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Abstract

Non-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of

an interaction. Ensuring the audit is irrefutable and verifiable by a third party is not a trivial task.

A lot of supporting infrastructure is required which adds large expense to the interaction. This

infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose

built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design

and implementation of such an infrastructure. The runtime environment makes use of several trusted

services to achieve external verification of the audit trail. Non-repudiation is achieved by executing

fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a

participant to protect their own interests by preventing any party from gaining an advantage by

misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated

implementation of protocols.

Extensibility is achieved by implementing the infrastructure in middleware and by presenting a

large variety of non-repudiable business interaction patterns to the application (a non-repudiable

interaction pattern is a higher level protocol composed from one or more non-repudiation proto-

cols). The middleware is highly configurable allowing new non-repudiation protocols and interaction

patterns to be easily added, without disrupting the application.

This thesis presents a rigorous mechanism for automated implementation of non-repudiation

protocols. This ensures that the protocol being executed is that which was intended and verified

by the protocol designer. A family of non-repudiation protocols are taken and inspected. This

inspection allows a set of generic finite state machines to be produced. These finite state machines

can be used to maintain protocol state and manage the sending and receiving of appropriate protocol

messages.

A concrete implementation of the run-time environment and the protocol generation techniques is

presented. This implementation is based on industry supported Web service standards and services.
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Chapter 1

Introduction

Non-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of

an interaction. Ensuring the audit is irrefutable and verifiable by a third party is a challenging task.

A lot of supporting infrastructure is required which adds large expense to the interaction. This

infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose

built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design

and implementation of such an infrastructure. The runtime environment makes use of several trusted

services to achieve external verification of the audit trail. Non-repudiation is achieved by executing

fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a

participant to protect their own interests by preventing any party from gaining an advantage by

misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated

implementation of protocols.

Extensibility is achieved by implementing the infrastructure in middleware and by presenting a

large variety of non-repudiable business interaction patterns to the application (a non-repudiable

interaction pattern is a higher level protocol composed from one or more non-repudiation proto-

cols). The middleware is highly configurable allowing new non-repudiation protocols and interaction

patterns to be easily added, without disrupting the application.

Implementing non-repudiation protocols is not a trivial task and manual implementation can

often introduce flaws. This can be due to programmer error, programmer mis-interpretation and

also flaws in the environment. Formal methods can be used to add confidence in the correctness of

the protocol, however, this correctness can be broken by an incorrect implementation. This thesis

presents a rigorous mechanism for implementing non-repudiation protocols which ensures that the

protocol being executed is that which was intended and verified by the protocol designer. A family

of non-repudiation protocols are taken and inspected. This inspection allows a set of generic finite

state machines to be produced. These finite state machines can be used to maintain protocol state

and manage the sending and receiving of appropriate protocol messages.

The thesis also presents a concrete implementation of the runtime environment and the protocol
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20 CHAPTER 1. INTRODUCTION

generation techniques. This implementation is based on industry supported Web service standards

and services.

1.1 Research issues and definitions

Achieving non-repudiation is intellectually demanding. In order to achieve non-repudiation of a par-

ticular action, it must be impossible for the originator of the action to deny responsibility. Achieving

this will rely on the generation of irrefutable evidence that can be used to prove that the action

was taken after it has occurred. All parties involved in the interaction must obtain this evidence

to allow them to prove that the interaction took place. An unfair situation would occur if some

but not all parties receive this evidence. If the interaction is of high value, it is conceivable that

one or more parties may wish to cheat by preventing another party from obtaining this evidence.

In order to maintain fairness, a fair non-repudiation protocol must be used. Fair non-repudiation

protocols maintain fairness by introducing a trusted third party (TTP). The TTP is also used to

ensure that the evidence is undeniable by its creator (This is explained further in Section 2.1.1). Fair

non-repudiation protocols are notoriously difficult to develop and, as a result, the vast majority of

published protocols are flawed. Formal methods can be used to find protocol flaws and, as a result,

can be used to increase confidence that the protocol does not contain any.

For a non-repudiation protocol to be useful it must be implemented and run within some suitable

framework. Implementing non-repudiation protocols is a difficult task, one which is time consuming,

tedious and error prone. As a result, a non-repudiation protocol, believed to be free of flaws, can

become flawed due to its implementation. By utilising a systematic approach to non-repudiation

protocol development, these development-introduced flaws can be removed.

As stated earlier, non-repudiation protocols need to be executed within a suitable framework.

This framework allows applications to make use of non-repudiation, without having to implement

their own non-repudiation protocol. To be useful to the applications, such a framework should

provide a collection of non-repudiable interaction patterns. These non-repudiable interaction pat-

terns can be used whenever the application needs to undertake a particular interaction that requires

non-repudiation. Request / response is an example of one such interaction pattern.

The remainder of this section describes some basic concepts used throughout this thesis. There

is also a set of definitions and notation frequently used.

1.1.1 Security

Security is a rather broad term and typically comprises five attributes.

• Authentication. The process of ensuring a principal is indeed who they purport to be.
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• Authorisation. The process of establishing what actions a (authenticated) principal is al-

lowed to undertake.

• Confidentiality. The process of preventing information from being discoverable by unin-

tended principals.

• Integrity. The process of ensuring modification of a piece of information can be detected.

• Non-Repudiation. Inability of a principal to refute a particular action within a particular

context.

Although non-repudiation is expressed as its own attribute, it does in fact encompass many of the

other attributes. Non-repudiation can only be achieved if modification to the information in question

can be detected. Thus non-repudiation also provides integrity. Non-repudiation is concerned with

which principals were involved in the interaction. Thus non-repudiation also provides authentication.

It is common for non-repudiation to be used in high value interactions. As a result, it would be highly

likely that the mechanism used to achieve non-repudiation would also provide confidentiality. From

this reasoning it can be seen that authorisation is the only aspect not of concern to non-repudiation.

This is because non-repudiation is concerned with establishing exactly what happened during an

interaction, not whether the action was allowed to happen. If a party were to undertake an action

they were not authorised to do, it could easily be detected as the non-repudiation property would

ensure the party in question could not refute the action. This is not to say that authorisation is not

required, more that it would be achieved separately to non-repudiation.

1.1.2 Non-repudiation

As stated above, non-repudiation is the inability of a principal to refute an action within a given

context. In practice, non-repudiation is typically concerned with the sending of a message from

one principal to another. Non-repudiation ensures the originator (A) of the message (msg) cannot

deny sending it and the recipient (B) of the message cannot deny receiving it. Non-repudiation is

achieved by generating evidence at various points during the sending of a message. To prevent the

evidence from being refuted, it is digitally signed by the originator. To achieve non-repudiation, A

would generate evidence for non-repudiation of msg’s origin. On B ’s receipt of msg, B can generate

evidence for non-repudiation of receipt for msg. It is important that A receives the non-repudiation

of receipt evidence and that B receives the non-repudiation of origin evidence and msg. It is these

evidences that are required to prove what happened, during the interaction, to a trusted third party

(judge) in case of dispute. An unfair situation can occur if one party receives their evidence and the

other does not. Assume B receives evidence for non-repudiation of origin but A does not receive

the evidence for non-repudiation of receipt. In this scenario B may repudiate receiving msg from A
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because A cannot prove it was received. To prevent unfair situations a fair non-repudiation protocol

is used to ensure that either both parties obtain their expected items or neither does.

There are other facilities required by a non-repudiation protocol, other than evidence generation

and fairness. These are discussed further in Section 2.1.

1.1.3 Definitions

This section presents definitions of phrases and symbols commonly used throughout this thesis.

Those not present here are required for localised use and are thus defined in situ.

1.1.3.1 Evidence

Four types of non-repudiation evidence are used throughout this thesis. A description of each follows

along with the intended purpose.

• Non-repudiation of origin (NRO). This protects against the originator’s false denial of

having sent the message. This would typically comprise a signed and zero or more unsigned

parts. The signed part is referred to as the evidence of origin (EOO).

• Non-repudiation of receipt (NRR). This protects against the recipient’s false denial of

having received the message. This would typically comprise a signed and zero or more unsigned

parts. The signed part is referred to as the evidence of receipt (EOR).

• Non-repudiation of submission (NRS). This provides evidence that the originator sub-

mitted the message to some intermediary. This would typically comprise a signed part and

zero or more unsigned parts. The signed part is referred to as the evidence of submission

(EOS).

• Non-repudiation of validation (NRV). This provides evidence that the originator has

validated the message and also as to the outcome of this validation. This would typically

comprise a signed part and zero or more unsigned parts. The signed part is referred to as the

evidence of validation (EOV).

The NRO, NRR and NRS are commonly used throughout the literature. The NRV is used in a

protocol proposed in Section 3.2.

1.1.3.2 Fairness

Fairness ensures that at the end of a non-repudiation either one of two situations occur:

1. All parties get expected items.
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2. No parties get any items of any value.

More specifically, four types of fairness can be expressed. Kremer et al. [47] provide definitions

within the context of fair non-repudiation protocols:

• Weak Fairness. A non-repudiation protocol provides weak fairness if it ensures that if a

participant A (or B) does not obtain its evidence, while the other participant B (or A) did,

then A (or B) will receive a proof of this fact.

• Strong Fairness. A non-repudiation protocol provides strong fairness if and only if at the

end of a protocol execution either A got the non-repudiation of receipt evidence for msg, and

B got the corresponding msg as well as the non-repudiation of origin evidence for this msg, or

neither of them got any valuable information.

• True Fairness. A non-repudiation protocol provides true fairness if and only if it provides

strong fairness and, if the exchange is successful, the non-repudiation evidences produced

during the protocol are independent of how the protocol is executed.

• Probabilistic Fairness. A non-repudiation protocol is e-fair if and only if the probability

that at the end of a protocol execution either A got the non-repudiation of receipt evidence

for the message msg, and B got the corresponding message msg as well as the non-repudiation

of origin evidence for msg, or none of them got any valuable information, is ≥ 1− e.

These definitions are useful for expressing fairness properties of non-repudiation protocols. Markow-

itch et al. [55] define two additional properties, of a non-repudiation protocol, that impact fairness.

These properties are as follows:

• Timeliness. A non-repudiation protocol is said to be timely if it ensures that both A and B

will always have the ability to reach, in a finite amount of time, a point in the protocol where

they can stop the protocol while preserving fairness.

• Abuse-Free. A non-repudiation protocol is said to be abuse free if it is impossible for a single

entity, at any point in the protocol to be able to prove to an outside party that he has the

power to either terminate (abort) or successfully complete the protocol.

Timeliness is a key goal of some of the more modern fair non-repudiation protocols; where as the

abuse-free property tends to attracts less attention.

1.1.3.3 Trusted third parties

Zhou and Gollmann [91] have presented a clear definition of what comprises a trusted third party.

They also define the different roles that a trusted third party can take:
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A trusted third party (TTP) is a security authority or agent that is trusted by all parties involved

within a particular interaction. TTPs play important roles in non-repudiation services. Depending

on the non-repudiation protocol used and the non-repudiation policy in force, TTPs may be involved

in different ways to assist participants to generate, verify, or transfer non-repudiation evidence and

resolve disputes.

The level of involvement required by a TTP (during a non-repudiation protocol) can vary. Kremer

et al [47] provide definitions for five levels of involvement.

• Inline TTP. A TTP involved in each protocol message’s transmission during the protocol is

said to be inline.

• Online TTP. A TTP involved during each session of the protocol but not during each (pro-

tocol) message’s transmission, is said to be online.

• Offline TTP. A TTP involved in a protocol only in case of an incorrect behavior of a dishonest

entity or in case of a network error, is said to be offline.

• Neutral TTP. A TTP is known as neutral if the assistance that it brings to the successful

realisation of a protocol is not conditioned by its knowledge of the information exchanged.

• Transparent TTP. An offline TTP providing evidences indistinguishable from the evidences

exchanged in a faultless case, is said to be transparent.

