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ABSTRACT 

 

The giraffe (Giraffa camelopardalis) occupies a variety of habitats across sub-

Saharan Africa. It is characterised by a loose social organisation, and a dominance-

driven polygynous mating system. This project sought to explain biogeographic and 

inter-sexual variation in pelage colouration in the context of natural and sexual 

selection. I also sought to test the hypothesis that in a semi-arid environment, limited 

resources (food and water) would predictably concentrate females, increasing the 

potential for dominant males to monopolise matings. 

I analysed photos from across Africa, and reveal that where yearly bright sunshine is 

greater, female giraffe in particular tend to be lighter, resulting in sexual 

dichromatism in high insolarity locations. I hypothesised that dark pelage colour is 

maintained in males through sexual selection for a costly status signal.  

Field work was carried out in Etosha NP, Namibia. Using photographic records, I 

identified 431 individual giraffe. I surveyed the study area regularly and collected 

data on group composition and behaviour upon locating giraffe. I carried out focal 

watches, and recorded all observations of agonistic and mating behaviour. 

Darker males tended to be older and more dominant than lighter males, associated 

less with females, but had greater success in courting females. Food and water 

affected female movements on both a spatial and temporal scale. At waterholes, 

encounter rates were increased and consequently mating and agonistic interactions 

more frequent. Paler males had a greater chance of interacting with females at 

waterholes because of higher intruder pressure, but when present, darker males 

always monopolised courtship opportunities. 

Mature males demonstrated a diversity of ranging strategies that affected association 

with females. These individual differences are assumed to relate to status and 

probably affect individual reproductive success. Evidence suggests male 

reproductive success is skewed towards mature dark males, but may also vary among 

dark males, with some potentially being excluded from mating. 
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1 GENERAL INTRODUCTION 

 

1.1 Introduction 

This study aimed to investigate mammalian intra-sexual male competition, 

specifically the potential role of intra-specific variation in external colouration as a 

status signal, and the effect of local variation in ecology on male mating strategies. 

The giraffe (Giraffa camelopardalis) was chosen for this study firstly because from a 

practical point of view, giraffes have a number of characteristics which make a study 

of them highly feasible, including their large size, conspicuousness, and individually 

unique coat patterns (Foster 1966; Pratt & Anderson 1985). Their feeding ecology 

and general biology are quite well known, but important aspects of giraffe 

evolutionary ecology and sexual selection remain unexplored. 

 

The giraffe constitutes an ideal model system for investigating the role of 

mammalian coat colouration in a social context. There is a high level of variation in 

coat colour between the sexes and between males (Lydekker 1904; Dagg 1968). 

Intra-sexual male competition can be intense, and anecdotal reports suggest that male 

colouration develops with age (M. A. McDonald, personal communication), and a 

preliminary study suggested that dark coloured males may be dominant to pale 

coloured males in competitive interactions (L. M. Gosling, unpublished data). 

Therefore it is highly plausible that male coat colour may function as a sexually 

selected status signal. This would provide an explanation for sexual dimorphism in 

external colouration in giraffes and other ungulates, as has already been suggested 

for a number of bird and primate species (e.g. Senar & Camerino 1998; McGraw & 

Hill 2000a; Gerald 2001; Setchell & Dixson 2001b; Mennill et al. 2003; Pryke & 

Andersson 2003). 

 

Furthermore, like many large mammals, giraffe live at low densities, occur in 

relatively small, mostly isolated populations that are increasingly restricted to 

protected areas. It would appear that aspects of their ecology and mating system may 

render this species vulnerable to effects of park management on male mating 
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strategies, and potentially a population’s genetic viability. A study of a wild giraffe 

population therefore also carries the potential of revealing information relevant to 

wildlife conservation and management. 

 

 

1.2 Mating strategies and intra-sexual competition 

Although males and females are subject to similar pressures to secure resources and 

survive, the factors that determine their reproductive success differ between the two 

sexes (Clutton-Brock et al. 1982c). In most mammals, the female is the higher 

investing sex, with males investing almost nothing in offspring. Thus, according to 

sexual selection theory, male intra-sexual competition should be greater than female 

intra-sexual competition, as males must compete for access to receptive females 

(Trivers 1972). This theory can be best explained by Bateman’s principal (Bateman 

1948), which was restated by Trivers (1972) as follows: 

1. “In any closed population, the total number of offspring produced by one sex 

is equal to the total produced by the other. 

2. The sex whose typical parental investment (energetic and otherwise) is 

greater will become a limiting resource for the other sex. 

3. Therefore individuals of the sex investing less will compete among 

themselves to breed with members of the sex investing more. 

4. Individuals of the limited sex can increase reproductive success (RS) by 

investing successively in offspring of several members of the limiting sex.”  

 

1.2.1 Intra-sexual female competition and reproductive success 

If a female can only have one offspring per gestation, as in the giraffe, her 

reproductive success depends on her ability to secure sufficient nutritional resources 

to successfully produce and rear each offspring with minimum risk to herself or to 

her offspring (Clutton-Brock et al. 1982c; Gosling 1986). Therefore female intra-

sexual competition should usually take the form of indirect scramble competition for 

access to resources such as food supplies and habitats where predation risk is 

minimised (Mysterud et al. 1999). As a result, the spatial distribution of females is 
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usually determined primarily by the distribution of these resources (Clutton-Brock et 

al. 1982c). 

 

1.2.2 Intra-sexual male competition and reproductive success 

Male reproductive success, on the other hand, depends primarily on their ability to 

maximise the number of matings they achieve (Clutton-Brock et al. 1982c). In order to 

maximise their reproductive success, males must respond to female movements, and 

out-compete other males in securing access to females (Trivers 1972; Emlen & Oring 

1977). They can achieve this by investing relatively more in growth, defence of 

territory or of females, searching for females, and fighting (Trivers 1972; Gosling 

1986). Furthermore, because they do not bear the costs of gestation and lactation, 

males are not as constrained by the distribution of high quality habitat and food 

(Clutton-Brock et al. 1982b). The potential for individual males to secure multiple 

matings depends largely on the environmental and social factors that drive the 

distribution of breeding females (environmental potential for polygyny, Emlen & 

Oring 1977). This distribution can be described in terms of three parameters (Trivers 

1972): 

1. The extent to which females are clumped or dispersed in space; 

2. The extent to which they are clumped or dispersed in time; 

3. The extent to which their exact position in space and time is predictable. 

 

1.2.3 Temporal distribution of females and the operational sex ratio 

The lower the female-bias in operational sex ratio (OSR; the average ratio of 

available oestrous females to sexually active males at any given time (Emlen & 

Oring 1977)), the greater the potential for monopolisation of females, the greater the 

intensity of competition and sexual selection, and the greater the resulting variance in 

male reproductive success (Emlen & Oring 1977). For example, continuous long 

periods of sexual activity in males, combined with brief, asynchronous receptivity in 

females leads to a strong skew in OSR, and a strong potential for multiple matings by 

some males (e.g. Ims 1988a). Conversely, highly synchronous breeding (lasting only 

a matter of days) prohibits sequential polygyny (e.g. Coltman et al. 1999) as 
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individual males may not be able to defend and mate with more than a small number 

of females before the breeding period is over (Emlen & Oring 1977; Ims 1988a; 

Isaac & Johnson 2003). 

 

1.2.4 Spatial distribution of resources and females, and resulting mating 

systems 

As well as being defined by the reproductive interactions between males and females 

(e.g. monogamy, polygyny, polyandry), mating systems can also be differentiated in 

terms of the competitive strategies employed by males that result from female (and 

resource) distribution and predictability (Owen-Smith 1977). Within a species, the 

mating system may differ between populations because of differences in the 

distribution of resources and thus females (e.g. topi, Gosling 1991; red deer, 

Carranza et al. 1996; roe deer, Thirgood et al. 1999; blackbuck, Isvaran 2005). 

 

1.2.4.1 Resource defence polygyny 

If there is a high degree of spatial clumping of high quality food or another essential 

resource (e.g. nesting or birthing sites), then females are likely to aggregate into 

groups and remain in the same area for extended periods of time, resulting in 

predictable female movements and concentration areas (Gosling 1986; Ims 1987). 

Such high predictability in female spatial distribution often leads to males competing 

to establish exclusive territories, where they defend the resources essential to females 

(Emlen & Oring 1977; Carranza et al. 1996). Females may choose territory holders 

as mates directly, based on the quality of the male, or indirectly, based on the quality 

of the resource he is defending (Emlen & Oring 1977; Andersson & Iwasa 1996). 

Encounter rates with females, and the potential for increasing reproductive success 

(RS) by obtaining more mates, should be highest for males that control the areas that 

attract most females (Trivers 1972; Emlen & Oring 1977; Owen-Smith 1977; 

Gosling 1986; Ims 1990). Thus, the greater the degree of resource clumping, the 

greater the potential for a small proportion of males to monopolise a large proportion 

of resources, and thus females (Emlen & Oring 1977).  
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Territoriality will be favoured only when the benefits of increased numbers of 

matings achieved outweigh the costs of territory defence (Owen-Smith 1977; 

Gosling 1986; Thirgood et al. 1999). Costs of defence may be minimised by the 

existence of a spatial reference for dominance, whereby the territory holder has an 

‘owner’s advantage’ over any intruders, resulting in intruders generally behaving 

submissively, and agonistic interactions being consistently won by the territory 

holder (Parker 1974; Owen-Smith 1977; Gosling 1986).  

 

Resource defence may involve a sit-and-wait strategy, whereby males wait in a part 

of the female range where there is a high chance of females being intercepted, even 

though females may be absent at the time the male establishes the territory (Gosling 

1986). The effectiveness of this strategy will depend on the predictability of female 

ranging behaviour, as males must select a location that has a high probability of 

being visited by receptive females (Gosling 1986). At one extreme of this strategy, 

males aggregate and defend leks: high concentrations of very small territories or 

display areas containing insignificant resources (e.g. Gosling 1991; Isvaran 2005). 

Leks may be placed at ‘hotspots’ so as to intercept females as they move to and from 

a valued resource, or may attract females simply by offering an opportunity to 

choose a mate from among a large number of males (Gosling 1986; Clutton-Brock 

1989; Krebs & Davies 1993; Bro-Jorgensen 2002; Hayes et al. 2006) 

 

1.2.4.2 Following of females 

If food resources are distributed more evenly, then female spatial distribution is 

likely to be more unpredictable, and female home ranges larger (Forchhammer & 

Boomsma 1998). Under such conditions, it can become uneconomical to control 

access to females through resource defence. Instead, male competition may take the 

form of direct intra-sexual competition, resulting in differential dominance 

relationships between males, which in turn determine differential access to females 

(Altmann 1962; Emlen & Oring 1977). Dominance-based polygyny may also arise if 

intruder (competitor) pressure is too high for males to be able to successfully defend 

a territory (Gosling 1986; Ims 1988a; Gosling 1991). 
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Dominance relationships generally rely on individuals remembering past encounters 

with particular individuals, resulting in what has been termed an ‘individual 

reference for dominance’ (Gosling 1986). This is typically coupled with following 

and defence of one or a group of females over part or all of their foraging 

movements, for variable periods of time (Gosling 1986; Forchhammer & Boomsma 

1998). If they employ such a strategy, males are faced with decisions about when to 

join and leave a group of females (Gosling 1986).  

• At one extreme, males will adopt a roving strategy, spending the majority of time 

moving between groups, searching for receptive females, only defending a female 

when one in oestrus is located, and then forming only a brief ‘tending bond’ for as 

long as it takes to court and mate with the female (Clutton-Brock et al. 1982b; 

Forchhammer & Boomsma 1998). This is most likely where females are relatively 

evenly and unpredictably dispersed in space and time, as male mobility will be 

crucial to encountering a large number of females (Trivers 1972). This strategy 

will likely result in an increase in male home range size relative to female home 

range size (Trivers 1972). This could be a more optimal strategy for males of high 

competitive ability. They would acquire control of female groups more easily and 

would be less likely to face rejection by oestrous females, so they would be able 

to move between groups more frequently (Forchhammer & Boomsma 1998). 

• At the other extreme, the most time will be spent in direct defence of one or more 

females (i.e. harem-defence). This can involve a single male defending one or 

more females, or a stable dominance ranking within a set of males associated with 

a group of females, where the dominant male has priority of access to females 

(Altmann 1962; Owen-Smith 1977; Clutton-Brock 1989; Cowlishaw & Dunbar 

1991; Thirgood et al. 1999). The time spent with each group of females is likely 

to increase as female group density decreases (i.e. distance between groups 

increases), as female group size increases, as the OSR decreases, and as the time 

spent on environmentally or socially enforced non-mating activities (e.g. foraging, 

migrating) increases (Krebs & Davies 1993; Forchhammer & Boomsma 1998).  
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1.2.5 Water as a limited resource that concentrates females and affects sexual 

selection 

Wildlife distribution and movements within parks are often determined by the 

location of water, particularly in the dry season in arid and semi-arid environments 

(Western 1975; Auer 1997). This often results in a seasonal concentration of many 

species near water-sources in the dry season and dispersion away from them (to 

preferred food sources and habitats) during the wet season (Ayeni 1975; Western 

1975; Knight 1995). This movement pattern tends to be clearer for water-dependent 

species (mostly grazers) than for water-independent species (mostly browsers 

(Western 1975)). 

 

Artificial provisioning of water is now widespread in national parks and game 

reserves across Africa (Ayeni 1977; Ritter & Bednekoff 1995). In most cases, 

provisioning of water became necessary as a result of the erection of fences around 

the reserves, which prevented migratory species from leaving the reserves in times of 

drought (Cloudsley-Thompson 1990; Knight 1995; Gaylard et al. 2003). Artificial 

water provision can also be used to open up areas to animals that were previously 

unavailable during the dry season, and to disperse wildlife (Ritter 1993). Waterholes 

serve the additional purpose of providing tourists with improved wildlife viewing 

opportunities (Ayeni 1975; Cloudsley-Thompson 1990; Ritter 1993).  

 

Water provision can result in larger populations of common water-dependent species, 

high densities of large mammals in the vicinity of waterholes, and smaller dry-season 

ranges restricted to areas near permanent water (Ayeni 1975; Western 1975; Knight 

1995; Ritter & Bednekoff 1995; Auer 1997; Gaylard et al. 2003). This usually results 

in increased grazing and browsing pressure on vegetation in the area surrounding 

waterholes, often resulting in long-term habitat degradation (Ayeni 1975; Cloudsley-

Thompson 1990; Gaylard et al. 2003).  

 

 The number, distribution and density of water-sources are all important 

considerations for sustainable wildlife and park management (Ayeni 1975; Auer 

1997). The issue of the ideal density of water sources has long been one of 

contention, with policies on water provision changing quite significantly over the 
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years (Ayeni 1975; Ayeni 1977; Auer 1997; Gaylard et al. 2003). In both Etosha NP, 

Namibia and Kruger NP, South Africa, many waterholes have been closed within the 

last few decades (Gaylard et al. 2003, Shayne Kotting, personal communication). 

This was carried out primarily with the intention of locally relieving grazing and 

browsing pressure, especially in ecologically sensitive areas, and to reduce the effect 

of high waterhole density on the homogenisation of habitats (Gaylard et al. 2003, 

Shayne Kotting, personal communication). As a result, in Etosha and the Kruger, 

water tends to be a greater limiting factor on animal movements currently than in the 

past. 

 

It has been suggested that artificial waterholes may have subtle effects on wildlife 

social behaviour as a result of influences on dispersion (Ritter 1993). Conflicts 

between members of the same species are common at waterholes when water is a 

limited resource (du Toit 1996). Furthermore, as described above (section 1.2.4), the 

effect of the distribution of resources on both male and female distribution can 

influence male mating strategies, with clumped, patchy resources resulting in locally 

high concentrations of females. Where water is a scarce resource, isolated waterholes 

will likely play an important role in predictably clumping females, thus increasing 

the efficiency with which males can locate females, and consequently increasing the 

potential for mate monopolisation (Emlen & Oring 1977; Ims 1987; Ims 1990). 

 

Accordingly, Ritter and Bednekoff (1995) observed that in the Nxai Pan National 

Park in Botswana, artificial dry-season water provision appeared to influence sexual 

selection in springbok. Specifically, they noted that female springbok (Antidorcas 

marsupialis) were concentrated in a limited area around the single waterhole in the 

Park, enabling a few dominant males to gain a monopoly on territories around the 

waterhole and thus on females. This could potentially increase the skew in male 

mating success and reduce the number of males contributing to the next generation, 

which can be detrimental to population viability through its effect on the effective 

population size. The authors concluded that several, smaller waterholes would be 

preferable to a single large waterhole, as it would allow females to be distributed 

more evenly throughout the park (Ritter & Bednekoff 1995).  
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1.3 Roles of surface colouration 

The surface colouration of an animal can affect its fitness by both determining its 

conspicuousness and modifying the thermal effects of solar radiation (Louw & Seely 

1982; Walsberg & Wolf 1995b). Therefore the actual colour of an animal’s coat will 

be the result of a balance of a number of sexual and natural selection pressures, 

including camouflage (reduced conspicuousness), aposematism and social 

communication (enhanced conspicuousness), and optimisation of radiative heat gain. 

Coat colour will thus be dependent on the environment and the relative importance to 

survival and reproduction of different selection pressures (Walsberg et al. 1978; 

Louw 1993; Cloudsley-Thompson 1999; Ortolani 1999). 

 

1.3.1 Signals of status and sexual dichromatism 

Sexual selection theory has traditionally been used to explain the evolution of 

exaggerated traits, ornaments or other secondary sexual characters that are used in 

competition for mates and which are possessed only by mature males (e.g. Darwin 

1871; Zahavi 1975; Andersson 1982; Petrie et al. 1991; Andersson 1992; Andersson 

& Iwasa 1996). Sexual selection of traits not directly involved in combat (e.g. purely 

visual ornaments) can operate through female mate choice or male-male competition 

(Andersson 1982). For example, females may choose mates based on male 

phenotypic traits that honestly indicate genetic viability, qualities that are likely to 

confer fitness benefits to their offspring (Zahavi 1975; Emlen & Oring 1977; 

Kirkpatrick & Ryan 1991). Numerous studies of secondary sexual traits have 

produced evidence for trait variation relating reliably to age, status or genetic quality, 

and as such predicting male interaction outcomes or individual reproductive fitness 

(e.g. Folstad et al. 1994; Petrie 1994; Senar & Camerino 1998; McGraw & Hill 

2000b; Siitari & Huhta 2002; Mennill et al. 2003; Pryke & Andersson 2003; 

Siefferman & Hill 2003). 

 

In male intra-sexual competition, signals of status enable males to reliably assess the  

competitive ability of adversaries (including unfamiliar opponents), and potentially 

avoid escalated agonistic interactions (e.g. Rohwer & Rohwer 1978; Parker & Ligon 
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2002). It has been proposed that status signals should evolve where there is 

aggressive competition for resources, variability in individual male competitive 

ability (or Resource Holding Power, RHP (Parker 1974)), and repeated agonistic 

interactions between individuals as well as large or unstable group composition 

(which precludes efficient recognition of adversaries (Rohwer 1982)). 

 

Furthermore, if signals of status are to function as evolutionarily stable honest signals 

of quality, then, it is argued, their development and maintenance should carry costs, 

or ‘handicaps’, or else they would be subject to corruption by ‘cheaters’ (Zahavi 

1975; Andersson 1994). Higher quality individuals should gain greater marginal 

fitness returns, and should experience a lower marginal increase in cost, from an 

incremental increase in the signal intensity, than lower quality individuals 

(Andersson 1982; Smith 1991; Zuk & Johnsen 2000; Getty 2002). For visual signals, 

potential costs that could prevent cheating include an increased risk of predation-

related mortality due to enhanced conspicuousness (e.g. Godin & McDonough 2003), 

metabolic or immunological costs accrued through developing and maintaining the 

trait (e.g. Folstad & Karter 1992), or increased physiological stress due to less than 

optimum absorption of solar radiation (e.g. West & Packer 2002). Alternatively, 

there may be social mechanisms for maintaining signal honesty, whereby ‘cheats’ are 

repeatedly challenged and exposed to high fighting risks (e.g. Gerald 2000; Parker & 

Ligon 2002) 

 

Among mammals, sexual dichromatism, where dark or bright colouration is unique 

to or more pronounced in mature males, is most evident in primates, but also 

common in pinnipeds and artiodactyls (Ortolani & Caro 1996; Ortolani 1999). The 

males of many artiodactyl species darken progressively, or otherwise develop more 

striking colouration, with age. Examples include the blackbuck Antilope cervicapra 

(Isvaran 2005), many of the Tragelaphine antelopes (Jarman 1974) and giraffe 

Giraffa camelopardalis (e.g. Dagg 1968). These species also generally exhibit sexual 

size dimorphism (Jarman 1974; Owen-Smith 1992), and mature males of certain 

species, such as ibex (Capra ibex), darken only during the breeding season (Nowak 

1995). This suggests that sexual selection might have played a part in the evolution 

of this trait. Darker males could be at a selective advantage either through direct 
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choice by females, or with the intermediary of direct male-male competition, 

whereby coat colouration functions as a status signal indicating male dominance or 

competitive status (e.g. Senar & Camerino 1998; Parker & Ligon 2002), which in 

turn determines priority of access to females (Altmann 1962). 

 

Recent studies on primates have found evidence for the development of male 

colouration being determined by and conveying social status through the 

intermediary of testosterone. As a result, coat colouration influences the outcome of 

agonistic interactions and potentially determines reproductive success (Wickings et 

al. 1993; Gerald 2000; Gerald 2001; Setchell & Dixson 2001a; Setchell & Dixson 

2001b; Setchell & Dixson 2002). Similarly, lion mane darkness appears to indicate 

testosterone levels, and influences both female choice and male intra-sexual 

competition when tested using models (West & Packer 2002). However, in 

artiodactyls, functional and comparative studies of external features have generally 

focussed either on body size dimorphism and weaponry (e.g. Roberts 1996), or on 

surface colouration but not in the context of sexual or status signalling (e.g. Stoner et 

al. 2003). 

 

1.3.2 Coat colour and thermoregulation 

Darker coat colouration can result in increased heat gain in large mammals, 

particularly at low air speeds (Cena 1966; Hutchinson & Brown 1969; Finch 1972; 

Finch & Western 1977; Finch et al. 1980; West & Packer 2002). In hot arid 

conditions with high insolarity, such gains in heat can be metabolically costly, 

especially in terms of water turnover, as animals must dissipate not only their own 

metabolic heat but also heat gained from the environment (Taylor 1970; Finch 1972; 

Walsberg 2000). Finch and Western found that due to its effect on heat stress, dark 

coat colouration in cattle increased both water consumption and mortality during 

droughts (Finch & Western 1977). 

 

If dark colouration functions as an honest signal of status (e.g. Zahavi 1975) in male 

artiodactyls, the cost that renders it honest could therefore be a thermoregulatory 

cost. If dark coat colouration is costly, then it should only be exhibited by high 
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quality, sexually mature males. Colouration of females (who must undergo increased 

metabolic stress during gestation and lactation (Pellew 1984b)) should be selected to 

provide optimal absorption or reflection of solar radiation.  

 

 

1.4 The ecology and mating system of the giraffe 

1.4.1 Temporal distribution of receptive females 

Giraffes breed throughout the year, with slight calving peaks in the more seasonal 

southern latitudes (Hall-Martin et al. 1975; Dagg & Foster 1982; Pratt & Anderson 

1982).  On average, adult female giraffe reproduce every 19-24 months (Foster & 

Dagg 1972; Leuthold 1979; Dagg & Foster 1982; Pellew 1983b), and are pregnant 

for 15 of these (Innis 1958; Dagg & Foster 1982). During the remaining months, 

from as early as the second month post-partum, females are fertile for approximately 

four days every two weeks (Bercovitch et al. 2006). Therefore, it can be estimated 

that at any one time, only about 6-11% of adult females are potentially receptive, 

producing a highly skewed OSR. The chance of males encountering receptive 

females by chance will be low (Bercovitch et al. 2006), but due to the high level of 

reproductive asynchrony, when they do locate females, the potential for 

monopolisation of mating opportunities by dominant males should be high (Trivers 

1972; Emlen & Oring 1977; Ims 1988a). 

 

1.4.2 Spatial distribution of females 

Because of the giraffe’s large body size, and the sparse and seasonally variable 

availability of their food, both sexes must cover large distances in search of food 

(Sinclair 1983). Giraffe generally respond to seasonal changes in the distribution of 

food sources by local small-scale movements within their home range, rather than 

large-scale migrations (Pellew 1983b; Fennessy 2004). Giraffe group composition is 

fluid, changing from one day to the next, but at any one time, herd size is usually 

small, averaging approximately 4-6 individuals (Innis 1958; Foster 1966; Leuthold 

1979; Pratt & Anderson 1985; Le Pendu et al. 2000). However, herd size and 

composition, population density, home range size and mobility all tend to vary in 
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relation to the range of habitats in which giraffes are found (van der Jeugd & Prins 

2000).  

 

1.4.3 Male mating strategies and intra-sexual competition 

Since giraffe herd composition changes so frequently, and females in oestrus are so 

few and far between, it would be uneconomic for males to attempt to defend a herd 

or harem. Instead, the predominant male mating strategy is to rove between groups 

and identify oestrus females by testing their urine (Leuthold 1979; Dagg & Foster 

1982; Pratt & Anderson 1985). Upon locating a receptive female, the male follows 

her, and over a period of many hours, or even days, he attempts to defend her and 

eventually mate with her (Dagg & Foster 1982). However, with a large variation in 

ecological conditions across their range, male giraffe may adopt different mating 

strategies in different areas, possibly even demonstrating resource defence polygyny 

where resources and females are most clumped and predictable (van der Jeugd & 

Prins 2000).  

 

There is a high potential for mate monopolisation in giraffe because of the year-

round breeding, the high OSR, an ability in males to discern when females are 

receptive, and male dominance relationships that probably determine priority of 

access to mates (Altmann 1962; Pratt & Anderson 1985; Bercovitch et al. 2006). 

This potential for monopolisation by a few dominant males, to the exclusion of all 

others, will be greatest where female concentrations are most predictable (Emlen & 

Oring 1977).  

 

This raises a potential conservation issue, in that management of protected areas, and 

particularly of limited resources, may restrict the distribution and movements of 

giraffe. Consequently, the preferred mating strategies of males could be artificially 

altered, such that reproductive skew and effective male population size may be 

adversely affected in the context of long-term genetic viability (e.g. Ritter & 

Bednekoff 1995).  
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1.4.3.1 Intercepting of females by males at waterholes 

Giraffes make frequent use of water in Etosha NP and pilot observations (LM 

Gosling, personal communictaion) show that males often intercept and attempt to 

mate with females at waterholes when they come to drink. Large, dark-coloured 

males appear to dominate and exclude lighter coloured males from these mating 

interactions. If relatively few dominant male giraffe succeed in monopolising 

matings at waterholes, then this creates the potential for the effective male population 

size to be driven down by a limited availability of waterholes (e.g. Ritter & 

Bednekoff 1995). This effect may be absent or reduced if females are not spatially 

limited by water.  

 

If waterholes do enhance the potential for mate monopolisation, then levels of male 

intra-sexual competition are likely to differ between the wet season and the dry 

season. Giraffe tend to frequent waterholes most often in the dry season, when the 

water content of vegetation is at its lowest and sources of free water are most scarce 

(Ritter 1993). As a result, during the dry season, females should concentrate more 

predictably around waterholes, increasing the chances of males encountering 

receptive females. This may result in more frequent and potentially more intense 

competition between males for dominance, in order to monopolise access to females. 

Conversely, in the wet season, females should be more widely dispersed because of a 

widespread availability of food and water.  

 

Alternatively, localised and ephemeral preferred food patches may have a stronger 

effect on predictably concentrating females than waterholes. In this case, the seasonal 

variation in male competition and potential for monopolisation will depend on which 

foods have the greatest potential to cause females to aggregate. 

 

1.4.4 The evolution of giraffe coat colouration 

The coat markings of the giraffe are broadly heritable (Dagg 1968) and camouflage 

the animal effectively among tall trees, blending with the dappled effect of light and 

shade (Dagg & Foster 1982). Camouflage is likely to be of particular importance for 

young giraffes, which face high mortality rates due to predation in their first year 
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(Foster & Dagg 1972; Mitchell & Skinner 2003). However, although this may 

explain the origin of the giraffe’s unique spotted pattern, it does not provide an 

adequate explanation for the observed biogeographic variation in patch form, relative 

size and colouration. Examples of this variation are the Masai giraffe Giraffa 

camelopardalis tippelskirchi, which have small, dark brown, stellate patches of 

colour on a pale background, with a total area of patches approximating 60%, 

whereas Reticulated giraffe G. c. reticulata, have comparatively large, tightly-packed 

russet-coloured patches covering approximately 80% of the surface area (Dagg 1968; 

Dagg & Foster 1982).  

 

However, the different subspecies cannot be distinguished solely on the basis of coat 

patterns as there is marked variation between populations of the same subspecies and 

also between individuals within populations (Dagg 1962b; Seymour 2001). 

Abundant anecdotal evidence would suggest that colouration varies with sex, and, in 

the case of males, also with age (Mary Ann McDonald, pers. comm., Dagg 1968).  

 

Male giraffe can fight intensely for dominance (Dagg & Foster 1982; Pratt & 

Anderson 1985) and sexual selection has already been proposed as an explanation for 

the evolution of the giraffe’s long neck (Simmons & Scheepers 1996). It is therefore 

surprising that this selective force has not yet been evoked as an explanation for 

sexual dichromatism in the giraffe. Giraffe are believed to rely heavily on visual 

signals, as they appear to have excellent distance vision (Innis 1958), their colour 

vision is probably dichromatic, as in other artiodactyl species (Jacobs et al. 1998), 

and their extreme height gives them a very good vantage point (Foster & Dagg 

1972). It has been observed that bulls in particular react to one another at a 

considerable distance (Estes 1991). In contests, dark males appear to be dominant to 

paler males (Innis 1958, LM Gosling personal communication), and although such 

colour-related dominance may be partly age-related, it appears possible there may be 

variation in colour within age classes.  

 

In light of the fact that dark colouration should be costly in terms of 

thermoregulation in hot environments (section 1.3.2), it is also surprising that so few 

proposed explanations for the evolution of giraffe coat colouration have yet referred 
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to a potential thermoregulatory function or cost (although a link has been proposed 

between patch shape and a thermoregulatory function, Mitchell & Skinner 2005). It 

is hypothesised here that 1) biogeographical variation in patch colouration and 

density results from an adaptation to minimise heat stress; and 2) dark colouration in 

males functions as a sexually selected signal of status.  

 

 

1.5 Aims of study and thesis structure 

This thesis aims to provide further detailed description of giraffe behaviour and 

ecology, and also to test a number of hypotheses relating to the evolution of sexually 

selected traits and giraffe mating systems. Specifically, the initial aims of this study 

were: 

1. To examine how the spatial and temporal distribution of resources drive the 

mating system of a wild population of giraffe. Specifically, to test the 

hypothesis that resources, including spatially restricted foods and artificially 

provisioned water, may predictably concentrate females (spatially and 

temporally) and thus increase the potential for dominant males to monopolise 

females for mating. 

2. To examine whether actual biogeographical and local variation in giraffe 

pelage colouration can be explained by natural and sexual selection pressures, 

with particular reference to factors relating to potential environmental costs 

of dark coat colouration. 

3. To test the hypothesis that dark colouration is maintained in males through 

selection for a reliable signal of status, by examining male behaviour, intra-

sexual competition, and female mate choice in relation to colouration. 

 

The thesis begins with an overview of the methodology used, the study species and 

the study site (Chapter 2). I then establish how giraffe respond to variation in food 

and water availability in the study area, and examine how the sexes differ in their 

selection of foods and habitats (Chapter 3). Next, I address the issue of reproductive 

seasonality, with the aim of identifying the seasonal peak in breeding (if one exists) 
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in Etosha NP, and comparing the timing of any such peak with environmental factors 

such as food availability (Chapter 4).  

 

In Chapter 5, I explore giraffe movements and home ranges within the study area. I 

focus on male movements in relation to areas of greatest female use, and relate these 

movements to how often males associate with females. I also highlight seasonal 

effects, and explore differences in movements and association with females between 

males of different age classes.  

 

In Chapter 6, I consider the subject of male competition for mates. I first compare 

male pelage colouration with male age class, behaviour, dominance, success in 

competition and success in courtship of females, to assess the hypothesised 

relationship between coat colouration and male status. I then examine the effect of 

waterholes on encounter and interaction rates, and the potential for males to 

monopolise mates. I also examine evidence for seasonal variation in the intensity of 

intra-sexual competition. Finally, I explore reproductive skew in males, and propose 

a surrogate measure of potential male mating success for the giraffe. 

 

In Chapter 7, I seek an evolutionary explanation for some of the observed 

biogeographic variation in coat colouration and sexual dichromatism, with a focus on 

a possible thermoregulatory cost of dark coat colouration. I also test the hypothesised 

relationship between coat colour and solar heat gain by investigating giraffe 

thermoregulatory behaviour, comparing the behaviour of adults of different coat 

colours. Lastly, I highlight a possible nutrition-related cost of dark pigmentation. 

 

I end, in Chapter 8, by reviewing the results and conclusions detailed in the previous 

chapters and discussing their implications, addressing the limitations of this research 

project, and highlighting possible areas for further investigation. 
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2 FIELD METHODOLOGY AND STUDY SPECIES 

 

2.1 Field study area, study species and study population 

2.1.1 Etosha National Park 

2.1.1.1 History, location and dimensions 

Etosha National Park (hereafter also referred to as Etosha) is situated in north-central 

Namibia (18°30’-19°28’S, 14°20’-17°10’E), about 120 km south of the Angolan 

border. It was originally established as a game reserve in 1907, and was officially 

designated as a National Park in 1958, by which time it encompassed 99,530 km
2
, 

including a section of the Skeleton Coast (Cloudsley-Thompson 1990). However, by 

1970 the park was again reduced in area, this time to its present size of 22,270 km
2
. 

The park is currently under the jurisdiction of the government’s Ministry of 

Environment and Tourism (M. E. T.), Directorate of Environmental Affairs. Etosha 

National Park is elongate in shape (290 km by 108 km at the widest points), with 

about one quarter of the park (about 5,500 km
2
) occupied by one large and several 

small pans (Figure 2.1). For most of the year, the pans are dry and barren, but 

following good wet-season rains, water drains from the north to cover the pans with a 

very shallow layer of water. The eastern, southern and western boundaries of the 

park are delimited by game fences (220 cm), although these are occasionally 

breached by elephants; the northern boundary game fence is incomplete. 

 

2.1.1.2 Climate 

Annual rainfall averages 320 mm to 400 mm in the central part of the park (ranging 

over 29 years from 173 mm to 685 mm), with a gradient from west to east of 

increasing rainfall (Auer 1997, Wilferd Versfeld, M. E. T., unpublished data). Three 

seasons are generally recognised in the year: the cold, dry season from May (or June) 

to September (or August), the hot, dry season from October (or September) to 

December with local rains, and the hot, wet season from January to April (or May), 

during which time most of the rain falls (Scheepers 1991; Fennessy et al. 2003; 

Fennessy 2004; Leggett 2006). Maximum daytime temperatures average 34°C in the 
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peak summer months (October to March) and 27°C in the peak winter months (May 

to August), whereas minimum temperatures average 18°C in the peak hot season and 

9°C in the peak cold season, and only very rarely descend to freezing in the winter 

(Birgit Kötting, M. E. T., unpublished data). 

 

2.1.1.3 Flora and fauna 

The dominant vegetation type in the park is savannah plains, particularly in 

proximity to the pans, tending towards broad-leaved mopane, acacia or mixed 

savannah (short bushveld and more open tree savannah) away from the pans 

(Cowling et al. 1997; Burke et al. 2002). In contrast to the majority of other areas 

inhabited by giraffe (e.g. Berry 1978; Leuthold & Leuthold 1978b; Ginnett & 

Demment 1999), there is no riverine woodland habitat within Etosha. Woody 

vegetation in the park is predominantly made up of Acacia nebrownii thickets on the 

plains near the pans, acacia veld and rattle bush (Catophractes alexandrii) thickets 

further from the pans, and mopane shrub and woodland consisting predominantly of 

mopane Colophospermum mopane, but also including in some areas Terminalia 

prunoides and various Combretum species. As well as the giraffe Giraffa 

camelopardalis angolensis, the park supports many other medium-sized and large 

herbivore species including a large population of elephants Loxodonta africana. 

Many of the common African carnivores are also present, including leopard 

Panthera pardus, lion Panthera leo, cheetah Acinonyx jubatus, and spotted hyena 

Crocuta crocuta (Cloudsley-Thompson 1990). 

 

2.1.1.4 Water availability 

Since much of Etosha National Park is surrounded by boundary fences, animals are 

largely confined to the park and natural migration patterns are disrupted. 

Nonetheless, the distribution and movements of animals within the Park are still 

largely driven by the seasonal variation in availability of water and browse. There are 

no permanent rivers or water-courses in the park (du Preez  & Grobler 1977), but 

there are over 100 perennial and near-perennial waterholes, of which about 35 can be 

accessed by tourists (about 80% of the park is closed to tourists). These consist of 
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natural springs, fountains and artificial boreholes, many of which are assisted by 

solar- or wind-powered pumps. There are also numerous rain-provisioned seasonal 

waterholes, artificial gravel pits, and natural depressions and pans. These hold water 

during the peak rainy season (January to April) and for many weeks after the last 

rains, as well as occasionally between October and December (Auer 1997).  

 

In the dry season, water sources are limited, and as a result most animals concentrate 

in large numbers in proximity of perennial waterholes (du Preez  & Grobler 1977). 

During the wet season, there is a widespread availability of water and accordingly 

animals can disperse away from perennial waterholes and move to areas where their 

preferred foods are in abundance (vegetation surrounding perennial waterholes is 

often degraded). 

 

2.1.2 Study area 

The selected study area was situated in the east-central part of Etosha, centred on 

Okaukuejo, and extending from Ozonjuitji M’Bari in the west to Homob and 

Charachas in the East; from M’Bari and Okondeka in the North to Ombika in the 

South (Figure 2.2). This constituted an area of approximately 1900 km
2
, spanning 70 

km west to east and 35 km north to south. About one tenth of this area was occupied 

by the salt pan, and the area included over 500 km of roads.  

 

The selected area was open to tourists, so there was a well-maintained network of 

roads, and the animals were habituated to vehicles. The study area incorporated 10 

perennial waterholes, over 50 artificial gravel pits close to the roads, as well as 

numerous, scattered natural depressions. The average distance from each of the 

perennial waterholes to the next nearest waterhole was 10.4 km (range: 6.3 to 21.0 

km). The selected area included examples of all of the most significant habitats in 

Etosha: pans, grassland, mixed low trees and tall mopane savannah.  
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Figure 2.1. The entire Etosha National Park, with the boundary, roads and main salt pan (grey 

area) indicated. 

 

 
 

 

 

Figure 2.2. The study area in the south-central part of Etosha NP. The southern boundary is 

indicated (heavy black line), as is the pan (grey area).  All other lines indicate roads. Waterholes 

are marked with their name. Seasonal waterholes in regularly-driven areas are also indicated by 

small markers. The waterhole to the south-west, Eindpaal, and surrounding area was not visited 

due to poor quality of roads. The greater density of perennial waterholes to the south of the pan 

than to the south-west is evident. 
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2.1.3 Study species  

Giraffe (Giraffa camelopardalis) are found throughout Africa, in sub-Saharan 

countries such as Niger in western Africa, through Chad and Sudan to Uganda, 

Kenya, and Tanzania in eastern Africa, and also in Zambia, Zimbabwe, Botswana, 

Namibia, Angola and South Africa in southern Africa (Figure 2.3). A total or nine 

extant subspecies are currently recognised, all of which appear to be able to 

interbreed (Dagg & Foster 1982). Subspecies classifications have until recently been 

based on geographical range and morphological features (Dagg 1971; Dagg & Foster 

1982; Skinner & Smithers 1990; East 1998; Seymour 2001; Mitchell & Skinner 

2003). More recently, genetic information has shed new light on the phylogeny of the 

southern African subspecies (Seymour 2001, Brenneman et al. unpublished data; 

Fennessy 2004). Although there is still no complete consensus on giraffe subspecies 

phylogeny, certain inter-subspecies differences or relationships have now been 

elucidated. For example, morphologically (as well as geographically), there is a clear 

divide between the northern and the southern subspecies, with the southern Zambian 

population the most northerly of the southern clade (Seymour 2001). 

 

Previously, the giraffe in northern Namibia had been assigned both to the Southern 

subspecies of South Africa, Zimbabwe and Botswana, G. c. giraffa (formerly G. c. 

capensis, Dagg 1962a; Dagg 1971), and to the Angolan subspecies G. c. angolensis 

(Skinner & Smithers 1990; Scheepers 1991). A recent taxonomical analysis of skull 

morphology, pelage pattern variation and  mitochondrial DNA added weight to the 

former designation (Seymour 2001). However, giraffe from Angola were only 

represented by one sample in this study, so the relationship between Namibian and 

Angolan giraffe could not be properly born out. A more recent study of microsatellite 

genotypes (Fennessy 2004, Brenneman et al. unpublished data) revealed that the 

genetic distance between sampled Namibian giraffe and giraffe from Kruger NP, 

South Africa was sufficient to distinguish them at the subspecies level, thus placing 

the giraffe in Namibia, G. c. angolensis, apart from G. c. giraffa.  

 

The range of G. c. angolensis would thus extend from northern Namibia to southern 

Angola, southern Zambia, north-western Botswana and probably north-western 
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Zimbabwe, and that of G. c. giraffa from eastern South Africa and south-western 

Mozambique up to southern Zimbabwe. The current natural occurrence of giraffe 

within Namibia is only a fraction of the historical range, and is now limited to the 

north and north-west of the country (including Etosha NP), and part of the Kavango 

region in the north-east (Fennessy et al. 2003; Fennessy 2004). The largest giraffe 

population in Namibia, approximating 3500 individuals, is found in Etosha National 

Park (Werner Kilian, pers. comm.). Unknown numbers of giraffe also occur in 

smaller private parks and farms, and communal farmlands, including many in the 

desert region of the Kunene in the north-west of Namibia (Dagg & Foster 1982; 

Fennessy 2004, Figure 2.3). 

 

Although their numbers are relatively stable as a whole, approximately half of the 

nine subspecies and many isolated populations, particularly in the northern and 

north-western parts of the giraffe’s geographical range (e.g. Niger), are very 

restricted in size and range, or declining in numbers (Table 2.1). The species’ status 

in the IUCN Species Survival Commission Red List is listed as Lower Risk / 

Conservation Dependent (criteria version 2.3, IUCN 2006). The greatest threat to the 

persistence of these populations is loss or degradation of habitat, mostly as a direct 

result of human population encroachment, and particularly in areas of political 

unrest, where illegal hunting of animals adds to the problem (Dagg & Foster 1982; 

East 1998).  
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Table 2.1. Giraffe subspecies names, current ranges and status. Adapted from East (1998) and 

Fennessy (2004). 

Subspecies Common name Range Status 

G. c. angolensis Angolan giraffe 

Southern Angola, 
Northern Namibia, 
North-western Botswana, 
Southern Zambia 

Increasing overall, 
especially in Namibia, 
but virtually extinct in 
Angola. 

G. c. antiquorum Kordofan giraffe Sudan Possibly extinct 

G. c. 
camelopardalis 

Nubian giraffe Western Ethiopia 
Decreasing; very 
small population. 

G. c. giraffa 
Cape or Southern 
giraffe 

Southern Zimbabwe, 
Northern and eastern    
South Africa, 
South-western 
Mozambique, 
Swaziland 

Stable / Increasing. 
Extinct in 
Mozambique but may 
re-colonise from 
Kruger NP. 

G. c. peralta 
West African or 
Nigerian giraffe 

Mali, 
Niger, 
Nigeria, 
Northern Cameroon, 
Southern Chad, 
Central African Republic 

Decreasing, and 
limited to small, 
isolated populations.  

G. c. reticulata 
Reticulated 
giraffe 

Northern Kenya, 
Southern Ethiopia 

Stable / Decreasing 

G. c. rothschildi 
Rothschild’s or 
Baringo giraffe 

Western Kenya, 
North-eastern Uganda 

Decreasing; very 
small population. 

G. c. thornicrofti 
Thornicroft’s or 
Rhodesian giraffe 

North-eastern Zambia 
(Luangwa valley) 

Stable 

G. c. tippelskirchi Masai giraffe 
Southern Kenya, 
Tanzania, 
Rwanda 

Decreasing, but the 
most numerous 
subspecies. 

 

 

Figure 2.3. Estimated current ranges of giraffe across Africa (left, African Mammals Databank, 

1998, Institute of Applied Ecology) and within Namibia (right, courtesy of the Atlas of Namibia 
Project (Burke et al. 2002)). 
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2.1.4 Study population 

The giraffe population in Etosha NP is not completely isolated. In particular, 

movement is likely between Etosha and the desert to the west of the Park, and the 

communal farmlands to the north. The most recent aerial surveys of Etosha National 

Park suggested the following population sizes and densities (calculated excluding the 

pan from the total area of the park) for giraffe in the Park (Werner Kilian, pers. 

comm.): 

 

Date Estimated population Estimated density (per km
2
) 

September 2000 2740 0.15 

September 2002 3060 0.17 

May/June 2004 3550 0.20 

 

These estimates suggest an increasing, or at least stable population (taking into 

account possible differences in surveying techniques). The greatest concentration of 

giraffe in Etosha NP occurs in the eastern extremity of the park, around the 

Namutoni rest camp. However, it was not practical to attempt an individual-based 

study on such a large number of giraffe, and for this reason it was decided to base the 

study area at Okaukuejo, where the population density is lower. Furthermore, the 

giraffe in the tourist areas of Etosha are habituated to vehicles so are not greatly 

disturbed by their presence. For this reason, the study was restricted to areas east of 

the tourist boundary (situated just west of Ozonjuitji M’Bari waterhole). 

 

Distance sampling (e.g. Hounsome et al. 2005) was carried out throughout the study 

area over three days in July 2004, by driving a known distance along each of the 

main roads in the study area, with two observers, recording all sightings of giraffe 

whilst noting the distance of the observed animals from the road. These data were 

entered into the program Distance 3.5 (Research Unit for Wildlife Population 

Assessment, University of St Andrews, UK), which assumes that all sightings 

located at zero metres from the road are detected with certainty, and calculates a 

probability of detection as the distance from the road increases. Thus giraffe density 

within the study area was estimated as 0.2/km
2
 (95% Upper Confidence Limit = 

0.38; LCL = 0.11), based on 70 giraffe seen along 430 km of road and an effective 
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detection strip width (calculated by Distance) of 400 m. This corresponds very 

closely with the overall estimate for the park based on an aerial survey (see above). 

 

 

2.2 Field methods 

2.2.1 Field seasons 

Data were collected over two field seasons, the first running from the end of May 

2004 until the middle of December 2004, and the second running from the start of 

March 2005 until the end of December 2005. The first field season focussed on the 

identification process (below), as well as on collecting data that would permit an 

understanding of waterhole use and seasonal movements within the study area. The 

second field season focussed on collecting genetic material (in the form of faecal 

pellets) and building on the spatial and behavioural data collection. 

 

2.2.2 Definition of the wet and dry seasons 

Berry (1980) identified three seasonal periods in Etosha, the hot, wet season from 

January to April, the cold, dry season from May to August, and the hot, dry season 

from September to December. However, for the purposes of investigating the effects 

of perennial waterholes on giraffe movements and aggregation in this study, the 

seasons needed to be defined not by the same time period each year, but by the actual 

seasonal availability of water. A delimitation of the wet season based on rainfall was 

proposed by Hulme and Walsh (1983), for use in the similarly semi-arid habitat of 

the Sudan. The wet season onset was taken as the first daily rainfall of at least 10 mm 

that was followed by at least 10 mm more rain in the next ten days. The end of the 

wet season was defined as the last day on which rain fell. 

