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i. Abstract 
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i. Abstract 

Reactive oxygen species (ROS) including superoxide (O2 ̄), nitric oxide (NO•) and 

hydrogen peroxide (H2O2) are thought to play a central role in many disease processes. 

This thesis details the development of novel optical and electrochemical sensor 

platforms for the analysis of ROS. These technologies were established in response to 

the current limitations of existing techniques to enable greater understanding of the 

role of ROS in cellular pathology. 

The overproduction of O2 ̄ by mitochondria has been linked to the initiation of disease 

processes. Specifically, defects in the mitochondrial electron transport chain (mETC) 

can result in electron leakage and subsequent ROS generation. Using a gold electrode, 

surface-modified with cytochrome c, the amperometric detection of real-time O2̄
 

production from isolated mitochondria was enabled. Specific transport proteins within 

the mETC were chemically inhibited and the change in O2̄ flux was observed, allowing 

the contribution to ROS production of inhibition of mETC Complex I and Complex III to 

be observed. 

ROS-sensitive nanosensors, based on the entrapment of the fluorophore 

dihydrorhodamine-123 (DHR123) in a porous polyacrylamide shell, were developed. 

These sensors were successfully introduced into the macrophage cell line NR8383, 

which facilitated the analysis of intracellular ROS fluctuations following stimulation 

with phorbol-12-myristate 13-acetate (PMA).  Nanosensors containing the pH 

responsive fluorophore fluorescein isothiocyanate (FITC) were also used to measure 

intracellular pH (pHi) in primary myoblasts derived from patients with Chronic Fatigue 

Syndrome (CFS). These sensors have provided new insight into the role of intracellular 

acidosis in this disease. 

Intracellular ROS-sensitive nanosensor technology was combined with custom 

fabricated gold microelectrode arrays to produce a novel integrated cell monitoring 

platform capable of reporting real-time ROS flux in both the intra- and extracellular 

environment. Rat macrophage cells loaded with ROS-sensitive nanosensors were 

seeded into wells containing functionalised, ROS-responsive, gold ring electrodes. 

Following stimulation of the cells with PMA it was possible to measure intracellular 

ROS generation using fluorescence spectroscopy. External ROS flux as a consequence 

of PMA stimulation was simultaneously measured amperometrically. 
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Chapter 1. General Introduction 

1.1 Reactive oxygen and nitrogen species in biological systems 

Reactive oxygen species (ROS) have long been the subject of many investigations, due 

to their prominent involvement in a variety of high profile disease states including but 

not limited to melanoma, Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral 

sclerosis (Cookson et al. 2002), diabetes mellitus and cardiomyopathies (Awad et al. 

2010). Although most research concerning ROS has focused heavily upon the 

molecules’ ability to cause cell harm, ROS are unavoidable products of normal cell 

metabolism generally through spontaneous or enzyme mediated electron transfer 

reactions (Cheeseman and Slater 1993). The progression of disease states as a result of 

oxidative cell harm only occurs only when a cell’s antioxidant capacity becomes 

overwhelmed or fails (Van Lente 1993). ROS are important cell signalling molecules 

with several distinguished roles including pathogen detoxification (Carsillo et al. 2009), 

apoptosis (Hartley et al. 1994; Langer et al. 2008), signal mediation (Newland et al. 

2008; Sarti et al. 2002) and proliferation (Oh et al. 2008). ROS such as superoxide (O2̄), 

nitric oxide (NO•) and hydrogen peroxide (H2O2) have been most frequently 

investigated as their uncontrolled production can lead to a wide range of pathologies 

such as ischemia (Hallstrom et al. 2008; Urakami et al. 2007), muscular dysfunction 

(Gillespie et al. 2004; Massion et al. 2005; Ozgocmen et al. 2006) atherosclerosis (Liu et 

al. 2009) and migraine (Read et al. 1999). Conversely, ROS have also been cited as 

conferring neuroprotection (Di Matteo et al. 2009; Kurauchi et al. 2009). The need for 

more specific and dynamic monitoring tools for different ROS has become apparent as 

the varied roles for these molecules have emerged. 
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1.2 Mechanisms of reactive oxygen species generation 

The generation of ROS has been purported as an unavoidable consequence of aerobic 

metabolism (Halliwell 1991). ROS are specifically produced as signalling molecules and 

are reported to play important roles in signal transduction (Yin et al. 2010) as well as 

being known to cause massive cellular damage when overproduced as a consequence 

of disease or prior cell distress (Birch-Machin 2006). This section introduces three 

major ROS producing factors that are of huge importance to this project. 

1.2.1 Ultraviolet radiation 

Oxidative damage by ultraviolet radiation (UVR) has been extensively investigated both 

in vivo (Fisher et al. 2009) and in vitro (Aitken et al. 2007; Mahns et al. 2003), with 

many different pathways to ROS generation and interactions elucidated, that are 

induced by exposure. Some endogenous intracellular photosensitive chemicals have 

been shown to generate O2 ̄ by reducing molecular oxygen with high energy electrons 

propagated by UVR (Baier et al. 2006). Both urocainic acid (Menon and Morrison 2002) 

and riboflavin (Mahns et al. 2003) were reported to absorb energy in the form of 

incident radiation whilst in their low energy ground state. Once in a high energy 

excited state the chemical became unstable, and released energy to nearby acceptors 

upon returning to a more stable ground state (Baier et al. 2006). The formation of the 

O2 ̄ radical occurred when energy was discharged by the transfer of an electron to O2 

(Wondrak et al. 2006). It is known that O2̄ will react with NO• to form the peroxynitrite 

ion (ONOO-) (Kourie 1998; Patel et al. 2000), undergo dismutation to H2O2 catalysed by 

superoxide dismutase (SOD) (Craig et al. 2009). SOD has the highest efficacy for O2 ̄ of 

any enzyme for its substrate. The resultant high dismutation rate constant is reported 

to outcompete the ability of O2̄ to interact with other biomolecules, thus limiting the 

cellular damage O2̄ can cause directly. 

1.2.2 NADPH oxidase and protein kinase C 

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a complex 

enzyme found in plasma membranes of many types of mammalian cells, although it is 

most commonly described in professional phagocytic cells where the complex plays an 

important role in host pathogen interaction (Babior 2004). NADPH oxidase is a complex 
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membrane associated enzyme consisting of either a rac 1 or rac 2 G-protein, two 

membrane bound proteins and three cytosolic components (Babior 1999). NADPH 

oxidase is reported to generate O2̄ extracellularly by feeding high energy electrons 

removed from NAPDH through the plasma membrane (Babior 2004). Upon initiation of 

phagocytosis, an oxygen-dependent degradation process of the ingested matter can be 

triggered which relies heavily on the production of O2̄. Stimulation of protein kinase C 

(PKC) on macrophage cells with phorbol-12-myristate-13-acetate (PMA) initiates the 

assembly of the cytosolic components of NADPH oxidase which then translocate to the 

cell membrane and assemble with the membrane embedded g-protein components, 

induce phagocytosis and triggering the associated 'superoxide burst' (Henderson 

2009). PKC-stimulated O2 ̄ production has been exploited throughout this project to 

induce O2̄ flux from monitored rat alveolar macrophage cell line NR8383, and is more 

fully described in Chapters 4 and 7. 

1.2.3 Mitochondrial dysfunction 

There are many routes described by which the mitochondrial electron transport chain 

(mETC) generates O2̄ (Birch-Machin 2006). The mitochondria are a major site of O2̄ 

production within eukaryotic cells. The high turnover and spatial density of reduction 

reactions involved in ATP generation inevitably leads to the leakage of high energy 

electrons from the different enzymatic complexes of the mETC, both to the interior 

and exterior of the mitochondrial membrane. The generation of O2̄ by Complexes I and 

III of the mETC is discussed more fully in Chapters 5 and 6. Briefly, NADH and FADH2 

from the tricarboxylic acid cycle (TCA) are coenzymes for electron transport through 

the mETC. The movement of electrons and sites of O2̄ generation are summarised in 

Figure 1.1.  

NADH feeds electrons into the chain only through the NADH:ubiquinone reductase 

(Complex I). This enzyme couples the reduction of NADH to the oxidation of a flavin 

mononucleotide (FMN), simultaneously driving the translocation of protons from the 

matrix across the inner membrane to the inter-membranal space. Electrons then pass 

from FMN to redox active iron-sulphur (Fe-S) proteins before being used to reduce 

Coenzyme Q (CoQ, also known as 'ubiquinone'). Electron transfer from FADH2 to CoQ is 

catalysed by succinate dehydrogenase (Complex II).  CoQ is a lipid soluble electron 

transporter that freely diffuses through the inner membrane, shuttling electrons from 
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Complexes I and II to Complex III. Complex I has been identified as a major site of O2̄ 

generation, with electron leaks reported as originating from the reduction of CoQ by 

the Fe-S protein cluster (Genova et al. 2001; Herrero and Barja 1997; Lambert and 

Brand 2004). 

Figure 1.1: Both Complex I and III have been recognised as major sites of electron leakage and subsequent O2 ̄ generation. O2 ̄ that 
reaches the cytosol can further react with NO• and redox capable metal ions to form new ROS such as H2O2 and OONO-. 

Complex II accepts electrons transferred from both Complexes I and II and is reported 

as being extremely active in terms of O2̄ generation (Han et al. 2001; Henderson 2009; 

Muller et al. 2004; Zmijewski et al. 2009) CoQ binds to the cytochrome bc1 Complex 

(Complex III) to progress electrons from Complexes I and II though the mETC. This site, 

due to the high turnover of reduction reactions occurring, has been identified as the 

major point of electron leakage from Complex III (Lambert and Brand 2004). 
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1.3 Reactive oxygen species in human disease 

1.3.1 Dermatological disease states 

By providing an effective protective boundary and interface between a body’s internal 

organs and the external environment, the skin is constantly exposed to a range of 

damaging chemical and physical stimuli. UVR exposure is known to cause an array of 

cytotoxic effects in skin cells including DNA strand breaks (Aitken et al. 2007), 

mutagenesis (Petersen et al. 2000) and disruption of protein-DNA interaction (Aitken 

et al. 2007; Maresca et al. 2008; Petersen et al. 2000; Sachi et al. 1995). One 3895 base 

pair mitochondrial DNA (mtDNA) deletion is reported as so common in sun damaged 

skin it can be used as a marker of solar overexposure (Krishnan et al. 2004). Strand 

break damage to mtDNA has been most regularly attributed to the action of H2O2 

(Macdonald et al, 1993). Strand break damage, cumulative mutations and the 

deficiency of repair pathways for mtDNA formed the basis of the ‘defective 

powerhouse model’ of dermatological photo-ageing (Krutmann and Schroeder, 2009), 

which attempted to reconcile corroborating current literature into a cohesive theory of 

mitochondrial involvement in premature skin aging and the progression of age related 

skin diseases (Berneburg et al. 2004; Krutmann, 2000; Krutmann and Schroeder 2009). 

Based on the well established understanding that mtDNA accumulates mutations with 

age, the model suggested that UVR, in particular the deeper penetrating ultraviolet A 

radiation (UVA, λ300-420nm), was a major cause of large scale mtDNA deletions and 

strand breaks associated with gene mutation. This in turn was linked to progressive 

reductions in mitochondrial efficiency. This chronic result of long-term over-production 

of ROS has been shown to exacerbate oxidative cell harm (Birch-Machin and Swalwell 

2010). As mutations accumulated in the mtDNA, the incidence of key metabolic 

protein deficiency and mis-folding increased (Mott et al. 2005; Wei and Lee 2002). As 

electron transport became progressively more disrupted due to mETC leakage and 

uncoupling, the more O2 ̄ was generated as a result of spontaneous reduction of O2̄ 

(Wei and Lee 2002). The real-time monitoring of O2̄ from isolated mitochondria as a 

result of mETC inhibition has been reported (Henderson 2009) and is discussed fully in 

Chapters 5 and 6 of this thesis. 
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1.3.2 Neurodegenerative disorders 

One of the defining characteristics of Parkinson’s disease (PD) is a loss of dopaminergic 

neurons in the substantia nigra pars compacta (Rinne et al. 1989). Neurones in this 

area of the brain do not proliferate, and as a consequence, damage sustained by the 

cells is cumulative (Zeng et al. 2006) Spontaneous auto-oxidation of the catecholamine 

and neurotransmitter dopamine (DA) both intra and extracellularly is known to 

generate ROS and has been shown to cause substantial cell death in populations 

exposed to high DA concentrations (Masserano et al. 1996; McLaughlin et al. 1998). DA 

is also metabolised intracellularly by monoamine oxidase (MAO), which has been 

shown to result in the intermediate generation of H2O2 and other downstream ROS 

(Fahn and Cohen 1992). MAO activity in the midbrain is known to increase with age. 

This is indicative of increased DA oxidation, resulting in reduced concentrations of DA 

in the midbrain and inherently leading to increased oxidative cell damage and 

progression of neurological pathologies (Nicotra et al. 2004). 

Oxidative damage intracellularly in the nigra stratum caused by the dysfunction of the 

mitochondria is thought to be another route to the development of PD (Lin and Beal 

2006). Many mitochondria linked proteins have been shown to contribute to the 

regulation of cell death and proliferation (Danial and Korsmeyer 2004). Disruption of 

these proteins and their signalling pathways has been shown to be a causal factor in 

PD, amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) and Alzheimer’s 

disease (AD) (Lin and Beal 2006). Inhibition of the mETC leads to an increase in 

electron leakage at the point of blockage the result of which has been demonstrated 

as an increase in O2̄ flux from the mitochondria (Henderson 2009). Long term exposure 

to exogenous chemicals and their metabolites capable of increasing oxidative damage 

to the mtDNA such as 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) 

(Bringmann et al. 1995) have been linked to aging and the exacerbation of age related 

disease (Bringmann et al. 1996). This is discussed as being related to the accumulation 

of mtDNA mutations and the increase in mistranslation of genes and eventually 

proteins leading to cell death and disease progression (Corral-Debrinski et al. 1992). 

Coupled to the previously discussed fact that dopaminergic neurons do not divide or 

proliferate, it is clear that such cells are prone to accumulated DNA damage through 

oxidative stress. 
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1.4 pH in disease states 

1.4.1 Metabolic disorders 

Due to heavy energy dependency, skeletal muscle tissue is evolved to exert tight 

control of cellular processes, including pHi. Lactic acidosis is a key clinical symptom of 

many metabolic disorders and can be indicative of many different dysfunctions within 

the oxidative phosphorylation pathway (Mizock and Falk 1992). To briefly introduce 

oxidative glucose metabolism, glucose undergoes glycolysis to generate two pyruvate 

molecules per glucose molecule. Pyruvate is actively transported into the mitochondria 

and is immediately decarboxylised by pyruvate dehydrogenase complex (PDC) to 

produce acetyl coenzyme A. Acetyl coenzyme A is then fed in to the citric acid cycle 

and undergoes a series of oxidation reactions to produce NADH and FADH2. These two 

cofactors generate one final molecule of ATP by driving electrons through the mETC 

through the maintenance of the mitochondrial proton gradient. 

Fatigue and lactic acidosis are definitive symptoms in patients with metabolic disorders 

involving a deficiency of PDC function (Fouque et al. 2003). In healthy non-

symptomatic patients, adequate oxygen perfusion allows almost all available pyruvate 

to be metabolised aerobically, resulting in a very low resting blood lactic acid 

concentration of 1-2 mM (Robergs et al. 2004). As a result of reduced PDC function 

pyruvate accumulates within the cells and is reduced by NADH to lactic acid. This 

regenerates NAD, which can be recycled through the glycolysis process to generate 

further pyruvate. Without reinstatement of PDC function, lactic acid accumulates in 

the myoblasts, reducing the pH and causing widespread disruption to pH- sensitive 

intracellular proteins. If left untreated lactic acidosis can be fatal (Robergs et al. 2004). 

PDC function is tightly controlled by pyruvate dehydrogenase kinase (PDK) and 

pyruvate dehydrogenase phosphatase, which are responsible for PDC inactivation and 

reactivation respectively. Once phosphorylated, PDC becomes inactive. Investigative 

treatments to alleviate lactic acidosis have focussed upon PDK as a potential 

therapeutic target. Dichloroacetate (DCA), an analogue of pyruvate, has been 

investigated in vitro as an inhibitor of PDK function (Fouque et al. 2003; Henderson et 

al. 1997). By inhibiting phosphorylation, PDC spent more time in an active 

conformation, allowing the clearance of accumulated lactic acid an an increase in pHi. 

Unfortunately the long term toxicity issues surrounding DCA administration including 
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liver failure and oncogenesis prevent the clinical implementation of a treatment 

regimen (Felitsyn et al. 2007; Stacpoole et al. 1979). This will be discussed in more 

detail in Chapter 4 which focuses on the application of pH sensitive nanosensors to 

disease state and normal cultured primary muscle for monitoring changes in the pHi in 

response to DCA. 

1.5 Tools for real time intracellular monitoring 

1.5.1 Established techniques for reactive oxygen species monitoring 

There are vast arrays of protocols and commercially available kits that had been 

developed and produced to facilitate the investigation of intracellular ROS mediated 

effects. Such techniques include the commercially available catalase assay, the 

reduced glutathione assay, strand break quantification through conformational 

analysis of supercoiled DNA (Srinivasan et al. 2001) or agarose gel electrophoresis 

(Laurent et al. 2005). Proteins reported to sustain ROS induced damage have been 

investigated using immunoprecipition and western blotting (Rinna et al. 2006). These 

tools have been used to provide insight regarding the effects of proposed ROS inducing 

treatments, allowing endpoint assessment of increasing peroxidation (Cheeseman 

1993), reduction or up-regulation of antioxidant protein as a consequence of an 

altered internal oxidative state. Endpoint testing does not monitor ROS generation or 

flux directly and as such gave an incomplete representation of the mode and timescale 

of ROS production. 

Many fluorescent dyes have been designed for the detection of ROS (Soh and Soh 

2006) and have given detailed insight regarding the temporal and spatial 

characteristics of these molecules. These dyes have been employed in conjunction 

with a variety of fluorescence monitoring methods including fluorescence microscopy, 

confocal microscopy, fluorimetry, and FACS analysis. Multiple fluorescent probes have 

been employed simultaneously to provide independent corroboration of each 

individual dye’s data sets (Deng et al. 2008). MitoTracker Orange, 4-amino-5-

methylamino-2,7-difluorofluorescein (DAF-FM) and Dihydroethidium (DHE) dyes were 

developed to selectively interact with ROS intracellularly. The MitoTracker range of 

dyes was developed to localize to the mitochondria using engineered inherent zeta 

charge properties. DAF-FM has been marketed as a sensor specifically for NO•, 

however it has been suggested that the dye’s specificity is not absolute (Balcerczyk et 
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al. 2005). DHE is reported to have a particular affinity to O2̄ compared to other ROS 

(Soh and Soh 2006). DHE is also reported to require intercalation with DNA in order to 

fully fluoresce (Negre-Salvayre et al. 2002). 

Luminescent dyes are reported to confer much higher levels of specificity to particular 

ROS. Luminol and lucinigen are reported to luminesce only in response to O2 ̄ (Faulkner 

and Fridovich 1993). However, contradicting literature suggests the dyes are oxidised 

nonspecifically by hypochlorite, H2O2 (Gross et al. 2009) and peroxynitrite (Radi et al. 

1993). 

Photo-bleaching has been identified as a major challenge when using fluorescent dyes 

to monitor ROS production in real-time. Many optimisation methods have been 

purported to overcome this issue (Afzal et al. 2003), however, the long exposure times 

sometimes required during fluorescence and confocal microscopy have skewing effects 

upon observed intensity. Dyes such as dihydrorhodamine-123 (DHR123) and 2',7'-

dichlorodihydrofluorescein diacetate (DCF-DA) have been reported to display disparate 

emission fluorescence intensity (FI) responses when used to monitor ROS production 

induced by UVA (Boulton et al. 2011). Optimisation of dye employment and 

identification of ROS generation mechanisms outside of cellular processes formed the 

basis of much of the work discussed in Chapter 2. Due to the intrinsic photosensitivity 

of these compounds, DHR123 and DCF-DA have been reported as difficult to use and 

unreliable without properly controlled experimentation (Boulton et al. 2011; Chen et 

al. 2010). 

1.5.2 Established techniques of intracellular pH measurement 

Fluorescent dyes have long been implemented to estimate changes in pH in vitro and 

like those used for sensing ROS, a variety of monitoring techniques have been used to 

measure the resulting fluorescence. FITC has been extensively employed in monitoring 

changes in pHi in vitro (Lanz et al. 1997; Liu et al. 2007; Savina et al. 2006), however as 

the free dye was prone to uneven loading, leaching and sequestration, calibration 

difficulties reduced the confidence in data reported (Chen et al. 2010; Lanz et al. 

1997). Dextran conjugation of pH-sensitive fluorescent dyes has been used to reduce 

the amount of dye leached from the cell once introduced (Geisow 1984). More 

recently this dye anchoring method has been exploited to prevent the leaching of dye 

from polymer nanoparticles for intracellular analysis (Webster et al. 2005). Although 
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marked improvement in terms of leaching has been observed, the inherent membrane 

impermeability of the conjugated dye means intracellular delivery relies upon the very 

time consuming, difficult and cell perturbing technique of microinjection. 

True pH-sensitive microelectrodes have been used for the voltammetric analysis of the 

pH within individual cells since first described in 1974 by R.C. Thomas (Thomas 1974) 

The electrodes require the subject cells to be tethered and impaled to facilitate 

intracellular measurement (Lucas et al. 1975).  Recessed tip and double-barrelled 

microelectrodes are both commercially available, the former allowing very narrow 

bore and therefore less intrusive tips to be used, the latter facilitating simultaneous pH 

and membrane potential measurement. 

Both microelectrode and Dextran-conjugated dye techniques require the tethering or 

restraint of individual cells in order to introduce a microneedle or electrode tip into the 

cell. The technique has been reported as being practically highly demanding, requiring 

much practice to develop the level of skill required to use the techniques without 

causing lethal damage to cells (Yan et al.). Even after the skills have been mastered the 

time constraints of measuring many cells on an individual basis renders microinjection 

and microelectrode investigation inappropriate for many studies. 

In mycobiology, fluorescent proteins have been used to avoid the difficulties of cellular 

delivery. Proteins such as green fluorescent protein (GFP) and yellow fluorescent 

protein (YFP) have been codon-optimised for expression within the mycelium and to 

maximise FI changes in response to environmental pH. One such protein is pHluorin 

(Moseyko and Feldman 2001). This technique is starting to be implemented in 

mammalian cells using pH sensitive GFP (Bizzarri et al. 2006). 

1.5.3 Polyacrylamide nanosensors: 'PEBBLE's 

Recent advances in analytical chemistry have given rise to a generation of dye doped 

polyacrylamide matrices known as PEBBLEs (Photonic Explorers for Bioanalysis with 

Biologically Localised Embedding) (Buck et al. 2004a) These nanoscale sensing devices 

have been investigated as a potential tool to overcome the challenges presented by 

free fluorescent dyes in terms of long-term intracellular investigation. In Chapters 3, 4 

and 7, polyacrylamide nanosensors have been discussed in length in terms of their 

development, application and integration with electrochemical sensing systems 
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respectively. Briefly, polyacrylamide nanosensor technology was developed in 

response to the challenges regarding current intracellular monitoring techniques. 

Hand-pulled fibre optics were being used to monitor intracellular changes in NO• (Tan 

et al. 1995). The tip of the optic was coated in a matrix that entrapped a stable 

reference dye and a NO• sensitive fluorescent dye (Tan et al. 1995). Polyacylamide 

'PEBBLE' nanosensors were fabricated using a reverse phase microemulsion with 

acrylamide monomer, signal dye and reference dye dispersed in the aqueous phase. 

Initiation of polymerisation whilst in emulsion resulted in the formation of 

nanoparticles of up to 200nm in diameter (Henderson et al. 2009). The concept of 

entrapping dyes within a polymer matrix presented many benefits over using free dye. 

Protection was conferred through the inherent size exclusion properties of the matrix, 

preventing unspecific binding of dyes to proteins (Buck et al. 2004b). This minimised 

the amount of dye sequestration by organelles and improved data confidence through 

the reduction of non-specific redox reaction (Buck et al. 2004b). Immobilising the 

reference and signal dyes locally conferred a ratiometric benefit to the quantification 

of sensed analyte (Buck et al. 2004a; Clark et al. 1999b). As the reference dye FI 

remained consistent throughout testing and only the signal dye was proportional to 

the analyte sensed the ratio of signal to reference FI shift in relation to intracellular 

Ca2+ release (Clark et al. 1999b). The ratiometric element allowed comparison between 

individual cell populations without the risk of data corruption due to an uneven 

loading of dye. Some free dyes such as DAF-FM include a structural AM ester to aid 

cellular internalisation, the hydrolysis of which on contact with the cytosol produces 

cytotoxic formaldehyde. The encapsulation of the dye negates the need for the 

hydrolysis of this ester and permits the use of dyes that do not incorporate cell-

penetrating devices, as the delivery of nanosensors to the intracellular environment 

relies on mechanisms outside of active transport or diffusion (Buck et al. 2004b). 

1.5.4 Nanosensor delivery 

A comprehensive investigation of various nanosensor delivery methods within cell 

models was carried out by Webster et al at the Boots School of Pharmacy in 

Nottingham (Webster et al. 2007). This extensive discussion of nanosensor delivery 

methods appeared to conclude that delivery must be tailored to the individual cell 

type or line that is being examined. Previously published work from the Diagnostic and 
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Therapeutic Technologies (DTT) group exploited phagocytosis, an innate internalisation 

process, to deliver nanosensors into rat alveoli NR8383 macrophage cells. The study 

monitored ROS generated in response to protein kinase C (PKC) stimulation with 

phorbol-12-myristate-13-acetate (PMA). The study is discussed in more depth in 

Chapter 3, which also details the development and application of ROS sensitive 

nanosensors. Whilst internalisation via phagocytosis is shown to be relatively facile all 

measurements following internalisation originated from within a membrane bound, 

isolated, selectively permeable organelle (Henderson et al. 2009; Webster et al. 2007) 

Exploitation of this natural process unfortunately restricts the use of nanosensors to a 

very marginal field of biological investigations regarding the phagosome, such as host 

pathogen interaction (Craig et al. 2009). 

