2. Transition probabilities are calculated between all states, using the probabilities
from step 1 and the fact that each node moves to the uncompromised state in
the corresponding numbered subsection and begins the next subsection in that
state.

3. System compromise states are identified as those in which two or more nodes
are compromised.

The psuedo-code for the Monte-Carlo simulation used to evaluate this scheme is
presented in Appendix A.5.

The SMR system with the PO obfuscation scheme with checkpointing
method CP2 and finite diversity:

76

This system uses the same model as the preceding case, except that each node is not
guaranteed to be uncompromised after the unit time-step in which it reboots. Instead,
each rebooting node has the probability (d− c + e)/d of being uncompromised after
reboot, where d is the available diversity, c is the total number of servers compromised
so far, and e is the number of compromised servers currently in use.

77

Chapter 5

Comparison of Intrusion Resilience
with Other Systems

This chapter compares the intrusion resilience of the FORTRESS, SMR and PB sys-
tems, using the models defined in Chapter 4. We begin by presenting a general result
about the relationship between the performance of the SMR and FORTRESS sys-
tems using the SO or PR obfuscation schemes when indirect attacks are not possible
against the FORTRESS system. This is followed by a numerical comparison of the
expected lifetimes of the three systems when indirect attacks are not possible against
the FORTRESS system.

Next, we discuss the conditions that make the possibility of indirect attacks likely and
the conditions that make the possibility of indirect attacks unlikely. This followed by
a comparison of the expected lifetimes of the three systems when indirect attacks are
possible against the FORTRESS system.

We note that a summary of some of the results presented in this Section appeared in
[16].

5.1 General Result

Here we analytically compare the intrusion-resilience of the SMR and FORTRESS
systems using the SO or PR obfuscation schemes when indirect attacks are not possible
against the FORTRESS system. This comparison follows the structure and arguments
of that presented in [21], where we considered the FORTRESS system with different
attack assumptions.

The unit time-steps are assumed to be of the same duration for the two systems and
nodes are assumed to be rebooted instantly (if the PR obfuscation scheme is used).
This assumption makes the analysis independent of whether nodes are rebooted or
replaced with new nodes using the same obfuscation key. Moreover, for both systems,

78

Figure 5.1: Lifetime comparison.

we assume that nothing occurs to remove vulnerabilities (such as system patches being
applied in response to a successful intrusion) during the period considered.

Since exploiting a node will require the attacker to determine the obfuscation key, and
nodes are not re-obfuscated, a node that has been exploited and then rebooted can
be exploited again rapidly. Hence, we will consider the exploitation of a previously
exploited and then rebooted node to be instantaneous. This means that once a node
of type X is exploited, it remains compromised subsequently despite the fact that
it is being rebooted. This allows us to treat the SO and PR obfuscation schemes
identically.

Finally, once an adversary identifies an exploitable vulnerability, he is assumed to
exploit it instantaneously.

Both systems start at time T0 when the adversary is assumed to know nothing of
the vulnerabilities that might be present in nodes. Of interest are two instances (see
Figure 5.1(a)): T1 when the adversary compromises the first node and T2 when the
adversary compromises a second node. For S0, T2 − T0 is the time to fatal intrusion.
For simplicity, we focus on the time left until system compromise after T1 and the
mean lifetime after T1 will be denoted as `.

We assume that four obfuscation keys have been chosen and used to create four
obfuscated versions of the server for the SMR case and three obfuscated versions of
the proxy and one obfuscated version of the server for the FORTRESS case. We label
the nodes using these obfuscation keys as A,B,C,D.

We model the adversary by defining αX as the probability that he successfully de-
termines the obfuscation key needed to exploit a vulnerability in node X during a unit
time-step, where Xε{A,B,C,D}, given that the attacker can directly send requests
to node X (see Section 4.6.1 for an explanation of direct and indirect attacks).

Thus, αX is the adversary’s success rate for nodes of type X if he has direct access.
Values of αX for later periods are at least as large as earlier ones. When node X is
accessible from T0, we denote the values of αX at T0 and T1 as α0

X and α1
X respectively.

Note that α0
X ≤ α1

X , and when nodes have no obvious deterministic bugs, (T1 − T0)
is large and α0

X < α1
X .

79

5.1.1 SMR

With no loss of generality, we let nodeD be the most vulnerable (relative to the scheme
the attacker is using to determine obfuscation keys) and hence it is compromised at
T1 (Figure 5.1(b)). The adversary can now do the following from T1 onwards: attack
the server nodes both as a client (as he was doing before T1) and also as a controller
of the compromised server replica of type D. However, we have made the general
assumption that, by the use of distributed attacks, the adversary has been able to
launch attacks as fast as the nodes can process them (see Section 2.7). Hence, attacks
originating from a server do not increase the speed with which the adversary can
attack.

There may however be some advantage in launching attacks from a server replica, but
we will assume, optimistically from the SMR system’s perspective, that the presence
of the compromised replica does not increase the success rate. We note that this
optimistic assumption can only lead to an over-estimation of `0 - the metric measuring
the intrusion-resilience of the SMR system.

For analytical simplicity, we will assume for both the systems that the adversary’s
success rate is constant at α1

X for all periods in [T1, T2] and for all X ∈ {A,B,C}.
In reality, however, his success rate will increase over time, and the effect of this
simplification can be ignored as we are only comparing the system lifetimes.

The probability that the attacker compromises at least one correct node in the SMR
system during any given period after T1 is:

γ0 = 1− (1− α1
A)(1− α1

B)(1− α1
C). (5.1)

This shows us that the number of rounds in the interval (T2 − T1) is geometrically
distributed with parameter γ0 and hence the probability that (T2 − T1) has i, i ≥ 0,
periods is γ0 × (1− γ0)i. Thus,

`0 = E(T2 − T1) =
1− γ0
γ0

. (5.2)

5.1.2 FORTRESS

With no direct access to server nodes, the adversary attacks the proxies until T1.
Consider the case where the most vulnerable node D is not selected to be used in the
proxy tier which therefore will contain nodes A, B and C. By the time the adversary
compromises one of these less vulnerable proxies, he could have compromised both
this node and node D in the SMR system. That is, the SMR system is compromised
at the same time as T1 for the FORTRESS system. So we will only analyse the
alternative case as shown in Figure 5.1(c).

80

At T1, the adversary’s use of a compromised proxy is modelled as follows. The com-
promised proxy attacks the primary server node at the same rate as the proxy was
originally attacked. This has no effect on the continued attacks on the other proxies;
the attacker and the compromised proxy attack in parallel. The original adversary,
as before, attacks the proxies and has no direct access to servers; the compromised
proxy attacks server nodes but not the other proxy nodes.

As with the SMR system, we will retain the same simplification that the success rate
for the A-type server nodes remain constant for all periods in [T1, T2] at αA.

System compromise occurs at the earliest occurrence of either (i) the adversary suc-
cessfully exploiting vulnerabilities in all non-compromised proxies or (ii) the com-
promised proxy exploiting the primary server node. If (i) were to occur earlier, the
FORTRESS system is obviously more resilient than the SMR system: between the
compromise of the second and third proxies, the FORTRESS system works correctly
while the SMR system would be fatally intruded. So, we will let (ii) be the earlier
event. Note that only one server node can be attacked at any given time, as only
one server node will be processing client requests. The probability that the adversary
replica compromises the server during any given period after T1 is:

γ2 = 1− [(1− αA)], (5.3)

As in (5.2),

`2 = E(T2 − T1) =
1− γ2
γ2

. (5.4)

Claim. When using the SO or PR obfuscation schemes , the FORTRESS system is
more resilient than the SMR system, provided that an adversary cannot intrude a
server without having compromised at least one proxy.

Proof. By (5.1) and (5.3), γ2 < γ0; by (5.4) and (5.2), `2 > `0.

Corollary. If the SMR system is intrusion resilient for a set of adversaries, then
the FORTRESS system is always more intrusion-resilient against those adversaries,
provided that the claim above holds.

5.2 Comparison Without Indirect Attacks

Here we consider the SMR, PR and FORTRESS systems first with the PR and SO
obfuscation schemes and then with the PO obfuscation scheme. When the SMR sys-
tem with the PO obfuscation scheme is considered we calculate expected lifetimes
for each checkpoint scheme. The first, SMRPO, is the case in which en-masse re-
placement of nodes occurs at the end of each unit time-step, or another mechanism

81

requiring checkpoints from exiting node(s) is used such as that in [66]. The second,
SMRPO−CP2, is the case in which nodes are rebooted individually using the CP2
checkpointing method and each node takes one quarter of a unit time-step to reboot
and construct its state. We note that these two figures give lower and upper bounds
on the expected lifetime in the case when the CP1 checkpointing mechanism is used,
or the CP2 checkpointing mechanism is used with a shorter reboot time. A full dis-
cussion of the relationship between these expected lifetimes can be found in Appendix
B.

The cases with proactive obfuscation use the following amounts of diversity; 23, 24,
28, 216, 232, 240 and infinite diversity (as defined in Section 4.4). The infinite diversity
case assumes that the adversary has no way of knowing that a diverse executable it has
encountered is the same diverse executable that it previously compromised. Hence,
in this case, as far as the adversary is concerned, it only encounters executables that
it has not seen before in previous unit time-steps.

The other cases fall into two categories. The first of these is motivated by the amounts
of diversity commonly available through ASLR (one of the randomisation techniques
that can be used as part of proactive obfuscation); 216 in 32 bit systems and 232 or
240 in 64 bit systems, as detailed in [51]. The second is motivated by considering the
situation when the reboot and refresh process does not manage to successfully remove
all of the malicious code from a previously compromised node. Then, we have the
situation where previously compromised nodes stay compromised, and may be used in
future time-steps. However, variability in reboot and message delivery times results
both in randomness of the order in which nodes are chosen to become active and the
need for a spare pool containing more machines than are needed for one time-step.
This leads us to consider systems with diversities of 23,24 and 28, literally systems
with 23,24 or 28 machines in the server farm, all of which stay compromised after
reboot and refresh.

5.2.1 Systems with SO or PR Obfuscation Schemes

A surprising result here is that, when the SO or PR obfuscation schemes are used, the
PB system outperforms the SMR system, except when checkpointing method CP2 is
used with a relatively large reboot time. This is surprising as an active replication
system with proactive recovery was, up until [53], considered a fairly satisfactory
method for providing intrusion tolerance, and a PB system aims only to provide
crash tolerance.

We also observe that the FORTRESS system significantly outperforms the SMR sys-
tem regardless of checkpointing method used.

These results suggest that, when faced with the possibility of attacks conforming to
the attack models presented in Sections 4.6.1,4.7,4.8, implementing an SMR system

82

without proactive obfuscation is not likely to provide a significant improvement in
intrusion resilience, and may in some cases cause a reduction. The reasons behind
these results are discussed in more detail in Section 5.5.

The expected lifetimes for the SMR, PB and FORTRESS systems using the PR or SO
obfuscation schemes are shown in Table 5.1, as α0, the probability of node compromise
in the first unit time-step varies (and hence the probability of node compromise in
each unit time-step varies). The table shows that, for each value of α0, the system
providing the highest expected lifetime is the FORTRESS system, followed by the
SMR system using CP2, the PB system and finally the SMR system using en-masse
replacement or CP1.

The abbreviation SMR−CP2 is used to denote the SMR system using the PR ob-
fuscation scheme and checkpointing method CP2 with 4 = 0.25, which corresponds
to each node taking 1/4 of the unit time-step to reboot . We note that, for 4 ≤ 0.2

the PB system outperforms the SMR system using checkpointing method CP2.

We also note that, during the time when a node is rebooting for the SMR system
using checkpointing method CP2, an attacker who has intruded one node other than
the one that is rebooting can prevent the ordering, and hence processing of client
requests. This suggests that the expected lifetime of the SMR system using the PR
obfuscation scheme and checkpointing method CP2 is not directly comparable to that
of the other systems here, as in all other cases we are assuming that the attacker can
only adversely affect the system by achieving the compromise conditions, and here
it is possible for an attacker to prevent processing during a proportion of the unit
time-step equal to 34 simply by compromising one node.

We also note that the compromise conditions for the FORTRESS system explicitly
include the situation where all three proxy nodes have been compromised, and hence
the availability of the system has been completely blocked, although the integrity may
not yet have been compromised.

5.2.2 Systems using the PO Obfuscation Scheme

When the PO obfuscation scheme is used, the relationship between the intrusion
tolerance of the SMR, PB and FORTRESS systems depends on the amount of diversity
available (see Section for the definition of diversity). When 24 or less diversity is
available, the expected lifetimes for the PB and FORTRESS system are very close,
with the PB system outperforming the FORTRESS system for most values of α0

(the probability of an attacker successfully compromising a node in a unit time-step).
However, when 28 or more diversity is available, the FORTRESS system significantly
outperforms the PB system.

When 28 or less diversity is available the PB system significantly outperforms the

83

Table 5.1: Expected Lifetimes of Systems with SO and PR Obfuscation Schemes

α0 SMR SMR-CP2 PB FORTRESS
0.00001 39997.2 53330.5 50000.5 65087
0.00002 19997.2 26663.8 25000.5 32542.8
0.00003 13330.5 17774.9 16667.2 21694.8
0.00004 9997.2 13330.5 12500.5 16270.7
0.00005 7997.2 10663.8 10000.5 13016.3
0.00006 6663.8 8886.1 8333.83 10846.7
0.00007 5711.45 7616.2 7143.36 9297
0.00008 4997.18 6663.8 6250.5 8134.6
0.00009 4441.61 5923.1 5556.06 7230.7
0.0001 3997.17 5330.5 5000.5 6507.5
0.0002 1997.17 2663.8 2500.5 3253
0.0003 1330.50 1774.9 1667.17 2168
0.0004 997.17 1330.5 1250.5 1626
0.0005 797.17 1063.83 1000.5 1300.3
0.0006 663.84 886.1 833.84 1083.4
0.0007 568.61 759.1 714.79 928.5
0.0008 497.18 663.8 625.5 812.23
0.0009 441.62 589.8 556.06 721.83
0.001 397.18 530.5 500.5 649.5093
0.002 197.20 263.9 250.5 324.07
0.003 130.54 175 167.17 215.59
0.004 97.224 130.54 125.5 161.36
0.005 77.238 103.9 100.5 128.82
0.006 63.919 86.1 83.834 107.13
0.007 54.409 73.4 71.929 91.64
0.008 47.280 63.9 63 80.016
0.009 41.74 56.5 56.056 70.982
0.01 37.31 50.61 49.995 63.754

84

SMR system. However, when 216 or more diversity is available, the SMR system
significantly outperforms the PB system.

The FORTRESS system outperforms the SMR system for all amounts of diversity.

This leads us to conclude that, when the PO obfuscation system is used, the PB system
is the best choice if 24 or less diversity is available, and the FORTRESS system is the
best choice if 28 or more diversity is available. We note that this conclusion assumes
that indirect attacks are not possible against the FORTRESS system. We will discuss
where this assumption is likely to hold in Section 5.3, and present results for when it
does not in Section 5.4.

We illustrate the results for the cases with 23, 24 and 28 diversity by presenting the
expected lifetimes for the SMR, PB and FORTRESS systems for α0 = 0.00001 to
α0 = 0.001 in Table 5.2.

The results for the cases with 216, 232, 240 and infinite diversity are shown in Table
5.3. Both of these tables show the relationships between expected lifetimes for the
three systems that we have discussed.

We note that the values given here for the SMR system assume that en-masse re-
placement is being used rather than a checkpointing scheme. A comparison between
values for the SMR system with en-masse replacement and the SMR system using
checkpointing method CP2 is presented in Appendix C. In general however we note
that the values for SMR using checkpointing method CP2 are larger than those for
SMR with en-masse replacement while still maintaining the same relationship with
those for the PB and SMR systems.

Table 5.2: Expected Lifetimes of Systems with Proactive Obfuscation

αi System EL(23) EL(24) EL(28)

0.00001
SMR 50832 52423 54438
PB 100000 100000 100000

FORTRESS 98667 99466 242829

0.00002
SMR 25851 25970 29289
PB 50000 50000 50000

FORTRESS 49421 49980 139395

0.00003
SMR 17179 17205 20465
PB 33333 33333 33333

FORTRESS 32195 33229 99595

0.00004
SMR 12802 12991 16235
PB 25000 25000 25000

FORTRESS 24286 25315 78162

85

αi System EL(23) EL(24) EL(28)

0.00005
SMR 10365 10574 13436
PB 20000 20000 20000

FORTRESS 19817 20436 64965

0.00006
SMR 8547 8734 11612
PB 16667 16667 16667

FORTRESS 16317 17018 57020

0.00007
SMR 7371 7423 10099
PB 14286 14286 14286

FORTRESS 14048 14715 49894

0.00008
SMR 6438 6536 9258
PB 12500 12500 12500

FORTRESS 12236 12938 44633

0.00009
SMR 5695 5725 8399
PB 11111 11111 11111

FORTRESS 11025 11599 40530

0.0001
SMR 5146 5244 7726
PB 10000 10000 10000

FORTRESS 9912 10535 37193

0.0002
SMR 2578 2622 4464
PB 5000 5000 5000

FORTRESS 4972 5494 20989

0.0003
SMR 1714 1746 3270
PB 3333 3333 3333

FORTRESS 3355 3816 14949

0.0004
SMR 1315 1338 2633
PB 2500 2500 2500

FORTRESS 2562 2929 11709

0.0005
SMR 1041 1058 2190
PB 2000 2000 2000

FORTRESS 2055 2368 9741

0.0006
SMR 878 879 1935
PB 1667 1667 1667

FORTRESS 1717 2010 8349

0.0007
SMR 754 757 1716
PB 1429 1429 1429

FORTRESS 1497 1762 7223

0.0008
SMR 663 664 1555
PB 1250 1250 1250

FORTRESS 1310 1565 6472

86

αi System EL(23) EL(24) EL(28)

0.0009
SMR 587 595 1429
PB 1111 1111 1111

FORTRESS 1179 1410 5805

0.001
SMR 534 535 1310
PB 1000 1000 1000

FORTRESS 1073 1287 5342

Table 5.3: Expected Lifetimes of Systems with Proactive Obfuscation

αi System EL(216) EL(232) EL(240) EL(∞)

0.00001
SMR 493946 3.0× 108 1.6× 109 1.7× 109

PB 100000 100000 100000 100000
FORTRESS 9.0× 106 1.4× 109 3.4× 109 1.0× 1015

0.00002
SMR 306317 1.4× 108 4.3× 108 4.2× 108

PB 50000 50000 50000 50000
FORTRESS 4.8× 106 5.2× 108 8.5× 108 1.3× 1014

0.00003
SMR 233115 8.8× 107 1.9× 108 1.9× 108

PB 33333 33333 33333 33333
FORTRESS 3.2× 106 2.8× 108 3.7× 108 3.7× 1013

0.00004
SMR 190370 5.7× 107 1.1× 108 1.0× 108

PB 25000 25000 25000 25000
FORTRESS 2.5× 106 1.7× 108 2.2× 108 1.6× 1013

0.00005
SMR 162610 4.2× 107 6.7× 107 6.7× 107

PB 20000 20000 20000 20000
FORTRESS 2.0× 106 1.1× 108 1.3× 108 8× 1012

0.00006
SMR 142772 3.2× 107 4.7× 107 4.6× 107

PB 16667 16667 16667 16667
FORTRESS 1.6× 106 8.5× 107 9.4× 107 4.6× 1012

0.00007
SMR 128109 2.5× 107 3.4× 107 3.4× 107

PB 14286 14286 14286 14286
FORTRESS 1.4× 106 6.3× 107 6.8× 107 2.9× 1012

0.00008
SMR 116551 2.0× 107 2.6× 107 2.6× 107

PB 12500 12500 12500 12500
FORTRESS 1.3× 106 4.9× 107 5.3× 107 2.0× 1012

0.00009
SMR 105816 1.7× 107 2.1× 107 2.1× 107

PB 11111 11111 11111 11111
FORTRESS 1.1× 106 4.0× 107 4.1× 107 1.4× 1012

87

αi System EL(216) EL(232) EL(240) EL(∞)

0.0001
SMR 99073 1.4× 107 1.7× 107 1.7× 107

PB 10000 10000 10000 10000
FORTRESS 1.0× 106 3.2× 107 3.5× 107 1.0× 1012

0.0002
SMR 59599 4.0× 106 4.1× 106 4.2× 106

PB 5000 5000 5000 5000
FORTRESS 509185 8.1× 106 8.3× 106 1.3× 1011

0.0003
SMR 43864 1.8× 106 1.8× 106 1.9× 106

PB 3333 3333 3333 3333
FORTRESS 334515 3.7× 106 3.8× 106 3.7× 1010

0.0004
SMR 35163 1.0× 106 1.0× 106 1.0× 106

PB 2500 2500 2500 2500
FORTRESS 244124 2.1× 106 2.1× 106 1.6× 1010

0.0005
SMR 29529 652002 666486 667111
PB 2000 2000 2000 2000

FORTRESS 192574 1.4× 106 1.4× 106 8× 109

0.0006
SMR 25235 453463 456939 463333
PB 1667 1667 1667 1667

FORTRESS 158368 922068 922957 4.6× 109

0.0007
SMR 22339 339199 340000 340454
PB 1429 1429 1429 1429

FORTRESS 133905 679182 689444 2.9× 109

0.0008
SMR 19831 264487 263622 260695
PB 1250 1250 1250 1250

FORTRESS 114270 529604 529393 2.0× 109

0.0009
SMR 17949 207162 206891 206008
PB 1111 1111 1111 1111

FORTRESS 99213 415022 417156 1.4× 109

0.001
SMR 16165 166331 164607 166889
PB 1000 1000 1000 1000

FORTRESS 87731 339522 340623 1.0× 109

The effect of diversity on the systems is illustrated in Figure 5.2 where the expected
lifetimes of the FORTRESS and SMR systems are presented as percentages of the
expected lifetimes of the PB system as diversity varies. The percentages are presented
on a logarithmic scale to improve readability. We note that, as base 10 logarithms
are used, any value less than 2 indicates a smaller expected lifetime than that of the
S1 system and any value greater than 2 indicates a larger expected lifetime than that
of the S1 system.

88

Figure 5.2: Relative Expected Lifetimes of S0, S2 as Diversity Varies

5.3 On the Feasibility of Successful Indirect Attacks

Here we consider three groups of real-world situations in which indirect attacks may
not be possible or successful, and then comment on the conditions under which these
situations are likely to occur.

5.3.1 Systems where Proxies and Servers have the Same Vul-

nerabilities

When the proxies and servers have the same vulnerabilities an attacker will be unable
to target the servers with indirect attacks, as any malicious request intended as an
indirect attack on the servers, will instead function as a direct attack on one or
more proxies. This will mean that either the attack will, with some small positive
probability, compromise the proxy server, or, with some large probability will cause
the process handling it to crash and be replaced by a new process without passing it
to the server tier.

An example of this would be when both the servers and proxies make use of the
Apache Tomcat application server with the mod_jk connector installed. A previous
version of mod_jk was found to have a vulnerability where an HTTP request with an
overly long URL would result in a buffer overflow. Hence an attacker would be able
to craft HTTP requests that caused a stack overflow and contained malicious code
such as detailed in Section 2.8.1.1-2.8.6.

However, if these malicious requests were sent from a client, then when a proxy
received a request it would cause a buffer overflow, preventing the proxy from passing

89

the malicious request to the server tier. This would make indirect attacks impossible,
and instead require the attacker to first compromise a proxy, from which they could
then directly attack the server tier

5.3.2 Filtering Out Malicious Requests

Here an attacker will be unable to target the servers with indirect attacks as any
malicious request intended as an indirect attack on the servers will either be rejected
by the proxies or modified in such a way that it fails to work. This will result in either
the attack failing to reach the servers, or reaching the servers as an invalid request
incapable of compromising a server.

An example of this would be when the servers make use of a version of the Apache
Tomcat application server with the mod_jk connector installed, with the URL length
vulnerability discussed in Section 5.3.1, and the proxies make use of a later version of
the Apache Tomcat application server that no longer has this vulnerability. In this
case an attacker could produce malicious HTTP requests with an overly long URL to
attempt to attack the server tier.

If these requests were sent directly to the server tier from a compromised proxy then
they would cause a buffer overflow. However, if they were sent from a malicious client,
this would result in the proxies that receive them rejecting them as having overly long
URLs, rather than passing them to the server tier.

We note that this example may seem contrived, as it involves the servers running
a version of Apache Tomcat with a known vulnerability and the proxies running a
later version with that vulnerability fixed. However, the general principle illustrated
is that a correctly written piece of defensive programming in software running on the
proxy layer, designed to prevent vulnerabilities in the proxy, may disrupt indirect
attacks targeted at the server tier. We also note that some legacy software may only
be able to be run using particular versions of software such as web servers, potentially
resulting in a situation where the server tier does run an older version of common
software than the proxy tier.