Zhou and Gollmann define the following roles that a TTP can take:

• Certification Authority. A certificate authority generates key certificates which guarantee

the authenticity of verification keys to be used for non-repudiation purposes. They also main-

tain a certificate revocation list (CRL) in order to determine the validity of existing verification

keys. Certificate authorities are always required when digital signatures are used for evidence

generation. They will usually be offline in a non-repudiation service.

• Notary. A notary is trusted by the communicating parties to provide correct evidence on

their behalf or verify evidence correctly. Properties about the message, such as its origin and

integrity, can be assured by the provision of a notarisation mechanism.

• Delivery Agent. A delivery agent is trusted to deliver a message from one party to another

and provide them with corresponding evidence. A delivery agent is usually inline and can also

be used to provide evidence regarding the time of message submission and delivery.

• Adjudicator. The ultimate purpose of a non-repudiation service is to resolve disputes about

the occurrence or non-occurrence of a claimed event or action. An adjudicator is a judge

capable of resolving disputes by evaluating the evidence against a non-repudiation policy. An
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adjudicator is only involved in a non-repudiation service if a dispute occurs. The dispute is

resolved on presentation of non-repudiation evidence. Evidence not presented is assumed not

to exist.

These definitions are used frequently throughout this thesis to describe involvement of trusted third

parties.

1.1.4 Common notation

Table 1.1 presents notation commonly used throughout this thesis.

Notation Description

msg the application message

A the originator of msg

B the intended recipient of msg

TTP the trusted third party

X, Y concatenation of two tokens X and Y

rn a secure pseudo random number.

h(X) a one way hash function applied to token X

K symmetric key

eK(X) and dK(X) encryption and decryption of X with symmetric key K

P → Q : msg principal P sends message msg to principal Q.

P ← Q : msg principal P gets message msg from principal Q.

sigP (X) principal P ’s digital signature on X.

encP (X) X encrypted with principal P ’s public key.

Table 1.1: Common protocol notation

1.2 Thesis overview

This thesis presents a framework to render a business interaction non-repudiable. In order to render

the business interaction truly non-repudiable it must be impossible for any party to refute their

participation. Furthermore, the evidence generated must be sufficient to convince a judge in case of

dispute.

At the heart of a non-repudiation service is the fair non-repudiation protocol. It is this protocol

that ensures valid evidence is generated and that the intended parties receive the items they are

supposed to. Traditionally, a non-repudiation protocol will go through a set of processes before
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Design
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If flawed, re-design

Validation
Manually

Implement
Protocol

Run Protocol

Figure 1.1: Traditional protocol development cycle

it is used in an application. It should be noted that this process is the same for any software

engineering task. Figure 1.1 shows the traditional development cycle for a protocol. Initially, a

protocol design is created. This design is then validated to improve confidence that it is free of

flaws (this validation could be achieved by using automated formal methods based tools). Once

the protocol has been validated, a protocol developer would take the design and implement the

protocol. This implementation process is open to programmer error and also at the mercy of the

programmer’s interpretation of the design. Once implemented, the protocol is executed within a

suitable framework. By the time the protocol is used in a real application, the confidence gained

from the protocol’s validation is lost due to the uncertainties introduced by the manual protocol

implementation.

There are two main issues that can be raised by inspecting the traditional protocol development

life cycle. The first is that the method of going from a verified protocol design to a faithful protocol

implementation is difficult to achieve. The second issue regards the mentioned “suitable framework”.

Again, creating a framework capable of executing a non-repudiation protocol and providing all

required services is non-trivial. To address the first issue, a new protocol development cycle is

proposed. For the second issued, a protocol execution framework is presented.

Figure 1.2 shows the proposed protocol development cycle. A validated protocol design is devel-

oped in the same way as in the traditional approach. This validated protocol design is then used

automatically to create a protocol implementation. The protocol implementation is then passed to

the execution framework for execution and use within applications requiring non-repudiation. The

execution framework is likely to be rather complex and thus beyond the capabilities of formal veri-

fication techniques. Section 5.6.3 describes a mechanism that could be used to increase confidence

in the framework. This thesis is mainly concerned with the processes enclosed in the grey shaded

area. However, in Chapter 3 a novel extension of a particular fair non-repudiation protocol will be

presented — this work lies within the “design protocol” box. The protocol validation process has

been researched heavily and is outside the scope of this thesis.

In Chapter 3, the protocol execution framework is presented. In order for this framework to be

useful to application developers, a rich set of interaction patterns must be provided. To achieve this,
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the framework presents an extensible non-repudiation protocol hierarchy. This hierarchy provides

a wide range of non-repudiable interaction patterns for composing applications. Some of these are

designed for very specific commonly used business interactions such as raising a purchase order

or sending an invoice. Other interaction patterns, of a more general nature, are also presented.

These provide facilities for undertaking interactions such as non-repudiable request/response. The

hierarchy is composed in such a way that high level protocols are composed from lower level protocols.

At each level of the hierarchy, new protocols can be added and old protocols can be removed.

Furthermore, existing protocols can be re-configured such that their composition can be modified.

Each of these re-configurations can be made without modifying the application interface and thus

without causing disruption.

Business interactions are typically of high value and, as a result, it could be desirable to enact

purpose built (professional) services to undertake some of the more demanding requirements of non-

repudiation. As a result, critical services can be delegated to an expert. For example, auditing could

be undertaken by a third party auditing service. Audits may be required to store non-repudiation

evidence for many years; as a result, an intangible amount of data needs to be stored. This data

must be stored reliably and in such a way that a particular piece of evidence can be obtained when

needed. As a result, evidence storage can become rather cumbersome to undertake on an individual

bases and may be better left to an expert. To support a service based architecture, a novel fair non-

repudiation protocol is presented in Section 3.2. This protocol facilitates a (configurable) service

based architecture whilst achieving other preferable features of a non-repudiation protocol.

Chapter 4 presents a process for creating a design faithful non-repudiation protocol implementa-

tion. This chapter shows how a class of non-repudiation protocols, designed using notation commonly

found in the literature, can be represented using finite state machines (FSMs). These finite state

machines also consider what to do if an exception occurs. Transitions in the FSM occur when a valid

protocol message is received or when a signal is received from the protocol execution framework.

For example, signals can be used to start the protocol and to signal exceptions. When a transition

is made, zero or more protocol messages are sent. The finite state machines rely on mechanisms for

verifying received protocol messages and for generating new ones. These requirements are achieved

by careful inspection of the protocol design notation and by a set of mapping functions. This process

can be totally automated and, as a result, removes the potential for error introduced by the manual

protocol development present in the traditional protocol development cycle.

Chapter 5 presents a concrete implementation of the protocol execution framework and the

process for automatic development of non-repudiation protocols. The non-repudiation protocol

hierarchy is also present in the implementation. The implementation is middleware-based and makes

use of Web service standards for the protocol messages exchanged between participants. The chapter

shows mapping functions that are used to map protocol messages from the protocol design onto real
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messages. The inverse is also presented, this allows the values of protocol tokens to be taken from

real protocol messages.

1.3 Thesis contribution

This thesis makes several contributions to the research work on non-repudiation and B2B systems

design. The main contributions are as follows:

• A flexible and extensible hierarchy for composing (non-repudiable) high level interactions from

fair non-repudiation protocols.

• A novel protocol for service oriented fair non-repudiation (situated in the “Design protocol”

phase of Figure 1.2).

• A novel approach for rigorous implementation of a class of fair non-repudiation protocols

(situated in the “Create protocol implementation” phase of Figure 1.2).

• A concrete framework for executing non-repudiation protocols (situated in the “Execute pro-

tocol” phase of Figure 1.2).

• A design section describing how the above contributions could be implemented.

29



30 CHAPTER 1. INTRODUCTION

30



CHAPTER 2. LITERATURE REVIEW 31

Chapter 2

Literature Review

This chapter presents a review of research relevant to this thesis conducted by various academic

and industry based research groups. The chapter begins by discussing research based directly on

non-repudiation and also covers the related issues of certificate management, fairness and fault tol-

erance. The next section takes an in depth look at fair non-repudiation protocols and concludes

with a comparison of all (that we are aware of) published TTP based fair non-repudiation protocols.

The following section presents various solutions for achieving non-repudiation. This section includes

various middleware solutions for achieving non-repudiation and one application for achieving fair

exchange. There follows a discussion of various methods for automatically generating implementa-

tions of security protocols. A discussion of business interaction related issues follows. Here the work

by RosettaNet is presented as well as research regarding contract enforcement. The final section

provides discussion of the research presented in this chapter. This includes an overview of the key

points discovered and a comparison of existing research to that presented in this thesis.

2.1 Non-repudiation

Non-repudiation is the inability to deny a particular action. In the context of distributed systems,

non-repudiation can be applied to the sending and receiving of messages. Consider an interaction

where A sends a message msg to B. The following shows the non-repudiation evidence that is

required.

1. Non-repudiation of origin (NRO). This provides undeniable proof that A was the originator of

msg.

2. Non-repudiation of Receipt (NRR). This provides undeniable proof that B received msg.

The NRO provides B with a guarantee that A did in fact send the message. This is typically

implemented using public key cryptography techniques. A will use their private key to digitally

sign the message. As it is assumed that only A has access to their private key, it provides B with
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undeniable evidence as to the message’s origin. The NRR provides A with a guarantee that B did in

fact receive the message. Again this would be implemented using digital signatures, where B would

sign an acknowledgement of receipt and return to A.

To prevent possible denial of evidence creation, the NRO and NRR must be time-stamped by a

trusted third party to ascertain when the evidence was created. Also, to ensure both parties receive

the evidence they require, the NRO and NRR must be exchanged fairly. These issues are discussed

below.

2.1.1 Certificate management

Digital signatures can be used to authenticate the origin and integrity of an associated message and

are used for creating non-repudiation evidence. Thus, the integrity of the evidence is dependent

on the security of the digital signatures. It is not sufficient for the signature scheme to use strong

cryptographic techniques — the signature keys must also be well managed.

For a digital signature to be valid, the signature key must not be compromised. In practice this

could be difficult to ensure and, as a result, signature keys are revocable. When a key is suspected

of being compromised it should be revoked. The act of revocation involves adding the key details

to a certificate revocation list (CRL). When validating a signature, the CRL should be consulted

to ensure the signature key has not been compromised. This, however, presents a problem for non-

repudiation evidence. Consider a situation where principal A generates evidence e at time t using

key k. A then revokes k at time t+1. As the time of creation cannot be proved from e, A may deny

creating e, claiming that it was produced at some time t’ where t’ > t+1. This problem can be

resolved by ensuring e contains t. However t needs to be added to e in such a way that it can’t be

spoofed by the holder of A’s signature key.

One aproach to solving this problem is to use an online trusted time stamping authority (TSA).

Each newly created signature is time-stamped by the TSA so that a latest time of signature creation

is established. Various schemes are based on this idea [3, 13, 24]. Timestamping can prove too

inefficient and expensive for low value transactions. This is because the TSA has to be involved

every time a signature is created. Although expensive, this mechanism provides the highest level of

security as an exact time-stamp is provided. Thus, for some high value transactions, this may be

the best option.

In response to the high expense associated with online time stamping services, various schemes

have been proposed that reduce or eliminate the TTP requirements. In 1999, Zhou and Lam [94]

proposed a scheme based on temporary certificates that reduced the TTP requirements to that of

an online TTP. This is an improvement as the TTP needs to be available, but not every time a

signature is created. In the scheme, a principal has two types of keys: Revocable signature keys

and irrevocable signature keys. Revocable signature keys are issued by a certificate authority (CA)
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and can be revoked as usual. Irrevocable signature keys are issued by users themselves and are

time stamped by a TSA. As the name suggests these keys can’t be revoked before their expiry.

The revocable signature key is used as a long term master key to issue irrevocable signature keys.