The most effective method used in this project to deliver nanosensors into cells 

exploited transfection reagents more commonly used to deliver DNA oligonucleotides 

to the nucleus in transformation procedures (Dalby et al. 2004). By forming complexes 

between nanosensors and the transfection reagents, the nanosensor cargo was 

delivered to the internal environment through fusion of the encapsulating liposome 

with the target cell membrane. Chapters 3 and 4 contain data pertaining to the 

optimisation of internalisation protocols for glioblastoma and cultured primary muscle 

cell delivery respectively, and discuss the challenges regarding cargo delivery more 

extensively. Previously published work has neither wholly championed nor refuted the 

usefulness of such a technique, although disparities were highlighted in the action of 

particular reagents such as Escort4 (Webster et al. 2007). Liposomal delivery of 

nanosensors ('lipofection') must be optimised between cell lines. Despite physiological 

similarities, protocols for lipofection were not transferable between cell types 

although the basic principle remained the same. This has been demonstrated by the 

varying successes reported in the literature when a single protocol is applied to many 

cell types (Clark et al. 1999a; Webster et al. 2007). 
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1.6 Tools for real time extracellular monitoring 

Many methods have been reported for detecting extracellular O2̄. Spectroscopic 

techniques using the reduction of cytochome c have been routinely used to monitor 

the rate of O2̄ flux in real-time (Barbacanne et al, 2000). Unfortunately such methods 

are unreliable due to nonspecific interactions of cytochrome c with reductive species 

such as ascorbate and glutathione. Cytochrome c can readily be reoxidised by 

cytochrome c oxidase, H2O2 and peroxynitrite, which confers a diminishing effect upon 

the redox proteins absorbance at λ500nm, and subsequently leading to and 

underestimation of O2̄ flux. Nitroblue tetrazolium (NBT) has frequently been employed 

as a spectroscopic O2̄ detection system (Radenović et al. 2005) however NBT is 

ubiquitously used as a tool for assessing cellular viability due to the ease with which 

the compound undergoes reduction via mitochondrial reduction reactions as well as by 

coenzymes such as NADPH and FADH. NBT can easily cross the cell membrane and 

interact with endogenous reductive species. Data recorded from whole cell studies 

using this technique does not discriminate between the different modes of reduction. 

This inherent non-specificity for O2̄ renders data generated with respect to O2̄ 

production ambiguous and unreliable. 

Electron spin resonance and spin trapping has also been used to directly detect O2̄ (Liu 

et al. 2004). This technique is mainly employed with cell lysates and purified proteins 

(Pou et al. 1992) meaning the context of superoxide generation in terms of whole cell 

processes is lost. Although the method can be used to directly monitor the production 

of O2̄ with good specificity, the inter-reactivity and short half life of the radical results 

in difficultly detecting O2̄ in a biological system (Tarpey and Fridovich 2001a). So far the 

only methods capable of monitoring O2̄ flux directly and in real time are amperometric 

(Manning et al. 2001; Santos et al. 2008; Shleev et al. 2006; Tammeveski et al. 1998). 

1.6.1 Amperometric extracellular O2̄ monitoring 

Dynamic electrochemical detection of any molecule is underpinned by the principle 

that a change in current can be measured as a result of a dynamic redox reaction with 

a chemical species at the surface of an electrode. Conductive elements such as gold 

(Beissenhirtz et al. 2004; Chang et al. 2005; Dronov et al. 2008; Ge and Lisdat 2002), 

platinum (Koo et al. 2004; McNeil et al. 1989; Soldatkin et al. 2009), conducting 

polymers (Koh et al. 2008) and carbon fibres (Tanaka et al. 1991) have been used as 
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biosensing electrodes, often following surface chemical functionalisation to convey 

specificity for a particular analyte of interest. A three-electrode system was used 

throughout this project, which comprised a steel counter electrode, a Ag/AgCl 

reference electrode and a gold working electrode. In brief, the working electrode was 

modified prior to use with linker molecule 3,3'-dithiobis(sulphosuccinimidylpropionate 

(DTSSP). This molecule formed a gold-thiol bond with the gold electrode surface and 

presented an amine reactive ester away from the surface, which bound to lysine 

residues located away from the redox active haem site in cytochrome c.  The potential 

the working electrode is poised at against the reference electrode will further 

contribute towards electrode specificity. Amperometric biosensing systems often have 

a three electrode set up which consists of a working, reference and counter electrode. 

The reference electrode establishes a potential against which all changes can be 

measured. The counter electrode is set at an equal but opposite potential to the 

reference electrode. Its purpose is to prevent the reference electrode from carrying 

any current. If the reference electrode were to carry current, the reference potential 

would be altered. Redox reactions occur at the working electrode producing a change 

in current proportional to the concentration of the analyte in question. 

1.6.2 Development of amperometric O2̄ monitoring methods 

The O2̄ sensitive electrode method used throughout this project was first suggested in 

1993 by McNeil and co-workers (Cooper et al, 1993) in a publication describing 

electron transfer between gold electrodes and the cytochrome c immobilised on the 

surface. In 1998, this work was further developed to demonstrate that a gold electrode 

with a cytochrome c functionalised surface could be used to monitor O2 ̄ generated 

through the enzymatic decomposition of xanthine to uric acid and water by xanthine 

oxidase (XOD) (Tammeveski et al, 1998). It was demonstrated that cytochrome c 

exhibited great specificity for O2̄ when covalently immobilised at a gold electrode 

surface and poised at a constant working potential of +100mV vs. Ag/AgCl. The 

cytochrome c functionalised electrode was used in vitro to monitor the extracellular 

flux of O2̄ from PMA stimulated astrocytes, demonstrating a novel tool for real-time O2̄ 

detection in biological systems (Manning et al, 1998). Other methods for sensing of O2̄ 

using cytochrome c and gold electrodes exist offering different characteristics. Ge and 

Lisdat have reported a multi layered cytochrome c electrode for O2̄ sensing, as well as 
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electrodes using long chain thiols as linker molecules between the gold surface and 

haem containing protein. Shleev et al (2006) reported a superoxide sensitive electrode 

that uses azurin in place of cytochrome c, however the stability period of the electrode 

was reported to be decreased compared with the technique used by Manning et al 

(1998), despite being more labour intensive to prepare. 

The functionalisation procedure of the Manning et al O2̄ electrode was essentially 

described as a two-step process, and is discussed in greater detail in Chapters 5, 6 and 

7. The first step was to use gold-thiol binding to immobilise the DTSSP linker molecules 

to the gold surface. The second step was to bind the redox protein cytochrome c to the 

linker molecules, covalently attaching it to the electrode. Many different methods and 

protocols have been reported for the functionalisation of electrodes for the specific 

detection of O2̄ (Balamurugan and Chen 2008). The different functionalisation methods 

described using cytochrome c and gold electrodes conferred different electrode 

characteristics. Ge and Lisdat have reported a multi layered cytochrome c electrode for 

O2 ̄ sensing, as well as electrodes using long chain thiols as linker molecules between 

the gold surface and haem containing protein (Ge and Lisdat 2002). Many of the 

alternative protocols included multi-step protein layering and long incubation times 

(Beissenhirtz et al. 2004; Mao et al. 2008) however the simple 2-step method 

described by Manning et al strikes a balance between preparation time and sensitivity. 

Table 1.1: Adapted from (Shleev et al. 2008). The study compared O2 ̄ electrodes prepared using the cytochrome c - DTSSP 
immobilisation protocol described by Manning et al, the long chain thiol cytochrome c protocol described by Ge and Lisdat and the 
Azurin – DTSSP protocol of Shleev et al in terms of the individual preparation time, stability and sensitivity. The Manning et al 
protocol strikes a good balance between short preparation time, longevity and sensing capability. 

The cytochrome c functionalised electrode has been reported extensively in its 

application to O2̄ monitoring of live cells and more recently isolated mitochondria 

(Aitken et al. 2007; Chang et al. 2005; Henderson 2009; Manning et al. 2001). The 

same group also reported a modelling investigation whereby the decomposition of 

Type of 
biosensor 

Sensitivity 
(A mm-2 M-1) 

Stability 
(h) 

Preparation 
time (h) 

Reference 

Azurin-DTSSP 6.0*102 ≈5 ≈20 (Shleev et al. 2006) 

cytochrome c-
DTSSP 

0.5*102 6–8 ≈20 (Manning et al. 1998) 

cytochrome c-
MU 

2.5*102 ≥8 ≈30 (Ge and Lisdat 2002) 
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xanthine by XOD is used to calibrate the electrode for quantitative analysis of samples. 

The haem group in cytochrome c was the active site of redox reactions with O2 ̄. By 

applying a low voltage positive potential the protein will interact specifically with O2̄. A 

recent study suggested that modification via site directed mutagenesis of the haem 

site to make it more electropositive could enhance the sensitivity of this protein 

without compromising its selectivity for O2̄ (Wegerich et al. 2009). 
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1.7 Integration of intra- and extracellular monitoring systems 

The short-lived nature of ROS moieties and their inter-reactivity has presented novel 

temporal and spatial challenges when attempting to monitor ROS production, 

interaction and flux (Thomas et al. 2006). Often ROS are transformed, sequestered or 

are metabolised before they can be sensed (Boulton et al. 2011), exemplifying the 

highly dynamic nature of these free radicals. Current ROS detection techniques rely 

upon enzyme induction, cellular damage or secondary metabolites as indicators of 

production (Tarpey and Fridovich 2001b). Commercially available kits were developed 

to exploit endpoint methods however they do not carry the temporal precision or 

accuracy of the ideal real time, direct and simultaneous detection platform. 

Electrochemical detection of such species may be the only method viable for dynamic 

and selective monitoring of the extracellular production or flux, due to the high 

specificity for individual ROS reported (Henderson 2009; Manning et al. 2001). 

Promising work has been reported in the generation of novel encapsulated fluorescent 

sensors for intracellular ROS detection. The nanosensors were optimised in terms of 

ROS reporting through the incorporation of a ROS-responsive dye (DHR123) in 

conjunction with a non-responsive and stable reference dye (AlexaFluor568). This is 

discussed in more detail in Chapters 3 and 4 of this thesis. Together, the two 

technologies present highly compatible platforms that could be integrated to provide a 

platform to monitor both intra- and extracellular environment simultaneous in terms 

of discreet chemical species externally and more general ROS flux internally. The 

future application of this integrated platform to clinically relevant in vitro investigation 

of ROS induced pathophysiology could give unique insight regarding the temporal, 

spatial and intercellular effects of cytotoxic stimuli and cell signalling. 
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Chapter 2. Implications of using the fluorescent dyes, 

dihydrorhodamine-123 and 2’,7’-dichlorodihydrofluorescein 

diacetate, for the detection of UVA-induced reactive oxygen species 

S. Boulton, A. Anderson, H. Swalwell, J.R. Henderson, P. Manning, M.A. Birch-Machin 

Free Radical Research, February 2011; 45(2): 115–122 

2.1 Introduction 

The determination of intracellular ROS generation is an important part of many in vitro 

investigations. DHR123 and DCF-DA are two dyes capable of reporting changes of the 

intracellular oxidative stress state, both have formed important parts of many studies 

and have received a great deal of press. During investigation of UVA induced stress in 

HaCaT keratinocytes, abhorrent false positive results were noticed within control 

samples.  The effects of diluent, UVA pre-treatment and loading protocols have been 

investigated in the hope of identifying a best practice regimen. This study aimed to 

address the pitfalls of using both DHR123 and DCF-DA as dyes for UVA induced stress, 

and highlight precautions that can be taken to maintain data validity. 

ROS are known to be key signalling species of cellular stress, damage and death 

(Cheeseman 1993a, b; Halliwell and Gutteridge 1984; Kaczara et al. 2010; Yuan et al. 

2009). In addition to their involvement in communication and oxidative damage, it is 

now thought that these short lived and potentially highly reactive molecules may 

harbour a more intrinsic and sophisticated role in ubiquitous cellular processes (Cui et 

al. 2006; Foyer and Noctor 2005; McNeil and Manning 2002; Traverso et al. 2007). 

The development of sensors capable of reporting and quantifying changes in ROS has 

been the focus of a considerable amount of research (Aitken et al. 2007; Barbacanne 

et al. 2000; Chang et al. 2005a; Chang et al. 2005b; Henderson et al. 2009; McNeil and 

Manning 2002; Tammeveski et al. 1998; Van Lente 1993), though the realisation of a 

real-time, direct and dynamic sensor method remains somewhat elusive. The 

fluorescent dyes DHR123 and DCF-DA are commonly used to detect production of 

cellular ROS in a variety of cell types. In this process DHR123 is oxidised from non-

fluorescent DHR123 to fluorescent rhodamine 123 (R123), and DCF-DA is similarly 

oxidised to its fluorescent product DCF. 
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Whilst studying UVA light induced oxidative stress with DHR123 and DCF-DA, there 

was an unexpected observation of abnormally large difference in the trend and 

magnitude of response between human skin keratinocytes (i.e. HaCaTs) loaded with 

ROS-sensitive dye either immediately before or after UVA exposure of the cultured 

cells.  This suggested that UVA light may itself exhibit an effect on DHR123 and DCF-DA 

that is independent of cellular ROS production.  A possible explanation for this 

observation may in part be due to a non-specific interaction with the cell culture 

medium as a focused review of previous studies identified similar anomalies which 

may be attributed to the nature or content of the cell culture medium (Granzow et al. 

1995; Grzelak et al. 2001; Long and Halliwell 2009).  Therefore, this current study 

addresses three important questions regarding the optimisation and good laboratory 

practice surrounding the future use of DHR123 and DCF-DA in detecting ROS 

production in cell biology investigations, building upon a foundation of peer reviewed 

investigatory work surrounding potential pitfalls of fluorescent ROS measurement 

(Afzal et al. 2003; Chen et al. 2010; Mahns et al. 2003; Soh and Soh 2006). First, does 

the experimental diluent (e.g. culture medium/buffer) interact with the dyes thereby 

modifying its response to ROS? Second, does UVA irradiation affect the fluorescence of 

DHR123 and DCF-DA and if so, is this effect independent of ROS interaction?  Third, 

does the effect on the dyes alter their capacity or sensitivity for ROS detection? 
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2.2 Materials and methods 

Propidium iodide (PI), DHR123, DCF-DA, PBS tablets, xanthine and XOD  were all 

purchased from Sigma-Aldrich (Poole, UK) 

2.2.1 Cell culture and preparation 

Spontaneously immortalised basal keratinocyte cell line HaCaT was cultured in phenol 

red free Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% foetal 

calf serum (FCS) and incubated at 37.5˚C in a 5% CO 2 humidified atmosphere. Cells 

were grown to ~70% confluence before testing and underwent no more than 6 

passages over the course of experimentation. 

2.2.2 Fluorimeter-facilitated cell free measurements 

The following settings were used for all fluorimetric analysis: DCF-DA: λex495 nm, 

λem535 nm; DHR123: λex488nm, λem520 nm.  Phenol red free medium was employed 

throughout fluorimetric experimentation without modification unless otherwise 

stated. DHR123 and DCF-DA were used consistently at 25μM and 10μM respectively. 

2.2.3 Quantifying UVA exposure dose response of dyes 

Previous work by Gniadecki et al (Gniadecki et al, 2000) was used as a basis for the 

current UVA dose regime together with previous experience obtained from our studies 

using sub-lethal doses of UVR in cultured skin cells (Aitken et al, 2007).  A dose of 10 

Jcm-2 was found to be sub-lethal but sufficient to induce increased cellular ROS 

generation. The source of the UVA irradiation was a glass filtered TL09 (Phillips 

TL100/09) providing a peak output of 350nm with a range of 315-410nm. DHR123 and 

DCF-DA were made to 25μM and 10μM respectively in plain DMEM, complete DMEM 

and PBS. Probe solutions were aliquoted into a white 96 well plate (Corning, UK), with 

the UVA negative control aliquots subsequently heavily masked from any UVA 

exposure. The plates were exposed to increasing doses of UVA from 0 to 10 Jcm-2. 

Once all wells had received their allocated exposure, the UVA untreated wells were 

unmasked and the plate transferred to a Tecan Infinite M200 fluorimeter (Tecan, 

Austria) for FI measurement. 
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2.2.4 Observation of the effects of UVA on dye emission spectra 

Two sample groups of both DHR123 and DCF-DA solution at working concentration 

were aliquoted to a white-walled 96 well plate in triplicate. One of the sample groups 

for each dye was heavily masked against UVA exposure. The plate was exposed to a 10 

Jcm-2 dose of UVA. Once exposure was complete, the plate was transferred to a Tecan 

Infinite M200 fluorimeter (Tecan, Austria) for fluorescence emission scan 

measurement. λex of 495nm was used for both dyes. λem FI was measured by scanning 

from 450-650nm in 2nm steps. 

2.2.5 Quantifying responses to xanthine/xanthine oxidase generated ROS 

Immediately prior to use, each dye was irradiated with 10 Jcm-2 UVA, diluted in PBS to 

working concentration and then transferred (50 μl/well) to a white 96-well plate 

(Corning, UK). Each well in the ‘baseline’ column (i.e. 9 replicate wells) of the plate 

received a further 50 μl PBS; thereby diluting the dye to a working concentration to 

account for baseline FI. 4 columns then received 40 μl 10 mM xanthine in PBS, 1 

column received a further 10 μl PBS and served as a control for any FI changes elicited 

by xanthine. The remaining 3 columns were treated with 10 μl of differing XOD 

concentrations making the final concentration range of enzyme across the plate 0.1, 

0.5 and 2.5 Uml-1. Once all these additions were completed, the plate was incubated at 

room temperature for 5 min prior to being transferred to the fluorimeter for FI 

measurement. As XOD exhibits fluorescence quenching capabilities at 520 nm, DHR123 

fluorescent emission was determined at a wavelength of 535 nm as opposed to the 

more conventional 520 nm in order to avoid any interference whilst maintaining 

sufficient sensitivity of the FI readings. 

2.2.6 FACS analysis of UVA irradiated HaCaT cells 

HaCat cells were treated with trypsin, washed and re-suspended in PBS. Half of the 

cells were incubated with either DCF-DA for 30 min or DHR123 for 20 min in complete 

darkness and designated as ‘pre-UV loaded dye’. All the cells were then irradiated with 

10 Jcm-2 UVA during which the cells were gently agitated every 5 min to prevent 

adherence (control samples were treated identically but heavily masked to prevent 

exposure to UVA). The remaining unstained cells (i.e. the other half of the cells) were 

incubated with either DCF-DA or DHR123 as described above and designated as ‘post-
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UV loaded dye’. All cells were then washed and re-suspended in PBS with 10 mm 

propidium iodide and incubated at room temperature for 5min prior to FACS analysis 

using the FL1 channel of a BD FacScan (Becton Dickinson, UK). Analysis was performed 

on PI negative cells using Venture 1 software (Applied Cytometry Inc., TX). 

2.2.7 Fluorimetric analysis of UVA irradiated HaCaT cells 

HaCaT cells were plated into a white 96-well plate (Corning, VWR, Lutterworth, 

Leicestershire, UK) at a density of 5000 cells per well and were incubated overnight to 

allow adherence to the culture flask. Cells investigated as ‘pre-loaded’ with dyes were 

incubated as for FACS analysis prior to UVA irradiation. A sub-sample of ‘pre-loaded’ 

cells was heavily masked to serve as UVA negative controls. All cells were washed and 

covered with PBS for the duration of irradiation with 10 Jcm-2 UVA. The remaining 

unstained sample cells (i.e. the ‘post-UVA loaded’ cells) were incubated with the dyes 

as previously described. The plate was then loaded into the fluorimeter for FI 

measurement. 

 



Chapter 2: DHR123 and DCF-DA 

 36 

2.3 Results 

2.3.1 Effect of diluent upon fluorescence of DHR123 and DCF-DA 

The data in Figure 2.1 investigates the question of whether the experimental diluent 

(e.g. culture medium/buffer) interacts with the fluorescent dyes and consequently 

modifies their response to ROS. At time zero, increased fluorescence was observed in 

solutions of DHR123 and DCF-DA diluted in plain and complete DMEM when compared 

with dye diluted in PBS. When exposed to UVA, DCF-DA in plain DMEM exhibited a 

striking increase in FI within 1 Jcm-2 of UVA exposure. The increase in fluorescence 

continued for the duration of the UVA exposure, resulting in a 10-fold increase in 

fluorescence at a 10 Jcm-2 dose of UVA. In contrast, other combinations of dyes and 

diluents did not provide such an amplified response. For example, DCF-DA in complete 

DMEM exhibited an ~2-fold increase in FI following 10 Jcm-2
 UVA. Interestingly, a very 

similar profile of dose curves was observed for the UVA irradiation of DHR123 in both 

plain and complete DMEM where again an ~2-fold increase in FI was recorded 

following 10 Jcm-2 UVA. In complete contrast to the behaviour of the dyes in plain and 

complete DMEM, the dyes diluted in PBS exhibited only a slight increase in FI when 

exposed to UVA. 

Figure 2.1: Differential FI responses of DCFDA and DHR123 diluted in PBS, plain DMEM (PM) or complete DMEM (CM) resulting 
from increasing UVA exposure. FI was measured using a fluorimeter as described in Materials and Methods. Data presented 
±standard error of the mean, n=6. 
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2.3.2 Effect of UVA upon the emission profiles of DHR123 and DCF-DA 

The data in Figure 2.2 was generated to more fully investigate the changes in the 

emission spectra of DHR123 and DCF-DA after exposure to UVA. DHR123 exhibited a 

marked increase in fluorescence emission between λ520-650nm, with all values 

increasing by ~2 fold. Conversely, the fluorescence profile exhibited by DCF-DA is 

almost completely quenched after exposure to UVA. 

Figure 2.2: Differential emission scan responses from both DHR123 and DCF-DA with and without UVA exposure. The data is 
representative of individual sample FI scans. 

2.3.3 Effect of UVA pre-treatment upon the response of DHR123/DCF-DA 

In order to address the other two questions of the study (namely does UVA irradiation 

affect the fluorescence of DHR123 and DCF-DA and, if so, is this effect independent of 

ROS interaction and does it alter dye sensitivity for ROS?), a previously established 

system for the generation of H2O2  and O2̄ using xanthine and XOD was used to 

determine the ROS responses of DHR123 and DCF-DA both in the absence and 

presence of UVA pre-treatment. The study took into consideration any effects of 

xanthine or XOD upon the dyes (see methods). The data in Figure 2.3 clearly show that 

DCF-DA exhibits a decreased response to xanthine/XOD generated ROS following UVA 

irradiation when compared with the absence of any UVA pre-treatment. There was a 
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significant difference in the response (p<0.005) between the irradiated and non-

irradiated samples at all enzyme concentrations (taking into account the absolute FI 

for the XOD free controls in which the irradiated DCF-DA samples exhibited higher 

absolute FI values than the non-irradiated counter parts). The inset in Figure 2.3 

emphasizes the fact that both UVA irradiated and non-irradiated sample sets show a 

similar trend of DCF-DA response to the gene rated ROS (although the amplitude is 

more pronounced in the non-irradiated dataset, implying an increased response to 

ROS in the absence of any UVA pre-treatment). The data in Figure 2.4 represents the 

same experimental protocol used in Figure 2.3 with the exception that the dye used 

was DHR123 rather than DCF-DA. In a similar fashion to the observations reported in 

Figure 2.3, DHR123 exhibited a decreased response to xanthine/XOD generated ROS 

following UVA irradiation when compared with the absence of any UVA pre-treatment. 

Again, taking into account the absolute FI for the XOD free controls (in which the 

irradiated DHR123 samples exhibited higher absolute FI values than the non-irradiated 

counterparts), there was a significant difference between irradiated and non-irradiated 

dye, most notably at 0.5 and 2.5 Uml-1 XOD (p<0.0001) (the trend was not observed at 

the lowest XOD concentration for which similarly low responses were exhibited). The 

inset in Figure 2.4 emphasizes the decreased response of the dye following UVA 

pretreatment, although the actual profile of the DHR123 response was different to 

that observed for DCF-DA (i.e. UVA appeared to decrease the response of DHR123 

more than DCF-DA). Despite this issue, all the data displayed in Figure 2.3 and Figure 

2.4 clearly suggested that UVA pre-treatment had a compromising effect on the ability 

of the dyes to respond reliably to ROS generated in a cell-free system.  
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Figure 2.3: XOD dose-dependent fluorescence of DCF-DA with or without UVA pre-treatment (10 Jcm-2) in a cell-free system. FI 

was determined as described in section 2.2.6. Significant difference between data sets denoted by ∗∗∗ (p < 0.001) and ∗∗(p < 0.01) 
as determined by one way ANOVA. Data presented ±standard error of the mean, n=8. 