5.3.3 Filtering out Attack Feedback

We have also noted in Section 2.11 that proxies may make it harder for an attacker to
monitor the effect of a malicious request, in effect filtering out the necessary feedback
from a malicious request that makes it possible for an attacker to use it. While this
does not stop the malicious request from reaching the server, it does prevent indirect
attacks being launched at the same speed as direct attacks, and may, in some cases,
slow them down so much that they effectively become impossible to use.

90

5.3.4 Likelihood of Indirect Attack Impossibility

Producing software free of vulnerabilities is difficult and costly, and in practice vul-
nerabilities are regularly found in commercial software. This has a very negative effect
on security as attackers only need one vulnerability to compromise a piece of software,
whereas developers need to remove every possible vulnerability to make the software
completely attack-proof. However, the prevention of indirect attacks in the ways high-
lighted here is a much more likely proposition. Indirect attacks are prevented either
when the proxy has the same vulnerability as the server, or when the proxy handles
a potential vulnerability to the point of not allowing it to propagate to the server.

The case in Section 5.3.1 is likely to happen when the proxy uses one or more pieces
of software, such as web servers, that are also used on the server. The case in Section
5.3.2, assuming that the software on the proxy is written with defensive programming
in mind, does not require either the proxy or the server to be free of vulnerabilities,
instead it just requires the proxy and server to have different vulnerabilities. This
means that being able to launch indirect attacks is a considerably different proposition
from being able to launch direct attacks; while every large piece of software is likely to
have some vulnerability, and hence be open to some sort of direct attack, the chance of
two separate pieces of software having the same or sufficiently similar vulnerabilities
is likely to be a lot smaller.

Finally the case in Section 5.3.3 does not require any of the conditions for the other
two cases. Instead, it is likely to occur when an attacker uses a carefully crafted attack
such as those in [51, 57].

5.4 Intrusion Resilience when Indirect Attacks are

Possible

We now look at expected lifetimes for the FORTRESS system using the PO obfus-
cation scheme when indirect attacks are possible. We note that indirect attacks do
not occur in the SMR and PB systems, as all nodes are accessible by direct attacks,
making the concept of an indirect attack meaningless for these systems.

We compare these expected lifetimes to those of the SMR and PB systems using
the PO obfuscation scheme that were presented in Section 4.3 to determine how the
possibility of indirect attacks affects the choice of intrusion resilience method.

91

5.4.1 Expected Lifetimes of the FORTRESS System with PO

and Indirect Attacks

The relationship between the intrusion tolerance of the SMR, PB and FORTRESS
systems depends on the amount of diversity available, as was the case when indirect
attacks were not possible.

When 24 or less diversity is available, the FORTRESS system outperforms the SMR
system, but is outperformed by the PB system for all values of κ. Hence our recom-
mendation of the PB system when 24 or less diversity is available is unchanged by the
possibility of indirect attacks.

When 28 diversity is available, the FORTRESS system outperforms the SMR system,
but is outperformed by the PB system for high values of κ. The κ values for which the
PB system outperforms the FORTRESS system vary with the intrusion probability,
in the region 0.8 < κ < 1.

This leads us to modify our recommendations when 28 diversity is available as follows:
When κ ≤ 0.8 the FORTRESS system is the best choice and when κ > 0.8 the PB
system may be a better choice.

When 216 or greater diversity is available, the FORTRESS system outperforms the
PB system except when κ is close to 1, and the SMR system outperforms the PB
system except when κ is close to 0.

Hence, when 216 or greater diversity is available we recommend that the SMR system
is the best choice, unless it can be determined that indirect attacks are impossible, as
discussed in Section 5.5.

We illustrate the difference between the FORTRESS, SMR and PB systems when 24

or less diversity is available by comparing the intrusion resilience of the three systems
with 23 diversity in Figure 5.3 and 24 diversity in Figure 5.4. In both cases, we show
the FORTRESS system with indirect attack coefficient values κ = 0.1 and κ = 0.9.
These figures demonstrate that the PB system outperforms both the SMR system
and the FORTRESS system for these amounts of diversity.

The FORTRESS system with indirect attack coefficients κ = 0.7 and κ = 1 are
compared with the PB system when 28 diversity is available in Figure 5.5, illustrating
that the PB system generally outperforms the FORTRESS system when κ > 0.8 while
the FORTRESS system outperforms the PB system when κ < 0.8.

The FORTRESS system with indirect attack coefficients κ = 0 and k = 0.3 are com-
pared with the SMR system when 216 diversity is available in Figure 5.6, illustrating
that the FORTRESS system outperforms the SMR system when κ = 0 whereas the
SMR system outperforms the FORTRESS system for higher κ values. A similar com-
parison is provided when 232 diversity is present in Figure 5.7 and when 240 diversity
is present in Figure 5.8.

92

Figure 5.3: EL with 23 Diversity

Figure 5.4: EL with 24 Diversity

Figure 5.5: EL with 28 Diversity

93

Figure 5.6: EL with 216 Diversity

Figure 5.7: EL with 232 Diversity

Figure 5.8: EL with 240 Diversity

Figure 5.9: EL with Infinite Diversity

94

Table 5.4: EL of FORTRESS System with 23 Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 98667.175 194.1061497%

0.01 96385.452 189.6173573%
0.1 93304.3701 183.5560005%
0.5 75655.1112 148.8349326%
0.9 63796.945 125.5065766%
1 62022.218 122.0151882%

Table 5.5: EL of FORTRESS System with 24 Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 99465.5084 189.735746%

0.01 98454.6064 187.8073966 %
0.1 93504.1717 178.3641792 %
0.5 76072.3366 145.1120269 %
0.9 62730.1518 119.6611 %
1 59275.4777 113.0711254 %

We also present the expected system lifetimes for α = 0.00001 to give an illustration
of the actual differences between the systems with the seven levels of diversity. The
expected lifetimes are presented both as actual values, and as a percentage of the
expected lifetime of the SMR system using the PO obfuscation scheme. The compar-
isons are shown in Table 5.4 for 23 diversity, Table 5.5 for 24 diversity, Table 5.6 for
28 diversity, Table 5.7 for 216 diversity, Table 5.8 for 232 diversity, Table 5.9 for 240

diversity and Table 5.10 for infinite diversity.

Table 5.6: EL of FORTRESS System with 28 Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 242829.1864 446.064225

0.01 237436.1586 436.1575214
0.1 212953.5655 391.1843076
0.5 134371.8495 246.8338992
0.9 94679.9261 173.9219592
1 88353.3262 162.3003337

95

Table 5.7: EL of FORTRESS System with 216 Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 8977638.682 1817.53%

0.01 5229388.777 1058,696%
0.1 978791.0867 198.1574%
0.5 198847.1175 40.256%
0.9 112898.9021 22.856%
1 101364.491 20.52136

Table 5.8: EL of FORTRESS System with 232 Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 1400422229 465.9829282 %

0.01 8299669.933 2.761670315%
0.1 985562.4444 0.327940577%
0.5 198383.2668 0.06601096 %
0.9 111977.8188 0.037260014 %
1 99995.12875 0.033272839%

Table 5.9: EL of FORTRESS System with 240 Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 3355837206 211.5782516%

0.01 8192575.169 0.516524081%
0.1 942884.1564 0.059446799%
0.5 199968.3893 0.012607573%
0.9 113760.8021 0.007172372%
1 97772.80357 0.006164363%

Table 5.10: EL of Fortress System with Infinite Diversity and α = 0.00001 as κ Varies

κ Expected Lifetime EL as % EL of SMR
0 1E+15 59999172.3 %

0.01 9999999.9 0.599991717 %
0.1 999999.999 0.059999172 %
0.5 200000 0.011999834 %
0.9 111111.1111 0.006666575 %
1 99999.99999 0.005999917 %

96

5.5 Discussion of Results

The key results we have seen are:

• When the SO or PR obfuscation schemes are used, both the FORT-
RESS system and the PB system outperform the SMR system, unless
the SMR system uses checkpointing method CP2.

This can be seen to result from a combination of the properties of distributed attacks,
the nature of defences against code injection and the nature of active replication
schemes.

Distributed attacks allow an attacker to provide as many malicious requests as the
publicly accessible servers can handle. Hence an increase in the number of servers
does not result in a decrease in the rate at which each server is attacked. So, each
new server added is just as vulnerable to attack as the existing servers.

We have seen in Section 2.8.7 that, in general, defences against code injection at-
tacks do not entirely stop these attacks. New vulnerabilities, commonly termed zero
day exploits, are constantly being found and used by malicious intruders. Instead,
what defences against code injection attacks do achieve is to complicate the methods
used to intrude into systems when vulnerabilities have been found, and to introduce
uncertainty into the success of each individual malicious request. However, once an
attack has succeeded then, unless the machine intruded into is re-obfuscated, most or
all of this uncertainty is removed. The attacker is left with knowledge of the system
structure and any randomisation keys that have been used to alter the structure or
instruction set. This means that in practice, without re-obfuscation, a previously
intruded machine is very easily intruded into again.

Active replication schemes require four replicas to tolerate one intruded replica, and
an additional three replicas for every additional intrusion that they can tolerate. This
means that, as the number of servers available increases by three, the number of
extra intrusions that can be tolerated only increases by one. When this is combined
with the fact that these three servers can all be attacked at the same rate as the
existing servers, and that once intruded into they can be easily re-intruded into, we
can explain why the PB system can outperform the SMR system. Adding active
replication increases the number of replicas an attacker can attempt to compromise
from one to four while only requiring the attacker to compromise one more node than
in the primary-backup case.

We note that the idea of a replicated system being out-performed by an unreplicated
system has previously been presented in the context of n-modular redundancy in [36].
Here, a system employing n-modular redundancy was shown to be less reliable than
a system without redundancy (excluding the possibility of component replacement)

97

for sufficiently large λT , where T is the period of time considered and λ is the failure
rate.

• When the PR obfuscation scheme is used, the FORTRESS system
outperforms the SMR system using checkpointing method CP2 which
in turn outperforms the PB system.

The use of the CP2 checkpointing method allows each server to avoid processing some
part of the requests sent to the SMR system. This reduces the probability of each
server being compromised in a given unit time-step sufficiently to allow the SMR
system to outperform the PB system.

• Using the PO obfuscation scheme results in a substantial increase in
intrusion resilience for any system relative to using the SO or PR
obfuscation schemes.

When faced with the PO obfuscation scheme, an attacker will start each unit time-step
knowing that the randomisation key for each node could hold any possible value. Thus
the attacker will try as many of these values as possible and hope that one of the values
tried will be correct for enough nodes to compromise the system. However, when
faced with the SO or PR obfuscation schemes, the attacker will have a more effective
strategy available. The randomisation keys are known not to change from unit time-
step to unit time-step, so the attacker does not need to consider any randomisation
keys that have been tried in a previous unit time-step and found to be incorrect.
Hence, the attacker can follow a systematic strategy to eliminate all of the possible
randomisation keys until the correct ones are found. This not only increases the
probability of success with time, but also results in some finite upper-bound on the
amount of time that will be required to compromise the system.

• When the PO obfuscation scheme is used and diversity of 24 or less
is available, the PB system outperforms the FORTRESS system and
the SMR system.

The use of the PO obfuscation schemes causes a large increase in the intrusion toler-
ance of each node due to the nodes being replaced at the end of each unit time-step.
However, when the amount of diversity available is relatively small, this is more of an
advantage for the PB system than it is for the SMR or FORTRESS systems.

The FORTRESS and SMR systems both have a larger number of nodes that can be
attacked at once, and rely on being able to survive the intrusion of some of these
nodes. When a relatively small amount of diversity is available, these intrusions will
soon result in a large proportion of that diversity having been compromised. This will
produce a high probability of the system beginning a unit time-step in the condition

98

that an attacker can easily compromise enough nodes to compromise the entire system
through re-using previous attacks.

When 24 or less diversity is available, an attacker is able to exhaust the uncompromised
diversity available more rapidly than the PB system can be compromised.

• When the PO obfuscation scheme is used and 28 diversity is avail-
able, the FORTRESS system outperforms the SMR system, but is
outperformed by the PB system for κ > 0.8

When diversity is increased to 28, the fact that the attacker can more rapidly exhaust
the uncompromised diversity available for the SMR and FORTRESS systems than for
the PB system has less of an effect than with smaller amounts of diversity. The exact
threshold value of κ at which the PB system outperforms the FORTRESS system is
dependent on αi, but is in the range 0.8 < κ < 1.

• When the PO obfuscation scheme is used and 216 or greater diversity
is available, the FORTRESS system outperforms the PB system ex-
cept when κ is close to 1, and the SMR system outperforms the
FORTRESS system except when κ is close to 0.

When diversity is increased to 216 or higher, exhaustion of diversity no longer has a
significant effect on the relationship between the intrusion resilience of the systems.

The actual threshold value of κ at which the SMR system starts to outperform the
FORTRESS system is dependent on both the value of αi and the amount of diversity,
but it is generally in the region of 0.2-0.21 for 216 diversity and 0-0.01 for higher
diversity. This suggests that the FORTRESS system is only really superior from an
intrusion resilience perspective when indirect attacks are either impossible, or result
in the number of malicious requests that can be launched in a unit time-step to
be reduced by at least a factor of 100 relative to the number of malicious requests
that could be launched in a unit time-step as a direct attack. The exception to
this observation is when there is only 216 diversity available and an attacker can
easily recognise a previously compromised executable. Then, the number of malicious
requests that can be launched in a unit time-step during an indirect attack needs to
only be reduced by at least a factor of 5 relative to the number of malicious requests
that could be launched in a unit time-step as a direct attack.

• The possibility of indirect attacks has a large effect on the intrusion
resilience of the FORTRESS system.

The expected lifetime of the FORTRESS system with diversity of 216 or greater when
κ = 0 ranges from 211.58% of that of the SMR system to 59999172.3 % of that of the

99

SMR system, depending on the amount of diversity available. The expected lifetime
of the FORTRESS system with diversity of 216 or greater when κ = 1 ranges from
0.006% of that of the SMR system to 20.52% of that of the SMR system, depending
on the amount of diversity available. This shows both a very large difference between
the system lifetimes, and a very large difference between the situations when κ = 0

and κ = 1. This suggests that, when purely concerned with expected system lifetime,
assessing whether indirect attacks are likely to be possible is very important.

100

Chapter 6

State Transfer Support System

Previously, in Section 3.5 we have defined the components of a FORTRESS system.
Some of these components, such as the server farm and its sub-components, the
recovery unit and spare pool, are made up of off-the-shelf hardware. Others, such as
the reboot server and name server can be implemented in hardware or software using
pre-existing techniques such as the reboot server technique in [45] and standard name
server technologies.

This leaves us with three key components that are needed; the controller unit, the
software for producing proxy nodes and the additional software that is needed to turn
machines running legacy code into proactively fortified systems. We also require state
transfer algorithms to allow state to be transferred from the current servers to a new
set at the end of each unit time-step.

We begin by defining a set of possible state transfer algorithms in Section 6.1. We
then present the conceptual design of a state transfer support system to provide the
needed components for a FORTRESS system in Section 6.2. Finally, we present a
concrete architecture implemented in Java EE for this state transfer support system
in Section 6.3.

6.1 State Transfer Mechanisms

The FORTRESS system requires that system state can be transferred from the servers
used in one unit time-step to those in the next, as detailed in Section 3.5.3. This
results in a need to be able to produce checkpoints, blocks of data that encapsulate
the system state at a given instant in time. These checkpoints can then be used to
transfer system state from one server to another.

This differs from the state transfer requirements of a primary backup system [37] and
from the state transfer requirements of an SMR system [14] in the following ways:

101

Primary backup systems require that every update is propagated to the backups
before any further processing takes place. This is not required between the servers
for one unit time-step and the next in the FORTRESS system.

SMR systems transfer state to a set of rebooting servers from a set of non-rebooting
servers, some of which may be compromised. Hence there is a requirement for Byz-
antine agreement between the non-rebooting servers. This requirement is not present
in a FORTRESS system.

We begin by considering the checkpointing requirements of a proactively fortified
system. We then continue to define four state transfer mechanisms and analyse the
advantages and disadvantages of each. These state transfer mechanisms assume that
primary-backup replication is used in the server tier. The possibility of extending
them for use with state machine replication is considered in appendix D.

Finally, we consider the supporting mechanisms that are required for correctness and
liveness to hold for these state transfer mechanism. The correctness and liveness of
these state transfer mechanisms are fully analysed in Appendix E.

6.1.1 Checkpointing and Information to be Transferred

There are two possible kinds of system we can encounter; those in which computa-
tions are short-lived, and those in which computations are sufficiently long-lived that
it would be necessary to allow partially completed computations to be part of the
transferred state.

6.1.1.1 Short-Lived Computations

Here it is likely that no computation will be in progress at the time of state transfer,
and also that restarting a computation involves very little overhead. This allows us to
simply transfer the system state prior to any currently running computations, along-
side a list of computations to be performed which includes any that are in progress.
In many cases this will allow us to simply serialise the values of all state variables and
all computations that are waiting to be performed, then transfer them to a new node
with minimal overhead.

Further, if, as in many systems, the results of completed computations are stored in
a database, then there may be no need to transfer any information other than the
contents of the database and the list of computations that are waiting to be performed.
If these values are not entirely stored in a database then it may be possible to extract
them using the user interface. Otherwise, there will either be a requirement for the
developers providing the proactive fortification to make significant modifications to
the legacy code, or to use the methods detailed in Section 6.1.1.2 instead.

102

6.1.1.2 Long-Lived Computations

Here we are unable to stop and restart computations at state transfer without incur-
ring significant overhead. This makes it beneficial to be able to take a checkpoint
of the entire system state, including everything that has been achieved in currently
running computations.

There are two ways in which this can be achieved. Either the contents of the stack,
heap and registers for the application can be serialised and transferred (as detailed
in [46]), or the current state of each computation can be marshalled into a set of
variables, serialised, transferred, and then unmarshalled.

1. Stack, Heap and Register Transfer

The stack, heap and registers are serialised and transferred to the replacement node.
This has a fairly low overhead, but is not compatible with unique randomisation of
the nodes transferred to and from. We note that the stack is highly likely to contain
instructions that are yet to be executed.

If address space layout randomisation, described in Section 2.8.3, is used then the
stack will contain return addresses and function addresses that would be incorrect for
the new node. Similarly, if instruction set randomisation, described in Section 2.8.4, is
used then any instructions transferred as part of the stack will be incorrectly random-
ised for the new node. So, if we wish to use this method then some sort of translation
will need to be performed to make the transferred stack contents, instructions, or
other randomised values usable on the new node.

2 Marshalling

Here the current state of the computation must be converted into an intermediate form
that is independent of the randomisation applied to the system. This intermediate
form is transferred to the new node, which then constructs a new state from the
intermediate state. This has a considerable overhead at both the marshalling and
unmarshalling stages. This method may also require significant modification of the
legacy code in some cases, to allow relevant values to be marshalled. This then in
turn requires the developers providing the proactive fortification to have an in-depth
knowledge of how the legacy code works, something which may be impossible or
prohibitively expensive in practice.

6.1.2 State Transfer Mechanisms

The preceding issues lead to us considering four state transfer mechanisms.

103

Figure 6.1: Single Transfer: Processing Phase

Figure 6.2: Single Transfer: Transfer Phase

6.1.2.1 Single Transfer

Each unit time-step is partitioned into two phases, the processing phase and the
transfer phase. A new randomisation key is chosen during the processing phase and
a new set of nodes are initialised with that randomisation key. The processing phase
is shown in Figure 6.1.

As soon as the processing phase ends, all processing ceases and client requests are
queued until the start of the next unit time-step. The primary node generates a
checkpoint and sends this to every server node in the new system and all of the
backups. If the first backup node does not receive a checkpoint within a pre-set time
from the start of the transfer phase then it sends a checkpoint of its own to every
server node in the new system, and all lower ordered backups. Each lower ordered
backup behaves similarly if it does not receive a checkpoint from the primary or one
of the backups that is higher ordered than itself. This transfer phase is illustrated in
Figure 6.2.

6.1.2.2 Progressive Transfer

The system starts with two subsets of server nodes. Each subset is identically ran-
domised with the other members of the subset, but differently randomised from the
members of the other subset. The primary sends updates to the backups as normal,
and also marshals updates to send to the second subset of server nodes. The second
subset of server nodes perform exactly like backups with regard to how they handle
updates sent to them. The second subset of server nodes do not expect heartbeat
messages, and as a result are not able to become the new primary during the unit
time-step that they are the second subset of server nodes. The sending of update
messages during progressive transfer is illustrated in Figure 6.3.

During the unit time-step a new randomisation key is chosen and a third subset of

104

Figure 6.3: Progressive Transfer

Figure 6.4: Progressive Transfer with Load Balancing

servers is initialised with this key immediately before the end of the unit time-step.
When the unit time-step ends, the second subset of servers become the new primary
and backups, and the new, incoming subset of servers become the new second subset
of servers. The new primary generates a checkpoint, marshals it and sends it to
the new second subset of servers. Processing then continues as in the previous unit
time-step.

6.1.2.3 Progressive Transfer with Primary Load Reduction

The system starts with two subsets of server nodes. Each subset is identically ran-
domised with the other members of the subset, but differently randomised from the
members of the other subset. The primary sends updates to the backups as normal.
While there is at least one non-crashed backup, the first backup marshals these up-
dates to send to the second subset of server nodes. When all backups are crashed,
the primary performs this marshalling. The second subset of server nodes perform
exactly like backups with regard to how they handle updates sent to them, but do
not expect heartbeat messages or become the new primary during the unit time-step
that they are the second subset of server nodes. The sending of state update messages
during progressive transfer with primary load reduction is illustrated in Figure 6.4.

During the unit time-step a new randomisation key is chosen and a third subset of
servers is initialised with this key immediately before the end of the unit time-step.
When the unit time-step ends, the second subset of servers become the new primary
and backups, and the new, incoming subset of servers become the new second subset
of servers. The first of the new backups generates a checkpoint, marshals it and sends
it to the new second subset of servers. Processing then continues as in the previous
unit time-step.

105

Figure 6.5: Single Transfer with Trusted Components

6.1.2.4 Transfer with Trusted Components

A trusted server is used to convert system state from a format suitable for servers
with one set of randomisation keys to a format suitable for servers with a different
set of randomisation keys. This server never performs any processing, other than
a transformation between system state with an old randomisation key and system
state with a new randomisation key. This means that any malicious code from an
overflowed buffer will not be executed by the trusted server, making it invulnerable
to any of the attacks that may compromise the nodes that perform processing.

During processing, updates are sent to this trusted server, as though it were another
backup. The server uses them to construct the system state, which is stored, and
periodically transformed into a system state with the randomisation key for the next
time-step. This can be performed as one operation as long as we are considering
cases where randomisation involves a linear offset, such as ASLR or ISR. The old
key and new key can be used by the trusted server to generate a linear offset that
will transform the system state between the two randomisations. If a more complic-
ated randomisation scheme is used then the trusted component will need to perform
additional processing, increasing the time to pass on updates. However, if a more com-
plicated randomisation scheme is used then the potential for the transformation of
the system state to slow down the primary is greater, making the use of trusted com-
ponents more beneficial. The sending of state update messages during single transfer
with primary load reduction is illustrated in Figure 6.5 and the sending of state up-
date messages during progressive transfer with primary load reduction is illustrated
in Figure 6.6.

This trusted component can be used either with single transfer to provide a faster
transfer between sets of nodes if randomisation uses a linear offset scheme, as only
one transformation will be required rather than at least two if no trusted server was
used, or with progressive transfer as an alternative to primary load reduction.

6.1.3 Supporting Mechanism Requirements

The attack model presented in Section 3.2 assumes that an attacker can only com-
promise the FORTRESS system by sending malicious requests to attempt to com-
promise proxy or server nodes. Hence, we require that the supporting mechanisms

106

Figure 6.6: Progressive Transfer with Trusted Components

covered in Section 3.6 are not a legitimate source of attack, and hence will not be
compromised during the lifetime of the system. This requirement does not have to
mean that we require these mechanisms are completely resilient to attempts at com-
promising them, just that they are sufficiently more resilient than the proxies and
servers to make them uncompromisable in the time frame that an attacker may be
able to compromise a server in.

The following six requirements are also needed to fulfil the assumptions of the attack
model to ensure the safety and liveness of the state transfer mechanisms (as proven
in Appendix E):

1. Approximately Synchronised Clocks

We assume that all server replicas have approximately synchronised clocks. This
allows us to set an upper bound on the time at which a correct server replica sends a
state message to the server replicas for the next unit time-step.

2 Timely Links

We assume that all messages are either received within a bounded period of time or
lost. We also assume that there is a known bound on the number of times a given
message can be lost, when transmitted repeatedly.