 

These definitions produce wet season dates as follows: 

23
rd

 October 2003 – 25
th
 April 2004 

20
th
 October 2004 – 30

th
 April 2005 

10
th
 December 2005 – 1

st
 May 2006 

Thus the 2005-2006 rains fell considerably later than in the previous two years. 
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If water availability in food is also taken into account, then a more appropriate 

definition would be that of Leuthold and Leuthold (1978b), who defined the ‘green’ 

season as the period during which deciduous, water-dependent plants bear leaves. 

This season begins one week after the first substantial rains, when new shoots are 

first produced, and ends about two months after the last rains, when deciduous plants 

have lost their leaves and available browse biomass has begun to decline (Leuthold 

& Leuthold 1978b; Pellew 1983a). Leaf water content tends to decline sharply after 

June (Sauer 1983), and surface water remains available in some dams and gravel pits 

in Etosha NP until two months after the end of the rains. For all these reasons, the 

‘wet’ season was taken to begin with the first substantial rains, as defined above, and 

to end two months after the last rains (i.e. the last week of June in both 2004 and 

2005). 

 

2.2.3 Identification of individuals 

Giraffe pelage patterns are unique to each individual, and aside from colour changes, 

these patterns do not change with age. Individual giraffe photographed as calves can 

therefore be identified throughout their life (Innis 1958; Foster 1966). Following the 

basic methodology used by Foster (1966), photographs were taken of both sides, 

where possible, of any new giraffe encountered within the study area. Photographs 

were taken of the whole body, or failing that, at least the whole neck. Photos were 

taken using a Fuji Finepix S5000 digital camera with a 10x optical zoom, and then 

uploaded to a laptop computer at the end of each day. At this point, each individual 

was allocated a unique identification number: M# for males, F# for females, U# for 

juveniles or sub-adults of unknown sex (young giraffe can be difficult to sex in their 

first two years as the navel may remain as a visible bump resembling the penis sheath 

(Foster 1966)). In the case where the two sides of an individual were photographed 

on different days, and initially given different identification numbers, then once the 

two sides were matched through observation, the second identification number was 

discarded (and not re-used), and all data was transferred to the first identification 

number.  
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2.2.3.1 Age classes 

Ages of giraffe in the study area were not precisely known, so giraffe were attributed 

to one of three approximate age-classes, in relative keeping with previous studies of 

giraffe (Le Pendu & Ciofolo 1999; Cameron & du Toit 2005). Immature giraffe were 

considered juveniles up to the age of about 18 months, by which time they have 

generally stopped suckling and have left their mother (Leuthold & Leuthold 1978b; 

Leuthold 1979). Giraffe older than 18 months, and up to about four years were 

classed as sub-adults (e.g. males that still had a fringe of hair around the horn tips 

were considered sub-adults (Leuthold & Leuthold 1978b)). All individuals over four 

years, of approximately adult height, were considered potentially sexually active 

(Dagg & Foster 1982) and thus classed as adults, although it was noted that females 

continue to gain height until the age of five years, and males until at least the age of 

seven years (Foster & Dagg 1972). 

 

The age classification of many giraffe changed between the start and end of the 

period of data collection. For this reason, more illustrative ‘maturity’ classes (0-8) 

were also developed for males that described their maturity, or change in maturity, 

over the course of the study period (Table 2.2). 

 

Table 2.2. Classification of maturity classes of males using changes in height, coat colouration 

and horn class. 

 Start of study period End of study period Colour category Horn class 

0 Juvenile Juvenile Any 1 

1 Juvenile Sub-adult Any 1 to 2 

2 Sub-adult Sub-adult Any 2 

3 Sub-adult Pale adult 1 or 2 2 to 3 

4 Pale adult Pale adult 1 or 2 2 or 3 

5 Pale adult Dark adult 2 to 3 3 

6 Dark adult Dark adult 3 3 

7 Dark adult Dark adult 3 or 4 4 or 3 

8 Very dark adult Very dark adult 4 4 
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Horns were classed into four categories representative of age (Figure 2.4), as 

follows: 

1) Horns typical of juveniles: slender from base to tip, with a full tuft of black hair on 

the tip (these resemble adult female horns; although female horns are typically longer 

and more slender). 

2) Horns typical of sub-adults: thickening from base to tip, but still with a circle of 

black hair on the tip. 

3) Horns typical of young adult males: thick from base to tip, with the black hair 

worn away from the tip, but skin still covering the entire length of the horns; 

additional skull ossifications are still few or absent. 

4) Horns typical of older adult males: thick from base to tip, with the black hair worn 

away from the tips. Skin may also be worn away from the periphery of the 

uppermost few centimetres of the horns. Additional skull ossifications are many, 

such that the profile of the head is distorted relative to that of a younger male (Pratt 

& Anderson 1985). 

 

Identification sheets were printed out with black-and-white images of both sides of 

each individual giraffe, as well as a record of the location and date of the first 

sighting of the giraffe. These were ordered in a catalogue by area (north, south, east 

or west), sex, approximate age class, and colour, to facilitate the recognition process. 

Other notable features that would aid in recognition were noted on the identification 

sheets, including scars, conspicuous spot shapes, broken or skewed horns, bob-tails 

and known mother-offspring relationships. These details were also included in a MS 

Excel database of all the giraffe identified. 
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Figure 2.4. Examples of the horn classes used to estimate relative male maturity. Top row: 

category 1; second row from top: category 2; third row from top: category 3; bottom row: 

category 4.  
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2.2.3.2 Height measurements 

Heights of individual giraffe were measured using a photographic technique. Photos 

were taken at full zoom (10x) of giraffe in a stationary, upright, relaxed posture, 

preferably with good visibility at ground level so that the hooves could be seen. At 

the same time, the distance from observer to animal was measured in metres using a 

Bushnell Yardage Pro 400 Compact laser rangefinder. Once the photos had been 

uploaded to a computer, the height of the giraffe, from the base of the hooves to the 

top of the head (not including the horns) was measured in pixels using a photo 

editing programme. The digital camera had previously been calibrated using 

structures of known height and distance to the observer, in order to establish a ratio 

of photographic pixels to actual metres. The approximate height of the photographed 

giraffe was calculated using the following formula: height (m) = [distance (m) x 

pixels] / [pixels per meter]. Since giraffe height is heavily dependent on posture 

(adult giraffe may carry their neck at anything from a 15° to a 50° angle from the 

vertical), analyses were restricted to giraffe photographed holding their neck at 

approximately a 25 - 35° angle from the vertical. 

 

When dead giraffe were encountered, their identity was confirmed (if the skin was 

still intact), and their age estimated based on dentition and tooth wear (Hall-Martin 

1976). 

 

2.2.3.3 Patch darkness categories 

Each giraffe was allocated a patch darkness score at each sighting. Four categories 

were established for patch darkness. Category one included only very pale tan 

patches, category two darker tan patches, category three chocolate-brown, and 

category four black patches (Figure 2.5). Category two was considered as the typical 

colouration of sub-adults and adult females. Males in categories one and two were 

termed “pale males”, and those in categories three and four were referred to as “dark 

males”. 
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Figure 2.5. Examples of each of the 4 colour categories (1-4 clockwise starting from top-left) 

 

 

2.2.4 Waterhole visits and driving of roads 

The study area was divided into four parts, each of which could be reasonably 

covered in a day’s driving. These four areas were the North area (up to Okondeka 

waterhole via the pan-edge road from Okaukuejo, and also the loop including the dry 

waterholes Leeubron, Natco and Adamax), the South area (Okaukuejo to Ombika, 

the two detours near Ombika, and ‘W-drive’ – the detour that passes Gaseb), the East 

area (east to Homob, plus Aus, Olifantsbad, Gemsbokvlakte and Nebrownii, with the 
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two detours from the main pan-edge road down to Gemsbokvlakte), and the West 

area (west to Ozonjuitji M’Bari via the Leeubron road, and including the road to the 

dry waterhole at Grunewald).  

 

A systematic rather than a random survey of the waterholes and roads in the study 

area was chosen, firstly because by surveying the waterholes systematically, using a 

four-day rotation of the four regions of the study area (N, S, E and W), travel was 

minimised and the project was thus more cost- and time-efficient. Furthermore, this 

method ensured a systematic coverage of the roads in the study area, with all roads 

being driven at least once every cycle. Some staff roads in poor condition were 

excluded (hence Eindpaal and Gonob waterholes were excluded) as visibility on 

these was low due to dust during the dry season, and they were often impassable in 

the wet season. Some of the tourist roads also proved to be impassable during the 

height of the rainy season, so had to be excluded from March to April 2005. 

 

On arriving at a waterhole, the following data was recorded on a datasheet: time of 

arrival at the waterhole; whether the waterhole held water; presence/absence of 

giraffe; if present, how many, individual identities, the dominant activity (scan 

sample), and whether any were drinking; presence/absence of other game; time of 

departure from the waterhole. 

 

2.2.5 Giraffe sightings: GPS data collection and behavioural observations 

At each giraffe sighting, their Global Positioning System (GPS) location was 

recorded using a Garmin eTrex Vista, regardless of whether the giraffe were 

recognised as known individuals or not. If the group was very large, the distance 

from the road, as well as the bearing in relation to the vehicle, of each individual 

giraffe was noted in order to improve the individual GPS coordinates when later 

plotting them on a Geographic Information System (ESRI’s ArcView was used for 

this purpose). 

 

All sighted individuals were identified where possible. Individuals that could not be 

identified were nonetheless recorded in terms of age/sex/colour category (e.g. male, 
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adult, dark), and photographed if possible. All individuals within 1 km of each other, 

and not moving in opposing directions, were assumed to belong to the same social 

group at that instant (Foster 1966; Leuthold 1979; Pratt & Anderson 1985; Le Pendu 

et al. 2000). However, it is important to note that in areas of particularly dense 

vegetation, the distance at which giraffe were visible to the observer was often 

reduced to less than 300 m (e.g. Leuthold 1979). An individual giraffe who was not 

possibly within visible distance of any other giraffe, or who, upon first sighting, was 

approaching from at least 500 m a group of giraffe that were either stationary or were 

approaching from the opposite direction, was considered to be alone (solitary) at the 

instance of first sighting.  

 

By instantaneous scan-sampling on arrival at each group (including groups of one), 

the behaviour of each giraffe in the group was recorded, as well as the tree species on 

which they were browsing, if relevant. At each location where giraffe were sighted, 

the habitat type was noted based on the dominant species of woody vegetation 

present. If a giraffe was immobile and undisturbed upon sighting, then additional 

data was recorded regarding thermoregulatory behaviour. If the immobile giraffe was 

standing in the shade, then this was noted. Otherwise, the orientation of the giraffe’s 

body in relation to the sun was noted, using the most appropriate of the following 

three categories (after Kuntzsch & Nel 1990): Lateral (long axis of giraffe at right 

angles to the sun); Anterior (facing towards the sun); Posterior (facing away from the 

sun). 

 

2.2.5.1 Behaviour class definitions 

The behaviour classes used in the instantaneous scan samples were as followed: 

Br = Browsing: actively feeding on vegetation (removing parts of trees, shrubs or 

forbs with the teeth, lips or tongue). 

Dr = Drinking: at a water-source and with head lowered to water, drinking. 

St = Standing: immobile; not browsing, drinking, grooming or involved in a social 

interaction; includes standing while ruminating, resting, or vigilant. 

Wa = Walking: mobile; does not include moving a single step while browsing if 

feeding is uninterrupted. 
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Ly = Lying: body in contact with the ground, legs folded up under or beside the 

body; neck erect or resting on body. 

Gr = Grooming: including scratching body with the hooves, licking with the tongue, 

scratching with the teeth, or rubbing against a tree or other fixed object. 

Ag = Agonistic interaction: social interaction involving two non-juvenile males, 

with or without body contact; see below for details. 

Ma = Mating interaction: social interaction involving a non-juvenile male and a 

non-juvenile female, with or without body contact; see below for details. 

Mo = Mother-offspring interaction: interaction involving an adult female and a 

juvenile, with body contact; includes allogrooming and suckling. 

Un = Not visible: focal animal no longer visible, or unable to determine activity of 

focal animal. In the case of an animal being ‘Un’ for 2 subsequent intervals, the focal 

watch of that animal was abandoned.  

Bo = Chewing a bone: giraffe has a bone in its mouth which it is not ingesting but is 

masticating; includes bending down to pick up a bone. 

Ee = Geophagy: includes licking, picking up, and masticating soil or salts from the 

ground. 

 

Further qualifiers used: 

If browsing:  

Hi = Browsing with nose above level of base of neck. 

Lo = Browsing with nose below level of base of neck. 

Gr = Feeding on vegetation at ground-level, such that the front legs must be splayed 

or the knees bent in order to reach the food-source. 

The browse species was also recorded. 

Other:  

Al = Alert: when standing; not masticating or carrying out any other activity; 

vigilant, watching or looking fixedly in one direction; not disturbed (see below). 

Di = Disturbed: when standing; not masticating or carrying out any other activity; 

looking towards a specific human disturbance; alert and flighty in response. 

Ru = Resting/Ruminating: while standing or lying, not alert or disturbed, may be 

masticating (ruminating only), but not browsing on vegetation. 
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2.2.6 Focal watches 

Focal watches were carried out both at and away from waterholes wherever giraffe 

were encountered. A focal watch was classed as being at a waterhole if it took place 

entirely within 300 m of a waterhole, whereas those that took place entirely beyond 

300 m of a waterhole were classed as being away from waterholes (or ‘non-

waterhole’ watches). For all the waterholes in the study area, this distance was 

sufficiently far to encompass the entire bare area around the waterhole as well as the 

vegetation edge, but beyond this distance individuals were not clearly visible from 

the waterhole (the exception being Okondeka, at which the nearest giraffe browse 

was more than 500 m). If a watch began further than 300 m away from a waterhole, 

but the focal subject then walked to the waterhole, the watch was split in two at the 

point where the focal subject arrived within 300 m of the waterhole; conversely if a 

watch began at a waterhole and the focal subject then walked more than 300 m from 

the waterhole. Insofar as possible, focal watches were distributed evenly across times 

of day and locations within the study area, but were ultimately influenced by the 

location of giraffe. 

 

The focal subject type (dark male, pale male, female) was selected according to a 

pre-determined random-order list, in an attempt to equalize the total number of 

observations of adult males and females, and of dark and pale adult males. The focal 

individual was then randomly selected from those giraffe of the selected subject type 

that could be clearly seen from the vehicle. Focal watches were carried out from 

within the vehicle cab, or from a hide built onto the vehicle, using 8x40 binoculars or 

a spotting scope secured onto the vehicle with a clamp. Behaviour was recorded by 

instantaneous sampling every five minutes, as were the number of other giraffe 

visible, the identity of the nearest neighbour of the focal subject, and the distance 

between these two animals.  

 

If an individual was out of sight of the observer for one sampling instant, that data 

point was excluded from later analyses. If the focal subject was out of sight for two 

sampling instances, the focal watch was terminated. Thus, each focal watch lasted 

one hour, or until the focal subject was no longer visible, whichever was shorter. 

Successive focal watches were only carried out at the same location if group 
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composition had changed between the start of one focal watch and the start of the 

next. Each individual was included no more than once in focal watches at waterhole 

locations and no more than once in focal watches at non-waterhole locations so as to 

avoid pseudoreplication (e.g. Sanchez-Prieto et al. 2004). Ultimately, from the focal 

watches, only the nearest neighbour data and the ad-libitum recordings of mating and 

agonistic interactions (see below) were used in analyses. 

 

2.2.6.1 Mating interactions 

All occurrences of mating (male-female) interactions were recorded ad libitum, both 

during and outside of focal watches, and classed according to type and intensity.  

1 = Testing of female reproductive condition only: male sniffing or nudging the 

female’s anogenital area with or without urination by the female and flehmen by the 

male. 

2 = Courtship behaviour: with a female found to be in oestrus; includes behaviours 

such as: the male in erect posture, normally behind and close to the female; the male 

pursuing the female closely by following her whenever she moves, frequently nosing 

the female’s rump and back; laufschlag. 

3 = Attempted mounting: mounting of female by male with penis unsheathed, but 

without successful intromission. 

4 = Copulation: mounting with successful intromission and ejaculation; usually not 

followed by any other mounting attempts. 

 

During the last six months of the second field season, the success of a male in 

eliciting urination by a female was recorded. This information was collected 

whenever it was possible to unequivocally determine whether the female had 

urinated subsequent to the male nudging the female’s rump or tail. On occasion this 

was not possible, for example if the interaction occurred in dense shrub savannah, at 

a large distance from the observer, or if the female was facing the observer. The 

performance of flehmen by the male (or lack thereof) was also recorded.  

 

Consortships were defined as male-female pairs, where the male was pursuing and 

seeking to mate with the female, who, from the male’s behaviour, was assumed to be 
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in oestrus (e.g. Forchhammer & Boomsma 1998). Consortships were taken to include 

the entire period subsequent to a male having identified an oestrus female, up until 

successful copulation (mounting with successful intromission and ejaculation).  

 

Consortships were identified by one or more of the following behaviours (derived 

primarily from Pratt and Anderson (1985)): 

• Male adopting the ‘erect’ or ‘proud’ posture (standing stiff with neck and 

head stretched upwards and slightly arched), normally behind, and close to, 

the female (Figure 2.6);  

• Male pursuing the female closely by following her whenever she moves, and 

ceasing to walk whenever she stops, often circling trees, and sometimes with 

his head held low and out towards the female as if attempting to smell her. 

• Frequent and prolonged nosing of the female’s rump by the male. N.B. this is 

distinct from the single nosing of a female’s rump associated with inducing 

urination and urine testing); 

• Female holding her tail out and deflected to one side for extended periods 

without urination; 

• Laufschlag-like foreleg kicks by the male aimed at the female’s hind legs; 

• Small jumps, or slight raising of both front legs by the male while positioned 

immediately behind the female; 

• Unsheathing of the penis, while the male is in close proximity to the female. 
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Figure 2.6. Dark male in consortship with a female. Note the female’s deflected tail, and the 

male’s ‘proud’ posture. 

 

 

2.2.6.2 Agonistic interactions 

All occurrences of agonistic (male-male) interactions between males, whether 

involving contact or not, were recorded and classed according to the type and 

intensity of interaction. This term was taken to include all offensive and defensive, 

dominant and submissive behaviours, as well as more ambiguous interactions 

between males.  

1 = Display and displacement: includes standing or walking in erect posture with 

legs and neck rigid or arched and head up; may result in the other individual being 

displaced (Pratt & Anderson 1985; Estes 1991). 

2 = Light necking: little or no straddling of legs, light contact of shoulders and 

flanks, with rubbing, curving and swinging of necks with the horns angled towards 

opponent, but with no significant blows. Corresponds with Coe’s ‘low intensity 

necking’ (1967) and Innis’s ‘necking’ (1958). 

3 = Moderate necking: legs firmly straddled (participants parallel or reverse-

parallel), both participants leaning against and pushing each other, with blows 
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delivered by both participants, with the horns aimed at and striking the opponent’s 

body, and avoidance of blows by swinging neck over and above that of opponent. 

Corresponds with Coe’s ‘high intensity necking’ (1967) and Innis’s ‘sparring’ 

(1958). 

4 = Intense necking fight: very heavy, clearly audible, rapid blows and jabbing of 

horns that threaten to knock participants off-balance or cause injury; often preceded 

by ‘proud’ posturing by both males and parallel walking (Dagg & Foster 1982; Estes 

1991). Corresponds with Innis’s ‘serious fights’ (1958).  

 

Only the highest level of interaction was noted for each mating or agonistic event. 

Thus, if two males were observed necking mildly and then necking moderately, only 

one incidence of moderate necking was finally recorded. Each occurrence of 

interaction was noted for each pair of individuals, so if a male smelt the same 

female’s rump twice it was counted as one event, but if two males smelt the same 

female, it was counted as two events. 

 

2.2.7 Collection and processing of faecal pellets in Etosha NP 

In order to attempt to determine parentage of calves, DNA samples were acquired 

from faecal pellets of known individual giraffe. This is a non-invasive technique, 

which does not require immobilisation of the animal or any disruptive intervention 

(e.g. Reed et al. 1997; Taberlet et al. 1999; Constable et al. 2001). 

 

Fresh faecal pellets, free of insects and relatively free of soil, were picked up using 

disposable laboratory gloves following observed defecation by an identified animal. 

All samples were collected within thirty minutes of defecation. The pellets were 

placed in three labelled 50 ml plastic centrifuge tubes, with at least 3 pellets in each. 

Faecal pellets were immediately covered with 90% ethanol and stored upright at 

ambient temperature. Ethanol has been shown to be an effective long-term storage 

medium for faecal DNA (Murphy et al. 2002). After 24 to 48 hours, in the Etosha 

Ecological Institute lab, the ethanol was tipped off two of the three tubes. These 

faecal pellets were then air-dried on a clean sheet of foil for 10 minutes and then 

placed back in the two tubes this time with silica gel beads, in accordance with the 
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two-step storage method recently developed by Nsubuga et al. (2004). The pellets 

were then stored in silica gel beads first at room temperature and later at 4°C. This 

second storage method was chosen because of the risk of ethanol leakage in transit.  

 

A total of 164 faecal samples were collected from 149 different giraffe, all but 32 of 

which were known individuals. These samples were packed in boxes and sent to 

Newcastle by plane at the end of the second field season (after obtaining a Namibian 

MET export licence and a UK Home Office import licence). Subsequent DNA 

extraction, PCR, fragment analysis and parentage assignment were carried out at the 

University of Newcastle (see Appendixes 8 to 10 for molecular methodology). 

 

2.2.8 Data analysis 

Wherever possible, interval or ratio data have been analysed using parametric 

statistics (e.g. Student’s t-test, ANOVA, linear regression, Pearson’s correlation 

coefficient), after transformation of the data to approximate a normal distribution 

where necessary. If the data could not be normalised (i.e. a Kolmogorov-Smirnov 

test revealed a significant deviation from a normal distribution at P < 0.05), the 

equivalent non-parametric tests were chosen (e.g. Mann-Whitney U test, Wilcoxon 

signed rank test, Spearman’s correlation coefficient). Nominal and ordered 

categorical data have been analysed using Pearson’s chi-squared tests, except where 

expected counts were too low (less than five in more than 20% of cells, or less than 

one in any cell), in which case the contingency coefficient was calculated.  
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3 FEEDING ECOLOGY AND HABITAT SELECTION IN 

RELATION TO RESOURCES 

 

3.1 Introduction 

To investigate male mating strategies and the environmental potential for 

monopolisation (Emlen & Oring 1977), it is vital to first understand how resources 

drive or restrict female movements and aggregation. The environmental potential for 

monopolisation of mates depends on the degree to which multiple mates (in this case 

females), or the resource critical to gaining multiple mates (e.g. food, water), are 

clumped, predictable and economically defendable (Emlen & Oring 1977). If there is 

high quality food is predictably clumped, then females are more likely to aggregate 

in groups and remain in the same area for extended periods of time, resulting in 

predictable female movements and concentration areas (Gosling 1986). Males can 

thus reduce their search effort and increase their chances of encountering and 

securing access to receptive females by focussing on, and possibly defending, these 

concentration areas (Gosling 1986; Ims 1990). Individual males that can exclude 

other males from these areas can thus enhance their chances of achieving a 

significant proportion of all mating opportunities (Owen-Smith 1977; Gosling 1986). 

Conversely, if resources are distributed more unpredictably, then female spatial 

distribution is also likely to be more unpredictable. As a result, males will have to 

spend more time locating females, will be more likely to adopt a following strategy 

of mate competition, and the potential for monopolisation by dominant males may be 

reduced. 

 

It is also important to determine how the feeding ecology of males and females 

differ, in order to be able to distinguish male movements that are driven by the need 

to locate mates, from those that are driven by the need to forage. This chapter 

explores giraffe resource use within the study area, and aims specifically to identify 

food preferences, sex differences in feeding strategy and habitat use, and the effect of 

artificial water provision on female aggregation. The effects on male movements will 

be explored in Chapter 5. 
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3.1.1 Giraffe food preferences and habitat use 

Giraffe are generalist browsers and eat a diversity of shrub and tree species, as well 

as forbs, taking leaves, fruit, pods, flowers, shoots and twigs (Innis 1958; Pellew 

1984a; Skinner & Smithers 1990; du Toit 2003). Their diet is diverse and includes a 

large number of trees and shrubs belonging to the family Fabaceae (or 

Leguminosae), many of which are acacias (Innis 1958). In most areas, giraffe will 

sample nearly all species of tree and large shrub available, but show clear species 

preferences (Dagg & Foster 1982). For example, species from the genera Acacia, 

Albizia, Boscia, Combretum, Commiphora, Terminalia, Ziziphus are usually cited 

among the preferred foods wherever they are found (Innis 1958; Leuthold & 

Leuthold 1972; Berry 1973; Pellew 1984a). All of these are represented by at least 

one species in Etosha NP. 

 

Typically between one-third and two-thirds of the day is spent in feeding, depending 

on the aridity and productivity of the environment (Innis 1958; Leuthold & Leuthold 

1978a; Pellew 1984a; van der Jeugd & Prins 2000; Fennessy 2004). A previous study 

has suggested that feeding is greatly reduced at night, with ruminating being the 

dominant night-time activity (Pellew 1984a). In the dry season, giraffe spend 

relatively more of the day-time time foraging, and less time resting, lying and 

ruminating, than in the wet season (Dagg 1971; Ciofolo & Le Pendu 2002; Fennessy 

2004). Giraffe tend to forage most actively at the coolest times of the day, in the 

early morning and the late afternoon (Innis 1958; Ginnett & Demment 1997; 

Fennessy 2004), and reduce feeding activity during hotter days (Leuthold & 

Leuthold 1978a).  

 

Male and female giraffe foraging strategies tend to differ, but both are directed at 

maximising reproductive success. Male giraffe increase their reproductive fitness by 

adopting an ‘energy minimiser’ or ‘time minimiser’ strategy (Schoener 1971; Ginnett 

& Demment 1997; Fennessy 2004), whereby they seek to minimise the time and 

energy required to obtain the necessary nutrients to meet their metabolic needs. This 

allows them to dedicate more time each day to seeking potential mates and 

competing with other males (Pratt & Anderson 1985; Ginnett & Demment 1997). 

Conversely, female giraffe increase their reproductive fitness by adopting an “energy 
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maximiser” strategy, whereby they maximise the time they spend browsing, thus 

maximising their total energy and nutrient intake (Schoener 1971; Geist 1974; Pellew 

1984b; Ginnett & Demment 1997). Because of the metabolic demands of gestation 

and lactation, females are also more selective in their choice of browse, generally 

feeding on higher quality foods (higher protein content) than males, who instead 

prefer greater forage biomass (Pellew 1984a; Pellew 1984b). Consequently, males 

typically spend less time each day foraging than females, even though they are larger 

than females (mean adult body mass of 1200 kg for males, 800 kg for females (Dagg 

& Foster 1982)) and would thus be expected to have greater absolute energy 

requirements (Ginnett & Demment 1997). Males are able to do this by tolerating a 

lower-quality diet, by dedicating more foraging time to food ingestion as opposed to 

movement between patches, by feeding longer on taller browse patches that contain 

potentially higher biomass, and by feeding with an increased bite size (Ginnett & 

Demment 1997; Ginnett & Demment 1999). 

 

Giraffe generally respond to seasonal changes in the distribution of food sources by 

local small-scale movements within their home range, rather than large-scale 

migrations (Pellew 1983b; Fennessy 2004). Seasonal variation in food selection can 

be explained by plant phenology, which is driven primarily by rainfall (Scholes et al. 

2003), and generally reflects selection for food species with high quantities of new 

leaf and shoot material (Pellew 1984a). Seeds and fruits are usually rich in protein 

(Jarman 1974), so should also be selected as they become available. 

 

This chapter does not seek to explain the food choices of giraffe in relation to 

nutrient value or digestibility (e.g. Fennessy 2004). Rather it aims to present a more 

general understanding of seasonal variation in food and habitat choices in relation to 

availability, differences between the sexes in the choices they make, and how these 

choices affect giraffe aggregation and movements. Changes in female habitat use in 

the study area should therefore be driven by the location of new vegetative growth. 

Where preferred food sources are spatially or temporally restricted, females using 

these resources are predicted to aggregate (e.g. Ims 1987). 
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3.1.2 Artificial water provision and use of water sources by giraffe 

Wildlife distribution and movements within parks are often determined by the 

location of water, particularly in the dry season, when movements are restricted and 

population densities tend to be higher in proximity of perennial water sources (Auer 

1997). This often results in a seasonal movement of many species towards artificial 

water points in the dry season and a dispersion away from them during the rains 

(Ayeni 1975; Western 1975). Accordingly, in riverine environments, seasonal 

movements of giraffe are generally characterised by a concentration in areas near 

rivers during the dry season, and a dispersion into areas away from the rivers in the 

wet season (Ayeni 1975; Leuthold & Leuthold 1978b). However, it is difficult to 

separate the influence of the availability of drinking water from that of vegetation on 

these movements, since riverine vegetation is distinct from vegetation further away 

from rivers (Ayeni 1975; Leuthold & Leuthold 1978b).  

 

Their selection of moisture-rich food types, combined with physiological adaptations 

that reduce water loss, enables giraffe to go for long periods without water (Sidney 

1965; Dagg 1971). This allows giraffe in arid and semi-arid habitats to extend their 

range further away from free water sources than more water-dependent species 

(Ayeni 1975). In the most arid region of the species’ range, in north-western 

Namibia, the arid-adapted populations of giraffe have been observed to go for 

months without drinking and may even be entirely independent of free water 

(Fennessy 2004). In other areas, giraffe have also been recorded to drink only very 

rarely (Dagg & Foster 1982). Nonetheless, giraffe will often drink freely if water is 

available (Berry 1973; Ayeni 1975; du Preez  & Grobler 1977), especially during the 

dry season, when the water content of vegetation is at its lowest (Ritter 1993). 

Western (1975) classed giraffe in Amboseli, Kenya, as non-water-bound based on 

their distribution relative to water, but suggested that under more heat-stressed 

environments they might show water-dependent distributions. In the Kruger NP, 

South Africa, where the density of water points is particularly high, giraffe are 

generally found within 0.5-1 km of water when feeding (Gaylard et al. 2003). 

 

In Namibia, formerly water-independent desert-dwelling giraffe have been seen to 

change their habits and movements once water is artificially provisioned (Fennessy 



Chapter 3. Feeding ecology  59 

 

2004). Fennessy et al. (2003) also observed that movement into a game park to the 

east of the desert region was increased during the hot-dry season, due to the presence 

of reliable water sources within the park. If water can affect giraffe movements in 

this way, then artificial water provision may have the potential to locally increase 

giraffe sexual competition, if it increases the predictability of occurrence of female 

giraffe. As seen in the introduction, predictable concentrations of females increase 

the ability of males to defend and monopolise females or the resources that 

concentrate them (e.g. Ritter & Bednekoff 1995). It was predicted that perennial 

waterholes in Etosha NP would predictably concentrate females, especially during 

the dry season. This would provide males that could dominate others at the 

waterholes with an opportunity to encounter, urine-test and potentially monopolise 

access to a large number of females, with reduced effort required in locating these 

females. 

 

 

3.2 Aims 

This chapter aims to test the following hypotheses and predictions: 

Hypothesis 1: Male and female giraffe differ in their food and habitat preferences as 

a result of different foraging strategies. Thus, I predict that: 

o Females will spend relatively more time foraging than males. 

o Food plant selection will differ between males and females. 

o Females will be more selective in their food choice than males, and seasonal 

changes in food selection will reflect phenological changes in food plants. 

Hypothesis 2: Limited resources cause females to aggregate predictably. Thus, I 

predict that: 

o Females will occur more predictably at waterholes and in larger groups close to 

waterholes during the dry season than during the wet season. 

o When preferred foods and habitats are spatially limited, larger aggregations of 

females will form in these habitats. 

Hypothesis 3: Reproductively active males will need to leave their preferred habitats 

to search for potential mates. Thus, I predict that: 
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o Solitary males (assumed to be seeking mates) will occur in the same habitats as 

females. Habitat selection of males in bachelor groups will differ to that of 

females and to that of solitary males. 

 

 

3.3 Methods 

3.3.1 Tree phenology 

In order to interpret the effects of seasonal and spatial variation in food availability 

on giraffe movements, an understanding was necessary of the phenology of the tree 

and shrub species in the study area used by giraffe. Turning of leaves, leaf-fall, start 

of new leaf growth, and appearance of flowers, pods and fruits were all noted for the 

following species (preceded by an abbreviated form): 

 

Ac he:  Acacia hebeclada  Ca al: Catophractes alexandrii 

Ac ki: Acacia kirkii  Co ap: Combretum apiculatum  

Ac lu: Acacia luederitzii  Co he: Combretum hereroense 

Ac me: Acacia mellifera  Co im: Combretum imberbe 

Ac ne: Acacia nebrownii  Co mo : Colophospermum mopane 

Ac re: Acacia reficiens  Gy se: Gymnosporia senegalensis 

Ac to: Acacia tortilis heteracantha  Rh br: Rhigozum brevispinosum 

Al an: Albizia anthelmintica  Te pr: Terminalia prunoides 

Bo fo: Boscia foetida  Zi mu: Ziziphus mucronata  

 

For common names, see Appendix 1. 

 

3.3.2 Identification of habitat types 

Existing data on Etosha vegetation (e.g. Mendelsohn et al. 2000; Burke et al. 2002) 

generally highlight twelve different habitat types in Etosha, six of which occur in the 

study area (two of these habitats, salt pans and Etosha turf clay pans, are largely 

devoid of vegetation). However, the vegetated areas are in reality more 

heterogeneous than this classification suggests. Each of the four remaining categories 
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includes a number of habitat sub-types of varying significance for giraffe. For 

example, the category Etosha grass and dwarf shrubland comprises open grassland, 

Acacia nebrownii thickets, open mopane veld, and tall acacia veld. 

 

Therefore a finer level classification was developed for this study that focussed on 

distinct tree and shrub communities. The habitat categories defined were as follows: 

A: Open plains: grass or low scrubland with less than 5% tree or shrub-cover 

B: Acacia nebrownii shrub savannah: with less than 5% other species 

C: Catophractes alexandrii shrub savannah: with less than 5% other species 

D: Mopane veld: Colophospermum mopane tree or shrub savannah with less 

 than 5% other species 

E: Acacia veld: mixed Acacia tree and shrub species with less than 5% non-

 Acacia species 

F: Mixed thorn veld: including almost exclusively Ziziphus mucronata, 

Gymnosporia senegalensis, Acacia hebeclada and A. tortilis 

G: Mixed broadleaf woodland: including Colophospermum mopane, Combretum 

imberbe or C. apiculatum or C. hereroense, and Terminalia Prunoides. May 

also include some Catophractes alexandrii, but C. mopane and C. alexandrii 

together should constitute less than 50% of woody vegetation. 

H: C. mopane and Catophractes alexandrii shrub savannah: with both plants 

presenting similar coverage, and with less than 5% of other species 

I: C. mopane, C. alexandrii and mixed Acacia shrub savannah: with at least one 

third Acacia spp. (including A. nebrownii), and less than 5% of other species 

J: C. mopane and A. nebrownii shrub savannah: with both plants presenting 

similar coverage, and with less than 5% of other species 

K: Other distinctive but rare habitats: includes tree or shrub savannah dominated 

by Boscia foetida, Albizia anthelmintica or Moringa ovalifolia  

Of these habitat classes, H to J generally constituted wide ecotones between two 

different habitats from the list B to G. Only 1.6% of giraffe locations could not be 

allocated to one of the above categories. 
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3.3.3 Feeding behaviour and preferences 

An instantaneous scan sampling record of the species upon which all browsing 

giraffe were feeding was noted at each sighting, and occasionally every half hour or 

hour thereafter if giraffe were followed. An estimate of the proportion of the day 

spent feeding for each sex-age class was calculated using the percentage of scan 

samples for each sex-age class that were recorded as browsing (data from all 

individuals of each sex-age class were pooled due to low individual re-sightings 

(median for females = 7, for males = 3)). To limit the effect of any possible observer 

effect on giraffe behaviour, the analyses of feeding behaviour were limited to those 

that occurred further than 5 m from the observer (as these were almost exclusively 

giraffe on the road, and hence the majority of these were walking away from the 

observer). Beyond 5 m, vigilance and walking behaviour were not increased closer to 

the observer than further away. 

 

Selection of the different browse species for each sex were defined as percentages 

(for each species) of all feeding observations. Analyses of sex differences in browse 

species selection were also carried out on a within-habitat basis, in those habitats 

where a choice of browse species was available. This was to eliminate the effect of 

potential constraints on feeding choices imposed by habitat selection, which may 

have also be driven by predator-avoidance, shade, or mate-seeking requirements 

(Mysterud et al. 1999). All analyses of sex-differences in feeding behaviour and 

within-habitat food selection were carried out using the Chi-square test for 

independence. 

 

3.3.4 Habitat selection 

3.3.4.1 Habitat availability 

An analysis of individual-level habitat selection within home ranges was not 

possible, as large parts of the study area could not be visited. Thus analyses were 

restricted to habitat selection among areas available to sampling (alongside roads). 

Thus, availability of habitats (for sampling) was estimated using a set of randomly 

created coordinates, restricted to those 160 that fell within the maximum distance 
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from the road at which giraffe could be seen in each habitat (this maximum distance 

was based on observations during the study and thus varied among habitat types). 

The habitat type at each of these random points was noted, and the proportion of 

these points attributed to each habitat type calculated. 

 

3.3.4.2 Habitat selection ranks 

Habitat selection ranks of (non-juvenile) males and females were constructed by 

totalling the number of giraffe of each sex-age class seen in each habitat type. Data 

were pooled for sex-age classes, as re-sightings for most individuals were very low 

(see above). Only data collected during the first survey of each road in each cycle 

were used, so as to avoid biases towards areas that were surveyed more often (e.g. 

some roads had to be driven twice, once on the outward, and once on the return 

journey). These selection ranks were compared (using Spearman’s rank correlation 

coefficient, rho) between males and females in order to detect differences in habitat 

use.  

 

3.3.4.3 Preference indices 

Preference indices were also calculated to assess the degree of selection or avoidance 

of habitats relative to availability, using the methodology described in Ntumi et al. 

(2005). To calculate the preference index (PI) for each sex-age class and each 

habitat, the proportion of all pooled sightings for that sex-age class that occurred 

within that habitat was divided by the proportional availability of that habitat 

(derived by the method described above, section 3.3.4.1). Thus, the PI for each sex-

age class in each habitat was equal to:  

PI = percentage of sightings / percentage habitat availability 

 

Therefore a PI of one indicates neither habitat selection nor avoidance relative to 

availability. The greater the PI index above a value of one, the greater the habitat 

preference. The smaller the PI index (below one), the greater the avoidance. 
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3.3.5 Measures of female aggregation 

Aggregations of females should form through females coming together in response to 

an abundant or spatially limited resource. Dispersal and aggregation of females 

within the study area was assessed firstly by looking at variation in the number of 

females in all observed groups that included females (hereafter called ‘female group 

size’). If a resource was causing females to aggregate significantly, then this could 

result in larger female groups. Therefore, habitat-specific aggregations of females 

were revealed firstly by identifying large female groups (those larger than the upper 

quartile value for the season).  

 

Habitat-specific aggregations were also identified by estimating female densities in 

each habitat type using distance sampling. For this purpose, transects were 

established along roads (Etosha has a strict policy of limiting off-road driving, due to 

a fragile topsoil in many places) wherever one of the designated habitat types (see 

Section 3.3.2) occurred along both sides of the road without variation in habitat type 

in relation to distance from the road. Sharp bends in roads were excluded from 

transects to eliminate surveying the same area twice. The immediate areas around 

waterholes (300 m) were also excluded from transects. Only data collected during the 

first survey of each road in each week-cycle were used, so as to avoid re-counting the 

same giraffe group twice.  

 

Due to very low sightings within the transects, data from each cycle were pooled for 

each habitat and each season, and approximate densities estimated using the software 

Distance 3.5 (Research Unit for Wildlife Population Assessment, University of St 

Andrews, UK). A number of habitats (e.g. Catophractes shrub savannah (C), mixed 

thorn veld (F), and other distinctive but rare habitats (K)) had to be excluded from 

this analysis due to the short total length of these transects (< 3 km). Data for some 

of the other more spatially restricted habitat types were also very few, so, for 

example, all A. nebrownii habitats (B, I and J) were combined for this analysis.  

 

A number of models for density estimation were compared, and the model with the 

lowest AIC (Akaike’s information criterion) was chosen to fit the detection function 

(e.g. Hounsome et al. 2005). This resulted in selection of the uniform key function 
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model with one cosine adjustment term for habitat-specific estimates, and the half-

normal key function model with one cosine adjustment term for overall (all habitats 

combined) estimates. All uniform and half-normal function models produced similar 

estimates and very similar AIC values. The recommended minimum of 80 

observations (for reliable modelling of the detection function (e.g. Hounsome et al. 

2005)) could not be achieved in any habitat, so these density estimates must be 

considered as approximations only.  

 

3.3.6 Measures of waterhole use 

Seasonal and spatial variations in waterhole use were assessed by examining data on 

the presence or absence, and number if present, of giraffe at waterholes upon arrival 

of the observer at each waterhole. All perennial waterholes were visited 

approximately once a week, in a different sequence and at different times of day each 

week. For comparison, seasonal waterholes (man-made gravel pits and natural 

depressions) were also visited; these were widespread throughout the study area, 

occurred in all habitat types, and were also located near (usually about 50-200 m) to 

tourist roads, but only held water during the wet season. Differences between seasons 

and locations (perennial versus seasonal waterholes) in the predictability of 

occurrence of giraffe at waterholes (presence versus absence) were analysed using 

the Chi-square test for independence. 

 

Female group sizes were also compared between waterhole and non-waterhole 

locations, and relative to the distance to the nearest perennial waterhole, to test the 

prediction that larger groups would assemble at or near waterholes, particularly 

during the dry season. All analyses of group size were carried out using non-

parametric statistics (e.g. Mann-Whitney U test) due to the data being highly skewed 

to the right. 
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3.4 Results 

3.4.1 Study population and data collection 

A total of 431 individuals were identified within the study area, of which 90% were 

re-sighted at least once. On average, 255 giraffe were seen each month, of which 

about 70% were recognised as known individuals, although this percentage was 

greater when in the centre of the study area and lower when on the periphery. Of the 

known individuals, 72% of the 188 females and 81% of the 190 males were classed 

as adults throughout the study period. Although the sex ratio for all non-juveniles 

was almost even (male to female ratio = 1:1.06), females made up 60% of sightings 

of non-juveniles of known gender. Thus, of those seen more than once, females were 

re-sighted more often than males (females: mean re-sightings = 8.42, maximum = 32; 

males: mean = 4.68, maximum = 23).  

 

The sex ratio for juveniles was difficult to determine as the umbilical bump often 

remained for many months after birth, and could be confused with the penis sheath. 

The majority (94%) of the 53 individuals of unknown gender were thus juveniles 

(less than 18 months old) throughout most, if not all, of the study period.  

 

Solitary individuals made up one third (33.9%) of all observations, while herds of 

two individuals accounted for 18.7%, and herds of three 10.7% of all sightings. The 

largest herd size observed was 23 individuals. Just over 50% of solitary individuals 

were dark mature males. 

 

Repeat sampling of individuals was negligible: re-sampling of an individual within 

one hour made up just 4.4% of all scan sample behavioural records of known non-

juveniles, and those re-sampled within 30 minutes just 1.1% of scan sample records. 

Furthermore, subsequent records of behaviour were largely independent of one 

another (re-sampling within one hour: Cohen’s kappa = -0.044, N = 126, P = 0.460; 

re-sampling within 30 minutes: kappa = -0.008, N = 32, P = 0.938). There were only 

seven occurrences of repeat sampling of a giraffe browsing, and in five of these 

cases, the giraffe was feeding on a different species in the second browsing record to 

the first record. Therefore, repeat sampling was not considered likely to bias results. 
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3.4.2 Tree phenology 

Most tree and shrub species bear leaves only during the wet season, with fruit or 

pods being produced during the latter part of the wet season, and leaves being shed at 

the start of the dry season (Figure 3.1). Flower and leaf flushes, particularly of most 

Acacia species, generally occurred independently of actual rainfall, although leaf-

flushes of some species were timed to coincide with the likely start of the rains in 

October or November (e.g. leaf production of the semi-deciduous broadleaf 

Colophospermum mopane).  

 

However, certain broadleaf species, such as Catophractes alexandrii and Terminalia 

prunoides, did not produce flowers or new leaves until after the first heavy rains, 

which in 2005 occurred only in December. A few species showed atypical flowering 

phenology, in that they produced flowers, and leaves, in the middle of the dry season. 

These included the very common and widespread Acacia nebrownii, and the much 

rarer A. mellifera, Gymnosporia senegalensis and Albizia anthelmintica.  

 

The phenology of A. nebrownii plants was not consistent across the study area: 

although all plants produced flowers between June and August, the start date of 

flowering differed by many weeks between locations as little as 3 km apart. 

However, there was a slight trend for more easterly thickets to begin flowering 

earlier those more to the west (in accordance with the rainfall gradient). There was 

also inconsistency in whether the plants produced only flowers, or both flowers and 

new leaves (Figure 3.2). 
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Colour key: 

 Flowers 

 Pods / fruit 

 New leaves / shoots 

 Green leaves present 

 Senescence / leaf fall 

 No leaves, fruit or flowers 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ac he                         

Ac ki                         

Ac lu                         

Ac me                         

Ac ne                         
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Ac to                         

Al an                        

Bo fo                         

Ca al                         

Co ap                         

Co he                         

Co im                         

Co mo                         

Gy se                       

Rh br                         

Te pr                    

Zi mu                         

Figure 3.1. Approximate phenology for the tree and large shrub species occurring in the study 

area. The most important and widespread species are highlighted in bold type. For explanations 

of abbreviations, see Methods. 

 
 

 

Figure 3.2. Acacia nebrownii flowers, produced simultaneously as leaves (left), and 

independently of leaf production (right). 
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3.4.3 Feeding ecology, habitat use and female aggregation 

3.4.3.1 Feeding behaviour 

Instantaneous scan sampling observations of individual behaviour showed that sub-

adult females and sub-adult males spent the greatest proportion of their day-time 

(away from waterholes) browsing (47.7% and 46.6% respectively), followed by adult 

females and pale adult males (42.9% and 42.4% respectively), then  dark adult males 

(32.0%). If waterhole sightings are included, these percentages decrease to 39.8% for 

sub-adult females, 33.6% for sub-adult males, 37.2% for adult females, 35.7% for 

pale adult males, and 29.4% for dark adult males. These relative decreases in time 

spent browsing are due to increases in walking, standing and drinking at waterholes. 

 

During the wet season, adult males (pale and dark) were significantly less likely to be 

seen browsing than adult females (males: 38.1% of non-waterhole observations; 

females: 49.0%; Χ
2
 = 6.094, N = 622, df = 1, P < 0.05). In the dry season, males 

increased their browsing to match more closely that of females (males: 48.4%; 

females: 46.6%; Χ
2
 = 0.305, N = 895, df = 1, P = 0.581). The wet season difference 

was limited to adults, as there was no significant difference between sub-adult males 

and sub-adult females in the wet season (males: 41.5%; females: 45.0%; Χ
2
 = 0.172, 

N = 162, df = 1, P = 0.678). These results all remain if waterhole sightings are also 

included.  

 

These sex-differences could not be attributed to a time-of-day bias in observations, as 

there was no sex-difference in the distribution of observations of adult giraffe across 

the hours of the day within the wet or dry season, for all sightings or just for those 

away from waterholes, either for all observations or for only those of giraffe 

browsing (Kolmogorov-Smirnov Z tests, all P > 0.25).  

 

3.4.3.2 Feeding preferences 

Giraffe were seen feeding on twenty species of woody plant, including seven Acacia 

species. On less than ten occasions, giraffe were also seen to browse on a number of 

unidentified small shrubs or forbs. Chewing of bones was also observed, 
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predominantly by females (13 of 19 observations), but only during the late wet / 

early dry season (April – July). Geophagy was also observed on one occasion. 