Figure 2.4: XOD dose-dependent fluorescence of DHR123 with or without UVA pretreatment (10 Jcm-2) in a cell-free system. FI was 
determined as described in 2.2.6. Significant difference between data sets denoted by ∗∗∗ (p<0.001) as determined by one way 
ANOVA. Data presented standard error of the mean, n=8. 
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2.3.4 In vitro methods using DHR123/DCF-DA as probes for UVA-induced 

oxidative stress 

The next question to address was whether UVA treatment had a compromising effect 

on the ability of the dyes to respond reliably to ROS generated in vitro from cultured 

human skin cells when compared with the cell-free environment as described in 

Figures 2.3 and 2.4.  Additionally, in order to study the dynamics of the UVA effect on 

the dyes, HaCaT cells were loaded with DHR123 or DCF-DA either before or after 

exposure to 10 Jcm-2 UVA and the resulting changes in FI were detected using 

fluorimetry. A significantly greater UVA induced FI was observed in those HaCaT cells 

loaded with DHR123 or DCF-DA prior to UVA treatment (i.e. pre-UVA loaded dye) 

compared with loading the cells with the dye post-UVA treatment (i.e. post-UVA 

loaded dye). Control fluorescence data from non-irradiated HaCaT cells were used to 

normalize the FI in both sample sets. Even though the UVA treatment was sub-lethal to 

the HaCaT cells, a further experiment was performed in order to account for any 

confounding effects due to cell death or lack of cell viability. This involved flow 

cytometric analysis of cells double labelled with the ROS dye and propidium iodide to 

indicate any dead cells which might have taken up the dye and would therefore 

contribute to the overall FI reading. Table I shows the results of the flow cytometric 

measurement of HaCaT cells loaded with both dyes either before or after exposure to 

10 Jcm-2 UVA. The results of this experiment confirm the data displayed in Figure 2.5 

by demonstrating a significantly greater UVA-induced FI in those HaCaT cells loaded 

with DHR123 or DCF-DA prior to UVA treatment (i.e. pre-UVA loaded) compared with 

loading the cells with the dye post-UVA treatment (i.e. post-UVA loaded) (p<0.005 

(DHR123), p<0.05 (DCF-DA)). As in Figure 2.5, control fluorescence data from non-

irradiated HaCaT cells were used to normalize the FI in both sample sets. 
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Figure 2.5: Fluorimeter defined loading dependent responses by DCF-DA and DHR123 to UVA induced ROS production in HaCaT 
cells. Probes were loaded into HaCaT cells pre or post 50 minutes UVA exposure and FI was quantified as described in section 
2.2.6. The data is presented ± standard error of the mean, n=3. 

 

 DHR123 DCF-DA  

 ͞χ σ ͞χ σ 
"p" 

value 

Pre UVA loaded 386.79 2.87 1115.31 147.81 0.002 

Post UVA 
loaded 

78.54 1.58 47.37 50.97 0.1 

"p" value 0.00002 0.002  
Table 2.1: FACS-defined, loading-dependent responses of DCF-DA and DHR123 to UVA-induced ROS production in vitro. HaCaT 
cells were loaded with DHR123 or DCF-DA either before or after exposure to 10 Jcm-2 UVA with the resulting changes in FI 
quantified in living cells (i.e. propidium iodide negative cells) using flow cytometry as described in section2.2.7. The data is 
presented ± standard error of the mean, n=3. 
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2.4 Discussion 

This study set out to address three questions. The first was whether the experimental 

diluent (e.g. culture medium/buffer) interacted with the dyes thereby modifying their 

response to ROS?  By exposing the native dye to increasing UVA exposure in a range of 

media, Figure 2.1 shows that the diluent used during irradiation will impact upon the 

magnitude of fluorescence determined by both DHR123 and DCF-DA. Halliwell and 

Long (Long and Halliwell 2009) have shown that components of DMEM can catalyse 

the production of H2O2 on the addition of phenolic compounds such as 

epigallocatechin gallate. This may provide some indication as to why dyes such as 

DHR123 and DCF-DA, themselves phenolic compounds, may interact with components 

of DMEM and were observed to exhibit increased FI. Spontaneous oxidation of the 

dyes has been demonstrated to be in the order of ~0.02%/min (Royall and 

Ischiropoulos 1993) in a ROS free system, thus the observed changes in FI are likely to 

originate from the generation of an oxidative species.  Riboflavin is a key component of 

DMEM and not only has it been shown to produce ROS it has also been identified as an 

intracellular source of O2 ̄ upon exposure to sunlight (Cunningham et al. 1985; Wang 

and Nixon 1978). The inherent redox activity of riboflavin, which is known to interfere 

with cytotoxicity assays (Granzow et al. 1995) may also play a part in the interaction 

between the media content and the ROS sensing dyes. 

A number of studies have demonstrated that DMEM, when exposed to ambient light 

such as that from a non-UV safety cabinet bulb, can produce ROS catalysed by trace 

metal ions such as iron, magnesium, sodium, potassium and calcium (Cunningham et 

al. 1985; Valko et al. 1999; Wang and Nixon 1978).  These metal ions also accelerate 

ROS production through the auto-oxidation of glucose.  Mammalian serum albumins 

such as those present in FCS have been shown to exhibit non-specific binding 

properties with a wide range of different ions including Cu2+, Cd2+, Ni2+ and Zn2+ due to 

the N-terminal 3 residues that form a strong square planar binding site (Bal et al. 1998; 

Sadler et al. 1994). Other studies have suggested that there is more than one metal 

specific binding site on serum albumin (Valko et al. 1999; Zgirski and Frieden 1990). 

This is in keeping with the difference in dye fluorescence observed in plain DMEM 

compared with complete DMEM as displayed in Figure 2.1. This difference in FI levels 

may be attributed to the presence of FCS in the media. For example, in complete 

DMEM non-specific interactions between serum protein and the metal ions may 
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attenuate the catalysis of peroxide generation (and decrease the production of 

hydroxyl radicals from H2O2 catalysed by transition metals such as iron and copper via 

the Fenton reaction (Batandier et al. 2002)) thereby leading to reduced FI as shown in 

Figure 2.1. However, this is clearly not the entire explanation as there was greater 

amplitude of response with DCF-DA compared with DHR123 which may in part be 

related to additional structural or stochastic interactions.  In complete contrast to the 

behaviour of the dyes in plain and complete DMEM, the dyes diluted in PBS exhibited 

only a slight increase in FI when exposed to UVA. As shown by the λem scan data 

presented in Figure 2.2, clear fluorescence emission peaks were observed both pre- 

and post-UVA irradiation of DHR123 in PBS. The entire FI emission profile of DHR123 

appears to have increased ~2 fold between 520-650nm, indicating possible photo-

activation of the dye. Conversely the opposite effect is observed after irradiation of 

DCF-DA with complete attenuation of FI emission and is corroborated by the same 

pattern of changes in Figure 2.2. The simple composition and lack of any metal ions in 

PBS maintains a 'neutral' environment for the irradiation of dyes thereby removing the 

opportunity for any exacerbation of fluorescence by the presence of such components 

in DMEM. 

This effect was more pronounced with DHR123 than DCF-DA. It appears therefore that 

the dye may be excited and sensitised directly by the UVA light, resulting in a 

decreased proportion of the non-excited state remnant of the dye being available for 

interaction with the ROS generated by the xanthine/XOD system. This reduced 

capacity to interact with any XOD generated ROS would explain the decreased ability 

of the dyes to sense ROS following UVA treatment as there was a smaller residue of 

non-reduced dye able to respond to the XOD generated ROS. Hence, as XOD was 

introduced to the dye in increasing concentrations, only a relatively small change in FI 

was observed in the irradiated dye compared with non-irradiated dye. Against the 

background of this 'desensitisation-like effect' exhibited by the two dyes, it is 

interesting to note that there was a different profile of response between DCF-DA and 

DHR123 and again this may depend in part on additional structural or stochastic 

interactions. This 'desensitisation-like effect' is important as it suggests that the 

increase in fluorescence induced by UVA treatment of DHR123, and to a lesser extent 

DCF-DA, could in fact be masking the more subtle but nevertheless key responses in 

ROS mediated pathways and events. 
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Whilst there is little detailed published literature on the photo-stability of DHR123 and 

DCF-DA, particularly in relation to UVA, this study provided evidence that UVA 

irradiation increased conversion of DHR123 to R123 and DCF-DA to fluorescent DCF 

(dichorofluorescine; two hydrogen atoms are lost) in a cellular ROS-independent 

manner. This has important implications for those studies requiring the use of a 

fluorescent dye such as DCF-DA and DHR123 when UVA is the inducer for oxidative 

stress in the cells. Subtle differences in cellular ROS production (which may in fact 

represent significant events in cellular signalling responses) are likely to be masked by 

an exaggerated response of dyes to UVA especially when diluted in DMEM, likewise, 

the effects of largely cytotoxic stimuli may indeed be disproportionately reported and 

thus overestimated. This may be particularly important if such dyes are to be loaded 

into cells prior to UV exposure. The data presented in this study suggests that such 

dyes should be loaded preferably in PBS and post-UV irradiation. However, loading 

dyes after UV exposure may cause a trade-off in measuring the time course of a 

response when ROS production is measured after the initial UV-induced burst of ROS. 

If loaded pre-UV irradiation, then adequate control conditions must be included to 

account for the potential confounding effects reported in this work. 
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Chapter 3. Development and characterisation of optical techniques 

for intracellular analysis of ROS production 

3.1 Introduction 

As previously discussed in Chapter 2, the various roles of ROS within cell systems 

encompass signal transduction, detoxification and cell communication amongst many 

others (Craig et al. 2009; Gautam et al. 2006; Kurauchi et al. 2009). The dysregulation 

or overproduction of such highly reactive molecules has been identified as a 

progenitor of a range of disease states where DNA damage, progressive cell death or 

modulated cell communication are key features (Hartley et al. 1994; Langer et al. 

2008; Liu et al. 2009). Monitoring the intracellular production of ROS is therefore of 

great interest to a range of investigations regarding the pathophysiology of disease 

states, however the high inter-reactivity of ROS along with their short half lives makes 

direct and real-time intracellular monitoring very difficult. ROS-sensitive nanosensors 

were recently developed to overcome the difficulties associated with fluorescent 

intracellular monitoring. 

The use of fluorescent dyes such as DHR123 and DCF-DA to evaluate dynamic 

intracellular ROS generation is widespread (Chang et al. 2005; Henderson and Chappell 

1993; Tobi et al. 2000; Zurgil et al. 2006). The inherent difficulties surrounding the use 

of such dyes were highlighted previously in Chapter 2 and have been reported 

extensively in recent literature (Boulton et al. 2011; Chen et al. 2010). Naked dyes 

introduced to the intracellular environment are often prone to auto-oxidation and 

interaction with endogenous proteins that cause variation and inaccurate fluorescent 

responses (Graber et al. 1986). The ROS-responsive dye DCF-DA has also been shown 

to generate O2̄ through the formation of the semiquinone DCF•- during oxidation and 

subsequent reduction of O2. The oxidation of DCF-DA in this manner is thought to be a 

consequence of interaction with H2O2/peroxidise enzyme intermediates (Rota et al. 

1999). The nanosensor matrix prevents the interaction of the entrapped dyes with 

large intracellular proteins and their intermediates. This may improve the reliability of 

the observed fluorescent response to ROS (Park et al. 2003; Xu et al. 2002). 

Polyacrylamide ‘PEBBLE’ nanosensors have been developed for many analytes 

including calcium, pH and oxygen. (Buck et al. 2004; Coupland et al. 2009; Webster et 

al. 2005) There have been many different types of PEBBLE nanosensors as mentioned 
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in Chapter 1, including those fabricated from sol-gel, ormosil, and silica (Clark et al. 

1999; Hammond et al. 2008; Koo et al. 2004). The nanosensors reported in this study 

were fabricated from polyacrylamide due to the bioinert nature of the final nanoscale 

matrix and previously demonstrated high dye retention properties previously reported 

(Buck et al. 2004). The development of a novel ROS-sensitive nanosensor that 

comprised a ROS-responsive and a stable reference dye co-localised within a nanoscale 

polyacrylamide matrix was recently reported by the group (Henderson et al, 2009). The 

polyacrylamide nanosensor platform confers many benefits over the use of free dyes 

when monitoring analytes intracellularly. As previously mentioned the interaction of 

the encapsulated dyes with endogenous macromolecules is prevented through size 

exclusion by the polymer matrix pores, reducing the opportunity for non-specific 

oxidation of dyes by endogenous macromolecules and the risk of ‘false positive’ results 

(Sumner et al. 2002) The entrapment of dyes within the bioinert polyacrylamide matrix 

also protects cells from the often cytotoxic effects of long term exposure to native 

dyes (Buck et al. 2004). These properties, alongside the negligible volume of the 

nanosensors once internalised, also promotes the long term monitoring of dynamic 

ROS flux that is currently not possible with free dyes. 

The cells used in this study were from the phagocytic rat alveolar macrophage line 

NR8383. This cell line was chosen as it has been reported to be a robust model of 

cellular ROS generation which was required to facilitate to characterisation of the 

nanosensors. The O2̄ burst associated with macrophage cells has been extensively 

investigated and can be stimulated in a dose dependent manner through the 

application of phorbol-12-myristate-13-acetate (PMA) (Amatore et al. 2008; Giron-

Calle and Forman 2000; Rinna et al. 2006). The natural process of phagocytosis 

exhibited by these cells can also be exploited as a nanosensor delivery mechanism, 

allowing uptake of the nanosensors as a passive consequence of culture medium 

doping. Although the nanosensors will be reporting ROS generation from within a 

phagosome, the exploitation of a natural process to deliver the nanosensor allows the 

optimisation process to be broken down into simple stages, reducing the risk of data 

misinterpretation inherent in a more complex, multivariate investigation. 

The nanosensors reported in this study were first optimised in terms of the ROS 

responsive component included. Chapter 2 highlighted the different modes of action 
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of both DHR123 and DCF-DA and as a consequence of this work both dyes were 

investigated within the nanosensor platform. Co-localisation of an analyte responsive 

‘signal’ dye and a stable, non-responsive ‘reference’ dye facilitates ratiometric 

measurement of analytes once calibrated and internalised by cells. Although 

ratiometric measurements were not made in the group’s previous study (Henderson et 

al. 2009), the current investigation built upon this work to monitor PMA induced ROS 

generation in NR8282 macrophage cells in a ratiometric manner. The fabrication and 

internalisation of ROS sensitive nanosensors was optimised and proven in rat alveolar 

macrophage cell line NR8383.  Delivery to the intracellular environment was achieved 

using a cell-mediated technique that allowed the cells to phagocytose nanosensors 

introduced to the extracellular environment. The compatibility of ROS sensitive free 

dyes with extracellular ROS sensitive electrodes has already been demonstrated. The 

successful development of a ratiometric intracellular nanosensor for ROS would 

facilitate the characterisation of a fully integrated platform for the long-term semi-

quantitative analysis of ROS generation within the external and internal environments 

of cell models of disease. 
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3.2 Materials and methods 

3.2.1 Cell culture and preparation 

Rat alveolar macrophage cell line NR8383 was cultured in phenol red free Knight’s 

modified Ham’s F12 medium (Ham’s F12K) supplemented with 10% foetal calf serum 

(FCS) and 1% non-essential amino acids (NEAA). Cells were maintained in a 5% CO2 at 

37.5˚C humidified atmosphere and were grown to ~70% confluence before testing. 

Macrophages underwent no more than 6 passages over the course of 

experimentation. 

3.2.2 Reactive oxygen species sensitive nanosensor fabrication 

Nanosensors comprising ROS-sensitive dye DHR123 and stable reference dye 

AlexaFluor568 co-localised within a porous polyacrylamide matrix were fabricated 

using a method adapted from a previously described technique (Clark et al. 1999). An 

organic phase was prepared by doping 42 ml hexane with the surfactants 

sulphododecylsuccinate (SDS) and Brij30 in order to control nanosensor diameter and 

pore size. An aqueous solution of monomers was prepared by dissolving powdered 

acrylamide (3.8 M) and N,N-methylenebisacrylamide (0.5 M) in 2 ml water. DHR123 

and AlexaFluor568 were added to the monomer solution to a concentration of 100 

μgml-1 immediately prior to dispersal within the hexane/surfactant mixture to form a 

reverse phase microemulsion. Whilst under constant stirring, polymerisation was 

initiated by the addition of 15 μl TMED and 30 μl 10% APS solution. Polymerisation was 

continued for at least 2 h.  Hexane was rotovaporated from the emulsion to yield 

nanosensor-containing slurry. Washing in absolute ethanol removed the surfactants 

from the nanosensors that were finally retrieved from suspension using a vacuum 

filtration system in conjunction with 20nm pore-size Whatman anodisc filters. Dry 

nanosensors were stored at -20°C and protected from light by wrapping with 

aluminium foil. This method of fabrication yielded nanosensors with average 

hydrodynamic radii of 18nm (±1nm) in monomodal distribution (Henderson et al. 

2009). 

3.2.3 Nanosensor calibration 

A 1 mgml-1 nanosensor solution was made using 5mM xanthine in PBS. This solution 

was aliquoted in triplicate to a black walled 96-well microplate (Corning, UK). An 
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Infinite M200 fluorimeter (Tecan, UK) was used to make all fluorescence 

measurements form the nanosensors and was used in conjunction with associated 

Magellan control and data analysis software. The samples were treated with XOD in a 

range of concentrations from 0-25 Uml-1 then placed in the fluorimeter for 

measurement using the following settings; DHR123 FI: λex = 488nm, λem= 525nm; 

AlexaFluor568 FI: λex = 578nm, λem= 603nm. 

3.2.4 Cell mediated nanosensor delivery 

During all stages of preparation and internalisation the sensors were protected from 

light-induced dye autoxidation as far as possible by covering containers with 

aluminium foil. A 100 mgml-1 nanosensor solution was prepared in PBS then diluted as 

necessary directly into routine culture flasks of the macrophage cells. Overnight 

incubation ensured that sufficient nanosensors were phagocytosed to allow 

fluorescence measurement. Prior to use in experimentation, the cells were rinsed 

thoroughly in pre-warmed PBS to remove any sensors that remained in the medium. 

3.2.5 MTT cell viability assay 

Macrophage cells were seeded into a clear walled 96-well microplate at 1000 cells per 

well and incubated in routine culture conditions for 3 h to allow cell attachment. 

Samples of cells in triplicate were treated with nanosensors by replacing the medium 

with 5, 10, or 20 mgml-1 nanosensors in culture medium. Negative control samples 

received only fresh medium with no nanosensor exposure. The cells were incubated 

with their respective treatment overnight to ensure an uptake representative of 

standard internalisation procedure to be employed in future work. The following 

morning the medium was aspirated from the cells and was replaced with 5 mgml-1 

MTT solution in PBS. MTT exposure continued for 2 h in routine culture conditions 

before the cells were lysed and any accumulated metabolite solubilised by replacing 

the solution in every well with 100 μl DMSO and agitating the plate on a shaker for 

5 min. The optical density of each well was read using a SpectraMax 180 plate reader. 

The data was expressed as an average percentage of the nanosensor untreated control 

cells. 
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3.2.6 Extracellular amperometric nitric oxide and hydrogen peroxide 

monitoring 

NR8383 macrophage cells were seeded into 3cm diameter plastic cell culture dishes at 

a concentration of ~1x106 cells.ml-1. The medium of half the dishes was doped with 

5 mgml-1 ROS-sensitive nanosensors while the other half did not receive any 

nanosensor treatment. The cells were allowed to phagocytose the nanosensors 

overnight. The following morning, the medium of the dishes was replaced.  A 

commercially available Apollo 4000 free radical analyser (World Precision Instruments, 

USA) was employed to amperometrically detect extracellular H2O2 and NO• flux in 

response to PMA stimulation. The NO• and H2O2 selective electrodes were positioned 

as close to the cells as possible. The recording of current values for both analytes was 

commenced and upon the observation of a stable baseline either 1 or 5 μgml-1 PMA 

was aliquoted directly upon the cells nearest the electrodes. Any changes in current 

were recorded for at least 200 s following PMA addition. This was repeated 3 times 

each for both nanosensor treated and untreated cell populations, after which the peak 

current response for each trace was identified and averaged over the 3 repeated 

challenges. 

3.2.7 Measurement of PMA-induced extracellular ROS flux. 

Cells loaded with nanosensors were seeded into a 24 well plate containing 16mm 

diameter glass coverslips and allowed to attach for at least 3 h. To monitor the cells 

the coverslips were removed from the plate, rinsed and inverted over a drop of PBS 

onto a microscope slide taking care to avoid the formation of air bubbles. Inverting the 

coverslip permitted the use of an oil immersion objective to take close images of the 

cells as necessary. Images representing the individual dyes were acquired separately 

using a Nikon Eclipse 80i Epi-Fluorescence microscope in conjunction with Nikon BR 

image acquisition and analysis software. Excitation of the dyes was achieved using a 

50W Hg lamp in conjunction with relevant filter sets. DHR123 was observed using a 

B-2E/C filter (λex= 465-495 nm, λem= 515-555 nm) while AlexaFluor568 was observed 

using a CY3 HYQ filter (λex= 530-560 nm, λem= 573-648 nm). Minimal exposure times 

were used to reduce the impact of photo-bleaching upon the samples. Some 5 μgml-1 

PMA was added and two images of the cells (one with each filter specified above) were 
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taken immediately after in quick succession to ascertain an initial FI ratio. Image 

acquisition was repeated as every 5 min for 20 min thereafter. 

3.3 Results 

3.3.1 ROS-responsive nanosensor calibration 

Two types of ROS-sensitive nanosensors were fabricated incorporating different ROS 

sensitive dyes, one incorporating DCF-DA (DCF568), the other incorporating DHR123 

(DHR568). The two systems were compared in terms of ROS reporting capability by 

challenging nanosensor solutions at 1 mgml-1 with O2̄ generated as an intermediate 

species in the enzymatic decomposition of xanthine to uric acid by XOD. 

Both dyes exhibited an increase in FI ratio dependent upon XOD concentration 

however the DCF568 nanosensors exhibited a larger background FI ratio compared to 

the DHR568 type. There was also a greater variation of FI ratio within the DCF568 

datasets compared to the DHR568. The FI ratio shifts in response to generated O2̄ 

appeared overall to be larger and more highly resolved in the DHR568 nanosensors 

however the relatively small increase in FI ratio between the 2.5 and 5 Uml-1 

challenges (+0.109) suggested that the nanosensors reached maximum response. 

Figure 3.1: Differential reporting of enzymatically generated O2 ̄ by both DHR568 and DCF568 containing nanosensors. Both types 
of demonstrated FI ratios that were dose dependent on XOD concentration, however the DCF568 nanosensors exhibited a much 
higher baseline FI in the presence of XOD and greater variation of response than the DHR568 nanosensors. Data presented ± SEM, 
n=4. 
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3.3.2 Cell mediated nanosensor delivery optimisation 

NR8383 macrophage cells were incubated overnight with 10 mgml-1 and 20 mgml-1 

concentrations of nanosensors. Nanosensors appeared to be successfully internalised 

via phagocytosis as demonstrated by the images displayed in Figure 3.2. An increase in 

nanosensor concentration resulted in an increase in FI for both dyes proportionally 

meaning the FI ratio was stable between treatment concentrations. This suggested 

that while the concentration of nanosensors within the cell is increased, the 

nanosensors were reporting similar environmental conditions. 

Macrophages incubated with 10 mgml-1 nanosensors were then assessed using 

confocal microscopy to confirm the internalisation of the nanosensors. The images 

shown in Figure 3.3 represented a 5-step Z stack of images taken at 5 μm intervals 

thorough the cells. The nanosensors appeared to be widely distributed throughout the 

cells with bright circular areas representing nanosensors located within an intact 

phagosome. 

Figure 3.2: NR8383 macrophage cells treated with 10 and 20 mgml-1 DHR568 nanosensors observed alongside cells without 
nanosensor treatment. Negligible fluorescence was observed for the negative control cells, whilst and increase in fluorescence 
was associated with increased nanosensor concentration. 
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Figure 3.3: Confocal microscopy was used to confirm the phagocytic internalisation of ROS-sensitive nanosensor with the NR8383 
macrophage cells. The above image represent DHR123 fluorescence (A) AlexaFluor568 fluorescence (B) and a merged image 
demonstrating dye colocalisation. The images were taken as transverse cross sections though the cells using a 5 step Z-stack at 
5 μm intervals. 

3.3.3 Effects of nanosensor loading upon cell viability 

The effects of nanosensor loading upon cell respiration and viability were assessed 

using an MTT assay. An average cellular viability of 96.7% (±10.8%) compared to 

untreated control cells was observed for macrophages incubated with 10 mgml-1 

nanosensors. Incubating cells with 5 mgml-1 nanosensors resulted in an average 

observed viability of 101.2% (±7.9%) vs. controls. Neither 5 nor 10 mgml-1 treatments 

exerted a significant effect upon cell viability. Loading with 20 mgml-1 nanosensors 

however elicited a 14.3% drop in cellular viability (±1.1%). 

Figure 3.4: Assessment of the effects of nanosensor loading upon cellular viability was achieved using an MTT assay. Results are 
expressed as a percentage of untreated control cell viability. Only treatment with 20 mgml-1 resulted in a significant reduction of 
cellular viability (14.3% ±1.1%, p<0.005). The data is presented ±SD, n=6)  
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3.3.4 Effect of nanosensor loading upon extracellular NO and H2O2 flux 

The macrophage ability to produce NO• and H2O2 following nanosensor internalisation 

was assessed using extracellular amperometric analyte specific electrodes. PMA dose-

dependent increase in H2O2 and NO• flux were observed for both nanosensor treated 

and untreated populations. 

NO• flux from cells simulated with 1 μgml-1 PMA generated mean peak currents of 

792pA (±72pA) and 725pA (±68pA) with and without nanosensor preloading 

respectively. Stimulating nanosensor treated and untreated populations of cells with 

5 μgml-1 PMA generated mean peak currents 3.8 and 3.7 times larger than observed 

for stimulation with 1 μgml-1 PMA respectively. 

Like NO• flux, H2O2 flux was not significantly different between nanosensor treated and 

untreated populations. Mean peak current responses of 1871pA (±469pA) and 5150 pA 

(±765pA) were observed from cells that were not treated with nanosensors following 

stimulation with 1 and 5 μgml-1 PMA respectively. Nanosensor loaded cells generated 

mean peak current responses of 1641 pA (±150pA) and 4350 pA (±1387pA) in response 

to stimulation with 1 and 5 μgml-1 PMA respectively. Both H2O2 and NO• were 

observed simultaneously. Nanosensor loading exerted no significant effects upon the 

cells’ capacity to generate either molecule in response to PMA stimulation. 