This, coupled with assumption 1, means that there exists an upper bound on the
time taken for a state transfer message that is sent by a correct replica to be received
by all new replicas, assuming that messages are re-sent if an acknowledgement is not
received.

We will also make the assumption in practice that this bound can be made small
enough to make practical systems possible. This is generally a reasonable assumption
for the systems that we will analyse, although it could provide practical problems if
an attempt was made to implement a proactively fortified system with an incredibly
small interval between migrations, or over a very slow network.

3 Authenticated Channels

We assume that all messages received from a given replica have been sent by that
replica. This can be achieved in practice by the use of digital signatures or encryption
methods with similar properties.

107

4 Reboot at Fixed Intervals

We assume that nodes are rebooted at fixed times. Each node is rebooted after each
time it is used in the system as a server or proxy. No node is re-used as a server or
proxy until it has been rebooted.

Whether a node can be a proxy in some unit time-steps and a server in others is left
as a design decision for individual implementations of the FORTRESS system. We do
however assume that if this is allowed then there will still be a reboot between these
two uses of the node.

Reboot at fixed intervals can be achieved in practice by the use of hardware that
physically causes reboot, and a mechanism to allow the controller unit responsible
for them becoming servers or proxies to become aware of when they have finished
rebooting, such as those discussed in Section 3.6.4.

5 Availability of a Name Server

We assume there is a name server available that can receive the addresses of the
current proxies from the controller unit and make it available to clients. We do not
specify how this name server is implemented in practice, so it may be a hardware
switch on a fixed IP address that directs requests to the correct proxies, a software
based name server, or even a digitally signed multicast of the addresses to clients in
systems that have a small client base that is known to the system administrator.

We also assume that this name server will receive the current public keys for the servers
from the controller and make them available to clients, ensuring that authenticated
channels exist between servers and clients.

6 Re-Sending of Client Requests

We assume that, if a client does not receive a response to a given request within a
given period of time then the client will re-send the request. We also assume that
each client will provide an identifier for each request that is unique from the identifier
of any other request made by that client. This ensures that, assuming that both the
client and the FORTRESS system remain available, every request will eventually be
processed exactly once.

6.2 Design

We now present the conceptual design of a state transfer support system for FORT-
RESS systems.

108

Figure 6.7: System Components - Conceptual Level

6.2.1 Requirements

We assume that a legacy system is available which may be vulnerable to buffer over-
flow attacks and attacks of a similar nature. This system is sufficiently complex that
an attempt to identify and fix vulnerabilities may not be successful.

We require that this system either runs on hardware capable of also supporting ad-
ditional software for proactive fortification, or that information flows to and from the
legacy system can be channelled through additional hardware running this proactive
fortification software. In the second case we assume that it is possible for this ad-
ditional hardware to copy and replace the memory space in which the legacy code
executes and to start and stop its execution. We do not assume that the architects
of the proactive fortification system have the necessary understanding of the legacy
code to modify it, other than by copying the current contents of the memory space
of one execution and writing it to another execution.

The system is built using the progressive transfer method outlined in Figure 6.3.
Extensions are possible to allow other transfer methods to be used, and trusted com-
ponents may be needed in some cases.

6.2.2 Components

The system software is divided into 5 components at the conceptual level as shown
in Figure 6.7, we differentiate the Legacy Code from the other components as this is
the initial software system to be replicated, rather than being part of the FORTRESS
framework. A higher level view of the server node and proxy nodes is shown in Section
3.5 and a system level view of the controller unit is shown in Section 3.6

109

We note here that the timer process will be situated in the controller unit, while the
driver, legacy code wrapper and legacy code processes will all be situated in every
server node, and the proxy server will be situated on every proxy node.

6.2.3 Legacy Code

The legacy code is treated as a black box, with four important exceptions; the legacy
code wrapper defined in Section 6.2.4 can perform the following actions:

1. Start the legacy code executing.

2. Freeze the legacy code at the current state of execution.

3. While code is frozen: Copy the contents of the memory space in which the
legacy code runs.

4. While code is frozen: Replace the contents of the memory space in which the
legacy code runs.

Usually, the legacy code will make use of some form of permanent storage, such as a
a database. The updates sent to this permanent storage are assumed to be readable
by an authorised process.

6.2.4 Legacy Code Wrapper

The legacy code wrapper is a process authorised to perform all of the actions listed
in 6.2.3. It contains additional functionality which allows it to perform the following
actions when instructed to by an authorised process:

1. Start the execution of the legacy code.

2. Freeze the execution of the legacy code.

3. While code is frozen: Copy the contents of the memory space of the legacy code
and forward it to one or more other replicas.

4. While code is frozen: Replace the contents of the memory space in which the
legacy code runs with a given copy of the memory space from another replica.

5. Forward all database updates and transactions made by the legacy code in a
given time period to one or more other replicas.

110

As the legacy code wrapper is responsible for forwarding and receiving the contents of
the memory space and the database updates and transactions, it is also responsible for
any operations such as encryption or producing digital signatures that are necessary
as part of ensuring the assumption of authenticated channels that is made in Section
6.1.3.

The last action requires that the legacy code wrapper can intercept all database
updates and transactional information generated by the legacy. This may at first
appear to violate our assumption that the architects of the proactive fortification
system do not need detailed knowledge of the workings of the legacy code. However,
this assumption can be seen to hold when we consider the following two solutions.

6.2.4.1 Intercepting Database Updates

Database updates can be intercepted using proxy database drivers as in [32]. These
drivers will forward the update information to the other replicas, as well as sending
it to the standard database drivers. The only knowledge required by administrators
is the public API of the database drivers, code which is not specific to the legacy
system, and will, for any major database, be both simple and well documented.

Alternatively, if the legacy system is implemented in J2EE, annotations can be added
to entity beans to capture database updates. This does require some modification
of the legacy code, however this is limited to adding an annotation to each entity
bean class which points to a standardised method that takes the entity bean, wraps it
appropriately and passes it to the method for forwarding. The classes that are entity
beans can be recognised by their annotations without any need to understand the
structure of the legacy code. Similarly, the wrapping and forwarding code requires
only knowledge of the name of the entity bean.

6.2.4.2 Intercepting Transactions

The methods available for intercepting transactions depend on whether a common
middleware transaction manager is used, or whether the legacy code handles its own
transactions.

If a common middleware transaction manager is used then we can simply use a proxy
or a modified version of this transaction manager (possibly using a technique like
interceptors in J2EE) to intercept transactional information and propagate it before
continuing. This technique will be compatible with both systems where every replica
has its own database(s) (such as that in [41]) and systems where replicas access an
independently replicated database layer (such as that in [32]).

Alternatively, if the system handles its own transactions then transactional informa-
tion will be propagated along with other system state information when the legacy

111

code memory space is updated.

6.2.5 Driver

A driver is associated with each replica of the legacy code. The latter can be in one
of three modes depending on the role of the host node: Primary, Backup or Standby.
A driver takes the status of the node hosting the legacy code it is associated with.

Each driver process is initialised by a message from the timer process into one of three
states Primary, Backup or Standby. A driver process in the Primary or Backup state
can be stopped by a message from the timer process. A driver process in the Standby
state can be changed to the Primary or Backup state by a message from the timer
process. With this set-up, drivers, prompted by the timer process, will perform the
basic functionalities of the primary-backup replication. Details are given next.

1. Primary

When the driver process transitions into the Primary state it will instruct the legacy
code wrapper to start the legacy code executing. It will then start periodically sending
heartbeat messages to the backup nodes. After each client request is processed it
will request the contents of the legacy code’s memory space and any database or
transaction updates generated to be forwarded to the backup nodes. Periodically, it
will request the contents of the legacy code’s memory space and all database updates
since the last send to be forwarded to the replicas that will be used in the next unit
time-step. This will continue until the timer process declares that the unit time-step
is over. At this point any remaining transfer actions will take place, and the driver
process will close down.

2 Backup

When the process is in the Backup state it will leave the legacy code in the frozen
state. When an update is received from the primary it will instruct the legacy code
wrapper to replace the contents of the legacy code’s memory space with this update,
and apply any database or transaction updates. If an update is received from a
higher ordered backup then the process will take this backup to have become the new
primary.

If the process does not receive a heartbeat message from the primary within a pre-set
period of time then it will wait another pre-set period of time based on the number
of higher ordered backups between itself and the primary. If no response is received
then it will change state to become the primary. Similarly, if the node receives a
heartbeat message from a higher ordered backup then it will recognise this node as
having become the primary.

112

If the backup process does not become the primary then it will continue until the
timer process declares that the unit time-step is over. At this point any remaining
transfer actions will take place, and the driver process will close down.

3 Standby

When the process is in Standby state it will leave the legacy code in the frozen state
and receive updates from the primary like a backup. When a request is received
from the timer process, the process will change to the backup or primary state. The
standby will not expect heartbeat messages, and will be prepared to receive updates
from any of the nodes that are currently designated primary or backups.

6.2.6 Timer

The timer process fulfils the role of the controller unit as detailed in Section 3.6. The
timer process waits until the end of each unit time step, and sends a transition message
to the primary and backups. It then waits a sufficient length of time to ensure that
transition will have occurred and then sends messages to the standby nodes to inform
them to become the new primary and backups. The timer also sends messages to
initialise new proxies and update the name server to ensure clients are accessing these
new proxies.

6.2.7 Proxy

The proxy can be initialised into an active state by a message from the timer process.
This message will inform it of the identities of the servers it will forward requests to.

When the proxy server is in an active state it will accept client requests and forward
them to the primary and backup nodes. When it receives a response from any of these
server nodes it will forward it to the client that it originated from.

6.2.8 Execution

We present an example of the normal execution of a proactively fortified system
assuming progressive transfer.

On system start-up one replica is initialised as the primary, a set of n − 1 replicas
are initialised as backups and a set of n replicas are initialised as standbys. Clients
send requests via the proxies to the primary and backups. The primary processes
these requests and responds to the client via the proxies. The backups ignore the
client requests they receive. The primary sends an update to every backup after each
request is processed. Periodically, the primary sends updates to the standbys. The

113

Figure 6.8: Sequence Diagram Showing Normal Execution of Requests and Updates

backups and standbys will replace the memory space of their legacy code with each
update they receive.

The normal sequence of execution is shown in Figure 6.8. Only one proxy server is
shown in this diagram for clarity. Normally the system would use three proxy servers,
all forwarding requests to the primary and backups. Unique request identification
numbers allow the primary to ignore multiple copies of the same request and provide
exactly-once execution.

If a client sends a request and does not receive a response within a time-out period
it will re-send the request. If the primary has crashed then the delay before re-send
will enable a backup to have become the new primary.

At the end of the unit time-step the timer will send a message to the primary and all
backups to start transition. The primary will then send a final update to all backups
and standbys. If a backup does not receive an update from the primary within a
time-out period then it will wait for a further time-out period for each higher order
backup. If none of the higher ordered backups sends an update then it will become
the primary for the transition and send the update message.

After a sufficient time period to allow this transition to occur, the timer sends a
message to the standbys to become the new primary and backups. The controller
unit also sends a message to the name server with the identities of the new proxies,
and a message to the new proxies to become active and direct client requests to the
replicas that have just become the primary and backups (see Section 3.6).

6.3 Architecture

Now that the state transfer support system has been defined on a conceptual level
we can define it on a concrete level; that is, the actual objects that will be required
to make up the components defined in Section 6.2. We begin by defining the im-
plementation environment we will use, before specifying the individual objects to be
constructed. This is followed by a discussion of how the components map to the

114

processes defined in Section 6.2 and the normal execution of the fortified system is
presented.

6.3.1 Implementation Environment

This framework has been implemented using an EJB3.1 architecture and is designed to
run on JBoss application server 6.0.0. This is a technology and middleware platform
that is widely used for producing distributed applications. Heartbeat, state transfer
and timer messages are sent and received via JMS.

A physical reboot mechanism has not been implemented, although the system will
easily work with such a mechanism, as there is an option to add a wrapper class
conforming to a simple reboot handler interface that will be called with the IP address
of every node to be rebooted when a reboot request is sent.

6.3.2 Objects

Figure 6.9 illustrates the architecture of the proactive fortification framework that sits
on each server node. The three message bean classes have been omitted for clarity,
and in each case would handle messages from the appropriate incoming message queue
and call the appropriate handler class.

1. Fortress Timer

The Fortress Timer is a trusted process, situated in the controller unit, that informs
each node when to change state. It starts with a list of candidate nodes, and allocates
the first one to be the primary, the next two to be backups and the next three to be
standbys. After a pre-set time period has elapsed the Fortress Timer instructs the
primary and backups to refresh themselves, the standbys to become the new primary
and backups, and three new nodes to become standbys.

Nodes can register themselves with the Fortress Timer at any point as being available.
This does introduce the danger of a compromised machine re-registering itself without
refreshing. However, in a production system it would be possible to use a hardware
device to force each node to physically reboot after a stop message was received from
the Fortress Timer. This possibility is catered for by providing a method that allows
a Reboot Handler to be registered with the Fortress Timer. If a Reboot Handler is
registered then every time a stop message is called the reboot node method of the
Reboot Handler will be called with that node’s IP address as a parameter.

2 Reboot Handler

115

Figure 6.9: Architecture of a Server Node

The Reboot Handler is an interface with one method allowing a node to be rebooted.
This method takes the IP address of the node to be rebooted. A concrete imple-
mentation of the reboot handler can be provided for any production system to allow
a physical reboot mechanism, situated in the Reboot Server (see Section 3.6), to be
triggered, preventing intruded nodes from refusing to reboot.

The method of having the controller unit ping nodes that are known to have rebooted
and re-register them when a ping response is received, as described in Section 3.6.4,
can be implemented by having a separate process that is started by the reboot handler,
performs the pinging, and then performs the registering with the Fortress Timer on
behalf of the node.

3 Initialisation Message Bean

An Initialisation Message Bean is created every time a message is received from the
Fortress Timer. It extracts the message’s details and passes these details to the
corresponding methods on the Initialisation Handler.

4 Initialisation Handler

The Initialisation Handler receives messages from the Fortress Timer via the Ini-
tialisation Message bean. These messages can be set-up messages or stop messages.

116

Set-up messages are subdivided into three types, Primary set-up, Backup set-up and
Standby set-up. Each of these causes the Initialisation Handler to set up the Fort-
ress, Heartbeat Handler and Update Handler in the correct manner for the message
received.

Stop messages result in any final updates being sent, and then the node refreshing
itself. Stop messages are expected for primary and backup nodes, but not for standbys,
unless the whole system is being shut down. Instead a standby node would expect a
Primary set-up or Backup set-up message to be the next thing it receives from the
Fortress Timer.

The Initialisation Handler is implemented as a singleton bean.

5 Fortress

The Fortress contains state information about whether this node is the primary, a
backup, or a standby, and lists of the other nodes. It also holds a reference to an
appropriate Freeze Adaptor for the node. It has methods that enable the status of
the node (primary, secondary, backup or stopped) to be changed, as well as methods
to cause updates to be sent to other nodes.

The Fortress is implemented as a POJO, a single instance of it is registered with
the Initialisation Handler, Heartbeat Handler and Update Handler. The existence of
one Fortress is ensured by the fact that a single instance is registered with all three
handlers, and every handler is a Singleton bean. This is reinforced by the Fortress
class making use of the Singleton Factory design pattern.

6 Legacy Code State

The Legacy Code State is a wrapper class for two values; a byte array designed to
contain any serialised object representing the state of a legacy system, and a Boolean
to indicate whether this is the final update from a node. It is implemented as a POJO
and designed to be used in Update messages.

7 Freeze Adaptor

The Freeze Adaptor holds references to an appropriate Freeze Handler and State
Forward Handler.

It is able to set a given state in the legacy code by passing the state to the Freeze
Handler or forward a state from the legacy code by calling the Freeze Handler and
passing the information to the State Forward Handler. When an update is forwarded
it can be declared to be either a standard update or the final update of this unit time
step. The Freeze Adaptor also has methods that enable it to stop or start the legacy
code by calling the Freeze Handler.

117

The Freeze Adaptor is implemented as a POJO, and a single instance of it is registered
with the Fortress. The existence of one Freeze Adaptor is ensured by the fact that a
single instance is registered with the Fortress of which there is only a single instance.
This is reinforced by the Freeze Adaptor class making use of the Singleton Factory
design pattern.

All code states handled by the Freeze Adaptor are encapsulated as instances of the
Legacy Code State class.

8 Freeze Handler

The Freeze Handler can start and stop the legacy code, set the code state and return
the code state, either flagged as a final update or not. It is implemented as an interface
and specific Freeze Handlers (conforming to the Freeze Handler interface) will need to
be produced for particular types of legacy code or hardware platform. The existence
of a single instance of the Freeze Handler on a particular node is ensured by the fact
that a single instance is registered with the Freeze Adaptor, of which there is only
a single instance. This is reinforced by the Freeze Handler class making use of the
Singleton Factory design pattern.

All code states handled by the Freeze Handler are encapsulated as instances of the
Legacy Code State class.

9 State Forward Handler

The State Forward Handler has a method that takes a Legacy Code State and forwards
it to all nodes listed as backups in the Fortress. It has a second method that takes a
Legacy Code State and forwards it to all nodes listed as standbys in the Fortress. It is
implemented as an interface enabling specific State Forward Handlers to be produced
that make use of different messaging technology. It is expected that in a production
system the State Forward Handler will be implemented to encrypt the contents of the
messages that it sends. This will prevent an attacker that has succeeded in intruding
into another part of the network from compromising confidentiality by reading state
transfer messages, or compromising integrity by changing state transfer messages in
an undetectable way. The use of encryption in the State Forward Handler is one way
of satisfying the assumption of authenticated channels that was made in Section 6.1.3.

The existence of a single instance of the State Forward Handler on a particular node
is ensured by the fact that a single instance is registered with the Freeze Adaptor, of
which there is only a single instance. This is reinforced by the State Forward Handler
class making use of the Singleton Factory design pattern.

All code states handled by the State Forward Handler are encapsulated as instances
of the Legacy Code State class.

118

10 Heartbeat Message Bean

An instance of this Message Driven Bean is created when a heartbeat message is
received from the primary. It extracts the contents of the message and passes them
to the Heartbeat Handler.

11 Heartbeat Handler

The Heartbeat Handler can perform one of two roles when started. If the node is the
primary then heartbeat messages are periodically sent to all backups.

If the node is a backup then a timer is set and every time a heartbeat message is
received from the Heartbeat Message Bean it is re-set. If a heartbeat is received that
originated from a node other than the primary then a method is called on the Fortress
to change the identity of the current primary. If no heartbeat is received then the
node waits for a pre-set period of time multiplied by the number of nodes senior to
it. If no heartbeat is received in this time then it calls a method on the Fortress to
become the primary and starts sending heartbeat messages to all nodes junior to it.

The Heartbeat Handler is implemented as a Singleton bean.

12 Update Message Bean

An instance of this Message Driven Bean is created when an update message is received
from the primary. It extracts the contents of the message and passes them to the
Update Handler.

13 Update Handler

The Update Handler can perform one of two roles when started. If the node is the
primary then it periodically prompts the Fortress to send update messages. If the node
is a backup or standby then it receives update messages from the Update Message
Bean and sends them to the Fortress to update the system state.

The Update Handler is implemented as a Singleton Bean.

14 Proxy Bean

The proxy bean is a stateless session bean built specifically for each given payload
system. It provides a remote interface offering all of the operations offered by the
payload system. It forwards requests it receives to the payload system and returns
responses from the payload system to the client.

The proxy bean receives initialisation messages from the Fortress Timer. A start
message informs it to begin forwarding client requests and sets the identities of the

119

Figure 6.10: Mapping Between Design and System Architecture Models

servers to forward requests to and receive responses from. A stop message informs
it to stop forwarding client requests and clear the identities of the servers to forward
requests to and receive responses from. These messages are handled by the Proxy
Initialisation Message Bean and the Proxy Entity Bean.

15 Proxy Initialisation Message Bean

An instance of this Message Driven Bean is created when an initialisation message is
received from the Fortress Timer. It creates a Proxy Entity Bean from the information
contained in the message and commits it to persistent storage. As the data in the
Proxy Entity Bean refers to the current state of the proxy, a previous Proxy Entity
Bean is deleted if it exists.

16 Proxy Entity Bean

This Entity bean stores the current state of the proxy server it is located on. It
contains two variables; a Boolean flag to indicate whether the proxy is currently
active, and a list of IP addresses of the current servers. A start message from the
Fortress Timer results in the Boolean flag being set to true and the IP addresses being
set to those contained in the message. A stop message from the Fortress Timer results
in the Boolean flag being set to false and the list of IP addresses being deleted.

6.3.3 Mapping Between Design and System Architecture Mod-

els

Here we consider each component of the design and show the pieces of the system
architecture that it includes. This relationship is illustrated in Figure 6.10.

120

1. Timer

The Fortress Timer class implements all of the functionality of the timer component,
with the Reboot Handler class performing any triggering of hardware based reboots.

2. Legacy Code

The legacy code is not implemented as part of the Fortress framework.

3. Legacy Code Wrapper

The legacy code wrapper is implemented by the Freeze Handler and Freeze Adaptor
classes.

4. Driver

The driver consists of eight classes. Most of its functionality is contained in the
Fortress class, with the ability to receive messages from the timer being implemented
by the Initialisation Handler and Initialisation Message Bean classes. The ability to
send and receive updates is provided by the State Forward Handler, Update Handler
and Update Message Bean classes. The ability to decide when it is necessary to switch
from backup to primary status is provided by the Heartbeat Handler and Heartbeat
Message Bean classes.

5. Proxy

The Proxy Bean class implements the main functionality of the proxy component, for-
warding client requests and server responses. The Proxy Message Bean class handles
proxy initialisation, and stores the necessary data in the Proxy Entity Bean class.

6.3.4 Execution

As in Section 6.2.8, we present an example of the normal execution of a proactively
fortified system assuming progressive transfer. The execution of the Fortress Timer
is shown in Figure 6.11, the execution of the primary server is shown in Figure 6.12
and the execution of each backup server is shown in Figure 6.13.

121

Figure 6.11: Activity Diagram of the Execution of the Fortress Timer

122

Figure 6.12: Activity Diagram Showing Execution of the Primary

The Fortress Timer starts with a list of available servers and available proxies. It
sends requests to the first server to become a primary, the next two servers to become
backups and the next three servers to become standbys. This is followed by requests
to the first three proxies to become proxies. It then sets a timer for the inter-migration
period.

The Initialisation Handler for the primary receives a request from the Fortress Timer.
It initialises the Fortress with the lists of backups and standbys, the correct Freeze
Handler (itself initialised with the correct Freeze Adaptor and State Forward Handler)
and registers the Fortress with itself, the Heartbeat Handler and the Update Handler.
It then starts the Heartbeat Handler and Update Handler.

The Heartbeat Handler sends a Heartbeat message to the backups then sets a timer
to instruct itself to send the next Heartbeat message. The Update Handler sets a
timer to instruct itself when to send the first Update message to the standbys.

The Initialisation Handler for each backup receives a request from the Fortress Timer.
It initialises the Fortress with the lists of primary, backups and standbys, the correct
Freeze Handler (itself initialised with the correct Freeze Adaptor and State Forward
Handler) and registers the Fortress with itself, the Heartbeat Handler and the Update
Handler. It then starts the Heartbeat Handler.

The Heartbeat Handler sets a timer after which it will need to identify the new
primary, and resets this timer as soon as it receives a Heartbeat message from the

123

Figure 6.13: Activity Diagram of Execution of Backup

124

primary. The Update Handler processes any update message that it receives.

The Initialisation Handler for each standby receives a request from the Fortress Timer.
It initialises the Fortress with the lists of primary and backups, the correct Freeze
Handler (itself initialised with the correct Freeze Adaptor and State Forward Handler)
and registers the Fortress with itself and the Update Handler.

The Update Handler processes any Update messages that it receives.

Each proxy server receives a request to become a current proxy. This request includes
the addresses of the current primary and backups. The proxies will now forward any
requests they receive to the primary and backups, and will forward any responses they
receive from the primaries and backups to the client.

When the inter-migration period has elapsed the Fortress Timer sends a stop message
to the primary, each of the backups and each of the proxies. If a Reboot Handler is
registered then this will also be triggered, causing messages to be sent to the reboot
server instructing it to reboot all of the servers and proxies after a sufficient time
interval to allow migration. The primary will send update messages to the standbys,
with the next backup taking over this role if it does not receive a message within a
time-out period and can hence assume that the primary has crashed.

The Fortress Timer will send a request to the first standby to become the primary,
the other two standbys to become backups and three new servers to become standbys.
Requests will be sent to the next three proxies to become the current proxies, and
they will be given the addresses of the new primary and backups. The Fortress Timer
will then set a new time-out for the inter-migration period.