Signatures created using the irrevocable signature key are only valid during the validity period of

the irrevocable signature key. As a result, digital signatures created with the irrevocable signature

key do not need to be timestamped by a TSA. This scheme is only recommended for low value

transactions. This is due to two properties. The first is that signatures are only valid during the

validity period of the associated irrevocable signature key. Thus all disputes must be resolved before

the irrevocable key expires. Secondly, due to the key being irrevocable, the owner must protect it

or otherwise be liable for any misuse. This threat can be reduced by the irrevocable key owner

destroying the key when it is no longer needed. Later in 1999, Zhou and Lam [93] proposed another

scheme; however this scheme didn’t involve a TTP. Here, every signature created by a user is linked

such that any change in order of the signatures or insertion of a new signature can be detected.

Signature keys can be revoked by terminating the chain. This prevents any new signature being

added to the end of the chain with the revoked key. Although more efficient (no TTP involvement),

this approach is only appropriate for regular business transactions as the scheme assumes a link of

signatures can be created. In 2002, Itkis and Reyzin [42] proposed Intrusion-Resilient Signatures —

another TTP-less aproach. This scheme has a strong mathematical basis, which was found in [86]

to be too impractical for real application.

For high value transactions, the trusted timestamping aproach is the only method offering high

enough levels of security. On the other hand for low value transactions a more efficient TTP-less

method can be used.

2.1.2 Fault tolerance

A fair exchange protocol is fault-tolerant if it ensures no loss of fairness to an honest participant,

even if the participant’s node experiences failures of the assumed type. In other words, an honest

user does not suffer a loss of fairness because of their node failure. This is not the case with

most of the fair exchange protocols studied in the literature, including the ones presented in this

chapter. Ezhilchelvan and Shrivastava (in [29]) describe various approaches to preserving fairness

in the presence of node crashes and recovery. Here they develop a family of fair exchange protocols

with differing abuser, fault tolerance and communication assumptions. There follows a description

of each of these assumptions.

• Abuser assumptions. An abuser is a user of the fair exchange application that can misbe-

have. An abuser may be malicious or restricted. A malicious abuser has total control over

the application executing the fair exchange protocol. A restricted abuser may only observe
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the protocol messages exchanged as part of the protocol run. Furthermore, a restricted abuser

has no access to any keys used by the application, encrypted messages can’t be decrypted and

signed messages can’t be tampered with.

• Failure assumptions. A node executing the fair exchange protocol is said to be crash-

tolerant if after a crash (the node stops functioning) the node recovers within some finite (but

unknown) amount of time. The node has access to a stable store whose contents survive the

crash. A node executing the fair exchange protocol is said to be reliable if it never fails.

• Communication channel assumptions. A communication channel can be synchronous or

asynchronous. In a synchronous communication channel all messages are bounded by a known

delay. In an asynchronous communication channel, the maximum delay is finite, but unknown.

The family of protocols consists of eight similar protocols. Each protocol has differing assump-

tions. These assumptions are derived from every permutation of the above assumptions. Four of

the permutations show how a fair exchange protocol can be made crash-tolerant in the presence of

restricted abusers and malicious abusers communicating via asynchronous and synchronous commu-

nication channels. The fair exchange protocols are rendered crash tolerant by slightly changing the

behaviour of each participant. Each crash-tolerant participant must immediately persist protocol

messages (on their receipt), to stable storage. This ensures the protocol messages survive the crash

and the protocol can be continued when the crashed participant recovers. Furthermore, the TTP

must maintain the state of all protocol runs; this allows a recovered participant to find out the final

outcome of the protocol (should it have completed).

2.2 Fair non-repudiation protocols

Exchanging non-repudiation evidence is essential for proving what happened during an interaction

based on message exchange. However, it is necessary that during any part of the interact no party

is disadvantaged. For example, consider a situation where B receives NRO, but A does not receive

the NRR. This would be unfair, as B could choose to deny receiving msg but A could not prove

sending it. Fairness can be achieved by operating a fair exchange protocol in which A exchanges

NRO and msg with B for NRR. Markowitch et al [55] present a precise definition of fairness:

The communication channel’s quality being fixed, at the end of the protocol run, either

all involved parties obtain their expected items or none (even a part) of the information

to be exchanged with respect to the missing items is received.

A fair exchange protocol is used in a scenario where two parties wish to exchange items without

losing fairness. Several categories of fair exchange protocols exist, depending on the information

exchanged [55]:
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• Electronic purchase of digital goods: Exchange of an electronic item against an electronic

payment (issued by the client).

• Digital contract signing: Exchange of signatures on a given electronic document.

• Non-repudiable message delivery: Exchange of an electronic item and its proof of origin against

a proof of receipt.

• Certified e-mail: Exchange of an electronic message against proof of receipt.

• Barter: An electronic item of value is exchanged against another electronic of similar value.

It should be noted that there exists a distinction between non-repudiable message delivery protocols

and certified e-mail protocols. That being that in the latter case the recipient of the e-mail should

not know the sender’s identity when deciding whether to accept the message or not [46].

Non-repudiable message delivery can be achieved by generating non-repudiation evidence at

various points in the interaction. The originator A of the message can be verified by appending

non-repudiation of origin (NRO) evidence to the message. However, to provide evidence of receipt

NRR, the recipient B of the message must respond with a signed acknowledgement. There are two

possible reasons why A may not receive the NRR:

• An unreliable communication channel. Here, B sent NRR to A, but the message delivery

failed.

• A dishonest participant. B decides not to send NRR to A.

In either of these cases, B may repudiate receipt of the message. To ensure A receives NRR and

B receives NRO, a fair exchange protocol must be used. Protocols for achieving non-repudiable

message delivery, whilst maintaining fairness, are called fair non-repudiation protocols. The following

definition by Zhou and Gollmann [90] states what makes a non-repudiation protocol fair:

A non-repudiation protocol is fair if it provides the originator and the recipient with

valid irrefutable evidence after completion of the protocol, without giving a party an

advantage over the other party in any possible incomplete protocol runs.

Figure 2.1 shows a hierarchy of fair exchange type interactions and a hierarchy of protocols used

to implement non-repudiable message delivery. Each of the interaction types under “fair exchange”

can be implemented using a type of fair exchange protocol. A fair non-repudiation protocol is a

fair exchange protocol that achieves non-repudiable message delivery. Fair non-repudiable message

delivery can by achieved by a gradual exchange, probabilistic or deterministic non-repudiation pro-

tocol. This thesis is interested in the deterministic protocols (in the grey shaded boxes). These

35



36 CHAPTER 2. LITERATURE REVIEW

Fair
Exchange

Electronic
Purchase

Digital
Contract
Signing

Non-
repudiable
message
delivery

Certified
E-mail

Barter

Gradual
Exchange

Probabilistic

Inline
TTP

Based

Online
TTP

Based

Offline
TTP

Based

Transp.
TTP

Based

Deterministic

Figure 2.1: Fair exchange protocol hierarchy

protocols can be further sub-divided based on the level of involvement of the TTP. There follows a

summary of recent research into non-repudiation protocols, categorised by the level of involvement

by the TTP.

2.2.1 Gradual exchange protocols and probabilistic protocols

Kremer et al. undertook an intensive survey of fair non-repudiation protocols [47]; this has been the

basis for much of the discussion of two party fair non-repudiation protocols that follows.

With regard to fair exchange protocols, those without a TTP were the first to be proposed.

During the mid 1980’s several such protocols appeared in the literature [8, 14, 15, 22, 62]. However,

it was not until 1999 that the first fair non-repudiation protocol without a TTP was proposed [54].

The first fair exchange protocols without a TTP were developed for exchanging secrets, such as

secret keys, between two parties. The basic idea was that both parties took it in turns to transmit

a bit of their secret until both secrets had been exchanged in full. This idea assumed both secrets

were of equal size. The amount of computation needed to retrieve the secret would halve with each

round of the protocol. If one party quit the protocol before completion, there could be at most a

factor of two difference in the time needed for each participant to obtain their secret. This time

difference was reduced by in [78, 77] where it was shown how a fraction of a bit could be exchanged

with each round. With each of these protocols it must be possible to detect whether a party has

cheated by sending incorrect bits — this problem was solved in [78, 12, 28].

Each of these protocols was based on a rather unrealistic assumption — that each party would

have equivalent computational power. The first protocol not based on this assumption was proposed

by Or et al [30] in 1990. The protocol was designed for contract signing, in which parties exchanged

privileges rather than the actual secret. An entity is more privileged than another if it has a greater
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ability to convince a judge that the contract has been signed by all participants. In the two party

protocol, participants exchange messages stating the following:

With a probability P the contract will be valid at the time T

With each round of the protocol, the probability P increases. The protocol ends when one party

withdraws, P reaches 1 or time T is met. After time T each party can present the last received

message to the judge. The judge will then decide whether or not the contract is valid (signed by all

parties). Here the judge picks a random number n (0 ≤ n ≤ 1). If P > n the judge declares the

contract to be valid, otherwise the contract is invalid.

In 1998 Syverson proposed protocols [76] for the fair exchange of low value items. Here each

item is encrypted using a secret key and sent to the other participant. The secret key is then

encrypted using a weaker form of encryption that can be broken in some known (based on the

computational power of the participants) period of time. The participants then exchange these

encrypted keys. The protocol continues by each participant exchanging their encrypted key under

successively weaker encryption until it becomes trivial to break. Again, this protocol makes the

rather unrealistic assumption that both participants have equal processing power. Furthermore, at

some point in the protocol run, one participant will be able to acquire the key in time where as the

other will not, thus fairness is not maintained.

Two party protocols are often disregarded for practical use. This is because they only give

probabilistic fairness and they tend to be rather inefficient due to the large number of messages that

need to be exchanged. Furthermore, it was shown in Section 2.1.1, that for high value transactions

a TTP is required to time stamp evidence. Therefore a seemingly two party protocol, requires a

TTP if the value of the transaction is high.

2.2.2 Inline TTP based protocols

The first fair exchange protocol utilising an inline TTP was proposed in 1994 [8]; this was in the

context of certified email. The first non-repudiation protocol utilising a TTP was proposed in 1996

by Coffey and Saidha [16]. In this protocol, all communication was done through the TTP. The

protocol begins with the TTP collecting the message and non-repudiation evidence. Once the TTP

has all the required items, it distributes them to the intended parties. The protocol includes steps

dedicated to time stamping the evidence. However, this only adds confusion. If signatures were

assumed to be time stamped (by a trusted time stamping authority), these steps could be removed

whilst maintaining correctness. A detailed discussion of the protocol is presented in Section 2.2.2.1;

here the steps required to time stamp the non-repudiation evidence have been removed. The protocol

does not consider timeliness, in that no party may unilaterally bring the run to completion. This can

break fairness as both participants will only be willing to wait a particular amount of time before
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quiting the protocol. Once one party has quit the protocol, the other may complete the protocol

and potentially gain an advantage.

In 1997 Zhou and Gollmann [92] discuss several issues present in the original Coffey and Saidha

protocol. The original protocol ensured that all protocol messages remained confidential. This is

unnecessary and thus inefficient. In actual fact only two protocol messages need to remain confiden-

tial. Furthermore, public key cryptography is used to realise the confidentiality requirements — this

is inefficient compared to symmetric key alternatives. The original protocol used nonces to prevent

replay attacks; Zhou and Gollmann commented on how this was unnecessary as replay is not of

concern to a non-repudiation protocol. This is because the NRO and NRR are easy to duplicate,

thus the number of copies does not represent the number of times the message was sent or received.

Coffey and Saidha make the following statement:

If TTP holds EOR, then the data exchange is deemed to have taken place

Zhou and Gollmann claim this statement is incorrect for the following reason. The TTP will hold

EOR before the data exchange actually takes place. The data exchange does not occur until TTP

has all required evidence (including the EOR). Thus, if the communication channel is unreliable

either participant may not receive their expected items. However, it is normal to assume eventual

message delivery during the run of a non-repudiation protocol, in which case the statement holds.

Protocols employing an inline TTP are commonly viewed as having too many disadvantages

[85, 49]. The disadvantages are due to the large burden placed on the TTP:

• High communication requirements. The TTP is involved in every step of the protocol.

• High storage requirements. The TTP must store all evidence and the application message for

some previously agreed period of time.

• High security requirements. The TTP is required to store sensitive information. For a correctly

functioning TTP, this information must remain confidential.