Figure 3.5: The effects of nanosensor loading upon a cell population’s capability to generate H2O2 and NO• were investigated using 
amperometric extracellular electrodes. Nanosensor loading exerted no significant effects upon the observed peak currents 
generated by H2O2 or NO• flux from cells stimulated with either 1 μgml-1 or 5 μgml-1 PMA. The data is presented ± SD, n=3. 
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3.3.5 Nanosensor reported PMA induced ROS responses 

NR8383 macrophage cells were loaded with ROS sensitive nanosensor via cell-

mediated delivery. One population of cells was treated with 5 μgml-1 whilst the other 

received a PBS; both were monitored for 20 min post-addition. Measurements for 

both DHR123 and AlexaFluor568 FI were recorded to allow calculation of normalised 

ratiometric ROS response values. Cells treated with PMA exhibited a shift in FI ratio of 

+0.449 (±0.125), which was sustained over the remaining time-course of monitoring. 

The cells that received PBS in place of PMA did not exhibit a ROS response, and 

maintained a stable FI ratio of 0.422 (±0.012) over the entire time-course of 

monitoring. 

 

Figure 3.6: Nanosensor loaded NR8383 macrophage cells were monitored following treatment with either 10 μgml-1 PMA or PBS. 
Cells that received PMA stimulation displayed a large increase in FI ratio. Conversely, cells that received no PMA treatment 
maintained a stable baseline response for the entire course of experimentation. The data is presented ±SEM, n=3. *** denotes 
p<0.005. 
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3.4 Discussion 

In Chapter 2 of this thesis, the inherent difficulties of using native dyes to investigate 

real-time changes in intracellular ROS production were discussed. In this study, both 

DHR123 and DCF-DA were investigated to identify their potential to report ROS 

changes from within a polyacrylamide nanosensor matrix. Both dyes responded to O2̄ 

and H2O2 generated through the enzymatic decomposition of xanthine by XOD. Their 

respective FI vales were monitored in conjunction with that of a stable reference dye 

co-immobilised within the nanosensor matrix. This ratiometric monitoring 

compensated for any variation that may have been caused by slight nanosensor 

concentration differences, temperature or photobleaching. DCF-DA nanosensors 

exhibited higher baseline FI ratio values and greater result deviation in response to 

enzymatically generated ROS than DHR123 (see Figure 3.1), and as such the latter was 

chosen to be the sensing element in the ROS sensitive nanosensors fabricated for this 

study. 

The ROS-sensitive nanosensors were delivered to the intracellular environment of 

macrophage cells through cell-mediated uptake. This mode of nanosensor deliver has 

been previously reported (Henderson et al, 2009) however due to the low 

concentration of nanosensors used by Henderson and co-workers, the consistent 

monitoring of reference AlexaFluor568 was hindered and ratiometric measurements 

could not be made from the internalised nanosensors. A balance was required 

between nanosensor observability, cell viability and nanosensor economy. Nanosensor 

fabrication is a batch-based process, with each batch theoretically capable of 

producing ~700mg nanosensors. During this study, a single batch produced 

~550-620mg of sensors. Seal leaks, oxygen intrusion, improper argon purging and 

incomplete polymerisation are all inhibitory factors to a maximum sensor yield. To 

enhance the observation of the reference dye, a greater concentration of nanosensors 

was incubated with the cells during the loading stage to increase uptake (10 mgml-1 

compared with 5 mgml-1). Incubating cells with 10 mgml-1 nanosensors allowed 

approximately 11 cell treatments with a single batch of sensors alongside repeated 

calibrations. Treating cells with a greater concentration would inherently reduce the 

number of treatments each batch could be used for, reducing the confidence in the 

results obtained using each batch and as result could not be readily corroborated 

through subsequent repetition with nanosensors from the same fabrication batch. The 
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results presented in section 3.3.2 showed that the uptake of nanosensors at 10 mgml-1 

conferred stable measureable fluorescence from the reference dye co-localised with 

the ROS-sensitive dye. Incubation with 20 mgml-1 nanosensors did increase the 

observed reference fluorescence however as incubation with a lower concentration 

resulted in observable nanosensor uptake, the use of a higher concentration during 

routine investigation would have been excessive and wasteful. It was also observed 

that incubation with 20 mgml-1 nanosensors caused a significant drop in cell viability 

(see Figure 3.4). Coupland and co-workers also reported this increase in cell death 

when delivering pH nanosensors to non-phagocytic mesenchymal stem cells (Coupland 

et al. 2008). Although Coupland and co-workers conjugated the HIV-1 derived ‘Tat’ cell 

penetrating peptide to the nanosensors to induce internalisation, it was acknowledged 

within the report that cell loading limits exist where the volume of nanosensors 

delivered to the cells caused unsupportable levels of perturbation, leading to cell 

death. This could explain the reduction in viability described by the MTT assays when a 

comparatively highly concentrated 20 mgml-1 nanosensor solution is employed (see 

Figure 3.4) and again reinforces the decision to routinely use a 10 mgml-1 nanosensor 

solution during macrophage delivery over the course of this study. 

Although the results of the cell viability assay demonstrated no significant changes in 

cell viability when exposed to up to 10 mgml-1 nanosensors there was still the 

possibility that internalisation of foreign particulate may affect normal cell processes. 

To investigate this and to also assess any variation in ROS production in the presence 

of nanosensors, the extracellular flux of NO• and H2O2 were monitored in both 

nanosensor treated and untreated cell populations in response to PMA stimulation. 

The flux elicited from cells did not appear to be dependent upon the loading of 

nanosensors. H2O2 and NO•-generated mean peak current magnitude was shown to be 

dependent upon PMA dose, but current responses of similar magnitude were 

generated in both the presence and absence of nanosensors. This added confidence 

that normal cellular functions are not impaired or affected by the internalisation of 

nanosensors. 

Once internalised, the nanosensors recorded the PMA-induced intracellular generation 

of ROS in real time. A significant increase in FI ratio was observed following 5 min 

exposure (see Figure 3.6). This was sustained over the course of observation, and is in 



Chapter 3: Nanosensor development 

 62 

line with the increase in ROS generation observed following PMA stimulation 

previously reported (Chang et al. 2005a; Chang et al. 2005b; Manning et al. 1998). The 

change in FI ratio following stimulation may have been in response to O2 ̄ generation 

induced by the activation of protein kinase C (PKC) and subsequent NADPH activity. 

This is initiated by a release of diacylglycerol and inositol trisphosphate by PKC 

following receptor mediated stimulation, in this study by PMA, causing 

phosphorylation of cytosolic components of NADPH oxidase, particularly p47phox 

(Giron-Calle and Forman 2000). Generation of O2̄ will continue as long as NADPH 

oxidase remains in a phosphorylated state. The sustained increase in nanosensor FI 

ratio in the stimulated cells suggests that O2̄ generation is prolonged following 

treatment. This corroborated data reported regarding the selective extracellular 

monitoring of O2̄ using an amperometric technique (Chang et al, 2005b) where 

extracellular O2̄ flux first generated a large initial peak in current followed by a second 

phase progressive increase in O2̄ over a longer time period. This could be 

representative of a sudden O2̄ burst to the extracellular space followed by the gradual 

flux of O2̄ through the plasma membrane. Cells with internalised nanosensors but no 

PMA stimulation reported no change in FI ratio over the course of experimentation 

providing a baseline ratio representing normal cell oxidative state. Photobleaching was 

not an issue as exemplified by the stable measurements collected from the control 

cells over the course of experimentation. 

In terms of the ultimate goal of integration of optical nanosensor sensing technology 

with amperometric measurements it has been demonstrated in this study that 

internalised nanosensors do not physically impede current measurements made using 

extracellular H2O2 and NO• selective electrodes. This adds further confidence that the 

two sensing techniques are highly compatible and that full integration can be 

achieved. As a commercially available free radical analyser was employed to monitor 

extracellular flux, it was not possible to use the O2 ̄ selective gold electrode discussed in 

Chapter 1 with the system. Prior to integrating this technology with the nanosensors it 

would be important to assess the compatibility of the gold electrodes with the optical 

measurements to ensure no technique cross-talk or interference occurs.  A recent 

study regarding the simultaneous measurement of intra- and extracellular ROS flux 

using free dyes and the aforementioned O2̄ selective electrode system did not report 

any difficulties or anomalous effects whilst integrating the two techniques (Chang et al, 
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2005a). As the nanosensors will be completely internalised there should be no 

opportunity for interference with the electrodes. 

This study represents the first ratiometric observations of real-time intracellular ROS 

generation using polyacrylamide ‘PEBBLE’ nanosensors. Although only very preliminary 

data has been presented, ample proof of concept is demonstrated. It must be 

observed that all data recorded from internalised nanosensors in this study was 

representative of nanosensors trapped within phagosomes. It is possible that some 

phagosomes may have lysed within the cell and as such the nanosensors were free 

within the cytoplasm; the images Figure 3.3 do appear to show a good spread of co-

localised fluorescence from both DHR123 and AleaFluor568 throughout the cell. There 

are, however, many well defined circular areas of bright fluorescence that most likely 

represent phagosome-bound nanosensors. Investigation regarding the internalisation 

of nanosensors within non-phagocytic cells would be the next iterative stage of 

development as phagocytosis is not a natural feature of most clinically relevant cell 

models of disease. By establishing a reliable and non-cytotoxic method of delivering 

the nanosensors to the cytoplasm of non-phagocytic cells the investigation of the role 

of ROS in a variety of cell model could be expanded. Many methods have been 

reported with varying levels of success, for example bead loading, biolistic ‘GeneGun’ 

bombardment, lipofection and cell penetrating protein conjugation (Coupland et al. 

2009; Webster et al. 2005; Webster et al. 2007; Xu et al. 2001). 
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Chapter 4. Application of pH-sensitive nanosensors to primary cell 

models of Chronic Fatigue Syndrome 

4.1 Introduction 

This study aimed to investigate the capacity of pH-sensitive nanosensors to report 

changes in pHi dynamics within myoblasts and was carried out in collaboration with Dr 

Audrey Brown from the Diabetes Research Group at Newcastle University. Dr Brown 

supplied the primary myoblasts used throughout the investigation. CFS is a complex 

and debilitating disease state that is poorly understood. There is currently much 

debate as to whether the CFS manifests in patients through purely psychological 

means or whether there is an underlying physiological basis for the disorder. 

Preliminary work proposing that muscle acidosis during exercise and subsequent poor 

recovery may be a factor in the manifestation of CFS has recently been reported (Jones 

et al. 2010). Acidosis is a common feature of many metabolic disorders, including 

Leigh’s disease, dystonia and Diabetes mellitus (Randolph et al. 2011; Robergs et al. 

2004; Robinson 2006). Reduced intramuscular pH recovery time and reduced proton 

efflux in CFS patients has been reported (Jones et al. 2010). This could be related to 

modified functionality of the lactic acid metabolic pathway in CFS state myoblasts. 

Pyruvate dehydrogenase complex (PDC) is a 3-protein complex responsible for the 

conversion of pyruvate to acetyl coenzyme A during aerobic respiration. When 

functionality of this complex is reduced, pyruvate generated by glycolysis accumulates 

within cells and is metabolised anaerobically to lactic acid, the accumulation of which, 

due to inefficient aerobic respiration, causes a drop in pH and concurrent deterioration 

of muscle functionality. In brief, dichloroacetate (DCA) is a pyruvate analogue that 

promotes the clearing of lactic acid in cells by inhibiting the pyruvate dehydrogenase 

kinase (PDK) responsible for inactivating PDC (Fouque et al. 2003). By promoting the 

active state of PDC kinase, intracellularly accumulated lactic acid can be converted to 

pyruvate and metabolised aerobically assuming adequate ventilation and perfusion, 

resulting in a return to physiologically normal pH. 

To investigate the possible acidosis-induced pathophysiological rationale of CFS 

manifestation, cells were cultured from donor muscle biopsies taken from the Vastus 

lateralis, the position of which is demonstrated by Figure 4.1. The cells were 

subsequently cultured and divided into two subpopulations.  One subpopulation 
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represented ‘disease state’ patients that had previously been diagnosed with CFS (‘CFS 

cells’). The other subpopulation represented patients who did not present with any 

symptoms of any metabolic disorder (‘non-CFS cells’). The Vastus lateralis was chosen 

as the point of biopsy due to the ease of access and as previously acquired control 

muscle samples were harvested from this region. 

Figure 4.1: An image adapted from Grey’s Anatomy showing the position of the Vastus lateralis. This muscle forms the largest part 
of the Quadriceps femoralis. 

Initial investigations were carried out using immortalised primary myoblasts as they 

were readily available in large numbers. These cells were also harvested from the 

Vastus lateralus of an asymptomatic patient but were transfected with the 

temperature-dependant SV40 large T antigen gene. This gene conferred an indefinite 

proliferative ability to the cells when cultured at 33̊ C. When cultured at 37̊ C like all 

other cells in this investigation proliferation was suspended.  

The nanosensor platform confers many benefits over the use of free FITC, two of the 

most prominent being the ease of nanosensor calibration compared to free dye, which 

is prone to cells leaching and uneven loading, and increased selectivity of FITC for pH 

by preventing interactions with the intracellular proteins by size exclusion. The effects 

of intracellular environment upon un-encapsulated internalised free dye can make 

obtaining reliable data extremely difficult; for example, reactions with the sulphydryl 
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and amine groups of endogenous proteins can lead to dye quenching (Graber et al. 

1986). Preventing unspecific interactions through entrapment within a polymer matrix 

has been reported to improve the responses of analyte-responsive fluorescent dyes by 

preventing unspecific oxidation (Srivastava and Krishnamoorthy 1997). Once 

internalised, the nanosensors make up approximately one part per billion of the cell 

volume (Buck et al. 2004) allowing cell monitoring with a minimum of cell perturbation 

in comparison with other pHi techniques such as opto-chemical techniques using 

matrix functionalised fibre optic probes or intracellular microelectrodes (Coupland et 

al. 2009; Schweining 1999). Both of these techniques require penetration of the cell 

membrane in order to make intracellular measurements as well as a physical 

connection to an optical or electrical detecting device. Only one cell can be monitored 

at any time with microelectrodes or optodes. Monitoring a whole population of cells 

simultaneously would require a vast number of devices, one for each cell monitored. A 

maximum of 3 or 4 electrodes could be used on one cell before membrane integrity 

was completely compromised, meaning the spatial resolution of measurement within 

single cells is limited (Schweining 1999). The pH-responsive nanosensors offer the 

cellular distribution properties of a free dye due to their negligible size in comparison 

to a mammalian cell, whilst also conferring the dye protection and interference 

prevention benefits of an optode matrix. Nanosensors also avoid the encumbrances of 

a physical connection with the fluorescence detecting device, making the platform 

highly compatible with other cell monitoring techniques for simultaneous 

measurement.  

In this study, the nanosensor technology previously discussed in Chapter 3 was 

adapted to confer pH sensitivity in place of ROS-sensitivity. A lipofection-based 

internalisation technique was used to deliver a nanosensor cargo to the intracellular 

environment of both CFS and non-CFS primary myoblasts. Using confocal microscopy it 

was possible to assess the success of the internalisation technique and confirm the 

intracellular position of the delivered nanosensors. Ratiometric measurements were 

acquired from the nanosensor-doped cells following treatment with the PDH kinase 

inhibitor DCA, allowing differential effects in CFS and non CFS cells to be observed.  
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4.2 Materials and methods 

4.2.1 Cell culture and preparation 

Both diseased and non-diseased subpopulations of primary myoblasts were routinely 

cultured using antibiotic free Ham’s F10 medium supplemented with 20% FCS and 2% 

Chick embryo extract. (PAA, UK). Cells were maintained in a humidified environment 

containing 5% (v/v) CO2 at 37˚C throughout. Cells were grown to ~80% confluence and 

did not exceed passage 9 during the course of experimentation. Transformed primary 

myoblasts were cultured using the same medium and environment however the 

temperature of the incubator was set to 35˚C to allow cell proliferation.  

4.2.2 pH-sensitive nanosensor fabrication 

Nanosensors comprising pH sensitive dye FITC and stable reference dye AlexaFluor568 

co-localised within a porous polyacrylamide matrix were fabricated using a slightly 

modified method of that described in Chapter 3. An organic phase was prepared by 

doping 42 ml hexane with SDS and Brij30 to control nanosensor pore size. An aqueous 

solution of monomers was prepared by dissolving powdered acrylamide (3.8 M) and 

N,N-methylenebisacrylamide (0.5 M) in 2 ml water. FITC and AlexaFluor568 were 

added to the monomer solution to a concentration of 100 μgml-1 immediately prior to 

dispersal within the hexane/surfactant mixture to form a reverse phase micro-

emulsion. Whilst under constant stirring, polymerisation was initiated by the addition 

of 15 μl TMED and 30 μl 10% APS solution. Polymerisation was continued for at least 2 

h.  Hexane was rotovaporated from the emulsion to yield a nanosensor-containing 

slurry. Surfactants were removed by washing in absolute ethanol. Nanosensors were 

finally retrieved from suspension using a vacuum filtration system in conjunction with 

20nm pore-size Whatman anodisc filters. Dry sensors were stored at -20°C and 

protected from light by wrapping with aluminium foil.  

4.2.3 Lipofection-mediated nanosensor delivery 

During all stages of preparation and internalisation the sensors were protected from 

light-induced dye autoxidation as far as possible by covering containers with 

aluminium foil. Sensor solutions of 100 mgml-1 were prepared in PBS then used to 

make a 10x concentration mixture of nanosensors and Lipofectamine 2000 
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transfection reagent (Invitrogen, UK) in a foil-wrapped Eppendorf tube. This mixture 

was allowed to complex for 15 min at room temperature prior to use. Meanwhile, cells 

at 80% confluence in routine culture flasks were washed twice with pre-warmed PBS 

and covered with growth medium containing no supplements. The 

nanosensor/Lipofectamine 2000 complex was diluted 1:10 into the flasks and allowed 

to incubate overnight. The following morning, cells were trypsinised, washed and 

seeded into test plates with routine culture medium ready for experimentation. 

4.2.4 Preparation for confocal microscopy 

The nanosensor-doped cells were seeded into 24-well plates containing 16 mm 

diameter glass coverslips at a density of 1000 cells per well. Cells were incubated in 

routine culture medium for 5 h to allow attachment, after which the medium was 

replaced with 4% paraformaldehyde to fix the cells. The cells were then thoroughly 

rinsed after 15 min incubation and stored in PBS prior to imaging. 

4.2.5 Fluorimetric measurement setup 

FI was measured using a Tecan Infinite200 fluorimeter and data was acquired using the 

associated Magellan software. For pH nanosensors, standard settings for FITC (λex = 

495nm λem = 520nm) and for AlexaFluor568 (λex = 578nm, λem = 603nm) were used. The 

gain was set to a value of 70 for all experiments unless otherwise stated. 

4.2.6 Dichloroacetate treatment regime 

Prior to seeding into a black walled 96 well plate, nanosensors were delivered into the 

cells by incubating with 10 mgml-1 pH-sensitive nanosensor complex made with 0.03% 

Lipofectamine 2000 transfection reagent in unmodified Ham’s F10 medium for 

overnight, after which they were trypsinised, washed and seeded into at a density of 

100 cells per well. The following morning, treatment was initiated by replacing the 

medium with DCA-doped medium at various concentrations from 100mM to 16μM. pH 

was ascertained by fluorimetrically interrogating the plates in the Infinite M200 

fluorimeter as described in section 4.2.5. The resulting ratio of signal to reference 

fluorescence ratio was converted to a pH reading using the linear regression analysis of 

a previously generated nanosensor calibration curve. Plates were interrogated 

immediately after treatment then once every 30-60 min that the DCA treatment 

remained on the cells (5-6 h). 
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4.3 Results 

4.3.1 Nanosensor delivery optimisation and confirmation 

Confocal microscopy was used to confirm the success of both cell mediated and 

lipofection intracellular delivery techniques. An increase in Lipofectamine 2000 

concentration resulted in an increase in the detachment of cells from the cover slips, 

meaning there were fewer cells available for observation. Incubation with 0.03% 

Lipofectamine 2000 gave the highest density of nanosensors within cells and displayed 

the highest retention of cells on the cover slips examined. The 0.05% Lipofectamine 

2000 treated samples displayed good internalisation properties however there was 

substantial detachment of cells from the cover slip. Lipofectamine 2000 (0.1%) 

displayed very low sensor uptake and a very high loss of cells.  

Figure 4.2: I5B1 immortalised myoblasts were treated with 10 mgml-1 pH-sensitive nanosensor complexes made with 0.1% 
Lipofectamine 2000.  Images represent a 5-step Z stack of images taken at 5 μm intervals. As can be observed from the bright-field 
image (C) here was a low population density of cells on the cover slip. The merged images of FITC fluorescence (A), AlexaFluor568 
fluorescence (B) and the bright-field image show that nanosensors were internalised within the remaining cells. 
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Figure 4.3: I5B1 immortalised myoblasts were treated with 10 mgml-1 pH-sensitive nanosensor complexes made with 0.05% 
Lipofectamine 2000. Images represent a 5-step Z stack of images taken at 5 μm intervals. As can be observed from the bright-field 
image (B) the cell population of the cover slip was sparse. Images of FITC fluorescence can be observed in image A and a merged 
image confirming FITC fluorescence only occurs within the confines of the cell membranes is shown in image C. 

Figure 4.4: I5B1 immortalised myoblasts were treated with 5 mgml-1 pH-sensitive nanosensor complexes made with 0.05% 
Lipofectamine 2000. Images represent a 5-step Z stack of images taken at 5 μm intervals. As can be observed from the bright-field 
image (B) the cell population of the cover slip was sparse. Images of FITC fluorescence can be observed in image A and a merged 
image confirming FITC fluorescence only occurs within the confines of the cell membranes is shown in image C.  
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To confirm that the nanosensor internalisation protocol was transferable to non-

immortalised primary myoblasts, a sample of CFS representative cells (CF10) were 

treated with 10 mgml-1 nanosensor complex made with 0.03% Lipofectamine 2000. 

Both FITC and AlexaFluor568 fluorescence was observed within the cells. Fluorescence 

was distributed throughout the whole cells with no membrane association. 

Figure 4.5: Confocal imaging of a discreet Z-slice though a non-CFS muscle cell gives conclusive information regarding the location 
of nanosensors within the cell.  A fair distribution of nanosensors throughout the cell can be observed. FITC fluorescence (A) 
Alexafluor568 fluorescence (B) bright-field (C) and merged (D) images confirm the co-localisation of the two dyes within the cell, 
verifying the successful delivery of nanosensors to the intracellular environment. 

4.3.2 pH-sensitive nanosensor calibration 

Nanosensors at 1 mgml-1 were dissolved in 100 mM phosphate buffer over a range of 

different pH values. FI measurements for both FITC and AlexaFluor568 were acquired 

and average FI ratios for each sample group were calculated and averaged. It was 

observed that an increase in mean FI ratio was linearly dependent upon the pH of the 

buffer solution (y=2.2109x-10.636, r=0.996, n=5). The linear regression of the 

calibration curve was then employed to calculate pHi values from the FI ratios 

collected from nanosensor-doped cells. The data is presented in Figure 4.6.  
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Figure 4.6: Calibration curve of pH sensitive nanosensors with 100 mM phosphate buffer of varying pH. The ratio of FITC to 
AlexaFluor568 fluorescence was shown to be linearly dependent on pH within physiological range (y=2.2109x-10.636). The data is 
presented ±SEM, n=4, r=0.996 

4.3.3 Intracellular monitoring using internalised pH-responsive nanosensors 

pH responsive nanosensors were delivered within cultured primary myoblasts from 

both CFS and non-CFS subpopulations. The cells were treated with DCA-doped culture 

medium at 16 μM, and any changes in pHi were monitored for 90 minutes thereafter. 

As shown in Figure 4.7, non-CFS cells did not show a significant change in pHi following 

treatment with DCA, with both treated and untreated cells maintaining a pHi of 6.54 

(SD=0.0947). There was a significant difference in pHi between DCA treated and 

untreated CFS cells, with an average difference of +0.77 pH units (SD=0.0177, 

p<0.0005). Untreated CFS cells displayed a pHi that was significantly lower than that 

measured in non-CFS cells (p<0.0005), while treated cells demonstrated a pHi value 

higher than any observed in non-CFS cells (p<0.005). 

The investigation was repeated to expand the range of DCA concentrations tested to 

investigate whether a dose-dependent effect could be observed. Samples of both CFS 

and non-CFS cells were treated with culture medium doped with 0-40 μM DCA. FI ratio 

values were acquired from the nanosensors as described in the materials and methods 

section of this chapter over a period of 3 hr, then were converted to pH values using 

the previously established calibration curve (see Figure 4.6) and plotted as a function 

of time (data shown in Figures 4.8 and 4.9 for CFS and non-CFS cells respectively. Data 

collected from CFS cells demonstrated significant changes in pHi between the different 
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treatment groups. CFS cells treated with 20 μM DCA exhibited an average difference of 

0.38 pH units at each time point vs. untreated CFS cells. The 10 and 40 μM treatment 

groups demonstrated significant difference from the control cells (p<0.0005) however 

they show no significant difference from each other. The non-CFS cells however 

showed no significant pH changes in response to DCA. pH values for each DCA 

treatment group show standard deviation of less than 0.09 pH units at each time point. 

Data from both the CFS and non-CFS cells lines was combined in Figure 4.10 to aid 

comparison between the two cell types. It is clear that the untreated CFS cells are 

much lower in pHi than the non-CFS cells. It is interesting however that CFS cells 

treated with 20 μM DCA exhibited pHi values that are not significantly different from 

the values calculated from the non-CFS cells. This suggests that treatment with DCA is 

capable of boosting the pHi 

 

Figure 4.7: Cultured primary muscle cell lines CF01 (CFS cells) and PO13 (non-CFS cells) were treated with DCA at 16µM. No 
significant changes in pH were observed between treated and untreated populations of control PO13 myoblasts. Conversely, DCA 
boosted the pH of disease state CF01 cells beyond the baseline level of normal myoblasts while untreated disease state cells 
remained at a significantly lower pH (the data is presented ±SEM, n=4, *** denotes p< 0.005). 