125

Chapter 7

State Transfer Overhead: A
Small-Scale Application

This chapter presents an experimental evaluation of the performance overhead caused
by the use of the FORTRESS system relative to that of a primary-backup system.

We begin by defining the components that will be needed to produce a server applica-
tion suitable for measuring the overhead of the proactive fortification framework. We
then define the components that will be needed for a suitable client system for using
in overhead measurement. This is followed by an outline of our measurement strategy
and the physical systems used.

Finally, we present the results of latency and throughput tests as three key intervals
are varied; the time between periodic updates being sent to the new set of servers under
the progressive transfer scheme, the time between heartbeat messages being sent by
the current primary to the current backups and the time between node replacement.

These results show that configuring the time between node replacements can have
a significant effect on performance overhead, resulting in a trade-off needing to be
made between the increase in intrusion resilience from shortening the time and the
increase in efficiency from lengthening it. The results also show that update interval
and heartbeat interval can have an effect on performance overhead and will need to
be configured correctly for maximum efficiency.

7.1 Server Application Architecture: Simplifying As-

sumptions

We have made several simplifications to the server application used to measure the
overhead of our proactive fortification framework. These simplifications have been
made for ease of measurement and implementation. The proactively fortified system
is compared to the same server application without proactive fortification, i.e. a

126

simple primary-backup replicated server system subject to neither randomisation nor
periodic re-randomisation.

1. Database access is handled by EJBs

The EJB framework is used for all persistence. This means that in our test application
the values to be stored are modelled as entity beans, and the persistence framework
is used to store them.

2 Every Node has its own Persistent Store and Updates are Propagated to Backups
Whenever an Entity is updated

This means that we are considering a client-server architecture rather than a three-
tier architecture. Rather than using re-written database drivers to prompt an update
every time an entity bean is modified, we instead use an interceptor to capture the
change. This may not be possible in a production system, as many languages do not
provide the interceptor functionality that Java EE provides. There is also an issue of
understanding which entity beans need interceptors if considering a large system. We
have noted in Section 6.2.1 that proactive fortification may need to be undertaken
by system architects who do not have a perfect understanding of the internals of the
legacy system.

However, the use of interceptors is fundamentally equivalent to the technique of re-
writing database drivers discussed in Section 6.2.4.1 and in [32], suggesting that it is
appropriate to use in an evaluation system.

3 Application State is Transferred through the Transfer of the Contents of the
Relevant Entity Beans

Our evaluation application is sufficiently simple that all information about current
processing is held within the set of entity beans. Transferring the information from
these entity beans removes the need for us to produce an efficient application for
serialising program execution state for an EJB based application. We note that the
marshalling and unmarshalling performed in this transfer of entity beans will not
be as efficient as the schemes we have discussed for transferring and transforming
program state between nodes. Hence this simplification has the potential to reduce
the performance of our system relative to what could be achieved with a more efficient
transfer scheme.

4 Re-randomisation of Servers is not Performed during the Evaluation Procedure

Our scheme makes use of differently randomised servers being available every time
system migration takes place. This means that, re-boot and re-randomisation can

127

occur while machines are not in use (using a similar scheme to ensure re-boot as that
in [55]). Thus, while the periodic re-boot and re-randomisation of servers is vital to
the security of the scheme, it will make no difference to the state transfer overhead of
the scheme, as long as there are sufficiently many servers available to allow re-boot
and re-randomisation to occur while machines are not in use. Hence this overhead
evaluation does not require servers to be re-randomised.

5 Co-Location of Proactive Fortification Framework

All of the proactive fortification framework for a given server runs from the same
instance of JBoss, on the same physical machine as the legacy code. A production
system may prevent timing attacks by requiring that the framework be located in a
hardware module that guarantees time bounds on message delivery, and retrieving
and setting system state on correct systems. Such specialist hardware would be
system specific, and would also be likely to improve the efficiency of the proactive
fortification framework, so the absence of this hardware in our overhead evaluation
would not invalidate results showing that the proactive fortification framework has
sufficiently low overhead to be practical.

7.2 Server Application System Architecture Com-

ponents

The server application consists of the following components:

1. Server Application Bean

This provides a simple service allowing clients to request a job, which contains a value
supplied by the client to represent some job data, or request the information about an
existing job. Requests are given with a client provided request number. This request
number will be stored with the job data in a Data Entity Bean.

The unique request number is used to differentiate between new jobs, and jobs that are
received multiple times through several proxies. We assume in our evaluations that
this will always be unique, but in practice the proxy could append a unique client
identifier to the start of each request number so that a client could not accidentally use
the same request number as another client. Even with this precaution it is possible
for a malicious client to duplicate job numbers by submitting several jobs with the
same number, knowing that this is likely to result in identical job numbers as they
will have the same client identifier appended to them. However, all this would enable
the malicious client to do is have a duplicate job refused, which will not compromise
system integrity or confidentiality and will only deny availability to that malicious
client for that duplicate job.

128

2 Data Entity Bean

A Data Entity Bean is used to represent each job in the system. It contains the
unique job identifier, the job data and a time-stamp for when the job was created.
An interceptor is used to capture the action of each data entity bean being created
or modified. This interceptor checks to see if this node is currently the primary, and
if it is then it a creates a copy of the data entity bean it is called on in and wraps
it in a Legacy Code State, then calls the appropriate method on the State Forward
Handler to pass this Legacy Code State to the backup nodes.

3 Forward Bean

The Forward Bean is a stateless session bean that allows the current Data Entity
Beans, or a subset of them from a particular time period, to be retrieved or replaced,
and hence the system state retrieved or altered. It has a get data method that can
return a Server Application Data Wrapper containing a list of Data Entity Beans, and
a set data method that takes a Server Application Data Wrapper and adds its contents
to the stored Data Entity Beans, replacing any existing beans that also occur in the
Server Application Data Wrapper. The get data method can be given a parameter to
specify the earliest time and date of modification from which to include Data Entity
Beans in the Server Application Data Wrapper.

4 Payload Data Wrapper

The Server Application Data Wrapper is a wrapper class that contains a list of Data
Entity Beans. It is serialisable and intended to be wrapped by a Legacy Code State.

7.3 Server Application Specific Fortress Components

The following implementations of Fortress framework interfaces were created for use
with the server application.

1. Server Application State Forward Handler

The Server Application State Forward Handler implements the State Forward Handler
Interface defined in Section 6.3.2. It implements the method to forward state by
retrieving the lists of backups junior to this node and standbys, and multi-casting the
Legacy Code State to them, using JMS.

2 Server Application Freeze Handler

129

The Server Application Freeze Handler implements the Freeze Handler Interface defined
in Section 6.3.2. It implements the method to retrieve the state by calling the get
data method of a Forward Bean and wrapping the Server Application Data Wrapper
that is returned in a Legacy Code State.

The method to set the state is implemented by retrieving the Server Application
Data Wrapper from the Legacy Code State that it receives in an update message and
passing it to the set data method of a Forward Bean.

7.4 Client Components

The following component was created to simulate the action of a client accessing the
application:

1. Client Bean

The client bean is a stateless session bean offering a local interface to start the over-
head measurement procedure. It performs a series of requests on the payload system,
alternating between set and get requests and records the start and finish times for
every request. The tests can be started by a jsp page which sends a start request to
the local interface. This jsp page plays no part in the actual measurement procedure,
as the client bean performs all of its own timing, so there will be no performance
issues due to the overhead of using a web interface.

7.5 Measurement Strategy

Our measurement methodology involved measuring three metrics; latency, through-
put and correctness of responses and state. Here we describe the rationale behind
measuring each of these factors, along with the methods used. We then describe the
physical set-up of our measurement system.

Other possible metrics that were considered were hardware cost to handle a fixed rate
of requests and hardware cost to provide a fixed percentage of responses within a fixed
time. These metrics were rejected as, for a given system, they can be calculated from
the throughput and latency measurements.

7.5.1 Latency

Latency is the time taken for a response to be returned from a system. That is,
the total round trip time from the request being sent to the response being received.
Measuring latency allows us to examine how the use of proactive fortification affects

130

the actual time that a user will have to wait to receive a response to their request,
and what effect this is likely to have in practice.

Latency can be measured by logging the time at which each request is sent and
matching this up with the time at which the corresponding response is received. The
latency of requests that are lost during reboot and have to be re-sent by the client are
measured as being sent when they were first sent, and received when the response is
received after re-sending.

7.5.2 Throughput

Throughput is the number of requests that can be handled in a given period of time.
Measuring throughput enables us to examine how the maximum number of requests
that can handled at once is affected by proactive fortification. This can have direct
financial implications as, if a particular throughput level is needed and this is reduced
by proactive fortification, the solution is likely to involve the provision and running
of extra or faster hardware to make up the shortfall in throughput.

Throughput can be measured by generating requests from a number of clients at the
same time, and logging the time at which each request is sent and the time at which
the corresponding response is received. Collating these request/response pairs allows
us to calculate how many requests were handled on average in a given period of time.
Requests that are lost during reboot and have to be re-sent by the client are measured
as being sent when they were first sent, and received when the response is received
after re-sending.

7.5.3 Correctness of Responses and State

The correctness of responses and state is a variable that is either true or false. Either
the responses and the system state at the end of a period of processing are correct,
or they are incorrect. Measuring the correctness enables us to ascertain whether the
system is behaving correctly, or whether proactive fortification has introduced errors
that were not present in the legacy system.

Correctness can be sampled by examining the logs of requests and responses in the
latency and throughput tests and comparing the responses received to the values that
we would expect them to be, based on the requests that have been sent. The final
state of the system can also be compared to the values we would expect them to be
by examining the contents of the database.

7.5.4 Overhead Measurement System

131

Figure 7.1: Measurement - First Unit Time-Step

Figure 7.2: Measurement - Second Unit Time-Step

132

Figure 7.3: Measurement - Third Unit Time-Step

A system of 12 servers was set up, on separate machines. This ensures that there
are always sufficient machines to have 3 servers in use as the primary and backups,
3 servers in use as the standbys, and 3 servers available for the next migration, even
if it takes longer than one migration period for a server to be refreshed. We assume
that it does not take longer than 2 migration periods for a server to be refreshed and
this has always been the case in practice.

Six proxies were then set up on separate machines, and a client on a further separate
machine. Five instances of the client code were started simultaneously. Each instance
of the client made a series of 100000 requests, alternating between increment requests
and get value requests. The sending and receiving of requests were de-coupled, to
ensure that the latency did not reduce the speed at which the client could send
requests.

In all cases, sending this number of requests takes a large enough period of time
that the processing time included at least one migration. The average latency and
throughput were calculated from the start and end times of the requests sent. The
contents of the requests and responses were stored, along with the contents of the
database on the primary and backups after the last request was received. The system
configuration is demonstrated for the first three unit time-steps in Figures 7.1, 7.2
and 7.3. These figures display all server nodes, available or being refreshed, but only
display one client and the current proxy nodes for the unit time-step being considered.

133

Then, three servers were set up in a primary-backup configuration, and five instances
of the client on a separate machine was used to send the same number of requests.
The average latency and throughput were again calculated from the start and end
times of the requests sent, and the contents of the requests, responses and databases
were again stored.

This allowed a comparison of average latencies and throughputs to be made between
the same payload system with and without Proactive Fortification.

The system is illustrated through 3 unit time-steps in Figures 7.1, 7.2 and 7.3.

7.5.5 Experimental Methods

Three key system parameters were identified:

• the time between replacement of nodes (migration interval)

• the time between updates being sent to the standby nodes (update interval)

• the time between heartbeat messages being sent from the primary to the backups
(heartbeat interval).

The last two intervals are common to both fortified and unfortified systems, and the
first interval is unique to the fortified system.

A set of experiments was run for each interval, where it was varied while the other
two were held constant. A further set of experiments were run for the case where a
primary-backup system with no migration was used, to give a baseline to compare
the other values to.

We also made use of the stored requests, responses and the contents of the databases
used by the primary and backups after the end of each experiment to check correctness.
In every case each response was as expected, and the databases all contained the
correct data entity beans. This allowed us to conclude that state transfer is not
introducing any errors into the system state, either in the primary-backup system or
the proactively fortified system, and that even when migration is taking place, all
requests are eventually being processed.

The experiments performed for each system parameter are as follows:

7.5.5.1 Update Interval

The migration interval was held constant at 150 seconds, and the heartbeat interval
was held constant at 4 seconds. The update interval was varied between 500ms and
150 seconds, with one experiment being performed for each value. We note that an

134

update interval equal to the migration interval is essentially identical to using single
transfer.

Each experiment consisted of each of five client instances making a series of 100000
requests, alternating between increment requests and get value requests.

7.5.5.2 Heartbeat Interval

The migration interval was held constant at 150 seconds, and the update interval was
held constant at 40 seconds. The heartbeat interval was varied between 500ms and
6 seconds, in steps of 500ms. A second set of experiments was performed without
system migration, and hence without any updates being sent to standby nodes, to
provide comparison values for an unfortified system. The heartbeat interval was varied
between 500ms and 6 seconds, in steps of 500ms.

Each experiment consisted of each of five client instances making a series of 100000
requests, alternating between increment requests and get value requests.

The experiment using an unfortified system with a heartbeat interval of 4 seconds
also provided a comparison value to use in the update interval and migration interval
experiments.

7.5.5.3 Migration Interval

The update interval was held constant at 10 seconds, and the heartbeat interval was
held constant at 4 seconds. The migration interval was varied from 150 seconds to 20
seconds in 10 second steps.

Each experiment consisted of each of five client instances making a series of 100000
requests, alternating between increment requests and get value requests.

7.6 Results

7.6.1 Update Interval

The latency and throughput were found to be strongly correlated to the interval
between the last update and the time of system migration, with the optimum values
occurring when this interval was 4 seconds.

The latencies measured, expressed as percentage increases over the latency measured
for a system without migration, are shown in Figure 7.4. The absolute values, along
with 95% confidence intervals for each value are shown in Appendix F.1.

The percentage increase in latency has two relatively low areas, sandwiched between

135

Figure 7.4: Percentage Increase in Latency as Update Interval Varies

Figure 7.5: Percentage Increase in Latency as Interval Between Last Scheduled Update
and Migration Varies

very high end points and a higher central Section. The complex way in which latency
varies with update interval suggests that latency may not be linearly affected by
update interval, but instead by some property that emerges from the update interval.
One property that varies non-linearly with update interval is the interval between the
last scheduled update and the final update sent at migration. A manipulation of the
data to give the percentage increase in latencies relative to the interval between the
last scheduled update and final update sent at migration is shown in Figure 7.5.

Figure 7.5 shows a linear positive relationship between the interval and the percentage
increase in latency, for intervals larger then 4 seconds, and also a linear negative
relationship between the interval and the percentage increase in latency for intervals
smaller than 4 seconds. This suggests that smaller intervals between the last scheduled
update and the final update for migration improve efficiency, up until a cut-off point
where they become too close, after which smaller intervals decrease efficiency.

136

Table 7.1: Correlation Coefficients for Comparison between Latency and Interval
between Last Update and Migration

Interval Between Last Scheduled Update and Migration Correlation Coefficient
≥ 4 0.9346
< 4 -0.7980

Figure 7.6: Percentage Decrease in Throughput as Update Interval Varies

This intuition can be reinforced by calculating correlation coefficients for these two
sections of the data. These correlation coefficients are shown in Table 7.1 and demon-
strate a strong positive correlation between the interval and the percentage increase in
latency when the interval is 4 seconds or larger, and a moderate negative correlation
between the interval and the percentage increase in latency when the interval is less
than 4 seconds.

The throughputs measured, expressed as the percentage decreases compared to the
throughput measured for a system without proactive fortification are shown in Fig-
ure 7.6. This graph has a strong resemblance to Figure 7.4, so we again consider
the interval between the last update and migration, as we did with the latency. A
manipulation of the data to give the percentage decrease in throughput relative to
the interval between the last scheduled update and final update sent at migration is
shown in Figure 7.7.

Here we see the percentage decrease in throughput becoming larger as the interval
increases, for interval values in the range 4s to 80s and the percentage decrease in
throughput becoming larger as the interval decreases for interval values in the range
0s to 4s. Correlation coefficients for these intervals are shown in Table 7.2 and suggest
a strong positive linear correlation between interval and decrease in throughput for
intervals between 4s and 80s and a strong negative linear correlation between interval
and decrease in throughput for intervals between 0s and 4s.

137

Figure 7.7: Percentage Decrease in Throughput as Interval Between Last Scheduled
Update and Migration Varies

Table 7.2: Correlation Coefficients or Comparison between Throughput and Interval
between Last Update and Migration

Interval Between Last Scheduled Update and Migration Correlation Coefficient
≥ 4 0.925
< 4 -0.808

7.6.2 Heartbeat Interval

The heartbeat intervals were found to have a weak correlation with performance
overhead, with the system becoming more efficient as heartbeat interval increased in
the range 500ms to 6 seconds.

The absolute values obtained are presented in Appendix F, along with 95% confidence
intervals for each value.

Correlation coefficients for these results are shown in Table 7.3. This shows a weak
negative correlation between latency and heartbeat interval and a weak positive cor-
relation between throughput and heartbeat interval with a migration interval of 150s
over the range considered. It also shows no correlation between latency and heartbeat
interval and no correlation between throughput and heartbeat interval in a system
without migration over the range considered.

The increase in latency caused by proactive fortification is shown in Figure 7.8. None
of the heartbeat intervals considered results in an increase in latency of more than
8%. The decrease in throughput caused by proactive fortification is shown in Figure
7.9. None of the heartbeat intervals considered results in a decrease in throughput of
more than 7%. This shows that the overhead of proactive fortification is minimal for
a 150 second migration interval and 40 second update interval, for any of the range
of heartbeat intervals considered.

138

Table 7.3: Correlation Coefficients for the Comparison of Latency and Throughput
with Heartbeat Interval

Data Series Correlation Coefficient
Latency with 150s Migration Interval -0.46602

Throughput with 150s Migration Interval 0.46627
Latency without Migration -0.10919

Throughput without Migration 0.105922

Figure 7.8: Percentage Increase in Latency as Heartbeat Interval Varies

Figure 7.9: Percentage Decrease in Throughput as Heartbeat Interval Varies

139

Table 7.4: Correlation Coefficients for the Comparison of Latency and Throughput
with Migration Interval

Data Series Correlation Coefficient
Latency -0.84035

Throughput 0.863091

Figure 7.10: Percentage Increase in Latency as Migration Interval Varies

7.6.3 Migration Interval

The migration intervals were found to have a strong correlation with performance
overhead, with efficiency increasing as the migration interval increased.

The absolute values obtained, along with 95% confidence intervals are presented in
Appendix F.

Correlation coefficients for these results are shown in Table 7.4. This shows a strong
negative correlation between migration interval and latency and a strong positive
correlation between migration interval and throughput for the range considered.

The increase in latency caused by proactive fortification is shown in Figure 7.10.
This shows that the increase in latency is fairly small for migration intervals of 50
seconds and larger. The overhead becomes considerably larger for migration intervals
of less than 50 seconds. The decrease in throughput caused by proactive fortification
is shown in Figure 7.11. This shows that the decrease in throughput is fairly small
for migration intervals of 50 seconds and larger. The overhead becomes larger for
migration intervals of less than 50 seconds, but is still less than 30% for a migration
interval of 20 seconds.

140

Figure 7.11: Percentage Decrease in Throughput as Migration Interval Varies

7.7 Summary

The efficiency measurement shows us that, for a migration interval of 150 seconds it
is possible, through careful tuning of update interval and heartbeat interval to reduce
the increase in latency and decrease in throughput relative to that of a primary-
backup system to less than 5%. Tuning of the update interval, or more specifically
the interval between the last update and the time of migration, can make a significant
difference to performance, while tuning of the heartbeat interval has the potential to
make a difference of up to 3%-4% in both latency and throughput.

As the migration interval is reduced to 100 seconds it is still possible to achieve an
increase in latency and decrease in throughput of less than 10%.

As the migration interval is reduced to 70 seconds it is still possible to achieve a de-
crease in throughput of less than 10%, although the increase in latency does stray into
the 10%-15% band for some values in this range. Further reduction of the migration
interval to 50 seconds, still results in a decrease in throughput of less than 15% and
an increase in latency of just over 15%. Even smaller migration intervals result in
larger increases in latency and larger decreases in throughput, but even a migration
interval of 20 seconds results in a decrease in throughput of less than 30% and an
increase in latency of less than 45%.

The practical implications of these overheads is very much dependent on the way
in which the systems to be proactively fortified are used. For example, in the test
system studied, a 40.83% increase of latency results in latency jumping from 81.8ms
to 115.2ms, an increase of 33.4ms. If a user is making a request of the system and
using that request when it is returned, a 33.4ms increase in the time to receive it
will be irrelevant, and unnoticeable. On the other hand, if another system is making
a series of requests, each depending on the result of the request before, then these
33.4ms delays may add up and cause an actual performance decrease.

141

The decrease in throughput is more likely to be a factor to be considered in most pro-
duction systems. Generally, a system will be designed to have the minimum amount
and specification of hardware to handle expected demand. Hence a significant decrease
in throughput will result in a significant increase in the amount and specification of
hardware required to handle expected demand.

One additional factor worth considering here is why the migration interval would be
reduced. The migration interval is essentially the window of time that an attacker
has to compromise nodes before they are re-randomised. Hence, it needs to be short
enough to make the task of compromising the system sufficiently difficult for an at-
tacker. This means that the migration interval only needs to be made smaller in
response to a more powerful attacker, or the need for an even stronger likelihood that
the system will not be fatally intruded.

This suggests that it is possible to choose a point in the trade-off between cost and
intrusion resilience, and provision sufficient amounts and powers of hardware to allow
the system to handle peak demand with a sufficiently small migration interval to
provide the degree of intrusion resilience required.

142

Chapter 8

Applying Proactive Fortification in a
Large Scale Web Application Context

This chapter considers the possibility of applying the FORTRESS approach to a large
scale web application, examining both the possible differences in intrusion resilience
and in performance overhead.

We begin by considering the structure of large scale web applications, and the inform-
ation flow during normal operation. These large scale web applications generally make
use of a number of application servers for load balancing purposes, all of which share
a separate database layer. This is followed by an analysis of how this architecture
affects a malicious attacker’s chances of success relative to the smaller distributed
systems we have considered previously. We show that an attacker will, in general,
find a large scale web application with proactively fortified application servers more
challenging to attack than the system we considered in Chapter 6 and 7 .

Next we show how the clustering and load balancing features in Apache Tomcat
and Apache HTTP server can be used to produce a lightweight implementation of a
proactive fortification system for a large scale web application, and outline an overhead
measurement strategy for comparing the efficiency of such a system to the unfortified
system it is based on. Finally, we present overhead data from a series of overhead
evaluation experiments based on a simple online shopping application.

This overhead data was obtained both for static pages and dynamic, user data de-
pendent pages. It shows that state is correctly maintained across migrations, and
demonstrates latency and throughput changes relative to an unfortified system as
migration and heartbeat interval are varied.

This overhead data shows that, for both static and dynamic pages, configuring the
time between node replacements can have a significant effect on performance overhead,
resulting in a trade-off needing to be made between the increase in intrusion resilience

143

Figure 8.1: Large Scale Web Application Architecture

from shortening the time and the increase in efficiency from lengthening it. The results
also show that the heartbeat interval can have an effect on performance overhead and
will need to be configured correctly for maximum efficiency.

8.1 Architecture

A common method for load balancing in large scale web based systems is to use the
following five tiers [27]. These tiers are illustrated in Figure 8.1.

8.1.1 Load Balancing

The first tier consists of hardware based load balancing that takes incoming HTTP
requests and applies a load balancing algorithm to distribute them among the second
tier.

8.1.2 Web Servers

The second tier consists of lightweight web servers. Each web server receives HTTP
requests from the previous tier and determines what static content it can return, such
as standard images for buttons or logos, and what content will need to be dynamic-
ally generated. It makes HTTP requests to the next tier, and returns them to the
requester.

8.1.3 Load Balancing

The third tier consists of more hardware based load balancing that takes the HTTP
requests for dynamic content and applies a load balancing algorithm to distribute

144

them among the fourth tier.

8.1.4 Application Servers

The fourth tier consists of fully featured application servers that are capable of pro-
ducing dynamic content using information from the fifth tier.

8.1.5 Database

The fifth tier consists of a database cluster holding information to be accessed or
modified by the application server tier. This information is not accessible by the web
servers in the second tier.

8.2 Normal Operation

A client generates a request for a web page and sends it via HTTP to the published
URL. The first tier of load balancing chooses a web server with sufficient free resources
to handle the request. This web server determines what part of the request will require
dynamic content and generates a request for this dynamic content. The third tier
allocates this request to an application server with sufficient free resources to handle
it. The application server generates the dynamic content, making use of information
from the database cluster, and sends it to the web server. The web server responds
to the client with the full content.