 

Acacia nebrownii was the most important browse species for the study area giraffe. 

Over the entire study period, A. nebrownii made up 50.5% of observed instances of 

(non-juvenile) giraffe browsing (from instantaneous scan samples). It was the most 

frequently eaten species in nine out of ten months for females (in May it ranked 

equal with Terminalia prunoides), and in eight out of ten months for males (in May 

and December, Combretum imberbe was the more frequently browsed species). It 

accounted for 83.3% of observations of females feeding in August, at the height of 

the A .nebrownii flowering season. 

 

The next most important species for females (adults and sub-adults; Figure 3.4), 

largely because of relatively high observations of them being browsed in certain 

months, were Catophractes alexandrii (8.5% overall; 23.2% in March, 18.8% in 

May), A. tortilis (7.1% overall; 18.4% in November), Combretum imberbe (4.3% 

overall; 23.3% in December), and Terminalia prunoides (4.1% overall; 17.2% in 

May). 

 

The next most important species for males (Figure 3.5) were A. tortilis (9.1% overall; 

15.3% in October), Colophospermum mopane (8.4% overall), and C. imberbe (7.7% 

overall, 33.3% in December, 29.6% in May). C. mopane made up at least 5% of 

males’ diets in seven out of ten months, but only figured so highly in females’ diets 

in March and April. Thus, taller trees (e.g. A. tortilis, C. mopane, C. imberbe) were 

browsed upon more by males than by females, who browsed more on the shrubby 

tree species (A. nebrownii, C. alexandrii).  

 

3.4.3.3 Seasonal variation in food selection 

As seen above, peaks in browsing on different species were evident in certain 

months. These peaks corresponded largely with plant phenology, and particularly 

with the production of flowers, pods or fruit, and to a lesser extent, new leaves. For 

example, both sexes showed a sharp increase in feeding on A. hebeclada in 
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September and October, when this uncommon species produced flowers and new 

leaves (at a time when most other species were bare). Similarly, feeding on Boscia 

foetida peaked for both males and females in October, when it was in fruit. However, 

for other species, this correspondence was clearer for females than for males, with 

females feeding more selectively throughout the year. For example, as soon as A. 

nebrownii began producing flowers in June, females switched to feeding 

predominantly on this species (Figure 3.6), whereas males only began concentrating 

on A. nebrownii in August (Figure 3.7).  

 

Although T. prunoides constituted less than 5% of browsing observations overall, it 

was as frequently consumed by females at the end of the wet season as A. nebrownii. 

Because its distribution in the study area was spatially very restricted, this resulted 

temporarily in very high browsing pressure, which was evident in both its effect on 

tree form, and the height to which pods were browsed off (Figure 3.3). 

 

 

Figure 3.3. Example of the effect of high giraffe browsing pressure on a spatially-limited tree 

species, Terminalia prunoides. Pods still remain on the top-most branches, which are out of 

reach of even the tallest males. 
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Figure 3.4. Representation of different browse species in feeding observations of females 

throughout the year. For explanations of species abbreviations, see text (section 3.3.1). 
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Figure 3.5. Representation of different browse species in feeding observations of males 

throughout the year. For explanations of species abbreviations, see text (section 3.3.1).
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Figure 3.6. Variation in browse species selected by females throughout the year, for the 10 most frequently browsed species. The remaining browse plants were 
uncommon species (e.g. other Acacia spp., Combretum spp.), or were unidentified.
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Figure 3.7. Variation in browse species selected by males throughout the year, for the 10 most frequently browsed species. The remaining browse plants were 
uncommon species (e.g. other Acacia spp., Combretum spp.), or were unidentified.
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3.4.3.4 Differences in feeding preferences between the sexes 

Within-habitat comparisons using the instantaneous scan sampling data revealed that 

males and females made different selections from the browse species available. 

Within habitats B (A. nebrownii), F (mixed thorn veld) and G (mixed broadleaf 

woodland), food preferences were very similar, although males browsed on a wider 

diversity of species in the broadleaf woodland. In habitat C, males were slightly, but 

not significantly, more likely to select species other than C. alexandrii than females 

(females: 24.0% of observations, males: 37.5%; Χ
2
 = 1.11, N = 66, P = 0.291). 

 

In habitats H and J (combinations of C. mopane and either C. alexandrii or A. 

nebrownii), males were significantly more likely to feed on C. mopane than females 

(females: 16.1% of observations, males: 36.0%; Χ
2
 = 8.44, N = 162, P < 0.005), 

whereas females were more likely to select the other species available. In acacia veld 

(habitat E), males were significantly more likely to select A. tortilis than females 

(females: 39.1% of observations, males: 73.5%; Χ
2
 = 11.61, N = 121, P < 0.001); 

females had a higher preference for the shorter Acacia species, possibly because the 

branches of many of the A. tortilis trees were beyond their reach. Indeed, males were 

significantly more likely to browse ‘high’ than females in acacia veld (Χ
2
 = 4.205, N 

= 93, P < 0.05).  

 

Overall, where such a choice of species was available, females were more likely to 

avoid C. mopane and feed on other species such as C. alexandrii. Within-habitat 

feeding preferences did not differ between sub-adult and adult males, or between 

pale adult males and dark adult males, so sex differences do not appear to be due to 

different energy requirements associated with the larger size of mature males. 

 

3.4.3.5 Habitat availability and use 

Giraffe were seen in all habitat types, including open, tree-less plains, which they 

traversed when walking to water, changing food patches, feeding on forbs (only 

0.6% of feeding observations), or probably when seeking mates (in the case of 

males). Giraffe were not seen to walk out onto the pan, but were observed walking 
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along the pan-edge. The availability of the main habitat types for sampling along 

roads are presented in Table 3.1, below.  

 

Table 3.1. Availability (%) of habitat types for sampling along roads, with the maximum 

distance from the road at which giraffe could be seen in each habitat type. For an explanation of 

the method used to estimate habitat availability, see section 3.3.4.1. 

Rank Habitat type 
Max. distance 

to road (m) 
% 

availability 

1 A:   Open plains 1000 41.9 

2 H:   C. mopane and C. alexandrii 800 16.9 

3 B:   A. nebrownii shrub savannah 1000 13.1 

4 D:   Mopane veld 300 6.3 

4 C:   C. alexandrii shrub savannah 1000 6.3 

6 J:    C. mopane and A. nebrownii 350 5.0 

6 E:   Acacia veld 900 5.0 

8 F:   Mixed thorn veld 600 2.5 

9 I:    C. mopane, A. nebrownii and other A. spp. 400 1.9 

10 G:   Mixed broadleaf woodland 400 0.6 

10 K:   Other habitat types (inc. Boscia and Albizia) 300 0.6 

 

 

If giraffe were using the different habitat types randomly, one would expect, for 

example, almost half of giraffe to have been located in open plains (A), and a very 

small proportion of sightings to have occurred in the rarer habitat types (e.g. F, I, G, 

K). However, based on observed feeding preferences, one would expect giraffe to 

show a preference for A. nebrownii habitats, acacia veld and mixed broadleaf 

woodland, and also for females to show a greater preference than males for habitats 

including C. alexandrii and A. nebrownii, and a greater avoidance of habitats 

including C. mopane.  

 

For females in female-only groups, after open plains (A: 28.4% of observations), A. 

nebrownii shrub savannah (habitat B) was the most frequented habitat (15.2%). This 

was followed by acacia veld (E: 13.2%) then mixed thorn veld (F: 10.7%). Overall, 

habitat selection ranks for females in female-only groups did not correlated with 

habitat availability ranks (Spearman’s rho = 0.430, N = 11 habitats P = 0.187). 

Preference indices were strongly positive for the spatially-restricted mixed broadleaf 

woodland (G: PI = 13.06), mixed thorn veld (F: 4.24) and acacia veld (E: 2.78; 



Chapter 3. Feeding Ecology  77 

 

Figure 3.8). As predicted, females showed the strongest avoidance of mopane veld 

(habitat D: PI = 0.13), as well as mixed C. mopane-C. alexandrii shrubland (H: 

0.34). 

 

For males in male-only groups, after open plains (A: 19.6%), mixed thorn veld (F: 

17.4%) was the most frequented habitat, followed by A. nebrownii shrub savannah 

(B: 14.1%), then mixed broadleaf woodland (G: 12.0%). Habitat selection ranks for 

males in all-male groups (including loners) also did not correlate with availability 

(Spearman’s rho = 0.438, N = 11 habitats, P = 0.178), and were significantly 

correlated with female habitat selection ranks (Spearman’s rho = 0.793, P <0.005). 

Overall, males showed a strong preference for mixed broadleaf woodland (G: PI = 

19.13) and for mixed thorn veld (F: 6.96). Males also strongly avoided mopane veld 

(habitat D: PI = 0.61), but males in bachelor groups showed the highest preference 

indices for habitats containing high proportions of C. mopane without acacias (D: 

1.04 and H: 1.03). Habitat selection ranks of solitary males significantly correlated 

with those of females (Spearman’s rho = 0.907, P < 0.001), whereas habitat selection 

ranks of males in bachelor groups did not (Spearman’s rho = 0.485, P = 0.130). As 

well as showing a greater relative preference for habitats containing C. mopane, 

males in bachelor groups had lower preference indices for open plains (A), 

Catophractes alexandrii shrub savannah (C) and acacia veld (E) than either females 

or solitary males (Figure 3.8). 

 

Evidence suggested that females did not select habitats for foraging purposes only. 

Between March and May, females seen in mixed thorn veld (F) were almost 

exclusively (>80%) standing resting or ruminating (this habitat provides abundant 

shade), whereas during the rest of the year, about 50% of females in this habitat were 

browsing (it includes two evergreen species). Conversely, between March and May, 

50% of females sighted in mopane veld (D) were browsing, whereas during the rest 

of the year, females in mopane veld were almost never seen browsing (only one out 

of 35 observations). Mopane is one of the few tree species to retain its leaves (albeit 

senescent) during the dry season, and consequently continues to provide shelter from 

the sun when many other tree species cannot. 
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Figure 3.8. Habitat preference indices for females (pale grey bars), lone males (black bars), and 

males in bachelor groups (dark grey bars). For description of calculation of preference indices, 

see text. Axis line at PI = 1 corresponds to no preference or avoidance; bars above the line 

represent preference, bars below represent avoidance relative to availability. 

 

 

3.4.3.6 Group size and female aggregation 

Mean group size over the entire study period was 3.58 ± 0.10 (one standard error; 

median = 2.0), but varied across the seasons (Figure 3.9). Only five groups were seen 

with twenty or more individuals (in March, April, June, November and December), 

and the largest observed group size was 23. Groups tended to be largest during the 

‘wet’ period from March to June, declined in size until September, and then 

increased again toward the end of the year. Mean group size was 4.46 ± 0.22 

between March and June (median = 3.0), and was significantly less, at 3.19 ± 0.10, 

during the drier, second half of the year (median = 2.0; Mann-Whitney U = 114067, 

N = 1148, P < 0.001). This seasonal disparity is equally apparent in the number of 

females found in female-inclusive groups, with a mean of 3.46 ± 0.17 females 

between March and June (median = 3.0), and 2.47 ± 0.08 between July and 

December (median = 2.0; Mann-Whitney U = 54385, N = 795, P < 0.001).  
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Figure 3.9. Variation across the months in mean total group size (top), and in mean number of 

females in female-inclusive groups (bottom). Bars represent 1 standard error of the mean. 
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Based on tree phenology (section 3.4.2) and feeding observations (section 3.4.3), 

female aggregations were predicted to occur as follows: 

• Aggregations in Catophractes alexandrii shrub savannah (C) or mixed broadleaf 

woodland (G) between March and May; possibly in habitats including large 

proportions of Acacia nebrownii (B, I and J) in March and April. 

• Aggregations in A. nebrownii habitats (B, I and J) between June and September, 

particularly in June and August; possibly in mixed thorn veld (F) in September. 

• Aggregations in acacia veld (E) from October to December, but also in mixed 

broadleaf woodland (G) again in December. 

• No aggregations in habitats comprising a large proportion of Colophospermum 

mopane. 

 

The largest groups observed were in mixed broadleaf woodland (G) between 

December and June (five groups of 19, one of 23), in A. nebrownii shrub savannah 

(B) in June (one group of 19, one of 23), in acacia veld (E) in March and November 

(one group of 20, one of 22), and walking across open plains (A) to a waterhole in 

December (one group of 20). 

 

Large groups of females were defined as those larger than the upper quartile value 

for the season. Between October and December, the majority of large groups of 

females (> 3) were seen in mixed broadleaf woodland (G; N = 11), and to a lesser 

extent in acacia veld (E; N = 7), mixed thorn veld (F; N = 6) and A. nebrownii 

thickets (B; N = 6). Between March and May, the greatest numbers of large groups 

of females (> 5 females) were seen in mixed broadleaf woodland (G; N = 8).  

 

Thus, throughout the wet season, as predicted, female densities were greatest in 

mixed broadleaf woodland (G: 2.3/km
2
, Table 3.2, Figure 3.10), and were also higher 

than the overall female density of 0.14/km
2
 in A. nebrownii habitats (B, I, J: 

0.31/km
2
). Densities were negligible (<0.05/km

2
) in the other habitat types for which 

data were collected during this time (open plains (A), acacia veld (E)). Female 

density could not be calculated for Catophractes shrub savannah (C), but females 

were not found in larger groups in this habitat type than in other habitats during the 

same period (March-May; Mann-Whitney U = 754, N = 144, P = 0.776). 
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Between June and September, the largest groups of females (> 4) were seen 

predominantly in A. nebrownii thickets (B; N = 23) and in open plains surrounding 

waterholes (A; N = 21). Female densities were again greatest in mixed broadleaf 

woodland (G: 0.45/km
2
) and, as expected (Table 3.3), in A. nebrownii habitats (B, I, 

J: 0.30/km
2
). Densities were negligible (<0.07/km

2
; overall female density during 

this period = 0.13/km
2
) in all other habitats for which data were collected during the 

dry season (open plains (A), acacia veld (E), mopane-Catophractes shrub savannah 

(H)). Female density could not be calculated for mixed thorn veld (F), but females 

were not found in larger groups in this habitat than in others in September (Mann-

Whitney U = 312, N = 81, P = 0.510), possibly due to the very small size of mixed 

thorn veld clumps (< 400 m in diameter, hence the lack of density estimation). 

 

Despite comprising the second and third largest total transect distances (after open 

plains), females were never recorded within mopane-veld (D) transects, and only at 

very low densities (0.02/km
2
) in mopane-Catophractes shrub savannah (H). Female 

groups were significantly smaller in mopane-rich habitats (without Acacia spp.) than 

in other habitats year-round (Mann-Whitney U = 19205, N = 780, P < 0.05).  

 

Table 3.2. Estimated female densities, with confidence limits, for the wet and dry season. 

Habitat 

Females 
seen 

Density 
(per km

2
) 

95% 
LCL 

95% 
UCL 

CV 
(%) 

Effective strip 
width (m) 

Wet season (October-May) 
 

    

Open plains (A) 14 0.03 0.01 0.11 54.5 607 

A. nebrownii habitats 

combined (B, I, J) 
35 0.31 0.13 0.78 42.0 180 

Acacia veld (E) 11 0.05 0.01 0.22 57.6 900 

Mixed broadleaf 
woodland (G) 

33 2.27 1.05 4.94 36.0 136 

Overall (all transects) 95 0.14 0.09 0.22 24.2 248 

Dry season (June-September) 
 

   

Open plains (A) 16 0.04 0.01 0.13 47.2 500 

A. nebrownii habitats 

combined (B, I, J) 
31 0.30 0.15 0.62 35.6 192 

Acacia veld (E) 10 0.06 0.01 0.37 60.8 1000 

Mixed broadleaf 
woodland (G) 

6 0.45 0.08 2.61 60.1 167 

Overall (all transects) 78 0.13 0.08 0.20 22.6 245 
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Figure 3.10. Estimated female densities (per km2) in habitats for which data were available in 

both the wet season (Mar-May and Oct-Dec) and dry season (Jun-Sep). Overall female density 

for the study area was about 0.14/km2 in the wet season and 0.13/km2 in the dry season. 

 

 

Table 3.3. Summary of results, relating observed female group sizes and estimated densities to 

predictions. 

Aggregations expected: Observed? 

C. alexandrii shrub savannah (C) - 

Mixed broadleaf woodland (G) 
Large groups and 
high density 

A. nebrownii habitats (B, I, J) 
Large groups in B; 
high density 

 
Wet season 
(Oct-May) 

Acacia veld (E) 
Large groups, but low 
density 

A. nebrownii habitats (B, I, J) 
Large groups in B; 
high density 

 
Dry season 
(Jun-Sep) 

Mixed thorn veld in September (F) - 

No aggregations expected:  

Year-round Colophospermum mopane habitats (D, H) 
Small groups and low 
density 

Not predicted, but observed:  

Wet season 
(Oct-May) 

Mixed thorn veld (F) Large groups 

Dry season 
(Jun-Sep) 

Open plains (A) near waterholes Large groups 
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3.4.4 The effects of water availability on female movement and water use 

3.4.4.1 Rainfall and waterhole use 

Giraffe use of perennial waterholes was found to be highly dependent on the rains 

and availability of surface water. Waterhole use was lowest in the months that heavy 

rain occurred, and increased steadily throughout the dry season. The monthly 

percentage presence of giraffe at perennial waterholes differed between the two field 

seasons (N = 8 months, Pearson’s r = -0.591, P = 0.123) because of differing rainfall 

patterns. In particular, there was a much higher presence of giraffe at perennial 

waterholes in October, November and December in 2005 than in 2004, due to the 

later start to the rains in 2005 (Figure 3.11).  

 

In March, when giraffe were never seen at perennial waterholes, their presence at 

seasonal waterholes was at its greatest, at 17.6% of observer visits, whereas in 

months without rain or any remaining surface water (July-September), giraffes were 

present at seasonal waterholes on only 1-5% of visits (Figure 3.12). It is assumed that 

waterhole use in January and February resembles that of March, as rainfall in these 

two months usually exceeds or matches that of March. 

 

3.4.4.2 Predictability of occurrence of females and males at perennial waterholes 

Females were almost twice as likely to be present at waterholes during the dry season 

as during the wet season (16.1% presence and 8.9% presence respectively). In 2005, 

during the driest months in terms of water availability (July-September) and in the 

early summer months (October-December), female giraffe were significantly more 

likely to be found at perennial waterholes than at dry seasonal waterhole sites (Χ
2
 = 

10.525, df = 1, P < 0.0001; Χ
2
 = 16.448, df = 1, P < 0.0001, respectively). During the 

drier months, occurrence at dry seasonal waterholes should reflect the chance of 

encountering females at any random location in the study area. From March to June, 

this difference was not statistically significant (Χ
2
 = 0.506, df = 1, P = 0.48): females 

were equally likely to be encountered at seasonal waterholes as at perennial 

waterholes.  
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Figure 3.11. Occurrence of giraffe at perennial waterholes, as defined by the percentage of visits 

by the observer on which giraffe were present. Dark grey bars: 2004; light grey bars: 2005. 
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Figure 3.12. Presence of giraffe and water at seasonal waterholes in 2005. Light grey bars: 

percentage of visits by observer on which giraffe were present; Dark grey bars: percentage of 

visits on which water was found in the seasonal waterhole. 
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When females were present at perennial and seasonal waterholes holding water, dark 

males were no less likely to be present during the wet season, when water availability 

was widespread (dark male present on 26% of occasions when females present), than 

during the dry season when water availability was more restricted (dark male present 

on 25% of occasions when females present; Χ
2
 = 0.572, N = 100, df = 1, P = 0.45).  

 

3.4.4.3 Group size in relation to waterholes 

Mean female group size at perennial waterholes did not correlate with mean female 

group size away from waterholes, month for month (Spearman’s rho = 0.251, N = 9, 

P = 0.515). However, there was no significant difference in female group size 

between groups seen at perennial waterholes and groups seen elsewhere over the 

whole year (Mann-Whitney U = 45473, N = 801, P = 0.586), or during any single 

month of the year (after a Bonferroni correction for multiple tests: P > reduced alpha 

value of 0.005 for each of the ten months; Figure 3.13).  

 

Neither were female groups larger closer to perennial waterholes than further away, 

when all sightings were examined (comparison made at 2 km). However, once 

sightings were divided up according to the nearest perennial waterhole, groups were 

found to be larger closer to certain waterholes, but not others. The clearest trend was 

for Ombika, where female group size was slightly, but not quite significantly, larger 

closer to the waterhole (Mann-Whitney U = 1087, N = 124, P = 0.053), and declined 

with distance from the waterhole (Figure 3.14). This trend was evident in both the 

wet and dry season, probably due to the presence of preferred foods (e.g. Combretum 

imberbe and Terminalia prunoides) in the broadleaf woodland that is restricted to 

within about 2 km of Ombika waterhole. 

 

Female group size was actually significantly smaller within 2 km of Okaukuejo 

waterhole (Mann-Whitney U = 3889, N = 211, P < 0.05). Okaukuejo is surrounded 

by important patches of A. nebrownii and Acacia veld, but unlike Ombika these 

preferred habitats are not restricted to the immediate area surrounding the waterhole. 
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Figure 3.13. Mean monthly female group size (± 1 SE) in all groups that included females, at 

waterholes (filled grey circles) and away from waterholes (empty black squares). 
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Figure 3.14. Mean female group size (± 1 SE) in female-inclusive groups at different distances 

from Ombika waterhole. 
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3.4.4.4 Drinking, and time spent at waterholes 

Typically, giraffe took about 20 minutes to reach the water’s edge after arriving 

within the vicinity of a waterhole (within 300m of the water’s edge, or within the 

clearing around the waterhole). Among adults, this time was shortest for females 

(median = 16.0, range: 1.0 – 142.7, N = 23), slightly longer for pale males (median = 

22.0, range: 4.0 – 49.0, N = 18), and slightly longer still for dark males (median = 

23.8, range: 3.5 – 127.5, N = 12). Once they were at the water’s edge, they began to 

drink within a few minutes (median = 1 minute), and typically left the water’s edge 

less than 10 minutes later (median = 8 minutes). In all, they spent just over half-an-

hour (median = 34 minutes) in the vicinity of a waterhole, although this time was 

considerably shorter if the giraffe did not drink (median = 29 minutes). Overall, 

adults spent more time at waterholes than did sub-adults, and males spent more time 

at waterholes than females, with dark males staying at waterholes the longest (Figure 

3.15). 

 

On ten occasions, all in mixed groups, individual giraffe were observed to leave the 

water’s edge, only to return again later. Adult females invariably drank the second 

time, and three of five had drunk on the first visit as well. Their return is suspected to 

have been necessary because they were harassed by males during their first visit. 

Four of five adult males did not drink on at least one of their two visits to the water’s 

edge. Their repeat visits to the waterhole seemed to have been driven by the presence 

of females, and the opportunity to test their oestrus condition. 

 

Giraffe appeared to occasionally use waterholes at night, but with a much lower 

frequency. During two 24-hour waterhole watches, only one adult male giraffe was 

seen at night, compared to twelve giraffe during the daylight hours. This male was 

also even more wary than during the day. He was first seen at 21:30, but did not 

approach the water’s edge (possibly because a hyena was present) and left 15 

minutes later. He only drank after returning to the waterhole two hours later, and 

then waited 40 minutes before approaching the water to drink. He left only six 

minutes after he started drinking. 
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Figure 3.15. Duration in minutes (boxes represent the median and upper and lower quartiles) 

spent at a perennial waterhole in a single visit by giraffe of different sex-age classes (from 

arrival within 300m of the waterhole, to leaving beyond 300m). 

 
 

3.4.4.5 Evidence from waterhole use of sex differences in habitat use  

Different age and sex categories of giraffe do not frequent the different waterholes 

equally. For example, juveniles were never seen at Aus or Charachas although they 

made up 3-10% of sightings at other waterholes. Furthermore, Olifantsbad and 

Charachas diverged significantly from the overall distribution of observed sex and 

age classes at waterholes (Χ
2
 = 19.88, df = 6, P < 0.005, Χ

2
 = 113.05, df = 6, P < 

0.001, respectively), due to fewer adult females and more adult males using these 

two waterholes.  
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3.5 Discussion 

3.5.1 Food resources and habitat selection 

The widespread Acacia nebrownii constituted the most important browse species 

throughout most of the year for both sexes. Seasonal variation in food selection 

reflected tree phenology, and particularly production of flowers, pods or fruit and 

new leaves. Females were more selective in their choice of food plant than males, 

who browsed more uniformly on a wider diversity of species. During the wet season, 

species browsed included a large proportion of deciduous broadleaf species, such as 

Combretum imberbe, and for females Terminalia prunoides and Catophractes 

alexandrii as well. At the end of the dry season, when food was otherwise scarce, the 

newly-produced shoots and leaves of Acacia tortilis became an important food 

source.  

 

Female groups were generally larger overall when food was more widely abundant, 

in the wet season, as has also been noted by Ginnett and Demment (1997) in a 

Tanzanian population. Maximum group sizes may have been limited by restricted 

food availability in the dry season (Jarman 1974). Densities of females were greatest 

in one of the most spatially restricted habitats, mixed broadleaf woodland, 

throughout the year, but especially in the wet season. Large groups of females also 

occurred in acacia veld toward the end of the year and in A. nebrownii thickets at the 

height of the A. nebrownii flowering season in the dry season. Densities were not as 

high in these habitats as in mixed broadleaf woodland, as they occur more widely 

throughout the study area. However, female densities were higher than the overall 

study-area density throughout the year in habitats comprising both mopane and 

Acacia species. In mopane habitats that did not include Acacia species, female 

densities and group sizes were always very low.   

 

These mopane habitats were avoided by both sexes, but most by females, and least 

by males in bachelor groups. Colophospermum mopane was generally avoided by 

females as a food plant when a choice of food was available, and this represented the 

clearest sex difference in food selection. The avoidance of C. mopane as a browse 
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species if other food plants are available, and of mopane veld habitat, has previously 

been noted by Dagg and Foster (1982), Oates (1972), and Fennessy (2004).  

 

Differences in feeding preferences between size-classes of males were not evident, 

although samples sizes were small. Thus, observed sex differences in choice of food 

could not be attributed to differences in energy requirements associated with the 

larger size of mature males (e.g. forage selection hypothesis for sexual segregation 

(Ruckstuhl & Neuhaus 2002)). However, differences in choice of food may have 

reflected differences in feeding strategy (e.g. activity budget hypothesis (Ruckstuhl 

& Neuhaus 2002)). Instantaneous behavioural observations suggested differences in 

diurnal activity budgets during part of the year. Results indicated that while food is 

scarce in the dry season, adult males and females must spend similar amounts of time 

browsing. But when high quality browse is abundant in the wet season, females make 

the most of the abundance by continuing to dedicate the same proportion of the day 

to browsing and thus maximising their intake, whereas adult males can afford to 

reduce their browsing time and dedicate more time to other activities (e.g. Ginnett & 

Demment 1997). The same seasonal pattern was found by Pellew (1984a; 1984b) in 

the Serengeti NP. This corresponds with males adopting a ‘time minimiser’ strategy 

when food abundance permits (Schoener 1971; Ginnett & Demment 1997; Fennessy 

2004), while females maximise their total energy and nutrient intake year-round 

(Pellew 1984b; Ginnett & Demment 1997).  

 

With reduced browsing time, males could still optimise their energy intake by 

feeding in taller patches, on tree species with higher leaf biomass; available biomass 

density tends to increase with canopy height, and is greater for broad-leaf species 

than for the compound-leaf acacias (Pellew 1983a; Woolnough & du Toit 2001). 

Furthermore, there is some evidence to suggest that giraffe feeding efficiency 

increases with height, particularly for males (Young & Isbell 1991). C. mopane may 

satisfy these height and biomass criteria better than other available species: A. 

nebrownii and C. alexandrii, for example, are shrubby trees about 2-3 m in height, 

with small leaves and thorns or spines (which increase handling time and reduce bite 

size (Pellew 1984b)), whereas C. mopane can form medium-size trees of 3-5 m, with 

large leaves and no thorns. Males fed low (below the height of the base of the neck) 
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more than 50% of the time in all habitats with substantial proportions of A. nebrownii 

or C. alexandrii, but only 16.7% of the time in mopane veld. Males also showed a 

greater preference for the taller tree species overall (A. nebrownii was consumed less 

often by males than by females, and the second most frequently browsed species was 

A. tortilis for males, and C. alexandrii for females).  

 

Sex differences in food and habitat selection could also be explained by additional 

constraints on females (e.g. predation risk hypothesis (Ruckstuhl & Neuhaus 2002)). 

Females not only avoided feeding on C. mopane, but also avoided habitats 

comprising a large proportion of C. mopane, and females and juveniles were seen 

less at waterholes in areas dominated by mopane veld (Aus, Olifantsbad and 

Charachas waterholes).  

 

Sex differences in giraffe habitat use are usually characterised by a preference by 

females for more open habitats with shorter trees (Foster 1966; Foster & Dagg 1972; 

Pratt & Anderson 1982; Young & Isbell 1991; Ginnett & Demment 1999). This has 

been attributed to a female reproductive strategy explained by the predation risk 

hypothesis, whereby females trade off foraging benefits for habitats with reduced 

predation risk for their offspring (Young & Isbell 1991; Ginnett & Demment 1999; 

Ruckstuhl & Neuhaus 2002). Giraffe juvenile mortality can be very high, exceeding 

50% within the first year in some areas (e.g. Foster & Dagg 1972; Pellew 1983b).  

 

Visibility is reduced in mopane veld, and accordingly adult females spent a greater 

proportion of time vigilant in mopane-rich habitats than in other habitat types (5.5% 

of 163 observations in D, H and J habitats, vs. 2.5% of 1083 observations in all 

others). When accompanied by juveniles, adult females were most vigilant in 

mopane veld and mixed thorn veld, and were least vigilant in Acacia veld, which was 

often very open, and Catophractes shrub savannah. However, the predation risk to 

giraffe in Etosha seems to be very low. During a four-year study during which lions 

were followed closely for a total of 3134 hours, they were observed to hunt 833 

plains ungulates, of which they killed 117, but hunted only 5 giraffe and killed none 

(Stander 1992). During this study, only two giraffe carcasses were found within the 

study area that appeared to be killed by lions. 
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Alternatively, pregnant or lactating females might avoid feeding on species high in 

secondary chemical components such as tannins and polyphenolics, which disrupt 

digestion and may be harmful if passed on through their milk to their calf (Macala et 

al. 1991; Styles & Skinner 1997; Caister et al. 2003). This might explain the 

avoidance of C. mopane by females in their choice of food. This hypothesis is 

supported in this study firstly by the observation that C. mopane only figured as 

highly in female diets as in males’ during the months of March and April, when the 

protein content of mopane leaves is highest and condensed tannin levels are lowest 

(Styles & Skinner 1997). During the rest of the year, when females were seen in 

mopane veld, they appeared to be using it for shade rather than as a source of food. 

Furthermore, on examining feeding observations of mothers of calves of estimated 

birth-date (see Chapter 4), C. mopane only constituted more than 5% of feeding 

observations for these females after six months post-partum, by which time calves 

should be feeding regularly on solid foods (Dagg & Foster 1982). 

 

The observed sex differences in habitat use would explain the discrepancy in 

numbers of sightings of the two sexes (males: 1528; females: 2329). The study area 

was centred on the more open and species-rich habitats favoured by females (A. 

nebrownii shrubland, Catophractes shrubland, acacia veld, mixed broadleaf 

woodland), while mopane veld, which females tend to avoid, was located 

predominantly on the south-western and south-eastern edges of the study area. Foster 

(1966) also found that the preference of males for less open habitats tended to skew 

the apparent sex-ratio in favour of females, even though the sex-ratio of ‘known’ 

individuals was almost even. 

 

Habitat selection ranks of lone males correlated with those of females, whereas those 

of males in bachelor groups did not. This suggests that individual males leave 

bachelor groups to search for females. In doing so, they move out of habitats avoided 

by females into habitats preferred by females. This is further supported by the greater 

use of open plains by lone males than males in bachelor groups. Because of a lack of 

food resources on open plains, giraffe should traverse the plains primarily as a means 

of getting from one resource patch to another, and males actively seeking potential 

mates would have the greatest need to travel between resource patches. Furthermore, 
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visibility (i.e. the ability to locate giraffe from a distance) is greater on open plains, 

relative to those habitats preferred by males in bachelor groups. 

 

3.5.2 Waterholes 

Where surface water is not available throughout the year, giraffe can be almost 

completely independent of drinking water (e.g. Fennessy 2004). However, as the 

recent installation of artificial water points in north-western Namibia has 

demonstrated, even desert-adapted giraffe will switch to drinking regularly when 

water becomes readily available (Fennessy 2004). In Etosha, where water is provided 

throughout the year, giraffe were seen not only to use waterholes regularly, but to go 

out of their way to access them, especially in the dry season. One waterhole, 

Okondeka, is on the edge of the pan and is surrounded by extensive grass and low-

shrub plains almost entirely devoid of trees. On one occasion, a group of females 

were seen to walk 10 km across these open plains to Okondeka. They later walked 

the same distance back across the plains to the tree savannah they had left over five 

hours earlier.  

 

In the rainy season (especially March and April), the abundance of water in seasonal 

waterholes (man-made gravel pits and natural depressions), puddles on the roads, and 

in new vegetative growth enabled giraffe to be largely independent of perennial 

waterholes. During the wet season giraffe still drank, but preferred seasonal water 

sources to perennial waterholes. Auer (1997) also found that during the rainy season, 

wildebeest and zebra in Etosha drank exclusively from seasonal waterholes. In both 

cases, this may have been because they were more widespread and readily available 

than perennial waterholes and generally held water of good quality (low salinity 

(Auer 1997)), or possibly because predation risk was lower at seasonal waterholes; 

while lions were observed at perennial waterholes on 2% of 750 visits 

(approximately one visit to a perennial waterhole each month), they were never seen 

at seasonal waterholes (452 visits).  

 

During the wet season, giraffe were no longer seen in the vicinity of Okondeka 

waterhole, although they were still seen in the Acacia veld beyond the plains.  
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Similarly, in Botswana, giraffe have been found to avoid the Nxai Pan during the 

wetter months, due to the widespread availability of surface water and food 

elsewhere, whereas grazing species (e.g. gemsbok, zebra) were drawn to the pan 

during the same period (Ritter 1993).  

 

During the drier months (June to September), large groups of females were relatively 

common in open plains surrounding waterholes. However, a perennial waterhole 

only had a significant concentrating effect on females if its location coincided with 

that of another spatially limited resource (e.g. mixed broadleaf woodland at Ombika), 

resulting in female groups being larger closer to the waterhole. Therefore, although 

giraffe movements were not restricted by water availability, their use of certain areas 

(specifically open plains in the dry season), and their distribution within a spatially 

restricted habitat (mixed broadleaf woodland), was affected by the limited 

availability of permanent water. 

 

3.5.3 Potential for mate monopolisation 

Overall, females were found in the smallest groups during the late dry season, from 

August to October. Female densities were highest in mixed broadleaf woodland 

throughout year, and especially during the wet summer months (October to May). 

Females also concentrated to a lesser extent in A. nebrownii habitats throughout the 

year, but especially during the A. nebrownii flowering season. Habitats containing A. 

nebrownii were widespread, accounting for over 20% of the surveyed study area, 

whereas mixed broadleaf woodland was more spatially restricted, accounting for less 

than 2% of the study area.  

 

Therefore, female spatial predictability should be greater in the wet season, when 

females concentrate in the small patch of mixed broadleaf woodland, than in the dry 

season. The profitability for a male of searching for females in broadleaf woodland 

should therefore be high throughout the year, but especially between October and 

May. Male potential for monopolisation also increases as females become more 

spatially clumped and predictable (Emlen & Oring 1977), so is predicted to be 

greater during the wet season, when females are spatially more clumped and 
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predictable, than during the dry season. Potentially, it could be profitable for males to 

attempt to defend areas (i.e. resource defence) within the mixed broadleaf woodland, 

as female densities, and thus predictability, are consistently high. 

 

Although they do not generally gather in larger groups at or near waterholes, females 

occur more predictably at waterholes than elsewhere during the dry season, and large 

groups are common near waterholes in the dry season. This could offer males an 

opportunity to reduce their search-effort by focussing on perennial waterholes to 

intercept females, potentially resulting in temporary defence of waterholes (as a 

resource that concentrates females). It was predicted that this would result in 

dominant males consistently excluding subordinates from mating opportunities at 

waterholes, through an increased likelihood of successfully intercepting females as 

they congregate to drink, and displacing any subordinate males present. 

 

However, it was assumed that perennial waterholes would only be able to fulfil this 

function in the dry season, as water is no longer a limited resource in the rainy 

season. In the wet season, water is widely available in hundreds of seasonal 

waterholes and natural depressions (over 70 were identified, but no doubt many exist 

away from the roads). As a result, female aggregations will be less likely to occur at 

any one water source, and dominant males may no longer be able to maintain a 

monopoly on matings by locating female groups and excluding subordinate males. 

For example, it was expected that subordinate males would have a greater chance of 

encountering undefended females at water during the wet season. Surprisingly 

though, it was found that dark males were no less likely to be present when females 

were at water-holding waterholes in the wet season than in the dry season.  
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4 GIRAFFE BREEDING SEASONALITY 

 

4.1 Introduction 

In most parts of their range, giraffes do not have a clearly delimited breeding season 

(e.g. Pratt & Anderson 1982). Indeed, an absolute seasonal breeding peak in giraffe 

is unlikely, because gestation is longer than twelve months, and females usually 

conceive between three and nine months after giving birth (Foster & Dagg 1972; 

Pellew 1983b; Bercovitch et al. 2006). In order to benefit from calving synchrony 

(e.g. Estes 1976), females would have to trade off the cost of further delaying 

reproduction (resulting in a consistent nine-month interval between parturition and 

subsequent conception), which might reduce their reproductive potential (Sinclair et 

al. 2000).  

 

As it is, parturition occurs during all months of the year, although more or less 

distinct peaks in calving have been recorded (Foster & Dagg 1972; Berry 1973; Hall-

Martin et al. 1975; Nje 1983; Pellew 1983b; Scheepers 1991). Calving is relatively 

evenly distributed in equatorial latitudes, where there are two rainfall peaks, but a 

calving peak is more pronounced in the more seasonal southern latitudes where it 

coincides with the rainfall peak (Hall-Martin et al. 1975). For example in a 

population of giraffe in the eastern Transvaal in South Africa, a peak in conceptions 

(60% of 123 calves) was noted between December and March, during the wet period, 

which resulted in a calving peak from March to June, immediately after the peak 

rainy season (Hall-Martin et al. 1975). Hall-Martin et al. (1975) attributed this 

correspondence between rainfall and conceptions to a stimulus acting on female 

giraffe via the high nutritional value of the vegetation. Berry (1973) also observed a 

calving peak near the end of the rains in Luangwa Valley in Zambia. In the northern 

Namib desert, Scheepers (1991) found a calving peak in the warm wet period 

(January-March), but this was based on only twelve calves born during his study. 

 

These patterns in calving suggest that giraffe are able to obtain sufficient dietary 

nutrients and energy for reproduction throughout the year (Pellew 1984b), but that 
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there may be benefits in calving at certain times of year where rainfall is more 

seasonal. Pellew (1984b) estimated female energy requirements in relation to 

reproductive condition. He envisaged energy expenditure being greatest immediately 

post-partum due to the complete dependence of the calf on rich milk during the first 

couple of months, decreasing steadily as the calf grows and lactation declines. He 

estimated that females should only experience a deficit in their energy balance if the 

immediate post-partum lactation phase coincides with a period of food scarcity, such 

as the dry season (Pellew 1984b).  

 

Therefore, where rainfall and food production are seasonal, those females that calve 

during a period of sustained abundance of high quality food should be at a selective 

advantage; they would experience relatively smaller costs of lactation, and would be 

better able to provide milk of sufficient quantity and quality to sustain their calf’s 

rapid growth (Pellew 1984b). Indeed, giraffe breeding phenology (monthly 

distribution of calf births) in the Serengeti NP, Tanzania, has been demonstrated to 

be in phase with varying protein availability rather than total browse biomass 

(Sinclair et al. 2000).   

 

Consequently, with a fourteen-and-a-half to fifteen month gestation period (448 days 

(del Castillo et al. 2005), 457 days (Hall-Martin et al. 1975)), females should ideally 

conceive fifteen to seventeen months (which corresponds to three to five months) 

before the peak in high quality food availability. High quality food should also be 

available, at a sufficiently low height, for calves beginning to wean, a few months 

after birth. Calves have been recorded as starting to taste solid food at about three 

weeks, beginning to consume solid food regularly and to ruminate at between three 

weeks and four months, and as being fully weaned at around eight months (Dagg & 

Foster 1982).  
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4.2 Aims 

This chapter aims to test the following hypothesis and predictions:  

Hypothesis: Giraffe breeding seasonality is driven by seasonality in rainfall and food 

availability. Thus, I predict that: 

o A similar seasonal breeding peak will be found in Etosha NP as in the South 

African Lowveld (Hall-Martin et al. 1975).  

o The peak in conceptions will also correspond with the rainfall peak. 

o The peak in births will resultantly correspond with a peak in availability of high 

quality (protein-rich) foods. 

 

 

4.3 Methods 

4.3.1 Estimates of calf age and birth-dates 

Ages and birth-dates of calves were estimated to the nearest month. Calves with 

horns still bent forward or flattened against the head, and tail still not straightened, 

were taken to be less than one month old (Dagg & Foster 1982; Skinner & Smithers 

1990). Calves with the umbilical cord still attached were taken to be up to four 

months old (Hall-Martin et al. 1975). In addition, heights of calves were measured 

using the photographic technique described in Chapter 2. These estimated heights 

were compared to an age-height chart derived from Pellew (1983b), scaled, for 

males, to the maximum height estimation from the study population (the maximum 

female height encountered in Etosha did not differ from Pellew’s, at 4.21m compared 

to his 4.22m, whereas the maximum male height was only 4.76m compared to his 

5.06m). Ages of calves for which heights were not available were estimated based on 

general appearance relative to that of calves of known or estimated age (using mane 

length, coat texture, and body proportions). 
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4.4 Results 

Young calves were seen all year round, but only six were seen within one month of 

birth. Birth-dates (to the nearest month) were estimated for 40 calves first seen when 

younger than one year old. Based on only those calves estimated to have been born 

in the 24-month period from October 2003 to September 2005, a peak calving season 

was apparent from March to June, with the greatest number of births in May, and the 

fewest in September. Births occurred in all months of the year, but more than 50% of 

births (21 of 40) were estimated to have occurred in the four peak months. Assuming 

a fourteen-and-a-half to fifteen month gestation (448 days (del Castillo et al. 2005), 

457 days (Hall-Martin et al. 1975)), this yields a conception peak between December 

and March, with the greatest conception rate in February, and a lull between June 

and September (Figure 4.1). This distribution is significantly different from an even 

distribution across the year (Dec-Mar versus Apr-Nov: Χ
2
 = 6.613, df = 1, P < 0.02). 

 

The conception peak corresponds with the annual rainfall peak (about 80% of the 

year’s rain falls between December and March), and the lull in conceptions 

corresponds with the driest time of year (less than 1.5% of annual rainfall falls 

between June and September; Figure 4.2). Indeed, monthly conceptions were 

significantly correlated with mean monthly rainfall for the area (averaged over the 

two years; Spearman’s rho = 0.853, N = 12, P < 0.001). Monthly mean female group 

size (Chapter 3) correlated with the estimated monthly share of yearly births 

(Spearman’s rho = 0.803, N = 10, P < 0.01), both being greatest between March and 

June before decreasing towards the end of the year. 

 

Calves were seen to browse occasionally from the age of two months (N = 3), and to 

browse regularly from seven months, predominantly on A. nebrownii (55% of 22 

feeding observations of calves aged 7-12 months). Mothers of calves whose age had 

been estimated were found to be browsing on the largest percentage of observations 

(56% to 75% of 15 to 18 sightings per month) during the period one to three months 

after parturition (browsing accounted for between 27% and 47% of observations in 

all other months from zero to twelve months post-partum). This three-month period 

may represent the time during which energy demands, due to lactation, are greatest. 
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Figure 4.1. Estimated peaks in calving (dashed line) and conceptions (solid line) in the study 

area, based on forty estimated calf birth dates. 
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Figure 4.2. Monthly rainfall, averaged over a 29-year period for three weather stations in or 

near the study area (data provided by W. Versfeld, Etosha Ecological Institute, Okaukuejo, 

Namibia). 
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4.5 Discussion  

The observed calving peak does not match that found by Scheepers (1991) in the 

northern Namib desert (calving peak between January and March), but corresponds 

very closely with that described by Hall-Martin et al. (1975) in the giraffe population 

in the eastern Transvaal in South Africa. The mismatch with findings from elsewhere 

in Namibia may be due either to Scheepers’ relatively small sample size (12 calves, 

Scheepers 1991), or to differences in tree phenology and seasonality of key 

nutritional resources in the two areas. 

 

The observed correlation between monthly mean female group size and monthly 

proportion of annual births suggests that females may form larger groups between 

the months of March and June partly as a predator defence strategy to protect their 

young calves while they are at their most vulnerable (e.g. Jarman 1974). 

 

4.5.1 Possible explanations for the observed breeding seasonality 

4.5.1.1 Explanation 1: Lactation costs driving calving seasonality 

If post-partum lactation costs (e.g. Pellew 1984b) are driving breeding seasonality, 

then the first few months after calving (or months one to three post-partum, based on 

feeding observations, see above) should coincide with a peak in food quality or 

quantity (e.g. Sinclair et al. 2000). The observed calving peak suggests that females 

may face the greatest costs of lactation between April and September. Thus, many 

females would face high energy demands at the very end of the period of peak food 

availability and quality; in southern Africa, the protein content of giraffe browse is 

greatest during the rainy season, between November and March (Hall-Martin & 

Basson 1975), when all trees are in leaf, and many also have flowers, fruit or pods 

(see also Chapter 3, Figure 3.1). Specifically, fruiting of trees generally occurs two 

months after either flowering (Scholes et al. 2003) or the peak rainfall (Mduma et al. 

2006), which in the study area usually occurs in February (W Versfeld, personal 

communication), and Acacia pods, for example, are highly nutritious, often fed to 

livestock as a supplement in the dry season (Sikosana et al. 2002) or to increase milk 

yields. 
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Therefore, a large proportion of females would be facing the greatest costs of 

lactation at a time when most tree species’ leaves were starting to senesce and fall 

(late-April to early June), and the protein, water and energy content of remaining 

browse was beginning to decline (Sauer 1983; Fennessy 2004). However, from late-

June, another reliable source of food becomes available. Flowers of A. nebrownii 

were abundant across the study area from mid-June to late-August (the much rarer 

Gymnosporia senegalensis also flowered from mid-May to July, and from August, A. 

mellifera and Albizia anthelmintica came into flower). 

 

Possibly, A. nebrownii flowers are sufficient to sustain females through lactation. 

Compared with all other tree species in the study area, the flowers of A. nebrownii 

were the single most abundantly produced crop, produced at a time when other foods 

were scarce or nutritionally of poor quality (e.g. Sauer 1983; Owen-Smith 1992). 

Habitats including large proportions of A. nebrownii were also widespread, 

accounting for 20% of the surveyed study area (over one third, if open plains were 

excluded). Moreover, since flushes of flowers occurred at different times in different 

patches, there was always a new and un-depleted source of flowers for giraffe to 

move to.  