 

 

*** 

*** 
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Figure 4.8: Primary myoblasts cultured from a biopsy of a patient diagnosed with CFS were doped with pH-responsive nanosensors 
and treated with various concentrations of the PDHK inhibitor DCA ranging from 0-40 μM (the data is presented ±SEM, n=4. *** 
denotes p<0.0005). 

 

Figure 4.9: Primary myoblasts cultured from asymptomatic muscle tissue were doped with pH-responsive nanosensors and 
treated with various concentrations of the PDHK inhibitor DCA ranging from 0-40 μM. No significant differences were observed 
between any of the data sets (The data is presented ± SEM, n=4).  

 

*** 

*** 
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Figure 4.10: Data from Figures 4.8 and 4.9 are combined here to allow comparison. For ease of visualisation, error bars have been 
omitted. Data collected from the cells demonstrated that CFS cells treated with 20 μM DCA exhibited an increased pH that 
demonstrated no significant difference from the non-CFS cells. 
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4.4 Discussion 

Lactic acidosis is a dangerous and potentially fatal condition associated with many 

metabolic disorders. Homeostatic control of muscular pHi is tightly regulated and is 

effectively buffered by bicarbonate and endogenous proteins. Disruption of proton 

efflux from cells or the metabolic pathways governing pyruvate metabolism inevitably 

have knock on effects upon the endogenous acidotic state. Monitoring pHi in vivo is 

can be achieved using microelectrodes (Trenholm and Baldridge 2010), magnetic 

reesonense spectroscopy (MRS) or as more recently demonstrated through functional 

magnetic resonance spectroscopy (fMRI) (Jones et al, 2010). All three of these 

techniques present their own set of challenges when working with cultured cells, with 

microelectrodes requiring an incredibly high level of skill and dexterity to employ with 

accuracy while MRS and fMRI techniques are both expensive and simply cannot be 

transferred to in vitro investigation.  In this study, the pHi dynamics of both CFS and 

non-CFS cells were successfully assessed using pH nanosensors fabricated using a 

modification of the process described in Chapter 3. pH sensitivity was conferred by 

substituting FITC for DHR123 as the signal dye embedded alongside AlexaFluor568 

within the polyacrylamide nanosensor matrix. Prior to internalisation within cells, 

nanosensors were calibrated using a range of pH-varied phosphate buffers to ensure a 

ratiometric measurement relative to pH could be made. 

The pH-responsive nanosensors were successfully delivered to the intracellular 

environment of primary myoblasts. Lipofectamine 2000 was explored as a potential 

nanosensor cargo delivery vector due to its successful routine use in conjunction with 

the myoblasts as a transfection reagent in knockdown studies. Transfection reagents 

have been reported as potential delivery tools in recent literature however with 

varying success (Clark et al. 1999b; Coupland et al. 2008). Clarke and co-workers 

reported that the use of Escort4 transfection reagent used to deliver Ca2+-sensitive 

nanosensors to mouse blastocysts resulted in the almost exclusive membrane 

association of the nanosensors with the cell membrane. This was not observed with 

the myoblasts, as shown in Figure 4.5, the nanosensors appeared to be distributed 

throughout the whole cell, with the exception of the nucleus. It is possible that the 

cells with the best nanosensor internalisation properties were also the cells that 

sustained most damage to the extracellular matrix attaching the cells to the cover slip 

in both the 0.05% and 0.1% challenges. Other methods of delivery that have previously 
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been investigated include GeneGun, Tat-mediated endocytosis and pico-injection 

(Clark et al. 1999a). Due to limitations on resources and time, the investigation of 

these internalisation techniques was beyond the scope of the study. Pico-injection is 

an invasive technique that involves physical perturbation of the cell membrane to 

deliver sensor to the cytoplasm. As each cell must be individually tethered and 

injected, the technique is not only potentially damaging to the cells but very labour 

intensive. Genegun ‘biolistic’ delivery has shown promise as an internalisation method 

resulting in an even spread of nanosensors within the cells. The technique requires 

optimisation between cell lines and as it has not been investigated in cultured 

myoblast cells, the success rate to population loss ratio following delivery is currently 

unknown. Optimisation would have to be carried out on immortalised myoblasts 

primarily as culture pressure on the primary myoblasts may be too high to 

accommodate the optimisation process. Tat-mediated endocytosis of the nanosensors 

requires amine functionalisation of the nanosensor matrix to provide functional groups 

for Tat conjugation. It has been reported that following internalisation the 

nanosensors remain membrane bound within a lysosome and are not free within the 

cytoplasm (Coupland et al. 2008). By co-loading cells with both Tat-conjugated 

nanosensors and the commercially available dye Lysotracker, Coupland and coworkers 

observed that the intracellular vesicles formed during sensor internalisation remained 

intact over the course of measurement.   

The use of pH-sensitive nanosensors to quantify pHi has been previously reported, 

however as previously mentioned the measurements achieved suggested that the 

nanosensors were internalised within lysosomes (Coupland et al, 2008; Coupland et al. 

2009). In this study the measurements achieved seem representative of the general 

intracellular environment. This could be corroborated by simultaneously using an 

alternative technique to confirm the pHi, however as previously discussed pHi 

measurement techniques can be difficult to employ, destructive to the cells and prone 

to inaccuracy. True pH-sensitive microelectrodes have been in use since first described 

in 1974 by R.C. Thomas (Thomas 1974). The electrode comprised recessed pH-sensitive 

glass encased within insulating glass in such a way that only 1-2 μm of the electrodes 

tip needed to be placed within a cell to make measurements. Such microelectrodes 

remain in use now by researchers with the required level of skill and dexterity to 

manufacture such fine and delicate electrodes (Trenholm and Baldridge 2010). Due to 
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relatively slow response times (~77 ± 15 s (Willoughby et al. 1998)) and manufacturing 

difficulties liquid ion exchange microelectrodes were developed with tips less than 1 

μm in diameter and subsequently much faster response times (Ammann 1986; Khuri et 

al. 1974). Both of these techniques however require physical and sustained 

penetration of the cell membrane to make a measurement. As measurements 

recorded from the pH-sensitive electrode are a summation of both pHi and membrane 

potential, the membrane potential must also be quantified simultaneously with a 

separate electrode (Schweining et al. 1999). This can require an additional cell 

penetrating electrode to be used, increasing the risk of significant cell perturbation and 

cytoplasm ‘leaks’. Although an accurate and continuous monitoring system, the 

microelectrodes require much practise and skill to employ successfully. The relatively 

frequent failure membrane potential monitoring also renders the pHi measurements 

achieved inaccurate following subtraction. 

In vivo pH measurement using fMRI was built on the theory that inorganic phosphate  

(Pi) and phosphocreatine (pCr) display differential spectral resonances depending on 

the amount of protonation that occurs within the cells. This is known as chemical shift 

and is related to the pH surrounding the molecules or indeed, within the cells. The 

amount of chemical shift observed in pCR and Pi peaks measured using a magnetic 

resonance spectroscopy (MRS) technique, (such as nuclear magnetic resonance (NMR) 

or fMRI), can be used to calculate the intracellular pH (Madden et al, 1989). 

Unfortunately, the prohibitively high cost of fMRI analysis renders the technique 

redundant for in vitro investigations and the small mass of cultured cells means that 

fMRI cannot be practically employed.  Recent advances regarding ‘in-cell NMR’ 

however may well provide a reliable albeit highly specialised and expensive method for 

intracellular pH measurement (Serber and Dötsch, 2001). 

The pHi values reported by the nanosensors appear to be slightly lower than previously 

reported, ranging from 6.5 – 7 in non-CFS cells, as opposed to 7 – 7.4 as previously 

described by other methods (Jones et al. 2010; Juel 2008). The Jones et al study 

however is concerned with monitoring in vivo intramuscular pHi using a fMRI based 

technique. When measuring cultured cells, the extracellular environment is very static, 

with neither active perfusion to carry away effluxed protons nor the high buffering 

capacity of blood plasma or interstitial fluid to aid homeostatic control. It is possible 
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that this lack of proton clearing worked to keep the pHi values observed artificially low. 

In Figures 4.8 and 4.9 a general, if not significant, upwards trend was observed for pH 

measurements from all treatment groups, including the controls. This could have been 

brought about simply by refreshing the culture medium at the beginning of the 

experiment, clearing effluxed protons that had accumulated since the previous culture 

medium change. Steps to combat this issue could be taken though the integration of 

the cell testing platform with a simple continuous microfluidic perfusion system that 

would clear spent medium and reduce the risk of static cell acidosis as a consequence 

of culture technique.  

The fact that pH changes following treatment of CFS cells with DCA were observed 

suggests that in the culture tested there may be some malfunction of normal pyruvate 

metabolism. Considering that DCA prevents the phosphorylation of PDC though 

inhibition of PDH kinase, increasing the turnover of PDC as a consequence, the issue 

may lie in reduced functionality of PDH within PDC, or over-activity of PDH kinase. Both 

of these conditions would lead to reduced pyruvate metabolism and an accumulation 

of lactic acid within the affected cells. 

In summary, ratiometric pH-sensitive nanosensors were readily internalised by the 

cells using a simple, minimally destructive and relatively cost effective technique, 

offering a facile and minimally invasive alternative to microelectrodes. It would be 

useful however to compare the pHi measurements made using the nanosensors with 

those made using a pHi microelectrode from the primary myoblasts used in this study. 

This would give the unique opportunity to corroborate and potentially intracellularly 

calibrate the pH nanosensors. The optical and electrical systems are highly compatible, 

there is scope to monitor pHi with both a microelectrode and nanosensors 

simultaneously providing the two techniques are spatially compatible. 
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Chapter 5. Direct, real-time monitoring of superoxide generation in 

isolated mitochondria 

JR Henderson, H Swalwell, SJ Boulton, P Manning, CJ McNeil, MA Birch-Machin 

Free Radical Research, September 2009; 43(9): 1-7 

5.1 Introduction 

The primary function of mitochondria is to carry out oxidative phosphorylation. 

Complexes I-IV of the mitochondrial electron transport chain (mETC) transfer electrons 

from reduced substrates to oxygen, coupled to the creation of a proton gradient across 

the inner mitochondrial membrane (Chance and Mela 1966a, b, c). It is well 

established that the mETC is the major cellular generator of superoxide (O2 ̄) as a result 

of leakage of single electrons, which reduce O2 to form O2̄ (Murphy 2009). Superoxide 

is the proximal reactive oxygen species (ROS) generated in mitochondria (Beckman and 

Ames 1998) and it can be readily converted into other ROS, as summarised in Figure 

4.1. Reactive oxygen species are involved in a number of cellular processes under 

normal physiological conditions, such as cell signalling (Thannickal and Fanburg 2000). 

However, when cellular production of ROS exceeds the antioxidant capacity, O2 ̄ and 

other ROS become a major cause of cellular oxidative damage. This ‘oxidative stress’ 

causes damage to macromolecules such as lipids, proteins and DNA (Orrenius et al. 

2007) and it is a mechanism that has significance in many degenerative diseases as 

well as ageing (Brand et al. 2004). ROS within cells are known to act as secondary 

messengers in intracellular signalling cascades, which can induce and maintain the 

oncogenic phenotype of cancer cells (Cheeseman, 1993). Redox imbalances have been 

found to be present in many cancer cells compared with normal cells (Valko et al. 

2006). Thus, redox imbalance may be related to oncogenic stimulation. There is 

evidence that most of the O2̄ generated by the mETC originates from Complexes I and 

III (Raha and Robinson 2000), although the relative contribution of these Complexes to 

O2 ̄ production and the possible involvement of other Complexes remains to be fully 

elucidated (Murphy 2009). Since O2̄ is involved in many cellular processes both 

physiological and pathophysiological, direct, real-time monitoring of its production 

offers greater insight into the temporal and spatial aspects of O2̄ generation in 

biological systems.  A number of methods have been employed to monitor O2 ̄ 

production in vitro including fluorescence (Chang et al. 2005b; Henderson and 
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Chappell 1993) and electrochemical techniques (Cooper et al. 1993; Manning et al. 

1998; Aitken et al. 2007). 

Figure 5.1: Generation of O2 ̄ and other reactive oxygen species in the mitochondrial electron transport chain. 

Mitochondria are the predominant source of O2̄ generated in mammalian cells and, as 

such, monitoring the organelles directly offers the potential to enhance the 

understanding of cellular damage following increased O2̄ production. The application 

of both fluorescence and electroparamagnetic resonance (EPR) methods have been 

used to monitor O2̄ production in isolated mitochondria (Du et al. 1998; Elks et al. 

2009; Mariappan et al. 2009; Xu and Arriaga 2009). However, amperometric sensors 

have not been used routinely for the direct, real-time monitoring of O2̄ generation in 

isolated mitochondrial fractions. The covalent attachment of the redox protein 

cytochrome c to the surface of gold electrodes has been reported extensively for 

qualitative monitoring of O2 ̄ dynamics in vitro (McNeil et al. 1989; Manning et al. 1998; 

Chang et al. 2005a; Chang et al. 2005b; Aitken et al. 2007). Such an approach offers a 

number of significant advantages over spectrophotometric or chemiluminescent 

methods. The principle advantage of this technique is the ability to measure O2 ̄ 

production from whole cells or isolated organelles directly and in real-time. This 

overcomes the limitations of more traditional ‘end-point’ analyses that rely on the 

measurement of reaction products or adducts. In addition the high degree of 

selectivity that the amperometric electrode shows for O2̄ in the presence of non-

specific reducing agents such as ascorbic acid has been extensively reported (McNeil et 

al. 1989; Manning et al. 1998; Chang et al. 2005a; Chang et al. 2005b; Aitken et al. 

2007). This selectivity has been primarily attributed to a low operating potential of 
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+100 mV vs. an Ag/AgCl reference electrode (McNeil et al. 1989; Manning et al. 1998). 

Additionally, measurements made with the electrode do not involve the addition of 

dyes or substrates into the cellular environment, which could adversely influence 

cellular observations. This Chapter reports the use of chronoamperometry to 

specifically detect, directly and in real-time O2̄ production from the mitochondrial 

electron transport chain. A greater understanding of the role of mitochondrial O2̄ 

production may ultimately lead to a fuller understanding of many important disease 

pathways and the identification of novel targets for drug therapy. The data presented 

herein clearly demonstrate the potential of a cytochrome c functionalised sensor to 

delineate these pathways. 
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5.2 Materials and methods 

5.2.1 Reagents 

Antimycin A, cytochrome c, rotenone, superoxide dismutase (SOD), xanthine and XOD  

were purchased from Sigma-Aldrich (Poole, UK). 

3,3'-Dithiobis(sulphosuccinimidylpropionate) (DTSSP) was supplied by Pierce (Chester, 

UK). 

5.2.2 Cell culture 

The melanoma cell line FM55 (a kind gift from Professor Des Tobin, Bradford 

University, UK) was cultured in Dulbecco’s modified Eagle’s medium (Luna, UK) 

supplemented with 10% foetal calf serum, 100 Uml-1 streptomycin (Invitrogen, UK), 

and 0.1 mgml-1 penicillin (Invitrogen, UK), in a humidified atmosphere with 5% (v/v) 

CO2 at 37˚C. The medium was changed every 2-3 days. Cells were grown to near 

confluence in 150cm2 flasks to six passages prior to isolation of mitochondria. 

5.2.3 Mitochondrial fraction preparation 

An enriched mitochondrial fraction was isolated from cultured cells by physical 

homogenization, differential centrifugation and treatment with hypotonic buffer. 

Cultured cells were harvested and washed with PBS. All subsequent procedures were 

carried out on ice or at 48̊C. The washed pellet was resuspended in 1ml of a sucros e 

rich mitoprep buffer (pH7.4) containing 250mM sucrose (Sigma-Aldrich, UK), 

2mM HEPES (Sigma-Aldrich, UK) and 0.1mM EGTA (Sigma-Aldrich, UK) and disrupted 

by 20 passes in a power-driven Teflon-glass homogenizer. The homogenate was 

centrifuged for 10 min at 2200 rpm at 4˚C and the supernatant collected. The 

supernatant was then centrifuged at 11000 rpm for 10 min at 4̊C. The resulting pellet 

containing the mitochondrial fraction was re-suspended in mitoprep buffer and stored 

in aliquots at -80˚C until use (Kirby et al. 2007). The protein concentration was 

determined using the Bradford assay (Bio-Rad, UK) exactly according to the 

manufacturer’s instructions. The isolated mitochondria were maintained in the 

sucrose-rich buffer during all electrochemical measurements. 
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5.2.4 Superoxide-responsive electrode preparation 

The cytochrome c based O2̄ electrode was prepared as previously described (Manning 

et al. 1998). In brief, a 2 mm O.D. solid gold electrode (BioAnalytical Systems, 

Cambridgeshire, UK) was polished using 0.02 mm aluminium oxide slurry on a ‘micro-

cloth’ cleaning platform (BioAnalytical Systems, Cambridgeshire, UK) then sonicated 

for 5 min in ethanol. The electrode was then incubated in a 50mM solution of DTSSP 

for 5 min at room temperature before being gently rinsed in distilled water. Finally, the 

electrode was incubated in a 2mM cytochrome c solution (in PBS, pH 7.4) at 4˚C 

overnight. The modified electrode was rinsed immediately before use and calibrated 

using the reaction between xanthine and XOD to generate O2̄ as described previously 

(Cooper et al. 1993; Manning et al. 1998). For all amperometric measurements the 

electrode was coupled with a Ag/AgCl electrode that acted as both reference and 

counter electrode (Harvard Apparatus, Edenbridge, UK). The electrodes were 

connected to an in-house potentiostat interfaced with a PC coupled with data 

acquisition software. All measurements were carried out at an operating potential of 

+100mV (vs. Ag/AgCl). For calibration the functionalised electrode was placed in 990μl 

of 10mM xanthine solution (in 100mM KOH) and a steady baseline current response 

was recorded. To this 10μl of varying concentrations of XOD (0.5, 1, 2, 3, 4 or 5mM) 

were added and any change in current recorded as a function of time. 

5.2.5 Monitoring superoxide generation from isolated mitochondria 

The same electrode set-up was used for monitoring O2̄ generation from isolated 

mitochondria as that described for calibrating the electrode. A 10ml suspension of 

isolated mitochondria (0.162 mgml-1 protein concentration) was placed into a sterile 

conical well and the electrode lowered directly into the suspension, completely 

immersing the functionalised surface of the electrode. A steady baseline current 

response was recorded before adding 15 µl of either 100µM antimycin A or 100µM 

rotenone to inhibit mitochondrial Complex III or Complex I, respectively. Any 

subsequent current change was recorded. To demonstrate specificity of the electrode 

for O2̄, the electrode was placed into 100 µl of isolated mitochondria (0.487 mgml-1 

protein concentration) and 15 µl of antimycin A was added. Approximately 30 s after 

the addition of antimycin A 15 µl of 7500 Uml-1 SOD in PBS was added to scavenge any 

O2 ̄ generated by the sample. As a further demonstration of specificity, the electrode 
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was lowered into a 100 µl suspension of isolated mitochondria that already contained 

7500 Uml-1 SOD. As before, a steady baseline current response was observed before 

15 µl of 100mM antimycin A was added. 
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5.3 Results 

5.3.1 Superoxide electrode calibration 

The generation of O2̄ by enzymatic conversion of xanthine to uric acid by XOD has 

previously been used to calibrate the O2̄ response of cytochrome c-functionalised gold 

electrodes (Manning et al, 1998; Henderson et al, 2009). In the present study the 

current density at steady-state was linearly dependent on the concentration of XOD in 

the presence of excess substrate (y = 804.3x - 5.4, r=0.98686, n=3). 

5.3.2 Monitoring superoxide generation from isolated mitochondria 

The production of O2̄ by isolated mitochondria was monitored successfully using the 

cytochrome c functionalised electrode. Any change in current observed was directly 

proportional to the amount of O2̄ present. Figure 5.2 represents two typical responses 

following inhibition of mitochondrial Complexes I and III. The inhibition of Complex III 

through the addition of antimycin A brought about an immediate increase in O2̄ 

generation leading to a rapid increase in current which peaked at 45.68 nA above the 

pre-addition baseline (Figure 5.2A). The current response stabilised within 120 s and a 

continuous current of 2nA was observed for the remainder of each experiment. In 

contrast, inhibition of Complex I through the addition of rotenone induced a 

comparatively small increase in current, reaching a maximum of 4.64 nA above the 

pre-addition baseline value, indicating much lower peak O2 ̄ generation (Figure 5.2B). In 

addition, the response returned to pre-stimulus baseline levels within 90 s. 
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Figure 5.2: Respective traces of O2 ̄ generation in isolated mitochondrial fractions following antimycin A (A) and rotenone (B) 

stimulation. The increase in current observed was proportional to the flux of O2 ̄ generated during mitochondrial inhibition. 

To demonstrate the specificity of the electrode for O2̄, isolated mitochondria were 

stimulated with antimycin A, as this consistently elicited the largest O2̄ response. As in 

Figure 5.2A, the addition of antimycin A to the isolated mitochondria sample induced a 

rapid increase in O2̄ generation leading to a current peak 44.70nA above the pre-

addition baseline. Approximately 30 s after the addition of antimycin A, 7500 U/ml 

SOD was added to the sample. The presence of the O2̄ scavenger brought about an 

immediate decrease in current as the O2̄ generated through the inhibition of Complex 

III was scavenged (Figure 5.3A). The current response re-stabilised below the original 

baseline value. The addition of antimycin A to mitochondrial samples already 

containing SOD did not induce an increase in O2̄ generation detectable by the 

electrode (Figure 5.3B). A slight change in current was observed as the antimycin A was 

added to the sample, but the current returned to the baseline level within 5s.  
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Figure 5.3: Scavenging of O2̄ following the addition of 7500 UmL-1 SOD to antimycin A-activated isolated mitochondria. The rapid 
decrease in current response following SOD addition demonstrates the specificity of the electrode for O2 ̄ (A). No increase in O2 ̄ 
generation was observed in response to antimycin A in isolated mitochondria samples that already contained SOD (B). 
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5.4 Discussion 

In this study the application of a cytochrome c functionalised gold electrode to monitor 

O2 ̄ production in isolated mitochondria has been reported. This method allowed the 

dynamics of mitochondrial O2̄ release following the specific inhibition of Complex I and 

Complex III of the mETC to be examined comparatively and in real-time. Antimycin A is 

known to inhibit Complex III by binding to the Complex at centre ‘I’ and blocking the 

electron transfer from centre ‘o’ of the Q cycle, forming semi-quinone that reduces 

oxygen to O2̄ (Brand et al. 2004). The large and immediate increase in O2 ̄ production 

observed during the inhibition of Complex III with antimycin A (Figure 5.3A) is in 

keeping with this previously reported work (Brand et al. 2004; Muller et al. 2004; Xu 

and Arriaga 2009). Complex III is known to asymmetrically generate O2 ̄ that passes 

both into the matrix and into the inter-membrane space of the mitochondrion. 

However, once formed, anionic O2̄ is too strongly charged to readily cross the 

mitochondrial inner membrane (Han et al. 2001; Muller et al. 2004). Thus, superoxide 

production exhibits a distinct membrane sidedness or ‘topology’. In addition, the 

electron acceptor associated with Complex III is cytochrome c, which is located on the 

outer part of the inner membrane and, therefore, explains the superoxide production 

into the inter-membrane space (Figure 5.1). Furthermore, it has been known for some 

time that partial turnover of the cyt bc1 components within Complex III in the 

presence of antimycin A, a Q(i) site inhibitor, results in accumulation of a semiquinone 

at the Q(o) site, which can result in superoxide production on the outer aspect of the 

inner membrane adjacent to the inter-membrane space (Birch-Machin and Turnbull 

1993; Birch-Machin 2008). As a result of these combined features the O2 ̄ detected by 

the electrode will be that released outside the inner membrane (Figure 5.1). This 

sidedness or topology of O2̄ production is the basis for the measurement of O2̄ 

production at Complex III using the end-point EPR spin trap, 5,5-dimethyl-1-pyrroline 

N-oxide (DMPO), which, like the gold electrode employed in these studies, is external 

to the mitochondria and detects increased O2̄ production effluxed outward following 

addition of antimycin A (O'Malley et al. 2006). Superoxide generation at Complex I can 

be attributed to electron leakage at the quinone binding site (Lambert and Brand 

2004) and in the presence of a Q-site inhibitor (such as rotenone) the rate of O2̄ 

production can increase 10-30-fold (Lambert and Brand 2004). In detail, rotenone is 

believed to block electron transfer from the N2 iron-sulphur cluster to ubiquinone 
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(Ohnishi et al. 2005). However, O2 ̄ generated at Complex I was released exclusively 

into the mitochondrial matrix (St-Pierre et al. 2002; Lambert and Brand 2004; 

Raijmakers et al. 2004b). This resulted in the observation of a much reduced O2̄ flux 

from the mitochondria following treatment with rotenone due to not only the 

additional diffusional barrier imposed by the inner membrane, but also the 

membrane’s relative impermeability to highly charged molecules compared with the 

outer membrane. The low permeability of the mitochondrial membrane to O2̄ would 

suggest that no O2̄ would be detected by the electrode following the addition of 

rotenone, yet the change in current observed demonstrates that some O2̄ was 

produced (Figure 5.2B). Dispite the asymmetry of rotenone induced O2̄ flux the 

increase in current observed should have been proportional to the flux of O2 ̄ generated 

during mitochondrial inhibition that could be detected by the electrochemical method. 

Consistent with this, inhibition of Complex I by rotenone (Figure 5.2B) produced a 

much smaller change in current than that observed during Complex III inhibition 

(Figure 5.2A). The O2̄ detected following the addition of rotenone may have been 

generated from upstream sites in Complex I, as the site of action for rotenone is 

thought to be in the distal position of the complex (O'Malley et al. 2006). In this 

respect there is good evidence from inhibitor analysis studies (Doughan and Dikalov 

2007) showing efficient redox cycling at two sites within Complex I, one proximal and 

one distal to the putative rotenone binding site. Alternatively, the O2̄ produced could 

be derived from semi-quinone formation at Complex III, as reported by O’Malley et al. 