If a client is participating in a stateful session, such as using a shopping cart before
making a purchase, then every request for that session will be directed to the same
application server, to remove the need to propagate system state to all application
servers.

8.3 Adding Proactive Fortification

If a malicious client wishes to alter system data then it will need to successfully
compromise an application server. If they were merely able to compromise a web
server then they would be able to generate malicious requests for dynamic content to
one or more application servers. However, these requests would not be able to perform
unauthorised actions at the application server level, such as generating purchases, and
would only result in unrequested pages being generated, something which a malicious
client could do simply by requesting those pages in the first place. A compromised
web server could pose more of a problem from the point of view of a client as it could
intercept client information and return malicious content. This would however be

145

partially mitigated by the fact that the client would get malicious content only when
the load balancer randomly chose that web server to deliver their request to.

We note that using a compromised web server to intercept client information or return
malicious content is essentially a man-in-the-middle attack, and HTTP requests are
generally vulnerable to this [50]. The usual solution to prevent these attacks is to
use a system such as HTTPS to encrypt communication. A compromised web server
would compromise HTTPS, as the web server would need to hold the necessary key to
decrypt communication from the client and encrypt communication to the client. This
vulnerability can be seen to stem from the fact that the web server is not acting strictly
as a proxy in this case, but is also providing some of the characteristics of a server.
One way to remove this vulnerability for HTTPS requests would be to require that
all communication over HTTPS was handled by the application servers. Thus, when
HTTPS is required, such as for a financial transaction, the web server is behaving
purely as a proxy. In this case the web server would not have the necessary certificate
to handle HTTPS requests, so would be unable to impersonate the application server.

We also note that compromise of a web server would not breach system confidentiality.
The confidentiality of information contained in individual client requests handled
by that web server could be compromised, in the same way that man-in-the-middle
attacks can compromise confidentiality of individual requests, but all of the system
information held by the application servers would remain confidential. If all HTTPS
communication was handled purely by the application servers, then all information
sent by HTTPS would also remain confidential, even if it was initially directed to a
compromised web server.

A malicious client will not be able to initially select which application server they
wish to send requests to. However, if they can generate attacks as part of a stateful
session, they will be able to send all of a series of malicious requests to the same
server.

This suggests that proactive fortification should be performed at the application server
level. This then gives us a choice of how to incorporate the proxies used in proactive
fortification. One possibility is to simply replace every application server with a full
proactive fortification system. The other possibility is to instead modify the web
server tier to incorporate regular replacement and re-randomisation of servers. Then,
we have the web server tier acting as a large proxy layer. This will also reduce the
potential for an attacker to cause harm to clients through a compromised web server,
as the time for which a web server stays compromised will be relatively short.

This large proxy layer could be a problem in a standard proactive fortification system,
as every proxy would be visible to an attacker and they would only need to compromise
one to then launch direct attacks against the primary node. This issue may however
be mitigated by the fact that the malicious requests are first filtered through a load
balancer, and hence the attacker is not able to choose how malicious requests are

146

Figure 8.2: Optimal Allocation of Requests to Web Servers

distributed to proxies. We consider how this will affect the attacker’s optimal strategy,
and show that, for any practically sized system using a load balancer and 3 or more
web servers, we can expect a proactively fortified system using the web servers as
a proxy layer to be at least as secure as our standard proactive fortification system
model.

8.3.1 Consequences of Load Balancing on an Optimal Attack

Strategy

We have presented, in Chapters 4 and 5, attack models that assume the attacker can
launch malicious requests at a constant rate against every publicly accessible node.
This can be achieved in practice by the attacker constructing a malicious request
containing the first possible randomisation key, and sending a copy of that request to
each node, as shown in Figure 8.2. The attacker then follows the same procedure for
all subsequent possible randomisation keys.

Here we illustrate the effect that having a load balancer distribute requests can have
on this strategy.

We start by considering the simplified case where an attacker wishes to try one key
against every web server. First of all we consider what will happen when a load
balancer is not used and an incoming request is sent to all web servers. Here the
attacker simply creates a malicious request using the key and sends a copy to each
web server, as shown in Figure 8.2. Hence the expected number of requests required
to try the key against all x web servers is x requests. Furthermore, in this case, this
strategy will always result in all web servers receiving a malicious request, and there
is no strategy available that uses less than x requests.

We then consider what will happen if a load balancer is present and the same strategy
is used. Here, rather than the attacker being able to choose to send each of the x

147

Figure 8.3: One Possible Allocation of Requests to Web Servers with a Load Balancer

requests to a different web server, the attacker has instead to send all x requests to
the load balancer and hope that each is allocated to a different web server. This
may result in all x web servers receiving a malicious request, as happened in the case
shown in Figure 8.2, but there is also the possibility of some servers receiving several
requests, and other servers not receiving any requests, as shown in Figure 8.3.

We illustrate this difference by using a further simplification. We consider the case
where there are two servers, and analyse the distribution of malicious requests with
and without load balancing. When load balancing is not present, the attacker sends
two malicious requests containing the key; one to each server. This guarantees that
the key has been tried against both servers. As two requests is also the minimum
number that can be used to try the key against both servers, we see that the expected
number of requests needed to try the key against both servers is two.

When load balancing is present, calculating the expected number of requests needed
to try the key against both servers is more complicated. Here we use the expected
value formula E(X) =

∑
ipi where pi is the probability of needing exactly i requests

before the key has been tried against both servers. This gives us an expected value
of 2.67 to 2 decimal places, which is significantly higher then the expected value of
2 without load balancing. We also note that the probability of more than 2 requests
being required to try the key against both servers is 0.5, the probability of more than
3 requests being required to try the key against both servers is 0.125 the probability
of more than 4 requests being required to try the key against both servers is 0.03125,
and to guarantee that key was tried against both servers would require an infinite
number of requests. This is in sharp contrast to the case without a load balancer
where it is always possible to try the key against both servers with 2 requests.

The probabilities of trying a key against both servers with i or less requests are shown
in Table 8.1 for 1 ≤ i ≤ 10.

Having seen an illustration of the effects of a load balancer on the optimal attack
strategy, we then analyse how strong an effect the presence of a load balancer will

148

Table 8.1: Probability of Successfully Trying a Key Against 2 Servers with i or Less
Requests

i pi

1 0
2 0.5
3 0.875
4 0.96875
5 0.992188
6 0.998047
7 0.998194
8 0.99823
9 0.998322
10 0.998327

have, and whether this is sufficient to out-weigh the advantage an attacker receives
from having extra web servers to attack.

8.3.2 Analysis of the Effect of a Load Balancer on Malicious

Request Distribution

Here we begin by deriving a formula for the probability that n keys are correctly
allocated to x servers and show that this probability will be incredibly small for
realistic key spaces. Next we prove a preliminary result; that if the presence of a load
balancer decreases the effectiveness of an attacker’s optimal strategy when n keys
are tried against x servers, then the presence of a load balancer also decreases the
effectiveness of an attacker’s optimal strategy when k keys are tried against x servers,
for any k > n.

Finally, we use Monte-Carlo simulations to calculate two probabilities for a range
of x and n values; the probability that all n keys will be allocated to some subset
of more than 3 of the x servers (and hence give the attacker an advantage relative
to the system modelled in Chapter 5) and the probability that all n keys will be
allocated to some subset of less than 3 of the x servers (and hence give the attacker
a disadvantage relative to the system modelled in Chapter 5). This shows that, for a
relatively small number of keys, the probability of the attacker being at a disadvantage
is significantly larger than the probability of the attacker being at an advantage even
for large numbers of servers. As we have proven that increasing the number of keys
decreases the effectiveness of the attacker’s strategy, we can see that this result holds
for any realistic key space.

149

8.3.2.1 The Probability of Every Request Being Allocated Optimally for
an Attacker

Here we show tha the probability of every request being allocated optimally for an
attacker is negligible for any realistic key space.

We begin by taking the general case where there are x web servers, then, assuming
totally random allocation of requests, we can consider how x specific requests could
be allocated so that each server receives one of them.

The first request can be allocated to any server; this happens with probability 1 as
the load balancer is guaranteed to give the request to one of the servers. The second
request can be allocated to any server other than the one that the first request was
allocated to; this happens with probability x−1

x
as there are x servers to choose from

and the allocation is random. Similarly the third request is allocated to a server that
has not yet had a request with probability x−2

x
, and in general the yth request is

allocated to a server that has not previously had a request with probability x−y+1
x

.
This gives us the general probability of∏y=x

y=1
x−y+1
x

=
∏y=x

y=1
y
x

for x requests being allocated to x servers in such a way that each server receives one
request. So, as x increases, the denominator of every term increases and the number of
terms, all of which are less than 1, increase. This gives us a probability that decreases
rapidly as x increases. For example when x = 2 the requests are correctly allocated
with probability 0.5, when x = 3 the requests are correctly allocated with probability
0.22, when x = 4 the requests are correctly allocated with probability 0.09375 and
when x = 10 the requests are correctly allocated with probability 0.00036288.

These probabilities are only for all of the requests with one key being allocated as the
attacker would wish. However, a real attacker is going to try some large set of n keys,
as illustrated in the case without a load balancer in Figure 8.4. The probability of
this allocation happening for all the requests in an attack with n different keys when a
load balancer is present is p(x)n where p(x) is the probability of all of the requests for
1 key being allocated as the attacker would wish. This, combined with a realistically
sized key space, shows us that the probability of an attacker being lucky enough to
get all attacks allocated as they would wish is incredibly small. For example if there
were 1000 possible keys, a key space much smaller than is seen in practice, and 4
servers, the probability of 4 requests per key being allocated as the attacker would
wish them to be is 0.093751000.

This shows us that, for any realistic system, the chances of an attacker being able
to distribute malicious requests to all web servers as if there was no load balancer is
negligible.

150

Figure 8.4: Optimal Strategy for Allocation of Malicious Requests to Web Servers for
a Set of n Keys

8.3.2.2 A Preliminary Result

Having shown that the chance of an attacker being able to optimally distribute ma-
licious requests to all web servers in the presence of a load balancer is negligible, we
now consider the possibility that the attacker cannot do as well if there was no load
balancer, but can do better than if there were three proxies and no load balancer, the
case that we have modelled in Chapter 5. We begin by proving the preliminary res-
ult that if the presence of a load balancer decreases the effectiveness of an attacker’s
optimal strategy when n keys are tried against x servers, then the presence of a load
balancer also decreases the effectiveness of an attacker’s optimal strategy when k keys
are tried against x servers, for any k > n.

Assume that, for n keys and x servers, where n is a positive integer and x > 3, we have
the probability of the attacker managing to successfully target more than 3 servers is
a1, the probability of the attacker managing to successfully target less than 3 servers
is a2 and the probability of the attacker managing to target exactly 3 servers is a3.
Now, we consider what happens if we increase n to n + 1. The probability of the
attacker successfully targeting more than three servers for the key n+1 is some value
b1, the probability of the attacker successfully targeting less than three servers for the
key n + 1 is some value b2, and the probability of the attacker successfully targeting
exactly 3 servers is some value b3. We note that

0 < b1, 0 < b2, 0 < b3

and

b1 + b2 + b3 = 1

Now we consider the possibility of the attacker managing to successfully target more
than 3 servers for all n+ 1 keys.

This requires the attacker to successfully target more than three servers for the first

151

n keys and successfully target more than 3 servers for the last key. We note that
this is necessary, but not sufficient, as there is also a requirement for the two parts to
have more than 3 servers in common. So, the probability of the attacker managing to
successfully target more than 3 servers for all n+ 1 keys ≤ a1b1 < a1 as 0 < b1 < 1.

We then go on to consider the possibility of the attacker managing to successfully
target less than 3 servers for all n + 1 keys. This will happen when the attacker
manages to target less than 3 servers for either the first n keys or the last key. We
note that these conditions are sufficient but not necessary as it is also possible to have
more servers targeted in the each of the two parts, but still have less than 3 servers
in common.

So, the probability of the attacker managing to successfully target less than 3 servers
for all n+ 1 keys ≥ (a1 + a3)b2 + a2 ≥ a2 as a1, a3, b2 > 0.

This means that, for any number of servers x and number of keys n that, if the
attacker is worse off than in the case modelled in Section 5, it is also true that the
attacker is worse off for x servers and k keys, where k is any integer greater than n.

8.3.2.3 Probability Simulations

We now use probability situations to show that, for any practically sized system using
a load balancer and 3 or more web servers, we can expect a proactively fortified system
using the web servers as a proxy layer to be at least as secure as our standard proactive
fortification system model.

We assume that there are x web servers, where x is some integer larger than 3 and
there are n keys that the attacker wishes to use in attacks against them. We then
need to calculate the probability of the attacker being able to try all n keys against
4 or more servers by launching nx attacks; i.e launching x attacks for each of n
keys. This is the probability that the same group of 4 or more web servers receive a
malicious request from each of the n groups of x malicious requests with the same key.
Calculating this probability analytically is not feasible, so we instead use Monte-Carlo
simulations to estimate the probability for a range of possible values.

In each case we allocate x requests to x servers with an equal random chance of each
request going to each server. We repeat this n times and check to see how many
servers received a request all n times. This is repeated a large number of times, and
the probability of the attacker managing to target more than 3 web servers is taken
to be the proportion of times that more than 3 servers received a request all n times.
Similarly, the probability of the attacker managing to target less than 3 web servers
is taken to be the proportion of times that less than 3 servers received a request all n
times.

We consider the system to perform as well or better than our previous analysis with
3 servers if the probability of the attacker managing to target less than 3 servers is

152

Figure 8.5: Probabilities of More Than 3 and Less Than 3 Web Servers Being Suc-
cessfully Targeted by a Malicious Client for 10 Keys

equal to or greater than the probability of the attacker managing to target more than
3 servers.

We first simulated cases where the number of keys n = 10. This is not intended to
be representative of a real system. However, as we have proved that if a result is true
for n = a then it is true for any n > a, these results, which are relatively quick to
calculate will allow us to identify a range of numbers of web servers for which the an
attacker will not do better than in the three proxy system modelled in Chapters 4
and 5. The results are presented in Figure 8.5 and show us that, for 300 or less web
servers, the web server model with load balancing is more difficult to attack than the
three proxy system.

We then simulated cases where n = 20, with more than 20 web servers. This is again
an unrealistically small number of keys, but will relatively quickly allow us to identify
a range of numbers of web servers for which the an attacker will not do better than
in the three proxy system. The results are presented in Figures 8.6 and 8.7 and show
that the web server model is not easier to attack than the three proxy system when
3000 or less web servers are used.

We also note that these simulations show us a large range of numbers of servers for
which the probability of less than 3 servers getting a request with each key is very
large, and the probability of more than 3 servers getting a request with each key is
negligible. The fact that n keys were considered means that this is the probability of
less than 3 servers getting a request with every key, for any block of n keys. Hence we
can reason that, for a system with 10 or less servers, less than three servers will get
all of the malicious requests for each block of ten keys tried. Similarly, for a system
with 460 or less servers, less than three servers will get all of the malicious requests
for each block of twenty keys tried, and it is highly likely that less than three servers
will get all of the malicious requests for most or all blocks of twenty keys tried for a
system with 3000 or less servers.

153

Figure 8.6: Probability of Less Than 3 Web Servers Being Successfully Targeted by a
Malicious Client for 20 Keys.

Figure 8.7: Probability of More Than 3 Web Servers Being Successfully Targeted by
a Malicious Client for 20 Keys.

8.4 Implementing a Proactive Fortification System

Using the Apache Tomcat Application Server

This implementation of a proactive fortification system uses the five tier architecture
shown in Section 8.1 and the second proactive fortification method discussed in Section
8.3; treating the web server tier as the proxy tier, and using proactive fortification
techniques to turn each application server in the application server tier into a server
tier for the FORTRESS system.

Apache Tomcat has a clustering function that allows system state to be propag-
ated between different instances of itself using TCP, and which periodically checks
membership of the clustering group. This functionality will eliminate the need for
the proactive fortification system to handle heartbeats and update messages itself.
Instead, the proactive fortification system can simply initialise instances of Apache
Tomcat in the same cluster.

The system architecture will also remove the need for us to explicitly introduce a name
server. The initial load balancer will sit on a fixed IP address, giving the client the
necessary information to send requests. This load balancer will know the addresses of
the web servers and distribute requests accordingly. Each web server will only need
to know the address of the second load balancer which will be fixed. The second load
balancer will know the addresses of each cluster of application servers. This address
will not change, with migration of servers only changing the membership of the cluster

154

group.

This allows us to simplify the implementation structure and use the following three
components:

8.4.1 Fortress Timer

The Fortress Timer will be largely unchanged from the more general case. It will still
send messages to initialise nodes, stop nodes, initialise proxies, stop proxies, inform
proxies of the identities of the current primary and backups, and inform the name
server of the addresses of the current proxies. However, it will not be necessary to
send messages to inform standbys to become the primary or backup, as this will
automatically happen when the previous primary and backups are stopped and hence
leave the cluster.

8.4.2 Legacy Code Wrapper

The clustering functionality of Apache Tomcat allows us to use a relatively simple
legacy code wrapper. This is simply a service that will run on each node when it is
initialised, and wait for a start message from the Fortress Timer. When this start
message is received it will start an instance of Apache Tomcat with the appropriate
clustering information for it to join the current cluster. Apache Tomcat will then
handle the sending of heartbeat messages and propagation of system state itself.
When the Legacy Code Wrapper receives a stop message from the Fortress Timer it
will force Apache Tomcat to stop, causing it to leave the cluster.

8.4.3 Proxy

Each proxy will run an Apache HTTP Server, which can be started and stopped by a
service similar to the Legacy Code Wrapper, or rebooted and refreshed by a hardware
based reboot server. The web server will contain a simple application that receives
requests, forwards them to the current primary and backups, and forwards the replies
to the clients.

8.5 Apache Tomcat Implementation: Performance

Overhead Evaluation

8.5.1 Evaluation Set-up

Apache Tomcat servers were set up on 12 machines. Each of these machines also had
a legacy code wrapper installed. An Apache HTTP Server was set up on another

155

machine. This machine also had a proxy service installed. A Fortress Timer was set
up on another machine.

The Fortress Timer was configured to send messages to the Legacy Code Wrappers
to start and cluster the first 6 Apache Tomcat servers, and to send a message to
the proxy service to start the Apache HTTP Server with a fail-over scheme that will
default to the first Apache Tomcat server, and fail-over to the next two in order.

After the migration interval expired, the Fortress Timer was configured to send a
message to the proxy service to change the fail-over scheme so that it will default
to the fourth Apache Tomcat server, and fail-over to the next two in order. The
Legacy Code Wrappers on the first, second and third Apache Tomcat servers were
sent messages to stop, and the Legacy Code Wrappers on the seventh, eighth and
ninth Apache Tomcat servers were sent messages to start and join the cluster. This
Fortress Timer was configured to continue this pattern at the end of each migration
interval.

8.5.2 Measurement Strategy

Apache Tomcat server performance was measured for two web pages. The first of
these was a simple JSP page containing text and an associated session. The second
was a product search page from an online shopping cart, requiring database access to
generate dynamic content, including a number of pictures. Apache JMeter was used
for all tests other than session handling. JMeter was set to generate 20000 requests
from each of 100 clients running simultaneously for the simple JSP page. JMeter was
set to generate 20000 requests from each of 50 clients running simultaneously for the
product search page.

The use of Apache Tomcat clustering results in state transfer being a special form of
the progressive state transfer mechanism that was presented in Section 6.1.2.2. Every
time the primary processes a request that results in a state change, this state change
is propagated to the standby nodes as well as the backups. This results in the concept
of an update interval being irrelevant to this system.

Heartbeat interval and migration interval are both under the control of the system
administrator, so testing included the variation of each of these variables while holding
the other constant.

8.6 Overhead Measurement for a Simple Web Page

with Sessions

Here we accessed a simple JSP page containing static text and displaying the value
of a session variable. The session variable was set at the beginning of the experiment,

156

resulting in each request for the page requiring dynamic page generation, but no
database access or updating of application server state. Latency and throughput
testing was performed using Apache JMeter to generate 20000 requests from each
of 100 clients running simultaneously. This number of requests was chosen based
on preliminary testing showing that it would be sufficient to cover a time interval
including at least one migration for all parameters.

8.6.1 Session Handling

The ability of the system to maintain session data as it migrates was tested by setting
a session variable and then reading this session variable after migration for each of 20
migrations. This test was performed a total of 10 times, and in every case the session
variable held the same value at all times. We note that this session handling test is
analogous to testing the correctness of responses and state, as described in Section
7.6.

8.6.2 Heartbeat Interval

The migration interval was fixed at 100 seconds for the proactively fortified system
and the heartbeat interval was varied between 1 second and 6 seconds in 1 second
steps.

The increase in latency caused by proactive fortification, calculated as a percentage of
the latency of the non-fortified system is shown in Figure 8.8. The decrease in through-
put caused by proactive fortification, calculated as a percentage of the throughput of
the non-fortified system is shown in Figure 8.9. The absolute values, confidence inter-
vals for these values, and an analysis of how overhead varies with heartbeat interval
are presented in Appendix G.

The increases in latency appear, at first glance, to have the potential to be problem-
atic. They range from 11.1% to 42.9%, with an increase of 28.57% when the heartbeat
interval is set to 6000ms, which is the point at which both the proactively fortified and
primary-backup systems get the lowest latency figures. However, the latency figures
are so small that these large increases may not make much difference in practice. A
user accessing a page is not likely to be inconvenienced by, or even notice a difference
of 2ms, as was found when the the heartbeat interval is set to 6000ms.

However, comparing the mean latencies does not tell us what causes this difference of
2ms. If, at one extreme, every response time measured increased by 2ms, this would
not affect the user. On the other hand, if most response times stayed the same, but
there was an occasional latency of 10000ms, then some user would be inconvenienced.
This suggests that a more relevant measure of performance with regard to latency in

157

Figure 8.8: Increase in Latency as Heartbeat Interval Varies

Figure 8.9: Decrease in Throughput as Heartbeat Interval Varies

this case would be to consider the maximum latency encountered in our tests. These
maximum latencies are presented in Table 8.2.

Here we see that the maximum latencies are higher for the proactively fortified system.
However, none of these latencies are sufficiently large to cause a noticeable delay for
a user. This leads us to conclude that, for this range of values, throughput is a more
relevant measure of relative system performance from the point of view of a system
user.

The decrease in throughput ranges from 3.47% to 6.11% with a decrease of 4.45%
when the heartbeat interval is set to 6000ms, which is the point at which both the
proactively fortified and primary-backup systems get the highest throughput figures.
This shows that the amount of requests that can be processed in a given period of
time is only slightly reduced by the addition of proactive fortification for the range of
heartbeat values considered.

158

Table 8.2: Maximum Latencies as Heartbeat Interval Varies

Heartbeat Interval Proactively Fortified System Primary-Backup System
1000ms 285ms 184ms
2000ms 276ms 182ms
3000ms 283ms 175ms
4000ms 274ms 142ms
5000ms 269ms 190ms
6000ms 281ms 183ms

8.6.3 Migration Interval

The migration intervals were found to have a strong relation with performance over-
head, with efficiency increasing as the migration interval increased.

The heartbeat interval was fixed at 6 seconds for the proactively fortified system and
the migration interval was varied between 20 seconds and 100 seconds in 10 second
steps.

The decrease in throughput caused by proactive fortification, calculated as a per-
centage of the throughput of the non-fortified system is shown in Figure 8.10. The
increase in latency caused by proactive fortification, calculated as a percentage of
the latency of the non-fortified system is shown in Figure 8.11. The absolute values,
confidence intervals for these absolute values and an analysis of how overhead varies
with migration interval are presented in Appendix G.

The increase in mean latency ranges from 28.5% to 771.4%, showing an incredibly
large relative increase in latency as the migration interval becomes very small. How-
ever, when we examine the actual figures involved we notice that even the 771.4%
increase in mean latency only results in a increase of 54ms, a difference in response
time that is unlikely to be inconvenient, or even noticeable for the user.

This difference in mean latency does not tell us necessarily that request times are
being uniformly increased by the Figure of 54ms. It is equally possible that many
requests take the same amount of time as in the primary-backup system, while some
requests take a lot longer. This suggests that we may get a fuller picture of whether
this change in mean latency will be relevant to the user, by considering the maximum
latencies measured. These values are presented in Table 8.3. As the highest maximum
latency value measured was 283ms, we can conclude that the presence of proactive
fortification is not likely to make a noticeable difference to the user with regard to
response time in any of the cases considered here, and hence throughput is likely to
be a more meaningful measure of performance overhead.

The decrease in throughput ranges from 4.45% to 75.79%. This suggests that proact-
ive fortification causes only a relatively small drop in throughput for larger migration
intervals, but can cause a significant decrease when migration intervals as small as 20

159

Figure 8.10: Increase in Latency as Migration Interval Varies

Figure 8.11: Decrease in Throughput as Migration Interval Varies

seconds are required.