However, in some circumstances it could be desirable to place high demands on the TTP. Essentially,

the TTP can provide a high value service by removing burden from the end user participants. For

example the TTP could provide a secure storage and archival service that would prevent the end

user participants from needing their own mechanism.

There follows a detailed description of the Coffey and Saidha protocol.

2.2.2.1 Coffey-Saidha protocol

Coffey and Saidha [16] proposed a protocol for non-repudiation with mandatory proof of receipt.

The protocol uses an inline TTP. Figure 2.2 shows a simplified protocol description. The description
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is simplified in that the steps required to apply a trusted time stamp to the digital signatures have

been removed. The simplified version is taken from [85]. In the protocol, principal A wishes to send

message msg to principal B and receive a receipt. A and B do not communicate directly; instead all

communication is via TTP, who acts as an inline trusted third party. For this protocol, the following

additional notation is used:

Notation Description

req request to initiate the protocol

nA and nB nonces chosen by TTP

EOO = sigA(A, B, msg) evidence of origin of msg

EOR = sigB(A, B, H(EOO)) evidence of receipt of a message satisfying h(EOO)

Table 2.1: Coffey-Saidha protocol - additional notation

1 A→ TTP : req

2 TTP → A : encA(nA)

3 A→ TTP : encTTP (nA, A , B, msg, EOO)

4 TTP → B : encB(nB, A, B, H(EOO))

5 B → TTP : encTTP (nB, A, B, EOR)

6 TTP → B : encB(A, B, msg, EOO)

7 TTP → A : encA(A, B, EOR)

Figure 2.2: Coffey-Saidha Protocol

The protocol begins with A submitting a request to TTP to begin the protocol. If accepted,

TTP will reply with the nonce nA. In step 3, A sends the nonce nA, the message msg and the

evidence of origin EOO. nA is used by TTP to ensure the freshness of the message. In step 4, TTP

sends the nonce nB and a digest of the EOO. Given H(EOO), B is able to generate EOR despite

not receiving msg. Under normal circumstances, B would not be willing to submit EOR before

receiving the associated msg. However, B trusts TTP and believes that EOR will only be disclosed

to A should msg be available to B. B responds in step 5 by returning the EOR along with the nonce

nB to TTP. Again, the nonce nBis used to ensure freshness of this message. TTP now has both the

EOR and the EOO. Step 6 involves TTP sending the EOO and the message msg to B. Similarly

TTP send the EOR to A in step 7.

Figure 2.3 shows the improved protocol taking into account Zhou and Gollmann’s comments in

[92].
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Notation Description
C = eK(M) Commitment (cipher text) for message M.
L = H(M, K) A unique label linking C and K.
fi(i = 1, 2, ...) Flags indicating the intended purpose of a signed message
EOO_C = sigA(f1, B, L, C) Evidence of origin of C.
EOR_C = sigB(f2, A, L, C) Evidence of receipt of C.
sub_K = sigA(f3, B, L, K) Authenticator of K provided by A.
con_K = sigTTP (f4, A, B, L, K) Evidence of confirmation of K issued by TTP.

Table 2.2: Zhou Gollmann protocol with on-line TTP - additional notation

1 A→ TTP : encTTP (A , B, msg, EOO)

2 TTP → B : A, B, H(EOO)

3 B → TTP : encTTP (A, B, EOR)

4 TTP → B : A, B, msg, EOO

5 TTP → A : A, B, EOR

Figure 2.3: Improved Coffey-Saidha Protocol

2.2.3 On-line TTP based protocols

The first non-repudiation protocol employing an online trusted third party was proposed in 1983 by

Rabin [69]. This protocol only provided probabilistic fairness. In 1996 Zhang and Shi [83] published

a protocol that provided strong fairness; however, it did not provide timely termination. Also in

1996, Zhou and Gollmann [90] proposed a protocol that provided both strong fairness and timely

termination. The aim of this protocol was to reduce the work required by the TTP to a minimum.

A detailed description of this protocol follows. This protocol is chosen for discussion as it is a

commonly studied protocol and appears frequently in the literature.

2.2.3.1 Zhou Gollmann protocol with on-line TTP

The basic idea of the protocol is to split the message M into two parts, the commitment C and

the key K where M = dK(C). A will submit C to B and K to TTP. Both A and B then need to

retrieve the confirmed K from the TTP as part of the evidence generation. The additional notation

is specified in Table 2.2. Figure 2.4 shows a description of the protocol. Flags (fn) are used to

describe the purpose of each message.
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1 A→ B : f1, B, L, C, EOO_C

2 B → A : f2, A, L, EOR_C

3 A→ TTP : f3, B, L, K, sub_K

4 B ← TTP : f4, A, B, L, K, con_K

5 A← TTP : f4, A, B, L, K, con_K

Figure 2.4: Zhou Gollmann protocol with on-line TTP

A description of the protocol follows:

1. A begins by sending C and EOO_C to B. The protocol remains fair as C is incomprehensible

without K. B must verify EOO_C and store it before continuing.

2. B responds with the EOR_C. Fairness is maintained as EOR_C only proves receipt of the

ciphered M which is useless without K. A must verify and store EOR_C before continuing.

3. A now submits K and sub_k to TTP. B could eavesdrop this step and thus retrieve M.

However, as eventual message delivery is assumed, A will eventually be able to send K and

sub_K to TTP in exchange for con_k. After receiving K and sub_K from A, TTP will

generate con_K and then make the following publicly accessible: f4, A, B, L, K, con_K.

4. B can now fetch K and con_K from TTP. B then obtains M by computing M = dK(C) and

saves con_K as evidence that K originated from A. As eventual delivery is assumed, B will

always be able to fetch K and con_K from TTP.

5. Here A fetches con_K from the TTP and saves it as proof that K is available to B.

The protocol remains fair as A can only obtain EOR_C and con_K if and only if A sends C to

B and K to TTP. Also, if A can access con_K, then so can B. If eventual message delivery is

assumed, the protocol remains fair at each step. The TTP used in this protocol is inline and acts as

a lightweight notary. The only requirements are that it must notarise keys on request and maintain

a publicly accessible directory service. This makes for a very lightweight TTP for several reasons.

Firstly, the TTP is only required to deal with keys and never receives the message (ciphered or

plain); in most cases the keys will be smaller than the message. Secondly, it is the participants’

responsibility to retrieve con_K. Thus the TTP does not need to keep resending con_K until it

it is acknowledged. Finally, the message remains confidential to both A and B, providing a secure

communication channel is available.

There are two possible disputes that may occur; (i) A repudiates the origin of M, (ii) B repudiates

the receipt of M. In the first case, B must present (EOO_C, con_K, M, C, K, L) to the arbiter. In

evaluating the evidence the arbiter must ensure:
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1. EOO_C = sigA(f1, B, L, C)

2. con_K = sigTTP (f6, A, B, L, K)

3. L = h(M, K)

4. M = dK(C)

The first check proves that A sent the commitment C with label L to B. The second check proves

that A submitted the message key K with label L to the TTP. The third check ensures that C and

K are uniquely linked by L. The final check ensures that M is in fact the result of decrypting C

with K. If all four checks succeed, the arbiter will conclude that M did in fact originate from A.

In the second case, A must present (EOR_C, con_K, M, C, K, L) to the arbiter. In evaluating

the evidence the arbiter must ensure:

1. EOR_C = sigB(fs, A, L, C)

2. con_K = sigTTP (f6, A, B, L, K)

3. L = h(M, K)

4. M = dK(C)

The first check proves that B received commitment C with label L from A. The second check proves

B received, or is able to receive the message key K with label L from the TTP. The third check

proves that C and K are uniquely linked by L. The final check ensures that M is in fact the result of

decrypting C with K. If all four checks succeed, the arbiter will conclude that B did in fact receive

M.

For the protocol to be practical, timing information needs to be considered. Consider the follow-

ing scenario. After sending step two, B is committed to the protocol and must continually poll TTP

for con_K until it is available. con_K will not become available until after A sends step three to

TTP. After some period of time, B could give up waiting for con_K, to be available, and abandon

the protocol – in doing so deleting C and EOO_C. A can later complete the protocol and receive

con_K from TTP. This would arise in an unfair situation were A has EOR_C and con_K and can

thus successfully claim that B has received M; despite the fact that B is unable to retrieve M. This

problem can be overcome by having deadline Tsub that states when A must submit step three to

TTP. TTP will reject A’s submission of step three after Tsub has passed, thus B can safely abort

the protocol run after the deadline. Also, it can be useful to have the ability to prove what time the

message was sent and received. To prevent these times from being forged, their generation should be

undertaken by a trusted third party. Zhou modifies the protocol from [90] in [85] to add two timing
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1. A→ B : f1, B, L, C, EOO_C
2. B → A : f2, A, L, Tsub, EOR_C
3. A→ TTP : f3, B, L, encTTP (K), Tsub, sub_K
4. B ← TTP : f4, A, B, L, K, Tcon, conK

5. A← TTP : f4, A, B, L, K, Tcon, conK

Figure 2.5: Extended Zhou Gollmann protocol with on-line TTP

features. (i) Tsub, this is the deadline by which A must submit step three to TTP. (ii) Tcon the time

that TTP makes con_K available to A and B and thus also the time that B is able to acquire M.

EOO_C sigA(f1, B, L, C)

EOR_C sigB(f2, A, L, C, Tsub)

sub_K sigA(f5, B, L, K, Tsub)

con_K sigTTP (f6, A, B, L, K, Tcon)

Table 2.3: Evidence for extended Zhou Gollmann protocol with on-line TTP

Table 2.3 shows the evidence generated in the extended protocol shown in Figure 2.5. Step 1

of the protocol is the same as step 1 in Figure 2.4. In step 2, B includes Tsub which indicates the

deadline by which A must have submitted step 3 to TTP. If A disagrees with this deadline, A can

abort the protocol run. In step 3, A submits Tsub to TTP. If A were to decide to modify Tsub it

would be to make B abort the protocol prematurely. This could be done by passing T ′
sub, where

T ′
sub > Tsub . A would wait until some time T where Tsub < T < T ′

sub, before submitting step 3. B

would abort the protocol as Tsub has passed, but A and TTP will continue as T ′
sub has not passed.

However, in this scenario, Tcon > Tsub which is not possible. Tsub is irrefutable as it is present in

EOR_C and will need to be presented to the arbiter. Thus A must submit a correct Tsub to TTP

for the protocol to be successful. Finally, TTP will generate a time Tcon that con_k was available

to A and B to retrieve in steps 4 and 5.

2.2.4 Off-line TTP-based protocols

Protocols employing an off-line TTP are usually seen as preferable as they place the least burden

on the TTP. These protocols are often called optimistic protocols as the TTP is only involved if one

or more participants misbehaves or in the case of a communication failure. Several such protocols

are present in the literature [4, 5, 47, 53, 90, 89, 87, 88]. In 2003 Gurgens et al. [34, 35] conducted

an intensive survey of the security of these protocols. According to their findings the claimed levels

of fairness may not be guaranteed under some specific attacks. Protocols [90, 89] allow an attack

due to their chosen protocol label composition. A modification to these protocol labels is proposed
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that prevents this attack. The protocol in [53] contains a flaw that allows a dishonest receiver to

access the message without issuing a receipt to the sender, thus breaking fairness. Furthermore,

Gurgens et al also found flaws in [88, 87]. As a result, of discovering so many flawed off-line TTP

based non-repudiation protocols, Gurgens et al. proposed a new protocol that avoided these security

shortcomings [35].

There follows a description of the Zhou Gollmann off-line TTP based protocol [88]. This protocol

is chosen for discussion as it is a commonly studied protocol and appears frequently in the literature.

2.2.4.1 Zhou Gollmann protocol with off-line TTP

In [89] a fair non-repudiation protocol with an offline TTP was proposed. This protocol was designed

for transacting parties who only want to involve a TTP as a last recourse. As the TTP is offline, it

is only involved in abnormal protocol runs. This protocol had a similar problem to [71] in that at a

particular step, B must wait indefinitely for the protocol to complete. In [88] a timely terminable fair

non-repudiation protocol utilising an offline TTP, was proposed. Zhou [85] defines timely terminable

as follows:

A fair non-repudiation protocol is timely terminable if either transacting party can

unilaterally bring a transaction to completion without losing fairness.