 

Unfortunately, there is no available information on the nutritional value of A. 

nebrownii flowers. However, since giraffe and other species (e.g. springbok 

Antidorcas marsupialis) feed so keenly on A. nebrownii flowers, it can be assumed 

that their overall nutritional value is favourable; they probably contain relatively high 

quantities of water and protein, low quantities of fibre, and may contain less tannin 

than the leaves. In South Africa, flowers of A. nigrescens are also produced in the 

dry season, and giraffe feed prolifically them, despite high tannin levels, possibly 

because this cost is outweighed by the benefits of the otherwise high nutritional value 

of the flowers: they contain about 50% more water than leaves, almost twice as much 

protein and less fibre (Fleming et al. 2006). Flowers of A. tortilis also contain more 

water than leaves, but contain less condensed tannin (Wrangham & Waterman 1981; 

Sauer 1983).  
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Therefore, although the high-cost lactation period for many females would not 

correspond with the greatest abundance of food in terms of biomass (the peak rainy 

season), it would coincide with a period of reliable, widespread and sustained 

abundance of a potentially protein- and water-rich food source. A. nebrownii is also a 

food source that would be available to (and is indeed browsed by) young, weaning 

calves, as it is a shrubby, multi-stemmed tree, usually only about 2-3m in height. 

 

Conversely, females that calved in the later dry season (August to October) would be 

at a selective disadvantage, as during these months only a few, rare tree species bear 

flowers or produce new vegetative growth (e.g. A. hebeclada). Water and protein 

content of giraffe browse plants are lowest during this time (Hall-Martin & Basson 

1975; Sauer 1983), and it is at this time of year that some giraffe in the study area 

appeared to lose condition (see also Chapter 7). Some tree species began to flourish 

again in October or November, independently of the start of the rains (e.g. 

Colophospermum mopane), but certain preferred browse species (e.g. Catophractes 

alexandrii, Terminalia prunoides) did not produce new leaves and flowers until after 

the first heavy rains (which often do not fall until December or January).  

 

Since a seasonal breeding peak has now been identified in both the South African 

Transvaal and northern Namibia, it is likely that a seasonal peak in breeding occurs 

throughout the giraffe’s range in southern Africa. Although the geographic range of 

A. nebrownii is limited to the far-north and central-south of Namibia (Curtis & 

Mannheimer 2005), other Acacia species are prevalent throughout the giraffe’s 

southern African range, some providing pods in the late wet season, and others 

flowering prolifically during the dry season (e.g. Milton 1987; Dudley 1999; Scholes 

et al. 2003). Thus, high quality food sources may be available for females calving 

during the late wet and early dry season across southern Africa. 

 

In conclusion, the study area calving peak occurs at the end of the productivity peak, 

but near the start of production of a single alternative source of food that is probably 

rich in protein and water (A. nebrownii flowers). Thus, there is evidence for a calving 

peak that coincides with the start of a secondary, but reliable peak in food 
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availability, or possibly selection against calving just before a period of food 

shortage or unpredictable food availability (i.e. the late dry season).  

 

4.5.1.2 Explanation 2: Condition-dependent conception driving mating seasonality 

Alternatively, it is possible that conception is triggered by the physiological 

condition of females; females may only be able to conceive when their diet 

comprises sufficient high quality food, as suggested by Hall-Martin et al. (1975). 

Scheepers (1991) also observed that conceptions in desert-dwelling giraffe in north-

western Namibia seemed to coincide with the first flush of new vegetation in the late 

dry season (October to December) in that region. In the study area, the conception 

peak (December to March) was found to correspond very well with the rainy season 

(November to April) and the probable peak in protein content of browse (November 

to March, Hall-Martin & Basson 1975).  

 

4.5.2 Implications of the peak conception period 

According to traditional mammalian socio-ecological models, the potential for 

polygyny is lowest when females are receptive briefly and in unison, and increases 

with more asynchronous breeding patterns, although it may decline again as breeding 

becomes absolutely asynchronous (Trivers 1972; Emlen & Oring 1977; Ims 1988a). 

With a large proportion of conceptions in the Etosha giraffe population occurring in 

the wet season, female receptivity will probably remain asynchronous throughout the 

year, but there will be a greater potential overlap in female receptivity during the 

wet, high-conception-rate season (Nunn 1999). Therefore, the operational sex ratio 

(the number of potentially mating males divided by the number of fertilizable 

females (Emlen & Oring 1977)) will be slightly reduced in the wet season relative to 

the dry season. As a result of this temporal effect, the potential for polygyny may be 

greater in the dry, low-conception-rate season (Emlen & Oring 1977).  

 

However, this effect may be counteracted by the spatial effect of female distribution 

on the ability of dominant males to monopolize females. In non-synchronously 

breeding populations, spatial effects are often more important in driving variance in 
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male mating success than temporal effects (Nunn 1999). In the study area, females 

are more aggregated and predictably spatially clumped during the wet (higher-

conception-rate) than during the dry (lower-conception-rate) season. As well as 

increasing the potential for dominant males to monopolise mates, this will also lead 

to higher encounter rates with females and competitors for all males (Ims 1990). 

Consequently, it is predicted that in spite of the increased OSR in the dry season, the 

potential for monopolisation, and frequencies of mating and agonistic interactions, 

may be increased during the wet (higher-conception-rate) season. 

 

To test for seasonal effects in the subsequent chapters, the year was divided up into 

two periods, of relatively higher and lower conception rates (though these differ only 

in degree), based on the estimated conceptions per month: 

1) Higher-conception-rate season: October to May (at or above the median of three). 

This corresponds closely with the wet season (see figure 4.2). 

2) Lower-conception-rate season: June to September (below median), which 

corresponds with the dry season. 
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5 MALE MOVEMENTS AND MATING STRATEGIES 

 

5.1 Introduction 

5.1.1 Giraffe home ranges and movements 

Giraffe home ranges generally are non-exclusive, overlapping, and show no evidence 

of territoriality (Leuthold 1979; van der Jeugd & Prins 2000). Average home range 

sizes are large, but depend on vegetation structure and food availability, and thus 

vary widely across the geographic range of the giraffe. Smaller home ranges, as well 

as higher giraffe densities, lower mobility and more stable groups, are generally 

found in more heavily vegetated and productive habitats (van der Jeugd & Prins 

2000). Sex differences in range size are also less pronounced in such habitats than in 

more arid environments (Fennessy 2004). The largest mean and individual home 

ranges have been found in desert environments, where giraffe densities are lowest 

(largest recorded home ranges: 1,559 km
2
 in Niger (Le Pendu & Ciofolo 1999), and 

1,950 km
2
 in north-western Namibia (Fennessy 2004)). In Tsavo East National Park, 

where the giraffe density was similar to that found in Etosha NP during this study 

(0.2 animals/km
2
), home ranges averaged 160 km

2
, with a maximum of 655 km

2
 

(Leuthold & Leuthold 1978b). 

 

Male and female mean ranges are often similar within a location, but where giraffe 

are not restricted in their movements, the maximum male range can be much larger 

than the maximum female range (e.g. 145 km
2
 vs. 82 km

2
 in Luangwa Valley NP, 

Zambia (Berry 1978); 655 km
2
 vs. 484 km

2
 in Tsavo East NP, Kenya (Leuthold & 

Leuthold 1978b)). This sex difference in range size is consistent with male roving as 

the predominant male mating strategy, and a polygynous-promiscuous mating system 

(Trivers 1972; Clutton-Brock 1989; Schwab 2000).  

 

Range sizes and locations may vary seasonally, as giraffe respond to seasonal 

changes in food availability by local small-scale migrations (Pellew 1983b; Fennessy 

et al. 2003; Fennessy 2004). For example, in Niger, the mean home range size of the 

last remaining population of western giraffe (G. c. peralta) was 90.7 km
2
 in the dry 
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season, but only half that size in the rainy season (Le Pendu & Ciofolo 1999). These 

seasonal movements often result in clumped distributions and locally high densities 

of giraffe (Leuthold & Leuthold 1978b). 

 

Male home range size also appears to vary with age. As males mature, they tend to 

spend progressively less time in mixed groups, less time with individuals of their 

own age class, and more time wandering alone (Pratt & Anderson 1985). This can 

result in larger home ranges for mature than for immature males, although home 

ranges of older adult males may be smaller than those of younger adult males 

(Leuthold & Leuthold 1978b). However, recent studies of giraffe home range have 

not explored these individual differences in home range size in any detail, or their 

potential association with differences in mating strategy. 

 

The majority of giraffe home range estimates have been determined using just field 

observations of individuals, although more recently, GPS satellite collaring has 

enabled more accurate home range measures for a very limited number of individual 

giraffe (Fennessy 2004). However, for studies of range-use of a large number of 

giraffe, the recording of GPS locations during field observations remains the most 

practical method. 

 

5.1.2 Giraffe mating strategies 

The giraffe mating system is polygynous or possibly promiscuous, with males 

attempting to obtain as many matings as possible, but with females also occasionally 

mating with more than one male within an oestrus cycle (Bercovitch et al. 2006). 

Since giraffe group composition changes so frequently, groups are relatively small 

and home ranges large, it would be uneconomic for males to attempt to defend a herd 

or harem. Instead, males generally adopt a roaming strategy, whereby they wander 

over large distances, visiting female and mixed herds in search of potential mates, 

and temporarily mate-guarding females in oestrus (Dagg & Foster 1976; Leuthold 

1979; Pratt & Anderson 1985; Bercovitch et al. 2006). Thus, males may converge on 

areas where females are concentrated by a food resource (e.g. Berry 1978). On 

locating a receptive female, a male will attempt to court and defend her, following 
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her closely for up to two days until mating is achieved (Leuthold 1979; Pratt & 

Anderson 1985).  

 

Bercovitch et al. (2006) recently summarised the male giraffe mating strategy as one 

that maximises time spent with receptive females whilst minimising time spent with 

non-fertile females and searching for females. An individual’s mating strategy should 

be whatever best fulfils the ultimate function of achieving maximum lifetime 

reproductive success (Thirgood et al. 1999). The optimal strategy may differ 

depending on environmental and social conditions, such as habitat type, resource 

distribution and female densities (e.g. Dunbar 1982; Gosling 1986; Thirgood et al. 

1999), and as such may vary across the giraffe’s range (van der Jeugd & Prins 2000). 

For example, it has been proposed that ‘pseudo-territorial’ resource defence 

polygyny might occur under special circumstances (van der Jeugd & Prins 2000).  It 

is also possible that where females exhibit seasonal peaks in breeding, such as South 

Africa  (Hall-Martin et al. 1975) and Etosha NP (this study), the intensity of mating 

competition, and the potential for mate monopolisation, varies across the year. 

Therefore this chapter explores how males respond to changes in female aggregation, 

and tests whether male movements are driven more by the location of females (rather 

than food) when the potential for mate monopolisation is higher. 

 

5.1.3 Predictions 

5.1.3.1 Home ranges and movements 

Because rainfall is relatively low (about 350 mm per annum) and highly seasonal, 

and food resources thus rather scarce and variable, it is predicted that giraffe home 

ranges in Etosha will be large relative to those recorded elsewhere (van der Jeugd & 

Prins 2000; Fennessy 2004). It is predicted that female home ranges will all be of a 

similar size, regardless of age, and will all encompass a similar range of habitat 

types, since females move to take advantage of high quality foods as they become 

available (see Chapter 3). Male home ranges are expected to vary in size with age 

and social status: home ranges of fully mature males are expected to be larger overall 

than those of adult females or younger males (e.g. Leuthold & Leuthold 1978b; 

Cederlund & Sand 1994; Schwab 2000; Fennessy 2004). 
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Where females are spatially clumped, male success in locating females should be 

high for all males (Ims 1990), but the potential for monopolisation of mating 

opportunities will also be high if dominant males can successfully exclude 

subordinates (Emlen & Oring 1977). Therefore, at times when females are 

aggregating predictably, dominant males (it was assumed that these would be darker 

in colouration; this will be verified in Chapter 6) should move from habitats 

preferred by males into female concentration areas (Gosling 1986), and thus exhibit 

different habitat use to that of younger or subordinate adult males, who should 

remain in their preferred habitats.  

 

The habitat in which females aggregate in the wet, higher-conception-rate season 

(mixed broadleaf woodland; October to May) is more spatially restricted than A. 

nebrownii shrub savannah, in which females aggregate in the dry, lower-conception-

rate season (June to September). It is predicted that due to this relatively higher 

spatial clumping of receptive females, male competition will be greater in the higher-

conception-rate season; the potential for monopolisation will be increased, and 

dominant males should compete to control the female aggregation areas by excluding 

subordinates from herds and from mating opportunities. 

 

5.1.3.2 Mating strategies 

Individuals of different age or social status may adopt different mating strategies, as 

the potential for mate monopolisation, and possibly reproductive effort, is likely to 

vary with age and social status (Clutton-Brock et al. 1982d; Dunbar 1982; Mysterud 

et al. 2003; Plaistow et al. 2004). Firstly, mature males could adopt a year-round 

roving strategy (Gosling 1986; Forchhammer & Boomsma 1998), whereby they 

search throughout the year for potential mates by moving to whichever habitats are 

concentrating females. As such, male home ranges should be large to encompass all 

of the habitats in which females aggregate throughout the year, but may also include 

habitats avoided by females if males return periodically to other food sources (e.g. C. 

mopane). Males not actively following females (e.g. young males and bachelor 

groups) should spend relatively more time in habitats avoided by females, and thus 

show different habitat selection to females and to dark males throughout the year.  
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Alternatively, it may only be profitable (in terms of potential matings gained relative 

to the energy expenditure and risks associated with searching for females and 

excluding competitors (e.g. Dunbar 1982)) for mature males to compete for receptive 

females when they are most predictably clumped and easiest to locate (i.e. during the 

higher-conception-rate wet season, see Chapters 3 and 4). In this case, male home 

ranges might still be relatively large, to encompass the areas in which females 

aggregate during the peak reproductive season (i.e. mixed broadleaf woodland). 

However, dark males should use different habitats to females during the rest of the 

year when they return to their preferred food sources. Thus, dark males should utilise 

different habitats to pale males during part of the year (the wet season), but show 

similar habitat choices to pale males during the rest of the year. 

 

Alternatively, at times when females are most predictably clumped, it may be 

economical for sexually active males to adopt a temporary resource defence strategy 

(Owen-Smith 1977; Gosling 1986; Clutton-Brock 1989). In this scenario, seasonal 

ranges of those males successful in defending temporary ‘territories’ should be small, 

and should be centred on female concentration areas (Gosling 1986; Ritter & 

Bednekoff 1995; Carranza et al. 1996). During the rest of the year, these males 

should range over a much larger area encompassing a greater proportion of habitats 

in which females do not aggregate. If the defended male ranges are not exclusive, 

then males that hold them should at least show space-specific dominance (Owen-

Smith 1977). Males that adopt this strategy might have the greatest potential to 

monopolise matings (e.g. Heckel & von Helversen 2002; Hayes et al. 2006). 
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5.2  Aims 

This chapter aims to test the following hypotheses and predictions: 

Hypothesis 1: Males and females preferentially use different foods and habitats (see 

Chapter 3), and have different means of maximising reproductive success, with male 

reproductive success being determined largely by the ability to locate females and 

compete for mating rights, which involves larger scale movements than the search 

for resources alone (e.g. food and water). Thus, I predict that: 

o Home ranges of mature, dark males will be larger than home ranges of adult 

females or sub-adult and young adult males. 

Hypothesis 2: Dominant males that have a chance of securing access to females for 

mating leave their preferred habitats to follow females to locate, defend and court 

those that are receptive. Thus, I predict that: 

o Male association with females will be determined by their movements relative to 

female concentration areas, and will vary in relation to male maturity. 

o Males will spend less time browsing and more time in other activities (e.g. 

walking) when within areas of high female usage than when outside them (e.g. 

Turner et al. 2005). 

Hypothesis 3: Due to seasonal variation in resource availability (and thus time spent 

foraging), female group size and aggregation (see Chapter 3), and in the proportion 

of females that are receptive (due to a slight breeding season peak, see Chapter 4), 

the relative costs and benefits of searching for and competing for females will also 

vary seasonally. As a result, mature males may benefit from seasonally varying their 

strategy for locating and competing for mates. Thus, I predict that: 

o Mature, dark males will be more likely to associate with females when they are 

aggregating more predictably and receptive females are easier to locate (i.e. 

during the wet season, when a high proportion of conceptions occur).  

o During the wet, higher-conception-rate season especially, dominant males will 

select habitats where females are aggregating, whereas younger, pale males will 

show different habitat preferences to both females and dark males.  
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5.3 Methods 

5.3.1 Home range estimations 

5.3.1.1 Minimum convex polygons 

In keeping with previous studies of wild giraffe, home ranges were estimated using 

minimum convex polygons (MCPs). This method has fewer assumptions as to how 

the areas are used by the animals, and generally work better with small sample sizes, 

when compared to other methods (Ferguson & Elkie 2004). The greatest number of 

sightings of a female giraffe was 33, and of a male, 22 (due to fewer sightings of 

males in general).  

 

Previous studies have estimated home ranges based on as few as six (Foster 1966) or 

nine (Leuthold & Leuthold 1978b) sightings of individual giraffe. Here, I selected 

giraffe for home range estimation on the same basis as Fennessy (2004) in his recent 

study of desert giraffe in the north-west of Namibia. After converting coordinates to 

UTM, 95% MCP home ranges were estimated using all sightings for each individual 

seen at least 10 times over at least one year (95% MCPs require a minimum of 10 

points). For these individuals, sightings from across the entire study period were 

included, rather than just those within one year, due to small samples sizes (total 

sightings per individual). Analyses were carried out using 95% MCPs as these are 

generally considered to better represent the ‘normal’ home range, as peripheral 

outliers that may represent exceptional excursions outside of the usual range are 

excluded (Broomhall et al. 2003; Lent & Fike 2003; Fennessy 2004).  

 

MCPs were calculated using the Animal Movement extension of Arcview 3.1 

(Environmental Systems Research Institute, Hoodge & Eichenlaub, 1997). Parts of a 

home range that fell on the saltpan were excluded from the home range size since 

giraffe were never seen beyond the edge of the pan. MCPs that were extremely 

elongate in shape (long axis more than ten times the short axis) were considered 

unrealistic and excluded from any analyses. Home range values were logarithm-

transformed to permit the use of parametric statistics (t-tests) in analyses of sex and 

maturity differences in home range size. 
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5.3.1.2 Female core areas 

Core areas (50% fixed kernel areas, with smoothing factor calculated by the default 

least squares cross validation (LSCV) of locations, (e.g. Kusak et al. 2005)) were 

created for all adult females with at least twelve sightings, to examine male 

movements relative to approximate areas of greatest female use. It was decided to 

use a 50% kernel rather than a 50% MCP, despite the small number of sightings, as 

the latter often resulted in unrealistic (highly elongated) shapes, often along roads, 

and the kernel method has the benefit of being able to identify multiple core areas 

(Ntumi et al. 2005). 

 

Female core areas that exceeded 50% of their 100% MCP home range were excluded 

as these were considered to be least informative about actual core areas of use (nine 

of 54 possible core areas were thus excluded). The remaining female core areas were 

combined using the Union Intersect function of the Geoprocessing Wizard in 

ArcView. This produced a single graded core area, with class values representing the 

number of core overlaps. Since sample sizes (individual re-sightings) were low, and 

inaccuracies in the calculation of core areas thus inevitable, classes of core overlaps 

were further pooled into three classes describing area usage by females: 

0) Low usage: zero female core areas,  

1) Moderate usage: 1-5 female core areas overlapping,  

2) High usage: >5 female core areas overlapping. 

 

For all males seen within the study area on more than five days, each observation 

(the first observation of them each day) was allocated a value indicating the degree 

of female use at that location (0, 1, or 2, as described above). Differences in group 

composition, and particularly the number of females that males were associating 

with, were assessed relative to these values for different age-classes of males. If these 

core areas are truly representative of areas of intense female use, then males should 

be found to associate more with females when in areas of high usage, and less when 

in areas of low usage. 
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5.3.2 Male habitat selection and female aggregation ranks 

If dominant males seek to monopolise access to females, then they should move out 

of their preferred habitats into habitats in which females are concentrating at times 

when they are predictably aggregated. To test this idea, male habitat preference 

indices (PIs, see Chapter 3) were compared to those of females.  Solitary dark males 

and dark males with females were predicted to be found in greater numbers (and thus 

have higher PIs) in habitats preferred by females, particularly during the wet, higher-

conception-rate season. Conversely, PIs of solitary pale males and bachelor groups 

(including pale and dark males) were predicted to be independent of female habitat-

specific densities and PIs, and to also differ from dark male PIs.  

 

Habitat preference indices of dark males (solitary or with females) were also 

predicted to be greater than habitat preference indices of pale males and males in 

bachelor groups for those habitats with high female densities (see section 3.4.3.6). 

Male habitat use and association with females was also explored on an individual 

level, to highlight possible differences between movements of dominant and 

subordinate males, using only dark adult males that were seen on more than five days 

each (N = 24). 

 

It should be noted that preference indices resulted from the division of sightings in 

each habitat (during the first survey of each road in each cycle) by habitat 

availability. Thus, any possible inaccuracy in the estimation of the availability of the 

different habitats for sampling will have been applied equally to all sex-age groups, 

so will not have affected between-sex comparisons.  
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5.4 Results 

5.4.1 Hypothesis 1: Large male home ranges 

5.4.1.1 Cumulative identifications 

Differences between male and female movements were first assessed by comparing 

cumulative identifications of new male and female giraffe within the study area. If 

females were more sedentary than males, as predicted, then cumulative 

identifications of new females should have reached an asymptote faster than 

cumulative identifications of males. Indeed, the rate of increase of new female IDs 

began to decrease sooner than that for male IDs (Figure 5.1). By the end of the first 

four months of the study, 75% of all identified females had been sighted for the first 

time. Larger numbers of new males continued to be encountered throughout the 

second field season, and 75% had been first sighted only after six-and-a-half months 

of the field period. 
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Figure 5.1. Cumulative identifications of new giraffe in the study area. Black line = males; Grey line = females. Vertical lines indicate when 75% of identified 

individuals had been first sighted. Opaque section indicates period of absence from the study area.
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5.4.1.2 Minimum Convex Polygon home ranges 

There was no correlation between the number of sightings and MCP size (95% 

MCPs: r = 0.178, N = 99, P = 0.077). Mean home ranges (95% MCPs) for non-

juvenile females were 96.2 km
2
 (range: 12.7-352.6 km

2
, N = 68), and those of males 

were typically larger at 148.0 km
2
 (range: 2.49-1000.5 km

2
, N = 21; Table 5.1). 

However, the difference between non-juvenile male and female mean home range 

size was not significant (Student’s t = 0.158, df = 87, P = 0.833), nor was the 

difference between range sizes of adult males and adult females (t = -0.091, df = 65, 

P = 0.928). Mean and maximum home ranges, particularly of males, were much 

smaller than those estimated for the desert-adapted giraffe in the nearby Kunene 

region of Namibia (Fennessy 2004). 

 

Table 5.1. Sample size, mean, minimum and maximum estimated home range sizes (95% MCPs) 

for this study (Etosha NP), and for comparison, Fennessy’s (2004) study of the desert-dwelling 

giraffe in north-western Namibia. 

Study site Sex-age class N Mean Min. Max. SD 

Juveniles 10 113.8 21.0 362.4 100.7 

Sub-adult females 19 112.4 28.8 240.8 65.6 

Adult females 49 89.9 12.7 352.6 60.1 

Females 68 96.2 12.7 352.6 62.1 

Sub-adult males 3 116.4 24.9 254.8 121.9 

Pale adult males 6 87.9 57.9 115.4 27.8 

Dark adult males 12 186.0 2.49 1000.5 288.5 

 
Etosha NP, Namibia 

Males 21 148.0 2.49 1000.5 222.6 

Juveniles 2 14.5 10.3 18.7  

Females 16 100.0 8.33 702.1  
Kunene desert 
region, Namibia 

Males 44 355.5 11.5 1773.0  

 

 

As predicted, home ranges of sub-adult (maturity classes 2-3) and adult females 

(maturity class > 3) did not differ in size significantly (t = 1.373, df = 66, P = 0.174), 

but nor did those of sub-adult and adult males (t = 0.032, df = 19, P = 0.975), nor 

those of dark and pale adult males (t = 0.282, df = 16, P = 0.781). However, home 

ranges of males were more variable in size than those of females (see Table 5.1, 

above). Those of dark males were also more variable than those of pale males, and 
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accounted for the three largest and three smallest male home ranges, suggesting a 

higher degree of inter-individual variation in ranging behaviour in fully mature 

males.  

 

Both female and male home ranges overlapped extensively within and between 

sexes. Every 95% MCP male home range was contained within the combined area 

covered by all 95% MCP female home ranges (a total area of 898 km
2
), with the 

exception of four dark, mature, but not old males. Between 38% and 48% of their 

home ranges fell outside the area used by females. Of all the males in their age 

category, these four were seen with females the least often (less than 33% of 

sightings), and included the three largest home ranges. Fully mature males (maturity 

category 5 and above) with small home ranges (less than the non-juvenile male 

median of 69.4 km
2
) were generally seen in larger groups (median = 4) than males 

with large home ranges (median = 1; Mann-Whitney U = 1550.5, N = 152, P < 

0.001). 

 

5.4.2 Hypothesis 2: Male movements and activity in relation to areas of high 

female usage 

5.4.2.1 Female core areas 

Female core areas (50% kernels) comprised either one (N = 26), two (N = 13), or 

three (N = 6) parts. In the majority of cases (84.4% of the 45 females), at least one 

part of the core area included a minimum of one perennial waterhole. In ten cases, 

the core area encompassed two or more waterholes. All but two of these ten females 

were not known to have young calves during the study period, whereas the majority 

of females (eleven of thirteen) known to have a young calf had core areas 

incorporating only one waterhole or none at all. 

 

The highest overlap of female core areas occurred at or near perennial waterholes, 

and particularly at waterholes in proximity of preferred food sources. Specifically, 

ten female core areas overlapped at Gemsbokvlakte, and over fifteen overlapped at 

both Okaukuejo and Ombika. Ombika waterhole (to the south) is surrounded by 

mixed broadleaf woodland, Okaukuejo waterhole (in the centre of the study area) is 
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surrounded by acacia veld and mixed thorn veld. A. nebrownii thickets extend from 

east of Okaukuejo to Gemsbokvlakte waterhole to the south-east, and also occur near 

the dry waterhole, Ondongab (to the east, near the pan, see Figure 5.2 below). Fewer 

overlaps occurred at Nebrownii waterhole, possibly because, although it is located in 

an area of A. nebrownii thickets, it is near the pan edge and thus on the periphery of 

most females’ home ranges.  

 

No female core areas were found in the mopane veld either on the south-eastern edge 

of the study area, or south of Okaukuejo and Gemsbokvlakte waterholes (except 

within 5 km of Ombika waterhole), or to the south-west or west of Okaukuejo. 

Neither were any core areas recorded on the open plains to the east of Nebrownii 

waterhole or to the north and far north-west of Okaukuejo. 



 

   

 

Figure 5.2. The entire study area, with female core areas in pink. Darker areas represent higher core area overlap. Grey area is the pan. Green areas represent 
predominantly open plains but include some shrub savannah (including A. nebrownii). Orange areas include some A. nebrownii and thorn veld close to the pan, 

but are predominantly mopane veld further from the pan (except around Ombika waterhole near the southern park boundary, which is in a patch of mixed 
broadleaf woodland). Pale yellow areas are mopane veld (map data from Burke et al. 2002).
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5.4.2.2 Male movements relative to female core areas, and association with females 

As expected, male association with females varied with male maturity. More mature 

males associated relatively less with females than younger males (Figure 5.3). Males 

below maturity category six (dark colouration throughout the study period; expected 

to be fully sexually mature) were all seen with females on at least 50% of 

observations. In older males, there was a higher degree of inter-individual variation, 

with a range from zero to all sightings with females.   

 

As predicted, the degree of association between mature males and females was also 

affected by male movements. Group composition varied with proximity to core areas 

of female use (degree of core area overlap; Figure 5.4). Solitary males and bachelor 

groups were more likely to be seen in areas of low core overlap than a single male 

with females, or mixed groups (contingency coefficient = 0.311, N = 470, P < 0.001). 

 

When males were in areas of high female usage (>5 core overlaps), they were more 

likely to be in a group with females than in areas of low overlap or where no core 

areas were identified (Spearman’s rho = 0.264, N = 470, P < 0.001; Figure 5.5). 

Furthermore, when males were in groups containing females, they tended to be with 

larger numbers of females in areas of greater core overlap (categories 0, 1-5. and >5 

core overlaps; ANOVA: F2,316 = 3.080, P < 0.05; Figure 5.6). Adult males with 

smaller home ranges were seen within areas of high female core overlap (> 5 

overlaps) on a greater proportion of sightings than males with larger home ranges 

(Pearson’s r = -0.605, N = 19, P < 0.01; Figure 5.7). 
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Figure 5.3. Percentage of observations with a female, for males of different age classes seen more 

than five times (age classes ranged from: 1) juveniles to 8) old black males; for full details of age 

class definitions, refer to Table 2.2, Chapter 2). 
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Figure 5.4. Relationship between group type and female core area overlap. 
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Figure 5.5. Association of males with females, relative to the male’s location in terms of female 

core area overlap. 
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Figure 5.6. Mean number of females that were in a group, on occasions when males were seen 

with at least one female, relative to female core area overlap 
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Figure 5.7. Proportion of observations of individual adult males that were in areas of high 

female usage (>5 core area overlaps) in relation to male home range size (95% MCPs). 
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5.4.2.3 Male activity relative to core areas 

To test the prediction that males would spend more time browsing outside female 

core areas than within them, the proportion of observations on which males were 

seen browsing was compared between areas of low, and moderate or high female 

usage (all sightings for males of each class were pooled). The prediction was not 

supported, as neither dark nor pale adult males were more likely to be found 

browsing whilst outside female core areas than within them (dark males: Χ
2
 = 0.064, 

N = 216, df = 1, P = 0.800; pale males: Χ
2
 = 2.383, N = 216, df = 1, P = 0.123). 

Nonetheless, pale, but not dark, males were more likely to be found browsing when 

alone or in a bachelor group than when with females (pale: Χ
2
 = 4.26, N = 444, df =1, 

P < 0.05; dark: Χ
2
 = 0.125, N = 566, df =1, P = 0.723). Interestingly though, solitary 

adult males (pale and dark combined) were significantly more likely to be found 

standing resting or ruminating while outside the core female areas than within them 

(Χ
2
 = 5.12, N = 98, df = 1, P < 0.05; Figure 5.8).  
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Figure 5.8. Activity of solitary males relative to female core area overlap. 
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5.4.3 Hypothesis 3: Seasonal variation in male movements and habitat use 

5.4.3.1 Home ranges 

Female home ranges did not differ significantly in size between the wet season 

(when a high proportion of conceptions occurred) and dry season (twelve adult 

females seen at least eight times in each season; 100% MCPs: t = 0.130, df = 11, P = 

0.899); both averaged about 80 km
2
 despite one season being longer than the other 

(October to May versus June to September; Figure 5.9). Seasonal ranges overlapped 

for some females, but not others (mean = 0.32, N = 12, range in overlap coefficient: 

0 – 0.78); females that had smaller total home ranges had significantly greater 

overlap coefficients (100% MCPs: Spearman’s rho = -0.581, N = 12, P < 0.05), and 

significantly smaller distances between the arithmetic centres of their seasonal ranges 

(Spearman’s rho = 0.648, N = 12, P < 0.05). Notably, three females that were known 

to have young calves during the study period had relatively high seasonal range 

overlaps (31, 47, and 78%), and short distances between the arithmetic centres of 

their seasonal ranges (mean for these three = 3.8 km, versus a mean of 6.7 km for all 

12 females). 

 

Due to fewer sightings of males overall, there were insufficient data to compare 

seasonal range sizes for males in the same manner. Only one adult male was seen at 

least eight times in both seasons. However, five other adult males were seen on a 

sufficient number of occasions between October and May, and four others between 

June and September (Figure 5.10). Based on these data, male home range sizes also 

did not differ significantly between the two seasons (t = -0.282, df = 9, P = 0.784), 

and were similar in size to those of females (wet season mean = 77.4 km
2
, dry season 

mean = 85.8 km
2
).  

 

It was also not possible to measure seasonal range overlap for males. However, 

within a season, there was considerable overlap between just the five or six male 

seasonal home ranges mapped, especially in the vicinity of waterholes (Figure 5.10). 

It was also clear that some males used distinct seasonal home ranges, as they were 

only sighted within the study area during a short period in both years. Of the 18 adult 

males seen at least ten times over the study period, six were seen only in two to four 
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months of each year and only in three to five different months over the whole study 

period (the median for the number of different months in which individuals were 

seen was seven for females and six for males). These ‘seasonal visitors’ had 

significantly smaller home ranges (all 95% MCPs less than 60 km
2
) than year-round 

residents (mean = 210 km
2
; t = 2.778, df = 16, P < 0.02).  

 

The ranges of each seasonal visitor were similar from one year to the next, and all 

had one waterhole in common between the two years; five of the males used Ombika 

waterhole both in 2004 and 2005, and one used Gemsbokvlakte in both years, 

suggesting some sort of site-fidelity. Seasonal visitors with home ranges that 

overlapped spatially at Ombika were only seen there during five months of 2005 

(April-May and September to November), but did not all overlap temporally. More 

than one seasonal visitor was seen near (within 2 km of) Ombika during two of these 

months (May and October); whereas during three of these months, only one seasonal 

visitor was seen there (April, September, November). However, when at least one 

seasonal visitor was present in the area around Ombika, there were other dark males 

(two to eight individuals) present in four out of the five months, and pale adult males 

present (one to eleven individuals) in every month. In the months that no seasonal 

visitor was present near Ombika, there were also very few (no more than three) other 

adult males present. 
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Figure 5.9. Female seasonal ranges (100% MCPs) for the same 12 females in the wet, higher-

conception-rate season (October-May, top), and the dry, lower-conception-rate season (June-

September, bottom). 
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Figure 5.10. Male seasonal ranges (100% MCPs) for six males in the wet, higher-conception-rate 

season (top), and five males in the dry, lower-conception-rate season (bottom). 
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5.4.3.2 Habitat use and association with females 

Fully dark, sexually mature males (maturity class 6 and above) were significantly 

more likely to be with females during the wet, higher-conception-rate season than 

during the dry, lower-conception-rate season, whereas there was no significant 

difference for younger adult males (classes 4-5: N = 142 sightings, Χ
2
 = 1.565, df = 

1, P = 0.211; classes 6-8: N = 205 sightings, Χ
2
 = 7.977, df = 1, P < 0.005; Figure 

5.11). 
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Figure 5.11. Degree of adult male association with females (% of observations) relative to 

maturity class, for both the higher-conception-rate season (Oct-May) and lower-conception-rate 

season (Jun-Sep). 

 

 

Dark males were also significantly more likely to be in areas of high female usage 

(>5 overlaps) during the wet, higher-conception-rate season (October to December, 

and March to May), than during the dry, lower-conception-rate season (June to 

September: N = 217 sightings, Χ
2
 = 6.615, df = 2, P < 0.02). This relationship was 

less important for pale adult males (N = 130 sightings, Χ
2
 = 3.430, df = 2, P = 0.064). 

Although this relationship could be accounted for by males and females converging 
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on the same preferred foods and habitats within these core areas during the wet 

season, this would not explain the difference between dark and pale males. 

 

In the wet season (October to May), preferences indices (PI) for pale males and 

bachelor groups correlated with PIs of females in female-only groups (rho = 0.846, N 

= 11 habitats, P < 0.005), whereas PIs for dark males did not (rho = 0.405, P = 

0.216). Dark males were occupying the different habitats more uniformly (fewer 

habitats with a PI < 1) during this time than either females or pale males. 

 

In the dry season (June to September), habitat preference indices (PI) of dark males 

(alone or with females) did correlate with PIs of females in female-only groups (rho 

= 0.727, N = 11 habitats, P < 0.05), whereas PIs of solitary pale males and males in 

bachelor groups did not (rho = 0.386, N = 11, P = 0.241). 

 

Habitat preference indices of dark males (alone or with females) did not correlate 

with those of pale males and males in bachelor groups in either the wet season (rho = 

0.413, N = 11, P = 0.207), or the dry season (rho = 0.391, P = 0.234). Specifically, in 

both seasons, lone pale males and males in bachelor groups avoided mopane-

Catophractes shrub savannah (H) less than dark males or females. They also used 

mopane-Acacia nebrownii shrub savannah (J) less than dark males or females in the 

wet season (Figure 5.12), and mopane veld (D) more and acacia veld (E) less than 

dark males or females in the dry season (Figure 5.13).  

 

5.4.3.3 Individual variation and possible exclusion of subordinate males 

Contrary to predictions, preference indices for dark males (alone or with females) 

were not equal to or greater than those of lone pale males and males in bachelor 

groups for all of the habitats with high female densities in each season. Specifically, 

PIs for dark males were considerably lower than those of pale males for mixed 

broadleaf woodland (G) in the wet, higher-conception-rate season (14.81 versus 

26.67), and for A. nebrownii habitats (B and J) in the dry, lower-conception-rate 

season (1.09 and 1.43 respectively, versus 1.66 and 3.19). 
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These discrepancies may have been due to a high degree of individual variation 

among dark males. For example, of ten dark adult males seen on at least five days 

each during the wet season, three were seen in mixed broadleaf woodland (G) on the 

majority of sightings (60-73%), while five were never seen in this habitat. Those 

seen rarely (N = 2) or never in mixed broadleaf woodland were found in a wider 

range of habitats, including mixed thorn veld (F), open plains (A), A. nebrownii 

thickets (B), and acacia veld (E). 

 

Similarly, of nine dark adult males seen on at least five days each during the dry 

season, only one was seen regularly in A. nebrownii habitats B and J (86% of 

sightings), five were seen in these habitats occasionally (14-40% of sightings), and 

three were never seen in these habitats. Those seen rarely or never in A. nebrownii 

habitats, tended to be found predominantly in open plains (A), mixed thorn veld (F), 

or mixed broadleaf woodland (G). Certain males were consistently not found in 

preferred female habitats. For example, one dark male was never seen in mixed 

broadleaf woodland in the wet season or in A. nebrownii habitats in the dry season, 

whereas another was never seen in mixed broadleaf woodland in the wet season, and 

was only once seen in A. nebrownii habitats (one of five sightings) in the dry season. 
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Figure 5.12. Wet, higher-conception-rate season habitat preference indices (PIs) for females 

(light grey bars), dark males alone or with females (black bars), and pale males alone or males 

in bachelor groups (dark grey bars). For a description of the calculation of PIs, see Chapter 3. 

Axis line at PI = 1 corresponds to no preference or avoidance; bars above the line represent 

preference, bars below represent avoidance relative to availability. 
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Figure 5.13. Dry, lower-conception-rate season habitat preference indices for females (light grey 

bars), dark males alone or with females (black bars), and pale males alone or males in bachelor 

groups (dark grey bars). Axis line at PI = 1 corresponds to no preference or avoidance; bars 

above the line represent preference, bars below represent avoidance relative to availability. 
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5.5 Discussion 

5.5.1 Hypothesis 1: Large male ranges 

Estimated home ranges for giraffe in central Etosha NP resembled those recorded in 

Tsavo East NP (Leuthold & Leuthold 1978b), where giraffe densities and typical 

group sizes were similar. Home ranges in Etosha were smaller than those measured 

in the northern Namib desert to the west (Fennessy 2004). This was most likely due 

to the combined effects of the less patchy availability of food, the artificial provision 

of water, and the greater ease with which males were likely to be able to locate mates 

in Etosha when compared to the desert region (Fennessy 2004; Ntumi et al. 2005). It 

must be noted, however, that some home range values may have been slight 

underestimates because they were based on relatively few sightings (Lent & Fike 

2003). 

 

Male home ranges overlapped considerably. Evidence from cumulative 

identifications supported the prediction that females are more sedentary than males, 

who must range further due to their need to search for mates (see also Fennessy 

2004). As predicted, home ranges of dark adult males were also found to be slightly 

larger, and more variable in size, than those of adult females or pale adult males. 

Furthermore, known males were sighted less frequently than known females, 

suggesting that males may move in and out of the study area more often than 

females.  

 

These observations were further supported by the seasonality of sightings of 

individual males. Smaller male home ranges were associated with extended periods 

of absence from the study area (but not fewer sightings). These ‘seasonal visitors’ 

tended to be present in a similar part of the study area at a similar time of year in 

each of the two years. Because they were not sighted throughout the year, it is 

possible that seasonal visitors in fact use home ranges of a similar size to those that 

remained within the study area year-round. This observation highlights the 

shortcomings of using field observations to collect GPS data compared to using GPS 

collars (e.g. Fennessy 2004).  
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5.5.2 Hypothesis 2: Male movements and activity in relation to areas of high 

female usage 

5.5.2.1 Male movements relative to female core areas, and association with females 

As predicted, a strong link was found between male movements and association with 

females. Firstly, association with females varied with male maturity, as was 

expected. Mature males tended to spend less time associating with females than sub-

adult or young adult males. Secondly, association with females related to differential 

use of the study area. Males were more likely to associate with females in certain 

areas (core areas of female use) than others. Lastly, use of the study area differed 

between individuals. Fully mature males that ranged over large areas and remained 

within the study area year-round spent a large proportion of their time in areas of low 

female usage, and were often seen alone. Conversely, seasonal visitors and males 

with smaller home ranges tended to be found in larger groups, spent more time in 

areas of high female usage, and were more likely to be seen with females.  

 

These inter-individual differences in male ranging behaviour and social associations 

are suggestive of within-population variation in mating strategies, as has been found 

in a number of other ungulate species (e.g. Gosling 1991; Carranza et al. 1996; 

Coltman et al. 1999; Thirgood et al. 1999; Isvaran 2005). Variation in mating 

strategies usually suggests that there are different costs and benefits of adopting the 

different strategies, and thus different optimal trade-off points, which may vary with 

environmental and social conditions, or with male age or social dominance (Dunbar 

1982; Gosling 1986). For example, according to life-history theory, older males, 

nearing the end of their reproductive life, may be more likely to adopt a high-risk, 

high-benefit (i.e. high reproductive success) strategy, whereas young males should 

prefer a low-risk, low-benefit strategy that does not reduce their potential for 

reproduction in later life (Dunbar 1982; McElligott & Hayden 2000). Alternatively, 

young or lower ranking males may be forced to adopt more opportunistic strategies 

with a low probability of reproductive success due to competitive exclusion by 

mature, dominant males (Dunbar 1982; Thirgood et al. 1999; McElligott et al. 2002). 

In these cases, their mating strategy can be described as ‘making the best of a bad 

job’ (Dunbar 1982).  
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Some males appear to adopt a year-round, but intermittent, following strategy, 

covering a large area. Others appear to adopt a seasonally variable strategy with 

restricted movement and a high degree of association with females during the time 

they are in the study area. This points toward an area-restricted search strategy (Ims 

1990), and possibly temporary localised defence of females (e.g. van der Jeugd & 

Prins 2000), in areas of high and predictable female usage. This seasonal strategy 

might be favoured by the most dominant males, who could enter areas of high female 

density with a good chance of encountering receptive females, and high likelihood of 

being able to displace any potential competitors they encounter (e.g. Parker 1974; 

Ims 1990; Forchhammer & Boomsma 1998; Isaac 2005). However, these males 

would probably have to trade off the benefit of encountering greater numbers of 

potentially receptive females with an increased risk of encountering and competing 

with other dominant males (Ims 1988b).  

 

Males of low competitive ability adopting this strategy would face a high risk of not 

gaining any reproductive opportunities, if dominant males were already present in 

the female core areas on their arrival. Instead, subordinate males might benefit from 

a low-risk, low-benefit, opportunistic strategy, involving more extensive roving in 

and out of female core areas year-round, attempting to gain mating opportunities 

upon chance encounters with undefended receptive females (e.g. Fisher & Lara 

1999). These different strategies likely constitute two extremes of a continuum 

(Gosling 1991; Thirgood et al. 1999). Unfortunately, data on dominance interactions 

between males for which home ranges could be estimated were insufficient to test 

whether males with smaller or seasonal ranges were indeed more dominant. 

 

5.5.2.2 Male activity relative to core areas  

Consortship and mate guarding have been reported to reduce male foraging time 

(Leuthold & Leuthold 1978a; Pratt & Anderson 1985). Therefore, it was predicted 

that males would spend less time browsing, and more time in other activities (e.g. 

walking) within areas with high densities of females (e.g. Turner et al. 2005). Whilst 

the evidence did not directly support this prediction, lone adult males did appear to 

spend less time standing ruminating whilst inside the core areas, and slightly more 
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time walking. This may be due to higher levels of male competition within these 

areas, which forces sexually active males to keep moving, either to avoid 

competition or to seek out other undefended females. Therefore, periodically leaving 

the core areas might provide males with an opportunity to rest and regain body 

condition (Turner et al. 2005). It is assumed that many of the males that appeared to 

leave the study area may have moved into the surrounding mopane veld (found to the 

east, south-east, south-west and west of the study area), a habitat used more by 

males, particularly bachelor groups. 

 

5.5.3 Hypothesis 3: Seasonal variation in male movements and habitat use 

Male movements and habitat use were expected to differ between the high and low-

conception-rate seasons, as a result not only of differences in food availability, but 

also as a result of differences in the detectability, and potential for monopolisation, of 

females. It was predicted that female habitat preferences would affect the movements 

of dark males most, under the assumption that mate-searching and reproductive 

effort should be greater in more mature males than young adult males (e.g. Mysterud 

et al. 2003). Therefore, it was expected that dark males would select habitats where 

females were aggregating, but pale males would not.  

 

During the wet, higher-conception-rate season, habitat preferences of dark males 

differed to those of pale males and males in bachelor groups, as predicted, but 

solitary pale males and males in bachelor groups were showing similar habitat 

preferences to females, whereas dark males were not. Furthermore, during this 

season, the preferred female habitat (mixed broadleaf woodland) actually ranked 

lower for dark males than pale males. This was contrary to expectations, and could 

possibly be explained by the considerable variation among habitat preferences of 

individual males, with some mature (dark) males predominantly using mixed 

broadleaf woodland, where female densities were greatest, while others were found 

in a wider diversity of habitats.  

 

It is proposed that these individual differences correspond with differences in male 

status, with dominant dark males restricting their search efforts to female 
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concentration areas, and subordinate dark males avoiding these habitats, possibly to 

avoid the risk of increased encounters and conflicts with other dark males in these 

areas (e.g. Sanchez-Prieto et al. 2004). As a result, these dark males are more likely 

to be found in habitats less favoured by females. Younger, pale males, on the other 

hand may continue to use these habitats as they are tolerated by dark males, maybe 

seen to pose a relatively low ‘threat’, and as such do not face high levels of 

challenges from dark males (e.g. Senar & Camerino 1998; Parker & Ligon 2002). As 

such, whereas dominant males would have a high chance of encountering large 

numbers of females and monopolising mating opportunities within female 

concentration areas, subordinates would have to rely on chance encounters with 

smaller groups of females in less preferred habitats, away from competitors (e.g. 

Fisher & Lara 1999). 

 

In the dry, lower-conception-rate season, solitary pale males and males in bachelor 

groups were again selecting different habitats (e.g. habitats rich in mopane) to dark 

males, and to females, whereas dark males were showing similar habitat preferences 

to females. This suggests that, as expected, dark males leave their preferred habitats 

and move into habitats preferred by females in order to follow them throughout the 

year. In the dry season, there was also variation between individual dark males, with 

one dark male being seen almost exclusively in A. nebrownii habitats, where 

estimated female densities were high, and some dark males avoiding these habitats 

entirely. Consequently these habitats ranked lower, in terms of habitat selection 

ranks, for dark males than for pale males. 

 

Males clearly follow females and compete to exclude competitors from mating 

throughout the year, with a few dark males being apparently successful in 

maintaining access to female aggregation areas, others being consistently 

unsuccessful. It is predicted that levels of intra-sexual competition will be greater 

during the wet, higher-conception-rate season than during the dry season: during the 

wet season, female densities were very high in a highly spatially restricted habitat 

(mixed broadleaf woodland). Such a predictably clumped spatial distribution of 

females, throughout the wet season, means that searching for potential mates in this 

habitat should be very profitable for males as there will be a high likelihood of 
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encountering a receptive female (Ims 1990). As a result, sexually active males are 

likely to face increased intruder pressure (Ims 1988a), probably resulting in increased 

levels of competition (Sanchez-Prieto et al. 2004), and potentially only the most 

dominant males securing access to mates ('priority of access' model, Altmann 1962). 