8.7 Testing an Online Shopping Search Page

Here, searches were performed using a small set of search terms. Each search resulted
in the application server that handled the request performing a database search and
then producing a dynamic page containing the appropriate graphics for the items
returned by the search. Latency and throughput testing was performed using Apache
JMeter to generate 20000 requests from each of 50 clients running simultaneously.
This number of requests was chosen based on preliminary testing showing that it
would be sufficient to cover a time interval included at least one migration for all
parameters. Each client was given a different search term.

160

Table 8.3: Maximum Latencies as Migration Interval Varies

Migration Interval Maximum Latency
20s 279ms
30s 265ms
40s 283ms
50s 265ms
60s 276ms
70s 271ms
80s 279ms
90s 280ms
100s 281ms

8.7.1 Session Handling

The ability of the system to maintain session data as it migrates was tested by logging
in to the shopping site and then checking that the user was still logged in after
migration for each of 20 migrations. This test was performed a total of 10 times, and
in every case the user stayed logged in.

8.7.2 Heartbeat Interval

The migration interval was fixed at 100 seconds for the proactively fortified system
and the heartbeat interval was varied between 1 second and 6 seconds in 1 second
steps.

The increase in latency caused by proactive fortification, calculated as a percentage
of the latency of the non-fortified system is shown in Figure 8.12. The decrease
in throughput caused by proactive fortification, calculated as a percentage of the
throughput of the non-fortified system is shown in Figure 8.13. The absolute values,
confidence intervals for these absolute values and an analysis of how overhead varies
with heartbeat interval are presented in Appendix G.

The increase in mean latency ranges from 16.06% to 19.6%. This is a considerable
increase, but much smaller than the increases seen in Section 8.6. However, as in
Section 8.6, we need to consider how this increase in mean latency occurred. All
of the mean latencies measured are in the range 450ms - 600ms, and an increase of
150ms in response time would not inconvenience a user, so we need to examine the
maximum latencies recorded to see if some response times were sufficiently long to
cause a possible issue. The maximum latencies are presented in Table 8.4.

This shows us that, in the cases with the highest latencies, a user will have to wait
over 2 seconds for a response. This will certainly be noticeable, but may not be
unacceptable if it happens occasionally, or in circumstances where the user is expecting
to see a lot of data. We also note that the primary-backup system has maximum

161

Figure 8.12: Increase in Latency Caused by Proactive Fortification as Heartbeat In-
terval Varies - 100s Migration Interval

Figure 8.13: Decrease in Throughput as Heartbeat Interval Varies

latencies of over 1 second. This suggests that the combination of operations performed
by the online shopping page and the database and network used may have resulted
in a system which is slower than would normally be expected in large scale web
applications.

The decrease in throughput ranges from 13.16% to 15.70% with a value of 14.13% for
a heartbeat interval of 6000ms, the heartbeat interval for which both systems provide
the highest throughput over the values considered.

8.7.3 Migration Interval

The migration intervals were found to have a strong correlation with performance
overhead, with efficiency increasing as the migration interval increased.

The heartbeat interval was fixed at 6 seconds and the migration interval was varied
between 20 seconds and 100 seconds in 10 second steps.

162

Table 8.4: Maximum Latencies as Heartbeat Interval Varies

Heartbeat Interval Proactively Fortified System Primary-Backup System
1000ms 2309ms 1012ms
2000ms 2286ms 1043ms
3000ms 2283ms 1028ms
4000ms 2295ms 1019ms
5000ms 2312ms 1047ms
6000ms 2247ms 1032ms

Table 8.5: Maximum Latencies as Migration Interval Varies

Migration Interval Maximum Latency
20s 2261ms
30s 2257ms
40s 2293ms
50s 2303ms
60s 2287ms
70s 2291ms
80s 2259ms
90s 2264ms
100s 2247ms

The decrease in throughput caused by proactive fortification, calculated as a per-
centage of the throughput of the non-fortified system is shown in Figure 8.12. The
increase in latency caused by proactive fortification, calculated as a percentage of
the latency of the non-fortified system is shown in Figure 8.13. The absolute values,
confidence intervals for these absolute values and an analysis of how overhead varies
with migration interval are presented in Appendix G.

The increase in mean latency ranges from 18.25% to 244.04%. This not only gives
a very large increase in latency when a short migration interval is required, but it
also results in a mean latency that will give a noticeable delay to a user in seeing
page results; 1734ms. The maximum latencies measured are shown in Table 8.5. The
maximum latencies measured do not vary significantly as the migration interval is
decreased. This, coupled with the increase in the mean latency suggests that the
reduction in migration interval is not increasing the maximum time taken to give a
response, and is instead increasing the number of responses that fall close to this
maximum time.

The decrease in throughput ranges from 14.13% when the migration interval is 100
seconds to 82.30% when the migration interval is 20 seconds. This is a significant but
manageable amount when the migration interval is 100 seconds, increasing to a very
severe overhead when the migration interval is 20 seconds.

163

Figure 8.14: Increase in Latency as Migration Interval Varies

Figure 8.15: Decrease in Throughput as Migration Interval Varies

164

8.8 Summary

The preceding data shows us two key results. Firstly, proactive fortification of an
online shopping system does not have to cause a large performance overhead. The
increase in mean latency and decrease in throughput caused by proactive fortification
can be kept reasonably small except when very small migration periods are required.
Even when very small migration periods are required, mean latency is noticeably
increased, but not unacceptably high, and throughput is still large enough to make
the use of extra application servers to restore the needed throughput a possibility.

When migration periods are small, mean latency is increased by the fact that a larger
percentage of time is spent in transferring state to new nodes that have just joined
the cluster, resulting in more requests that are delayed by this state transfer. One
possibility for reducing the mean latency in a production system is to offset the
migration periods of several different proactively fortified application servers, and use
the load balancer to allocate the majority of requests to nodes that are not currently
involved in migration. As each application server only maintains state for sessions
that were started with that server, or members of its cluster, the load balancer would
not be able to redirect later requests in a session to new application servers. However,
the load balancer would be able to stop any new sessions being started with the
application server during system migration, thereby reducing the overall load at this
point.

We also note that very small migration periods are only needed when an attacker
must be presented with very small windows of time in which to attempt to comprom-
ise application servers. Hence very small migration periods are only needed when
presented with an attacker that has a relatively strong ability to compromise applica-
tion servers when not confronted by an intrusion resilient system. These are just the
circumstances when it may be worth the cost of providing additional servers to cope
with the overhead of regularly migrating servers.

165

Chapter 9

Summary and Conclusions

This thesis introduced proactive fortification, a new architectural framework for in-
trusion resilience in distributed systems, leveraging proactive fortification and the use
of cheap off-the-shelf hardware. The intrusion resilience of this protocol was analysed
over a variety of assumptions, and compared to intrusion tolerant active replication
systems and crash tolerant primary-backup systems. A family of state transfer proto-
cols were introduced for server migration, and the possible effects of these protocols
on intrusion resilience were examined.

The framework was shown to augment legacy systems with proactive fortification,
and the overhead of an evaluation system was measured. Finally, a lightweight im-
plementation of proactive fortification in a large scale web application context was
presented. Overhead was again measured, and in both cases promising results were
obtained.

This section will summarise the work that has been presented, discuss the implications
of this work and then go on to look at possible directions for future work.

9.1 Summary

We began by examining related work in intrusion tolerance, and considering the types
of attacks that are likely to be used against publicly accessible distributed systems.
This was coupled with considering the use of proxies in defending distributed systems
against code injection attacks, and the relative costs of additional hardware in intru-
sion resilient systems. This was followed by a definition of the FORTRESS system
in Chapter 3 including the supporting mechanisms needed to allow such a system to
function, and an analysis of the possibility of an attacker targeting these mechanisms.

A generic model was produced for assessing the intrusion resilience of distributed sys-
tems in Chapter 4, using modelling assumptions based on the examination of likely
attacks in Section 2. This model was used in Chapter 5 to calculate the expected life-
time until system compromise of three key systems, the FORTRESS system, the SMR

166

system, and the PB system. These systems were analysed with proactive obfuscation,
the case where each node is replaced with a differently randomised node at the end of
each unit time-step, start-up only obfuscation, the case where each node is differently
randomised at system start-up and is not re-booted after this and proactive recovery,
the case where each node is re-booted but not re-randomised at the end of each unit
time-step.

Systems with proactive obfuscation were considered with three classes of diversity.
Infinite diversity is the class where a large number of diverse executables are available
and the attacker is not able to track whether a given executable has been encountered
before. Hence the attacker is effectively left in the situation that, upon encountering
an executable they have no prior knowledge of it.

Finite diversity is divided into two classes. Relatively large finite diversity results from
proactive obfuscation generating a large array of executables, with some characteristic
that allows attackers to identify an executable that they have previously been able to
intrude into. This means that, should a previously intruded executable be chosen for
a new node, the attacker will be able to compromise it immediately.

Relatively small finite diversity results from an inability of the system to successfully
refresh a compromised replica to the point that all malicious code is removed from
it. Then, we have a situation where, regardless of the diverse executable chosen for a
new node, if it has been compromised before then it is still compromised. Hence, as
far as choosing new compromised nodes is concerned, the level of diversity is equal to
the number of physical machines that are being used for node replacement. In this
case, a large degree of randomisation is still advantageous for the reduction in the
probability of a vulnerability being initially compromised that it provides.

This analysis of expected system lifetimes until compromise showed that proactive
obfuscation causes a major increase in intrusion resilience in all systems, and that
proactive fortification is a viable method for intrusion resilience except when very
small amounts of diversity are available. There is a large class of situations in which
FORTRESS actually out-performs proactive SMR for publicly accessible distributed
systems. There are also other classes of situations where SMR out-performs FORT-
RESS, but FORTRESS still performs sufficiently well to be considered as an altern-
ative if the removal of non-determinism is overly restrictive.

We then went on to consider state transfer protocols for FORTRESS systems and
designed a family of protocols, as shown in Chapter 6. An analysis of the possible
effects of these protocols on intrusion resilience is presented in Appendix E and shows
that they do not open up additional avenues of attack. Chapter 6 then presented
the design of the software components needed for state transfer within a proactive
fortification framework, at a conceptual level of abstraction. The necessary processes
were identified as well as the interactions between them. This conceptual design was

167

refined to produce a concrete architecture, identifying the necessary objects for the
framework to be implemented using EJB technology running on JBoss servers.

Chapter 7 outlined an overhead evaluation strategy, alongside a concrete design of a
set of components for a simple legacy code system allowing jobs to be booked and job
details to be checked. The results of this overhead evaluation were then presented,
demonstrating that the system has a reasonably small performance overhead except
when very small migration intervals are required.

Chapter 8 considered the possibility of augmenting the intrusion resilience of a large
scale web application with proactive fortification. First, a common structure for
large scale web applications was presented and the effects of this structure on our
previous expected lifetime analyses was considered. This lead us to conclude that
proactively fortifying individual application servers, using the web tier as proxies that
are periodically replaced would result in a system at least as intrusion resilient as the
proactive fortification system models considered in Chapter 5.

A lightweight proactive fortification system was designed that made use of the cluster-
ing features of the Apache Tomcat application server, and this was used to perform
overhead measurement experiments on two types of user interaction. The first of
these interactions involved retrieving a web page combining static content with some
dynamic session information. The second of these interactions used session inform-
ation to query a database and return a dynamic page made up of several complex
elements. This results of these overhead measurement experiments were presented,
showing that the performance overheads caused by proactive fortification are reason-
ably small, except when very short migration intervals are required.

9.2 Conclusions

We have successfully developed an intrusion-resilience scheme that does not require
the underlying system to be represented as a deterministic state machine. The
intrusion-resilience of this scheme has been evaluated under a range of likely con-
ditions for publicly accessible distributed systems. This has shown that the scheme
provides a significant increase in intrusion-resilience over an unaugmented system for
a wide range of situations, and even provides a larger increase in intrusion-resilience
than active replication in some cases.

We also note that this intrusion-resilience scheme maintains both confidentiality and
integrity of data until the entire system is compromised. This is in contrast to SMR
schemes in which intrusion into one replica results in a breach of confidentiality while
still maintaining integrity.

This evaluation of intrusion resilience has been based on an attack model that makes
assumptions about how an attack is carried out and if these assumptions fail to

168

hold then the evaluations may be invalidated. One of the most basic assumptions
is that attacks have some (generally small) probability of succeeding, rather than
succeeding instantly. This assumption is supported by the nature of real world buffer
overflow attacks against systems using obfuscation schemes, but may not hold for
every type of attack. One specific type of attack for which it may not hold is the
exploitation of an error at the system design stage. If a badly designed system allows
an unusual combination of user actions to change system state in an undesirable way,
then exploitation of this vulnerability is likely to be deterministic for all replicas,
regardless of obfuscation. We note however that a vulnerability of this type would
affect all of the intrusion resilient systems that we have compared equally, and that
defending against this type of vulnerability may require orthogonal techniques such
as audit systems that identify invalid system states.

Another key assumption made is that attacks against the system follow an attack
model where an attacker uses malicious clients to attempt to compromise the intrusion
resilience scheme. Hence the intrusion resilience evaluations do not consider situations
where an attacker may use other attack vectors. Attacks that first attempt to trick a
system administrator into changing the system configuration to a less resilient one (e.g.
by using relatively weak denial of service attacks to increase the number of requests
that need to be processed) before launching malicious attacks fall outside the scope
of our evaluation. Similarly, attacks that attempt to intrude the personal computer
of a system administrator and steal the administrator’s authentication credentials for
the system to be intruded are not covered by our attack model. Both of these types
of attacks have been seen in the real-world, illustrating that our evaluations are not
applicable to all possible attacks.

A further assumption that may not always hold is that all servers and proxies are
equally difficult to compromise. This is reasonable when considering our motivat-
ing attacks where the attacker needs only to determine the obfuscation key used to
obfuscate each system, but may not hold if different nodes have different vulnerabil-
ities (e.g. the FORTRESS system may have different vulnerabilities in the proxy and
server nodes).

Measuring performance impact has shown that it is possible to build proactive forti-
fication systems with primary-backup in the server tier that do not result in a large
increase in latency or decrease in throughput, except when very small migration in-
tervals are required. This applies both to standard distributed applications and large
scale web applications.

9.3 Future Work

The possibility of using proactive fortification alongside active replication has been
mentioned, and state transfer mechanisms have been discussed. However, there is still

169

a need to examine how state transfer mechanisms might affect intrusion resilience
when active replication is used in the server tier. This information could be used
alongside the expected lifetime evaluation techniques we have used here to determine
how much proactive fortification can increase the intrusion resilience of an active
replication system, and how much the introduction of active replication and proactive
fortification can increase the intrusion resilience of an unreplicated system.

The expected lifetime figures shown in this thesis for proactively fortified primary-
backup systems differ significantly depending on whether indirect attacks are possible,
and if they are then how likely they are to succeed relative to direct attacks. Some
discussion of the factors that may affect the possibility of indirect attacks have been
presented, but it would be worthwhile to analyse real world attacks and quantify the
factors that affect indirect attacks and, if possible, how much they are likely to reduce
the speed at which indirect attacks can be launched.

Probabilities of attacks succeeding against individual nodes have been varied over
a wide range, to make the system lifetime comparisons as generally applicable as
possible. A number of factors that may affect these probabilities have been identified
such as the number of possible randomisation keys and the rate at which requests can
be processed. However, further analysis of real world attacks may be able to identify
smaller ranges of probabilities that are likely to occur for different vulnerabilities.
This may make it possible to predict how intrusion resilient a system may be.

Such a real world analysis would also be useful in determining how the time interval
between replacement of nodes relates to intrusion resilience. Intuitively we can see
that reducing the time interval reducing the intrusion probability as it will give an
attacker less time to attempt to determine the obfuscation keys of servers before
they are replaced, but we do not have a model to relate specific time intervals to
specific intrusion probabilities. As we have already presented analytical techniques to
calculate expected lifetimes until system compromise from intrusion probabilities and
experimental techniques to calculate performance overhead as time intervals between
node replacement vary, such a model would allow expected lifetimes until system
compromise to be directly related to performance overhead.

The performance overhead of FORTRESS systems has also been found to be depend-
ent on how the time intervals between the sending of update and heartbeat messages
are configured, parameters that do not affect intrusion resilience. The relationship
between update intervals and performance overhead is complex and it would be bene-
ficial to develop a model that enables the optimum update interval to be determined
without having to use trial and error.

170

Bibliography

[1] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A mul-
tifaceted approach to understanding the botnet phenomenon. In IMC ’06: Pro-
ceedings of the 6th ACM SIGCOMM conference on Internet measurement, pages
41–52, New York, NY, USA, 2006. ACM.

[2] Niv Ahituv, Yeheskel Lapid, and Seev Neumann. Processing encrypted data.
Commun. ACM, 30:777–780, September 1987.

[3] Ross J. Anderson. Security engineering - a guide to building dependable distrib-
uted systems (2. ed.). Wiley, 2008.

[4] Anonymous. Once upon a free(). Phrack Magazine, 57(9), August 2001.

[5] R. Baldoni, J.-M. Helary, M. Raynal, and L. Tanguy. Consensus in byzantine
asynchronous systems. In JOURNAL OF DISCRETE ALGORITHMS, pages
1–16, 2000.

[6] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed computing, PODC ’83, pages 27–30,
New York, NY, USA, 1983. ACM.

[7] Michael Ben-Or. Fast asynchronous byzantine agreement (extended abstract).
In Proceedings of the fourth annual ACM symposium on Principles of distributed
computing, PODC ’85, pages 149–151, New York, NY, USA, 1985. ACM.

[8] G. R. Blakley. Safeguarding cryptographic keys. Managing Requirements Know-
ledge, International Workshop on, 0:313, 1979.

[9] Stephen W. Boyd, Gaurav S. Kc, Michael E. Locasto, Angelos D. Keromytis, and
Vassilis Prevelakis. On the general applicability of instruction-set randomization.
IEEE Trans. Dependable Secur. Comput., 7:255–270, July 2010.

[10] bulba and ki13r. Bypassing stackguard and stackshield. Phrack, 11(56), May
2000.

171

[11] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using cryptography. In
in Proc. 19th ACM Symposium on Principles of Distributed Computing (PODC,
pages 123–132, 2000.

[12] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, STOC ’93, pages 42–51, New York, NY, USA, 1993. ACM.

[13] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI
’99: Proceedings of the third symposium on Operating systems design and imple-
mentation, pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

[14] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and pro-
active recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[15] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43:225–267, March 1996.

[16] Dylan Clarke and Paul Ezhilchelvan. Assessing the attack resilience capabilities
of a fortified primary backup system. In Proceedings of the 40th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN 2010).
IEEE, 2010.

[17] Jean claude Laprie and Brian Randell. Fundamental concepts of computer sys-
tems dependability. In Proc. of the Workshop on Robot Dep. , Seoul, Korea,
pages 21–22, 2001.

[18] Solar Designer. "return-to-libc" attack. Bugtraq, August 1997.

[19] Assia Doudou, Benoï¿œt Garbinato, and Rachid Guerraoui. Encapsulating fail-
ure detection: from crash to byzantine failures. In Proc. International Conference
on Reliable Software Technologies, pages 24–50. Springer-Verlag, 2002.

[20] Assia Doudou and Andrï¿œ Schiper. Muteness detectors for consensus with
byzantine processes. In in Proceedings of the 17th ACM Symposium on Principle
of Distributed Computing, New York, NY, USA, 1997. ACM.

[21] Paul Ezhilchelvan, Dylan Clarke, Isi Mitrani, and Santosh Shrivastava. Proactive
Fortification of Fault-Tolerant Services. In Proceedings of the 13th International
Conference On Principle Of DIstributed Systems. Springer Science+Business Me-
dia, 2009.

[22] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

172

[23] Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet tracking: Explor-
ing a root-cause methodology to prevent distributed denial-of-service attacks. In
ESORICS, pages 319–335, 2005.

[24] Roy Friedman, Achour Mostï¿œfaoui, and Michel Raynal. Simple and efficient
oracle-based consensus protocols for asynchronous byzantine systems. IEEE
Transactions on Dependable and Secure Computing, 2:46–56, 2005.

[25] Charles Grinstead and Laurie Snell. Introduction to Probability. American Math-
ematical Society, 1997.

[26] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A Classification
of SQL-Injection Attacks and Countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering, Arlington, VA, USA,
March 2006.

[27] Perrin Hawkins and Bill Hilf. Building a large-
scale e-commerce site with apache and mod_perl.
http://perl.apache.org/docs/tutorials/apps/scale_etoys/etoys.html.

[28] Maurice P. Herlihy and J. D. Tygar. How to make replicated data secure. In
Advances in Cryptology - CRYPTO, pages 379–391. Springer-Verlag, 1988.

[29] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Proceedings of the 10th
ACM conference on Computer and communications security, CCS ’03, pages
272–280, New York, NY, USA, 2003. ACM.

[30] Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The securering
protocols for securing group communication. Hawaii International Conference
on System Sciences, 3:317, 1998.

[31] Kim Potter Kihlstrom, Louise E. Moser, and P. M . Melliar-Smith. Byzantine
fault detectors for solving consensus. The Computer Journal, 46:2003, 2003.

[32] Achmad I. Kistijantoro, Graham Morgan, Santosh K. Shrivastava, and Mark C.
Little. Enhancing an application server to support available components. IEEE
Trans. Softw. Eng., 34:531–545, July 2008.

[33] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4:382–
401, 1982.

[34] Bharat B. Madan, Katerina Goševa-Popstojanova, Kalyanaraman Vaidyanathan,
and Kishor S. Trivedi. A method for modeling and quantifying the security
attributes of intrusion tolerant systems. Perform. Eval., 56(1-4):167–186, 2004.

173

[35] Dahlia Malkhi and Michael Reiter. Unreliable intrusion detection in distributed
computations. In Proceedings of the 10th IEEE workshop on Computer Secur-
ity Foundations, CSFW ’97, pages 116–, Washington, DC, USA, 1997. IEEE
Computer Society.

[36] Francis P. Mathur and Algirdas Avižienis. Reliability analysis and architecture of
a hybrid-redundant digital system: generalized triple modular redundancy with
self-repair. In Proceedings of the May 5-7, 1970, spring joint computer conference,
AFIPS ’70 (Spring), pages 375–383, New York, NY, USA, 1970. ACM.

[37] Sape Mullender, editor. Distributed systems 2nd Edition. ACM, New York, NY,
USA, 1993.

[38] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14),
November 1996.

[39] Rodolphe Ortalo, Yves Deswarte, and Mohamed Kaâniche. Experimenting with
quantitative evaluation tools for monitoring operational security. IEEE Trans.
Softw. Eng., 25(5):633–650, 1999.

[40] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, 1980.

[41] Francisco Perez-Sorrosal, Marta Patino-Martinez, Ricardo Jimenez-Peris, and
Jaksa Vuckovic. Highly available long running transactions and activities for
j2ee applications. In Proceedings of the 26th IEEE International Conference on
Distributed Computing Systems, ICDCS ’06, pages 2–, Washington, DC, USA,
2006. IEEE Computer Society.

[42] Michael O. Rabin. Randomized byzantine generals. In Proceedings of the 24th
Annual Symposium on Foundations of Computer Science, pages 403–409, Wash-
ington, DC, USA, 1983. IEEE Computer Society.

[43] Michael K. Reiter. The rampart toolkit for building high-integrity services. In
Selected Papers from the International Workshop on Theory and Practice in Dis-
tributed Systems, pages 99–110, London, UK, 1995. Springer-Verlag.

[44] Gerardo Richarte. Four different tricks to bypass stackshield and stackguard
protection. World Wide Web, 1, 2002.

[45] Tom Roeder and Fred B. Schneider. Proactive obfuscation. ACM Trans. Comput.
Syst., 28:4:1–4:54, July 2010.

[46] Eric Roman. A survey of checkpoint/restart implementations. Technical report,
Lawrence Berkeley National Laboratory, Tech, 2002.

[47] Amit Sahai. Computing on encrypted data. In ICISS, pages 148–153, 2008.

174

[48] Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[49] Fred B. Schneider and Lidong Zhou. Implementing trustworthy services using
replicated state machines. IEEE Security and Privacy, 3(5):34–43, 2005.

[50] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source
code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[51] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In CCS
’04: Proceedings of the 11th ACM conference on Computer and communications
security, pages 298–307, New York, NY, USA, 2004. ACM.

[52] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[53] P. Sousa, N. F. Neves, and P. Verissimo. How resilient are distributed f
fault/intrusion-tolerant systems? In DSN ’05: Proceedings of the 2005 Inter-
national Conference on Dependable Systems and Networks, pages 98–107, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[54] P. Sousa, N. F. Neves, and P. Verissimo. Hidden problems of asynchronous
proactive recovery. In Workshop on Hot Topics in System Dependability, June
2007.