In the protocol, M is split into two parts, C and K, where M = dK(C). When required, the TTP

acts as a lightweight notary and operates only on K. Typically K will be much smaller than M, thus

reducing the load on the TTP.
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Notation Description

C = eK(M) Commitment (cipher text) for message M.

L = H(M, K) A unique label linking C and K.

fi(i = 1, 2, ...) Flags indicating the intended purpose of

a signed message

EOO_C = sigA(f1, B, L, C) Evidence of origin of C.

EOR_C = sigB(f2, A, L, H(C), encTTP (K)) Evidence of receipt of C.

EOO_K = sigA(f3, B, L, K) Evidence of origin of K

EOR_K = sigB(f4, A, L, K) Evidence of receipt of K

sub_K = sigA(f5, B, L, K, H(C)) Authenticator of K provided by A.

con_K = sigTTP (f6, A, B, L, K) Evidence of confirmation of K issued

by TTP.

abort = sigTTP (f8, A, B, L) Evidence of abortion of a transaction issued

by the TTP

Table 2.4: Zhou Gollmann protocol with off-line TTP - additional notation

Figure 2.4 shows additional notation required to describe this protocol. The protocol is split into

three sub-protocols, exchange, abort and resolve. The protocol assumes that the communication

channels between A and B are confidential if the two parties wish to exchange messages secretly.

Also it is assumed that the communication channel between A and B is never permanently broken.

1 A→ B : f1, f5, B, L, C, TTP, encTTP (K), EOO_C, sub_K

IF B gives up THEN quit ELSE

2 B → A : f2, A, L, EOR_C

IF A gives up THEN abort ELSE

3 A→ B : f3, B, L, K, EOO_K

IF B gives up THEN resolve ELSE

4 B → A : f4, A, L, EOR_K

IF A gives up THEN resolve

Figure 2.6: Zhou Gollmann protocol with off-line TTP - exchange protocol

Figure 2.6 shows the exchange sub-protocol. This protocol begins with A sending the commit-

ment C and EOO_C to B. A also sends ePTTP (K) and sub_K to B. This will allow B to complete

the protocol in a timely way by invoking the resolve subprotocol. Before sending EOR_C to A,

B can quit the transaction without losing fairness, otherwise B must invoke the resolve subproto-
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col. Similarly, A may quite the transaction by invoking the abort subprotocol, as long as K and

EOO_K have not been sent to B. Otherwise, A must invoke the resolve subprotocol to complete

the transaction.

On successful completion of the exchange subprotocol, B will have C and K and can thus

obtain M. B will also have EOO_C and EOO_K and can thus prove the origin of M. On successful

completion of the exchange subprotocol, A can prove receipt of C and K using EOR_C and EOR_K

and can thus prove B ’s receipt of M.

1 A→ TTP : f7, B, L, sigA(f7, B, L)

IF resolved THEN

2 A← TTP : f2, f6, A, B, L, K, con_K, EOR_C

ELSE

3 A← TTP : f8, A, B, L, abort

Figure 2.7: Zhou Gollmann protocol with off-line TTP - abort sub-protocol

Figure 2.7 shows the abort subprotocol. Only A may invoke this protocol. On the protocol’s

invocation, TTP will check to see if the protocol run has previously been resolved. If the protocol

run has been resolved TTP will do nothing. This is because the required information to complete the

transaction was placed in a publicly accessible place when the resolve subprotocol was executed. If

the protocol run has not been resolved, TTP will generate the abort token and place it in a publicly

accessible place for A to retrieve. TTP will then set the status of the protocol run to aborted. A

may then go to the publicly accessible directory to establish the outcome of the protocol run and to

acquire the relevant evidence to prove its outcome.

1 U → TTP : f2, f5, A, B, L, encTTP (K), H(C), sub_K, EOR_C

IF aborted THEN

2 U ← TTP : f8, A, B, L, abort

ELSE

3 U ← TTP : f2, f6, A, B, L, K, con_K, EOR_C

Figure 2.8: Zhou Gollmann protocol with off-line TTP - resolve subprotocol

Figure 2.8 shows the resolve subprotocol. This protocol may be invoked by either A or B. In

Figure 2.8 U refers to the initiating party of the resolve subprotocol. On the protocols invocation,

TTP will check to see if the protocol run has previously been aborted. If the protocol run has been

aborted, TTP will do nothing. This is because the required information to complete the transaction

was placed in a publicly accessible place when the abort subprotocol was executed. If the protocol
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run has not been aborted, TTP will undertake the following:

1. Use EOR_C to verify that B received encTTP (K).

2. Decrypt encTTP (K) to verify with sub_K that K was submitted by A.

3. Check that EOR_C is consistent with sub_K in terms of L and H(C).

4. Generate evidence con_K

5. Place (f2, f6, A, B, L, K, con_K, EOR_C) in a publicly accessible place

6. set the status of the protocol run to resolved.

U may then go to the publicly accessible directory to establish the outcome of the protocol run and

to acquire the relevant evidence to prove its outcome.

2.2.5 Transparent off-line TTP based protocols

When a transparent TTP is employed, the evidence generated from a protocol run is identical,

regardless of whether the TTP was involved or not. This scheme has the benefit that it is impossible

to tell whether the protocol needed the TTP’s involvement for successful completion. This attribute

is seen as favourable because the presence of TTP generated evidence could suggest the misbehaviour

of a participant were in fact the TTP could have been involved due to communication failures.

In [57], Micali proposed a protocol for certified e-mail employing a transparent TTP. However, as

stated in [81], this protocol has three weaknesses. (i) The protocol does not provide non-repudiation

of origin (NRO) of the message. (ii) The protocol is inefficient for large messages as the whole

message is encrypted using an asymmetric encryption algorithm. Micali states that the message

could be encrypted under a symmetric key which is in turn encrypted using asymmetric encryption.

However, it was found in [34, 35] that the conversion is not as trivial as Micali had hoped. (iii) There

exists a flaw in the protocol that allows A to trick B into believing that a different TTP was used.

To ensure fairness, B would need to contact each TTP individually to enquire if they were the actual

TTP used. This represents a viable attack, because it would be infeasible to the expect B to have a

list of every single TTP. This flaw is also present in a certified email protocol (utilising a transparent

TTP) proposed by Imamoto in [40]. Another certified email protocol utilising a transparent TTP

was proposed in 2002 by G. Ateniese [6]. This protocol has similar weaknesses to [57] in that it

does not provide NRO and it utilises a rather inefficient signature scheme [7, 9]. In 2005 G. Wang

proposed a protocol utilising a transparent TTP that addressed the problems found in the previous

protocols. This protocol improves on the existing transparent TTP based protocols and also on

other optimistic non-repudiation protocols. There follows a detailed description of the G. Wang [81]

protocol. This protocol was chosen as it appears to offer the greatest feature set.
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2.2.5.1 G Wang protocol

The following notation is used to describe the protocol and associated sub-protocols (in addition to

that in Section 1.1.4).

Notation Description

fK , fEOO, fEOR, fAT , fRec publicly known unique flags that indicate distinct purposes

of different protocol messages.

L = h(A, B, TTP, h(C), h(K)) unique label to identify a protocol run

C = eK(msg) msg encrypted under K

EK = encTTP (fK , L, rn, K) secret key K, ciphered with (fK , L, rn)

EOO = sigA(fEOO, L, E, K) evidence of origin, showing that A sent a message msg to B,

if both EOO and EK are valid

EOR = sigB(fEOR, L, EK) evidence of receipt, showing that B received a message msg

from A, if both EOR and EK are valid

AT = sigA(fAT , L) abort token issued by A to cancel the protocol run indexed

by label L

Rec = sigB(fRec, L, EK) recovery request from B to resolve the protocol run indexed

by label L

Table 2.5: G Wang protocol - additional notation

The basic idea of the protocol is as follows. A begins by sending B (C, EK, EOO). The non-

repudiation of origin (NRO) is defined by the concatenation of EOO with (K,rn). EOO can only

be verified if EK can be verified and EK can only be verified with correct values for K and rn. B

will only receive (K,rn) if a correct EOR is submitted to A or TTP.

The protocol is composed of a main exchange protocol and two exception handling sub-protocols

— namely abort and resolve. The abort protocol allows A to cancel the protocol if (i) B does not

respond, (ii) B does not respond correctly or in a timely way or (iii) The communication channel is

interrupted. Similarly, the resolve protocol protects B against foul play from A and communication

failures.
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e1 A→ B : A, B, TTP, C, h(K), EK, EOO

IF B gives up THEN quit

e2 B → A : EOR

IF A gives up THEN run abort protocol

e3 A→ B : K, rn

Figure 2.9: G Wang - exchange protocol

Figure 2.9 shows the exchange protocol. The protocol begins by A selecting a session key K

and a random number rn. The following are then computed: C = EK(M), h(k), h(C), L =

(A, B, TTP, h(C), h(K)), EK = encTTP (fK , L, K, rn) and EOO = sigA(fEOO, L, EK). A then

sends protocol message e1 to B.

On receiving this message, B first checks the identities (A,B,TTP) and then stores L. EOO is

then checked to ensure it represents a valid signature on (fEOO, L, EK) by A. If any of these checks

fail or B choses not to interact with A, B may simply quit the protocol without any liability. B

can then confidently respond with the EOR. The EOR is constructed from (fEOR, L, EK). If EK

is correct, B will receive (K,rn) from either A or TTP. If EK is incorrect then so is EOR and

A does not have a valid evidence of receipt. On receiving EOR, A checks that it represents B ’s

signature on (fEOR, L, EK). If this is true, A has full non-repudiation of receipt evidence, NRR =

(A,B,TTP,msg,K,rn,EOR). As a result, A reveals the values (K,rn) to B. If A did not receive EOR

in a timely way or EOR was invalid, A can run the abort sub-protocol to cancel the protocol run. If

confidentiality of msg is required, (K,rn) should be encrypted with B ’s public key. This will prevent

an eavesdropper from discovering the session key used to encrypt msg in the first protocol message.

On receiving (K,rn), B can check EK ≡ encTTP (fK , L, K). If this is true, B has a complete

non-repudiation of origin NRO = (A,B,TTP,msg,K,rn,EOO). However, if (K,rn) is incorrect or not

received, B can complete the protocol by running the resolve sub-protocol.

a1 A→ TTP : A, B, TTP, h(C), h(K), encTTP (AT )

IF state=recovered THEN

a2.1 TTP → A : EOR

IF state=aborted THEN

a2.2 TTP → A : L, confirm

ELSE (set state=aborted)

a2.3 TTP → A : L, confirm

a2.4 TTP → B : A, B, TTP, h(C), h(K), AT

Figure 2.10: G Wang - abort protocol
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Figure 2.10 shows the abort sub-protocol. This protocol is executed by A if EOR is not received

in a timely way or correctly from B. The protocol has the effect of canceling the protocol. A begins

the protocol by computing h(C), h(K), AT = sigA(fAT , L), and encTTP (AT ) and then sending

protocol message a1 to TTP. On receiving the abort request, TTP decrypts encTTP (AT ) and then

checks the resulting plain text represents A’s signature on (fAT , L). If this is true, the TTP checks

in its database for a protocol run associated with L. If a run is found, TTP knows that it must have

been aborted or resolved already. In which case the TTP retrieves the related items and forwards

them to A. Otherwise, TTP records the following in its database (L, state=aborted, AT, confirm)

and then informs A and B that the protocol has been aborted by sending messages a2.3 and a2.4.

The composition of the confirm token is not discussed in [81]. Care must be taken when chosing the

nature of this token in order to prevent a possible flaw. This is discussed in more detail at the end

of this section.