Effects of female spatial distribution on male intra-sexual competition will be 

explored in the following chapter. 
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6 MALE INTRA-SEXUAL COMPETITION AND 

MONOPOLISATION OF FEMALES 

 

6.1 Introduction 

6.1.1 Competitor assessment and signals of status 

On encountering an adversary in competition for a limited resource (e.g. mates), a 

male must make a strategic decision based on the behaviour of the opponent and any 

asymmetry that may exist between the two males. Specifically, in response to a 

display by an opponent, a male must decide whether to ‘retreat’ or to ‘escalate’ to 

combat (Smith 1982). Since escalated contests can be costly (in terms of possible 

injuries), it would benefit participants of agonistic interactions to avoid unnecessary 

escalated contests (Smith 1982).  

 

Most agonistic interactions are asymmetric, where the probability of each male 

winning depends on existing differences between the competitors (Parker & 

Rubenstein 1981). For example, one male may have greater competitive ability (or 

resource holding power, RHP, Parker 1974; Smith 1982) due to greater age or size, 

or might have more to gain from winning (or more to lose from losing) the contest 

(i.e. pay-off asymmetry, Smith & Parker 1976). If such asymmetries can be 

perceived at the start of an agonistic interaction, for example during the initial 

display, then they should inform the decision to retreat or to escalate (Smith 1982). 

This competitor assessment may result in a strategy involving the rule of the type: 

‘display if larger; retreat if smaller’ (Smith 1982).  

 

However, if the available information regarding relative competitive ability is 

imperfect, or if one male misjudges his status relative to that of his opponent (e.g., 

both assume they are the larger male as they are very closely matched), then an 

escalated contest is likely to occur (Smith & Parker 1976; Parker & Rubenstein 1981; 

Smith 1982). Where competitor assessment is reliable, and injury risks associated 

with escalated fights high, then escalated contests should be rare (Smith & Parker 

1976). However, contests may also escalate if there are contradictory effects of 
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differences in RHP and differences in pay-offs, for example if the smaller male is the 

current resource-holder, and therefore values the resource more than the ‘intruder’ 

(Parker & Rubenstein 1981). 

 

Males that are known to each other may also be able to rely on an individual 

reference for dominance, based on prior experience, to avoid escalated contests 

(Parker & Rubenstein 1981; Gosling 1986). However, since males may not always 

be familiar with their opponent, it should generally benefit males to convey 

information about their competitive ability, and to respond to the information they 

receive (Smith 1982). This should result in selection for reliable signals of status, so 

long as it is costly to acquire high RHP and to convey false information (i.e. produce 

a false status signal) (Smith 1982). One means of preventing ‘cheating’ is a social 

mechanism, whereby ‘cheats’ are repeatedly challenged and exposed to high fighting 

risks (e.g. Rohwer & Rohwer 1978; Gerald 2000; Parker & Ligon 2002). 

Consequently, the outcome of dyadic contests should reflect differences between the 

two males in the strength of the status signal (e.g. Gerald 2000).  

 

The evolution of giraffe body size and shape, and horns and bony exotoses on the 

head have been attributed to sexual selection (Simmons & Scheepers 1996). 

Specifically, giraffes fight using their neck and head, so a larger male giraffe, with 

more developed neck musculature and skull weaponry would have a distinct 

advantage over a less endowed male in intra-sexual competition. Here, I postulate 

that although it may not confer any direct benefit in combat, dark coat colouration 

may be selected as an honest signal of male status to both potential competitors and 

potential mates. Since male giraffe have large home ranges, group composition is 

fluid, and the study population large, encounters are likely to frequently involve 

unfamiliar males. Furthermore, escalated necking fights can potentially be very 

costly (see Section 6.1.2). Therefore, male giraffe would benefit from being able to 

assess adversaries’ potential competitive ability using a reliable signal of status, in 

order to avoid escalating to costly fights (e.g. Rohwer & Rohwer 1978; Smith 1982). 
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6.1.2 Male intra-sexual competition in giraffe: displacements and necking 

6.1.2.1 Necking 

The behaviour most commonly associated with male competition in the giraffe is 

generally known as “necking”. This term was first used by Innis in her early, 

extensive paper on giraffe behaviour to describe the gentle rubbing of the neck of 

one animal against that of another (Innis 1958). The term has since been extended to 

include more violent usage of the neck and head in male-male interactions (Coe 

1967). Necking is often preceded by and interspersed with posturing, including 

standing tall, arching the neck and pointing the head towards the sky, walking stiff-

legged, or both giraffe parallel-walking (Innis 1958, LM Gosling pers. comm.; Estes 

1999). Submission during or following a bout of necking may be demonstrated by 

the subordinate male jumping aside, yielding to the opponent and moving away, 

lowering its head and ears, or pulling the jaw in towards the neck (Estes 1999). 

Necking is usually observed at all times of the day, and throughout all months of the 

year (Innis 1958). Two types of necking behaviour may be distinguished, albeit 

somewhat arbitrarily (Innis 1958; Pratt & Anderson 1985). 

 

6.1.2.2 Sparring 

The first, “sparring”, has been described as occurring only in all-male herds between 

males of similar or of different age (Coe 1967), though most frequently between 

young, immature males (Leuthold 1979; Pratt & Anderson 1985). Le Pendu et al. 

found that young males exchanged agonistic interactions with peers 23 times more 

than expected assuming an equal distribution of interactions between classes, and 

that sparring was particularly characteristic of young adult males of around 5 years of 

age (Le Pendu et al. 2000). Sparring is comparatively ritualised and slow, and is 

rarely violent. Sparring has been described as a sexuo-social bonding mechanism 

(Coe 1967) as it has often been seen in association with males attempting to mount 

other males (Innis 1958; Le Pendu et al. 2000). It has also been described as play-

fighting, possibly as a mechanism for developing skills that will be needed later in 

life to determine the right to breed (Pratt & Anderson 1985). However, more 

commonly, the role of necking is attributed to the establishing of dominance 
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relationships between individuals (Dagg & Foster 1982; Pratt & Anderson 1982). 

More specifically, these low-risk sparring contests are likely to serve maturing males 

as a means of testing their own strength and competitive ability, relative to that of 

others (e.g. Parker & Rubenstein 1981). 

 

6.1.2.3 Necking fights 

The second, rarer type of necking behaviour, “fighting” (Dagg & Foster 1982; Pratt 

& Anderson 1985) is most likely to occur in direct competition for a resource (e.g. 

females), where the competitive asymmetry between mature males cannot be 

accurately assessed by one or both opponents, or where there is a conflict between 

asymmetries in competitive ability and pay-offs (see Section 6.1.1 above). Such high 

intensity necking is often initiated when a mature male approaches a herd of females 

accompanied by another mature male, and neither male immediately defers by 

running off (Leuthold 1979). Escalated fights tend to begin and end abruptly, and 

involve heavy and frequent blows, often delivered simultaneously by both 

contestants (Pratt & Anderson 1985). Although neither Foster (1966), Coe (1967) nor 

Leuthold (1979) observed any violent fights, intense necking contests have been 

reported where the losing male was knocked to the ground or killed (Dagg & Foster 

1982; Simmons & Scheepers 1996). 

 

6.1.2.4 Displacements 

Where there is a clear competitive asymmetry between two competing mature males, 

the dominant male is able to displace the subordinate male through display only: the 

dominant male walks towards the subordinate male while adopting a threatening 

‘proud’ posture, causing him to retreat (Pratt & Anderson 1982). By observing such 

dyadic interactions (displacements) between males, Pratt & Anderson (1985) were 

able to establish that the success of one male in displacing another reflected 

differences between the males in “class”, as determined by age, neck and horn size 

and the presence or absence of bony exotoses on the skull.  
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6.1.3 Courtship of females 

Male giraffe are physically sexually mature from the age of about four years (Dagg 

& Foster 1982) but are unlikely to be reproductively active until the age of about 

seven (Estes 1991). At any one moment, male giraffe have a relatively low 

probability of encountering a sexually receptive female (Bercovitch et al. 2006). 

Despite breeding peaks in some populations, female giraffe breed all year round, but 

are pregnant for 15 out of every 19 to 24 months and are receptive for at most four 

days every two weeks (Dagg & Foster 1982; Bercovitch et al. 2006).  

 

Moreover, as for roving, polygynous males of other species, searching for and 

courting females is likely to be energetically expensive, reduces time available for 

foraging, and in addition, competition between males for mates can be risky (Isaac 

2005; Bercovitch et al. 2006; Pelletier et al. 2006). Therefore, it is important that 

males are able to accurately identify females in oestrus and restrict their mating 

efforts to receptive females only, and also that females can signal their receptivity to 

potential mates (Fisher & Lara 1999; Bercovitch et al. 2006). In giraffe, this 

information may be conveyed by changes in the hormone composition of the urine of 

females with the oestrus cycle (Innis 1958; Bercovitch et al. 2006).  

 

Although observations of giraffe matings are very rare (Berry 1973; Leuthold 1979), 

urine-testing is a commonly observed courtship behaviour throughout the year (Innis 

1958; Pratt & Anderson 1985). It involves the female volunteering to produce urine 

in response to investigation of her anogenital region by the male (Figure 6.1), and the 

subsequent tasting of the urine by the male with flehmen, characterised by raising of 

the head and curling back of the lips (Innis 1958; Pratt & Anderson 1985). Females 

may choose whether or not to produce urine for the male to test, so this behaviour 

can be used as an indicator of female mate choice (Pratt & Anderson 1985). Pratt and 

Anderson (1985) found that mature males were more attentive of females and more 

successful at eliciting urination by females than the younger males. Specific females 

were also observed to preferentially urinate for large males relative to young males 

(Pratt & Anderson 1985). However, Bercovitch et al. (2006) suggested that female 

choice might not be a major factor influencing male reproductive success, because of 
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the potential risks to a female of missing a mating opportunity and postponing 

reproduction. 

 

Figure 6.1. Young adult male sampling urine of a female. 

 

 

Priority of access to receptive females is likely to be determined by individual male 

competitive status (Altmann 1962; Leuthold 1979; Dagg & Foster 1982; Simmons & 

Scheepers 1996). A male successful in securing access to a female in oestrus will 

focus his attention on her and proceed to court her, following her closely for up to 

two days until mating is achieved (Leuthold 1979; Pratt & Anderson 1985). Male 

foraging time is reduced during these consortships, which could be considered as 

tests of male endurance (Leuthold & Leuthold 1978b; Pratt & Anderson 1985; 

Bercovitch et al. 2006). The prolonged courtship period also provides the 

opportunity for a more dominant male to displace the current ‘suitor’ and take over 

the consortship before mating has been achieved, thus potentially increasing the 

relative importance of direct conflict between males (Pratt & Anderson 1985; Fisher 

& Lara 1999).  
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Thus, male reproductive success will be affected by a combination of indirect male 

competition (mate searching, or ‘scramble competition’ (e.g. Schwagmeyer 1988)), 

direct male competition involving contests for dominance that in turn determines 

reproductive access (i.e. ‘priority of access’ (Altmann 1962)), and possibly 

endurance rivalry during consortships (Bercovitch et al. 2006).  

 

If the courted female is receptive to being mated, she will eventually stand still and 

braced, enabling the male to mount her (Innis 1958; Estes 1999). If she is not 

receptive to being mated, she will continually move away from the male when he 

tries to mount her (Dagg & Foster 1982). Thus, female cooperation is essential for a 

female to be successfully courted and mated. Larger, mature males also appear to be 

more successful than younger males in this stage of courtship (Pratt & Anderson 

1985). 

 

6.1.4 Waterholes as focal points for encountering potential mates  

As has already been demonstrated (Chapter 3), waterhole use is driven by rainfall 

and field water availability. Perennial waterholes were used rarely while field water 

was available (November or December to May or June), and waterhole use increased 

from the end of the wet season (May) to the end of the dry season (October or 

November).  

 

When perennial waterholes are used regularly, they will likely play an important role 

in determining the predictability of female movements. Predictable clumping of 

females at, or near, waterholes should enhance male ability to locate females (e.g. 

Ims 1990). Dominant males may use this to their advantage by restricting their 

search behaviour to areas near waterholes (Ims 1990), and competing to monopolise 

access to females at waterholes. For example, Ritter and Bednekoff (1995) observed 

that in the Nxai Pan National Park in Botswana, artificial dry-season water provision 

appeared to influence sexual selection in springbok. Specifically, they noted that 

female springbok (Antidorcas marsupialis) were concentrated in a limited area 

around the single waterhole in the Park. This enabled a few dominant males to gain a 

monopoly on territories around the waterhole and thus on females.  
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Artificial provisioning of food can produce a similar effect, as shown by Carranza et 

al. (1995) and Sanchez-Prieto et al. (2004) in red deer. Highly clumped provisioning 

of supplemental food caused increases in local density of females and in female 

group size. This led to local increases in male-male interactions (Sanchez-Prieto et 

al. 2004), and in one experiment even resulted in defence of territories at or near the 

supplemental food resource by males that previously defended harems (Carranza et 

al. 1995). Perennial waterholes in Etosha may serve a similar role in predictably 

concentrating females, and locally affecting the form and intensity of male intra-

sexual competition. Therefore, they are expected to serve as a focal point for males 

to intercept and compete for females, especially during the dry season, when 

predictability of occurrence of females at waterholes is greatest. 

 

6.1.5 Reproductive skew 

Reproductive skew, or differential reproductive success, can be defined as “the 

unequal distribution of reproductive opportunities across individuals in a population, 

with a disproportionate share of matings being acquired by a small subset of 

individuals” (Alberts et al. 2003). This variance in mating success, combined with 

the breeding sex ratio, generally defines the mating system of a population (Parker & 

Waite 1997).  

 

The degree of reproductive skew among each sex is determined by the type and 

intensity of intra-sexual competition for mating opportunities. In mammals, male 

variance in reproductive success tends to be greater than that of females, because 

females are restricted in their reproductive output by the energetic and time costs of 

gestation (Trivers 1972; Clutton-Brock et al. 1982c). In monogamous and truly 

promiscuous mating systems, both sexes experience very low variance in 

reproductive success (Parker & Waite 1997). In a highly polygynous mating system, 

female variance in reproductive success is also low, but male reproductive success is 

highly skewed as a few males mate with many females and some males do not mate 

at all (Parker & Waite 1997; Anthony & Blumstein 2000). The environmental 

potential for mate monopolisation (Emlen & Oring 1977) is determined primarily by 
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the distribution of receptive females in space and time (Trivers 1972, see also 

Chapter 1). Specifically, male variance in reproductive success tends to increase with 

increasing asynchrony in female receptivity, and an increasingly clumped and 

predictable spatial distribution of females (Emlen & Oring 1977; Ims 1988a).  

 

In polygynous species with dominance hierarchies, male reproductive success may 

be extremely skewed in favour of the most dominant males. For example, in a small 

group of black rhinos in Zimbabwe, 52% (10 of 19) of young born in the study area 

over 10 years could be attributed to a single male (Garnier et al. 2001). Similarly, 

genetic evidence of highly skewed male reproductive success was also demonstrated 

for a large population of fallow deer by Say et al. (2003). Their study revealed that 

the most dominant of 21 males sired between 34% and 60% of fawns in each season 

(a total of 321 fawns over 3 years). 

 

The difference between the sexes in variance in reproductive success, which is 

particularly characteristic of polygynous mating systems, is clearly demonstrated by 

the results of a study of wood bison (Bison bison athabascae) in Canada (Wilson et 

al. 2002). This study reported that for 317 calves born over a period of four years, 

males sired from zero to 24 each, with a mean of 3.5 and a variance of 14.9, whereas 

female reproductive success ranged from 0 to 4 calves, with a mean of 2.7 and a 

variance of only 1.0 (Wilson et al. 2002).  

 

The giraffe mating system consists of dominance-driven polygyny with probable 

promiscuity among females (Bercovitch et al. 2006). Female variance in 

reproductive variance should be very low, as at most they can produce one calf every 

18 months, whereas male reproductive success should be skewed in favour of the 

more dominant males. The greater the ability of the dominant males to monopolise 

access to receptive females, the greater will be the reproductive skew. Differential 

male reproductive success will depend on a number of abilities: 

• mate detection success: the ability to locate and identify receptive females 

with minimum search cost (i.e. scramble competition), 
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• ability to dominate other males in order to gain access to potentially oestrus 

females, and secure mating opportunities with oestrus females (direct contest 

competition), 

• reproductive tenure: the duration that a male is able to remain dominant and 

monopolise mating opportunities (endurance rivalry), 

• ability to gain the cooperation of the female to produce urine for testing and 

to mate (female mate choice, possibly also coercion), 

• male fecundity (possibly including sperm competition) 

• male survivability (reproductive life-span)  

(Altmann 1962; Clutton-Brock et al. 1982a; Smith 1982; Ims 1988a; Ims 1990; 

Andersson & Iwasa 1996; McElligott et al. 2002; Bercovitch et al. 2006; 

Engelhardt et al. 2006). 

It is assumed that all of these should increase with male maturity, dominance, and 

genetic or phenotypic quality (e.g. Ims 1988a; McElligott et al. 2002). 

 

6.1.6 Surrogates of reproductive success 

When assessing differential reproductive success, it is often possible to estimate, 

approximately, individual male mating success from the level of participation in 

copulations (e.g. Wickings et al. 1993; Hirotani 1994; Say et al. 2003), unless 

alternative ‘sneaky’ mating tactics or female promiscuity are in operation (e.g. 

Coltman et al. 1999). However, in species where copulations are rarely seen, it may 

be necessary to derive surrogates of reproductive success from behavioural traits 

such as dominance status, behaviour patterns such as tending bonds, or the number of 

females a male associates with (Owen-Smith 1977; Clutton-Brock et al. 1982a). It is 

extremely rare to observe copulations in giraffe (Pratt & Anderson 1985). Therefore, 

to estimate the potential for monopolisation of mates (and thus reproductive skew) in 

the study population, without relying on genetic information alone, it will be 

necessary to generate an indicator of probable male potential for mating success 

using behavioural and social indicators based on the traits outlined above (section 

6.1.5). 
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6.2 Aims 

This chapter aims to test the following hypotheses and predictions: 

Hypothesis 1: Dark coat colour in males functions as an honest signal of status and 

potential competitive ability. Thus, I predict that: 

o Dark coat colouration should develop with maturity, and only in males. 

o Differences in male coat colouration should be biologically significant and 

correspond to different stages of social maturity. 

o If coat colour is a reliable indicator of competitive ability, then darker adult 

males should be larger than paler adult males. 

o Differences in male coat colouration should reliably predict the outcome of 

dyadic agonistic interactions.  

o Changes in coat colouration should correspond with changes in male status. 

o Females should respond to differences in male coat colouration when choosing 

whether to provide urine upon solicitation by males for receptivity testing. 

o Darker males should experience greater success in courtship and mating. 

Hypothesis 2: Perennial waterholes serve as focal points for encounters, and 

consequently interactions between males and females (mating interactions) and 

among males (agonistic interactions). The predictability of occurrence of females at 

perennial waterholes offers dominant males an opportunity to monopolise access to 

females, and possibly temporarily defend waterholes. Thus, I predict that: 

o The rate of new encounters will be greater at perennial waterholes than at 

locations away from waterholes. 

o The rate of mating and agonistic interactions will also be greater at waterholes 

than at locations away from waterholes. 

o These effects will be greater during the dry than during the wet season, as 

females occur more predictably at perennial waterholes during the dry season 

(see Chapter 3). 

o Consequently, consortships will be observed closer to waterholes during the dry 

season, as they are more likely to be initiated at waterholes during the dry season 

than the wet season. 

o During the dry season, dominant males will compete with greater intensity to 

monopolise access to females at waterholes. 
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Hypothesis 3: Male competition varies seasonally as a result of seasonal variation in 

size and predictability of female aggregations, and seasonal variation in the 

proportion of females that are receptive (due to the peak breeding season, see 

Chapter 4). Thus, I predict that: 

o Intensity of competition between dark males will differ in degree between the 

wet, high-conception-rate season (October to May) and the drier, low-

conception-rate season (June to September). 

Hypothesis 4: Due to a relatively predictable occurrence of female aggregations in 

certain habitats, and at waterholes, at least during part of the year, dominant males 

can potentially monopolise access to receptive females, excluding subordinate males 

from mating, resulting in reproductive success skewed towards a relatively small 

number of dominant (dark) males. Thus, I predict that: 

o Access to females for courtship and mating will be highly skewed towards dark 

males, and will also vary considerably among dark males.  
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6.3 Methods 

6.3.1 Relationship between coat colour and behaviour 

Differences in coat colour between participants of different social interactions, and 

between successful and unsuccessful males in attempts to elicit urination by females, 

were all tested using the Chi-square test for independence, or where expected values 

were too small (<5), the contingency coefficient was used instead.  The relationship 

between participant coat colour and the outcome of displacements was tested using 

the Mann-Whitney U test, by comparing the differences in coat colour between the 

winner and loser (three categories: darker, similar or lighter) with a random 

distribution of outcomes based on the actual coat colour differences of all the pairs of 

males interacting. Seasonal differences in the coat colour of participants in agonistic 

or mating interactions, and the type of interaction that males were involved in, were 

also tested using the Chi-square test for independence, or the contingency coefficient 

where expected frequencies were low. 

 

6.3.2 Definition of ‘new encounter’ and interaction rates 

A ‘new encounter’ was defined as a pair of giraffe that were previously more than 1 

km away from each other and not visible to one another, which subsequently came 

together, through the movement of one or both individuals, to at least within visual 

range of each other, often approaching the encounter location (e.g. a waterhole) from 

different directions. It was assumed that such pairs of individuals were not 

associating in a group prior to the encounter. These new encounters were further 

divided into new male-male encounters (two males coming together) and new male-

female encounters (a male and a female coming together). Thus if a group of three 

males approached a male and female at a waterhole, three new male-male encounters 

and three new male-female encounters would be recorded, as all three new males 

could potentially interact with the male already present and with the female. The new 

encounter rate was defined as the number of such new encounters per 100 hours of 

observation. 
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The rates of agonistic and mating interaction (see sections 2.2.6.2 and 2.2.6.3 for 

classification of interaction types) were defined as the number of interactions (the 

total, or sub-totals of each interaction class) recorded per 100 hours of observation 

during focal watches. All analyses of focal watch data were carried out after pooling 

focal watches by focal subject type (female, dark adult male, pale adult male), 

location (waterhole, non-waterhole), or season (dry, wet). Differences between 

waterhole and non-waterhole focal watches in new encounter and interaction rates 

were tested using the Chi-square test for independence, or the contingency 

coefficient where expected frequencies were low. Spatial (waterhole versus non 

waterhole) differences in nearest neighbour type were also tested using the Chi-

square test for independence. Differences between waterhole and non-waterhole 

watches in potentially confounding variables, such as focal watch duration, group 

size and visibility (mean number of giraffe seen divided by total number of giraffe 

known to be present) were tested using the Mann-Whitney U test.  
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6.4 Results 

6.4.1 Hypothesis 1: Dark male coat colour as a status signal 

6.4.1.1 Coat colour and age 

Male giraffe continue to grow beyond sexual maturity (Foster & Dagg 1972; Pellew 

1983b). Therefore height gives a rough idea of relative age, and renders it possible to 

distinguish sub-adults from young-adults, and young adults from mature adults. 

Among fully mature adults, however, height is likely to become a less reliable 

indicator of age, as male height tends towards an asymptote (Foster & Dagg 1972; 

Pellew 1983b). 

 

To investigate whether there was a relationship between male coat colour and 

maturity classes, heights were compared to coat colour category for those males 

measured using the photographic technique. For this sample of males (N = 26), age, 

maturity and colour categories corresponded with estimated heights (rounded to the 

nearest 5 cm) as follows: 

 

Age category 
Colour 

category 

Maturity 

class 
Min. height (m) Max. height (m) 

Juvenile Any 0 1.95 3.15 

Sub-adult 1 or 2 1-2 3.15 3.75 

Pale adult 1 or 2 3 3.75 4.15 

Pale adult 1 or 2 4 4.15 4.75 

Dark adult 3 5-7 4.45 (one 4.20) 4.65 

Dark adult 4 7-8 4.45 4.60 

 

Thus, on the basis of the age-class classification used here, sub-adults measured less 

than 3.75 m, young (pale) adults at least 4.15 m, and dark adults generally at least 

4.45 m. Due to the small variation in height among fully mature males, there was no 

significant difference in height between males of colour category three and category 

four (Kolmogorov Smirnov test: Z = 0.798, N = 11, P = 0.548). Heights of males of 

category three and four covered similar ranges (category 3 range: 4.45 - 4.62, N = 4; 

category 4 range: 4.46 - 4.66, N = 7), with the exception of one category three male 

of 4.18 m. Estimated heights of pale adult males overlapped with heights of dark 



Chapter 6. Male intra-sexual competition  155 

   

males. However, as expected, dark males were significantly taller than pale adult 

males (Z = 1.706, N = 22, P < 0.01; Figure 6.2).  
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Figure 6.2. Mean estimated heights for adult males of the different colour categories. 

 

 

Males in Etosha can acquire dark (category 3) colouration by the age of eight or nine 

years (based on the estimated age of a deceased dark male, aged according to 

dentition (Hall-Martin 1976)). However, a few pale males appeared at least this old 

(e.g. M205). The transition from pale to dark colouration was observed in several 

adult males during the two field seasons, and based on horn development these 

appeared slightly younger than the deceased male. So development of dark 

colouration seems to begin typically once males have reached adult height (c. 4.15 

m), after sexual maturation and near the age at which males become reproductively 

active (six or seven years), although it may occur later in some males than in others. 
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The few dark-coloured adult females were all at least 4.0 m in height, whereas 

estimated heights of pale adult females ranged from 3.65 m up to the maximum 

female estimate (4.20 m). One of the three giraffe carcasses found during the field 

period was of a dark female. Based on dentition (Hall-Martin 1976), her age was 

estimated to be over 20 years. 

 

6.4.1.2 Coat colour and social behaviour 

Displacements were the most commonly observed type of agonistic interaction (N = 

55) followed by mild necking (N = 30), then moderate necking (N = 8). Mild 

necking often led to moderate necking (in which case an observation of moderate 

necking was recorded), but neither led to intense necking fights. Only three such 

fights were observed (see Appendix 2 for details). These all began in the same 

manner as many displacements, with one male approaching another in a ‘proud’ 

posture, only instead of retreating, the second male responded in kind. Once within 

ten metres of each other, the males commenced a parallel walk, then approached 

each other close enough to lean against one another, then abruptly began swinging 

very heavy blows at each other while attempting to push each other sideways.  

 

These necking fights ended with the winner walking briskly in a ‘proud’ posture 

behind the retreating loser. In all three cases, the fight took place in the presence of 

females, and the ‘winner’ succeeded in securing access to females that were 

previously with the ‘loser’ of the interaction. One third of mild necking interactions 

occurred in the absence of females, whereas females were present on all eight 

instances of moderate necking. Mild and moderate necking sometimes lasted up to 

20 minutes, with frequent pauses, whereas the contact part of each necking fight was 

very brief, lasting less than one minute, with blows delivered almost without pause. 

  

To test the predicted relationship between coat colour and social maturity, agonistic 

interactions were related to the coat colour of the participants. There was a highly 

significant association between the type of agonistic interaction and the coat colour 

of the participants (Contingency coefficient = 0.665 N = 185, P < 0.0001; Figure 

6.3). All necking fights involved pairs of dark adult males. All but two of the 56 
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observed displacements involved adult males only. The majority (88%) involved at 

least one dark male, and half of these involved a pair of dark males. Conversely, all 

mild and moderate necking interactions involved at least one pale adult male, and 

26% involved a sub-adult male. With one exception, dark males were never seen to 

partake in mild or moderate necking.  

 

Necking was not restricted to male-only groups (e.g. Coe 1967); females were absent 

in less than a quarter of cases of mild or moderate necking, and outnumbered males 

on almost one-third of occasions. Necking tended to occur in groups with relatively 

large numbers of pale males when compared to all sightings of groups comprising at 

least two pale males (median for interactions = 3.0, median for all sightings = 2.0, 

Mann-Whitney U = 2644.5, N = 246, P < 0.005). Males were never observed to 

mount one another during this study (e.g. Innis 1958), although this behaviour was 

seen once between two adult females apparently competing over access to a small 

water source. 
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Figure 6.3. Combinations of bulls observed in the different types of agonistic interactions (Dark 

bull = patch colour category 3 or 4; Pale bull = patch colour category 1 or 2).  
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6.4.1.3 Coat colour and success in agonistic interactions 

To test whether coat colour is a reliable indicator of competitive ability, I examined 

the difference in coat colour category, and in relative discernable coat colour 

darkness, between the winner and loser of all dyadic interactions with a clear 

directional outcome. It was almost always possible to determine the directional 

outcome of displacements, as the subordinate male always turned or moved away 

from the dominant ‘aggressor’. The directional outcome of mild or moderate necking 

interactions was more difficult to judge as the interaction often ended with neither 

male moving away, or both moving away simultaneously. Unfortunately, it was 

impossible to control for the effects of age in this analysis, due to the difficulties of 

accurately ageing fully mature, dark giraffe (see section 6.4.1.1). 

 

As expected, the outcomes of displacement interactions and necking fights were 

significantly biased in favour of the darker male (Figure 6.4). The coat colour of the 

‘winner’ was similar to or darker than that of the ‘loser’ in 85% of such interactions 

(comparison with a random distribution of outcomes; Mann-Whitney U = 794.5, N = 

48, P < 0.005). The paler male was never the winner when more than four females 

were present. When restricted to interactions involving only dark males, the winner 

was still similar to or darker than the loser in 90% of displacements (Mann-Whitney 

U = 135, N = 20, P = 0.057).  

 

The winner of the three observed necking fights was also the darker of the two 

males, although in all three cases, both males were assigned to the same colour 

category. However, the winner was not the older male in two out of these fights 

(based on horn wear in all cases, and also height in one case). 
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Figure 6.4. Outcomes of displacements, in relation to coat colour of interaction ‘winner’, and the 

difference in coat colour category between winner and loser (Difference). Positive values (2, 1) 

are instances where the loser was paler, negative values (-1, -2) where the loser was darker. Zero 

indicates no difference in colour category between the winner and loser. 

 

 

6.4.1.4 Changes in male colouration 

It was noted that five pale adult males darkened (to become ‘dark males’) over a 

period of more than six months, irrespective of season. An increase in pigmentation 

was also observed in four dark bulls, over varying periods and seasons. It was 

predicted that such changes in male coat colour would correspond with changes in 

male social maturity or competitive ability. Evidence to support this prediction can 

be drawn from agonistic interactions involving the most frequently observed of these 

males before and after their colour change (Table 6.1). After the increase in 

pigmentation, males were unlikely to partake in mild necking (e.g. M97 and M98), 

and were more likely to challenge very dark males (e.g. M97). They were also more 

likely to successfully displace other males, whereas before they were more often seen 

to be displaced (e.g. M98, M238). 
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Table 6.1. Details of interactions involving males that exhibited changes in coat colouration, 

with interactions after the change in colour highlighted in bold type. 

ID    
(male 1) 

Coat 
colour 
category 

Other 
male ID 

Other male colour 
and age class 
(colour cat.) 

Type of 
interaction 

Outcome 
for male 1 

M98 2 M97  Dark adult male (3) Mild necking Loser? 

 2 M97 Dark adult male (3) Displacement Loser 

 3 M297 Pale adult male (2) Displacement Winner 

M99 2 N/A     

  3 M92 Dark adult male (3) Displacement Winner 

  3 M238 Dark adult male (4) Displacement Loser 

M97 3 M98 Pale adult male (2) Mild necking  

 3 M98 Pale adult male (2) Displacement Winner 

  3 M95 Sub-adult male (2) Displacement Winner 

  4 M296 Pale adult male (2) Displacement Winner 

  4 M295 Dark adult male (4) Violent fight Loser 

M238 3 M239 Dark adult male (3) Displacement Loser 

 3 unknown Dark adult male (?) Displacement Loser 

  4 M92 Dark adult male (3) Displacement Winner 

 4 M99 Dark adult male (3) Displacement Winner 

 

 

6.4.1.5 Female mate choice in relation to male coat colour 

Females were predicted to respond to male colour when choosing whether to produce 

urine for testing by a male when stimulated. It was expected that darker males would 

be more successful in eliciting urination. Urine-testing was observed in all months, 

by both dark and pale males in every month (except for December when only pale 

males were seen attempting to urine-test females). During the last six months of 

fieldwork, the occurrence of urination or flehmen was recorded on 75% of urine-

testing attempts. Flehmen was only observed following urination by the female, but 

urination was only followed by flehmen 78% of the time. Only dark males were 

observed not to flehmen when testing female urine. 

 

As predicted, there was a highly significant association between male coat colour and 

success in eliciting female urination (contingency coefficient = 0.611, N = 32, P < 

0.001; Figure 6.5). The one sub-adult male that attempted to elicit urination was 
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unsuccessful. Pale adult males were successful nearly half (46%) of the time, and 

their success depended on their coat colour: very pale (category one) males were 

never successful in eliciting urination, whereas category two males often were 

(75%). Dark males were always able to elicit urination, with the exception of one 

case: immediately prior to this, the unsuccessful male had been involved in a necking 

fight with a dark male, and appeared to have defeated him. 
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Figure 6.5. Outcome of urine-testing attempts by males, in relation to male coat colour (1-2 = 

Pale bulls; 3-4 = Dark bulls). 

 

6.4.1.6 Male courtship and mating success in relation to male coat colour 

Of the 25 observed consortships in the study area, 80% involved a dark male. This is 

significantly different from the distribution across dark and pale males that one 

would expected by chance (dark males made up 53% of known adult males seen in 

the study area; Χ
2
 = 7.27, df = 1, P < 0.01). Two successful matings and one 

attempted mating were observed. All involved a dark, mature male, two of category 

four coat colouration, one of category three (but with well developed skull 

ossifications). 
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6.4.2 Hypothesis 2: Waterholes as focal points for intercepting females 

6.4.2.1 Summary of focal watch data collection 

A total of 166 focal watches were carried out, with the following composition of 

locations and focal subject types: 

 Females Pale males Dark males Total 

Waterhole (WH) 40 21 19 80 

Non-Waterhole (NWH) 37 26 23 86 

Total 77 47 42 166 

 

The average focal watch duration was 48 minutes. Potentially confounding variables 

were tested for differences between waterhole and non-waterhole watches. There was 

no significant difference in the duration of the focal watch (Mann-Whitney U-test: U 

= 3011, P = 0.140), the total giraffe group size (U = 3340, P = 0.745), or the mean 

number of giraffe visible throughout the watch (square-root transformed, t = 1.021, P 

= 0.309). However, visibility was significantly better at waterholes, as indicated by 

the ratio of the mean number of giraffe visible during the watch to the known total 

group size (median WH ratio = 0.93; median NWH ratio = 0.83; U = 2600, N = 166, 

P < 0.01). 

 

6.4.2.2 Likelihood of encountering new giraffe at waterholes 

Rates of formation of new encounters between previously un-associated giraffe were 

predicted to be greater at perennial waterholes than away from waterholes. In support 

of this prediction, it was found that giraffe were significantly more likely to have 

new encounters with other giraffe during focal watches at waterholes than at 

locations away from waterholes. Overall, for every 100 observation hours, 54 new 

male-female encounters and only 9 new male-male encounters occurred at non-

waterhole sites, whereas at perennial waterholes this rate was 215 new male-female 

encounters and 151 new male-male encounters. These new encounter rates deviate 

significantly from those expected assuming a uniform distribution of new encounters 

across the two types of location (new male-female encounters: Χ
2
 = 96.26, df = 1, P 

< 0.001; new male-male encounters: Χ
2
 = 126.03, df = 1, P < 0.001). 
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6.4.2.3 Comparison of social interaction rates at waterholes versus other locations 

As a consequence of the relationship between waterholes and increased rates of new 

encounters, it was predicted that interactions between giraffe should occur at an 

increased rate at waterholes. This prediction was also supported by the data: for both 

mating and agonistic interactions, the increased occurrence of new encounters was 

associated with an increase in the likelihood of giraffes interacting during a focal 

watch (mating interactions: Χ
2
 = 29.97, df = 1, P < 0.001; agonistic interactions: 

contingency coefficient = 0.367, df = 1, P < 0.001; Figure 6.6). For agonistic 

interactions, this relationship still holds true if the analysis is restricted to 

displacements only (i.e. excluding necking; contingency coefficient = 0.266, df = 1, 

P < 0.001).  

 

As a result, both mating and agonistic interactions were more likely to occur during 

focal watches at waterholes than during watches away from waterholes: for every 

100 hours of observations, 35 mating interactions and 13 agonistic interactions 

occurred at non-waterhole sites, whereas 108 mating and 59 agonistic interactions 

occurred per 100 hours at perennial waterholes. Again, these frequencies deviate 

significantly from a uniform distribution (mating interactions: Χ
2
 = 37.37, df = 1, P < 

0.001; agonistic interactions: Χ
2
 = 29.39, df = 1, P < 0.001). If agonistic interactions 

are restricted to displacements only, they were still more likely to occur at waterholes 

(30 displacements at waterholes, 7 elsewhere; Χ
2
 = 14.30, df = 1, P < 0.001).  
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Figure 6.6. Occurrence of social interactions relative to occurrence of new encounters during 

focal watches, for mating interactions and male-female encounters (top) and agonistic 

interactions and male-male encounters (bottom). 
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Furthermore, during focal watches when new male-female encounters and mating 

interactions did occur, the rate of interactions per hour increased as the number of 

potential interacting pairs (total males multiplied by total females) present during the 

watch increased (variables log-transformed, F1,23 = 10.58, P < 0.005, R
2
 = 0.5325; 

Figure 6.7). Thus interactions tended to be more frequent in groups with large 

numbers of males and females. There was not as clear a trend for male-male 

encounters and agonistic interactions, partly because of a smaller sample size. 

However, the rate of agonistic interactions per hour did increase with an increasing 

new male-male encounter rate per hour (variables log-transformed, F1,10 = 5.971, P < 

0.05, R
2
 = 0.399).  
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Figure 6.7. Relationship between mating interaction rate and the total number of potential 

male-female pairs (total males multiplied by total females) present during the focal watch. Grey 

circle markers indicate waterhole watches; empty black squares indicate non-waterhole 

watches. 
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6.4.2.4  Effect of seasonal water availability on encounters and interactions at 

waterholes 

It was predicted that the effect of waterholes on increasing rates of new encounters 

and social interactions would be greater in the dry season (as defined in Chapter 2), 

when water is a more limited resource, than during the wet season. New male-female 

and male-male encounter rates (per 100 hours observation) were significantly greater 

at waterholes than at non-waterhole locations in both the wet and dry season (wet 

season: male-female: Χ
2
 = 64.93, P < 0.001, male-male: Χ

2
 = 50.97, P < 0.001; dry 

season: male-female:  Χ
2
 = 106.51, P < 0.001, male-male: Χ

2
 = 148.97, P < 0.001), 

even after application of a Bonferroni correction for multiple tests (alpha value for 

each test reduced to 0.0125).  

 

Mating interaction rates also were significantly greater at waterholes than away from 

waterholes in both seasons, although at a seasonal level, mating interactions occurred 

at a greater relative rate at waterholes in the dry season (Χ
2
 = 140.70, df = 1, P < 

0.001) than during the wet season (Χ
2
 = 6.90, df = 1, P < 0.01). Agonistic interactions 

remained significantly more frequent at waterholes during both seasons (wet season:  

Χ
2
 = 35.63, P < 0.001, dry season: Χ

2
 = 25.33, P < 0.001). Thus, the predicted 

seasonal effect was not substantiated. 

 

Nonetheless, a greater proportion of observed urine-testing attempts occurred at 

waterholes during the dry season and early wet season (at least 50% each month 

from July to December compared to no more than 40% each month from March to 

June; Figure 6.8). In fact, there was a highly significant relationship between the 

predictability of female giraffe at waterholes each month (percentage of visits to 

waterholes on which females were present), and the proportion of urine-testing 

events that were observed at waterholes (Spearman’s rho = 0.796, N = 10, P < 0.01; 

Figure 6.9). 
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Figure 6.8. Location (waterhole vs. non-waterhole) of urine-testing attempts across the months. 
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Figure 6.9. Relationship between location of urine-testing events and monthly predictability of 

female giraffe at waterholes. 
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6.4.2.5 Locations of consortships in relation to waterholes and water availability 

It follows from the above findings (i.e. a higher proportion of urine-testing events 

occurring at waterholes in the dry season) that consortships should be expected to 

begin in closer proximity of waterholes during the dry season. Of the six 

consortships that were observed from the start (from the moment of the first 

encounter and urine-testing), the majority (N = 5) did indeed begin at a waterhole; all 

but one consortship observed away from waterholes were ongoing interactions. 

However, the prediction did not hold up when the distance of all consortships to 

water was examined: overall, consortships were not observed any closer to perennial 

waterholes during the dry season than during the wet season (wet season median 

distance = 0.285 km; dry season median distance = 0.550 km; Mann-Whitney U = 

56, N = 25, P = 0.311).  

 

6.4.2.6 Competition between dark males at waterholes versus away from 

waterholes 

It was predicted that during the dry season (as defined in Chapter 2), competition 

between dark males would be more intense at waterholes than away from waterholes, 

because of the more predictable occurrence of females at waterholes during this time. 

However, on all occasions when two dark males were observed already associating 

in the same group (N = 30), whether at a waterhole or not, they did not demonstrate 

any sign of dominance, submission, or aggression towards each other, and were 

generally both browsing, both resting, or both walking. When two dark males were 

seen to encounter each other, they did participate in an agonistic interaction on both 

occasions that this was seen away from waterholes, whereas at waterholes, there was 

no evidence of an agonistic interaction (no demonstration of dominance or 

submission by either male) on five out of twelve occasions. Therefore, contrary to 

the predicted effect, dark males actually appeared to be more tolerant of each other at 

waterholes than at locations away from waterholes, although this association was not 

significant (contingency coefficient = 0.291, N = 14, P = 0.255). These results were 

not affected by limiting the analysis to occasions when females were present. 
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6.4.3 Hypothesis 3: Seasonal variation in the intensity of male intra-sexual 

competition 

It was predicted that intra-sexual competition would differ in intensity between the 

wetter, high-conception-rate season, and the drier, low-conception-rate season, due to 

differences in spatial distribution and predictability of females. Specifically, it was 

predicted that the prolonged, predictable high concentration of females in mixed 

broadleaf woodland throughout the wet season would provide dominant males with 

an opportunity to exclude subordinates and monopolise access to females. I tested 

this prediction firstly by examining seasonal variation in rates of mating and 

agonistic interactions, and by testing for seasonal differences in the social class of 

participants in urine-testing attempts and directional agonistic interactions 

(displacements). 

 

6.4.3.1 Seasonal variation in mating interactions 

Urine testing was observed in all months, by both dark and pale males in every 

month (except for December when only dark males were seen attempting to urine-

test females). When compared to either the number of mixed-group sightings each 

month, or the number of field-hours, the rate of urine-testing attempts and 

consortships were greatest in March and lowest in November and December. The 

only three attempted and successful copulations were seen in May, July and 

November (for detailed descriptions of mating interactions, see Appendix 3).  

 

Very pale males (cat. 1) were only observed attempting to elicit urination in June and 

between August and November (Figure 6.10). Dark adults (category 3-4) made up 

the largest proportion of males urine-testing in December (100%), between March 

and May (at least 70%), and in September (69%). As predicted, there was a 

significant association between the colour of the male involved in urine-testing and 

the season (wet, higher-conception rate versus dry, low-conception rate season; 

contingency coefficient = 0.293, N = 146, P < 0.005), with more pale males involved 

in urine-testing attempts in the dry season. 
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Figure 6.10. Colour category of males observed attempting to urine-test females across the 

months. 

 

 

6.4.3.2 Seasonal variation in agonistic interactions 

Displacements (N = 55) were observed in all months except for November. Mild 

necking (N = 30) was observed in all months except March, and moderate necking 

(N=8) in May, June, July, November and December only. Only three necking fights 

were observed, and these occurred in April, May and October. Overall, agonistic 

interactions between males, relative to monthly sightings of adult males, were most 

frequently observed between March and July, and in December.  

 

Displacements in March and December involved only pairs of dark bulls, whereas 

pairs of pale bulls were only observed in displacement interactions between July and 

October (Figure 6.11). In August, no agonistic interactions were observed between 

two dark bulls. However, there was no association between breeding season (wet, 
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higher-conception-rate versus dry, lower-conception-rate season) and the type of 

participants in displacements (contingency coefficient = 0.225, N = 52, P = 0.250). 
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Figure 6.11. Pairs of males involved in displacement interactions across the months.  Dark grey 

bars represent pairs of dark males (cat.  3-4); light grey bars represent pairs comprising one 

dark and one pale male (cat. 1-2); white bars represent pairs of pale males. 

 

6.4.3.3 Seasonal variation in the relationship between associating dark males 

Next, I tested for seasonal differences in the type of relationship (agonistic or 

neutral) between two dark males seen in close proximity (<500 m) of one another (N 

= 65). There was clear seasonal variation in the type of association between two 

bulls: between March and June, two dark bulls together were significantly more 

likely to be involved in an agonistic interaction (i.e. a displacement or necking fight) 

than a neutral relationship (i.e. no interaction; Χ
2
 = 21.06, df = 1, P < 0.001), whereas 

between July and December, the majority (80%) of dark bull pairs observed did not 

demonstrate any sign of dominance, submission, or aggression towards one another 

(Figure 6.12). However, this seasonal difference was not associated with seasonal 

variation in conception rate (higher-conception-rate versus lower-conception-rate 

season; Χ
2
 = 0.157, df = 1, P = 0.692). 
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Figure 6.12. Relationships between two dark males observed together across the months. Dark 

grey bars represent agonistic relationships (e.g. displacements, necking fights); light grey bars 

represent an absence of such agonistic interactions. 

 

 

However, there was a highly significant association between the season (higher-

conception-rate versus lower-conception-rate season) and whether females were 

present when dark males were associating (Χ
2
 = 8.991, df = 1, P < 0.005; Figure 

6.13). There was no direct relationship, though, between the presence of females and 

whether males were associating in an agonistic or neutral relationship (Χ
2
 = 0.969, df 

= 1, P = 325). 
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Figure 6.13. Presence or absence of females when two dark males were observed together. The 

wet, higher-conception-rate season covers March to May and October to December. 

 

 

6.4.4 Hypothesis 4: Monopolisation of mates by dark males to the exclusion 

of pale males  

It was predicted that dominant males would compete most intensely to exclude 

subordinates when females were most predictably concentrated and potentially 

economically defendable (at least in the short-term). In the longer term, it was 

predicted that the most dominant males would consistently monopolise access to 

females, and a large proportion of males, specifically pale, subordinate males, would 

be excluded from mating. 

 

6.4.4.1 Exclusion of pale males from mixed groups by dark males 

Mixed groups without a dark male contained slightly more males in months when 

mean female group size was also larger (March - July versus August - December: t = 

1.856, df = 178, P = 0.065). But when a dark male was present, mixed groups 



Chapter 6. Male intra-sexual competition  174 

   

contained slightly fewer males in those months when mean female group size was 

largest (March - July versus August - December: t = -1.936, df = 220, P = 0.054), 

particularly in March, when dark males appeared to almost exclude pale males from 

mixed groups (Figure 6.14). 
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Figure 6.14. Monthly mean number of males in mixed-sex groups, relative to monthly mean 

number of females in all female-inclusive groups, for groups with a dark male (black squares), 

and groups without a dark male (grey triangles). 