[55] P. Sousa, N. F. Neves, P. Verissimo, and W. H. Sanders. Proactive resilience
revisited: The delicate balance between resisting intrusions and remaining avail-
able. In Proc. 25th IEEE Symposium on Reliable Distributed Systems SRDS ’06,
pages 71–82, 2–4 Oct. 2006.

[56] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves, and
Paulo Veríssimo. Highly available intrusion-tolerant services with proactive-
reactive recovery. IEEE Trans. Parallel Distrib. Syst., 21(4):452–465, 2010.

[57] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the feeb? the
effectiveness of instruction set randomization. In SSYM’05: Proceedings of the
14th conference on USENIX Security Symposium, pages 10–10, Berkeley, CA,
USA, 2005. USENIX Association.

[58] Colin Tankard. Advanced persistent threats and how to monitor and deter them.
Network Security, 2011(8):16 – 19, 2011.

[59] PAX team. PAX documentation on ASLR. http://pax.grsecurity.net/docs/
aslr.txt.

[60] PAX team. PAX documentation on NoExec. http://pax.grsecurity.net/

docs/noexec.txt.

175

[61] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2000.

[62] Sam Toueg. Randomized byzantine agreements. In Proceedings of the third annual
ACM symposium on Principles of distributed computing, PODC ’84, pages 163–
178, New York, NY, USA, 1984. ACM.

[63] Perry Wagle and Crispin Cowan. Stackguard: Simple stack smash protection for
gcc. In Proc. of the GCC Developers Summit, pages 243–255, 2003.

[64] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. Separating agreement from execution for byzantine fault tolerant ser-
vices. In IN PROC. SOSP, pages 253–267. ACM Press, 2003.

[65] Tao Zhang, Xiaotong Zhuang, and Santosh Pande. Building intrusion-tolerant
secure software. In Proceedings of the international symposium on Code gener-
ation and optimization, CGO ’05, pages 255–266, Washington, DC, USA, 2005.
IEEE Computer Society.

[66] Wenbing Zhao and Honglei Zhang. Proactive service migration for long-running
byzantine fault-tolerant systems. IET Software, 3(2):154–164, April 2009.

176

Appendix A

Procedures for Calculating Expected
Lifetimes

The procedures for calculating the expected lifetimes defined in Chapter 5 are as
follows:

A.1 Expected Lifetime for the SMR System using

the SO or PR Obfuscation Scheme

1 double probCompromise = 0 ;
2 double probZero = 1 ;
3 double probOne = 0 ;
4 double alphaZero = α0 ;
5 double currentAlpha = α0 ;
6 double expectedValue = 0 ;
7 for (int x =0; x<=m; x++) //m i s a s u f f i c e n t l y l a r g e cons tant

to cause the expec ted va lue to converge
8 {
9 i f (alphaZero < (1−x∗ alphaZero))
10 {
11 currentAlpha = alphaZero/(1−x∗ alphaZero) ;
12 }
13 else
14 {
15 currentAlpha = 1 ;
16 }
17 probCompromise = probZero ∗(6∗ currentAlpha2∗(1−

currentAlpha)2+4∗currentAlpha3∗(1− currentAlpha)+

177

currentAlpha4)+probOne∗(3∗ currentAlpha∗(1−
currentAlpha)2+3∗currentAlpha2∗(1− currentAlpha)+
currentAlpha3) ;

18 probOne = probOne∗(1− currentAlpha)3 + 4∗probZero∗(1−
currentAlpha)3∗ currentAlpha ;

19 probZero = probZero∗(1− currentAlpha)4 ;
20 expectedValue=expectedValue+(probCompromise∗x) ;
21 }
22 Pr int expectedValue ;

A.2 Expected Lifetime for the PB System using the

SO or PR Obfuscation Scheme

1 double probCompromise = 0 ;
2 double probAlreadyCompromised = 0 ;
3 double alphaZero = α0 ;
4 double currentAlpha = α0 ;
5 double expectedValue = 0 ;
6 for (int x =0; x<=m; x++) //m i s a s u f f i c e n t l y l a r g e cons tant

to cause the expec ted va lue to converge
7 {
8 i f (alphaZero < (1−x∗ alphaZero))
9 {
10 currentAlpha = alphaZero/(1−x∗ alphaZero) ;
11 }
12 else
13 {
14 currentAlpha = 1 ;
15 }
16 probCompromise = (1−probAlreadyCompromised)∗

currentAlpha ;
17 expectedValue=expectedValue+(probCompromise∗x) ;
18 probAlreadyCompromised = probAlreadyCompromised +

probCompromise ;
19 }
20 Pr int expectedValue ;

A.3 Expected Lifetime for the FORTRESS System

using the SO or PR Obfuscation Scheme

178

1 double currentProbZero = 1 ;
2 double currentProbOne = 0 ;
3 double currentProbTwo = 0 ;
4 double probZero = 1 ;
5 double probOne = 0 ;
6 double probTwo = 0 ;
7 double probCompromise = 0 ;
8 double probAlreadyCompromised = 0 ;
9 double alphaZero = α0 ;
10 double currentAlpha = α0 ;
11 double currentAlpha = α0 ;
12 double expectedValue = 0 ;
13 for (int x =0; x<=m; x++) //m i s a s u f f i c e n t l y l a r g e cons tant

to cause the expec ted va lue to converge
14 {
15 i f (alphaZero < (1−x∗ alphaZero))
16 {
17 currentAlpha = alphaZero/(1−x∗ alphaZero) ;
18 }
19 else
20 {
21 currentAlpha = 1 ;
22 }
23 i f (serverAlpha < (1−x∗ serverAlpha))
24 {
25 serverAlpha = (probZero∗ alphaZero)+((probOne+

probTwo) ∗(1−(x−1)∗ serverAlpha)/(1−x∗
serverAlpha)) ;

26 }
27 else
28 {
29 serverAlpha = (probZero∗ alphaZero)+probOne+

probTwo ;
30 }
31 probZero = currentProbZero ;
32 probOne = currentProbOne ;
33 probTwo = currentProbTwo ;
34 probCompromise = (1−probAlreadyCompromised) ∗(probZero

∗ currentAlpha3+probOne∗ currentAlpha2+probTwo∗
currentAlpha+(probOne(1−currentAlpha2)+probTwo(1−
currentAlpha)) serverAlpha) /(probZero+probOne+

179

probTwo) ;
35 currentProbTwo = currentProbTwo∗(1− currentAlpha)+2∗

currentProbOne∗(1− currentAlpha)∗ currentAlpha+3∗
currentProbZero∗(1− currentAlpha)∗ currentAlpha2 ;

36 currentProbOne = currentProbOne∗(1− currentAlpha)2+3∗
currentProbZero∗(1− currentAlpha)2∗ currentAlpha ;

37 currentProbZero = currentProbZero∗(1− currentAlpha)3 ;
38 expectedValue=expectedValue+(probCompromise∗x) ;
39 probAlreadyCompromised = probAlreadyCompromised +

probCompromise ;
40 }
41 Pr int expectedValue ;

A.4 Expected Lifetime for the SMR System using

the PO Obfuscation Scheme

1 int nodesCompromised = 0 ;
2 int totalCompromised = 0 ;
3 int d i v e r s i t y = m; //where m i s the amount o f d i v e r s i t y

a v a i l a b l e
4 int rounds = −1;
5 int temp = 0 ;
6 double alpha = α ;
7 while (nodesCompromised < 2)
8 {
9 rounds++
10 int randomInt = a ; //where a i s a random number

between 0 and d i v e r s i t y ;
11 i f (a<totalCompromised)
12 {
13 nodesCompromised++;
14 }
15 randomInt = a ; //where a i s a random number between 0

and d i v e r s i t y −1;
16 i f (a<totalCompromised−nodesCompromised)
17 {
18 nodesCompromised++;
19 }
20 randomInt = a ; //where a i s a random number between 0

and d i v e r s i t y −2;

180

21 i f (a<totalCompromised−nodesCompromised)
22 {
23 nodesCompromised++;
24 }
25 randomInt = a ; //where a i s a random number between 0

and d i v e r s i t y −3;
26 i f (a<totalCompromised−nodesCompromised)
27 {
28 nodesCompromised++;
29 }
30 temp = nodesCompromised ;
31 for (int i =0; i<4−temp ; i++)
32 {
33 double randomDouble = b ; //where b i s a

random number between 0 and 1
34 i f (randomDouble < alpha)
35 {
36 nodesCompromised++;
37 }
38 }
39 }

A.5 Expected Lifetime for the SMR System using

the PO Obfuscation Scheme and Checkpointing

Method CP2

1 boolean [4] nodesCompromised = new boolean [4] ;
2 int compromised = 0 ;
3 for (int i =0; i <4; i++)
4 {
5 nodesCompromised [i] = fa l se ;
6 }
7 int totalCompromised = 0 ;
8 int d i v e r s i t y = m; //where m i s the amount o f d i v e r s i t y

a v a i l a b l e
9 double rounds = −1;
10 int temp = 0 ;
11 double alpha = α ;
12 double beta = 1− (1− α)0.25)
13 while (compromised < 2)

181

14 {
15 rounds = rounds +0.25;
16 for (int i =0; i <3; i++)
17 {
18 nodesCompromised [i] = nodesCompromised [i +1] ;
19 }
20
21 int randomInt = a ; //where a i s a random number

between 0 and d i v e r s i t y ;
22 i f (a<totalCompromised)
23 {
24 nodesCompromised [3] = true ;
25 }
26 else
27 {
28 nodesCompromised [3] = fa l se ;
29 }
30
31 temp = nodesCompromised ;
32 for (int i =1; i<4−temp ; i++)
33 {
34 double randomDouble = b ; //where b i s a

random number between 0 and 1
35 i f (randomDouble < beta)
36 {
37 nodesCompromised [i] = true ;
38 }
39 }
40 compromised = 0 ;
41 for (int i =1; i<4−temp ; i++)
42 {
43 i f (nodesCompromised [i])
44 {
45 compromised++;
46 }
47 }
48 }

182

A.6 Expected Lifetime for the FORTRESS System

using the PO Obfuscation Scheme

A.6.1 Indirect Attacks Impossible

1 int proxiesCompromised = 0 ;
2 int totalCompromised = 0 ;
3 int d i v e r s i t y = m; //where m i s the amount o f d i v e r s i t y

a v a i l a b l e
4 int rounds = −1;
5 int temp = 0 ;
6 boolean serverCompromised = fa l se ;
7 double alpha = α ;
8 while (proxiesCompromised < 3 && ! serverCompromised)
9 {
10 rounds ++;
11 int randomInt = a ; //where a i s a random number

between 0 and d i v e r s i t y ;
12 i f (a<totalCompromised)
13 {
14 proxiesCompromised++;
15 }
16 randomInt = a ; //where a i s a random number between 0

and d i v e r s i t y −1;
17 i f (a<totalCompromised−proxiesCompromised)
18 {
19 proxiesCompromised++;
20 }
21 randomInt = a ; //where a i s a random number between 0

and d i v e r s i t y −2;
22 i f (a<totalCompromised−proxiesCompromised)
23 {
24 proxiesCompromised++;
25 }
26 temp = proxiesCompromised ;
27 for (int i =0; i<3−temp ; i++)
28 {
29 double randomDouble = b ; //where b i s a

random number between 0 and 1
30 i f (randomDouble < alpha)

183

31 {
32 proxiesCompromised++;
33 }
34 }
35 i f (proxiesCompromised > 0)
36 {
37 double randomDouble = b ; //where b i s a

random number between 0 and 1
38 i f (randomDouble < alpha)
39 {
40 serverCompromised = true ;
41 }
42 }
43 }

A.6.2 Indirect Attacks Possible

1 int proxiesCompromised = 0 ;
2 int totalCompromised = 0 ;
3 int d i v e r s i t y = m; //where m i s the amount o f d i v e r s i t y

a v a i l a b l e
4 int rounds = −1;
5 int temp = 0 ;
6 boolean serverCompromised = fa l se ;
7 double alpha = α ;
8 double kappa = κ ;
9 while (proxiesCompromised < 3 && ! serverCompromised)
10 {
11 rounds ++;
12 int randomInt = a ; //where a i s a random number

between 0 and d i v e r s i t y ;
13 i f (a<totalCompromised)
14 {
15 proxiesCompromised++;
16 }
17 randomInt = a ; //where a i s a random number between 0

and d i v e r s i t y −1;
18 i f (a<totalCompromised−proxiesCompromised)
19 {
20 proxiesCompromised++;
21 }

184

22 randomInt = a ; //where a i s a random number between 0
and d i v e r s i t y −2;

23 i f (a<totalCompromised−proxiesCompromised)
24 {
25 proxiesCompromised++;
26 }
27 temp = proxiesCompromised ;
28 for (int i =0; i<3−temp ; i++)
29 {
30 double randomDouble = b ; //where b i s a

random number between 0 and 1
31 i f (randomDouble < alpha)
32 {
33 proxiesCompromised++;
34 }
35 }
36 i f (proxiesCompromised > 0)
37 {
38 double randomDouble = b ; //where b i s a

random number between 0 and 1
39 i f (randomDouble < alpha)
40 {k
41 serverCompromised = true ;
42 }
43 }
44 else
45 {
46 double randomDouble = b ; //where b i s a

random number between 0 and 1
47 i f (randomDouble < kappa∗alpha)
48 {
49 serverCompromised = true ;
50 }
51 }
52 }

185

Appendix B

System Models with Checkpointing
Methods CP1 and CP2

When considering refresh or replacement using checkpointing with methods CP1 and
CP2 we no longer have a unit time-step in which all nodes process client requests
for the whole of the unit time-step, followed by a short migration period in which all
nodes are replaced. Instead we have a situation where each node is unavailable due to
refresh or replacement for part of the unit time-step during which the other nodes are
continuing to process requests. We also have each incoming node receiving its state
from every node other than the outgoing node.

This results in a compromised outgoing node being unable to influence the state of the
incoming node that will replace it. Hence it is no longer sufficient to compromise any
two nodes at any point in a unit time-step to compromise the system state. Instead,
an attacker must compromise two of the three nodes that will provide the system
state to the next incoming node.

It is however possible for two compromised nodes, one of which will be the next
outgoing node, to collaborate to compromise the system state returned to clients
before the outgoing node leaves. So, a lesser failure state will be reached when the
failure conditions for the standard SMR system using the PO obfuscation scheme are
reached, but the failure conditions detailed in this section are not.

This lesser failure state is not reachable however when checkpoining method CP2 is
used and each node has a reboot period equal to 1/4 of the unit time step. Here,
there are only ever three nodes processing client requests at any given time. Hence,
there are only three nodes that can be compromised at any given time, and the only
possible failure state is when two of these three nodes are compromised, and will hence
be able to give a corrupted state to the incoming node when it finishes rebooting.

We also note that systems using these checkpointing mechanisms will have the un-
desirable property relative to systems using en-masse replacement that, while a node

186

is rebooting, one intrusion will be sufficient to allow an attacker to prevent the or-
dering, and hence processing, of client requests. This becomes less of a problem the
smaller that reboot periods are relative to the unit time-step. However, as the intru-
sion resilience, both against a permanent corruption of system state and a corruption
of client state, of systems using these checkpointing methods increases as the reboot
periods increase relative to the unit time-step, there is a trade-off between the increase
in intrusion resilience and the possible decrease in availability.

187

Appendix C

Comparison Between Expected
Lifetimes for SMR Systems using the
PO Obfuscation Scheme with
En-masse Replacement and
Checkpointing Method CP2

Here we present comparisons between the SMR system with en-masse replacement and
the SMR system using checkpointing method CP2 for a representative range of values.
Expected lifetimes are shown for the range of intrusion probabilities α = 0.0001 to
α = 0.001 with the diversity levels: 28, 216 and infinite diversity in Table C.1, showing
that the use of the CP2 checkpointing method increases the expected lifetime of the
SMR system.

Table C.1: Expected Lifetimes of Systems with Proactive Obfuscation

0.0001
SMR 7726 99073 1.7× 107

SMR-CP2 9046 231393 7.11× 108

0.0002
SMR 4464 59599 4.2× 106

SMR-CP2 5264 143600 1.78× 108

0.0003
SMR 3270 43864 1.9× 106

SMR-CP2 3851 105691 7.9× 107

0.0004
SMR 2633 35163 1.0× 106

SMR-CP2 3086 83950 4.44× 107

0.0005
SMR 2190 29529 667111

SMR-CP2 2591 71763 2.84× 107

0.0006
SMR 1935 25235 463333

SMR-CP2 2267 62175 1.97× 107

188

αi System EL(28) EL(216) EL(∞)

0.0007
SMR 1716 22339 340454

SMR-CP2 2017 54447 1.45× 107

0.0008
SMR 1555 19831 260695

SMR-CP2 1836 49792 1.11× 107

0.0009
SMR 1429 17949 206008

SMR-CP2 1673 45335 8776953

0.001
SMR 1310 16165 166889

SMR-CP2 1536 41324 7109134

We note that a comparison between the SMR system using checkpointing method CP2
and the FORTRESS system may not strictly be a like-to-like comparison. The SMR
system using checkpointing method CP2 is considered not to be compromised when
one node is compromised, despite the fact that this will prevent system availability for
between 1/4 and 3/4 of a unit time-step. This is in direct contrast to the inclusion of
the compromise of all three proxies in the compromise conditions for the FORTRESS
system, a situation that will only prevent the availability of the system for one unit
time-step.

189

Appendix D

Transfer Mechanisms for Systems
with State Machine Replication in
the Server Tier

We note that the transfer mechanisms given in Section 6.1 all assume a primary-
backup system, although any of them other than progressive transfer with primary
load reduction could be implemented with a server tier consisting of a single node.
However, all of these mechanisms, with the exception of progressive transfer with
primary load reduction, can easily be modified to be used with a server tier using
active replication. This is illustrated in the following sections.

D.1 Single Transfer

The single transfer mechanism behaves as in Section 6.1.2.1 during the processing
section of each unit time-step, and ceases processing and queues outstanding client
requests when the processing section ends. Each node now generates a checkpoint
and sends it to every server that will perform processing in the next time-step. Each
of these new servers waits until it has received n+1 identical checkpoints, where n is
the number of intrusions that the active replication system is designed to be able to
survive in any given unit time-step. Each server sets its state from this checkpoint.

D.2 Progressive Transfer

Two subsets of server nodes are used as in Section 6.1.2.2, except that every server
node is differently randomised, as active replication is designed to tolerate intrusion
into some server nodes. Every node in the current server tier periodically generates
a checkpoint and sends it to every node in the second subset of server nodes. These

190

nodes update their state every time they receive n+ 1 identical checkpoints, where n
is the number of intrusions that the system is designed to be able to survive in any
given unit time-step. At system migration the second subset of server nodes become
the new server tier, and a new subset becomes the new second subset.

D.3 Progressive Transfer with Primary Load Reduc-

tion

Progressive transfer with primary load reduction is not a viable scheme with active
replication, as the nature of active replication requires that all correct servers process
all requests. Hence all servers will be expected to handle an equal load. Furthermore,
as some nodes may be intruded into, having only some nodes send state transfer
messages to the second subset of server nodes would have security implications.

D.4 Transfer with Trusted Components

Here we extend the transfer mechanism from Section D.1 or Section D.2 with the
aid of of trusted components. In Section 6.1.2.4, these trusted components took a
single system checkpoint that was randomised correctly to be used by the current
server tier, and converted it to be correctly randomised to be used by the new server
tier. Instead, we convert each checkpoint into an intermediate state, determine the
correct checkpoint that n + 1 or more nodes agree on, and convert this to make a
valid checkpoint for each server in the new server tier. Here, there is a possibility
for a greater gain in efficiency than simply using this procedure to translate each
checkpoint received into a valid checkpoint for each new server.

The efficiency gain in this technique can be illustrated with the following example:

First, we assume that there are m nodes in a server tier, and all of the m nodes in the
current server tier send checkpoints to the trusted components. If we were to use the
trusted components simply to send each checkpoint to each node in the new server
tier we would transform each of the m checkpoints into a set of m checkpoints and
send that to the new server tier. This would result in a total of m2 transformations
and m + m2 messages. On the other hand, if we convert each of the checkpoints
into an intermediate form, this takes m transformations. Then, we take the ma-
jority checkpoint and transform it for every new server node, requiring another m
transformations. This results in a total of 2m transformations and 2m messages.

If we take an active replication system with the commonly used number of 4 nodes, we
see that the unoptimised method would require 16 transformations and 20 messages,
whereas the optimised method would require 8 transformations and 8 messages.

191

As a side remark we note that when using active replication, the assumption that all
server nodes are uncompromised no longer holds. This means that we have potentially
compromised nodes sending checkpoint messages to the trusted components, possibly
resulting in a higher requirement for attack resilience in the trusted components.

192

Appendix E

Correctness, Liveness and Attack
Resilience Analysis of State Transfer
Mechanisms

We first consider the correctness assumptions we can make about the FORTRESS
system itself, in light of the performance evaluations in Chapter 5. Then, we consider
the correctness and liveness requirements for each state transfer mechanism, and also
what impact that state transfer mechanism can have on the assumptions we have
made when assessing attack resilience. Finally, we consider the changes made to our
correctness assumptions and analysis of these mechanisms when active replication is
used in the server tier.

E.1 Correctness Assumptions

In Chapter 5 we have evaluated the expected lifetime of a FORTRESS system with
primary backup replication in the server tier. The expected lifetime is the average
number of unit time-steps that the system will run until it is compromised. Another
way of stating this is that the expected lifetime is the average number of unit time-
steps for which the following assumptions will hold.

1. No server replica is compromised by a malicious intruder.

2. At least one proxy is not compromised by a malicious intruder.

It is also possible, by including sufficient backups in the replication system to make
the following assumption hold

3. At least one backup does not crash during the unit-time step.

193

This allows us to make the following correctness assumptions for an uncompromised
system, and expect them to hold for the calculated expected lifetime.

1. There is at least one correct server replica available.

2. There is at least one correct proxy available.

3. No server replica has been maliciously intruded.

E.2 Single Transfer

Here we consider the single transfer technique presented in Section 6.1.2.1.

E.2.1 Correctness

We consider the case where a node has set its state from a message received. We know
that this message came from a node that was a server in the last unit time-step due
to assumption 6.1.3 and that this node was correct due to assumption 3 in Section
E.1. Thus the node has received a correct state.

The only other threat to correctness is that the replica could have received a malicious
message from the controller unit or reboot server, causing it to re-start in such a way
that some or all of the system state being transferred is lost. However, the controller
unit and reboot server are assumed to be uncompromised for the lifetime of the system,
so we can discount this possibility.

E.2.2 Liveness

The time at which a correct node sends a state message is bounded due to assumption
1 and the state transfer message will be received by all new nodes within a bounded
time interval from this, due to assumption 6.1.3. Hence, if a correct node exists for all
of the unit time-step than a state transfer message will be received within a bounded
time by all new nodes.

We can guarantee that at least one correct node exists due to assumption 1 in Section
E.1. Hence a state transfer message will be received within a bounded time by every
new node.

E.2.3 Attack Resilience

The new set of nodes is accessible only by the old primary and the controller unit until
the end of the transfer phase. The controller unit is assumed to be uncompromised and

194

hence will not send any malicious messages to the new set of nodes. The accessibility
from the old primary is one-way with the new set of nodes sending no information
back to the old set. This ensures that no external attacks can be launched against the
new nodes until the start of their processing phase. The old primary is assumed to
be correct until the end of the transfer phase by assumption 3 in Section E.1. Hence
there is no alteration to the attack resilience assumptions made when calculating the
expected lifetime.

E.3 Progressive Transfer

Here we consider the progressive transfer technique presented in Section 6.1.2.2.

E.3.1 Correctness

We know that each new node has only received updates from the subset of old nodes
due to assumption 6.1.3 and that the only other messages it has received are from the
controller unit or reboot server. The controller unit and reboot server are assumed to
be uncompromised, and hence have not sent any malicious messages. We also know
that all updates have been sent and the updates that have been sent are correct due
to assumption E.1. This, coupled with the fact that all sent updates will have been
received due to assumption 1 and assumption 6.1.3, ensures correct state in the new
nodes.

E.3.2 Liveness

The times at which a correct nodes sends state messages are bounded due to require-
ment 1 in Section 1 and the state transfer message will be received by all new nodes
within a bounded time interval from this, due to requirement 2 6.1.3 in Section .
Hence, if a correct server node exists for all of the unit time-step than a full set of
state transfer messages will be received within a bounded time by all new nodes.

We can guarantee that at least one correct server node exists due to assumption 1
in Section E.1. Hence a full set of state transfer messages will be received within a
bounded time by every new node.