Figure 2.11

r1 B → TTP : A, B, TTP, h(C), h(K), EOO, EOR, Rec

IF state=aborted THEN

r2.1 TTP → AB : AT

IF state=recovered THEN

r2.2 TTP → AB : K, rn

ELSE (set state=recovered)

r2.3 TTP → A : EOR

r2.4 TTP → B : K, rn

Figure 2.11: G Wang - resolve protocol

shows the resolve sub-protocol. This protocol is executed if B sends EOR to A but B does not

receive (K,rn) correctly or in a timely way from A. The protocol allows B to get correct values for

(K,rn). When TTP receives message r1, it first validates each of the signatures. If all the signatures

are valid, a record is looked up in the database for a protocol run with label L. If an associated run

is found, the protocol has already been aborted or resolved, in which case TTP simply forwards

the related items to B. Otherwise, TTP checks the validity of EK. EK is valid if and only if, (i)

EK ≡ encTTP (fK , L, K, rn) and (ii) h(K) is correct. If EK is found to be valid, TTP records (L,

state=recovered,Rec,EOR,(K,rn)) in the database, and sends EOR to A and (k,rn) to B. Again,

confidentiality of msg can be maintained by encrypting (K,rn) with B ’s public key.

As stated earlier, the composition of the confirm token must be chosen carefully. It should

take the form of TTP’s signature over a suitable flag and the label L. For example, confirm =

sigTTP (fconfirm, L). This prevents an attack in which B can trick A into believing that the protocol
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has been aborted when in fact the protocol has been resolved. The steps that form this attack follow:

1. B receives a correct message e1 from A.

2. B does not respond to A with message e2, but instead waits until A initiates the abort sub-

protocol.

3. B intercepts and delays message a1 from A for a finite amount of time. B can only delay

message a1’s arrival at TTP as the communication channel between A and TTP is assumed to

be resilient. That being that all messages inserted into the channel will arrive at the recipient

after a finite but unknown period of time.

4. B spoofs message a2 and passes to A. B can only do this if confirm is composed in such a way

that it can be forged by B. For example, if it was simply a string as could be inferred from

[81].

5. A now thinks the protocol has aborted and so discards all information related to this run.

6. B then initiates the recovery protocol. This will succeed as TTP hasn’t received A’s request

to abort yet.

7. B then receives (K,rn) from TTP and thus has complete NRO.

8. A receives EOR for a protocol run that it is no longer aware of and, as a result, discards EOR

as an unexpected message.

9. B will now stop delaying A’s abort request a1 and TTP will then receive a1.

10. In response to receiving a1, TTP will note that this protocol cannot be aborted as it has

already been resolved. As a result, TTP will send EOR to A, which, again, A will disregard

as an unexpected message.

This attack raises an unfair situation in which B has full NRO evidence and A has partial (only

EOR) or no NRR evidence. This attack is only feasible if the confirm token is interpreted as just

a string (which can be reasonably inferred from the literature [81]) and can be fixed by composing

confirm from sigTTP (fconfirm, L).

2.2.6 Non-repudiation protocol comparisons

Table 2.6 is taken (and augmented) from [81], and shows a comparison of the deterministic TTP

based protocols discussed in this thesis.

The first column states what type of TTP is used (TTP types are discussed in Section 1.1.3.3).

The next two columns are concerned with timeliness and fairness. All of the protocols (apart from
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Protocol TTP Timeliness Fairness Generic # of Mess. # of Oper.
CS [16] Inline No Strong* Yes 7 20
RCS [?] Inline Yes Strong Yes 6 14
ZS [84] Online No Strong Yes 5 13
ZG [90] Online Weak Strong* Yes 5 9
ZG [87] Offline Weak Strong* Yes 4 8
ZDB [87, 88] Offline Yes Strong* Yes 4 12
KMZ[47] Offline Yes Strong* Yes 4 12
GRV[35] Offline Yes Strong Yes 4 10
MK[53] Offline+Transp Yes True* No 4 12
GW[81] Offline+Transp Yes True Yes 3 6

Table 2.6: Comparison of TTP based non-repudiation protocols

Protocol Reference
CS [16] The Coffey Saihda protocol was described in Section 2.2.2.1
RCS[?] The Robinson Cook Shrivastava protocol is presented later in this thesis

(Section 3.2)
ZG [90] The Zhou Gollmann protocol with an on-line was described in Section 2.2.3.1
ZDB [87, 88] The Zhou Gollmann protocol with an off-line was described in Section 2.2.4.1
GW[81] The G Wang protocol was described in Section 2.2.5.1

Table 2.7: References to protocol descriptions in this thesis

CS and ZH) provide mechanisms for unilateral termination. However, the ZG [90, 87] schemes

only provide weak timeliness based on deadlines. The timeliness is said to be weak as it requires a

participant to wait for some finite period of time (i.e. until the deadline is reached). Each of the

protocols claim to be fair (types of fairness are discussed in Section 2.2); however, flaws have been

found in a number of them. These protocols are marked with an asterisk. Each of these flaws have

a potential fix; however, there is no evidence to suggest that the fixed versions are correct. It should

be noted at the time of writing the GW [81] protocol is very new and, as stated by the author, has

not yet been formally verified.

When comparing efficiency, the cost of communication (# of messages) and computation (# of

operations) in the normal case are considered. It is assumed that abort and resolve protocols will

happen very infrequently and, as such, their performance is of little interest. When comparing the

computation costs, only asymmetric cryptography operations are considered (i.e. encryption with a

public key and signing with a private key). Symmetric cryptography operations are ignored as they

require much less computation. From the table, it can be seen that the G. Wang [81] protocol offers

the best performance in terms of number of messages transfered and number of operations.
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2.3 Non-repudiation middleware and applications

Various implementations exist for achieving non-repudiation. A discussion of each implementation

follows.

2.3.1 CORBA Non-repudiation Service

The CORBA security service [32] specification describes the following services:

1. Identification and authentication

2. Authorisation and access control

3. Security auditing

4. Security of communication

5. Non-repudiation

The CORBA non-repudiation service is based on the ISO standard in [41]. The specification de-

scribes various services that should be available to an application requiring non-repudiation. These

services provide: evidence generation and verification; evidence storage and retrieval; and a delivery

authority. However, the orchestration and utilisation of these services is up to the application and

there are no systematic mechanisms for transparently invoking non-repudiation services.

Early work by Wichert et al. [82] define a middleware mechanism for providing non-repudiable ser-

vice invocation for the CORBA platform. The middleware makes use of the CORBA non-repudiation

service for evidence generation, verification, storage and retrieval. The generated evidence consists

of a signed copy of the invocation request and response. The implementation uses filters within

the ORB-core transparently to intercept method invocations. Using filters it is possible to intercept

method calls at four points:

• As the request leaves the client (Pre-request). Here the request is signed and the signature is

appended. This forms the non-repudiation of origin of request evidence.

• As the request reaches the server (pre-dispatch). Here the non-repudiation of origin of request

evidence is verified. If the verification fails, or the evidence does not exist, the invocation

message is dropped.

• Before the response is dispatched to the client (post-dispatch). Here the response is signed

and the signature is appended. This forms the non-repudiation of origin of response evidence.

• Before the client receives the response (post-request). Here the non-repudiation of origin of

response evidence is verified. If the verification fails, or the evidence does not exist, the response

message is dropped.
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In CORBA, remote service invocation is undertaken over the IIOP protocol. IIOP is a binary

protocol intended to be machine readable. Thus the transmitted request and response messages are

not easily human readable and, as such, would not make good non-repudiation evidence. To solve

this problem, the non-repudiation evidence is generated on an XML encoded version of the request

and response. This has the benefit of being CORBA independent and also human readable.

This middleware only supports non-repudiation of origin evidence generation and, as such, the

client cannot prove the server received the invocation request. Similarly, the server cannot prove the

client received the invocation response.

2.3.2 TY*SecureWS

TY*SecureWS [50] is a project undertaken by Tong Yang Systems Corparation and consists of a

middleware solution for securing inbound and outbound Web service messages. Using the middleware

it is possible to specify which security aspects should be applied to outbound messages and similarly,

which security aspects are required for inbound messages. Each of the security aspects defined in

Section 1.1.1 are supported by the middleware. Usage of XKMS (described in Section 5.1.8) for

certificate management is also supported.

The middleware supports the generation and verification of non-repudiation of origin evidence.

Non-repudiation of origin is facilitated by signing outbound messages with the sender’s private key.

It can be specified that all inbound messages must be signed. If this is the case, the non-repudiation

handler will check for a signature on the message. If the digital signature is invalid or non-existent,

the message will be dropped.

The recipient of the message could choose to send back a signed acknowledgement message to

form the non-repudiation of receipt. However, this would have to be done at the application level

and cannot be enforced by the message’s originator. Thus TY*SecureWS supports non-repudiation,

but not fair non-repudiation.

2.3.3 DataPower XML Security Gateway and Verisign Trust Gateway

The DataPower XML Security Gateway [23] and the Verisign Trust Gateway [80] are both types of

XML firewalls. They consist of a hardware device for intercepting inbound and outbound network

traffic at the network boundary. Their purpose is to apply and verify WS-Security tokens embedded

in SOAP messages. The devices are capable of applying policies to different types of traffic. For

example, a particular policy could state that a particular Web service is only willing to receive

requests if they have been encrypted and signed. The firewall will drop messages destined to this

service that do not meet the requirements described in the policy.

The DataPower XML Security Gateway and the Verisign Trust Gateway both provide similar
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functionality to TY*SecureWS [50] in that they can be used to sign outgoing messages and verify

signatures on incoming messages. Like TY*SecureWS, there is no support for mandatory proof of

receipt.

2.3.4 FIDES

The FIDES system [60] provides services, including TTP services, and an associated application

for fair exchange of documents. Application clients submit documents to the FIDES system for fair

exchange with partners who also have a FIDES client for verifying and receipting documents received.

In effect, FIDES offers a standalone service for fair exchange. The system also supports pluggable

protocols, so new fair exchange protocols can be inserted into the system with the minimum of

disruption. This system is not implemented in middleware and, as a result, FIDES cannot easily

provide non-repudiation to existing applications.

2.3.5 B2B Objects

In 2002, colleagues published a prototype for non-repudiable information sharing [19]. This prototype

was called B2B Objects and allowed multiple organisations to have controlled access to a shared

information state. The abstraction of a single shared state is presented to the organisation. However,

in reality, each organisation would have their own copy. Each copy of the state is kept synchronised

by the middleware. Updates to the shared state would only occur if all other organisations agreed.

A two phase protocol was used to update the state. Firstly the updating party would propose a new

state to every other participant. These participants would then decide whether they agree with the

proposed new state and return the result. The second phase is used to communicate the result of the

update request to each participant. If every participant agreed with the new state, the update would

go ahead. In which case, each participant changes their copy of the state to that of the new proposed

state. Thus each copy of the state remains synchronised. Requests to update the state and votes

on the validity of the update are non-repudiable. Fair non-repudiation was deemed unnecessary

as the organisations involved rely on future business. Thus the reputation of the organisations

was seen as more valuable than any potential gain. B2B objects was extended in 2003 to support

transactional updates to the shared state [18]. Here, several pieces of shared information could be

updated in the context of an ACID transaction whilst still providing the non-repudiation guarantees

of the earlier work. In 2004 we developed a component based implementation [?, ?] of B2B Objects.

Here, the shared state was represented as an EJB Entity Bean and, as such, each organisation

involved would have their own copy. Here the two phase protocol was used to regulate updates

to the Entity Bean and to ensure synchronisation. The work also presented an implementation

for non-repudiable invocation of Session Bean EJBs. This was similar to the work by Wichert et
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al. [82]; however, non-repudiation of receipt was also provided. Again, fair non-repudiation was

not provided. Furthermore, the location at which non-repudiation evidence was created was not

suitable. The evidence was created on entry to the application server hosting the EJBs (both for

information sharing and service invocation), but typically an organisation would not expose EJBs

directly to other organisations. It would be more likely that a web service would present a set of

coarse grained interactions externally which, in turn, would make calls to multiple EJBs. Thus, it it

would be more sensible to provide non-repudiation at the organisation boundary (the Web service).