(2006). Further investigation into the mechanisms of Complex I-associated O2̄ 

production may clarify the findings reported in these studies. The in vitro specificity of 

the electrode for O2̄ has been reported previously (Manning et al. 1998; Chang et al. 

2005a; Chang et al. 2005b) and this was confirmed in this study through the addition of 

SOD before and after induction of O2̄ generation (Figure 5.3A and B). The re-

stabilization of the current response at a level below the pre-inhibition baseline 

observed in Figure 5.3A can be accounted for by the presence of O2̄ in the sample prior 

to antimycin A addition. Electrons would have been ‘leaking’ from the mETC at low 

levels, therefore generating small amounts of O2 ̄ in the mitochondrial sample as the 

electrode was polarizing to a steady baseline current response.  As SOD has such a high 

affinity for O2̄, scavenging of the radical would have been comprehensive leading to a 

decrease in current response below the initial baseline value as most of the O2̄ present 



Chapter 5: Amperometric mitochondrial O2̄ monitoring 

 98 

in the sample was completely scavenged. The specificity of the electrode was further 

confirmed by the presence of SOD prior to induction of O2̄ generation (Figure 5.4B). By 

including SOD in the sample before inhibiting the mETC, any O2̄ generated would be 

scavenged before reaching the cytochrome c immobilised at the electrode surface, 

hence no change in current response was recorded. Importantly, the addition of SOD 

also demonstrated that the electrode was not responsive to H2O2, which is 

spontaneously generated during the dismutation of O2̄. It is worth noting that the 

current response observed following the addition of both rotenone and antimycin A to 

isolated mitochondria was much larger than would be expected in whole cell samples 

(Manning et al. 1998; Chang et al. 2005a; Aitken et al. 2007). This is not surprising 

considering that the antioxidant mechanisms that exist in cellular systems are not 

present in the mitochondrial fractions and O2̄ is rapidly converted to H2O2 by MnSOD in 

the mitochondrial matrix (Fridovich 1995) or by Cu/ZnSOD in the intermembranal 

space and cytosol (Okado-Matsumoto and Fridovich 2001). All cytosolic SOD was 

removed when the mitochondria were isolated from their normal cellular environment 

and there is evidence to suggest that any residual Cu/ZnSOD becomes inactive in 

isolated mitochondria (Inarrea et al. 2005; Meany et al. 2007). It is therefore important 

to stress that all O2̄ production observed in this study was representative of the 

mitochondria as the O2̄ released should not be converted to H2O2 nor can it have been 

associated with other cellular O2̄ generating processes such as NADPH oxidase, 

cytochrome P-450 or XOD (Raijmakers et al. 2004a, Griendling et al, 2003, Stokes et al, 

2001). 

In conclusion, amperometric O2̄ detection has been successfully applied to isolated 

mitochondrial fractions. The rapid decrease in current response following SOD addition 

demonstrated the specificity of the electrode for O 2̄ (Figure 5.4A). No increase in O2̄ 

generation was observed in response to antimycin A in isolated mitochondria samples 

that already contained SOD (Figure 5.4B). Generation of O2̄ following specific inhibition 

of mitochondrial Complex I and Complex III was performed and the observations were 

in keeping with previous studies (Taylor et al. 1994; Han et al. 2001; Muller et al. 2004; 

Ohnishi et al. 2005; Xu and Arriaga 2009). A possible future application of this 

detection method would be to examine O2̄ profiles of disease state cells vs. wild-type 

cells in vitro and through the use of isolated mitochondrial fractions. However, it must 

be stressed that the capacity of cells or tissues to generate O2̄ will vary and this is 
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influenced by factors such as age and localised concentrations of O2 ̄ producing 

enzymes. In addition, future studies must also consider the degree of control that the 

activity of the individual enzyme complex (i.e. Complex I vs. Complex III) exerts on the 

whole pathway of electron transfer along the respiratory chain in the mitochondria. 

Using inhibitor analysis studies, it has been shown previously that Complex III exerts a 

different degree of control even between different cell types (muscle vs. liver) (Taylor 

et al. 1994). It is, therefore, very difficult to extrapolate O2̄ generation data acquired 

from isolated mitochondrial fractions into in vitro O2 ̄ production. However, the data 

presented in this study has clearly demonstrated the analytical capabilities of 

amperometric sensing for the direct, real-time analysis of qualitative O2 ̄ generation 

from isolated mitochondria following the chemical modulation of electron transport 

complexes. This sensing technology has clear potential to greatly improve the current 

understanding of O2̄ flux in vitro. 
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6.1 Introduction 

The mechanisms underlying the long-term progenesis of Parkinson's disease (PD) are 

not fully understood, although recent research has provided evidence for the 

involvement of a host of exogenous compounds and their endogenously generated 

metabolites (Langston and Ballard, 1984). A loss of dopaminergic neurons in the 

substantia nigra pars compacta is characteristic of the progressive neurodegeneration 

intrinsic to the PD phenotype (German et al, 1989). It is now widely accepted that 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an impurity found in illicitly 

prepared caches of meperidine, can cause selective neural damage in the 

nigrostriatum (Langston and Ballard, 1983). Selective uptake of the MPTP metabolite 

MPP+ by the plasma membrane dopamine transporter (DAT) concentrates the toxin 

within dopaminergic neurons (Javitch at el, 1985) where it is capable of causing 

massive oxidative damage to DNA and cellular proteins via inhibition of Complex I of 

the mETC (Cleeter et al, 1992; Hartley et al, 1994; Swerdlow et al, 1996) This discovery 

promoted the investigation of chemically similar potentially neurotoxic compounds in 

an attempt to establishing a link between environmental toxin exposure and the PD 

phenotype. Chloral hydrate and trichloroethylene are two such compounds that were 

identified as having neurotoxic potential due to their metabolism to chloral after 

administration. Although the precise mechanism by which chloral induces CNS 

depression has not yet been fully elucidated, metabolic investigations have uncovered 

the generation of species with mitochondria disrupting potential, one of which was 1-

trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo). TaClo is formed in vivo 

through the spontaneous reaction of endogenous tryptamine (‘Ta’) with chloral 

(trichloroacetaldehyde; ‘Clo’). TaClo has been shown in many recent publications to 

inhibit Complex I of the mETC in a manner comparable to MPP+ (Janetzky et al, 1999; 

Bringmann et al, 1995; Kochen et al, 2003; Akundi et al, 2004) and DPI (Majander et al, 

1994), a chemical to which TaClo bears striking structural similarity (Figure 6.1), 
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resulting in an increase in cellular damage through the generation of large amounts of 

ROS. Complexes I and III of the mETC have previously been shown to generate O2̄ 

immediately following exposure to known inhibitors rotenone and antimycin A 

(Henderson et al, 2009). All studies to date pertaining to the quantification of TaClo 

mediated mitochondrial ROS generation have been reliant on endpoint studies of the 

effects of ROS upon cellular components such as DNA, glutathione and enzyme up-

regulation (Storch et al, 2006). These studies were limited by their inability to monitor 

the generation of potentially cytotoxic ROS directly and in real-time making temporal 

resolution of their production very challenging. Additionally, traditional measurement 

techniques do not allow differentiation between the various ROS produced by the 

mitochondria. 

Figure 6.1 Structural similarity between known Complex I inhibitor DPI and proposed neurotoxin TaClo corroborated the ability of 
TaClo to act as a mETC inhibitor. 

The current study aimed to demonstrate whether TaClo was capable of eliciting 

measureable O2̄ production in cultured neuroblastoma cells. The study focussed on 

changes in whole cell respiration as well as the real-time detection of O2̄ flux from 

isolated mitochondria exposed to TaClo and other Complex I inhibitors. Many studies 

cite the timescale of action of TaClo as being up to 72 h post-administration before 

significant effects are observed (Storch et al, 2006), however other mETC inhibitors 

such as rotenone and antimycin A have been shown to act upon the mitochondria 

within seconds (Storch et al, 2006). The vital dye resazurin was used in the current 

study to assess the ability of TaClo to affect whole cell respiration. Unlike more 

conventional regents used in assessing cell respiration and viability  

(e.g. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)), resorufin, 

the product of resazurin metabolism, is soluble and non-toxic. This eliminated the 

need for dye solubilisation prior to reading and reduced result ambiguity caused by 

toxic intracellular dye generation (O'Brien et al, 2000). The use of resazurin thus 

provided an ideal method with which real-time cellular respiratory rates in intact cells 

could be measured. 
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Using an O2̄ selective electrode it was also possible to monitor in real-time the flux of 

O2 ̄  generated from isolated mitochondria following treatment with TaClo. This 

technique has been previously used to monitor the ability of both rotenone and 

antimycin A to elicit O2̄ production from human melanocyte derived mitochondria 

(Henderson et al, 2009). Electrochemical monitoring of O2̄ offers many advantages 

over more indirect and non-specific methods, for example the use of 

chemiluminescent dyes and end-point assays, which relate primarily to the high 

selectivity of the electrode for O2̄ (Tammeveski et al, 1998). Unlike various luminescent 

and fluorescent dyes, the electrode is capable of discriminating between reactive 

oxygen species (ROS) and can only generate a measureable current through interaction 

with O2̄. The functionalisation of gold electrodes with the redox protein cytochrome c 

has been extensively used to monitor O2̄ flux in vitro (Henderson et al, 2009, Chang et 

al, 2005, Manning et al, 2001). Previous studies have attributed O2̄ specificity to the 

site-directed immobilization of the protein and the low operating potential used to 

re-oxidize the cytochrome c (Tammeveski et al, 1998). 

The current study used a vital dye based optical detection method to continuously 

monitor the short-term effects of TaClo upon neuroblastoma whole cell respiration in 

conjunction with an amperometric O2̄ detection technique which was used to 

selectively monitor TaClo induced O2̄ flux from isolated mitochondria. The integration 

of these data sets has provided new evidence for the involvement of TaClo in the 

cumulative oxidative damage observed in progressive neurodegenerative disorders. 
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6.2 Materials and methods 

6.2.1 Reagents 

Cell culture reagents were all purchased from PAA (Somerset, UK). The thiol cross-

linker 3-3'-dithiobis(sulphosuccinimidylpropionate) (DTSSP) was supplied by Pierce 

(Chester, UK). TaClo was purchased from Exclusive Chemistry Ltd. (Obninsk, Russia). All 

other reagents were purchased from Sigma Aldrich (Poole, UK). 

6.2.2 Cell culture 

The three times cloned human neuroblastoma cell line SH-SY5Y was routinely cultured 

using antibiotic-free Dulbecco’s Modified Eagles Medium supplemented with 10% 

foetal calf serum (FCS) and 1% non essential amino acids (PAA, UK). Cells were 

maintained in a humidified environment containing 5% (v/v) CO2 at 37̊ C throughout. 

Cells were grown to 80% confluence and were passaged five times over the course of 

experimentation, with mitochondrial isolation occurring at the third and fifth passage. 

6.2.3 Real-time assessment of whole cell respiratory rate 

Cells were seeded into black-walled, clear-bottomed 96 well plates at a density of 

1x103 cells/well and allowed to attach overnight. The growth medium was 

subsequently replaced with either 0.001% (w/v) resazurin salt in PBS or 0.001% (w/v) 

resazurin salt in PBS doped with 100 µM TaClo. An initial baseline fluorescence 

measurement was made immediately after medium replacement (λex 530 nm, 

λem 590 nm) using an Infinite M200 fluorimeter (Tecan, UK) with associated Magellan 

control software. After 1 h incubation, fluorescence measurements were taken using 

the same parameters. This was repeated on an hourly basis for two further 

measurements. The cells were kept in the routine culture environment between 

readings. 

6.2.4 Mitochondrial fraction preparation 

Mitochondrial fractions were prepared as previously reported by Henderson et al 

(Henderson et al, 2009). Briefly, cells grown to 80% confluence were trypsinised and 

washed in phosphate buffered saline (PBS). After resuspension in sucrose-rich 

mitoprep buffer (250 mM sucrose, 2 mM HEPES and 0.1 mM EGTA, pH 7.4), the outer 

cell membranes were disrupted using 20 passes with a power driven Teflon-glass 
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homogenizer. The resulting homogenate was centrifuged at 2200 rpm and 4˚C for 

10 min, after which the supernatant was decanted and further centrifuged at 11000 

rpm and 4̊C for 10 min. The resulting mitochondria -containing pellet was re-

suspended in fresh mitoprep buffer then snap frozen in liquid nitrogen and stored at -

80˚C in 20 µl aliquots until required. Prior to use, the protein concentration of the 

mitochondria-containing sample was determined using a Bradford assay (Bio-Rad, UK) 

as per the manufacturer's instructions. Mitochondria were kept in sucrose-rich buffer 

throughout all electrochemical experiments. 

6.2.5 Preparation of O2̄ specific electrode 

The electrode was functionalised as previously described (Manning et al, 1998). The 

surface of a 2 mm diameter gold electrode (BioAnalytical Systems, Cambridgeshire, 

UK) was polished using 0.02 μm aluminium oxide crystal slurry on a micro-cleaning 

cloth (BioAnalytical Systems, Cambridgeshire, UK). The electrode surface was further 

cleaned by sonication in 100% ethanol for 5 min. After rinsing with deionised water, 

the electrode was first incubated in 50 mM DTSSP for 5 min at room temperature, then 

thoroughly rinsed and incubated overnight in 2 mM cytochrome c at 4̊C.  After 

thorough rinsing to remove unbound protein, the electrode was ready for use. For all 

experiments, the electrode was poised at an operating potential of +100mV versus a 

Ag/AgCl reference electrode (Pierce, UK), which also served as the counter electrode. 

A bespoke 2-channel potentiostat was used and data was acquired using PicoLog 

datalogging software. The electrode was calibrated as previously reported using O2̄ 

generated as a product of the catalytic decomposition of xanthine by XOD 

(Tammeveski et al, 1998). 

6.2.6 Monitoring of TaClo induced O2̄ flux from isolated mitochondria 

The protein concentration of the mitochondrial suspension was determined to be 

3.45 µgml-1. Aliquots of the thawed mitochondrial suspension were diluted 1:5 to 

0.69 µgml-1 in mitoprep buffer to ensure sufficient samples were available over the 

course of experimentation. A conical dish was used to present a 100 μl sample of the 

mitochondrial suspension to the O2̄ electrode. Once a stable baseline current response 

was established, serial additions of 10 µM TaClo in mitoprep buffer were made to the 

cell. Any current change following addition was recorded for 1 min before the next 
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addition was made. Dosing continued until a steady-state response was achieved that 

remained unchanged following further TaClo addition. 

6.2.7 Comparison of known mETC complex inhibitors to TaClo 

Prior to use, 100 µM solutions of rotenone, antimycin A and TaClo were prepared 

separately in mitoprep buffer. Inhibitors were investigated in sequence, with only one 

inhibitor being used per mitochondrial sample. Aliquots of the mitochondrial 

suspension were diluted to 0.69 µgml-1 in mitoprep buffer. The electrode setup was 

the same as used to investigate the TaClo dose response. A 100 µl sample of 

mitochondrial suspension was introduced to the electrode and the current responses 

recorded. Once a stable baseline current response was observed, 10 µl of a particular 

inhibitor was added. The changes in current response were recorded for 3 min 

following inhibitor addition. Fresh aliquots of mitochondrial suspension were used for 

each inhibitor challenge with thorough cleaning of the electrodes and conical dish 

between tests. Three current traces were acquired for each inhibitor. 
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6.3 Results 

6.3.1 Electrode calibration 

The generation of O2̄ by enzymatic conversion of xanthine to uric acid by XOD has 

previously been used to calibrate the O2̄ response of cytochrome c functionalised gold 

electrodes. In the present study the current density at steady-state was linearly 

dependent on the concentration of XOD in the presence of excess substrate (y = 

804.3x - 5.4, r=0.98686, n=3). 

6.3.2 Effect of TaClo upon mitochondrial function 

After 1 h incubation with resazurin, data from both TaClo-treated and untreated 

populations demonstrated that the FI at λem 590 nm was linearly dependent upon 

incubation time (TaClo untreated cells: y=0.4249x-0.2803, r=0.9993, n=4; cells treated 

with 100 μM TaClo: y=0.2063x-0.0788, r=0.9873, n=4). The rate of FI change was 

significantly higher in TaClo untreated cells vs. treated cells after 3 h incubation, 

indicating metabolic processes became significantly impeded in treated cells after just 

3 h exposure (p ≤0.05). 

Figure 6.2: TaClo mediated changes in resazurin metabolism were monitored in real-time as an assessment of cell viability. Cells 
exposed to 100μM TaClo exhibited lower FI at 590nm following 2 h incubation compared with control cells suggesting TaClo 
compromised the metabolic capacity of the cells within this timeframe (The data is presented ± SEM, n=4). 
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6.3.3 Amperometric monitoring of O2̄ generation by TaClo 

A dose response curve was generated by recording the current change produced by 

the cumulative addition of TaClo to isolated mitochondria suspended in sucrose buffer. 

The change in current was directly related to the flux of O2̄ from the mitochondria, 

which occurred immediately following TaClo addition. Linear regression analysis of the 

peak current observed following cumulative TaClo additions within a given sample of 

isolated mitochondria (nAµM-1) described the relationship as directly proportional with 

the equation y = 12.384x + 0.6697 (r=0.9929, n = 4) where y = current change and 

x = TaClo concentration. 

Figure 6.3: Peak current responses of isolated SY-5Y mitochondria to cumulative doses of TaClo. (The data is presented ± SEM, 
n=4). 

6.3.4 Comparison of O2̄ generation by known mETC inhibitors 

All three inhibitors elicited O2̄ flux from isolated mitochondria immediately following 

exposure, which was monitored directly and in real time using the cytochrome c 

functionalised electrode. Figure 6.4 describes the relative magnitudes of currents 

generated through the inhibition of the mETC with antimycin A, TaClo and rotenone, 

whilst Figure 6.5 shows representative traces recorded following treatment with each 

of the mETC inhibitors. The Complex III inhibitor antimycin A elicited the greatest 

current change of the three inhibitors studied, on average producing a peak current of 
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239.85 pA (±24.65 pA, n=4), while the Complex I inhibitors TaClo and rotenone 

produced peak currents of 122.75 pA (±20.49 pA, n=4) and 118.23 pA (±15.64 pA, n=4) 

respectively. There was a distinct difference in the size and time-course of O2̄ current 

generated by the different mETC inhibitors as shown by both igures 6.4 and 6.5. Both 

of the Complex I inhibitors generated an initial current peak lasting between 10-15 s 

which then decayed to the baseline current response that was recorded pre-

stimulation. This did not occur for the Complex III inhibitor which induced rapid 

current increases that repeatedly reached a plateau at a sustained mean value of +165 

pA above the baseline response (±56 pA, n=4). 

Figure 6.4: Comparison of current responses generated by the addition of 100µM mETC inhibitors TaClo, rotenone and antimycin 
A (final concentration 3.2µM) to isolated mitochondria from SY5Y-SH cells (The data is presented ± SEM , n=4). 
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Figure 6.4: Comparison of respective traces elicited from the addition of 100µM mETC inhibitor to isolated mitochondria from 
SY5Y-SH cells. The traces shown are representive of a single inhibitor challenge with a single sample of isolated mitochondria.  

6.4 Discussion 

TaClo is an endogenously generated metabolite of the hypnotic agent chloral hydrate. 

It has been described as a neurotoxin and has been reported as a causative factor in 

the degeneration of the substantia nigra pars compacta, which is a defining feature of 

Parkinson’s disease (German et al, 1989; Langston and Ballard, 1983; Liu et al, 2010, 

Fearnley et al, 1991). It has been proposed that the mechanism of TaClo induced 

neurotoxicity involves increased ROS flux from the mitochondria over the course of 

TaClo accumulation (Liu et al, 2010).  All previous studies that have tried to assess the 

link between TaClo induced cell toxicity and ROS production have exposed cells to 

TaClo for at least 72 h before assessing cellular damage. It was, therefore, the primary 

aim of this study to show whether the Complex I inhibitor TaClo was capable of 

eliciting acute cytotoxic effects in SH-SY5Y neuroblastoma cells, and to show with 

temporal resolution the real-time flux of O2̄ from isolated SH-SY5Y mitochondria after 

TaClo exposure. The work presented in this paper has clearly shown, for the first time, 

that the generation of O2 ̄ is an immediate consequence of mitochondrial complex 

inhibition by TaClo.  This gives new insight into the timescale over which TaClo-

dependent cell damage may occur. 
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Initially, preliminary investigations to support this work were concerned with 

ascertaining whether the O2̄ flux could be monitored from whole cells following TaClo 

exposure. Following many attempts, it was found that no O2̄ flux could be observed 

from intact cells. When considering its presence in mammalian systems, TaClo is a 

β-carboline compound produced through the intracellular reaction of 

trichloroacetaldehyde and tryptamine. As such, cells would theoretically not be 

exposed exogenously to TaClo, more the product would accumulate within the 

trichloroacetaldehyde exposed cells over time. In light of this, acute phase stuies such 

the present implementing a whole cell treatment regimen to investigate ROS 

production from the mitochondria may well not be fully physiologically relevant. It was 

suggested that a more direct approach to investigating mitochondrial ROS production 

following TaClo exposure would be more relevant and useful through the 

implementation of the isolated mitochondria protocol discussed in Chapter 5 and 

recently published (Henderson et al. 2009). 

Dispite these caveats, data from continuous whole cell respiratory assessment using a 

resazurin-based viability assay demonstrated that TaClo was capable of significantly 

impeding cell respiration within 2 h of incubation. When the isolated mitochondria 

from SY5Y-SH cells were investigated using an O2̄ selective functionalised gold 

electrode, it was found that rapid flux of O2̄ from the mitochondria was measurable in 

real-time immediately following exposure to the inhibitor. The amperometric 

technique demonstrated that O2 ̄ flux following TaClo treatment was comparable with 

that of two other known mETC inhibitors antimycin A and rotenone. The dynamics of 

the different responses demonstrated that TaClo exerted an effect on Complex I of the 

mETC and provided evidence that the toxic effects of the compound are mediated 

through the generation of ROS. 

TaClo has been shown to cause considerable and significant cell death in many 

neuronal studies (Janetzky et al, 1999; Kochen et al, 2003; Storch et al, 2006; 

Bringmann et al, 2000) The study by Bringmann et al (Bringmann et al, 2000) in 

particular suggested that despite TaClo being taken up into neuronal cells within 15 

min of incubation, no measurable effect on cell viability could be observed. This may 

have been due to the Trypan blue dye exclusion assay that the authors used to assess 

viability. Trypan blue assays rely upon the loss of cell membrane integrity as a measure 
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of damage, whereas resazurin assessment is a measure of the reductive capability of 

the intracellular environment (Gonzalez et al, 2001). Resazurin has been established as 

a tool for the assessment of cell cytotoxicity (O'Brien et al, 2000, Fields et al, 1993). 

The reduction of resazurin to fluorescent resorufin by metabolic activity, generally 

mitochondrial reduction reactions, allowed the comparative assessment of changes in 

metabolic function between populations of live cells. Unlike MTT assays, the resorufin 

product of resazurin metabolism is soluble, removing the need to lyse the cells and 

solubilise the product in order to read the assay outcome. This facilitated the 

measurement of cumulative resorufin product generation, therefore allowing the 

continuous assessment of any acute metabolic effects in response to TaClo exposure.  

The resazurin viability method is known to have inherent weaknesses which mainly 

relate to the non-specific reduction of the reagent in the cytosol, however compared 

with rate to reduction reactions carried out at the mitochondria, the non-specific 

cytosolic effects are thought to be negligible (O'Brien et al, 2000). The ability to 

continuously measure viability which was facilitated by the technique made it the most 

appropriate tool for monitoring the acute effects of the neurotoxin in these studies. 

The timescale over which TaClo was shown to exhibit significant effects upon the cells 

was a novel observation. With resazurin, respiratory depression was observed within 2 

h whereas many other studies incubate with TaClo for up to 72 h before viability 

assessment begins. Due to the length of time needed to employ more traditional cell 

viability techniques such as Trypan blue, and coupled with the rapid onset of ROS 

generation and highly developed antioxidant processes, the acute effects of many 

mitochondrial inhibitors have not yet been fully investigated. The real-time and direct 

nature of monitoring O2̄ generation from the isolated mitochondria with an electrode 

circumvented the time and selectivity complications surrounding other modes of ROS 

quantification such as the use of fluorescent dyes dihydroethidium bromide (DHE) or 

dihydrodichlorofluorescein diactetate (DCF-DA). 

The observation that antimycin generated the largest flux of O2̄ of the three inhibitors 

investigated was in keeping with current literature regarding complex-specific O2̄ 

generation (Henderson et al, 2009, Brand et al, 2004). Inhibition of Complex III is 

known to cause asymmetric generation of O2̄ both into the inter-membrane space 

where it can freely diffuse and interact with the electrode, and into the mitochondrial 

matrix where the charged molecule is trapped due to the relative impermeability of 
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the inner mitochondrial membrane (St-Pierre et al, 2002). The O2̄ flux observed from 

isolated mitochondria following treatment with rotenone may be caused by an 

interaction between TaClo and the NADH-ubiquinone oxidoreductase of Complex I. 

Normal transfer between the iron-sulphur cluster N2 and ubiquinone of Complex I is 

reported to be the site of unavoidable electron leakage from the mETC, causing local 

high O2̄ flux (Lambert and Brand, 2004). TaClo is thought to inhibit electron transfer 

from Complex I to ubiquinone through interaction with the quinone binding site on the 

Complex I oxidoreductase (Majander et al, 1994). The inherent lipophilicity of TaClo 

would permit the molecules access to this membrane embedded site of the protein, 

(Bringmann et al, 1996) much like DPI (Majander et al, 1994). The similarity between 

the modes of superoxide flux of TaClo and rotenone suggested that the compounds 

elicited effects by similar means, corroborating recent literature regarding 

TaClo-induced inhibition (Bringmann et al, 2000). Both inhibitors resulted in the 

current response decaying towards the baseline level following an initial increase, as 

displayed in Figure 6.5. This may have been due to the point at which the mETC 

inhibition occurred. It is known that mitochondria generate a basal level of O2̄ as a 

consequence of the high turnover of electrons by the mETC. The baseline current at 

which amperometric monitoring started is representative of this basal O2 ̄ production. 