 

 

6.4.4.2 Effect of location and group size on the ability of dominant males to exclude 

subordinates 

Pale males were more likely to associate closely with females at waterholes than 

away from waterholes. Using the data from focal watches, the sex-age classes of 

nearest neighbours (when identified) were compared for different types of focal 

subject in mixed groups. A dark male focal subject was significantly more likely than 

a pale adult male to have an adult female as a nearest neighbour when not at a 

waterhole (69% versus 43%; Χ
2
 = 16.056, N = 237, df = 1, P < 0.001; Figure 6.15). 

At waterholes, however, pale adult males were equally likely as dark adult males to 
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have an adult female as a nearest neighbour (49% and 55% respectively; Χ
2
 = 0.422, 

N = 146, df = 1, P = 0.516). Similarly, female focal subjects were twice as likely to 

have a pale male as a nearest neighbour at waterholes as away from waterholes 

(analysed with three categories of nearest neighbour: dark adult male, pale adult 

male, or other: Χ
2
 = 9.81, N = 430, df = 2, P < 0.01).  

 

Between dark males of different coat colour category (3 and 4), there was no 

significant association between coat colour and the proportion of occasions on which 

an adult female was the nearest neighbour at waterholes (Χ
2
 = 1.92, N = 51, df = 1, P 

= 0.166). Away from waterholes, males of colour category 3 were significantly more 

likely to have an adult female as nearest neighbour than males of category 4 (82% 

and 55% respectively; Χ
2
 = 10.09, N = 122, df = 1, P < 0.005). 
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Figure 6.15. Nearest neighbour type for adult focal subjects (adult female, dark adult male, pale 

adult male) during focal watches both at waterholes and away from waterholes. 
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Paler males were also significantly more likely to attempt to test females’ urine at 

waterholes than away from waterholes, when compared to darker males (contingency 

coefficient = 0.239, N = 146, P < 0.05; Figure 6.16). As a result, when urine-testing 

attempts occurred, the protagonist was a dark male in the majority of cases (70% of 

74) away from waterholes, whereas at waterholes interactions were equally 

distributed among dark (49%) and pale males (51%). Furthermore, when a pale adult 

male was urine-testing a female, a dark male was slightly, but not significantly, more 

likely to be present when the interaction occurred at a waterhole than when it 

occurred elsewhere (dark male present on 70% of occasions at waterholes, 45% away 

from waterholes; Χ
2
 = 3.03, N = 51, df = 1, P = 0.082). Among interactions involving 

dark males, 60% involved a male of colour category 4 both at waterholes and away 

from waterholes. 
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Figure 6.16. Location of urine-testing attempts in relation to male coat colour category. Light 

grey bars represent non-waterhole observations; dark grey bars represent observations at 

perennial waterholes. 
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When there were at least one pale male and at least one dark male present, dark 

males appeared more likely to concede access to females for urine testing to pale 

males when there were three or more pale males present. Thus very pale adult males 

(category 1) and sub-adult males had access to females for urine-testing 

predominantly when there were large numbers of pale males present (Figure 6.17).  
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Figure 6.17. Number of pale males present during urine-testing attempts by males of different 

coat colouration categories, in groups with at least one pale male and at least one dark male. 

 

 

6.4.4.3 Reproductive skew and surrogates of potential reproductive success 

Of the 25 observed consortships in the study area, 80% involved a dark male. Half of 

the dark males seen in a consortship were category three males, half category four. 

Category four males were involved in a smaller proportion of consortships in the dry 

season (29%) than in the wet season (63%). Nonetheless, pale males were not seen in 

a greater proportion of observed consortships in the dry season (wet season: 25%, 
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dry season: 16%): not more than one observed consortship per month involved a pale 

adult male, even in July, when nine consortships were observed.  

 

Despite frequent sexual interactions (urine-testing attempts) between pale males and 

females at waterholes when dark males were present, pale males were never seen to 

leave a waterhole in consortship with a receptive female when a dark male was 

present. Thus, the dark male always gained rights to the consortship (N = 4), 

regardless of the number of pale males also present and urine-testing females. 

Consequently, all five observed consortships involving a pale male were in the 

absence of a dark male, including the two seen from the start (one at a waterhole, one 

away from a waterhole). However, in two of these five cases, the female was 

subsequently observed in consortship with a dark male (four and seven weeks later). 

This suggests that the female was still unmated and the pale male had been 

unsuccessful in his mating attempt.  

 

Two successful matings and one attempted mating were observed. All involved a 

dark, mature male (Figure 6.18), two of category four coat colouration, one of 

category three (but with well developed skull ossifications). Based on these 

behavioural data, it is estimated that pale adult males, which represent just fewer than 

50% of the known males in the study area, achieve between zero and 20% of 

matings. Among dark males, category four males are estimated to achieve a share of 

between 50% and 66.7% of matings.  
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Figure 6.18. Relative share (%) of dark and pale adult males in: total known males in the study 

area, urine-testing attempts (UTAs), successful elicitation of urination, consortships, and 

attempted or successful matings. 

 

 

It was evident from the findings in this chapter that both mate detection (or scramble 

competition (Schwagmeyer 1988; Ims 1990)) and ‘priority of access’ (Altmann 

1962; Cowlishaw & Dunbar 1991) were important in determining male access to 

potential mates. Therefore, it was predicted that two key factors in determining 

current individual mating success would be the relative amount of time a male spent 

with females (to maximise his chances of encountering a receptive female), and the 

number of times a male had priority of access, in other words, when he was in a 

position to monopolise access to any receptive females. From observations of 

consortships (section 6.4.8.4), it was evident that this potential for monopolisation 

was greatest when a male was the only male or the most dominant male in a group 

with females. Unfortunately, dominance interactions were too few to permit an 

unambiguous determination of relative dominance among males present in each 

group, but it was assumed, based on results cited above, that an adult male would 

always be dominant to a sub-adult, and a dark male always dominant to a pale male. 
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Thus, males that were sighted most frequently (on at least 5 days) were plotted on a 

graph in relation to two variables relating to association with females, which were 

predicted to affect potential mating success: 

• percentage of observations on which the male was in the presence of females; 

• percentage of these observations on which the male was undoubtedly the 

dominant, or only, male (i.e. the only adult male for pale adult males, and the 

only dark male for dark males). 

 

By highlighting on this graph the three males that had been observed in an attempted 

or successful copulation, and the one male that had been observed in two separate 

consortships, a clear pattern arose: these males were all located in the upper right-

hand corner, corresponding to a high proportion of time with females, and a high 

proportion of time as the only, or dominant, male (Figure 6.19). 
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Figure 6.19. Plot of individual male association with females (percentage of observations with 

females), and potential for monopolisation of females, as measured by the percentage of 

sightings with females when the male was the only, or most dominant, male in the group. Points 

representing males that were seen in an attempted or successful copulation, or multiple 

consortships, are highlighted by a circle. Figures in brackets in the legend are maturity classes. 
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Subsequently, the two variables were multiplied together to obtain one single value 

taken to represent the male’s monopolisation potential, or potential mating success. 

All males seen in an attempted or successful mating, and the one male seen in two 

separate consortships, had values of 0.6 or greater (Figure 6.20). From this, it was 

evident that a few dark, mature males of maturity categories 7 and 8 had the greatest 

potential mating success, whereas pale adult males (maturity category 4), transitional 

males (category 5), and young dark males (category 6) had the lowest probable 

chance of securing matings. However, many older dark males (category 7 and 8) also 

had low expected mating opportunities, so mating success may not be strictly age-

dependent, and may indeed be highly skewed in favour of a small number of mature, 

dominant, dark males.  
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Figure 6.20. Individual male potential mating success, based on a value representing the 

combined effects of male association with females and male potential for monopolisation (the 

percentage of observations with females that the male was the only or most dominant male). All 

males observed in an attempted or successful copulation, and the one male observed in two 

separate consortships, are located to the right of the dashed line. Asterisks represent all other 

observed consortships. Colour break-down represents male coat colour (and maturity classes). 

 

 

Unfortunately, the molecular assignment of paternity, and thus estimation of actual 

reproductive success, was unsuccessful, largely due to insufficient variability in the 

genetic markers used (the molecular methodology and results are treated in detail in 
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Appendices 8 to 12). It was also not possible to use behavioural measures to gauge 

longer-term differences between individuals in key factors that would affect lifetime 

reproductive success, such as tenure of dominance status. 

 

6.4.5 Summary of results 

The main findings of this chapter, in relation to the predictions made in the Aims 

section (6.2) at the start of this chapter are summarised in the table below. 

 

Table 6.2. Summary of the results of chapter 6, in relation to the hypotheses and predictions 

outlined at the start of the chapter. 

 Prediction 

supported by 

data? 

Hypothesis 1 predictions:  

Male coat colour corresponds to maturity and behaviour Yes 

Darker males taller than paler males Yes (largely) 

Darker males win displacements Yes 

Changes in colour correspond with changes in status Possibly 

Darker males more successful in eliciting urination by females Yes 

Darker males more successful in consortships and matings Yes 

Hypothesis 2 predictions:  

Rate of new encounters greater at waterholes Yes 

Rate of mating and agonistic interactions greater at waterholes Yes 

Effects greater in dry season No 

Consortships closer to waterholes in dry season No 

Greater intensity of competition at waterholes (in dry season) No 

Hypothesis 3 predictions:  

Seasonal variation in intensity of male-male competition Maybe (greater 

participation of 

pale males in dry 

season) 

Hypothesis 4 predictions:  

Exclusion of pale males from mixed groups by dark males Yes 

Exclusion of pale males from associating with females  Yes (but not at 

waterholes or 

when many 

males) 

Mating success skewed in favour of dark males Yes 

Variation among dark males in probable mating success Yes 
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6.5 Discussion 

6.5.1 Hypothesis 1: Male coat colouration as a status signal 

Here, I have presented evidence in support of the hypothesis that dark male coat 

colouration functions as a signal of status, indicating social maturity, competitive 

ability, and consequently probable reproductive success.  

 

6.5.1.1 Coat colour and maturity 

Dark colouration (versus pale colouration) is a clear indicator of males having 

reached sexual maturity: dark colouration was observed only in fully mature adult 

males, and all old males (with advanced secondary skull ossifications) were very 

dark in colour. Darker males generally tended to be taller than paler males. However, 

some pale males were found to be as large as, or even larger than, dark males. Thus, 

within middle-aged males there may not be a direct relationship between age (as 

indicated by height) and colour. The relationship between colour and age in older 

males could not be assessed because of the unreliability of height as a measure of age 

in fully mature males.  

 

It has been shown that in mature male fallow deer, dominance is more important than 

age in determining reproductive participation, suggesting that achievable dominance 

status and reproductive success are not entirely age-dependent (Komers et al. 1997; 

Thirgood et al. 1999).  If this is also true for giraffe, then if male colouration is a true 

indicator of status, it may develop in relation to male quality and status rather than 

directly in relation to age (e.g. Setchell & Dixson 2002). Pratt and Anderson (1985) 

also found that certain morphological traits, such as neck thickness, were better 

predictors of male success in pair-wise interactions than male height.  

 

It is proposed here that all males should eventually achieve dark colouration 

(excepting premature mortalities), but that the age at which such colouration is 

achieved, and the degree of darkness achieved, may vary among males in relation to 

male status. Since height varies so little among fully mature males, coat colour could 

potentially be a more informative signal of competitive ability (maybe assessed in 
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conjunction with height), especially if it relates to other traits that affect competitive 

ability, such as body condition, or fighting experience and testosterone levels (e.g. 

Setchell & Dixson 2001b; McGraw et al. 2002; McGraw et al. 2003). 

 

Consequently, the observed transitions from light to dark in some males may 

correspond not only with physical maturation, but rather with a substantial increase 

in status and competitive ability (e.g. Setchell & Dixson 2001b). These transitional 

males would therefore be potentially reproductively active adult males, who have 

begun to be able to compete with dark bulls for access to mates. The increase in 

pigmentation seen in males that already had dark brown patches may also represent a 

further increase in competitive status. 

 

6.5.1.2 Coat colour and competitive ability 

Only displacements and violent necking fights were clearly directional forms of 

competition over a resource. Pratt and Anderson (1985) also failed to find any 

indication of dominance or submission in necking bouts among young males. Thus, 

it is likely that this activity serves primarily to test one’s own strength and 

competitive ability relative to that of others (Parker & Rubenstein 1981), and 

possibly as an opportunity to practice an activity that will later be used in more 

serious contests (Pratt & Anderson 1985). Information gathered from such 

interactions will likely form a basis of competitor assessment (e.g. Parker 1974) in 

agonistic interactions in later life.  

 

As expected, dyadic interactions (displacements) among adult males were more 

likely to be won by the darker male than by the paler male in each pair of 

competitors. Thus, relative coat colour quite reliably predicts the relative dominance 

of males in dyadic interactions. Males may be using the colour of their opponent as a 

signal of status, to inform their decision to display, retreat or escalate (Smith 1982; 

Senar & Camerino 1998; Gerald 2000); where there was no perceivable colour 

difference to the observer, the giraffe may have been nonetheless able to perceive a 

difference, or may have relied on other cues. 
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Escalated contests were very rare, which is consistent with high potential injury costs 

and a high degree of resource holding power (RHP) disparity among competitors 

(Parker 1974). In the three escalated fights, both males were attributed to the same 

colour category but the winner was always noticeably darker than the loser. In one 

case, the winner also appeared older (based on horn wear), whereas in two cases the 

winner appeared to be younger (based on horn wear, and in one case relative height). 

This further reinforces the suggestion that dominance is not directly related to age, 

and that colour is a reliable indicator of competitive ability. All of the observed 

escalated contests were preceded by parallel walking, which probably provided the 

participants with an additional opportunity to obtain information about each other’s 

competitive potential before committing to escalated fighting (Smith 1982). 

 

6.5.1.3 Coat colour and female choice 

As predicted, male coat colour was also a clear indicator of potential success in 

eliciting urination in females, a probable indicator of female choice (Pratt & 

Anderson 1985); very pale males were rarely successful in eliciting urination, 

whereas dark males nearly always were. Although many pale males were able to 

urine-test females, dark males experienced far greater courtship success than pale 

males, participating in a greater proportion of consortships and all mating attempts. 

Among dark males, courtship success appears to be similar regardless of male coat 

colour, but the few observations of actual matings would suggest that the 

reproductive success of very dark males may be greater. 

 

6.5.2 Hypothesis 2: Competition in relation to a limited resource: waterholes 

As predicted, encounter rates and consequently interaction rates were greater at 

perennial waterholes than at locations away from waterholes. Waterholes were more 

important for the occurrence of urine-testing during the dry season than the wet 

season, as females were occurring more predictably at perennial waterholes during 

the dry season (see also Chapter 3). However, despite the importance of waterholes 

as focal points for intercepting females, there was no evidence for dark males 

tolerating less the presence of other dark males or pale males at waterholes than 
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elsewhere, and they did not always prevent pale males from gaining access to 

females at waterholes.  

 

It is proposed that this was due to the ‘swamping effect’ of increased intruder 

pressure at waterholes (e.g. Ims 1988a; Cowlishaw & Dunbar 1991), as evidenced by 

the higher encounter rates at waterholes. This greater competitor pressure appeared 

to limit the ability of dominant males to deny subordinates access to females 

(Cowlishaw & Dunbar 1991). As a result, pale males had a greater likelihood of 

gaining at least temporary access to females at waterholes than at other locations. 

This was demonstrated both by a greater proximity of pale males to females at 

waterholes (nearest neighbour analysis) and by the greater relative participation of 

pale males in urine-testing attempts at waterholes.  

 

However, dark males may tolerate subordinates in this way because reproductive 

access is strongly determined by dominance status (e.g. Altmann 1962), and as such 

the benefits to a dominant male of excluding subordinates, and the costs of allowing 

their presence, may both be low (Clutton-Brock 1989). Indeed, despite dark males’ 

tolerance of subordinates, on occasions when a receptive female was investigated by 

both dark and pale males, it was invariably the dark male that gained the opportunity 

to court the female. Thus, although the predictable concentrations of females at 

waterholes increase the ability of all males to locate potentially receptive females 

(Ims 1990), they also increase the relative importance of direct male competition and 

‘priority of access’ relative to scramble competition in determining male 

reproductive success (Altmann 1962; Schwagmeyer 1988).  

 

Consequently, dark males appeared to benefit most from the predictable occurrence 

of females at waterholes, especially in the dry season. Despite increased intruder 

pressure at waterholes, and the increased contact between females and pale males, 

dark males still succeeded in monopolising mating rights without recourse to 

escalated contests. Therefore, using waterholes to intercept females would be a 

relatively low cost, high benefit strategy for dominant males.  
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Younger, or more subordinate males, on the other hand, are unlikely to gain 

reproductive opportunities at waterholes because of the high likelihood of being 

displaced by more dominant males. Individuals of low competitive ability (or RHP) 

generally have to search longer for an undefended resource (e.g. females) than 

individuals of high RHP (Parker & Rubenstein 1981). Therefore, males of low 

competitive potential might instead adopt a strategy that makes the ‘best of a bad 

job’ (Dunbar 1982; Smith 1982). For example, away from waterholes and other 

concentration areas, the likelihood of encountering females is reduced, but females 

are less likely to be defended by a dominant male. Indeed, dark males were less 

likely to be present when pale males were urine-testing females away from 

waterholes than at waterholes. Thus, males of low competitive ability should search 

for potential (undefended) mates predominantly away from waterholes and other 

concentration areas. This conclusion supports the prediction that limited artificial 

provision of water (versus provision at numerous sites) could increase the potential 

for a relatively small number of dominant males to monopolise matings (e.g. Ritter & 

Bednekoff 1995).  

 

Unfortunately data on consortships were too few to test whether pale males were also 

more likely to establish consortships with receptive females away from waterholes, 

as only six consortships were observed from the start. Overall though, consortships 

appeared more likely to begin at waterholes than elsewhere, which would further 

benefit dominant males. However, contrary to the prediction, consorting pairs were 

not encountered any closer to waterholes in the dry than in the wet season. This can 

probably be explained by the prolonged duration of consortships (up to 24 hours), 

during which time consorting pairs may move away from the site where the male 

first encountered the female. Regardless of whether the consortship began at a 

waterhole, their location at any later moment during the consortship is likely to be 

determined primarily by the location of food (since consorting pairs must pause in 

their mating activities to browse (Pratt & Anderson 1985)), and possibly the location 

of potential competitors that the consorting male may seek to avoid. 
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6.5.3 Hypothesis 3: Seasonal variation in male intra-sexual competition 

As predicted, evidence was found to suggest that male competition was greater 

during the wet, high-conception rate season (October to May, see Chapter 4) than 

during the rest of the year. Between October and May, dark males appeared to be 

brought together almost exclusively by the presence of females, whereas between 

June and September dark males often associated with one another in the absence of 

females. More pale males were involved in urine-testing attempts in the dry, low-

conception-rate season, but this can probably be attributed to the greater use of 

waterholes at this time, and the resulting decrease in the ability of dark males to 

exclude pale males from interacting with females (as described above).  

 

Competition between dark males was generally greatest in months when mean 

female group size was largest (March to June) and in December, when females were 

aggregating in a highly spatially restricted habitat (mixed broadleaf woodland). The 

dry season (July to October) seemed to be a period of respite for courtship and 

competition for dark males. It is highly likely that dark males were seen to tolerate 

each other more during this time because there was less often a receptive female in 

their vicinity, due to the slightly lower conception rate during the dry season.  

 

Furthermore, during the late dry season in particular, water and food are more 

difficult to obtain, so giraffe must visit waterholes more frequently, and males in 

particular must spend more time feeding (see Chapter 3). Seeking out the remaining 

reserves of food, and returning regularly to water, will likely result in larger daily 

movements than during the wet season (e.g. Le Pendu & Ciofolo 1999), potentially 

requiring greater energy expenditure in resource acquisition (Hall-Martin & Basson 

1975). Thus, males may have less energy to invest in competition, and if they are 

already in poor condition due to nutritional stress, may be ill able to afford 

committing to a fight.  

 

Conversely, the peak in intra-sexual competition coincides with a time of year when, 

because of the abundance of high quality food, males are in good condition and are 

able to reduce their foraging behaviour (see Chapter 3). They can thus dedicate a 

larger proportion of their time and energy to competing for females (Pratt & 
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Anderson 1985; Ginnett & Demment 1997). This is comparable to the trend in 

ungulate species with seasonally territorial males for territories to be held only in the 

summer or wet season, when food is most abundant (Owen-Smith 1977). 

 

Males that restrict their reproductive effort to the season when a greater majority of 

females are receptive, and food and water are more abundant, will be better able to 

maintain good condition year-round. They would also be better able to invest in 

growth (males continue to grow in bulk, especially in neck thickness, even after they 

have stopped growing in height (Simmons & Scheepers 1996)) and secondary sexual 

characters, and as a result more likely to achieve and maintain a high dominance 

status. Those that currently have a low competitive ability (e.g. smaller, younger, or 

poor quality males) may have a better chance of obtaining a few mating opportunities 

by competing year-round (i.e. ‘making the best of a bad job’ (Dunbar 1982); see also 

Chapter 5). Nonetheless, despite the apparent increased intensity of mating 

competition among dark males in the wet season, the likelihood of a pale male 

encountering undefended females at waterholes, and the reproductive participation of 

pale males (in consortships), did not appear any greater in the dry season.  

 

6.5.4 Hypothesis 4: Monopolisation of females, and reproductive skew 

As seen above, dark males were unable to prevent pale males from associating with 

and urine-testing females when they were present in large numbers, especially at 

waterholes. Although females did show some choice in producing urine for testing 

(refusing very pale adults), they produced urine quite readily for many pale males, 

even when a dark male was present. However, it was always the most dominant male 

in the group (either a pale adult male if only pale males were present, or a dark male 

if both dark and pale males were present), that later secured access to a female for 

consortship. At any one time only 5-10% of females are likely to be receptive (see 

Chapter 1), although this percentage will be slightly higher in the wet season, and 

slightly lower in the dry season (see Chapter 4). Thus, any group of females 

encountered by males, even a large aggregation at a waterhole, is unlikely to contain 

more than one receptive female, and thus unlikely to offer more than one mating 

opportunity. Therefore, when present, dark males do not monopolise access to 
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females for urine-testing, but do appear to be able to monopolise mating 

opportunities, as predicted by priority of access and mate monopolisation models 

(Altmann 1962; Emlen & Oring 1977; Cowlishaw & Dunbar 1991; Setchell et al. 

2005).  

 

Consequently, measures of association with females  and opportunities to urine-test 

females cannot serve as realistic indicators of differential reproductive success (e.g. 

Fisher & Lara 1999), as these will tend to inflate the reproductive contribution of 

pale males (as seen in Chapter 5, older males actually tend to associate less with 

females than younger males). If observations of consortships were used as measures 

of the relative reproductive success of dark and pale males, these may also tend to 

inflate the relative reproductive contribution of pale males, as females seen to be 

courted by pale males were later courted by a dark male, suggesting that the pale 

males were unsuccessful in their mating attempts. Therefore, since 20% of observed 

consortships involved pale males, it can be concluded that pale males probably 

achieve less than 20% of all matings. 

 

However, by combining both male associations with females, and male potential for 

monopolisation of females (measured by the proportion of observations with females 

that a male was the only, or most dominant, male), a value was created that appears 

to represent, at least crudely, potential current mating success, or at least the potential 

for monopolisation of matings. Because matings are observed so rarely in giraffe, it 

was not possible to verify the reliability of this surrogate of male mating success. In 

addition, because the molecular parentage analysis was unsuccessful, predicted 

individual success in mating with females could not be compared to actual male 

reproductive success. Nonetheless, evidence has been outlined here to suggest that 

male reproductive success in this population of giraffe may be highly skewed in 

favour of a relatively small proportion of dominant, mature dark males, and may be 

highly variable among mature males, with many potentially being excluded from 

mating.  

 

It is important to note that the tenure of dominance status may vary between males, 

and as such, individual males may switch between alternative strategies as their 
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dominance status, and thus competitive ability, changes (Smith 1982; Coltman et al. 

1999; Thirgood et al. 1999). As a result, the observed current variance in 

reproductive success between males may not equate to such variance in long-term 

reproductive success, unless the reproductive tenure of dominant males lasts 

throughout a large part of their life (Dunbar 1982). Individual differences in overall 

dominance status, reproductive tenure and lifetime reproductive success do occur, for 

example in fallow and red deer (Clutton-Brock et al. 1982a; McElligott & Hayden 

2000). Some male fallow deer consistently gain higher social dominance status and 

greater reproductive success year-on-year, and furthermore, these more successful 

reproducers consistently survive better than non-reproducing males (McElligott & 

Hayden 2000; McElligott et al. 2002). Thus, males that obtain greater lifetime 

reproductive success appear to be of higher phenotypic quality than those that fail to 

reproduce (McElligott et al. 2002). 

 

It may also be the case in giraffe that some males never achieve high competitive 

ability (possibly due to historical factors such as poor nutrition or juvenile growth 

(Parker 1974; Dunbar 1982)), and thus experience low lifetime reproductive success, 

whereas other males succeed in monopolising matings over many years. 

Unfortunately, measuring reproductive tenure, lifetime reproductive success and the 

degree of polygyny in a long-lived animal such as the giraffe remains possible only 

through a long-term behavioural (and genetic) study (Clutton-Brock et al. 1982a; 

Coltman et al. 1998). 
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7 GIRAFFE COAT COLOURATION AND ENVIRONMENTAL 

STRESS 

7.1 Introduction 

The aim of this chapter was to investigate biogeographic variation in patch colour in 

giraffe, with reference to natural and sexual selection. In Lydekker’s original 

descriptions of the giraffe subspecies, he noted clear differences in pelage markings 

and colouration between the subspecies (Lydekker 1904). For example, he described 

the colour of the patches of Giraffa camelopardalis thornicrofti as “light brown”, but 

those of G. c. camelopardalis as “chestnut coloured”, of G. c. giraffa as “chocolate 

brown, or almost black”, of G. c. reticulata as “orange-red to red-chocolate”, and 

those of G. c. rothschildi as “reddish-chestnut, or reddish-fawn, darkening to deep 

blackish brown”. He also noted differences between the sexes in some, but not all, 

subspecies. He described the sexes as alike in G. c. camelopardalis and G. c. 

tippelskirchi, but reported that the sexes differed markedly in G. c. giraffa (the old 

bulls being much darker), and in G. c. rothschildi. In the latter, he recorded the 

patches of the sexes as differing in both form and colour, with the patches of adult 

bulls “large and very dark, almost blackish, compared to the reddish colouring of 

females”.  

 

Lydekker (1904) noted that where males acquired dark colouration, the change in 

colour was “apparently coincident with advancing age”. This darkening with age was 

also noted by Berry (1973) in G. c. thornicrofti in the Luangwa Valley Zambia. He 

described the patches of males in their prime as darkening almost to black, whereas 

females did not usually attain the same degree of darkening. However, Lydekker 

(1904) also noticed that some full grown bulls were “decidedly lighter than type”, 

thus demonstrating variation at an individual level, as well as at the level of the sexes 

and subspecies. 
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7.1.1 Coat colour and thermoregulation 

The surface colouration that an animal presents to its environment can affect its 

fitness both by determining its conspicuousness and by modification of the thermal 

effects of solar radiation upon the animal (Louw & Seely 1982; Walsberg & Wolf 

1995a). The actual colour of animal’s coat will be the result of a balance of the 

following selection pressures (Walsberg et al. 1978; Louw 1993; Ortolani 1999): 

1. Thermoregulatory function: optimisation of radiative heat gain. 

2. Visual functions: 

a. Camouflage (reduced conspicuousness) 

b. Social communication (enhanced conspicuousness; see also Chapter 6) 

For example, the colour of most savannah animals is assumed to be a compromise of 

the need to be camouflaged against the background savannah vegetation, and the 

need to reflect incident solar radiation (Louw 1993). 

 

7.1.2 Absorption and reflection of solar radiation 

Heat is absorbed from direct solar radiation at all wavelengths (Louw 1993), but 

radiation is emitted by surfaces in the long-wave (far infrared) spectrum only and is 

proportional to the temperature of the emitting body (Gates 1980). Radiative 

emissivity of a surface is equal to absorptivity but only at the same wavelength, so a 

difference in surface absorption characteristics with respect to the visible part of the 

spectrum does not necessarily mean that there is an emissivity difference in the far 

infrared (Hamilton & Heppner 1967; Gates 1980).  

 

With changes in animals’ skin and fur colour and structure, absorptance of incident 

shortwave radiation can vary between 30 and 85% (Gates 1980), whereas long-wave 

absorptance varies only between 95 and 98% (Gates 1980). So although there is a 

high degree of variation in the amount of heat absorbed from direct incident solar 

radiation by pale and dark coloured animals, there is a relatively negligent level of 

variation in the amount of heat re-radiated by pale and dark animals.  

 

The dependence of absorptance and reflectance of solar radiation on coat colour was 

clearly demonstrated in a study by Cena (1966) using cattle and horses with different 
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colour coats. He found that in the spectral range of 280-900 nm, black cattle coats 

absorbed twice as much radiation as white coats, and in horses, black coats absorbed 

almost twice as much radiation as grey coats. He also found that increased 

absorptance resulted in an increased heat gain and heat load (Cena 1966). This has 

since been confirmed in other studies, at least at low air speeds (Hutchinson & 

Brown 1969; Finch 1972; Finch & Western 1977; Finch et al. 1980; Brosh et al. 

1998; West & Packer 2002). 

 

Furthermore, Cena (1966) observed that all cattle and horse coats provided effective 

protection against ultraviolet radiation, regardless of colour. Finch and Western 

(1977) also pointed out that protection against deleterious effects of UV is generally 

related to skin rather than pelage colour. Giraffe colouration is determined by the 

hairs rather than by skin colour, which is heavily pigmented and uniformly dark grey 

in appearance (Dagg & Foster 1976; Dimond & Montagna 1976; Mitchell & Skinner 

2003). 

 

7.1.3 Thermoregulatory adaptive colouration in mammals 

Optimisation of solar heat gain should be most important for survival where 

thermoregulatory stress is greatest, or where resources crucial to maintenance of heat 

balance, such as food and water, are most limited (e.g. Dawson & Brown 1970). For 

example, light colouration should be selectively favoured over dark colouration in 

hot, arid environments, where animals face a combination of high ambient 

temperatures, high solar radiation and limited water (Walsberg 2000). In these 

conditions they must dissipate through evaporative cooling not only their own 

metabolic heat but also heat gained from the environment (Taylor 1969; Taylor 

1970).  

 

Finch and Western (1977) found that black cattle in Kenya had a higher inward heat 

flow and a higher water requirement than brown or white cattle. Their study also 

revealed that the proportion of dark-coloured cattle in herds in different locations, 

and the relative survival of dark and light-coloured cattle in each herd, could be 

explained by differences in predicted heat stress. They also noted a proportionally 
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higher mortality of black cattle during droughts in low-lying areas. Their findings 

suggest a selective advantage of light over dark-coloured animals where heat stress is 

greatest, and an increasing selective advantage of dark over light-coloured animals as 

heat stress decreases (Finch & Western 1977). 

 

7.1.4 Thermoregulatory adaptations in giraffe 

For giraffe, the major climatic influences on body temperature regulation are high 

solar radiation, high ambient temperature, low relative humidity and restricted water 

availability (Sinclair 1983). In a study of physiology in the giraffe, Langman et al. 

(1982) observed a fluctuation in body temperature (Tb) between 35.7ºC and 39ºC. 

Changes in Tb correlated strongly with ambient temperature (Ta), with a phase lag of 

about 2 hours (Langman et al. 1982). Thermolability has also been observed in other 

savannah ungulates, such as the camel (Camelus dromedarius), eland (Taurotragus 

oryx), oryx (Oryx gazella) and hartebeest (Alcelaphus buselaphus) (Harthoorn et al. 

1970; Taylor 1970).  

 

As in camels, thermolability in giraffe may limit the need for evaporative cooling 

(respiratory and cuticular), and as a result, minimise water loss (Schmidt-Nielsen et 

al. 1957; Taylor 1970). However, if darker animals gain heat quicker than paler 

individuals of the same size, they will have to start dissipating heat by evaporative 

cooling sooner, and continue to do so for a larger part of the day (Taylor 1970). 

Therefore any reduction in water loss resulting from thermolability will be greater 

for pale than for dark animals. Giraffe are able to survive increases in body 

temperature by use of a carotid rete and cavernous sinus system, which enables blood 

passing to the brain to be cooled by a heat exchange system with cool venous blood 

from the nasal mucosa (Langman et al. 1979; Mitchell & Skinner 2005). This nasal 

heat exchange also further minimises water loss (Langman et al. 1979).  

 

Thermal stress potentially places an upper limit on the time that large mammalian 

herbivores can devote to foraging, as this behaviour increases the thermal load 

generated by muscular activity and increases exposure to solar radiation (Owen-

Smith 1998). Indeed, giraffe become slow in the heat of the day (Innis 1958) and the 
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activity levels of females in particular are reduced when Ta exceeds 32ºC (Leuthold 

& Leuthold 1978a). Giraffe feeding activity tends to be biphasic, with increased 

activity early morning and late afternoon (Leuthold & Leuthold 1978a; Pellew 

1984a; Fennessy 2004), and giraffe are more likely to be seen lying down at the 

hottest time of day, early afternoon (Innis 1958). To counter radiative heat stress, 

giraffe should seek to minimise their solar heat-load. In a study in Etosha NP, 

Namibia, Kuntzsch and Nel (1990) found that as ambient temperatures increased, 

giraffe oriented themselves to minimise the body surface exposed to direct sunlight, 

or sought shade.  

 

It has been suggested that giraffe pelage patches may act as “thermal windows” that 

facilitate heat transfer (Skinner & Smithers 1990). This hypothesis is supported by 

the finding that subcutaneous vasculature varies, with a rete mirabile located 

underneath each patch, and that the subcutaneous temperature between patches and 

non-patches differs (Mitchell & Skinner 1993; Mitchell & Skinner 2005). However, 

the conditions under which these measurements were made are unclear, and the 

influences of environmental conditions and patch colour on this effect are unknown. 

 

Nonetheless, it is also possible that in giraffe, pelage colouration is the result of 

natural selection for optimal coat colouration under varying environmental 

conditions. Giraffe colouration is determined by the hairs that cover the skin (Dagg 

& Foster 1976), and as in humans and other mammals, giraffe hair colour is assumed 

to be determined by varying levels and ratios of the two distinct hair pigments, 

phaeomelanin (for yellow to reddish-brown and buff colouration) and eumelanin (for 

dark-brown to black colouration (Ito & Wakamatsu 2003; Jawor & Breitwisch 

2003)).  
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7.2 Aims 

This chapter aims to test the following hypotheses and predictions: 

Hypothesis 1: The possession of dark patches should be costly in hot, arid conditions 

in terms of increased solar heat gain, and should be selected against in such 

environments. Thus, biogeographical variation in giraffe coat colouration could 

result from an adaptation to minimise heat and water stress, and as such can be 

explained by geographical variation in environmental selection pressures. Thus, I 

predict that: 

o Variation in giraffe coat colour and patch cover can be explained by geographical 

variation in climatic factors that would influence environmental heat stress.  

Hypothesis 2: If dark coat colouration is maintained in males by sexual selection for 

an honest signal of male status (see Chapter 6), then I predict that: 

o Any relationship between predicted environmental stress and biogeographic 

variation in colouration will be stronger in females than in males.  

Hypothesis 3: If dark coat colouration is costly in terms of increased solar heat gain, 

then males with dark coats facing this additional cost should demonstrate different 

thermoregulatory behaviour to adult females or pale adult males. Thus, I predict that: 

o Dark males will preferentially select shade over body orientation (i.e. presenting 

the smallest body surface possible to the sun’s rays) as a form of reducing 

exposure to the sun, when compared with adult females and pale adult males, 

who should demonstrate similar thermoregulatory behaviour. 
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7.3 Methods 

7.3.1 Photographic analyses 

7.3.1.1 Photographs 

Photos of giraffe from throughout Africa were obtained from wildlife photographers 

from locations where giraffe are known to be native (Table 7.1). A unique identifier, 

independent of sex or location, was given to each photo and to each individual. 

Where possible, individuals were sexed by referring to characteristics such as visible 

genitalia, the size, shape and condition of the horns and skull ossifications, and body 

shape (male neck musculature often appears highly developed relative to that of a 

female (Pratt & Anderson 1982)). Each individual was also classed according to 

approximate age class (5 categories: juvenile, sub-adult, young adult, fully adult and 

old; derived from Leuthold (1979)), based on body proportions, relative length of the 

mane, profile of the head, overall condition, horn and skull development and wear, 

and size relative to other individuals in the same photograph.  
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Table 7.1. Numbers of images (excluding duplicates of the same individual) included in the 

dataset for each location. The total for each location includes individuals of unknown gender. 

Country Location Assumed subsp. Males Females Total 

Botswana Chobe NP G. c. angolensis 8 5 16 

 Okavango Delta G. c. angolensis 8 11 29 

Kenya Aberdare NP G. c. reticulata 11 3 20 

 Lake Nakuru NP G. c. rothschildi 3 6 18 

 Meru NP G. c. reticulata 2 0 2 

 Nairobi NP G. c. tippelskirchi 12 12 30 

 Samburu NR G. c. reticulata 47 21 88 

 Tsavo NP G. c. tippelskirchi 13 12 32 

Kenya / Tanzania 
Masai Mara GR / 
Serengeti NP 
system 

G. c. tippelskirchi 63 41 150 

Namibia Etosha NP G. c. angolensis 65 26 131 

 Kunene region G. c. angolensis 15 6 37 

Niger Koure region G. c. peralta 7 2 15 

South Africa Kruger NP G. c. giraffa 38 20 84 

Tanzania Arusha NP G. c. tippelskirchi 5 13 22 

 Lake Manyara G. c. tippelskirchi 9 0 9 

 Selous GR G. c. tippelskirchi 1 1 8 

 Tarangire NP G. c. tippelskirchi 0 2 2 

Uganda Murchison Falls G. c. rothschildi 6 1 10 

Zambia Mosi-Oa-Tunya G. c. angolensis 2 0 3 

 South Luangwa G. c. thornicrofti 3 2 5 

Zimbabwe Hwange NP G. c. angolensis 19 8 37 

  Total: 337 192 748 

 

7.3.1.2 Patch colour categories 

Each giraffe was scored according to patch darkness using the same categories as in 

the field study (see Chapter 2: 1 = very pale tan patches, 2 = darker tan and russet, 3 

= chocolate-brown, 4 = black). It was decided to score patch colour by eye rather 

than using image analysis software, because of varying ambient light conditions, 

camera types and image qualities. These could not be controlled for due to the 

variety of image sources used. It is assumed that human raters take some of these 

factors into account when judging actual colour (e.g. Hurlbert 1999; Golz & 

MacLeod 2002). The four categories were based on an evaluation of gross darkness, 

rather than variation in hue (Sumner & Mollon 2003). The categories were assumed 

to correspond to incrementally different levels of melanin (predominantly eumelanin) 

pigmentation (Ito & Wakamatsu 2003; Jawor & Breitwisch 2003), and consequently 

different levels of absorption/reflection of solar radiation (Cena 1966).  
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7.3.1.3 Patch cover 

A MATLAB algorithm was used to analyse sections (Figure 7.1) taken from 432 

images of giraffe. This algorithm served to binarise the JPEG image (Figure 7.2), 

then count and record the number of black and white pixels produced. Patch cover 

values (the proportion of the total number of pixels in the binarised image that are 

black) were recorded for sections both of the body and of the neck that were free 

from obvious scars, oxpeckers, folds of skin or strong shadows.  

 

 

Figure 7.1. Example of rectangular neck and body sections (white outlines) taken from images 

of giraffe to be analysed for patch cover. 

 

 

 

 

Figure 7.2. Example of a section taken from a giraffe image, and of the MATLAB binarisation 

(transformation to black and white pixels only) used to assess patch cover. 
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7.3.1.4 Validation tests 

To test for inter-scorer reliability, the patch colour of 100 randomly selected images 

were independently scored by two additional scorers who were first shown examples 

of the four categories, but who were naïve to giraffe sex or origin (images were 

trimmed to show only the neck and body, excluding the head and genital region). It 

was also assumed that any individual recording or scoring errors would not be biased 

in favour of any one sex or location.  

 

A total of sixty images were also analysed manually by overlaying a transparent grid 

on printed out sections of the body and of the neck, and then counting the proportion 

of intercepts falling on patches relative to the total The size of the grid (i.e. the 

distance between points) was varied according to the size of the image, such that a 

minimum of 250 points were always counted. These patch cover values were 

compared to those obtained by computer analysis for the same giraffes to test the 

validity of the algorithm. 

 

Where the same individual appeared in two different images, a patch cover value was 

obtained from both, where possible. These scores from the same individual in 

different images were compared to test for repeatability, and averaged to produce 

overall scores for that individual. Where both body and neck values were available 

for the same individual, the average of the two was also calculated to produce an 

overall body score. After checking that body and neck scores for the same individual 

correlated well, where only one of the two values (body or neck) for an individual 

was obtained, then that value was used as the overall body score. 

 

Sexual dichromatism was also tested using a method that did not rely on the 

categorisation of colour, but instead involved assessment of 33 occurrences of 

different male-female pairs in an image. A score of 1 was given if the male in the 

pair was darker, -1 if the female was darker, and 0 if there was no perceptible 

difference.  This was independently scored by four people, three of whom were naïve 

to the sex or origin of the giraffes. 

 



Chapter 7. Coat colour and environmental stress  202 

   

7.3.1.5 Population means 

For each distinct population, the mean patch cover was calculated for all individuals 

sampled, and for males and females separately. The overall ‘darkness’ of a 

population was defined as the percentage of individuals (or of males or females) in 

each area allocated to the two darker patch colour categories (three and four; see 

Appendix 4). Patch cover data were logarithm-transformed at the level of analysis to 

reduce skewness. 

 

7.3.1.6 Climatological data 

Climatological data were obtained from the ‘Tables of temperature, relative 

humidity, precipitation and sunshine for the world’ (Meteorological-Office 1972), 

which were based on data collected over about 30 years. Data were noted from the 

nearest one, two or three weather station sites, and averaged where necessary (see 

Appendix 5). Since the major climatic influences on body temperature regulation for 

giraffe are high solar radiation, high ambient temperature, low relative humidity and 

restricted water availability (Sinclair 1983), the following climatological variables 

(see Appendix 6) were selected:  

• Average yearly maximum temperature: daily maximum temperature, 

averaged over the whole year, and over all years. 

• Average yearly minimum temperature: daily minimum temperature, averaged 

over the whole year, and over all years. 

• Relative humidity at 13h30 or 14h30. 

• Average yearly precipitation: this was obtained from the UNEP-WCMC 

World Database on Protected Areas, an online resource that provides data on 

reserves and national parks. Where data for a site was not available in this 

database, it was substituted with data from the aforementioned tables. 

Information on rainfall in the Kunene region of north-west Namibia was 

taken from Fennessy (2001). 

• Average yearly hours of bright sunshine. 

Differences in colouration between the sexes were assessed using the Mann-Whitney 

U test. The relationships between climate, patch cover and patch colour for each 

location were examined using regression analyses, with data points weighted by the 
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original sample size from which the means were calculated. Only pairs of 

climatological variables that were not significantly inter-correlated were tested as 

potential covariate predictors.  

 

7.3.1.7 Phylogenetically-controlled subspecies-level analyses 

To control for phylogenetic constraints (e.g. Felsenstein 1985; Garland et al. 1992; 

Freckleton et al. 2002; Martins et al. 2002) on the evolution of patch cover and 

colour, the analysis was replicated at the subspecies level using the Comparative 

Analysis by Independent Contrasts (CAIC) program for the Macintosh (Purvis & 

Rambaut 1995). The phylogeny used (Figure 7.3) was based on morphological and 

genetic analyses carried out by Seymour (2001) and Fennessy (2004). Phylogenetic 

tree branch lengths could not be reasonably estimated, so equal lengths were 

assigned to all the branches of the phylogenetic tree. All climate stations in the 

above-mentioned tables (Meteorological-Office 1972) that fell within the assumed 

recent-historical range of the different subspecies (Sidney 1965) were used to 

calculate mean values for each climatological variable (see Appendix 7). 

Evolutionary assumptions of the CAIC model were satisfied (e.g. absolute values of 

the standardised contrasts were independent of the estimated nodal values), after 

appropriate transformations of some of the variables (Purvis & Rambaut 1995). 

Regression analyses, forced through the origin, were carried out using the 

standardised linear contrasts produced by CAIC.  
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Figure 7.3. Giraffa camelopardalis subspecies phylogeny used in the phylogenetically-controlled 

analysis, based on previous morphological and genetic work (Seymour 2001; Fennessy 2004). 

 

 

7.3.2 Field data collection: Thermoregulatory behaviour in wild giraffe 

Based on the study of giraffe body orientation and use of shade by Kuntzsch and Nel 

(1990), a similar investigation was carried out to look at the effects of sex-age class 

and coat colour on thermoregulatory behaviour on the study population. The aim was 

to establish if there was an apparent thermoregulatory cost to the dark coat 

colouration observed in mature male giraffe. When a giraffe was observed standing 

resting or ruminating, it was noted whether the giraffe was standing in the shade (4), 

and if not, then whether the body was oriented facing towards the sun (1), away from 

the sun (2), or with the long axis of the body perpendicular to the sun’s rays. 

 

Thermoregulatory behaviour was compared between different sex-age and coat 

colour classes, as well as between the summer and winter seasons. The cooler winter 

months were defined by monthly mean minimum temperatures (calculated from four 

years of daily data from Okaukuejo, Etosha NP). These are lowest (below 15°C) 

between May and September (Birgit Kötting, M.E.T., unpublished data). Monthly 

mean maximum temperatures are also lowest (below 30°C) between May and 

August. 

G. c. peralta 

G. c. rothschildi 

G. c. reticulata 

G. c. tippelskirchi 

G. c. thornicrofti 

G. c. angolensis 

G. c. giraffa 



Chapter 7. Coat colour and environmental stress  205 

   

7.4 Results 

7.4.1 Photographic analyses 

7.4.1.1 Validation tests 

Relative coat colour rankings correlated extremely well between all pairs of scorers 

(Spearman’s rho = 0.696, 0.769 and 0.789, all P < 0.001). The correlation between 

patch cover values obtained by computer analysis and those obtained by manual 

analysis was highly significant for body, neck and overall values (bodies: Pearson’s r 

= 0.817, N = 24, P < 0.001; necks: r = 0.907, N = 44, P < 0.001; overall: r = 0.814, N 

= 56, P < 0.001).  

 

Values obtained for the same giraffe occurring in different images correlated highly 

with each other. This result was significant whether only body values were included 

(Pearson’s r = 0.927, N = 34, P < 0.001) or only neck values (r = 0.916, N = 37, P < 

0.001), but was most significant for values that were an average of both body and 

neck score (r = 0.963, N = 22, P < 0.001).  

 

There was also a highly significant correlation between values obtained for body 

sections and those obtained for neck sections (r = 0.902, N = 356, P < 0.001). Some 

variability existed due to actual differences in patch cover between the neck and the 

body. However, the high overall correspondence lent support to the decision to use 

body, neck or overall scores, depending on availability. 

 

7.4.1.2 Sexual dimorphism in patch cover, and patch dichromatism 

No significant overall sexual dimorphism in patch cover was found (Students t = 

1.18, df = 351, P = 0.238), although there was a very slight trend for males to have 

relatively greater patch cover than females (mean male percentage cover = 63.0%, 

mean female patch cover = 61.7%). At the population level, patch cover was 

significantly greater in males than in females in just one population, that from Etosha 

NP (mean male patch cover = 63.7%, mean female patch cover = 59.1%, Students t = 

2.761, df = 60, P < 0.01). 
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With regards patch colour, males were generally darker than females (Mann-Whitney 

U = 26156, Nm = 339, Nf = 189, P < 0.001 for all non-juvenile age classes; Figure 

7.4). Sexual dichromatism varied between populations from different locations. 