As a result, the actual messages sent between organisations are what is signed (and thus comprise

the non-repudiation evidence), rather than messages created by the implementation. A Web services

implementation was published in 2005 [?, ?] which supported fair non-repudiation. This forms the

basis of this thesis and will be discussed in chapters 3 and 5.

2.4 Automatic security protocol implementation

There have been various publications regarding the automatic implementation of security protocols.

However, none (that we are aware of) purport to solve the problem for non-repudiation protocols.

Despite this fact, it is still useful to consider their approaches as it may prove insightful when

proposing an aproach for non-repudiation protocols.

Researchers at the University of Berkeley [66, 65, 75] have developed a process for automatically

generating, verifying and implementing security protocols (not including non-repudiation protocols).

The process begins with a specification of what the protocol needs to achieve and the maximum

cost (such as number of messages or encryption operations) of execution. The automatic generation

technique then uses a brute force technique to generate all possible permutations of protocols that

fit within the cost metrics allowed. Pruning techniques are then used to remove the majority of

these protocols. A smaller set of candidate protocols is then obtained. Starting with the cheapest

protocol each one is modeled and then verified. This process of verification is automated by a tool

called Athena [74]. If a suitable and correct protocol is found, the implementation phase creates

a Java implementation. Unfortunately, it is unclear how the Java implementation is produced and

what it comprises as there is no published work on this matter. It is also commented on by the

authors that they are unsure that the process of automatically generating security protocols will

scale up to protocols requiring more than three steps. As a result, it looks doubtful that the process

could be used to create a fair non-repudiation protocol with four or five steps. Furthermore, there

is no mention of support for sub-protocols — these are essential for providing timeliness in fair

non-repudiation protocols.

Several pieces of work [25, 67, 79, 56], take a formal specification of a security protocol and then

automatically generate Java code. This Java code uses the formal specification of the protocol
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automatically to generate and verify protocol messages. The protocol is then implemented by

creating a stub for each participant that sends, receives and verifies protocol messages in the right

order. If the protocol completes, it is assumed that the intentions of the protocol (authenticating

both parties, for example) have succeeded. Unfortunately, this aproach is not appropriate for non-

repudiation protocols. Once the protocol run has completed successfully, it must remain possible to

prove what has happened to an external party. This requires a large amount of infrastructure, such

as logging and time stamping services. None of these implementations provide such a framework.

Work by Abdullah and Menascé [2] proposes a mechanism for automating the protocol imple-

mentation part of a specific protocol production process. This process is slightly different to the

traditional protocol development cycle described in Section 1.2. Here the protocol designer produces

an FSM and RFC (request for comments — a specification document that describes the protocol).

Protocol developers then read and interpret these documents and then implement the protocol.

Abdullah and Menascé automate the implementation phase by taking the FSM and represent it in

an XML document. This XML document also contains descriptions of the protocol messages. The

protocol implementation is created by using XSLT (a mechanism for transforming an XML docu-

ment into some other document) to transform the XML FSM description into Java class files. This

protocol production process does not allow for protocol verification. As a result, the input protocol

could be incorrect. Furthermore, the XML language for describing the FSM is rather complicated

and thus error prone. As with the other work in this area, there is no support for non-repudiation.

2.5 Business interactions

This sections describes mechanisms for representing and regulating business interactions.

2.5.1 RosettaNet PIPs

The RosettaNet Consortium [70] have developed a suite of business interaction patterns, called

Partner Interface Protocols (PIPs) in RosettaNet terminology. Each PIP is designed for a very

specific purpose, such as sending an invoice or purchase request. Each PIP forms a coarse grained

interaction that occurs between two business partners. Each PIP is designed to achieve some very

specific task. Applications can be constructed by composing multiple PIPs to achieve some higher

level task.

There are currently 111 PIPs defined, each falling in to one of eight categories (or clusters in

RosettaNet terminology). The messages involved in a PIP can be classified into two broad categories:

business action messages and business signal messages.

• Business actions are messages with content that is of a business nature, such as a purchase

order or a request for quote.
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• Business signals acknowledge receipt of business actions. A business signal can be positive or

negative. A positive business signal states that the corresponding business action was received

and found to be a structurally and syntactically valid RosettaNet business action message. A

negative business signal states that there was some problem with the business action, or an

exception has occurred, which is preventing process of the business action.

Examples of two specific PIPs are given in Section 3.1.1.

Work by Khalaf [43] proposes a scheme for transferring some of the implementation burden to

the PIP designer. As a result, end users of the PIP have a simplified process for implementation.

The reduced implementation requirements may also encourage some smaller companies (that were

previously unable) to use PIPs. In order to achieve this goal, the PIP designer produces extra doc-

uments that describe how the PIP should operate in a Web services environment. These documents

are produced using the Business Process Execution Language for Web services (BPEL). BPEL is

an XML workflow-based composition language for Web services. In order to create an executable

PIP, the PIP user must follow a set of completion rules provided by the PIP designer. These com-

pletion rules are required as the BPEL documents are abstract and thus not tied to a particular

execution framework — undertaking the completion steps provides an execution framework specific

implementation.

IBM’s WebSphere application server [39] and BEA’s WebLogic application server [11] are exam-

ples of PIP execution frameworks. They both support non-repudiation, but not fair non-repudiation.

Non-repudiation is achieved by signing outgoing messages and verifying incoming message — a

process very similar to that used in TY*SecureWS (discussed in Section 2.3.2).

2.5.2 Contracts

When undertaking inter-organisational interactions it is important that these interactions are strictly

controlled. In the paper-based world, business interactions are conducted under the control of con-

tracts that are signed by each organisation. When moving towards electronic mechanisms for doing

business, it is important that the interactions continue to be conducted under control of contracts.

Thus business interactions requiring non-repudiation are likely to execute some interaction agreed

upon and enforced by means of contracts. Such contracts will contain information regarding what

interactions are legal and the sequence in which they may occur. Other information related more

closely to non-repudiation would also be present. For example (if required) a particular trusted third

party must be agreed upon. Furthermore, each participant must also agree the TTP’s jurisdiction

in case of dispute. Other non-repudiation clauses would include information such as how long the

evidence remains valid. This would prevent the requirement to store evidence indefinitely.

Work by colleagues [58, 73] addresses the issue of taking a conventional paper-based contract and
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converting into an electronic equivalent (X-Contract in their terminology). This process consists of

taking the paper contract and representing it in some mathematically precise notation such that

the result can be subjected to rigorous analysis. This analysis frees the contract of ambiguities that

the original human oriented text may contain. Furthermore, an X-Contract has the benefit of being

computer interpretable and, thus, a suitable run time infrastructure may be used to monitor the

actual interaction described within the contract. The notation used to represent a contract is that

of finite state machines (FSMs). It is this FSM that is used to ensure that the interaction obeys the

contract. Essentially, any message exchange is validated by ensuring it enacts a valid transition in

the X-contract (which is an FSM).

One such suitable infrastructure for exploiting X-Contracts for monitoring an interaction is B2B

Objects (discussed in Section 2.3.5). Here an X-Contract is consulted when a state change request

is received. This ensures that the state change is allowed according to the contract. Similarly,

a service invocation can also be validated by the X-Contract. This ensures that invoking that

particular service with the passed parameters does not break any clause of the contract.

2.6 Discussion

To achieve non-repudiation, it must be possible for either party involved to prove to an external

party the other party’s participation. In obtaining this, several issues must be addressed. It is

important to be able to ascertain the time at which the non-repudiation evidence was generated. This

prevents the signatory from revoking their certificate and claiming the evidence was generated after

revocation. Several schemes have been proposed to prevent denial of responsibility of a signature.

These schemes vary in accuracy and level of reliance on a trusted third party. Unfortunately, for high

value interactions, the only way to prevent denial of signature responsibility is by using a trusted

timestamping service. This method has the added benefit of providing the exact time at which the

signature was notarised.

In order to enable a participant to prove another participant’s participation, a full set of evidence

must be available. If, for some reason, this evidence is unavailable, participation cannot be proved.

A participant may not have access to evidence for several reasons. It may be lost due to failure,

be buried among a large amount of other evidence or not even have been received. To prevent

loss of evidence, participants must be fault tolerant and evidence must be stored in some failure

resistant medium. Evidence may need to be kept for many years, by which time there may be a

large amount of evidence to manage. Thus it is important that the evidence is stored in such a way

that a particular piece can easily be retrieved. To ensure evidence is received, a fair non-repudiation

protocol is operated. This ensures either all parties receive the expected evidence or none do.

Several fair non-repudiation protocols have been developed. Early protocols required a large
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dependency on a TTP. As new protocols were developed, the reliance on a TTP was reduced until

the TTP was only required for dispute resolution (an offline TTP). Some of the more advanced

protocols ensured that the evidence produced was identical, regardless of whether the TTP was

involved. However, the protocols utilising an offline TTP did not consider the issue of signature

time stamping. As stated earlier, it is necessary for a TTP to time stamp signatures to prevent

the signatory denying responsibility. As a result, communication with a TTP is required each time

a signature is created. Therefore, even the protocols claiming to only need a TTP for dispute

resolution still require a TTP for every protocol run.

Various frameworks for achieving non-repudiation are available, only one of which supports fair

non-repudiation — the FIDES project. Although FIDES does support fair non-repudiation, it

is only provided to a single previously developed application. A more desirable implementation

would be developed in middleware, thus allowing arbitrary applications to benefit from the fair

non-repudiation guarantees.

To ensure a protocol is correct, it is normal to undertake some validation process. This adds

confidence that the protocol is free of flaws. However, implementing the verified protocol is an

error-prone task which can greatly reduce the confidence attained from validation. This problem is

common to all security protocols. As a result, several groups have proposed schemes for automating

the implementation process. However, none of these processes support non-repudiation protocols.

This is largely due to the large amount of associated infrastructure and the protocols’ complexity.

Other security protocols consist of one protocol whereas the more practical non-repudiation protocols

consist of one main protocol and one or two exception handling sub-protocols.

Fair non-repudiation is rather expensive to achieve due to the heavy reliance on trusted third

parties, evidence storage and the relatively complex protocols (compared to other security protocols).

As a result, it would be expected that fair non-repudiation would only be used for high value

business to business (B2B) interactions. Work by the Rosettanet Consortium presents a collection of

interaction patterns (PIPs) designed for business to business transactions. PIPs can be composed in

order to produce B2B applications. However, these PIPs need to be executed in a suitable framework.

IBM and BEA produce two such frameworks. Although they both support non-repudiation, they do

not support fair non-repudiation. Furthermore, high value transactions tend to undertake actions

described in a contract. Work by colleagues show how a contract can be translated into a computer

interpretable format. This allows the B2B interaction to be monitored to ensure it does not break

contract.

From surveying current literature it can be seen that achieving non-repudiation is a demanding

task. One which no implementation has satisfactorily achieved. Furthermore, the automatic imple-

mentation of non-repudiation protocols is a neglected area. One which has not been covered by the

collection of research into automatic security protocol implementation.
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Chapter 3

Non-Repudiation Protocol Hierarchy

This chapter presents a hierarchy of non-repudiation protocols. This hierarchy provides a multitude

of messaging patterns for the application programmer. Examples of such messaging patterns are

request/response and asynchronous messaging. Furthermore, the hierarchy allows configuration of

the level of non-repudiation provided and also what messages are validated. Validation is intended

to allow the recipient of the message to undertake some application specific checks on the received

message. Results from this validation are returned to the originator of the message. The validation

is application dependent and can be arbitrarily complex. For example, the validation could simply

check that the message contains all the expected elements. However, the validation could do some-

thing more complex, such as checking against a business contract in force among the participants to

ensure the message is valid and timely.

A modular approach is taken where a particular higher level messaging pattern is composed

from one or more lower level messaging patterns. The organisation of the hierarchy is such that the

non-repudiation protocols from the literature (see Section 2.2) are situated at the bottom. Higher

level messaging patterns are composed from these protocols to create a richer set of non-repudiation

protocols. Finally, at the top of the hierarchy, domain specific messaging patterns are situated

that undertake very specific tasks, such as placing an order or sending an invoice. The modular

approach is similar to that employed by Hiltunen and Schlichting [37, 38]. Here they modularise an

RPC protocol by the types of properties it exhibits. As a result, an RPC protocol has a number

of modules1 and a specific implementation is chosen for each. The chosen implementation dictates

what properties are exhibited by the protocol. There exists modules for: failure detection, recovery,

membership and message ordering. For example, if total ordering was required, a total ordering

implementation would be used for the message ordering module.