When the mETC was blocked at Complex I, the downstream flow of electrons was 

decreased, resulting in the turnover of electrons at Complex III being much lower 

(despite electrons still transferring between Complexes II and III). After initial high 

efflux of electrons from the mETC and subsequent bolus of generated O2 ̄, the basal 

level of mitochondrial metabolism was decreased. Furthermore, O2̄ generated by 

Complex I is released to the matrix side of the inner membrane (St-Pierre et al, 2002, 

Lambert and Brand, 2004) and, coupled with the reduced electron flow through the 

mETC, the outcome observed was a decrease in the O2̄ available for detection. 

In conclusion, this study provided evidence that TaClo is capable of eliciting changes in 

cell metabolism in less than 2 h and that the inhibition of mETC by TaClo results in 

instant and reproducible flux of O2̄ from isolated mitochondria. The rapid action with 

which TaClo affects the mitochondria is in line with other mitochondrial inhibitors such 

as rotenone and antimycin A, and further supports the involvement of early stage ROS 

signalling in the pathology of β-carboline precursor compounds.  The large TaClo 

induced O2̄ flux observed from isolated mitochondria, coupled with new insight 
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demonstrated in this study regarding the short timescale over which TaClo can exert 

respiratory effects in whole cells, further implicate ROS as an important factor in TaCo 

induced cytotoxicity. A recent study suggested that at low doses TaClo had a 

stimulatory effect on tyrosine hydroxylase, the rate limiting enzyme in neuronal 

catecholamine production (Riederer et al, 2002). The oxidation of excess 

catecholamines and the resultant increased production of intracellular ROS have been 

perhaps most prominently defined in the field of cardiac research (Costa  et al, 2009; 

Mladenka et al, 2009; Costa et al, 2009). If at low doses TaClo acts as a mETC inhibitor 

whilst simultaneously boosting catecholamine (DA) production, it is possible that 

cytotoxic effects are exerted though an increase in oxidative stress from both 

increased dopamine oxidation and mitochondrial inhibition and, in the long term, 

promoting neuronal dysfunction as a consequence of destabilised cell metabolism. It 

has also been reported that ROS have profound effects upon striatal neuronal ability to 

release and take up dopamine (Bao et al, 2005; Milusheva et al, 2005). This has been 

demonstrated by monitoring dopamine release following the inhibition of the mETC 

using rotenone (Milusheva et al, 2005). 

There are many plausible routes by which TaClo has been reported to exert cytotoxic 

effects, many attributed to the increased generation of ROS (Bringmann et al, 1995; 

Kochen et al, 2003; Akundi et al, 2004; Bringmann et al, 2000, Gerlach et al, 1998) 

which are known to be short-lived and highly reactive under certain conditions 

(Halliwell and Gutteridge, 2007). Recent studies have regarded an increase in ROS 

generation as secondary to 5-hydroxytryptamine (5HT) or DA release (Gerlach et al, 

1998, Foley et al, 2000). The evidence presented by this study suggests that the 

uncontrolled production on O2̄ by the mitochondria may be more central to the 

TaClo-induced pathogenesis of progressive neurodegenerative disorders than 

previously reported. In order to fully understand the roles of such molecules within the 

complex architecture of aerobic metabolism, real-time evidence is required that 

focuses directly upon individual species at the time-point of generation such that 

inferred effects may be substantiated. 
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Chapter 7. Integration of optical and amperometric monitoring 

systems 

7.1 Introduction 

Reactive oxygen species are known to play any important roles in cell communication, 

proliferation and death however the mechanisms of these effects have not been fully 

elucidated. Although the development of many pathologies such as Parkinson’s 

disease (PD) (Di Matteo et al. 2009), rheumatoid arthritis (Kundu et al. 2011) and 

amyotrophic lateral sclerosis (ALS) (Panov et al. 2011) has been linked to uncontrolled 

or modified ROS generation and scavenging, these assertions are founded mainly on 

the inferred effects of increased ROS production like an increase in DNA stand breaks 

or intracellular reduced glutathione concentration. The use of free ROS-sensitive dyes 

to monitor intracellular changes in ROS production and metabolism gives only part of 

the story, owing to the inherent toxicity of such dyes and also to reporting 

inconsistencies due to uneven loading and light sensitivities (Boulton et al. 2011; Chen 

et al. 2010). The extent of such issues surrounding the ROS responsive dyes DHR123 

and DCF-DA was investigated at great length in Chapter 2. As discussed in Chapter 3, 

encapsulating dyes in a bioinert polyacrylamide matrix not only prevents loaded cells 

from any cytotoxic consequences of dye exposure, but conversely prevents the dye 

from interacting with any intracellular interfering macromolecules capable of 

diminishing or exaggerating appropriate dye responses (Clark et al. 1999). The 

nanosensors employed in this study comprised ROS responsive DHR123 co-localised 

within the nanosensor matrix with a stable reference dye AlexaFluor568. This allowed 

ratiometric measurements to be made regarding the nanosensors, thus eliminating the 

erroneous effects of photo-bleaching and uneven loading. 

Coupling intracellular nanosensor measurement technology to the extracellular 

amperometric monitoring system provided a platform by which both cellular 

compartments can be assessed in terms of ROS flux in a direct and simultaneous 

manner. The impact of ROS communication between cells population is of great 

interest to many disease states where modified communication is involved in disease 

progression, for example in HIV infection (Olivetta et al. 2009). A conceptual device 

was conceived that provided the unique opportunity to monitor ROS generation of the 

internal environment and well as the O2̄ flux from the same cells. Eventually this could 
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also encompass observations of how other populations of cells respond to that 

extracellular O2̄ flux. A diagram representing the integrated platform concept is shown 

in Figure 6.1. 

Two iterations of the electrode array platform were designed and characterised over 

the course of this study, referred to as 1st and 2nd generation arrays (G1 and G2 arrays 

respectively). Feasibility studies regarding the independent amperometric and optical 

properties of the arrays were undertaken prior to integrating the two techniques. The 

G2 arrays were fully integrated with the optical systems allowing for the first time 

measurement of the intracellular environment using ratiometric ROS-responsive 

nanosensors alongside direct extracellular monitoring of O2̄ flux from the same cells. 

Due to the time constraints of the project, this study represents the first preliminary 

investigation of a fully integrated opto-electrical device. The initial data regarding 

simultaneous intra- and extracellular measurements demonstrated ample proof of 

concept and highlighted optimisation opportunities for a 3rd generation device. 

Figure 7.1: A diagrammatic representation of the integrated platform concept. Nanosensor loaded cells were placed into the wells 
of the array. The well contained a gold ring electrode that was functionalised to permit selective sensing of O2 ̄ flux 
amperometrically. A fluorescence microscope was used to monitor the cells optically from above whilst the cytochrome c 
functionalised electrode monitored O2̄ flux extracellularly. 
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7.2 Materials and Methods 

7.2.1 Design of the electrode array 

In consultation with the manufacturers (MiniFAB, Australia) a device was designed and 

fabricated to satisfy the microscope compatibility and functional criteria of the 

proposed system. All devices comprised two components, one gold-coated base 

section patterned with ring electrodes and tracking and one upper rigid section that 

was milled to form the well architecture. The base slide was fabricated from a 250μm 

thick flexible polyester that was gold-sputtered and laser-etched to define the ring 

electrodes and associated tracking. The upper rigid section of the cartridge was formed 

from two 1.5mm thick slides which were milled and sandwiched together to create the 

upper and lower well walls when associated with the thin electrode-containing base 

slide. The two sections were assembled in an alignment jig and fixed together using a 

thin layer of pressure sensitive adhesive (PSA).  The first iteration G1 arrays were 

presented as ready-to-use, fully assembled cartridges with the electrode containing 

and well forming slides assembled into a single unit. Steel wires were attached to the 

contact pads of the electrodes using silver doped epoxy resin to facilitate coupling to 

the potentiostat. The arrays were cleaned, checked, and checked for functionality 

using the procedures outlined below. 

Due to electrode delamination and the low signal to noise ratios observed during G1 

array testing, second iteration G2 electrodes were designed and fabricated in 

consultation with the manufacturers. The G2 arrays were designed to be more 

practical and robust, each array being supplied as two separate units along with an 

alignment jig to be assembled as required. The conformation of the two different 

arrays is shown in Figure 7.2. Following definition of the electrodes on the gold 

spluttered slide the entire surface was rinsed of debris, dried under nitrogen and 

coated with a protective layer of photoresist. To assemble the components of the G2 

array in preparation for functionalisation the electrode-containing slide was sonicated 

for 30 s in acetone, followed by rinsing with isopropanol then water to remove the 

protective photoresist layer. The slide was immediately dried under nitrogen and 

located gold side up within the assembly jig using guide pins. The backing was removed 

from an upper rigid section to reveal the PSA and affixed to the electrode slide, again 

using the guide pins to align the ring electrode apertures with the centre of the wells. 
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Once assembled the array was removed from the jig and checked for alignment and 

proper sealing of the wells. The G2 electrodes were assessed for surface cleanliness 

prior to functionalization and calibrated using the methods described below prior to 

commencing cell based investigations. 

Figure 7.2: The assembled G1 and G2 electrode array as received from MiniFAB. Each electrode can be seen at the base of each 
well of the array, with the associate tracking protected beneath the rigid polycarbonate upper section. The upper and lower well 
walls allow the array to be flooded to facilitate the movement of solutes between wells. 

CV analysis:  CV was used to assess the surface cleanliness of the gold electrodes in all 

arrays. An AutoLab PGSTAT potentiostat was used to perform all CV. A solution of 

1mM potassium ferricyanide (Feiii(CN)6
3+/2+) redox couple dissolved in 100mM 

phosphate buffer (pH 7.4) was used as the probe solution. A capillary Ag/AgCl 

electrode and steel wire were used as reference and counter electrodes respectively. 

The entire array was flooded in probe solution prior to cycling and was not agitated 

during measurement. Each ring electrode was interrogated individually with 10 cycles 

of potential sweeping from -0.3 to +0.6V with a scan rate of 100mVs-1. Scans were 

averaged to produce the final trace. The G2 array electrodes were interrogated using 

the same method, however 1mM ferrocenedimethanol dissolved in 100mM phosphate 

buffer (pH7.4) was used as the probe solution with sweeps ranging from -1V to +0.4V. 

Electrolytic cleaning protocol: An AutoLab PGSTAT potentiostat was used to perform 

all electrolytic cleaning procedures. A capillary Ag/AgCl electrode and steel wire were 

used as reference and counter electrodes respectively. The entire array was flooded 



Chapter 7: Integration 

 126 

with 100mM phosphate buffer (pH 7.4) prior to cleaning. Each electrode was held at a 

potential of 1.4V vs. Ag/AgCl reference for 2 min. After all electrodes had been treated, 

the whole array was rinsed with deionised water. 

UV- ozone cleaning protocol: A Novascan PSD Pro Series UV Ozone photoreactor was 

used for all UV ozone cleaning cycles. The array was rinsed with deionised water, dried 

under nitrogen and placed in the photoreactor chamber. Once sealed, the chamber 

was purged with O2 for 1 min followed by a 5 min UV exposure. The array remained 

within the chamber for 30 min post-exposure before being removed, rinsed with 

deionised water and dried once more under nitrogen. Arrays were functionalised or 

otherwise processed as soon as possible following cleaning. 

7.2.2 O2 ̄ sensitive electrode preparation 

The gold surface of each individual electrode within an array was functionalised using 

the same technique previously reported (Manning et al. 1998) and as discussed in 

Chapters 5 and 6. Briefly, 10μl 50mM DTSSP solution in water was added to the wells 

and incubated for 5 min at room temperature before being gently rinsed with distilled 

water. Any remaining liquid was flicked from the array before filling the electrode 

containing well with 2mM cytochrome c solution (in PBS, pH 7.4). The whole array was 

wrapped in Parafilm to prevent evaporation. Steel wires were affixed to the electrode 

contacts using silver doped epoxy resin to facilitate potentiostat coupling, then the 

array was incubated at 4°C. Parafilm was removed and the modified electrodes were 

rinsed thoroughly with deionised water immediately before use. 

7.2.3 Electrode calibration 

Functionality of all G2 arrays was first confirmed using the O2ˉ generated as a product 

of the catalytic decomposition of xanthine by XOD described previously (Cooper et al. 

1993; Manning et al. 1998). Each electrode was interrogated individually using an 

AutoLab PGSTAT potentiostat coupled to a PC running associated control software. For 

all amperometric measurements the functionalised gold working electrode was 

coupled with a Ag/AgCl capillary reference electrode (Harvard Apparatus, Edenbridge, 

UK) and steel counter electrode. All measurements were carried out at an operating 

potential of +100mV (vs Ag/AgCl). For calibration, the entire array was flooded with 

10mM xanthine solution (in 100mM KOH) and datalogging was commenced. Once a 
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stable baseline current was observed, various concentrations of XOD were added to 

the selected well and any change in current was recorded as a function of time. For G1 

array electrodes, 0.5 μl XOD was added, in G2 challenges, 1 μl was added to 

compensate for the different sized wells. 

7.2.4 Cell culture and preparation 

Rat alveolar macrophage cell line NR8383 was routinely cultured in Ham’s F12 

(Kaighn’s modification) medium supplemented with 10% FCS and 1% NEAA. The cells 

were grown in a 5% CO2 humidified atmosphere and were passaged no more than 4 

times over the course of experimentation. Once the cells reached 70% confluence they 

were seeded into T25 culture flasks and allowed to settle overnight. The following day 

10 mgml-1 ROS sensitive nanosensors were introduced to the cells and mixed 

thoroughly with the culture medium. The nanosensors were fabricated as described in 

Chapter 3 (section 3.2.2) comprising ROS sensitive DHR123 and reference 

AlexaFluor568 dyes entrapped within a nanoscale polyacrylamide matrix. Cell 

mediated delivery of the nanosensors was allowed to continue overnight. The 

following day, cells were harvested and washed once in pre-warmed PBS to remove 

extracellular nanosensor debris. Re-suspension of the cell pellet in 100 μl pre-warmed 

culture medium yielded a suspension of ~50,000 cells.ml-1. This cell suspension was 

stored in the routine culture environment until required (no longer then 3 hrs). 

7.2.5 Functional assessment of the G2 array electrodes 

Prior to full integration the optical and amperometric functional properties of the 

arrays were tested independently using ROS generated by PMA-stimulated 

macrophages. This was carried out to ensure that physiological levels of ROS could be 

measured both intra- and extracellularly from within the array and also to check for 

any interference between the two methods. 

Amperometric analysis of nanosensor loaded cells was executed without optical 

measurement by loading 10 μl cell suspension described in section 7.2.4 into a 

previously functionalised array well then carefully flooding the upper chamber of the 

array with pre-warmed culture medium. All amperometric data was logged using an 

AutoLab PGSTAT potentiostat coupled to a PC running associated control software. The 

well selected for measurement was coupled to the potentiostat and poised to +100mV 
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vs. Ag/AgCl in conjunction with a stainless steel counter electrode. Once a stable 

baseline current response was achieved, 1 μl PMA at 1, 5 or 10 μgml-1 was added to 

the cells. Any current change was recorded for at least 300 s. Following completion of 

the run the whole array was rinsed with deionised water and reset as above for the 

next experiment. 

Optical analysis of the array was carried out independently of amperometric 

monitoring by loading 10 μl of the same nanosensor-loaded cell suspension into a 

previously functionalised array well. The rest of the array chamber was then flooded 

with pre-warmed culture medium.  Images were acquired using a Nikon Eclipse 80i 

Epi-Fluorescence microscope in conjunction with Nikon BR image acquisition and 

analysis software. The array was placed onto the microscope stage and secured in 

place. A bright-field image of the cell-containing well was acquired prior to 

commencing any measurements to record spatial distribution of cells. Two images of 

the cells were then collected, one using a B 2E/C filter (representative of DHR123 FI) 

and the other using a CY3 filter (representative of Alexafluor568 FI).  1 μl PMA was 

added to the cells (final concentration 1μgml-1) and was allowed to incubate for 10 

min, after which another set of images were collected using the same settings. The 

initial bright-field reference image was used to record the position of cell populations 

upon the electrodes surface. Data regarding the mean FI of the recorded cell regions 

was identified from the images acquired during the course of experimentation. 

7.2.6 Simultaneous measurement of extra- and intracellular ROS flux 

Nanosensor-loaded NR8383 macrophage cells as described in section 7.2.4 were 

loaded into the electrode containing wells of a functionalised G2 array. The 

functionalised array was used in conjunction with a capillary Ag/AgCl reference 

electrode and steel wire counter electrode, both of which were secured to the array 

cartridge to avoid electrode misplacement. The array rig was placed under the 

fluorescence microscope objective and secured in place. Figure 7.3 demonstrates the 

experiment setup used during simultaneous measurements. The same microscope, 

settings and filters as described in section 7.2.5 for the feasibility studies were 

employed for the simultaneous measurements. Prior to acquiring data, the microscope 

was focussed upon a ring electrode at the base of a cell containing well using the 

bright-field setting. A reference image was acquired to identify the position of cell 
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populations. An in-house built potentiostat was used to poise the working electrode at 

+100mV vs. the Ag/AgCl reference and current changes were logged using a PicoLog 

ADC100 converter with associated software. Amperometric data was recorded 

continuously for the entire experiment. Once a stable baseline current response was 

achieved, two images of the nanosensor-loaded cells were acquired in quick 

succession as was executed previously. 1 μl either 1 μgml-1 or 5 μgml-1 PMA in PBS was 

then introduced to the interrogated well. As soon as possible after PMA addition, two 

more images were acquired is the same manner. Image acquisition was repeated 

periodically for 500 s, after which amperometric datalogging was also terminated. The 

initial bright-field reference image was used to record the position of cell populations 

upon the electrodes surface. Data regarding the mean FI of the recorded cell regions 

was identified from the images acquired during the course of experimentation. 

Figure 7.3: An image demonstrating the configuration of microscope and electrode used to acquire simultaneous optical and 
amperometric data. The functionalised array was secured in place by attaching the rig to a glass slide and placing this on the 
microscope stage. The wires attached to the array were also affixed to the microscope slide to provide additional stability, 
reducing the risk of a wire loosening from the array contacts. The reference and counter electrodes were clamped in place once in 
position. 
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7.3 Results 

7.3.1 Assessment of G1 electrode arrays 

Immediately upon receipt, a G1 array was functionalised as described above after 

through rinsing with DI water. No current changes were observed from any of the 7 

electrodes of the array following xanthine/XOD calibration (tested XOD concentrations 

ranged from 20 Uml-1 to 0.5 μUml-1). CV investigation of an untreated new array 

demonstrated a lack of surface electron transfer to the probe solution while 

microscopic observation revealed extensive surface contamination. 

To assess the plausibility of cleaning arrays prior to functionalisation, CV using 

potassium ferricyanide (Fe3+/2+(CN)6) was carried out both before and immediately 

after a standard electrolytic cleaning cycle. Images were taken of the electrodes after 

each stage to identify any visible damage. CV data highlighted increase electron 

transfer to the probe solution in some electrodes post-clean (Figure 7.6). Standard 

electrolytic stripping and UV-ozone cleaning procedures resulted in the delamination 

of gold from the polyester slide in most electrodes however, with some becoming 

completely destroyed (Figure 7.4). 3 electrodes were severely contaminated with a 

clear substance that coated the entire well as shown in Figure 7.5. 

Figure 7.4: Observation of progressive damage to the array ring electrodes following cleaning and CV analysis. Images a, b and c 
were captured from a single electrode in a G1 array following one cycle of CV prior to cleaning (a) immediately after electrolytic 
cleaning (b) and after a second cycle of CV (c). Pitting was observed after the first CV, with delamination of the ring electrodes 
inner perimeter is visible as subtle fluting in image b. This became more pronounced in image c. Some electrodes were completely 
destroyed before the process was completed (d). 
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Figure 7.5: Bright-field microscopic observation of the G1 electrode arrays revealed extensive contamination of the wells. In this 
well, a clear substance covered the entire electrode and aperture. The brown patch and irregularly shaped well wall further 
suggested well contamination. Repeated rinsing, electrolytic cleaning or UV-zone cleaning procedures could remove neither the 
brown substance nor the clear coating. 

In light of the damage caused by electrolytic stripping UV-ozone cleaning was tested as 

an alternative method. CV using potassium ferricyanide (Fe3+/2+(CN)6) was again carried 

out both before and immediately after a standard cleaning cycle.  Most electrodes 

survived this process and exhibited a marked increase in surface electron transfer after 

the cleaning cycle. Microscopic observation of the arrays showed no visible damage 

however the substance coating the electrodes as shown in Figure 7.5 could not be 

removed with either UV-ozone cleaning or electrolytic stripping. 

Figure 7.6: CV traces achieved from the G1 electrodes both before and after successful UV-ozone cleaning revealed that electron 
transfer to the probe solution was completely inhibited before the cleaning stage and was significantly increased afterward. This 
process visibly damaged most of the electrodes meaning post-clean CV sweeps could not be achieved for every well in the G1 
arrays. Electrodes that appeared physically intact following the process were then functionalised with cytochrome c. 
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Electrodes that were not visibly damaged and produced an increase in electron 

transfer following UV-ozone cleaning were functionalised as described in section 7.2.2. 

Out of 21 electrodes over 3 arrays, 11 electrodes remained intact following cleaning, 

with 3 of the non-damaged electrodes exhibiting immovable contamination. 

The generation of O2̄ by enzymatic conversion of xanthine to uric acid by XOD has 

previously been used to calibrate the O2̄ response of cytochrome c-functionalised gold 

electrodes and also detailed in Chapters 5 and 6.  The current change in response to 

the enzymatic generation of O2̄ was highly variable between electrodes. Of the 

remaining 7 electrodes, 3 were responsive to O2̄ following functionalisation. Figure 7.7 

shows 3 respective traces generated by the responsive electrodes. The traces exhibit 

very low signal to noise ratios, making data interpretation difficult and inferred very 

low signal resolution to the electrodes.  The average maximum response to 1 Uml-1 

XOD in substrate-saturated conditions was 2.027 nA (± 0.321). Higher concentrations 

of XOD did not elicit higher responses. No signal was observed with the addition of 0.5 

or 0.1 Uml-1. 

Figure 7.7 Respective current 

traces acquired 
from the 3 O2 ̄-responsive 
electrodes on the G1 arrays. 

The low signal to noise ratio of the signals reduced the resolution of the electrode to report subtle differences in O2̄ generation. 

7.3.2 Enzymatic calibration of G2 electrode 

The G2 electrodes did not require electrolytic or UV-ozone cleaning prior to use. 

Following removal of the protective photoresist layer, CV analysis of the electrodes 

revealed excellent electron transfer properties (Figure 7.8). Subsequent surface 

functionalization permitted the construction of a XOD dose response curve. The G2 

electrodes displayed extreme sensitivity to O2 ̄ generated by the XOD/xanthine 

decomposition; concentrations as low as 0.5 μUml-1 generated determinable current 

response increases. The array electrode responses were examined using the enzymatic 

reaction between XOD with its substrate, xanthine, under conditions of substrate 

saturation to generate O2 ̄. The change in current was observed as a function enzyme 
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concentration. The electrode response was shown to be dependent upon XOD 

concentration and therefore proportional to the amount of O2̄ generated. Calibration 

data presented in Figure 7.9 are in keeping with those reported previously (Cooper et 

al. 1993; Manning et al. 1998). 

Figure 7.8: CV analysis of the G2 electrodes following removal of the protective photoresist layer. The electrode-patterned slide 
was sonicated in acetone, rinsed with isopropanol then finally rinsed with deionised water. Following assembly into a finished 
electrode CV was undertaken using 1mM ferrocenedimethanol in 100mM phosphate buffer. Good surface electron transfer 
properties were observed for all electrodes, indicating the electrodes were free from surface contamination. 

Figure 7.9: Calibration of the G2 array electrodes by recording the maximum current responses elicited by various concentrations 
of XOD in 10mM xanthine. The observed current is dependent on the enzyme concentration. The values presented are ±SEM, n=2. 
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7.3.3 Independent amperometric monitoring of cellular O2̄ flux 

Prior to integrating optical and amperometric measurement protocols the ability of the 

array electrodes to sense extracellular O2̄ flux elicited by PMA stimulation of the 

macrophage cells was assessed. A dose response curve was constructed by stimulating 

populations of nanosensor loaded macrophage cells with varying concentrations of 

PMA and recording the peak current response generated. The current response value 

for each concentration challenge was taken 10 s after addition to avoid pipetting 

artefacts observed when PMA was added to a well containing no cells. The data from 

combined traces from differently stimulated cells demonstrated that the peak current 

response generated was linearly dependent upon PMA concentration 

(y=0.1841x+0.1675, r=0.9925, n=3) 

Figure 7.10: The maximum current generated by nanosensor loaded NR8383 macrophage cells in response to PMA stimulation 
was monitored with the G2 electrode array and plotted as a dose response curve. Cells were not monitored optically during 
experimentation.  The data is presented ±SD, n=2. 

7.3.4 Independent optical monitoring of intracellular ROS generation 

Prior to integrating amperometric and optical monitoring systems, the ability to make 

optical measurements from within the array wells was assessed using ROS-sensitive 

nanosensor doped rat macrophage NR8383 cells. It was discovered that the polyester 

of the base slide was brightly fluorescent when viewed with the B-2E/C filter block that 



Chapter 7: Integration 

 135 

is used to observe DHR123. Nanosensor loaded cells were visible if they lay on top of 

the electrode surface but the background auto-fluorescence of the aperture was too 

high to allow meaningful FI measurements to be taken. Figure 7.11 displays images 

captured of nanosensor-doped cells within a G2 array well. When viewed with the 

B-2E/C filter the aperture is highly fluorescent, however no auto-fluorescence was 

observed with the CY3 filter. Cells resting directly upon the surface of the electrode 

were clearly visible. 