Patch colour dichromatism was significant only in Etosha NP (Mann-Whitney U = 

408, Nm = 63, Nf = 25, P < 0.001) and Samburu GR (U = 285, Nm = 47, Nf = 21, P < 

0.005). Dichromatism can be attributed to the darkening of males, but not females, 

with age; male patch colouration was significantly associated with age, with older 

males tending to be darker than younger males (Kendall’s tau-b = 0.369, N = 339, P 

< 0.001), whereas there was no such association in females (tau-b = 0.096, N = 189, 

P = 0.152).  

 

The test of sexual dichromatism performed independently of colour categories 

confirmed the above result. A sign test showed a significant deviation from parity, 

with males tending to have darker patches than females (sign-test P-values for the 

four scorers were < 0.005, < 0.01, < 0.05 and 0.064; Figure 7.5). Agreement among 

the scorers was good, with an average concordance for all possible pairs of scorers of 

0.82, and an overall agreement for all four scorers of 0.70. Only 4 reversals were 

noted among the 33 pairs, where one scorer disagreed with at least one of the other 

scorers regarding the direction of dichromatism. 
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Figure 7.4. Frequency of different patch colour categories in the two sexes (filled bars = males, 

empty bars = females). A greater proportion of males are classed in the darker categories, and a 

greater proportion of females are classed in the lighter categories.  
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Figure 7.5. Assessment of patch colour differences of male-female pairs of giraffe in the same 

image, judged by 4 independent scorers. Bars represent the mean frequency, across the 4 

scorers, of male-female pairs allocated to each category (male darker, female darker, or no 

difference) and error bars represent 1 standard-error of the mean. 
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7.4.1.3 Relationships between patch cover, patch colour and climate 

The climatological factors which most strongly predicted patch cover were annual 

hours of bright sunshine (a result of the combined effects of latitude, depth of 

atmosphere and cloud-cover) and either mean yearly minimum temperature (F2,19 = 

10.09, P<0.005) or total annual rainfall (F2,18 = 36.67, P < 0.001; Table 7.2). These 

pairs of factors accounted for 57% and 83%, respectively, of the variation in mean 

patch cover across the locations (the r
2
 value was not improved by including all three 

predictors in the model). Patch cover tends to be greater in cooler, drier sites, but 

patch cover is limited in areas with greater hours of bright sunshine (Figure 7.6). 

These results remained highly significant if the analysis was restricted to just females 

(rainfall and minimum temperature: F2,15 = 9.372, P < 0.005; rainfall and bright 

sunshine: F2,15 = 29.852, P < 0.001) or just males (rainfall and minimum temperature: 

F2,16 = 8.744, P < 0.005; rainfall and bright sunshine: F2,16 = 20.936, P < 0.001). 

 

Table 7.2. Inter-correlation of pairs of potential predictors (italics), and predictive ability of 

non-correlated pairs (heavy outline) for variation in mean patch cover at the different sites. The 

two combinations of predictors that are significant after a Bonferroni correction (a P-value of 

less than 0.0083 was considered significant, accounting for six tests) are highlighted in bold type. 

 
Yearly min. 
temp. (°C) 

Relative Humidity 
at 14:30 (%) 

Annual rainfall 
(mm) 

Annual hours 
bright sunshine 

Yearly 
max. temp. 
(°C) 

Inter-
correlated: 

r=0.752, 
P<0.001 

Inter-correlated:  
r=-0.628, P<0.005 

F=5.348, P=0.017, 
r
2
=0.401 

F=6.063, P=0.012, 
r
2
=0.447  

Yearly min. 
temp. (°C) 

- 
F=2.719, P=0.096, 

r
2
=0.254 

F=3.843, P<0.05, 
r
2
=0.325 

F=10.090, 
P<0.005, r

2
=0.574 

Relative 
humidity at 
14:30 (%) 

- - 
Inter-correlated: 

r=0.607, P<0.005 
Inter-correlated:  

r=-0.891, P<0.001 

Annual 
rainfall 
(mm) 

- - - 
F=36.666, 

P<0.001, r
2
=0.830 

 

Values for total hours bright sunshine variable were not available from the nearest 

meteorological stations to Tsavo NP, Arusha NP and Hwange NP. For these 

locations, values were taken from the nearest station at which this information was 

available. The results remained largely unchanged if these three points were not 

included in the analysis (minimum temperature and sunshine: F1,14 = 9.501, P < 

0.005; rainfall and sunshine: F1,15 = 29.733, P < 0.001). 
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Figure 7.6. Relationship between mean patch cover in a population and mean annual 

precipitation, for all individuals.  Empty squares = low-insolarity sites (<2917 hrs p.a.), filled 

circles = high-insolarity sites. 

 

 

Bright sunshine also appeared to limit patch colouration, especially in females. For 

locations where the sample size was greater than two individuals for both males and 

females, there was a significant relationship between yearly hours of bright sunshine 

and the percentage of individuals with dark patches for males (F1,14 = 6.213, P < 

0.05), and almost for females (F1,12 = 3.576, P = 0.085). However, the regression 

slope was noticeably steeper for females than for males (Figure 7.7). This resulted in 

a trend for increasing sexual dichromatism with increasing insolarity (as mentioned 

above, this was significant in Etosha NP, Namibia). Overall, dichromatism was 

significant in high insolarity locations (Mann-Whitney U = 5225, Nm = 169, Nf = 89, 

P < 0.001) but not in low insolarity locations (U = 6818, Nm = 146, Nf = 98, P = 

0.494). 
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Figure 7.7. Relationship between yearly hours of bright sunshine and the percentage of 

individuals with dark brown or black patches in a) females, and b) males, for sites where sample 

size was greater than two for both males and females . 



Chapter 7. Coat colour and environmental stress  211 

   

7.4.1.4 Phylogenetically-controlled subspecies-level analyses 

None of the climatological variables significantly predicted patch cover once 

subspecies relationships were controlled for. However, there was a trend for 

decreasing patch cover with increasing annual rainfall for females (regression 

through the origin: F1,6 = 4.985, P = 0.076; Figure 7.8), and for males if the effect of 

yearly hours bright sunshine was also taken into account (F2,5 = 7.841, P = 0.064), as 

found in the population-level analysis, above. There was also a slight trend for 

decreasing proportions of females with dark patches as yearly hours of bright 

sunshine increased (F1,6 = 2.378, P = 0.184; Figure 7.9), which also lends some 

support to findings of the population-level analysis. No such trend was found for 

male patch colour (F1,6 = 0.749, P = 0.426).  
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Figure 7.8. Relationship between contrasts (calculated by CAIC) in mean female patch cover 

and contrasts in mean annual precipitation (trend line is forced through the origin). 
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Figure 7.9. Relationship between contrasts (calculated by CAIC) in the proportion of females 

with dark patches and contrasts in mean yearly hours bright sunshine (trend line is forced 

through the origin). 

 

 

7.4.1.5 Within-subspecies analyses 

The observed association between patch cover or colour and climatological variables 

for females was further reinforced by analyses carried out at lower taxonomic levels 

using the subspecies with the largest sample sizes (numbers of sites sampled). 

Specifically, the observed trend between female patch cover and the combined 

effects of bright sunshine hours and annual rainfall also held if the analysis was 

restricted to either just G. c. angolensis and the most closely related subspecies G. c. 

giraffa (F2,5 = 6.744, P = 0.078; Figure 7.10), or to all of the southern African 

subspecies (the two mentioned as well as G. c. thornicrofti; F2,6 = 8.208, P < 0.05).  

 

There was also a significant relationship between female patch cover and just annual 

rainfall for the four most western G. c. angolensis populations, which experience the 

highest yearly hours of bright sunshine (F1,3 = 23.70, P < 0.05), but a more highly 

significant relationship between female patch cover and mean annual minimum 
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temperature (F1,3 = 187.0, P < 0.01). In these locations, rainfall and minimum 

temperature were correlated (Spearman’s rho = 0.90, P < 0.05). For males, the 

relationship between patch cover and climatological variables did not hold among all 

southern African populations (F2,7 = 1.219, P = 0.370), or among just G. c. 

angolensis populations (F2,7 = 0.812, P = 0.523). 

 

This relationship was not significant among males of G. c. tippelskirchi (F2,4 = 0.290, 

P = 0.775), but there was still a non-significant trend for decreasing female patch 

cover with increasing rainfall for G. c. tippelskirchi (F1,4 = 3.319, P = 0.166; Figure 

7.11). 
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Figure 7.10. Relationship between mean female patch cover in a population and mean annual 
precipitation, for populations of G. c. angolensis and G. c. giraffa only.  Empty squares = lower-

insolarity sites (<3300 hrs p.a.), filled circles = higher-insolarity sites. 
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Figure 7.11. Relationship between mean female patch cover in a population and mean annual 
precipitation, for populations of G. c. tippelskirchi only.  Empty squares = lower-insolarity sites 

(<2917 hrs p.a.), filled circles = higher-insolarity sites. 

 

 

There was also a significant relationship between the proportion of females that had 

dark patches and the mean yearly hours of bright sunshine, both within G. c. 

angolensis (F1,4 = 19.785, P < 0.05), and among all southern African populations 

(F1,6 = 49.201, P < 0.001; Figure 7.12). Above about 3300 hours of bright sunshine 

per year, nearly all females (<10%) have pale patches (though these populations vary 

in mean patch cover; see above). This relationship was also evident, though not 

significant, among G. c. angolensis for males (F1,5 = 5.457, P = 0.08).  This 

relationship also did not hold for males or females of G. c. tippelskirchi populations 

(males: F1,3 = 6.310, P = 0.129; females: F1,3 = 0.452, P = 0.571). 
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Figure 7.12. Relationship, among southern-African giraffe populations, between average yearly 

hours of bright sunshine and the proportion of females (above), or males (below), with dark 

patches. 
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7.4.2 Field data 

7.4.2.1 Sexual dichromatism in Etosha NP giraffe 

There was highly significant sexual dichromatism among fully adult giraffe (adult 

throughout the study period) in the study area population in Etosha National Park 

(Mann-Whitney U = 4743, N = 278, P < 0.001), with only 16 of the 135 fully adult 

females classed in colour category three (chocolate brown), and none with very dark 

brown or black spots (Figure 7.13). Most of the darker females appeared to be 

elderly; one dark female that died of apparently natural causes was estimated to be 

aged over 20 years (based on dentition (Hall-Martin 1976)). Although a few 

juveniles had dark tan colouration, this was generally lost as they reached 

independence (around 18 months), and all sub-adults were of category one or two 

colouration. All dark males were fully adult, and just over 60% of adult males were 

classed in the darker two categories.  

 

Patch colour category

BlackChocolate brow nTanLight tan

N
u

m
b

e
r 

o
f 
k
n

o
w

n
 a

d
u

lt
s
 i
n
 t

h
e
 s

tu
d

y
 a

re
a

120

100

80

60

40

20

0

 Female

 Male

 

Figure 7.13. Distribution of known, fully adult giraffe in the study area across the four patch 

colour categories. 
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7.4.2.2 Thermoregulatory behaviour in relation to coat colour 

As expected, giraffe did appear to use body orientation as a means of 

thermoregulatory behaviour, but only when cloud cover was minimal (one quarter 

cover or less). When cloud cover was greater (in October), giraffe exclusively sought 

shade as a means of reducing exposure to sunlight, possibly because of the reduced 

directionality of incident sunlight (or skylight). For this reason, all subsequent 

analyses were restricted to days when cloud cover was one quarter or less.  

 

Thermoregulatory behaviour was associated with time of day and season. For all 

adults, behaviour (four categories) was significantly associated with time of day 

during the cooler winter months (May to September; contingency coefficient = 

0.623, N = 77, P < 0.001; Figure 7.14), but not during the warmer months (March to 

April, October to December; contingency coefficient = 0.315, N = 78, P = 0.198). 

Indeed, with one exception, all the observations of giraffe standing with the long axis 

of their body perpendicular to the sun were on winter mornings (the exception was 

one dark bull seen standing perpendicular to the sun at 13:00, when the sun was 

almost at its azimuth and the effect of body orientation would have been reduced.).  
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Figure 7.14. Relationship between time of day and giraffe thermoregulatory behaviour in the 

cooler months (June to September). Morning includes any daylight time up until 11:00; Midday 

includes times after 11:00 until 14:00; Afternoon includes any daylight time after 14:00. 
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There was a slight but not significant association between adult male colouration and 

behaviour (four categories) in the cool season only, at the level of pale adult males 

compared to dark males (cool season: contingency coef. = 0.396, N = 26, P = 0.090; 

warm season: contingency coefficient = 0.301, N = 29, P = 0.410); only pale males 

were found resting with their body perpendicular to the incident sunlight. There was 

no significant association between behaviour and coat colour among dark adult males 

(category three versus category four patch colouration, cool season: contingency 

coef. = 0.311, N = 10, P = 0.301; warm season: contingency coef. = 0.354, N = 18, P 

= 0.463). The few darker (category three) females that were observed resting, all did 

so in the shade (N = 6), whereas paler-than-normal females (category one) were 

equally likely to be resting in the open as in the shade throughout the year (N = 14). 

This association between adult female coat colour (category one and three only) and 

thermoregulatory behaviour was significant (contingency coef. = 0.433, P < 0.05). 

 

Use of shade relative to body orientation by dark males did not differ significantly 

from that of females during the warmer months (Χ
2
 = 0.029, N = 83, df = 1, P = 

0.864), whereas that of pale males did slightly, but not significantly (Χ
2
 = 3.324, N = 

70, df = 1, P = 0.068; Figure 7.15). Specifically, light adult males always sought 

shade to rest in the warmer months (March to April and October to December), 

whereas 16% of females and 14% of dark males were resting in the open in the early 

hot wet season (October to December) and 59% of females and 57% dark males in 

the later warm wet season (March, April). Use of shade by dark males also reflected 

that of females in the cooler months (May to September; Figure 7.16), with about 

45% of females and 40% of dark males selecting shade. Pale males, on the other 

hand, more often rested in the open (64% of observations), during the winter months. 

 

Females used shade more in certain habitats, possibly in relation to the availability of 

shade-trees. In particular, they rested in the open at least 50% of the time (N = 38) 

when in certain habitats (A, B, C, D, J; see Chapter 3 for habitat codes), whereas they 

primarily used shade (at least two-thirds of the time) when in some of the more 

wooded habitats (E, F, G, H; N = 61). In the warmer months, pale males were only 

observed standing resting or ruminating in the more wooded habitats E, F, G and H, 

whereas, like females, dark males were also seen resting in the more open habitats. 
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Figure 7.15. Thermoregulatory behaviour of giraffe standing resting or ruminating in the 

warmer months (March to April, October to December). 
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Figure 7.16. Thermoregulatory behaviour of giraffe standing resting or ruminating in the 

cooler, dry months (May to September). 
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7.4.2.3 Changes in individual coat colouration 

A number of males, particularly young pale males, lost a degree of patch 

pigmentation towards the end of the dry season. In all, coat colouration of ten pale 

males and of four dark males faded noticeably between one wet season and the end 

of the following dry season (Table 7.3, Figure 7.17). In four cases, the male also 

experienced a noticeable loss of condition during the same period; in all other cases 

there was no clear positive or negative change in condition. Three of the pale males 

that lost pigmentation in 2005 (M183, M202, M219) had also been observed to gain 

pigmentation between the end of the previous dry season (2004) and the 2004-2005 

wet season. Thus, this seasonal darkening possibly represented a recovery from a 

similar loss of pigmentation during the preceding dry season.  

 

Table 7.3. Observed losses in male patch pigmentation from the wet season to the following dry 

season. Males that also lost condition are highlighted in bold type. 

Male ID 
Age-colour 
class 

Wet – dry season 
colour cat. change 

Wet season 
sighting (Mar-Jul) 

Dry season 
sighting (Aug-

Nov) 
M111 Pale adult     2 – 1 08/06/04 02/10/04 

M128 Sub-adult     2 – 1 23/06/04 16/10/04 

M131 Sub-adult     2 – 1 25/05/05 06/08/05 

M183 Pale adult     2 – 1 14/05/05 26/10/05 

M189 Pale adult     2 – 1 22/07/04 29/11/04 

M198 Pale adult     2 – 1 22/03/05 16/10/05 

M202 Pale adult     2 – 1 13/05/05 26/10/05 

M219 Sub-adult     2 – 1 29/04/05 30/11/05 

M269 Sub-adult     2 – 1 07/07/05 26/09/05 

M95 Pale adult 2 – 2 (paler) 28/05/04 06/09/04 

M82 Dark adult 3 – 3 (paler) 24/05/04 01/09/04 

M243 Dark adult 3 – 3 (paler) 13/03/05 14/10/05 

M56 Dark adult     4 – 3 26/06/05 
14/10/05 & 

22/11/05 

M88 Dark adult     4 – 3 25/05/04 09/09/05 
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Figure 7.17. Examples of dry-season pigmentation loss in male giraffe. Top: M202 in May (left) 

and October (right); bottom: M243 in March (left) and October (right). 

 

 

By comparison, only four females lost pigmentation to an extent that warranted a 

reclassification of patch colour category. These changes all occurred from the dry to 

the wet season, instead of from the wet to the dry season. Two adult females changed 

from category three to two, and two from category two to one. Notably, two of these 

females lost pigmentation when lactating following the birth of a calf. 
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7.5 Discussion 

7.5.1 Biogeographical variation in patch cover and colouration 

Here, I tested the hypothesis that biogeographical variation in giraffe coat 

colouration results from an adaptation to minimise heat and water stress, and as such 

can be explained by geographical variation in environmental selection pressures. 

Solar heat gain is important in determining water consumption and survival in 

stressful conditions (Finch & Western 1977). The results suggested that bright 

sunshine does indeed act as a limiting factor in the evolution of giraffe coat 

markings. 

 

Results indicated that variation in climate across Africa can better explain 

biogeographical variation in giraffe coat colouration in females than in males. As 

predicted, in females potentially costly dark coats appear to be selected against in 

more stressful environments. Specifically, patch cover was found to be greatest in 

areas of lower rainfall, but was strongly affected by sunshine; patch cover was 

reduced in areas of high insolarity relative to areas of lower insolarity. Bright 

sunshine also appears to select for paler patches, especially in females. The 

relationship between patch cover and climatological factors was greater in more 

harsh environments; where insolarity was highest and females palest (G. c. 

angolensis), patch cover was greater in females living in cooler, drier areas.  

 

Male giraffe across Africa tend to darken with age (see also Chapter 6), and as a 

result, mature males were generally darker than mature females, even in areas of high 

insolarity. Indeed, the degree of dichromatism varied in relation to the predicted level 

of environmental stress; it was most prominent in areas where predicted heat stress 

was high, due to the stronger limiting effect of high insolarity on female coat 

colouration.  

 

These results were partially replicated by the phylogenetically controlled analysis 

using CAIC. The lack of significant results from the CAIC analysis could possibly be 

explained firstly by the loss of detail that resulted from pooling the population data 

into subspecies means, and secondly from the reduction in degrees of freedom that 
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resulted from using contrasts rather than raw data points. However, the results were 

also partially replicated at lower taxonomic levels, lending further weight to the 

findings. Perhaps not surprisingly, at the subspecies level, the results remained 

clearer for the subspecies living in the most stressful environment (in terms of 

insolarity; G. c. angolensis) than a subspecies living in a less stressful environment 

(G. c. tippelskirchi). 

 

These results are consistent with a greater importance in females of natural selection 

for adaptations to reduce environmental heat stress, due to the energetic costs of 

gestation and lactation (Pellew 1984b) and the risks of heat stress to embryo 

development (e.g. Hansen et al. 2001; Garcia-Ispierto et al. 2006). The widespread 

maintenance of dark colouration in males can be explained by sexual selection of a 

costly signal of genetic or phenotypic quality or competitive status (e.g. Zahavi 1975; 

Moller et al. 1998, see also Chapter 6; West & Packer 2002). The reliability of dark 

coat colouration as an honest signal of status could be greatest where insolarity is 

high: where insolarity is low, a dark coat might not be as honest an indicator of male 

quality, as the lower cost of signalling (bearing a dark coat) could leave the system 

open to cheating by poor quality males (e.g. Zahavi 1975; Kodric-Brown & Brown 

1984).  

 

7.5.2 Changes in coat colouration: is pigmentation costly to produce? 

Where animals are polygynous and dimorphic, males often face greater costs of 

growth, metabolism and direct competition than females (Clutton-Brock et al. 

1982b). They may also be less well adapted than females at securing nutritional 

resources (Clutton-Brock et al. 1982b). As a result, they are likely to suffer from 

higher mortality and survival costs than females, particularly in times of 

environmental stress (Clutton-Brock et al. 1982b; Owen-Smith 1993). Indeed, 

mortality records from Etosha NP (Birgit Kötting & Wilferd Versfeld, unpublished 

data) and the South-African Lowveld (Hall-Martin & Basson 1975) suggest that the 

end of the dry season can be a difficult time for male giraffe in particular. Increased 

mortality at the end of the dry season could be attributable to nutritional stress, as 

this is generally a nutritionally limiting period for giraffe (Hall-Martin & Basson 
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1975; Parker & Bernard 2005). If pigmentation is also affected by nutritional state, 

then a lower tolerance of nutritional stress could explain the greater occurrence of 

dry-season pigmentation loss in males than in females. This is further supported by 

the observation that of the four females that also suffered pigmentation loss, two 

(possibly all) had recently given birth and may have been experiencing nutritional 

stress due to the additional energetic demands of lactation (Pellew 1984b). 

 

Furthermore, McGraw (2003; 2007) has proposed a biochemical mechanism, through 

the medium of nutrient acquisition, by which the condition-dependence and honesty 

of melanin-based signals of status could be maintained. He posited that trace 

minerals such as Ca, Zn, Fe and Cu are rare in the environment but also critical to the 

synthesis of melanin. If high concentrations are ingested, such minerals can also be 

toxic, but if bound to melanin granules and then sequestered in dead tissue such as 

hair, these minerals could help signal that the animal has good dietary access to 

limited resources and can also deal with the cost of potentially toxic high mineral 

concentrations. All of the above-mentioned micro-minerals are vital for the 

formation of intermediate products that lead to melanin synthesis. Furthermore, the 

critical rate-limiting steps of melanin biosynthesis involve the copper-requiring 

enzyme tyrosinase, the activity of which is likely regulated by copper availability 

(McGraw 2003). Thus, dietary mineral deficiencies could lead to loss of 

pigmentation.  

 

In an encounter with a competitor, before deciding whether to retreat or escalate, a 

male should assess his opponent’s probable ability to fight using visual criteria 

(Parker & Rubenstein 1981; Maynard-Smith 1982, see also Chapter 6). Fighting 

ability will be determined largely by a male’s resource holding power (Maynard-

Smith & Parker 1976) or ‘fitness budget’ (Parker 1974), which will be dependent on 

factors such as genotypic quality, age, body size, strength, social status, and also 

current body condition (Clutton-Brock et al. 1982a; Maynard-Smith 1982; 

Forchhammer & Boomsma 1998). Furthermore, according to traditional models of 

sexual selection, any character selected as an honest signal of quality should reflect 

ecological stresses specific to the species and environment (Zahavi 1975), and most 

of the variability in the trait should correlate with environmental effects such as 
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nutritional status (the remaining variability being due to heritable variation, Kodric-

Brown & Brown 1984).  

 

Therefore, a moderately labile, partially condition-dependent status signal (e.g. Ligon 

et al. 1990; Hill et al. 1999; McGraw et al. 2002; Cotton et al. 2004) that weakens 

with declining body condition could be a very reliable signal of male quality and 

competitive ability, both in competitor assessment (e.g. Parker & Rubenstein 1981; 

Clutton-Brock et al. 1982d) and female mate choice (e.g. Andersson 1982; 

Andersson 1994). Female preference for males in good condition, with a strong 

signal of quality (i.e. dark colouration), would operate through selection for indirect 

genetic benefits for offspring (e.g. a good immune system, Hamilton & Zuk 1982; 

Kirkpatrick & Ryan 1991), or for direct benefits (e.g. males that are most likely to be 

able to successfully defend and inseminate her, Trivers 1972). 

 

7.5.3 Behavioural thermoregulation 

Many ungulates have behavioural thermoregulatory strategies, particularly body 

orientation, as one of their adaptations to help reduce the environmental heat load in 

hot, dry environments (e.g. Maloney 2005). This has also been observed in giraffe 

(Kuntzsch & Nel 1990). Here I attempted to test whether differences in coat 

colouration, and thus expected solar heat load, affected male behavioural 

thermoregulatory strategies.  

 

Light adult males appeared to optimise their behavioural thermoregulatory strategy 

in relation to the season, seeking shade in the warmer months, and exposing 

themselves to the sun in the winter months. The latter observation corroborates the 

finding of Kuntzsch and Nel (1990) that at lower ambient temperatures giraffe 

position themselves so as to absorb heat over the largest possible body surface. Dark 

males also optimised their exposure to sun to an extent, but were more likely to be 

found resting away from shade during the summer months, possibly due to 

limitations imposed by the following of females during this time.  
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Through matching female movements and habitat use more closely than light males 

(see chapters 3 and 5), dark males may be forced to adopt a sub-optimal 

thermoregulatory strategy. Indeed, pale males selected only wooded habitats with 

abundant shade to rest and ruminate, whereas dark males were seen resting in a 

similar range of habitats to females. As a result, dark males may not be optimising 

their exposure to the sun for the best thermoregulatory effect, as would be expected 

with a dark coat. Rather, their exposure to the sun and use of shade appear to be 

constrained by their mating strategy. 

 

However, darker-than-normal females were only seen to rest in the shade, whereas 

paler-than-normal females often rested in direct sunlight. Since movements and 

habitat selection of pale and dark females should not differ (whereas those of pale 

and dark males do, see Chapter 3), this further substantiates the hypothesis that there 

is a thermoregulatory cost to exposure to sunlight for giraffe with darker coats. 

 

The observed differences in behaviour between dark and pale males in the cooler 

months may actually highlight a limited advantage of dark coat colouration at the 

coolest times of day and year. Dark males may not need to orient their body laterally 

to the sun on cold mornings because their dark colouration enables them to acquire 

body heat from solar radiation quicker than the lighter coats of pale males and 

females (e.g. Ohmart & Lasiewski 1971; Finch et al. 1980). However, this advantage 

is likely to be limited, relative to the costs of dark colouration in heat and sunshine, 

as the greatest costs related to heat loss should occur overnight (when there is no 

sunlight and thus no direct effect of coat colour on heat transfer) and during just a 

few hours on winter mornings. Conversely, dark colouration could be potentially 

costly (in terms of increasing solar heat gain) for a large proportion of each day, and 

throughout the year. Furthermore, large, dark males, with their greater body mass, 

should have higher thermal inertia (i.e. function as a more effective heat sink (Louw 

& Seely 1982)), thus better retaining their body heat during the winter nights, and 

having a reduced need for heat gain on winter mornings than smaller males and 

females. Therefore, if there was a true thermoregulatory benefit to dark colouration, 

one might expect smaller males, females and juveniles to be darker than larger males. 
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It has been proposed that patches could help regulate heat balance by acting as 

“thermal windows through which giraffes dissipate heat” (Skinner & Smithers 1990; 

Mitchell & Skinner 2005), or by aiding in the absorption of radiant heat on cold but 

sunny days (Mitchell & Skinner 2003). This would be possible due to the 

arrangement of subcutaneous anastomotic blood vessels beneath patches (Mitchell & 

Skinner 2005). Nonetheless, even accepting that patches may function as thermal 

windows, differences in coat colouration will affect heat gain considerably more than 

heat loss. It is highly plausible that on hot and sunny days, large, dark patches may 

exacerbate rather than enhance thermostatic control, and this effect will be greater 

the darker the patches. 
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8 GENERAL CONCLUSIONS AND DISCUSSION 

 

 

In this thesis, I set out to describe in more detail the evolutionary ecology of a large 

ungulate, the giraffe, living in a semi-arid environment with limited and highly 

variable resource availability. In particular, I sought to test the hypothesis that 

spatially restricted foods and artificially provisioned water might predictably 

concentrate females (spatially and temporally) and thus increase the potential for 

dominant males to monopolise females for mating. I also sought to explain 

biogeographic variation in giraffe coat colouration, and to test the hypothesis that 

dark coat colouration is costly, and as such, functions as a reliable signal of status in 

males. I shall now summarise the key findings of the thesis, discuss whether they 

support these hypotheses, and highlight possible areas for further work. 

  

 

8.1 Main results and conclusions of the thesis 

First of all, I established that in Etosha NP, male and female giraffe differ in their 

choice of food plants and habitat, and also in their feeding strategy (Chapter 3). As 

predicted, females appeared to maximise their food intake year-round, while males 

minimised their time spent foraging during the wet season, when food was more 

plentiful (Section 3.4.3.1, see also Pellew 1984a; Pellew 1984b; Ginnett & Demment 

1997), in accordance with Schoener’s theory of feeding strategies (Schoener 1971). 

Females were more selective in their choice of food, responding more noticeably 

than males to the production of flowers, fruit and new leaves (Section 3.4.3.3).  

 

As observed elsewhere (e.g. Oates 1972), females tended to avoid feeding on 

Colophospermum mopane (3.4.3.4), and as a result, were less likely to be found in 

habitats containing mopane than males (3.4.3.5). Females browsed most on mopane 

when it was nutritionally most profitable (3.4.3.2; high protein, low tannin levels), 

and mothers of calves appeared to limit their intake of C. mopane until their calves 

had begun to feed regularly on solid foods themselves (after six months). This 
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provides further support for the proposal by Caister et al. (2003) that nursing females 

may avoid feeding on mopane to limit their tannin intake.  

 

I also discussed the possibility, raised elsewhere (Young & Isbell 1991; Ginnett & 

Demment 1999), that females may be avoiding closed habitats such as mopane veld 

in order to reduce predation risk for their offspring. Habitat use also differed between 

males that were in bachelor groups and those that were alone, with habitat 

preferences of solitary males more closely resembling those of females throughout 

the year (3.4.3.5). This result supports the hypothesis that solitary males leave their 

preferred habitats (including those avoided by females) to search for potential mates. 

 

I found that group size was largest overall in the wet season (3.4.3.6). This could 

either be a result of spatially-restricted preferred foods causing females to aggregate 

in the wet season, limitations on maximum female group sizes in the dry season, 

when food is scarce, or due to females forming larger social groups as a means of 

predator defence during the peak calving season (Jarman 1974; Gosling 1986). 

Female aggregations formed in different habitats in different seasons as a result of 

large numbers of females browsing on preferred, ephemeral food sources. As 

predicted, the highest densities of female giraffe overall were to be found in one of 

the most spatially limited habitat types (mixed broadleaf woodland). More 

specifically, large groups and high densities of females were found to occur in mixed 

broadleaf woodland throughout the year, but particularly during the wet season 

(October to December and March to May), and also in A. nebrownii thickets between 

June and September, during the A. nebrownii flowering season (3.4.3.6). Females 

aggregated in an open habitat (A. nebrownii shrub savannah) in the cooler, drier 

season, and in more wooded habitats, with more shade, in the warmer, wetter 

months. Certain taller, more closed habitats appeared to be used for shade during 

times of year when they were not producing new vegetative growth (3.4.3.5).  

 

Despite the apparent water independence of giraffe to the west of Etosha NP 

(Fennessy 2004), giraffe in Etosha used water sources regularly. Unlike most giraffe 

populations previously studied (Berry 1978; Leuthold & Leuthold 1978b; Ginnett & 

Demment 1999; Le Pendu & Ciofolo 1999; Fennessy 2004), the Etosha population 
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resides in an area devoid of natural water courses and the associated riverine habitat. 

Instead, water is only available at a limited number of point water sources. As 

expected, use of perennial waterholes was lowest in the months that heavy rain 

occurred, and increased steadily throughout the dry season (3.4.4.1). During the 

driest months in terms of water availability (July to September), this resulted in 

female giraffe being found more predictably at waterholes than elsewhere in the park 

(3.4.4.2), and during the same period large groups of females were common in open 

plains surrounding waterholes (3.4.3.6). However, female groups did not tend to be 

larger at perennial waterholes than elsewhere in the study area (Section 3.4.4.3). The 

apparent concentrating effect, in terms of female groups size, of one specific 

waterhole (Ombika) could be attributed to its location within another spatially 

limited resource (mixed broadleaf woodland). These results support the hypothesis 

that limited resources, both food and water, cause females to aggregate predictably in 

the study area, with food having a greater concentrating effect in the wet season, and 

water in the dry season. 

 

As expected, based on other studies in southern Africa (Berry 1973; Hall-Martin et 

al. 1975), while breeding occurred throughout the year, a peak in births was found to 

occur between March and June, corresponding with a peak in conceptions between 

December and March, coinciding with the peak rainy season (Chapter 4). This 

closely resembles the conception peak previously found in the South African 

Lowveld (Hall-Martin et al. 1975), and suggests that this slight breeding seasonality 

may be reflected in wild giraffe populations throughout southern Africa. I considered 

two possible explanations for the observed breeding seasonality, one related to 

selection for minimising costs of lactation, and one relating to a physiological 

constraint on conception (see also Hall-Martin et al. 1975).  

 

As predicted by traditional models of mating systems and space use (Trivers 1972; 

Clutton-Brock 1989; summarised in Schwab 2000), adult males were found to range 

over larger areas than females, but home ranges of dark males were also highly 

variable in size (5.4.1.2). Female movements tended to be concentrated near 

perennial waterholes and preferred food sources (5.4.2.1). In line with expectations, 

males were found to associate more with females when in these areas of high female 
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usage than when outside these areas. However, more mature males generally 

associated less with females than younger males, rather than more (5.4.2.2).  

 

Some males were only sighted within the study area during a short period in each 

year, suggesting seasonal movement in and out of the study area (5.4.3.1). These 

‘seasonal visitors’ used smaller ranges than more resident males, but the extent of 

their movements once they left the study area were unknown. Males with smaller 

home ranges tended to be found in larger groups, spent more time in areas of high 

female usage, and were more likely to be seen with females, than males with larger 

home ranges (5.4.1.2, 5.4.2.2). I concluded from these observations that adult males 

in the study area employ a diversity of ranging strategies that may relate to male 

competitive ability, with dominant males probably using a mating strategy involving 

area-restricted search behaviour (Ims 1990) and possibly temporary localised defence 

of females (e.g. van der Jeugd & Prins 2000) in areas of high and predictable female 

usage. 

 

Due to seasonal variation in female aggregation (Chapter 3), and in the proportion of 

females that are receptive (Chapter 4), it was predicted that mature males might vary 

their mating strategy seasonally. Indeed, mature, dark males, but not pale adult 

males, were found to associate more with females during the wet, higher-conception-

rate season than during the rest of the year (5.4.3.2). Further evidence was presented 

to suggest that mating strategies differed among mature males. A proportion of dark 

males appeared to avoid female concentration areas, possibly because of the risk of 

high encounter rates and costly conflicts with other dark males. Younger, pale males, 

on the other hand, appeared to be tolerated, and commonly used these areas (5.4.3.3). 

 

In accordance with predictions, waterholes were shown to locally increase encounter 

rates between males and females, and consequently to increase the frequency of 

mating and agonistic interactions throughout the year (6.4.2.2, 6.4.2.3). Mating 

interactions (urine-testing attempts) were more likely to occur at waterholes during 

the dry than the wet season, due to the greater predictability of occurrence of females 

(6.4.2.4). Waterholes appear to provide pale males with an increased opportunity to 

urine-test females, due to increased intruder pressure and a reduced ability of dark 
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males to exclude subordinates from this activity (6.4.4.2). However, pale males were 

tolerated by dark males in this respect, as dark males always succeeded in securing 

mating rights to females in accordance with the ‘priority of access’ model (6.4.4.3, 

Altmann 1962; Cowlishaw & Dunbar 1991). Male intra-sexual competition was 

generally greater during the wet season, with a greater relative involvement in urine-

testing attempts and in displacements, and a greater intolerance of one another, by 

dark males during this time (6.4.3.1-6.4.3.3). 

 

I validated my categorisation of dark and pale adult males as separate social classes 

by demonstrating a difference in participation in agonistic interactions (6.4.1.2). 

Further, I found evidence for pelage colour relating to height and thus age, especially 

up to full maturity, but with a less clear fit among fully-grown males (6.4.1.1; refer 

also to necking fights, 6.4.1.3). I also tested the relationship between coat colour and 

social status; the results confirmed an association between colour and the outcomes 

of both displacements between males (6.4.1.3) and courtship interactions (urine-

testing attempts, 6.4.1.5). These results support the hypothesis that male coat colour 

functions as a signal of status, and suggest a role in both competitor assessment and 

female mate choice (e.g. Parker 1974; Zahavi 1975; Andersson 1982; Smith 1982). 

 

I highlighted two possible regulatory costs associated with the production and 

maintenance of dark coat colouration, which would aid in maintaining the ‘honesty’ 

of coat colouration as a signal of quality or status (Zahavi 1975): a nutritional cost 

(7.4.2.3, McGraw 2003), and a thermoregulatory cost (e.g. West & Packer 2002). 

The latter, when combined with geographical variation in environmental conditions, 

helps explain existing biogeographical variation in giraffe coat colouration (Section 

7.4.1). As hypothesised, a key determinant of environmental heat stress, bright 

sunshine (e.g. Finch & Western 1977), appears to be a limiting factor in the evolution 

of coat colouration, although this effect is stronger in females than in males. As a 

result, sexual dichromatism tends to be most significant where insolarity is greatest. I 

concluded that natural selection is responsible for biogeographic variation in female 

coat colouration, and that the maintenance of dark coat colouration in mature males 

can be explained by sexual selection for an honest (costly) signal of quality or status 

(e.g. Zahavi 1975; Moller et al. 1998). This is the first study that explores the 
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function of a purely visual secondary sexual trait in the giraffe (as opposed to one 

also involved in combat, such as body size or horn dimorphism (Simmons & 

Scheepers 1996)). 

 

Thermoregulatory behaviour of dark males was predicted to differ from that of pale 

males and females due to the hypothesised thermoregulatory costs of a dark coat. 

However, behavioural data did not provide clear evidence for a heat load cost of dark 

colouration in males, as the thermoregulatory behaviour of dark males appeared to be 

constrained instead by their matching of female movements and habitat preferences 

(7.4.2.2). Pale males, on the other hand, which may have been less constrained by 

their reproductive strategy, did optimise their thermoregulatory behaviour in relation 

to the season: they tended to seek shade in the summer, and rest in the open with the 

body oriented perpendicular to the sun on winter mornings (e.g. Kuntzsch & Nel 

1990; Maloney 2005). Nonetheless, darker females appeared to have a greater 

preference for shade than very pale females. This observation, combined with the 

low proportion of females of dark colouration relative to males, provides some 

support for the hypothesis. 

 

I assessed probable reproductive skew in the study population by reviewing relative 

participation of pale and dark males in mating interactions. I also compared apparent 

mating success (copulations and multiple consortships) with male association with 

females and potential for monopolisation of females based on a simplified priority of 

access model (e.g. Altmann 1962; Hirotani 1994; Fisher & Lara 1999). Based on 

this, I proposed a surrogate measure of probable male mating success based on two 

socio-behavioural measures: the proportion of time a male spends with females, and 

the proportion of that time that a male is in a position to monopolise mating 

opportunities (i.e. the only or dominant male in the group; 6.4.4.3). This suggested 

that pale males and younger dark males contribute little to reproduction, and that 

variance in reproductive success among dark males may be high, with a small 

number of dominant males possibly monopolising a large proportion of mating 

opportunities.  

 

 



Chapter 8. General discussion   234 

   

8.2 Insights into the giraffe mating system in Etosha NP 

This study should add considerably to the current understanding of giraffe mating 

systems. I have attempted to clarify some aspects of giraffe behavioural ecology that 

have already been raised elsewhere, and considered them within the context of 

traditional socio-ecological models and theories. For example, I have related 

variation among males in their appearance, movements and behaviour to probable 

differentials in individual competitive ability and mating strategies.  

 

8.2.1 Male coat colouration as an honest signal of status 

I have also discussed aspects of giraffe evolutionary ecology that have not before 

been considered, namely the evolution of a purely ornamental signal of status (in 

contrast with traits that serve in combat, such as neck musculature and horns). Male 

coat colouration appears to be sexually selected through both male contest 

competition (e.g. Pryke & Andersson 2003) and female mate choice (e.g. Petrie et al. 

1991).  

 

Escalated contests among male giraffe are clearly risky and potentially fatal (Dagg & 

Foster 1982), and competitor assessment apparently involves relatively accurate role 

assessment (i.e. near-perfect information, Smith & Parker 1976; Parker & Rubenstein 

1981) since the initiator of a displacement is rarely challenged, and consequently 

escalated contests are extremely rare. Male coat colour may be one of the key traits 

used as an indicator of status and probable competitive ability, as darker males were 

more likely to displace lighter males than vice versa (6.4.1.3). Among fully mature 

males, it may in fact be a more reliable indicator of potential competitive ability than 

height or other indicators of age (e.g. horn development), since in all of the three 

observed necking fights, the winner was darker but had the least developed horns and 

skull ossifications, and in one case the winner was also the shorter of the two 

adversaries (6.4.1.3). As demonstrated in Chapter 7, the honesty of the trait could be 

maintained by the thermoregulatory ‘handicap’ of bearing a dark coat in a high 

insolarity environment, a cost that is greater for males with darker coat colouration, 

but which may be better tolerated by high quality than low quality males (e.g. Zahavi 
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1975; Andersson 1982; Smith 1991). This point may only be fully resolved through 

experimentation or collection of detailed physiological field data. 

 

In attempts by males to urine-test females, females were more likely to reject (not 

urinate for) pale males than dark males, and most likely to reject very pale adult 

males (6.4.1.5). Some evidence was found for male coat colour being affected by 

nutritional stress (7.4.2.3 and 7.5.2), suggesting that coat colour might be dependent 

not only on age and social status, but also on male condition. Indicator models of 

mate choice argue that a signalling trait is condition-dependent and honestly 

indicates male viability because producing a signal of a given strength should be 

more costly for weak than for strong males (Andersson 1982; David et al. 1998; 

Westneat & Birkhead 1998; Gonzalez et al. 1999; McGraw & Hill 2000b). Thus, 

females could be using male coat colour as a cue in mate choice, rejecting males of 

both low status and poor condition in favour of males that are more likely to confer 

direct benefits to the females (e.g. high male fecundity) or genetic fitness benefits to 

their offspring (‘good genes’, e.g. parasite resistance (Kirkpatrick & Ryan 1991; 

Smith 1991; Folstad & Karter 1992; Petrie 1994; Neff & Pitcher 2005)). 

 

In other ungulate species in which purely ornamental signals (i.e.not weaponry) have 

been studied, the traits considered have been relatively inconspicuous, or small 

compared to total surface colouration (e.g. black cheek patches in pronghorn, 

Antilocapra americana (Min 1997); neck patches in puku, Kobus vardoni (Rosser 

1990)). The significance of sexual dimorphism in patch colouration in the giraffe is 

that the dichromatic trait applies to a large proportion of the body surface, so 

potential thermoregulatory costs become an important consideration. This idea 

relating sexual selection for an honest signal of status to the thermoregulatory cost of 

dark colouration has previously been treated in lions (Panthera leo) by West & 

Packer (2002), who not only found evidence for darker manes influencing both 

female choice and male-male competition, but also found that males with darker 

manes suffered higher surface temperatures, higher rates of abnormal sperm, and 

lower food intake during hot months. This proposed explanation for coat 

dichromatism may also be applicable to a number of other sexually dimorphic 

ungulate species. For example, both the sable antelope (Hippotragus niger) and the 
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blackbuck (Antilope cervicapra) are polygynous, also live in sub-tropical to semi-

arid environments, and whereas juveniles and females have tan coats, males develop 

striking black pelage colouration (Skinner & Smithers 1990; Nowak 1995). 

 

8.2.2 Limited resources and the potential for mate monopolisation 

I also tested the hypothesis that a highly limited resource, such as water, can increase 

the potential for male monopolisation of mates in the giraffe, through the predictable 

concentration of females (see also Ritter & Bednekoff 1995). The results supported 

this hypothesis as I found that while perennial waterholes appeared to increase the 

detectability of females for all males (e.g. Ims 1990), and increased access to females 

for urine-testing for pale males, they also appeared to reduce the probability of 

subordinate (pale) males gaining mating opportunities (6.4.3.1, 6.4.4.2, 6.4.4.3). This 

resulted from increased encounter rates at waterholes, and consequently an increased 

likelihood of a dark male ‘stealing’ a potential mating opportunity from a pale male 

(Altmann 1962; Ims 1988a). 

 

Thus, a small number of waterholes appear to favour a relatively small number of 

dark males with a higher competitive ability (or resource holding power), as by 

focussing their search effort on waterholes, these males can rely on a lower search 

time to find a ‘takeable resource (i.e. a receptive female not defended by an 

individual of higher RHP, (Parker 1974)), than males of lower RHP. These results 

highlight the relative importance of direct male conflict and priority of access (e.g. 

Altmann 1962), compared to scramble competition (e.g. Schwagmeyer 1988) and 

female mate choice (e.g. Kirkpatrick & Ryan 1991), in determining male 

reproductive success in the giraffe when females are predictably concentrated.  

 

Similar conclusions were reached by Fisher and Lara (1999) in their study of the 

bridled nailtail wallaby, which has a comparable mating system to the giraffe. They 

also concluded that priority of access (in this case determined by proximity to 

receptive females when in a group of at least two males) explained the greatest 

amount of variation in male reproductive success, and that smaller, subordinate 

males, unable to displace larger males, might be able to increase their mating success 
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by searching more widely for uncontested females (Fisher & Lara 1999). This 

reinforces the suggestion made here that male giraffe with large home ranges and 

low contact with females are of low competitive ability, and are adopting a mating 

strategy that makes the ‘best of a bad job’ by relying on increased mobility to 

encounter uncontested females (e.g. Trivers 1972; Dunbar 1982; Smith 1982; Isaac 

2005). Unfortunately, the lack of genetic data in this study of giraffes precluded a 

comparison between home range, priority of access, predicted potential mating 

success and actual reproductive success.  

 

8.2.3 Resource defence versus mate-searching 

It has been suggested that where more stable groups of giraffe occur in high cover 

areas, resource defence polygyny might occur (van der Jeugd & Prins 2000). 

Territoriality can be expected where females (or the resources that concentrate them) 

are predictable and economically defendable (Emlen & Oring 1977; Gosling 1986; 

Clutton-Brock 1989). Females were found to occur predictably at very high densities 

in one specific habitat type (mixed broadleaf woodland) during the wet season, and 

in the dry season the vast majority of females were found feeding on Acacia 

nebrownii (Chapter 3). Therefore, it was suspected that males in the study area might 

exhibit territoriality at times when females were most predictably concentrated, as a 

means of increasing encounter rates with potentially receptive females (e.g. Carranza 

et al. 1996).  

 

However, no clear evidence for territoriality (sensu Owen-Smith 1977) was found 

(male home ranges tended to be large, overlapping considerably, especially in areas 

of high female usage, and large numbers of pale adult males appeared to be tolerated 

in A. nebrownii habitat; Chapter 5). In the light of these observations, it is proposed 

that attempting to increase reproductive success by defending a seasonal territory in 

A. nebrownii habitats would be an uneconomical mating strategy, even during the 

flowering season. This is because the start and duration of A. nebrownii flowering is 

highly variable across relatively short distances. Therefore, although the flowering 

season may last three months, individual patches may only be in flower for a couple 

of weeks. Consequently, although A. nebrownii shrub savannah may constitute a 
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relatively widespread, homogenous habitat, flowering within it is patchy and 

relatively unpredictable, such that groups of females are never in the same place for 

very long. As a result, males that attempted to defend territories in A. nebrownii 

shrub savannah might spend a long time defending a patch that might not come into 

flower for many weeks.  

 

Thus, actively searching for receptive females by roaming across large areas of A. 

nebrownii habitat is likely to be a more economical strategy than resource defence 

(e.g. Gosling 1986; Clutton-Brock 1989). Furthermore, A. nebrownii may not be an 

ideal habitat for males, as males tend to prefer to feed on taller, more biomass-heavy 

species than females, and they prefer habitats with shade-trees for resting. Thus, it 

may be too costly for males to remain in A. nebrownii habitat long enough to 

establish and defend a territory. Relatively few dark males spent the majority of their 

time in A. nebrownii shrub savannah during the dry season, whereas many dark 

males spent the majority of their time in mixed-woodland in the wet season. 