E.3.3 Attack Resilience

The new subset of nodes are only one way accessible by the old subset of nodes,
and they do not perform processing or receive client requests until the unit time-step
when they become the current server nodes. This results in attack resilience being

195

unchanged if we add the assumption that there is no way in which the new nodes can
be attacked independently.

The only other possible avenue of attack is malicious messages sent by the controller
unit. However, we assume that the controller unit is uncompromised for the lifetime
of the system, and thus we can discount this possibility.

E.4 Progressive Transfer with Primary Load Reduc-

tion

Here we consider the technique presented in Section 6.1.2.3.

E.4.1 Correctness

The only change to the state transfer scheme in Section E.3 is to have one of the
backups send checkpoints rather than the primary, if a backup is available. The
backups are just as difficult to attack as the primary, do not perform any processing
until they become the primary, and are not directly contactable by an attacker in
the same way that the primary is not directly contactable. The use of primary load
reduction makes no difference to the attack resilience of the controller unit or reboot
server.

Hence the same correctness arguments made in Section E.3 apply.

E.4.2 Liveness

There are two possible cases for this transfer scheme. When the only non-crashed
node is the primary then we have liveness as in Section E.3 due to assumption E.1
stating that the primary will not crash. When there is at least one non-crashed node
other than the primary then the liveness assumptions in Section E.2.2 hold for both
the checkpoints sent from the primary to the backup, and the checkpoints sent from
the backup to the new nodes. Similarly, when there is at least one non-crashed node
other than the primary and the primary crashes, the liveness assumptions in Section
E.2.2 mean that the highest ordered backup will have received, or will receive within
bounded time the most recent checkpoint. Then, the liveness assumptions in Section
E.2.2 hold for this node now it has taken over as the primary. Hence liveness holds,
as it holds in either case, and is not affected by the transition between them.

196

E.4.3 Attack Resilience

The attack resilience arguments in E.3.3 hold for this case as we are simply changing
the node sending the state messages to the new nodes. The backup node sending
the state messages only applies and sends updates rather than performing processing
itself, it is identically randomised to the primary, and does not directly accept client
requests unless it becomes the primary.

E.5 Transfer with Trusted Components

Here we consider the technique presented in Section 6.1.2.4.

E.5.1 Correctness

The correctness arguments in Section E.3 hold for a correct trusted server producing
correct system state from checkpoints sent by the old servers, and the correctness
arguments in Section E.2 hold for a correct trusted server receiving a correct system
state from the old servers in single transfer. Similarly these correctness arguments
can be applied to the transfer of system state from a correct trusted server to the new
servers.

Hence, as long as the assumptions hold that the trusted server is uncompromised and
performs correctly, the correctness requirement is satisfied.

E.5.2 Liveness

The liveness arguments in Section E.3 and Section E.2 hold for a correct trusted server
receiving state transfer information from the old servers and transmitting it to the
new servers. Hence, as long as the assumptions hold that the trusted server is correct
and performs in a timely manner, the liveness requirement is satisfied.

E.5.3 Attack Resilience

The attack resilience arguments in Section E.3 and Section E.2 will hold for the old
and new servers. Hence, as long as we assume that the trusted server is not open to
outside attack, this scheme will cause no change to our attack resilience measurements.
This assumption is fairly safe to make as we know that the trusted component only
receives state messages from the current primary, which is assumed to be correct,
and does not perform any processing beyond applying a transformation of the state
messages received to cause them to be randomised in the correct way for the new
subset of servers.

197

E.6 Hardware Requirements

For each transfer mechanism we will consider the additional hardware needed beyond
that for one FORTRESS system. We will not consider additional hardware that may
be needed to prevent exhaustion of the spare pool, only hardware that is needed to be
take part in current computations or state transfer. This is in line with the consider-
ation in Section 3.7.2 that machines that are not currently performing computations
or receiving updates can be left in power saving modes, and the observation in Sec-
tion 2.12 that the cost of running machines is a major part of the hardware cost of a
system.

E.6.1 Single Transfer

Here we will require a second set of servers to be available for the transfer period.
These servers are not required during the processing period, as no updates will be
sent until the transfer period.

E.6.2 Progressive Transfer

A second set of servers are required for all of the unit time-step, as updates may be
sent for the whole of the unit time-step.

E.6.3 Progressive Transfer with Primary Load Reduction

A second set of servers is required for all of the unit time-step, as updates may be
sent for all of the unit time-step.

E.6.4 Transfer with Trusted Components

Here we require the additional hardware for the type of transfer that the trusted
components support and the trusted components themselves. The trusted components
will require at least one server and possibly more, depending on any requirements for
replication, these trusted components will need to be available for all of the transfer
period if single transfer is being used, or all of the unit time-step if progressive transfer
is being used.

198

E.7 Transfer Mechanisms for Systems with Active

Replication in the Server Tier

The use of active replication immediately invalidates our assumption in E.1 that no
server has been maliciously intruded into. This is replaced by an assumption that
the number of servers that have been maliciously intruded into is bounded by some
number f . We will outline how this affects correctness, liveness and attack resilience
in the following sections.

E.7.1 Correctness

The previous assumption made for each mechanism was that the state transfer mes-
sage received was correct as it was sent from a correct server. Here, instead we have a
situation where a number of state transfer messages are received, some of which may
be incorrect. However, as at most f of these messages can be incorrect, the active
replication system can use 3f + 1 or more nodes. Then, we know that, as soon as
2f +1 messages are received that f +1 of them must be correct and identical. Hence,
a correct message can be identified by finding f + 1 identical messages. Once this
correct message is identified, the correctness arguments made when primary-backup
replication is used will hold.

E.7.2 Liveness

The liveness arguments made when the state transfer mechanisms were considered for
primary-backup server tiers show that, as long as a correct node exists to send mes-
sages, liveness holds. Hence, for liveness to hold in a system using active replication
in the server tier, we need to show that intruded nodes cannot indefinitely delay the
identification of a correct message.

First we assume the worst case scenario, that there are f intruded nodes. Then, the
attacker has two choices to attempt to disrupt state transfer, either to send incorrect
messages, or fail to send messages. If the f intruded nodes send f incorrect messages
(the maximum number of unique incorrect messages they can send) then, by the
liveness arguments made in sections E.2-E.5, the non-intruded nodes will also send
correct messages within bounded time. If we assume that the incorrect messages are
among the first 2f + 1, then a decision is made using n incorrect messages and f + 1

correct messages, giving a correct outcome within bounded time.

On the other hand, if the intruded nodes fail to send messages, or delay sending them
then, due to the liveness arguments made in sections E.2-E.5, 2f +1 correct messages
will be received within bounded time. This will again result in a correct outcome
within bounded time.

199

E.7.3 Attack Resilience

We have previously assumed that nodes are not attacked until the unit time-step
in which they become the current server and proxy tier. This assumption has been
based on two key observations. Firstly, the identities of the nodes that will be used
in the next unit time-step are not known externally or by the current proxies, and
secondly, no node in the current server tier has been maliciously intruded. When
active replication is used in the server tier, the second observation can no longer be
assumed to be true.

This means that, when single transfer is used, malicious requests may be sent to
the new server tier during the transfer phase. Even more seriously, when progressive
transfer is used, malicious requests may be sent to the new server tier at any point
during the preceding unit time-step.

We note that this possible cause of reduced attack resilience may be mitigated by the
use of trusted components if the trusted components are simple and attack resilient
enough themselves to withstand any malicious requests that intruded servers may
send.

200

Appendix F

State Transfer Overhead: Absolute
Values

Here we present the absolute values recorded during the state transfer overhead ex-
periments detailed in Chapter 7.

F.1 Update Interval

The migration interval was held constant at 150 seconds, and the heartbeat interval
was held constant at 4 seconds.The latencies measured are shown in Figure F.1. The
throughputs measured are shown in Figure F.2. Confidence intervals at the 95%
significance level are shown for the latencies in Table F.1 and the throughputs in
Table F.2.

F.2 Heartbeat Interval

We first present the results obtained from a FORTRESS system with migration in-
terval held constant at 150 seconds and update interval held constant at 40 seconds.
The latencies measured are shown in Figure F.3 and the throughputs measured are
shown in Figure F.4. Confidence intervals at the 95% significance level are shown for
the latencies in Table F.3 and the throughputs in Table F.4.

We then present results for the same system using primary-backup replication without
proactive fortification. This latencies measured are shown in Figure F.5. Confidence
intervals at the 95% significance level are shown for the latencies in Table F.5 and the
throughputs in Table F.6.

201

Figure F.1: Latency as Migration Interval Varies - 10s Update Interval, 4s Heartbeat
Interval

Figure F.2: Throughput as Migration Interval Varies - 10s Update Interval, 4s Heart-
beat Interval

202

Table F.1: 95% Confidence Intervals for Latencies of the FORTRESS System

Update Interval(s) Lower Endpoint(ms) Upper Endpoint (ms)
0.5 104.79 106.41
0.75 89.23 91.17
1 88.38 90.02
2 85.07 86.93
3 84.25 86.15
4 85.79 87.81
5 84.68 86.52
10 83.77 85.43
20 85.33 87.07
40 84.68 86.52
60 92.69 94.51
75 97.31 99.09
80 96.9 98.7
100 93.24 95.16
120 85.87 87.73
140 83.6 85.6
145 82.63 84.57
146 82.01 83.99
147 84.87 86.73
148 91.11 92.89
149 101.28 103.12
149.5 101.93 103.67
150 100.75 102.45

Figure F.3: Latency as Heartbeat Interval Varies - 150s Migration Interval, 40s Update
Interval

203

Table F.2: 95% Confidence Intervals for Throughput of the FORTRESS System

Update Interval(s) Lower
Endpoint(Requests

per Minute)

Upper Endpoint
(Request per Minute)

0.5 2330.96 2407.88
0.75 2730.91 2808.93
1 2762.11 2839.27
2 2866.23 2945.73
3 2894.27 2974.59
4 2839.38 2918.99
5 2881.55 2959.57
10 2912.78 2993.59
20 2860.67 2941.79
40 2880.67 2958.41
60 2631.43 2710.44
75 2507.22 2584.43
80 2516.52 2594.07
100 2614.88 2692.97
120 2839.62 2919.57
140 2915.38 2994.78
145 2950.90 3027.96
146 2972.43 3051.67
147 2876.03 2955.44
148 2675.10 2753.66
149 2405.51 2486.86
149.5 2393.30 2472.51
150 2419.97 2499.46

Figure F.4: Throughput as Heartbeat Interval Varies - 150s Migration Interval, 40s
Update Interval

204

Table F.3: 95% Confidence Intervals for Latencies of the FORTRESS System

Heartbeat Interval(ms) Lower Endpoint(ms) Upper Endpoint (ms)
500ms 87.53 89.27
1000ms 87.18 89.22
1500ms 87.11 88.89
2000ms 85.96 88.04
2500ms 86.9 89.1
3000ms 84.87 86.73
3500ms 87.11 89.29
4000ms 84.63 86.57
4500ms 87.86 89.74
5000ms 85.22 87.18
5500ms 86.41 88.39
6000ms 84.96 87.04

Table F.4: 95% Confidence Intervals for Throughputs of the FORTRESS System

Heartbeat Interval(ms) Lower
Endpoint(Requests

per Minute)

Upper Endpoint
(Requests per

Minute)
500ms 2786.917 2865.197
1000ms 2795.233 2873.273
1500ms 2799.828 2880.028
2000ms 2834.713 2914.453
2500ms 2803.359 2880.439
3000ms 2873.523 2951.983
3500ms 2794.649 2872.529
4000ms 2880.573 2958.513
4500ms 2776.037 2854.657
5000ms 2860.173 2938.313
5500ms 2820.662 2898.182
6000ms 2866.868 2945.108

Table F.5: 95% Confidence Intervals for Latencies of the Primary-Backup System

Heartbeat Interval(ms) Lower Endpoint(ms) Upper Endpoint (ms)
500ms 82.39 84.41
1000ms 81.24 83.16
1500ms 81.07 82.93
2000ms 83.31 85.09
2500ms 82.04 83.96
3000ms 81.06 82.94
3500ms 83.37 85.43
4000ms 80.83 82.77
4500ms 82.45 84.35
5000ms 82.38 84.42
5500ms 82.22 84.18
6000ms 80.44 82.36

205

Figure F.5: Latency as Heartbeat Interval Varies in a Primary-Backup System

Figure F.6: Throughput as Heartbeat Interval Varies in a Primary-Backup System

206

Table F.6: 95% Confidence Intervals for Throughputs of the Primary-Backup System

Heartbeat Interval(ms) Lower
Endpoint(Requests

per Minute)

Upper Endpoint
(Requests per

Minute)
500ms 2894.23 3099.03
1000ms 2943.77 3142.97
1500ms 2948.56 3149.02
2000ms 2870.80 3065.44
2500ms 2910.64 3113.46
3000ms 2949.28 3148.28
3500ms 2861.16 3061.20
4000ms 2958.26 3154.22
4500ms 2898.19 3096.49
5000ms 2895.17 3098.07
5500ms 2901.84 3105.86
6000ms 2972.40 3172.14

F.3 Migration Interval

The update interval was held constant at 10 seconds, and the heartbeat interval was
held constant at 4 seconds.The latencies measured are shown in Figure F.7. The
throughputs measured are shown in Figure F.8. Confidence intervals at the 95%
significance level are shown for the latencies in Table F.7 and the throughputs in
Table F.8.

207

Figure F.7: Latency as Migration Interval Varies - 10s Update Interval, 4s Heartbeat
Interval

Figure F.8: Throughput as Migration Interval Varies - 10s Update Interval, 4s Heart-
beat Interval

208

Table F.7: 95% Confidence Intervals for Latencies of the FORTRESS System

Migration Interval (ms) Lower Endpoint (ms) Upper Endpoint (ms)
20000 114.21 116.19
30000 110.99 113.01
40000 107.18 108.82
50000 93.00 95.40
60000 92.61 94.59
70000 87.53 89.67
80000 89.10 90.896
90000 89.50 91.70
100000 88.59 90.61
110000 88.45 90.35
120000 87.13 88.87
130000 88.75 90.85
140000 85.87 87.73
150000 83.68 85.52

Table F.8: 95% Confidence Intervals for Throughput of the FORTRESS System

Migration Interval (ms) Lower Endpoint
(Requests per

Minute)

Upper Endpoint
(Requests per

Minute)
20000 2126.85 2203.352
30000 2194.13 2274.153
40000 2270.44 2349.195
50000 2612.81 2691.048
60000 2631.99 2709.89
70000 2781.44 2861.9004
80000 2738.47 2817.088
90000 2720.31 2798.451
100000 2751.68 2828.678
110000 2759.25 2837.59
120000 2801.42 2880.399
130000 2742.97 2820.954
140000 2840.97 2919.3943
150000 2922.93 3003.233

209

Appendix G

Apache Tomcat Implementation:
Absolute Values

G.1 Simple Web Page with Sessions

G.1.1 Heartbeat Interval

The migration interval was fixed at 100 seconds for the proactively fortified system
and the heartbeat interval was varied between 1 second and 6 seconds in 1 second
steps. The results are shown in Figure G.1 and Figure G.2. Confidence intervals
at the 95% significance level are shown for the latencies of the proactively fortified
system in Table G.1 and the latencies of the primary-backup system in Table G.2.
Confidence intervals at the 95% significance level are shown for the throughputs of
the proactively fortified system in Table G.3 and the latencies of the primary-backup
system in Table G.4.

This data appears to show latency staying fairly constant for the proactively fortified
system as the heartbeat interval increases, until it reaches the 5000ms point, after

Figure G.1: Latency as Heartbeat Interval Varies - 100s Migration Interval

210

Figure G.2: Throughput as Heartbeat Interval Varies - 100s Migration Interval

Table G.1: 95% Confidence Intervals for Latencies of the Proactively Fortified System

Heartbeat Interval(ms) Lower Endpoint (ms) Upper Endpoint (ms)
1000 9.92 10.08
2000 9.92 10.08
3000 9.92 10.08
4000 9.92 10.08
5000 9.92 10.08
6000 8.92 9.08

Table G.2: 95% Confidence Intervals for Latencies of the Primary-Backup System

Heartbeat Interval(ms) Lower Endpoint (ms) Upper Endpoint (ms)
1000 8.94 9.06
2000 7.94 8.06
3000 7.94 8.06
4000 6.96 7.04
5000 6.95 7.05
6000 6.95 7.05

Table G.3: 95% Confidence Intervals for Throughputs of the Proactively Fortified
System

Heartbeat Interval(ms) Lower Endpoint
(Requests per

Minute)

Upper Endpoint
(Requests per

Minute)
1000 161,895.34 164,395.08
2000 164,020.98 166,448.28
3000 169,479.65 171,933.81
4000 170,425.42 172,863.28
5000 172,086.32 174,621.94
6000 175,654.59 178,229.61

211

Table G.4: 95% Confidence Intervals for Throughputs of the Primary-Backup System

Heartbeat Interval(ms) Lower Endpoint
(Requests per

Minute)

Upper Endpoint
(Requests per

Minute)
1000 167,764.72 170,263.46
2000 173,289.82 175,797.02
3000 179,139.03 181,654.71
4000 181,601.14 184,043.30
5000 182,859.63 185,350.37
6000 183,974.95 186,378.91

Table G.5: Correlation Coefficients for the Comparison Between Latency and
Throughput and Heartbeat Interval

Data Series Correlation Coefficient
Latency for Proactively Fortified System -0.65465

Throughput for Proactively Fortified System 0.980192
Latency for Primary-Backup System -0.91652

Throughput for Primary-Backup System 0.946763

which there is a decrease. The primary-backup system without fortification appears
to show a general decreases in latency as heartbeat interval increases. Throughput
appears to increase as heartbeat interval increases both for the proactively fortified
system and the primary-backup system without proactive fortification. Correlation
coefficients are shown for these results in Table G.5. This shows a weak negative
correlation between latency and heartbeat interval, and a strong positive correlation
between throughput and heartbeat interval for the proactively fortified system over
the values considered. It also shows a strong negative correlation between latency and
heartbeat interval and a strong positive correlation between throughput and heartbeat
interval for the primary-backup system over the values considered.

G.1.2 Migration Interval

The heartbeat interval was fixed at 6 seconds for the proactively fortified system and
the migration interval was varied between 20 seconds and 100 seconds in 10 second
steps. The results are shown in Figure G.3 and Figure G.4. Confidence intervals at the
95% significance level are shown for the latencies in Table G.6 and the throughputs
in Table G.7.

These results appear to show latency decreasing as migration interval increases and
throughput increasing as migration interval increases. The correlation coefficients for
these results are shown in Table G.8. This shows a weak negative correlation between
latency and migration interval, and a strong positive correlation between throughput
and migration interval for the range of migration intervals considered.

212

Figure G.3: Latency as Migration Interval Varies - 6s Heartbeat Interval

Figure G.4: Throughput as Migration Interval Varies - 6s Heartbeat Interval

Table G.6: 95% Confidence Intervals for Latencies of the Proactively Fortified System

Migration Interval (ms) Lower Endpoint(ms) Upper Endpoint(ms)
20000 60.79 61.21
30000 12.90 13.10
40000 10.91 11.09
50000 10.91 11.09
60000 10.91 11.09
70000 9.92 10.08
80000 9.92 10.08
90000 9.92 10.08
100000 8.92 9.08

213

Table G.7: 95% Confidence Intervals for Throughputs of the Proactively Fortified
System

Migration Interval (ms) Lower
Endpoint(Requests

per Minute)

Upper
Endpoint(Requests

per Minute)
20000 44,014.34 45,643.62
30000 147,344.88 149,846.66
40000 157,490.18 160,020.54
50000 159,457.88 162,006.12
60000 162,838.88 165,417.12
70000 167,150.08 169,569.16
80000 167,866.96 170,369.04
90000 172,942.34 175,429.02
100000 175,654.59 178,229.61

Table G.8: Correlation Coefficients for the Comparison Between Latency and
Throughput and Migration Interval

Data Series Correlation Coefficient
Latency -0.59671

Throughput 0.705528

G.2 Online Shopping Page

G.2.1 Heartbeat Interval

The migration interval was fixed at 100 seconds for the proactively fortified system
and the heartbeat interval was varied between 1 second and 6 seconds in 1 second
steps. The results are shown in Figure G.5 and Figure G.6. Confidence intervals
at the 95% significance level are shown for the latencies of the proactively fortified
system in Table G.9 and the latencies of the primary-backup system in Table G.10.
Confidence intervals at the 95% significance level are shown for the throughputs of
the proactively fortified system in Table G.11 and the latencies of the primary-backup
system in Table G.12.

Table G.9: 95% Confidence Intervals for Latencies of the Proactively Fortified System

Heartbeat Interval(ms) Lower Endpoint (ms) Upper Endpoint (ms)
1000 594.46 597.54
2000 582.50 585.50
3000 576.51 579.49
4000 573.51 576.49
5000 555.53 558.47
6000 547.58 550.42

214

Figure G.5: Latency as Heartbeat Interval Varies - 100s Migration Interval

Figure G.6: Throughput as Heartbeat Interval Varies - 100s Migration Interval

Table G.10: 95% Confidence Intervals for Latencies of the Primary-Backup System

Heartbeat Interval(ms) Lower Endpoint (ms) Upper Endpoint (ms)
1000 503.26 504.74
2000 499.24 500.76
3000 497.26 498.74
4000 489.27 490.73
5000 473.27 474.73
6000 458.30 459.70

215

Table G.11: 95% Confidence Intervals for Throughputs of the Proactively Fortified
System

Heartbeat Interval(ms) Lower Endpoint
(Requests per

Minute)

Upper Endpoint
(Requests per

Minute)
1000 4479.99 4556.63
2000 4533.19 4613.21
3000 4686.42 4765.28
4000 4710.57 4788.07
5000 4753.623 4832.37
6000 4856.18 4938.12

Table G.12: 95% Confidence Intervals for Throughputs of the Primary-Backup System

Heartbeat Interval(ms) Lower Endpoint
(Requests per

Minute)

Upper Endpoint
(Requests per

Minute)
1000 5163.16 5243.40
2000 5337.22 5414.72
3000 5511.10 5589.10
4000 5594.34 5673.08
5000 5629.51 5710.51
6000 5664.22 5741.98

This data appears to show latency decreasing for both systems as the heartbeat inter-
val increases. Throughput appears to increase as heartbeat interval increases both for
the proactively fortified system and the primary-backup system without proactive for-
tification. Correlation coefficients are shown for these results in Table G.13. In both
cases these correlation coefficients demonstrate a strong negative correlation between
latency and heartbeat interval, and a strong positive correlation between throughput
and heartbeat interval for the range considered.

Table G.13: Correlation Coefficients for the Comparison Between Latency and
Throughput and Heartbeat Interval

Data Series Correlation Coefficient
Latency for Proactively Fortified System -0.98082

Throughput for Proactively Fortified System 0.97811
Latency for Primary-Backup System -0.94737

Throughput for Primary-Backup System 0.947882

216

Figure G.7: Latency as Migration Interval Varies - 6s Heartbeat Interval

Table G.14: 95% Confidence Intervals for Latencies of the Proactively Fortified System

Migration Interval (ms) Lower Endpoint(ms) Upper Endpoint(ms)
20000 1732.39 1735.61
30000 886.42 889.58
40000 788.43 791.57
50000 781.50 784.50
60000 636.73 639.27
70000 636.66 639.34
80000 612.71 615.29
90000 600.64 603.36
100000 547.58 550.42

G.2.2 Migration Interval

The heartbeat interval was fixed at 6 seconds and the migration interval was varied
between 20 seconds and 100 seconds in 10 second steps.The results are shown in Figure
G.7 and Figure G.8. Confidence intervals at the 95% significance level are shown for
the latencies in Table G.14 and the throughputs in Table G.15.

These results appear to show latency decreasing as migration interval increases and
throughput increasing as migration interval increases. The correlation coefficients for
these results are shown in Table G.16. These correlation coefficients show a strong
negative correlation between latency and migration interval, and a strong positive
correlation between throughput and migration interval.

217

Figure G.8: Throughput as Migration Interval Varies - 6s Heartbeat Interval

Table G.15: 95% Confidence Intervals for Throughputs of the Proactively Fortified
System

Migration Interval (ms) Lower
Endpoint(Requests

per Minute)

Upper Endpoint
(Requests per

Minute)
20000 970.32 1048.30
30000 3120.78 3199.02
40000 3560.51 3638.99
50000 3656.61 3735.35
60000 4358.19 4440.45
70000 4472.10 4550.06
80000 4610.38 4688.80
90000 4685.21 4762.49
100000 4856.18 4938.12

Table G.16: Correlation Coefficients for the Comparison Between Latency and
Throughput and Migration Interval

Data Series Correlation Coefficient
Latency -0.74545

Throughput 0.8677

218