In light of the arrays auto-fluorescence, only cells resting directly upon the electrode 

were included in the regions of interest optically monitored. Following treatment with 

10μM PMA a 2.8 fold increase in mean FI ratio (DHR123/Alexafluor568) was observed 

(see 12). This is in keeping with the results shown in Chapter 3. The background 

fluorescence was too high and variable to allow measurements to be taken from cells 

resting on the aperture. 

7.11: Nanosensor loaded NR8383 cells resting on the bottom of an array well as viewed using the B-2E/C filter (a) the CY3 filter (b) 
and merged (c). In image a, the auto-fluorescent aperture masks the fluorescence of the sensor loaded cells, however these can be 
observed clearly when resting on the electrode. There is no such interference when using the CY3 filter as shown in image b. 
Co-localisation of the DHR123 (a) and AlexaFluor568 (b) fluorescence is shown in image c. 

7.12: ROS sensitive nanosensor-doped NR8383 cells exhibited an increase in FI ratio (DHR123/AlexaFluor568) following treatment 
with 10 μM PMA. The data is presented ±SEM, n=5. 
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7.3.5 Simultaneous intra- and extracellular monitoring of ROS 

Optical measurement of intracellular ROS generation was achieved simultaneously 

with the amperometric monitoring of extracellular O2 ̄ flux following PMA stimulation. 

Two different concentrations of PMA were tested. ROS-sensitive nanosensor loaded 

cells were placed into a well on a G2 electrode array and monitored extracellularly 

using the functionalised ring electrode at the well’s base whilst periodic optical 

measurements of the same cells were performed from above the array using a 

fluorescence microscope.  Figures 7.13 and 7.14 display both optical and 

amperometric data for cells treated with 1 μgml-1 and 5 μgml-1 respectively. 

The amperometric data recorded from both PMA challenges demonstrated an 

immediate sharp increase in current response followed by a gradual and steady 

increase over the remainder of the time course. Treatment with 5 μgml-1 PMA elicited 

a greater rate of current change (67 pA min-1) from the macrophage cells than the 

lower 1 μgml-1 challenge (42 pA min-1). 

Optical data also demonstrated a rapid increase in FI ratio corresponding to an 

increase in ROS generation within the cells. Although both the 5 and 1 μgml-1 

challenges elicited nearly a 2-fold initial increase in FI ratio, the 5 μgml-1 challenge 

resulted in a sustained average ratio increase of approximately 0.944 (±0.041) whereas 

the 1 μgml-1 challenge resulted in a sustained average ratio following the initial peak of 

0.787 (±0.003).  

Figure 7.13: Simultaneous intra- and extracellular monitoring of ROS generation and flux from NR8383 cells during 1 μgml-1 PMA 
treatment. Optical measurements were made periodically with a fluorescence microscope whilst amperometric monitoring ran 
continuously. The optical data is presented ± SEM, n=3, the amperometric trace is representative of the time period relative to the 
acquisition of optical data. The amperometric data plotted is representative of point averaging (±1 s) every 20 s. 
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Figure 7.14: Simultaneous intra and extracellular monitoring of ROS generation and flux from NR8383 cells during 5 μgml-1 PMA 
treatment. Optical measurements were made periodically with a fluorescence microscope whilst amperometric monitoring ran 
continuously throughout the entire experiment. The optical data is presented ± SEM, n=3, the amperometric trace is 
representative of the time period relative to the acquisition of optical data. The amperometric data plotted is representative of 
point averaging (±1 s) every 20 s. 
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7.4 Discussion 

The overall aim for this PhD project was to integrate the optical nanosensor based 

monitoring system discussed in Chapters 3 and 4 with the amperometric superoxide 

sensors used in Chapters 5 and 6. The resulting platform allowed real-time monitoring 

of O2̄ flux both within and released by PMA-stimulated rat macrophage cell line 

NR8383. This cell model was also used during the optimisation of the ROS sensitive 

nanosensors in Chapter 3 as the ROS generation capabilities of such phagocytes have 

been well reported (Craig et al. 2009; Henderson et al. 2009; Mukbel et al. 2007). 

The gold disc electrodes used in Chapters 5 and 6 to monitor O2̄ flux from isolated 

mitochondria were too large and spatially incompatible to be used in conjunction with 

the fluorescence microscope. A microscope slide-like cartridge of arrayed wells 

containing isolated ring electrodes at their bases had been proposed as a more 

compatible conformation. Over the course of the study, 2 different cartridges were 

tested; the first generation (G1) containing a 7-electrode array and the second 

generation (G2) containing a 3-electrode array. Unlike the G2 arrays, which have been 

integrated with optical measurement protocols, G1 arrays were presented as ready-to-

use, fully assembled cartridges with the electrode containing and well forming slides 

assembled into a single unit. Unfortunately the gold surface was not cleaned following 

laser etching to define the electrodes nor protected from environmental 

contamination thereafter, which subsequently lead to difficulty covalently 

immobilising cytochrome c on the ring electrode surface. Attempts to clean the gold 

surface prior to functionalization lead to delamination and electrode damage. This 

resulted in the redesign and repackaging of the G2 electrodes to include protecting the 

newly fabricated electrodes with a layer of photoresist to prevent surface 

contamination and to reduce the risk of physical damage. 

The G2 arrays contained only 3 electrodes in comparison to 7 in the G1 arrays, 

permitting an increase in well volume and electrode surface area. The width of the 

exposed ring electrode was increased from 200μm to 500μm, resulting in the 

electrode surface area becoming 3.14 times larger per well. The aperture size 

remained unchanged. Very small current changes were observed in response to 

enzymatically generated O2̄ from the G1 electrodes that had survived UV-ozone 

cleaning and had been successfully functionalised. The signal to noise ratio of the 
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observed traces was very low, masking subtle current changes elicited by relatively low 

O2 ̄ generation. The larger surface area of the G2 electrodes was designed to improve 

trace clarity and increase sensitivity by increasing the signal to noise ratio by providing 

a greater surface area available for cytochrome c immobilisation. 

Prior to full integration the G2 electrodes were calibrated using the same 

XOD/xanthine O2̄ generating system described in Chapters 5 and 6 to ensure current 

changes could be observed from the arrays in response to O2̄ generation. Following the 

successful amperometric monitoring of enzymatically generated O2̄, rat alveolar 

macrophage cells were placed in the array wells and treated with PMA as described in 

Chapter 3. The O2̄ burst elicited by PKC stimulation and subsequent progressive O2 ̄ flux 

was recorded using the array electrodes. The optical properties of the array were also 

checked prior to integration. The nanosensors selected for monitoring ROS generation 

in the macrophage cells comprised the ROS sensitive dye DHR123 and stable reference 

dye AlexaFluor568 entrapped within a polyacrylamide matrix. These nanosensors were 

characterised and described at length in Chapter 3. Measurement of the FI of the 

internalised nanosensors was achieved using a fluorescence microscope with 2 filter 

blocks to independently image DHR123 and AlexaFluor568. 

During the optical feasibility studies, it was discovered that the gold spluttered base 

slide was auto-fluorescent, meaning that the cells resting on the aperture could not be 

observed optically due to the high background FI of the array. The microscope used in 

this study was not inverted, as the array was originally designed for, and thus it was 

still possible to observe cells resting upon the electrodes surface. Monitoring the cells 

from above also presented another unforeseen artefact. When light was allowed to fall 

on the electrodes through either the B-2E/C or CY3 filter block, an instant large 

increase in current was observed which was sustained for the duration of exposure, 

then immediately returned to baseline upon closing the microscope shutter. The 

dynamics of the current increase were highly reproducible and thus could be 

subtracted from the trace as an artefact without skewing the O2̄ current changes 

recorded. To investigate this anomaly further, both a functionalised and bare array 

was placed under the microscope, flooded with phosphate buffer and exposed to light 

through both the B-2E/C and CY3 filter. The functionalised array generated current 

changes as previously observed, however the bare array did not. The current change 



Chapter 7: Integration 

 140 

was repeatedly larger with B-2E/C exposure compared with CY3. B-2E/C filtered light 

exposure resulted in a current increase of 0.610nA (SEM=0.0772 nA, n=5), whilst CY3 

filtered light exposure resulted in a change of 0.365nA (SEM=0.0769, n=5). This current 

change may be a consequence of photo-excited electrons within cytochrome c 

becoming mobilised due to the potential applied to the working electrode. 

To avoid these problems in future investigations, an inverted microscope should be 

employed for optical measurements to avoid light falling directly on the immobilised 

cytochrome c. In order to use the arrays with an inverted microscope however the 

arrays must be reconfigured to incorporate a non-auto-fluorescent material such as 

glass to allow viewing of the cells through the electrode aperture. A glass base slide 

would also allow soldering of the gold contacts to the wires used to patch the array to 

the potentiostat. The silver doped epoxy resin was prone to breaking from the surface 

of the contact pad, making the arrays very fragile. Soldering would provide a stronger 

bond between electrode and wire, making the arrays more robust. Chang and co-

workers reported successful fluorescence monitoring though polycarbonate-based 

electrode arrays using an inverted microscope (Chang et al. 2005), this material could 

also be used as an alternative electrode substrate. 

The feasibility studies regarding nanosensor measurement from within the arrays 

displayed a much lower FI ratio values than the optical measurements taken during the 

simultaneous experiments. Retrospectively comparing the two sets of images showed 

that there was a higher amount of debris in the feasibility studies that increased the FI 

value calculated for AlexaFluor568. Cell debris was problematic while monitoring cells 

during the simultaneous measurements, resulting in higher SEM values than were 

expected. The arrays were too tall to permit using objectives of power higher than x10. 

The distance from the top of the array to the bottom of the wells is greater than the 

focal distance of the objective. This resulted in the acquisition of images over a large 

area of the electrodes rather than honing in on a discreet population of cells as was 

done in previously reported studies (Chang et al. 2005; Henderson et al. 2009). Despite 

the definition of very specific regions of interest, small auto-fluorescing particles of 

debris still had an impact on the FI measurements acquired for both dyes, especially 

AlexaFluor568.  This could be avoided by using a confocal microscope to take discreet 
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z-slice images of the nanosensor loaded cells, reducing the chance of measuring small 

particles of debris resting on the base of the well. 

Despite these unforeseen difficulties and anomalies, integration of ROS-sensitive 

nanosensor technology with an amperometric O2 ̄ monitoring system was still achieved. 

Amperometric traces achieved from the array electrodes demonstrated excellent 

sensitivity to enzymatically generated O2̄ and displayed the characteristic shape of 

classic PMA stimulated O2 ̄ flux as previously reported (Chang et al, 2005; Henderson et 

al, 2009). Only two different concentrations of PMA were tested using the integrated 

platform, however the preliminary data suggests that both generated current and FI 

ratio are both concentration dependent.  An increase of 25 pAmin-1 was observed in 

the rate of current change between cells treated with 1μgml-1 and 5μgml-1 PMA, whilst 

the observed sustained FI ratio post-PMA exposure was 20% higher in cells treated 

with 5μgml-1 compared with 1μgml-1. 

The simultaneous measurements achieved from the arrays represent a very 

preliminary study regarding the integration of optical nanosensor technology and 

amperometric biosensing systems, however it is the first step of a continuing line of 

research. Although the arrays are not ideal for purpose, there is much work that still 

needs to be done to fully characterise them. Monitoring the cells over a longer time 

period and examining the responses observed to a wider range of stimuli 

concentration will give good insight regarding the monitoring capabilities of this 

particular array configuration before optimising the spatial conformation and 

manufacturing materials for the next generation of platforms for simultaneous intra- 

and extracellular monitoring. 
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Chapter 8. General conclusions and future work 

8.1 Conclusions 

The ultimate aim of this PhD research was to develop a fully integrated ROS-sensing 

platform that allowed simultaneous interrogation of both the cytoplasm and 

extracellular environment of cell models of disease. The integration of the optical 

nanosensor and amperometric technologies has been achieved and preliminary 

simultaneous data have been recorded in terms of intra and extracellular ROS 

production by rat alveolar NR8383 macrophages. Although the data reported within 

this thesis is representative of very preliminary application of the integrated platform 

to only one model of ROS-responsive cellular systems, strong proof of concept has 

been obtained that future investigations can build upon this work.  

In terms of the extracellular electrical monitoring system employed thoughout this 

research, important realisations regarding the proper implementation of such 

techniques were made. Initially all work was carried out using a 2 electrode system 

whereby the Ag/AgCl reference electrode functioned as both reference and counter 

electrodes. This was the standard chronoamperometric set up for O2̄ analysis within 

the group when the research project began. Although it was possible to achieve some 

reliable data from the system (see chapter 5 and Henderson et al, 2009) many 

problems regarding the quality of data recorded using the 2-electrode system such as 

heavily drifting baselines, very low signal to noise ratios and inverse responses were 

observed. To avoid wasting time and consumables on an unreliable system, we moved 

to use a 3-electrode set up. This new conformation comprised an independent counter 

electrode in conjuction with the reference and working electrodes. Using this 

conformation of electrodes stabilised the circuit and protected the reference electrode 

from carrying any current, improving the clarity of the traces recorded, reducing noise 

and allowing the reproducible acquisition of meaningful data (See Chapter 6). This 

protocol is now the standard operating procedure for O2̄ monitoring within the group.  

Unforeseen difficulties regarding simultaneous intra- and extra-cellular measurement 

were encountered such as the auto-fluorescence of the electrode array apertures and 

the current enhancing affect of light upon the functionalised gold electrode however, 

there are simple changes to the data recording methodology and to the array 

fabrication procedures that could provide improved data resolution and accuracy. By 
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using a glass substrate in place of the polyester slide the array electrodes were defined 

upon no auto-fluorescence would be observed from the array aperture. This would 

allow observation of nanosensor loaded cells with an inverted microscope which in 

turn prevents exposure of the functionalised side of the ring electrodes to excitation 

light, reducing the risk of amperometric data disturbance during acquisition. The data 

presented in Chapters 3, 4 and 7 of this thesis represent the first ratiometric 

measurements reported from polyacrylamide ‘PEBBLE’ nanosensors. Thus far, 

meaningful ratiometric measurements have not been reported from within cells, with 

only the change in the FI of the nanosensor sensing dye (Henderson et al. 2009) or 

simply monitoring fluorescence to record only the intracellular location of delivered 

nanosensors (Coupland et al. 2009) being reported. The use of NR8383 macrophage 

cells as a model of cellular ROS generation provided a well-characterised and 

reproducible vehicle to prove the viability of the both the nanosensors and the 

electrochemical array as components of the prospective final integrated platform. The 

model, however, was self-limiting since phagocytosis is a highly specialised process 

generally only observed in the macrophage, neutrophil and dendritic cells of the 

immune system. Characterisation of the platform with non-phagocytic cells in other 

disease models would add a great deal of value to the system by broadening the range 

of potential applications for example, simultaneous monitoring of intra and 

extracellular ROS generation in cardiac myocytes could provide a platform to 

investigate ROS flux during hypoxic reperfusion, allowing greater understanding of the 

mechanism of oxidative damage in the heart. The integrated optical-electrochemical 

platform, once more fully characterised, represents a unique opportunity for scaling-

up to a high throughput, high content system for testing a range of chemicals of 

potential therapeutic benefit in terms of their real-time effects upon the flux of ROS 

both intra- and extracellularly. The work described in Chapter 4, although not directly 

related to ROS monitoring, demonstrated that optical nanosensors could be used to 

report intracellular changes in an analyte of interest from non-phagocytic cells. The 

integration of pH nanosensors with extracellular O2 ̄ measurement could prove to be a 

useful tool for the investigation of age-related muscular deterioration where both 

acidosis and increased ROS generation are key to disease progression. In Diabetes 

Mellitus, oxidative stress has been implicated in the progression of disease state as 

ROS signalling activates a number of stress pathways activating serine/threonine 
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kinase family and ultimately reducing insulin signalling (Rains and Jain, 2011). Lactic 

acidosis is a dangerous biomarker of a severe disease state, linked to metabolic stress 

within the muscle tissue. It has been proposed that tight control of hyperglycaemic 

episodes through diet may reduce the overproduction of ROS, reducing insulin 

resistance and promoting the clearing of lactic acid in muscle (Evans et al, 2003). One 

particularly interesting mechanism behind hyperglycaemia-induced ROS production is 

underpinned by a high volume of substrate entering the TCA during hyperglycaemic 

episodes. Once the membrane voltage limit is reached by the large number of 

electrons being donated to the mETC, electrons back up behind the rate limiting 

Complex III, in essence causing a similar flux of electrons as is observed through 

inhibition of the mETC by agents such as rotenone, antimycin and TaClo, leading to the 

uncontrolled production of O2̄ (Brownlee, 2001). The integrated platform could be 

used to investigate on a cellular level the relationship between cell pH and ROS flux in 

a dynamic, real-time and meaningful manner. With this in mind, characterising the 

array using pH-sensitive nanosensors and extracellular ROS sensing electrodes could 

provide a platform to evaluate the effects of potential therapeutics for metabolic 

disorder upon muscle cell oxidative state and internal pH. A platform of this kind may 

also be of benefit to the identification and development of novel therapeutic agents by 

being utilised to preclude animal-based studies as this is one of the cornerstones of 

NC3Rs research initiatives throughout the UK and indeed Europe (see e.g. 

www.nc3rs.org.uk). 
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8.2 Future Work 

Many avenues for future investigation were opened due to the application driven 

nature of this project and the diverse collaborations that allowed the reported studies 

to be achieved. Further characterisation of the polyacrylamide nanosensors both pH 

and ROS-sensitive will allow a robust method of intracellular monitoring to be 

routinely employed. Investigation of the temporal limits of nanosensor based analyte 

sensing could potentially allow multi-generational reporting of intracellular dynamics. 

It is currently unknown how long the nanosensors remain functionally useful following 

internalisation. If the encapsulated dyes are protected from intracellular degradation 

by the polyacrylamide matrix the nanosensor may remain ‘viable’ indefinitely, limited 

only by dye autooxidation, photolysis or a relative drop in intracellular nanosensor 

concentration as cells proliferate. Work regarding the characterisation of both ROS-

responsive and pH-responsive intracellular nanosensors and the integrated optical-

electrical sensing platform is currently ongoing. Further investigation regarding the 

optimisation of intracellular delivery of polyacrylamide nanosensors will also be carried 

out.  It is hoped that future work will enable the facile employment of the technology 

as a robust and reliable sensing technique over a wide range of clinically relevant 

scenarios, providing unique insight into the intricate and ubiquitous roles of ROS in 

living organisms.  



Chapter 8: General conclusions and future work 

 148 

 

8.3 References 

Brownlee, M., 2001. Biology and molecular cell biology of diabetic complications. 

Nature 414, 813-820.  

Coupland, P.G., Briddon, S.J., Aylott, J.W., 2009. Using fluorescent pH-sensitive 

nanosensors to report their intracellular location after Tat-mediated delivery. 

Integrative Biology  1(4), 318-323. 

Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M., 2003 Are oxidative 

stress−activated signalling pathways mediators of insulin resistance and β-cell 

dysfunction? Diabetes 52(1)1-8. 

Henderson, J.R., Fulton, D.A., McNeil, C.J., Manning, P., 2009. The development and in 

vitro characterisation of an intracellular nanosensor responsive to reactive 

oxygen species. Biosensors & Bioelectronics 24(12), 3608-3614. 

Rains J.L., Jain, S.K., 2011. Oxidative stress, insulin signalling and diabetes. Free Radical 

Biology and Medicine 50(5)567-575.  

 

 


	i. Abstract
	ii. Declaration
	iii. Acknowledgements
	iv. Table of Contents
	v. List of Figures and Tables
	vi. List of Abbreviations
	Chapter 1. General Introduction
	1.1 Reactive oxygen and nitrogen species in biological systems
	1.2 Mechanisms of reactive oxygen species generation
	1.2.1 Ultraviolet radiation
	1.2.2 NADPH oxidase and protein kinase C
	1.2.3 Mitochondrial dysfunction

	1.3  Reactive oxygen species in human disease
	1.3.1 Dermatological disease states
	1.3.2 Neurodegenerative disorders

	1.4 pH in disease states
	1.4.1 Metabolic disorders

	1.5 Tools for real time intracellular monitoring
	1.5.1 Established techniques for reactive oxygen species monitoring
	1.5.2 Established techniques of intracellular pH measurement
	1.5.3 Polyacrylamide nanosensors: 'PEBBLE's
	1.5.4 Nanosensor delivery

	1.6  Tools for real time extracellular monitoring
	1.6.1 Amperometric extracellular O2̄ monitoring
	1.6.2 Development of amperometric O2̄ monitoring methods

	1.7  Integration of intra- and extracellular monitoring systems
	1.8  References

	Chapter 2. Implications of using the fluorescent dyes, dihydrorhodamine-123 and 2’,7’-dichlorodihydrofluorescein diacetate, for the detection of UVA-induced reactive oxygen species
	2.1 Introduction
	2.2  Materials and methods
	2.2.1 Cell culture and preparation
	2.2.2 Fluorimeter-facilitated cell free measurements
	2.2.3 Quantifying UVA exposure dose response of dyes
	2.2.4 Observation of the effects of UVA on dye emission spectra
	2.2.5 Quantifying responses to xanthine/xanthine oxidase generated ROS
	2.2.6 FACS analysis of UVA irradiated HaCaT cells
	2.2.7 Fluorimetric analysis of UVA irradiated HaCaT cells

	2.3  Results
	2.3.1 Effect of diluent upon fluorescence of DHR123 and DCF-DA
	2.3.2 Effect of UVA upon the emission profiles of DHR123 and DCF-DA
	2.3.3 Effect of UVA pre-treatment upon the response of DHR123/DCF-DA
	2.3.4 In vitro methods using DHR123/DCF-DA as probes for UVA-induced oxidative stress

	2.4  Discussion
	2.5  References

	Chapter 3. Development and characterisation of optical techniques for intracellular analysis of ROS production
	3.1 Introduction
	3.2  Materials and methods
	3.2.1 Cell culture and preparation
	3.2.2 Reactive oxygen species sensitive nanosensor fabrication
	3.2.3 Nanosensor calibration
	3.2.4 Cell mediated nanosensor delivery
	3.2.5 MTT cell viability assay
	3.2.6 Extracellular amperometric nitric oxide and hydrogen peroxide monitoring
	3.2.7 Measurement of PMA-induced extracellular ROS flux.

	3.3 Results
	3.3.1 ROS-responsive nanosensor calibration
	3.3.2 Cell mediated nanosensor delivery optimisation
	3.3.3 Effects of nanosensor loading upon cell viability
	3.3.4 Effect of nanosensor loading upon extracellular NO and H2O2 flux
	3.3.5 Nanosensor reported PMA induced ROS responses

	3.4 Discussion
	3.5  References

	Chapter 4. Application of pH-sensitive nanosensors to primary cell models of Chronic Fatigue Syndrome
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 Cell culture and preparation
	4.2.2 pH-sensitive nanosensor fabrication
	4.2.3 Lipofection-mediated nanosensor delivery
	4.2.4 Preparation for confocal microscopy
	4.2.5 Fluorimetric measurement setup
	4.2.6 Dichloroacetate treatment regime

	4.3 Results
	4.3.1 Nanosensor delivery optimisation and confirmation
	4.3.2 pH-sensitive nanosensor calibration
	4.3.3 Intracellular monitoring using internalised pH-responsive nanosensors

	4.4  Discussion
	4.5  References

	Chapter 5. Direct, real-time monitoring of superoxide generation in isolated mitochondria
	5.1 Introduction
	5.2  Materials and methods
	5.2.1 Reagents
	5.2.2 Cell culture
	5.2.3 Mitochondrial fraction preparation
	5.2.4 Superoxide-responsive electrode preparation
	5.2.5 Monitoring superoxide generation from isolated mitochondria

	5.3  Results
	5.3.1 Superoxide electrode calibration
	5.3.2 Monitoring superoxide generation from isolated mitochondria

	5.4  Discussion
	5.5  References

	Chapter 6. Real-time monitoring of superoxide generation and cytotoxicity in neuroblastoma mitochondria induced by 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline.
	6.1 Introduction
	6.2  Materials and methods
	6.2.1 Reagents
	6.2.2 Cell culture
	6.2.3 Real-time assessment of whole cell respiratory rate
	6.2.4 Mitochondrial fraction preparation
	6.2.5 Preparation of O2̄ specific electrode
	6.2.6 Monitoring of TaClo induced O2̄ flux from isolated mitochondria
	6.2.7 Comparison of known mETC complex inhibitors to TaClo

	6.3  Results
	6.3.1 Electrode calibration
	6.3.2 Effect of TaClo upon mitochondrial function
	6.3.3 Amperometric monitoring of O2̄ generation by TaClo
	6.3.4 Comparison of O2̄ generation by known mETC inhibitors

	6.4 Discussion
	6.5  References

	Chapter 7. Integration of optical and amperometric monitoring systems
	7.1 Introduction
	7.2 Materials and Methods
	7.2.1 Design of the electrode array
	7.2.2 O2̄ sensitive electrode preparation
	7.2.3 Electrode calibration
	7.2.4 Cell culture and preparation
	7.2.5 Functional assessment of the G2 array electrodes
	7.2.6 Simultaneous measurement of extra- and intracellular ROS flux

	7.3  Results
	7.3.1 Assessment of G1 electrode arrays
	7.3.2 Enzymatic calibration of G2 electrode
	7.3.3 Independent amperometric monitoring of cellular O2̄ flux
	7.3.4 Independent optical monitoring of intracellular ROS generation
	7.3.5 Simultaneous intra- and extracellular monitoring of ROS

	7.4  Discussion
	7.5  References

	Chapter 8. General conclusions and future work
	8.1 Conclusions
	8.2  Future Work
	8.3 References