 

During the wet season, females were located more predictably within a highly 

spatially restricted habitat. Throughout the peak rainy season (a period of about five 

months), mixed broadleaf woodland consistently produced high quality food (a 

number of species producing first leaves, then flowers, then pods). As a result, 

relatively large numbers of females were constantly present within an area of just a 

few kilometres diameter throughout the wet season. Any male that could defend a 

territory in this area would have predictable long-term access to a large number of 

females, so resource defence would seem more likely to arise under such conditions 

(Gosling 1986). However, although some dark males (possibly subordinates) 

appeared to avoid this area during the wet season, again no clear evidence for 

defence of exclusive territories was observed: home ranges overlapped considerably, 

and a number of pale and dark males were typically using the area at the same time, 

especially during months when seasonal visitors (with small home ranges) were 

present (the opposite would have been expected if these seasonal visitors were 

territorial). 
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It is possible that mixed broadleaf woodland is un-defendable, in terms of excluding 

all potential competitors, because intruder pressure is high, and visibility, and thus 

the probability of detecting intruders, is very low (Gosling 1986; Ims 1988a). Giraffe 

rely heavily on vision to detect competitors over long distances, but would be unable 

to see intruders in a woodland habitat until they were very close. Of the three violent 

fights, two took place in broadleaf woodland. In one case, the males appeared to 

detect one another at about 200 m, but only because both moved onto a road at the 

same time (see Appendix 2). On the other occasion, the males encountered each 

other in dense bush, and did not seem to be aware of one another until they were 

within 30 m of each other. This does not, however, rule out the possibility that 

resource defence might occur in areas where giraffe occur in much higher densities 

(e.g. parts of central and eastern Africa, Pratt & Anderson 1982; Nje 1983; Pellew 

1983b; van der Jeugd & Prins 2000). 

 

8.3 Limitations of this study and areas for future work 

Questions that arise from the observed relationship between coat colouration and 

status are how exactly is this relationship maintained, and is it strongly coupled to 

body condition? It would be interesting to investigate whether this relationship could 

be maintained by testosterone through its effect on pigmentation, as testosterone 

levels often relate to both social status and colouration (Rohwer & Rohwer 1978; 

Setchell & Dixson 2001b; Setchell & Dixson 2002). Testosterone assays of a small 

number of male giraffe by Hall-Martin et al. (1975) revealed a significant 

relationship between testosterone levels and age but not season, and testosterone 

levels were not compared to any morphological or social variables. 

 

For logistical reasons (e.g. difficulties in accurately measuring height and age), it was 

not possible to ascertain exactly which factors (e.g. height, age, developmental 

factors) determined individual competitive ability (e.g. Appleby 1982; Barrette & 

Vandal 1986; Ligon et al. 1990; Fisher & Lara 1999). However, male coat 

colouration categories and maturity classes were found to be relatively good 

predictors of dominance and potential mating success, especially when combined 

with socio-behavioural indicators. It remains to be seen if the mate-searching ability, 
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competitive ability, attractiveness to females, and reproductive success of individual 

males are all positively and significantly correlated, which would be expected if all 

were related to male quality (Ims 1988a; Neff & Pitcher 2005). It also remains to be 

determined if the observed short-term differences in mating strategy and potential 

access to mating opportunities actually reflect lifetime differences in reproductive 

success (e.g. Clutton-Brock et al. 1982a; McElligott & Hayden 2000).  

 

It would also be interesting to explore whether these individual differences involve a 

spatial reference for dominance, whereby one male may be dominant to another in 

one location, but subordinate to the same male elsewhere (e.g. Owen-Smith 1977; 

Gosling 1986; Ims 1988a). If such a spatial reference for dominance does exists, and 

if it holds even in the absence of females (i.e. not female defence), then this could be 

considered as evidence for a form of resource defence or territoriality (Owen-Smith 

1977; Gosling 1986). Unfortunately, this study lacks sufficient qualitative data on 

directional agonistic interactions and male reproductive success to answer these 

questions, partly due to the logistical limitations of observing sufficient agonistic 

interactions and copulations in a highly mobile, large, low-cover population (e.g. 

Thirgood et al. 1999), and partly due to the lack of genetic paternity data.  

 

Because of the scale of giraffe home ranges, a more extensive use of GPS collars 

may also be a necessity in order to fully understand giraffe movements. For example, 

GPS satellite tracking could be used to ascertain where seasonal visitors to the study 

area move to during the remainder of the year, and to examine the relative costs, in 

terms of daily and seasonal movements, of the different ranging strategies. However, 

identification of these inter-individual differences in movement patterns could not 

have been possible if this study had relied on GPS collars alone, as they would have 

had to be fitted to a large number of individuals to obtain a fair representation of the 

whole continuum of home range sizes and ranging strategies. Perhaps with the 

advance of technology, and possibly through the use of mobile phone-based tracking 

(e.g. Sundell et al. 2006), GPS collaring will in time become more affordable and 

more reliable (collars often do not last more than a few months (e.g. Fennessy 

2004)). Then, by carrying out a preliminary study to establish males of interest (e.g. 

wide-ranging residents and seasonal visitors, fully mature and younger adult males), 
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it might be possible to provide a more complete picture of individual variation in 

movements and mating strategies.  

 

As pointed out by Clutton-Brock et al. (1986), it may only be possible to achieve a 

reliable description of mating systems if recognisable individuals are studied for a 

substantial proportion of their lifetime. Thus, a longer-term behavioural study (e.g. 

McElligott & Hayden 2000; McElligott et al. 2002; Setchell et al. 2005), with a 

successful genetic component, is likely to be necessary before the above questions 

can be satisfactorily answered. This need for longer-term studies of giraffe has 

already been highlighted (Fennessy 2004), and as giraffe populations become 

increasingly isolated and conservation-dependent, such studies are likely to become 

ever more crucial for generating informed management of giraffe habitats and 

populations. 
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APPENDIX 1.  

Scientific and common names of tree and large woody shrub species present in 

the study area. 

 

Scientific name    Common names 

 

Acacia hebeclada Candle pod Acacia, Candle thorn 

Acacia kirkii Floodplain Acacia, Seyal 

Acacia luederitzii Kalahari Acacia, False umbrella thorn 

Acacia mellifera detinens Black-thorn Acacia, Hook thorn 

Acacia nebrownii Water Acacia, Water thorn 

Acacia reficiens Red thorn  

Acacia tortilis heteracantha Umbrella thorn, Curly-pod Acacia 

Albizia anthelmintica Worm-cure Albizia 

Boscia foetida Smelly shepherd’s bush, Stinky shepherd’s tree 

Catophractes alexandri Trumpet thorn, Rattle-pod  

Colophospermum mopane Mopane 

Combretum apiculatum Red bushwillow, Kudu bush  

Combretum hereroense Russet bushwillow, Mouse-eared combretum  

Combretum imberbe Leadwood  

Dichrostachys cinerea Sickle bush, Chinese lantern tree 

Gymnosporia senegalensis Red spike thorn, Confetti spike thorn  

Moringa ovalifolia Moringa, Phantom tree  

Rhigozum brevispinosum Western rhigozum, Short-thorn pomegranate 

Terminalia prunoides Purple-pod Terminalia, Lowveld cluster-leaf 

Ziziphus mucronata Buffalo thorn, Wait-a-bit tree  
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APPENDIX 2.  

Descriptions of intense necking fights observed between males 

 

Date: 08/04/05 

Start of observation: 16:45 

Location: G6 (near Ombika waterhole) 

Participants: M90 and M248 

M90 encountered M248 in dense bush --> short but very intense bout of necking - 

only a few blows, all delivered by M90.  

M248 walked away, and M90 continued in direction of two females that he was 

originally pursuing --> re-joined females.  

M90 later smelled the rump of one of two females (younger). M248 stood and 

watched at c. 200m away. 

 

 

 

Date: 23/05/05 

Start of observation: 07:12 

Location: G279 (south of Leeubron dry waterhole) 

Participants: M83 and M262 

M262 already with females.  

M83 approaches from GPIT51 - doesn't stop when he sees M262.  

M83 assumes erect posture.  

M262 also assumes erect posture, and walks towards M83.  

Both males assume parallel walk for c. 10 seconds, then engage in intense necking 

for c. 20 s, with the smaller bull (M262) delivering the most blows, M83 resisting.  

They stop delivering blows but continue pushing against each other for c. 18s, then 

M262 breaks off and walks away, with M83 following - M83 in erect posture, M262 

not.  

M83 then joins the females, while M262 watches from c. 100 m --> successful 

takeover of female group.  

M83 later displaces M262 further from the female group by walking towards him, 

and then herds the female group away from M262. 
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APPENDIX 2 (cont.) 

Date: 17/10/05 

Start of observation: 16:50 

Location: G461 (near Ombika waterhole) 

Participants: M97 and M295 

17:01:  M97 with a group of two pale males and four females. 

17:29:  Another group approaches: M295 with three females. This group crosses the 

road, moving in the direction of the waterhole, about 200m to the north of 

M97’s group. 

 M97 ‘coughs’ four times, while standing in erect posture, looking towards 

 M295. 

17:50: M97 starts walking, in erect posture, towards the other group, which is 

heading towards the waterhole.  

 M97 walks straight towards M295 � M295 also assumes erect posture and 

walks towards M97. 

 The two males begin parallel-walking, then engage in a short period of 

intense necking, followed by circling, with M295 walking behind M97 

 Both stand still about 50m apart for four minutes, before M295 walks away 

and rejoins his group. 

 M295 re-joins his females at the waterhole, and tries to urine-test one of the 

females but she walks off. 

 M97 re-joins the remainder of his group (some have joined the females that 

were with M295), east of the tar road 

 Outcome not very clear, but M295 stayed in erect posture for longer, and was 

able to return to his females plus some of M97’s group. 
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APPENDIX 3.  

Descriptions of observed attempted and successful copulations 

 

Date: 07/05/04 

Location: G12 (near Ombika waterhole) 

Participants: M90 and F78 

Note: these two giraffe had been observed in an early courtship interaction between 

16:40 and 17:15 the previous day. 

08:27 M90 sniffs rump of F78; F has tail held out; M standing close behind F in erect 

posture 

08:29 Laufschlag; Following of F by M; F’s tail held out again 

08:34 Laufschlag 

08:36 M standing behind F standing 

08:39  M nosing F: driving her on, testing for receptivity. No comp. from other Males.  

M following F closely around bush with ritualised nosing, kicking and standing 

close. 

M throwing head back occasionally – intention movement for mounting? 

09:09 More standing close, less nosing 

09:15 F moving fwd less in response to kicks; M has erection periodically 

09:20 1
st
 attempted mounting, followed by more circling 

09:35 2
nd

 attempted mounting 

09:40  3
rd

 attempted mounting 

 Just before mounting F braced her legs and M bent his 

09:55 4
th
 attempted mounting 

10:01  5
th
 attempted mounting 

10:01 6
th
 attempted mounting 

10:04 Almost attempted mounting 

10:09 Both ran across road, M in pursuit of F 

10:12 7
th
 mounting: not clearly visible because of trees, but assumed successful 

copulation 

10:15 Both browsing close together 

10:26 F walks away, M follows at a distance of c.100 m – mate guarding? 

 U18 runs to join F78 (calf) 

11:10 M still guarding F 

 



APPENDIX 3   246 

   

APPENDIX 3 (cont.) 

Date: 29/11/04 

Location: G120 

Participants: M86 and F222 

M86 following F222 very closely, nosing rump frequently and standing in erect 

posture behind her. 

16:26 Laufschlag repeatedly. F continues to browse. Some courtship circling 

16:33 F now standing still – no longer browsing 

16:37 F walking again; M following closely 

16:38 1
st
 attempted mounting, followed by more circling, laufschlag, nosing etc 

16:46 2
nd

 attempted mounting 

16:51 3
rd

 attempted mounting 

17:04 F walking quickly; M following 

17:08 4
th
 attempted mounting 

17:12 5
th
 attempted mounting 

17:15 Assumed that last mounting achieved successful intromission, as M begins to 

browse on A. tortilis – no longer following F 

17:16 F walks away from M and resumes browsing; M walks away from F and 

continues browsing 

17:26 Still browsing – uninterrupted during last 10 minutes; now c.20 m apart 

18:16 Still browsing; c.60 m apart 

N.B. M86 was killed by lions 11 months later, aged 8-9 years. 

 

Date: 04/07/05 

Location: G344 (W-Drive) 

Participants: M267 and F140 (young female, probably only just sexually mature) 

11:17 Quite advanced stage of consortship. F140 not browsing; just circling trees in 

response to close following by M267. M contacting F’s rump with upper 

forelegs and head; slight laufschlag; repeated nosing of F’s rump; M 

occasionally putting his head on F’s back or against her flanks. 

11:36 F stops moving. M’s penis partly unsheathed then re-sheathed. M then leaning 

against F’s rump 

11:38 F resumes walking. F has slightly distended vulva. 

11:40 F stands still again 

11:42 Penis unsheathed fully then re-sheathed again 

11:43  Both resume courtship circling, quite fast, female even running for a short 

distance 

11:50  F stops. M pushes slightly from behind and F only takes a couple of steps in 

response 

11:53 Penis unsheathed again 

11:54 Both resume courtship circling 

12:00 F stops again, tail to one side. M unsheathes and then re-sheathes penis. M gives 

F small kicks with knee 

12:05 Both resume courtship circling. F runs for a short distance, then browses briefly 

12:10 Both stop circling. Then as at 12:03, twice.  

12:16 Both resume courtship circling. F runs again for a short distance. 
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APPENDIX 3 (cont.) 

12:19 1
st
 attempted mounting. F moves forward 

12:21 Both resume courtship circling 

12:23 M noses F’s rump 

12:25  Both stop circling 

12:29 Both resume courtship circling. M noses F regularly, as at 11:17 

12:46 Stop circling 

12:47 Resume circling 

12:50 Stop circling. Laufschlag. Resume circling 

12:54 Stop circling 

12:57:  Resume circling 

13:04 F browsing  

13:06 Resume circling 

13:18 Stop circling. M has partly unsheathed penis, then it is re-sheathed 

13:23 M leans against F’s rump. Penis unsheathed fully, then r-sheathed 

13:25 Resume circling 

13:33 Stop circling. Laufschlag twice. Penis unsheathed. M makes small jumping 

movements behind F. F still moving forward a few steps in response each time. 

13:38 Two other females approach. M smells F202; she urinates; he tests urine with 

flehmen. M then returns to F140. 

13:44  2
nd

 attempted mounting 

 M continuing to stand immediately behind F, giving small kicks with knee and 

making small jumping movements (intention movements) 

13:49 Resume courtship circling 

13:59 Stop circling 

14:02 Resume circling. Both walk away from road into the bush 

14:20 Both stop circling 

14:21 Resume circling / weaving and nosing 

14:24 Stop circling (details of behaviour cannot now be observed because they are 

now in thick mopane bush) 

14:27 M making intention movements again 

14:28 F walks off. They then resume circling, but stop 30 seconds later. M making 

intention movements again 

14:30 F walks off again, then stops 20 seconds later, then walks 30 seconds later. M 

rubs head on her flank. Both walking briskly 

14:36 Stop circling in shade of Acacia tree 

14:40  F attempting to browse, but M keeps pushing her from behind 

14:44 Stop circling. Both circle the tree once, then stop again.  

 For the next half hour, there is intermittent, brief circling, interspersed with M 

standing behind F, M nudging F, and F walking a few steps round to her right or 

left.  

15:18  Both resume courtship circling. F walks towards other two females. M follows, 

with his nose to her rump. They walk deeper into mopane bush 

15:22 Stop circling 

15:29 Both resume courtship circling. F walks towards other two females again. M 

again follows, with his nose to her rump. They walk deeper into mopane bush 

15:33 Stop circling 

15:35 Resume circling and nosing 

Stopped observation at 15:39 – becoming more and more difficult to observe as the two 

giraffe move deeper into Mopane bushveld, where it is impossible to follow 

 



 

   

APPENDIX 4. Pelage characteristic values (non-juvenile giraffe only) for each of the sites sampled for the analysis of photographs. 
 

   Males Females 

Country Location Subspecies 

N(a) a)  Mean 
patch 
cover 

N(b) b) % giraffe 
in dark 

categories 

N (a) a)  Mean 
patch 
cover 

N(b) b) % giraffe 
in dark 

categories 

Niger Koure region G. c. peralta 5 0.56 7 0.86 1 0.51 2 0.50 

Uganda Murchison Falls NP G. c. rothschildi 0 - 6 0.67 0 - 1 - 

Kenya Aberdare G. c. reticulata 5 0.71 11 0.36 3 0.64 3 0.67 

 Lake Nakuru NP G. c. tippelskirchi 0 - 3 0.67 2 0.67 6 0.33 

 Meru NP G. c. reticulata 2 0.75 2 0.00 0 - 0 - 

 Nairobi NP G. c. tippelskirchi 6 0.56 12 0.92 8 0.60 12 0.67 

 Samburu GR G. c. reticulata 35 0.74 47 0.68 18 0.76 21 0.29 

  Tsavo East & West NP G. c. tippelskirchi 9 0.61 13 0.77 6 0.61 12 0.83 

Kenya / 
Tanzania 

Masai Mara GR / 
Serengeti NP 

G. c. tippelskirchi 43 0.57 62 0.68 33 0.58 41 0.73 

Tanzania Arusha NP G. c. tippelskirchi 4 0.63 5 0.80 5 0.59 13 0.92 

 Lake Manyara NP G. c. tippelskirchi 4 0.53 9 0.89 0 - 0 - 

 Selous GR G. c. tippelskirchi 1 0.57 1 - 1 0.57 1 - 

  Tarangire NP G. c. tippelskirchi 0 - 2 1.00 0 - 0 - 

Zambia Mosi-Oa-Tunya NP G. c. angolensis 2 0.47 2 1.00 0 - 0 - 

  South Luangwa NP G. c. thornicrofti 1 0.58 3 1.00 2 0.60 2 1.00 

Namibia Etosha NP G. c. angolensis 47 0.64 63 0.46 15 0.60 25 0.04 

  Kunene region G. c. angolensis 8 0.58 15 0.20 2 0.61 6 0.00 

Botswana Chobe NP G. c. angolensis 3 0.59 8 0.50 3 0.56 5 0.00 

  Okavango Delta G. c. angolensis 6 0.60 8 0.38 7 0.57 11 0.09 

Zimbabwe Hwange NP G. c. angolensis 13 0.59 19 0.53 8 0.59 8 0.25 

South Africa Kruger NP G. c. giraffa 25 0.64 36 0.50 11 0.61 20 0.40 
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APPENDIX 5.  

Weather stations (Meteorological-Office 1972) selected for the collection of 

climatological data for use in the population-level photographic analysis of 

biogeographical variation in patch cover and coat colouration.  

 

Country Location sampled Weather station 

Niger Koure region Niamey 

Uganda Murchison Falls NP Masindi 

  Arua 

Kenya Aberdare NP Nakuru 

    Nanyuki 

  Lake Nakuru NP Nakuru 

  Meru NP Nanyuki 

    Garissa 

  Nairobi NP Nairobi 

  Samburu NR Nanyuki 

    Wajir 

  Tsavo East & West NP Voi 

Magadi, Kenya Kenya / 
Tanzania 

Masai Mara GR / 
Serengeti NP Musoma, Tanzania 

Tanzania Arusha NP Arusha 

  Lake Manyara NP Mbulu 

    Arusha 

  Selous GR Morogoro 

  Tarangire NP Arusha 

   Kondoa 

    Mbulu 

Zambia Mosi-Oa-Tunya Livingstone 

  South Luangwa Chipata 

  Petauke 

Namibia Etosha NP Tsumeb 

   Outjo 

    Ondangwa 

  Kunene region Outjo 

    Ondangwa 

Botswana Chobe NP Kasane 

    Maun 

  Okavango Delta Maun 

Zimbabwe Hwange NP Dete 

South Africa Kruger NP Lyndenburg 

    Pafuri, Mozambique 



 

   

APPENDIX 6. Climatological values used in the analysis of photographs. Mean values for sites from which photos of giraffe were 

obtained. For each location, data were taken from the nearest one to three climatological stations (Meteorological-Office 1972). Mean yearly 

precipitation was derived primarily from the UNEP-WCMC World Database on Protected Areas. Sites classed as ‘high-insolarity’ are those 

with mean total yearly hours of bright sunshine above the median (2917); these are highlighted in bold type. 

Country Location Subspecies 

Mean yearly 
max. temp. 

(°C) 

Mean yearly 
min. temp. 

(°C) 

Relative 
humidity at 

14:30 (%) 

Mean yearly 
precipitation 

(mm) 

Mean yearly 
hrs bright 
sunshine 

Niger Koure region G. c. peralta 36.1 21.8 33.0 550 3184 

Uganda Murchison Falls NP G. c. rothschildi 28.5 16.9 55.0 1085 - 

Kenya Aberdare G. c. reticulata 24.9 8.9 48.5 834 2378 

 Lake Nakuru NP G. c. tippelskirchi 26.1 9.2 45.0 965 2584 

 Meru NP G. c. reticulata 29.0 15.6 48.5 534 2172 

 Nairobi NP G. c. tippelskirchi 25.4 13.1 49.0 762 2503 

 Samburu GR G. c. reticulata 28.6 15.3 50.0 350 2172 

  Tsavo East & West NP G. c. tippelskirchi 30.6 19.4 46.0 531 2987 

Kenya / 
Tanzania 

Masai Mara GR /  
Serengeti NP 

G. c. tippelskirchi 31.3 20.5 47.0 1118 2901 

Tanzania Arusha NP G. c. tippelskirchi 25.3 13.5 57.0 1072 2526 

 Lake Manyara NP G. c. tippelskirchi 24.4 13.1 58.0 650 - 

 Selous GR G. c. tippelskirchi 30.1 18.6 55.0 1000 1845 

  Tarangire NP G. c. tippelskirchi 24.0 13.0 58.3 750 - 

Zambia Mosi-Oa-Tunya NP G. c. angolensis 29.5 14.6 35.0 650 3061 

  South Luangwa NP G. c. thornicrofti 27.9 16.4 46.5 832 2669 

Namibia Etosha NP G. c. angolensis 30.1 13.8 28.7 400 3387 

  Kunene region G. c. angolensis 30.4 13.6 28.5 325 3458 

Botswana Chobe NP G. c. angolensis 30.3 14.8 33.0 600 3399 

  Okavango Delta (Moremi NP) G. c. angolensis 30.3 14.4 33.0 476 3399 

Zimbabwe Hwange NP G. c. angolensis 28.6 12.6 37.0 653 3210 

South Africa Kruger NP G. c. giraffa 27.8 13.2 40.5 563 2934 



APPENDIX 7   251 

   

APPENDIX 7 

Weather stations (Meteorological-Office 1972) selected for the collection of 

climatological data for use in the subspecies-level phylogenetically controlled 

analysis of biogeographical variation in patch cover and coat colouration.  

Subspecies Country Locality 

Namibia Gobabis 

  Tsumeb 

  Outjo 

  Ondangwa 

  Nkarapamwe 

Angola N'Giva 

  Mupa 

  Dirico 

Botswana Maun 

  Kasane 

  Ghanzi 

Zambia Livingstone 

  Sesheke 

G. c. angolensis 

 

 

 

 

 

 

 

 

 

  
Zimbabwe Dett/Dete 

South Africa Lydenburg 

Mozambique Pafuri 

Swaziland Mbabane 

Zimbabwe Bulawayo 

G. c. giraffa 

  
  
  
    Beitbridge 

Zambia Chipata G. c. thornicrofti 

    Petauke 

Kenya Nakuru 

  Nanyuki 

  Garissa 

  Wajir 

  Marsabit 

  Moyale 

Ethiopia Nagele 

Somalia Bardera 

G. c. reticulata 
 

  
  
  
  
  
  
  
    Belet Uen 

Uganda Masindi 

  Arua 

  Kitgum 

  Gulu 

  Mbale 

Kenya Kitale 

  Eldoret 

G. c. rothschildi 
 
  
  
  
  
  
  
    Lodwar 
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Subspecies Country Locality 

Niger Niamey 

  Maradi 

  Tahoua 

Mali Menaka 

  Gao 

Nigeria Kano 

  Sokoto 

  Maiduguri 

  Bauchi 

  Katsina 

Cameroon Maroua 

  Garoua 

Chad Bousso 

  Bokoro 

  N'Djamena 

  Pala 

  Mongo 

  Sarh 

  Moundou 

  Am Timan 

CAR Birao 

G. c. peralta 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  
    N'Dele 

Kenya Magadi 

  Nairobi 

  Voi 

  Makindu 

Tanzania Musoma 

  Arusha 

  Mbulu 

  Morogoro 

  Kondoa 

  Dodoma 

  Mwanza 

  Biharamulo 

  Kigoma 

  Tabora 

  Moshi 

  Same 

G. c. tippelskirchi 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
    Amani 
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APPENDIX 8.  

Molecular methodology 

 

DNA extraction 

Once returned to Newcastle, the faecal pellets preserved in silica gel beads were 

stored at 4°C, and those preserved in ethanol were kept at room temperature. The 

outer surface of the giraffe faecal pellets was carefully scraped off using a clean 

scalpel onto foil, and 100-200 mg was placed in a labelled 2 ml tube. Between one 

and eight pellets were used for each extraction, depending on the size of the pellets. 

Any remaining pellets were returned to storage in case a second extraction was 

required.  

 

DNA was isolated from the faecal material using a commercially available extraction 

kit (QIAgen’s QIAamp DNA stool mini-kits), which includes a PCR inhibitor 

removal step, and which has found reasonable success in a number of recent studies 

(Garnier et al. 2001; Frantz et al. 2003; Hedmark et al. 2004). The recommended 

protocol (see Appendix 9) was followed with some minor alterations. Since the 

faecal material was dry, it was covered in 1.6 µl ASL buffer, vortexed for one 

minute, and then left for at least 90 minutes before proceeding with the extraction 

(Morin et al. 2001). Before application of elution (AE) buffer to the column, the 

filter was left to air-dry for five minutes to allow any residual alcohol-based wash 

(AW2 buffer) to evaporate.  Following Nsubuga et al. (2004), once the elution buffer 

had been applied, the spin columns were incubated for 20 minutes at room 

temperature. An elution volume of 150 µl was chosen to increase DNA concentration 

(e.g. Garnier et al. 2001; Bellemain & Taberlet 2004). The following centrifugation 

was also increased from one minute to two. The resulting DNA solution was initially 

stored at 4°C, and later at -20°C. Between six and twelve extractions were processed 

at one time. It was not possible to include a negative control including no faecal 

material with each set of extractions (e.g. Bellemain & Taberlet 2004) due to limited 

resources. 

 

Each DNA extract was first pre-screened to test amplification performance using one 

microsatellite (11HDZ550) that gave strong amplification products (Bellemain & 
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Taberlet 2004; Hedmark et al. 2004). A negative control was included with each 

PCR run to monitor reagents for contamination (Taberlet et al. 1999). PCR products 

were separated on a 2% agarose gel stained with ethydium bromide, and viewed with 

a 50 bp size marker under UV light. Only those extracts that produced a clear band at 

approximately 200 kb were assumed to contain DNA of sufficient quality for further 

analyses. DNA extracts that did not produce a band and were not colourless were 

cleaned by re-extraction with the QIAgen kit, and then re-screened. 

 

PCR amplification 

Huebinger et al. (2002) characterised sixteen microsatellite markers for giraffe. One 

primer that amplifies lengths of DNA longer than 300 bp was immediately excluded 

for use in this study as most faecal DNA is degraded into short fragments, and 

shorter fragments more reliably amplify than those longer than 300 bp (Frantzen et 

al. 1998; Taberlet et al. 1999). The remainder were all tested using five DNA 

samples, and annealing temperatures were optimised. Of the sixteen, twelve 

dinucleotide-repeat loci were selected; three were subsequently found to be 

monomorphic in the sample population.  

 

All PCR preparation was carried out in a lab free from giraffe DNA or PCR 

products, using PCR-dedicated pipettes (Taberlet et al. 1999; Constable et al. 2001). 

The forward primers were fluorescently labelled with either 5’FAM or 5’HEX. 

Individual PCR reactions were performed using 96-well plates and a 15 µl reaction 

volume comprising 1.5 mM MgCl2, 0.1 mM of each dNTP, 0.13 µmol of each 

primer, 100 µg/ml bovine serum albumine (BSA), 0.5U BioTaqTM polymerase and 

1.5 µl of the template DNA solution. Reactions were performed on a MJ Research 

PTC-100 thermocycler with the following conditions: an initial denaturation at 95°C 

for 12 minutes, then 10 cycles of denaturation at 94°C (15 seconds), locus-specific 

annealing temperature (15 s) and extension at 72°C (15 s), then 30-35 cycles of 89°C 

(15 s), locus-specific annealing temperature (15 s) and extension at 72°C (15 s). A 

final extension period of 30 minutes at 72°C was used to avoid incomplete 3’ 

adenine nucleotide addition (Erill et al. 2005). Most PCR reactions were carried out 

with negative controls to monitor for contamination of PCR reagents. 
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Forty-eight DNA samples that did not amplify well were cleaned and concentrated 

with Zymo Research’s DNA Clean & ConcentratorTM-5, using 80 µl of the original 

DNA solution, and eluting in 8 µl of water. Then 1 µl of the concentrated DNA 

solution was amplified using GE Healthcare’s GenomiphiTM DNA Amplification 

Kit (for protocols, see Appendix), before repeating PCR amplification and fragment 

analysis for all loci. 

 

Microsatellite profiling  

After PCR amplification, 0.5-2 µl of PCR product were added to 13-14.5 µl of a 60:1 

mixture of Hi-Di™ formamide (Applied Biosystems) and size standard (GeneScan® 

- 500 [ROX]). For the genetic profiling, loci were combined into sets of two to four 

in the same well, such that there was no overlap in fragment length, and adjacent loci 

(in terms of fragment size) were labelled with different colours. The fluorescent 

products were separated by capillary electrophoresis on an ABI Prism® 3100 genetic 

analyzer (Applied Biosystems) and fragment lengths analysed using GeneScan® 

Analysis Software v1.1 (Applied Biosystems). The length of each allele was 

considered to be represented by the highest peak(s) on the electroferogram. The 

actual fragment peak was often preceded by a couple of smaller stutter bands that are 

consistent with dinucleotide-repeat loci. Any samples that could not be 

unambiguously assigned to a homozygote or heterozygote genotype were re-

amplified and re-typed once, or twice if necessary. If the same genotype was 

obtained twice, then it was accepted as the correct genotype. Resources were 

insufficient for a complete multiple-tubes approach (e.g. Taberlet et al. 1996; Frantz 

et al. 2003; Hedmark et al. 2004). To establish the basic genotyping error rate, a 

randomly selected subset of 32 DNA samples were re-genotyped, by carrying out a 

second independent PCR amplification and fragment analysis. 

 

Parentage assignment 

Paternity assignment was attempted using the software package CERVUS (Marshall 

et al. 1998), which uses a likelihood-based approach to assign paternity. The identity 

of the mother was not known in most cases, although in some cases there were a 

small number of suspected possible mothers, so for these, attempts were also made to 

first ascribe maternal relationships using CERVUS, prior to assigning paternity. 
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APPENDIX 9.  

DNA extraction protocol, taken from QIAamp DNA Stool Mini Kit Handbook 

(08/2001) 

 

Protocol for Isolation of DNA from Stool for Human DNA Analysis 

Lysis conditions in this protocol are optimized to increase the ratio of human DNA to 

non-human DNA. Non-human DNA is not excluded by this procedure. 

Important notes before starting 

• Ensure that Buffers AW1 and AW2 have been prepared according to the 

instructions on the labels. 

• Mix all buffers before use. 

• If a precipitate has formed in Buffer ASL or AL, dissolve by incubating at 70°C. 

• Prepare a 70°C water bath for use in step 11. 

• All centrifugation steps should be carried out at room temperature (15–25°C) at 

20,000 x g (~14,000 rpm). Increase the centrifugation time proportionately if your 

centrifuge cannot provide 20,000 x g (e.g., instead of centrifuging for 5 min at 

20,000 x g, centrifuge for 10 min at 10,000 x g). 

• The 2 ml tubes used in step 4 should be wide enough to accommodate an InhibitEX 

tablet (e.g., Eppendorf Safe-Lock, cat. no. 0030120.094 or Sarstedt Safe-Seal, cat. 

no. 72.695). 

• To increase robustness of downstream PCR assays of DNA eluates from stool 

samples, we strongly recommend adding BSA to PCR mixtures to a final 

concentration of 0.1 µg/µl (e.g., Serva cat. no. 11920 or New England Biolabs® 

BSA, cat. no. BSA-007). To increase PCR specificity, we recommend the use of 

QIAGEN HotStarTaq DNA Polymerase (see ordering information on page 38). 

1. Weigh 180–220 mg stool in a 2 ml microcentrifuge tube (not provided) and place 

tube on ice. 

If the sample is liquid, pipet 200 µl into the microcentrifuge tube. Cut the end of 

the pipet tip to make pipetting easier. If the sample is frozen, use a scalpel or 

spatula to scrape bits of stool into a 2 ml microcentrifuge tube on ice. 

2. Add 1.6 ml Buffer ASL to each stool sample. Vortex continuously for 1 min or 

until the stool sample is thoroughly homogenized. 
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Note: It is important to vortex the samples thoroughly. This helps ensure 

maximum DNA concentration in the final eluate. 

3. Centrifuge sample at full speed for 1 min to pellet stool particles. 

4. Pipet 1.4 ml of the supernatant into a new 2 ml microcentrifuge tube (not 

provided) and discard the pellet. 

Transferring small quantities of pellet material will not affect the procedure. 

5. Add 1 InhibitEX tablet to each sample and vortex immediately and continuously 

for 1 min or until the tablet is completely suspended. Incubate suspension for 1 

min at room temperature to allow inhibitors to adsorb to the InhibitEX matrix. 

6. Centrifuge sample at full speed for 3 min to pellet stool particles and inhibitors 

bound to InhibitEX. 

Note: When processing more than 12 samples, for this step and step 7 we 

recommend processing batches of no more than 12 samples each. This is because 

the pellets formed after centrifugation will break up quickly if the supernatant is 

not removed immediately. 

7. Immediately after the centrifuge stops, pipet all of the supernatant into a new 1.5 

ml microcentrifuge tube (not provided) and discard the pellet. Centrifuge the 

sample at full speed for 3 min. 

Transferring small quantities of pellet material from step 6 will not affect the 

procedure. 

8. Pipet 25 µl Proteinase K into a new 2 ml microcentrifuge tube (not provided). 

9. Pipet 600 µl supernatant from step 7 to the 2 ml microcentrifuge tube containing 

Proteinase K. 

10. Add 600 µl Buffer AL and vortex for 15 s. 

Note: Do not add Proteinase K directly to Buffer AL. It is essential that the 

sample and Buffer AL are thoroughly mixed to form a homogeneous solution. 

11. Incubate at 70°C for 10 min. 

Optional: Centrifuge briefly to remove drops from the inside of the tube lid. 

12. Add 600 µl of ethanol (96–100%) to the lysate, and mix by vortexing. 

 Optional: Centrifuge briefly to remove drops from the inside of the tube lid. 

13. Label the lid of the QIAamp spin columns provided in a 2 ml collection tube. 

Carefully apply 600 µl lysate from step 12 to the QIAamp spin column without 

moistening the rim. Close the cap and centrifuge at full speed for 1 min. Place the 
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QIAamp spin column in a new 2 ml collection tube, and discard the tube 

containing the filtrate. 

Close each spin column in order to avoid aerosol formation during centrifugation. 

If the lysate has not completely passed through the column after centrifugation, 

centrifuge again until the QIAamp spin column is empty. 

14. Carefully open the QIAamp spin column, apply a second aliquot of 600 µl lysate 

and centrifuge at full speed for 1 min. Place the QIAamp spin column in a new 2 

ml  ollection tube, and discard the tube containing the filtrate. 

Close each spin column in order to avoid aerosol formation during centrifugation. 

If the lysate has not completely passed through the column after centrifugation, 

centrifuge again until the QIAamp spin column is empty. 

15. Repeat step 14 to load the third aliquot of the lysate onto the spin column. 

16. Carefully open the QIAamp spin column and add 500 µl Buffer AW1. Centrifuge 

at full speed for 1 min. Place the QIAamp spin column in a new 2 ml collection 

tube, and discard the collection tube containing the filtrate. 

17. Carefully open the QIAamp spin column and add 500 µl Buffer AW2. Centrifuge 

at full speed for 3 min. Discard the collection tube containing the filtrate. 

Note: Residual Buffer AW2 in the eluate may cause problems in downstream 

applications. Some centrifuge rotors may vibrate upon deceleration, resulting in 

the flow-through, which contains Buffer AW2, contacting the QIAamp spin 

column. Removing the QIAamp spin column and collection tube from the rotor 

may also cause flow-through to come into contact with the QIAamp spin column. 

In these cases, the optional step below should be performed. 

Optional: Place the QIAamp spin column in a new 2 ml collection tube (not 

provided). Centrifuge at full speed for 1 min. Discard the collection tube 

containing the filtrate. 

18. Transfer the QIAamp spin column into a new, labelled 1.5 ml microcentrifuge 

tube (not provided) and pipet 200 µl Buffer AE directly onto the QIAamp 

membrane. Incubate for 1 min at room temperature, then centrifuge at full speed 

for 1 min to elute DNA. 

Note: When using eluates in PCR, for maximum PCR robustness we highly 

recommend adding BSA to a final concentration of 0.1 µg/µl to the PCR mixture. 

For maximum PCR specificity we recommend using QIAGEN HotStarTaq DNA 
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Polymerase (see ordering information on page 38). For best results in 

downstream PCR, use the minimum amount of eluate possible in PCR; the 

volume of eluate used as template should not exceed 10% of the final volume of 

the PCR mixture. Also, note that high amounts of template DNA may inhibit the 

PCR. DNA yield is typically 15–60 µg but, depending on the individual stool 

sample and the way it was stored, may range from 5 to 100 µg. DNA 

concentration is typically 75–300 ng/µl. For long-term storage, keeping the eluate 

at –20°C is recommended. 
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DNA purification and amplification protocols 

 

DNA Clean & ConcentratorTM-5 Protocol 

(Zymo Research) 

 

Before starting: Add 24ml of 100% ethanol to the Wash Buffer Concentrate to make 

final Wash Buffer. 

1. Add 2 volumes of DNA Binding Buffer to each volume of DNA sample. 

2. Load sample into a Zymo-Spin Column and place into a 2ml collection tube 

3. Centrifuge at full speed (≥10,000g) for 5-10 seconds*. Discard the flow-through. 

4. Add 200µl of Wash Buffer to the column. Spin at top speed for 5-10 seconds*. 

Add another 200µl of Wash Buffer. Spin at top speed for 30 seconds**. 

5. Add 6-8µl of water directly to the column matrix. Place column into a 1.5ml 

tube. Spin briefly to elute the DNA*. To increase the DNA recovery, you can add 

another 6-8µl of water to the column and spin briefly to elute the DNA. 

Note: Elution efficiency is related to the pH. Optimal range is pH7.0 to 

pH8.5 for buffered solution. When water is used, make sure that the water pH 

is above 6.0. Waiting for one minute after adding water before centrifuging 

can improve DNA recovery rate for larger sizes of DNA (>6Kb). 

* Columns were actually spun for 30 seconds. 

** Columns were actually spun for 60 seconds. 

 

 

GenomiphiTM DNA Amplification Kit Short Protocol 

(GE Healthcare) 

 

1. Mix 1µl of template DNA with 9µl of sample buffer. Heat to 95°C for 3 minutes 

to denature the sample. Cool to 4°C on ice. 

2. For each amplification reaction, prepare the GenomiPhi Kit reaction premix by 

combining 9µl of reaction buffer with 1µl of enzyme mix on ice. Add this to the 

cooled sample. When performing multiple reactions, it is most convenient to 
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prepare a master mix (9µl of reaction buffer and 1µl of enzyme mix for each 

template), and use 10µl for each denatured sample. 

3. Incubate the sample at 30°C for 16-18 hours. 

4. Heat the sample at 65°C for 10 minutes to heat-inactivate the enzyme. Cool to 

4°C. 

 

The DNA can now be used in experiments or stored (4°C or -20°C) 
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Molecular results 

DNA extraction success 

A total of 164 faecal samples were collected from 149 different giraffe, all but 32 of 

which were known individuals. In all, 241 DNA extractions were carried out, with an 

average of 1.6 extractions per individual. Of these, 108 samples were cleaned by re-

processing with the QIAgen DNA extraction kit, 73 of which then produced 

amplifiable DNA. Subsequently, 46 DNA samples were concentrated using the 

Zymo DNA Clean & ConcentratorTM-5, then amplified using the GenomiphiTM 

DNA Amplification Kit (of these, 29 had already been cleaned).  

 

In total, 147 (61%) of 241 DNA samples produced amplifiable PCR products, of 

which 120 could be scored for seven or eight microsatellites. A further 15 samples 

could be scored at five to six loci. These 135 samples represented 128 different 

individuals.  

 

Factors affecting extraction and amplification success 

Both storage medium and length of storage had effects on DNA extraction success 

(binary logistic regression, Х
2
 = 18.8, df = 2, P < 0.001). DNA extracted from faeces 

stored in ethanol were more likely to produce bands on a gel (71%) than those stored 

in silica gel beads (49%; Х
2
 = 9.844, df = 1, P < 0.05). But of samples stored in 

ethanol, those that had been stored for longer were less likely to produce bands (Х
2
 = 

15.2, df = 1, P < 0.001), whereas this was not the case for samples stored in silica gel 

(Х
2
 = 0.6, df = 1, P =0.438). Samples stored in silica gel, and those that had been 

stored in ethanol for longer, tended to produce a darker supernatant and as a result a 

darker DNA eluate. Of those samples that produced a dark supernatant, samples that 

were cleaned by processing a second time with the Qiagen kits were significantly 

more likely to produce a band on the gel (Х
2
= 7.761, df = 1, P <0.01). 

 

There was a slight, but not significant, effect of storage medium on the success of 

microsatellite genotyping (Mann-Whitney U = 766, N=88, P = 0.078) before 

concentrating samples. However, time in storage had a significant effect on the 

number of loci successfully typed for samples stored in silica gel (F39,1 = 7.0, P < 
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0.05), but not those stored in ethanol (F47,1 = 0.489, P = 0.488), as no samples were 

stored in ethanol longer than 8.5 months before extraction, whereas for silica gel the 

maximum was 13 months. Because of the effect of age, DNA samples that were later 

concentrated and amplified could then be scored for more loci if the faeces had been 

stored in ethanol than if they had been stored in silica gel (U = 282, N=61, P < 0.01). 

Of all samples genotyped, 88% of those stored for 8.5 months or less could be 

successfully typed for at least seven loci, whereas only 46% of the older silica gel 

samples could be typed at seven or eight loci.  

 

Summary genotype statistics and parentage assignment 

Two of the 16 available markers (Huebinger et al. 2002) were not used because one 

had previously been found to be monomorphic in the Etosha NP population 

(11HDZ480, Rick Brenneman, personal communication), and the other amplifies 

microsatellite products over 300 bp (11HDZ334), which are generally considered too 

long to amplify reliably with faecal DNA (Frantzen et al. 1998). Three of the 

markers tested were monomorphic within the study population (11HDZ102, 

11HDZ447, 11HDZ567), and three markers were difficult to amplify or score 

reliably (11HDZ073, 11HDZ626, 11HDZ748).  

 

The mean number of alleles for the eight remaining markers was 3.1. The average 

observed heterozygosity was 0.277, and the average expected heterozygosity was 

0.335. Null alleles were suspected in three markers (11HDZ561, 11HDZ582, 

11HDZ665). In two of these (582 and 665), stuttering may also have resulted in 

scoring errors. Based on the re-scoring of random selection of 32 samples at seven 

loci, the genotyping error rate was estimated at 2%. 

 

In the first instance, attempts were made to ascribe paternity at the 80% confidence 

level to 35 juvenile and young sub-adult giraffe using the programme CERVUS 

(Marshall 2001). The mother was known and typed for only 5 of these offspring. All 

sampled giraffe that were assumed to have reached sexual maturity (>4 years of age) 

were included as candidate parents. The number of candidate fathers was estimated 

to be the 161 known adult males who had been seen within the study area plus the 9 

unknowns sampled (170). With 38 adult males typed, the proportion of candidate 
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fathers sampled was just 22%. Similarly, the number of candidate mothers was 

estimated to be the 151 known adult females plus 11 unknowns sampled (162). Thus 

34% (55) of candidate mothers were typed. For the 128 individuals included in the 

analysis, 93% of loci were typed. 

 

Unfortunately, the informativeness of the markers used was not sufficient for a 

successful assignment of paternity (mean PIC = 0.292 (range = 0.084-0.466), overall 

total exclusionary power (first parent) = 0.429, total exclusionary power (second 

parent) = 0.76). Consequently, no paternities could be assigned unless the parameters 

were further relaxed (e.g. half the assumed candidate parents, and thus twice the 

proportion of candidate parents sampled); then only one paternity could be assigned 

at the 80% confidence level (specifically, to M90, the seasonal visitor seen in both a 

necking fight and a successful copulation, as described above). The paternity 

assignment could not be enhanced by first carrying out an assignment of maternity, 

as maternities could similarly not be assigned with any confidence. 

 

The problem of lack of genetic variability was further compounded by the low 

proportion of candidate parents sampled (less than 30% of putative fathers and less 

than 40% of putative mothers), and the lack of a known, genotyped mother for the 

majority of calves. It is often difficult to assign giraffe calves to the correct mothers 

with certainty (Dagg 1968), as females often leave their calves alone or with other 

females for periods of up to four days (Foster & Dagg 1972), for example while they 

go to drink (personal observation). 



 

   

APPENDIX 12. Primer details for the eight microsatellites used 
Annealing temperatures were optimised; these differ slightly from those in Huebinger et al.  (2002). Polymorphism data refer to genotypic variation found 

in this study.  

Locus Primer sequence (5’ to 3’) Annealing 

temp. (°C) 

Fragment 

size (bp) 

No. of 

alleles 

Percentage 

genotyped 

HO HE 

11HDZ443 F: CAT AAA ATT AAA AGG CAC TTG TTC C 52 129-135 4 96.9 0.492 0.540 

 R: ATG GGG GTC ACA AAG AGT CTG       

11HDZ550 F: GGA CAG TGG ACT AGG AGA AAA GG 52 165-177 4 92.2 0.169 0.180 

 R: GCC TGG GAT TCC TGG TAA AC       

11HDZ561 F: CAA CAA AGA CAA ACT GGA TAG C  181-185 3 60.2 0.260 0.353 

 R: TCT AAC ATC TGA GCC ACC G       

11HDZ562 F: AAA GAG TTA GAT GCA ACT GAG TGA C 50 133-137 3 96.1 0.341 0.396 

 R: TCA GCA TCC TAT ATT TTC ACA CC       

11HDZ582 F: TTC CTA AGT TAC CCT CTC TGC C 48 121-123 2 97.7 0.200 0.264 

 R: TTA GCA CCA CCC CTC TCA AC       

11HDZ665 F: GCC CCT TGC CTA GCT TAA C 54 202-210 5 84.4 0.167 0.361 

 R: CCG ACT GTA GAA ATG AAG CG       

11HDZ835 F: CCC ACA CTG CAA CTA AAC CTG 54 201-203 2 95.3 0.492 0.501 

 R: AAG AAA CTC AAA AGC CTG CAA G       

11HDZ1004 F: CTC ATG TCT CTT GCA CTG GC 52 142-158 2 93.8 0.092 0.088 

 R: GTA ATG GCA TAT TTC ACT CTT TTT C       
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