The non-repudiation protocol hierarchy allows higher level messaging patterns to be composed

from one or more lower level messaging patterns. Furthermore, the composition of chosen protocols

1The number of modules is in fact extensible. As a result any number of extra modules may be developed to add
extra properties to the RPC protocol.
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Figure 3.1: Non-repudiation protocol hierarchy

can be modified without disturbing the application. This allows non-repudiation and the validation

requirements to be modified without having to modify the application. For example, the application

may use a messaging pattern to send an invoice. This messaging pattern can be first composed from

a fair non-repudiation protocol using an online TTP. At a later date, it may be decided that an

offline TTP would be better for this interaction, in which case the chosen non-repudiation protocol

can be changed without changing the application. Furthermore, the modular approach encourages

extensibility. Consider a situation in which a new non-repudiation protocol appears in the literature:

an implementation can be developed and plugged into the hierarchy without having to modify any

of the existing messaging patterns. Higher level messaging patterns can also be developed and then

plugged into the hierarchy.

This chapter describes each level of the hierarchy. A suite of initial messaging patterns are

presented. These patterns span multiple levels of the hierarchy and create a rich and highly config-

urable set of messaging patterns to the application. In particular, a fair non-repudiation protocol

is presented. This protocol provides fair non-repudiation guarantees whilst also providing valida-

tion of the application message. Here, a delivery-agent (inline TTP) is used to enforce fairness.

The delivery-agent also provides extra services that can be exploited to enable lighter weight end

users. This protocol is taken from work published in cooperation with Nick Cook and Santosh

Shrivastava [?, ?].

3.1 The non-repudiation protocol hierarchy

This section describes each level of the non-repudiation protocol hierarchy. The hierarchy is discussed

in a top down fashion. The protocols at each level are described in turn and their requirements from

the layer below are discussed.

The protocol hierarchy can be presented as a stack. This stack is shown in Figure 3.1.
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The application is located at the top of the stack and can use the message exchange patterns

(MEPs) provided by the domain specific MEP layer and the generic MEP layer. Domain specific

MEPs are used for interactions with a very specific action (such as submitting a purchase order),

generic MEPs are used for more general interactions (such as sending a message and waiting for a

response). The domain specific MEP layer is located above the generic MEP layer. This is because

domain specific MEPs are constructed as a composition of one or more generic MEPs. The generic

MEP layer is situated above the protocol layer. This is because generic MEPs are constructed

from a composition of one or more message delivery patterns (MDP). Each MDP is responsible

for delivering a single message; the distinguishing feature of each MDP is whether the message is

validated and what level of non-repudiation is provided. Six MDPs are provided by the protocol

layer. These are used by the layer above to construct generic MEPs. The protocol layer contains

implementations of several protocols, including the fair non-repudiation protocols present in the

literature. These are mapped onto one or more of the six MDPs to provide a common interface for

the generic MEP layer.

3.1.1 Domain specific message exchange patterns

Domain specific message exchange patterns (MEP) are designed for very specific purposes, such as

sending an invoice or purchase request. Business protocols are one such type of domain specific MEP.

A business protocol is a course grained interaction that occurs between two business partners. Each

business protocol is designed to achieve some very specific task. Applications can be constructed by

composing multiple business protocols to achieve some higher level task. The RosettaNet Consor-

tium [70] define a set of business protocols, referred to as Partner Interface Protocols (PIPs). Each

PIP defines the externally visible aspects of a business protocol.

There are currently 111 PIPs defined, each falling into one of eight categories (or clusters in

RosettaNet terminology). The messages involved in a PIP can be classified into two broad categories,

business action messages and business signal messages.

• Business actions are messages with content that is of a business nature, such as a purchase

order or a request for quote.

• Business signals acknowledge receipt of business actions. A business signal can be positive or

negative. A positive business signal states that the corresponding business action was received

and found to be a structurally and syntactically valid RosettaNet business action message. A

negative business signal states that there was some problem with the business action, or an

exception has occurred, which is preventing process of the business action.

Their follows two examples of RosettaNet PIPs from the Order Management cluster.
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Figure 3.2: PIP3A4 Process Diagram

3.1.1.1 RosettaNet - request purchase order

PIP3A4 (Request Purchase Order) enables a buyer to issue a purchase order, and a seller to ac-

knowledge if the order is accepted, rejected or pending.

Figure 3.2 shows a process diagram for this interaction. It begins with the buyer submitting a

purchase order message to the seller. This message is a business action. The business action message

is first verified and a suitable business signal is returned. The seller then checks for availability

and sends a response message. The response message forms the second business action, which is

acknowledged by the buyer with an appropriate business signal. Both business actions are PIP3A4

messages.

Alternatively, if the status of the purchase order is pending, the second business action is not

sent and another PIP is invoked (PIP3A7).

Figure 3.3 shows the sequence of messages exchanged between the buyer and seller. If the

purchase order is pending, only messages 1 and 2 are sent and PIP3A7 is invoked afterwards. This

interaction is essentially one of validated request response, in which the response forms notification

of whether the purchase order was accepted or rejected. The validation messages represent the

business signals.
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1. purchase order
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3. accepted / rejected

4. receipt ack

Business action
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Figure 3.3: PIP3A4 Sequence Diagram

3.1.1.2 RosettaNet - notify of purchase order update

PIP3A7 (Notify of Purchase Order Update) enables a seller to accept a pending purchase order or

notify the buyer of an updated purchase order.

Figure 3.4 shows a process diagram for this interaction. It begins with the seller analysing the

purchase order. The order is accepted, rejected or a new order is proposed. If a new order is

proposed, the buyer must respond by accepting or rejecting the changes to the purchase order (by

invoking another PIP).

If the purchase order is accepted or rejected, a business action is sent to the buyer (which is

acknowledged with a business signal). Should the purchase order be updated, the messages shown

in Figure 3.3 are exchanged. This interaction is formed from one business action and one business

signal.

3.1.1.3 Business protocol decomposition

All PIPs can be composed from a combination of two generic MEPs, validated single message

and validated request/response. Figures 3.6 & 3.7 show, respectively, the general form of these

two message exchange patterns. When composing a domain specific MEP from multiple generic

MEPs, it is the responsibility of the domain specific MEP layer to add context to the composition

of messages. This is necessary for associating each run of a generic MEP with a single domain

specific MEP. PIP3A4 can be composed from a single validated request/response and PIP3A7 can

be composed from a single validated message.

3.1.2 Generic MEPs

Generic MEPs are designed to undertake general tasks, such as send a message or participate in a

request/response type interaction. Unlike domain specific MEPs, generic MEPs are not concerned

with the contents of the application message; it is this attribute that makes them generic. Generic

MEPs are used to compose domain specific MEPs and for building applications. Each generic MEP
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Figure 3.8: Single Message

is composed from six types of general protocols exposed at the protocol level.

This section is concerned with four generic MEPs. However, due to the extensibility of the

hierarchy, it is possible to create any number of such protocols. Barros et. al present a large

collection of MEPs [10], of which some are present in this section. Those not present could easily

be implemented and added to this level of the hierarchy2. A description of these four generic MEPs

follows.

• Single Message. This represents a single message sent from one participant to another

(Figure 3.8).

• Validated Message. Single message with a validation acknowledgement returned by the

recipient of the message (Figure 3.6).

• Request/Response. A request message with an associated response (Figure 3.9).

• Validated Request/Response. Similar to request/response, however the recipient of the

request must validate the request. Similarly, the recipient of the response also validates the

response. The results of the validation are returned to the other party (Figure 3.7).

Each of the four patterns are composed from one or two runs of a protocol, situated at the protocol

level of the hierarchy. The protocol level offers two types of protocols, those which simply send a

single message and those which send a single message and receive a validation response. The Re-

quest/Response pattern can be composed from two single message patterns. Similarly, the Validated

Request/Response pattern can be composed from two single message with validation protocols. To
2It should be noted that those MEPs requiring multicast would need a multicast protocol present at the protocol

level of the hierarchy. Non-repudiable multicast protocols are outside the scope of this thesis and have been suggested
as further work.
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Figure 3.9: Request/Response

tie each run of a protocol to a single generic MEP, some common context identifier must be present

in each message.

3.1.3 Protocol level

The Protocol level is responsible for abstracting from the actual protocol being executed. Many

non-repudiation protocols (such as those discussed in Section 2.2) can be located at the protocol

layer. A common interface is exposed which allows protocols to be changed without disrupting

any generic MEPs that use them. The common interface presents six types of message delivery

primitives (MDPs). Each message delivery primitive provides various non-repudiation guarantees

and maps onto real protocols (such as those discussed in the literature) capable of fulfilling the

promised guarantees. There follows a description of each message delivery protocol.

• Send. The Send MDP simply sends a message to the intended recipient. No non-repudiation

guarantees are provided.

A B

msg

Figure 3.10: Send protocol

• Validated Send. The Validated Send MDP sends a message to the intended recipient and

receives a validation (of the message) response in return. No non-repudiation guarantees are

provided.

A B

msg

val

Figure 3.11: Validated Send protocol
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• NR-Send. The NR-Send MDP is similar to the Send protocol, but with non-repudiation of

origin.

A B

msg, nro

Figure 3.12: NR-Send protocol

• Validated NR-Send. The Validated NR-Send MDP is similar to the Validated Send protocol,

but with non-repudiation of origin for the message and the validation.

A B

msg, nro

val, nro

Figure 3.13: Validated NR-Send protocol

• Fair NR-Send. The Fair NR-Send MDP is similar to the Send protocol, but with fair

exchange of non-repudiation of origin for non-repudiation of receipt.

A B

msg, nro

nrr

Figure 3.14: Fair NR-Send protocol

• Validated Fair NR-Send. The Validated Fair NR-Send MDP is similar to the Validated

Send protocol, but with fair exchange of non-repudiation of origin for non-repudiation of

receipt, on both the message and the validation.
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Figure 3.15: Validated Fair NR-Send protocol

Each generic MEP could be implemented by using numerous different MDPs, the choice made would

be dependent on the non-repudiation guarantees required. For example the send message generic

MEP could be implemented in the following ways:

• One run of the Send protocol if no non-repudiation is required.

• One run of the NR-Send protocol if the recipient requires non-repudiation of origin, but the

sender does not require non-repudiation of receipt.

• One run of the Fair NR-Send protocol if the recipient requires non-repudiation of origin and

the sender requires non-repudiation of receipt.

Each of the six MDPs are implemented using one or two (suitable) protocols (such as those discussed

in Section 2.2). If the MDP does not require validation, one protocol is used. If the MDP does require

validation, either one protocol supporting validation is used, or two protocols that do not support

validation are used. In the latter case, the first instance of the protocol delivers the application

message and the second instance delivers validation of the application message. Furthermore, the

chosen protocol must provide the guarantees required by the MDP. For example the fair NR-Send

MDP requires fair exchange, thus a fair non-repudiation protocol must be used.

Four of the MDPs have a single (trivial) implementation that directly reflects the messages

exchanged in the above diagrams. More specifically, Send is implemented as shown in Figure 3.10,

Validated Send is implemented as shown in Figure 3.11, NR-Send is implemented as shown in

Figure 3.12 and Validated NR-Send is implemented as shown in Figure 3.13. Fair NR-Send and

Validated Fair NR-Send need to ensure fairness. Thus a fair non-repudiation protocol must be used.

Many such protocols exist (see Section 2.2). A novel extension to the Coffey and Saidha protocol

(See section 2.2.2.1) is presented in the following section (Section 3.2). As this protocol supports

validation, it can be used for both the Fair NR-Send MDP and the validated Fair NR-Send MDP.
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Figure 3.16: Two compositions for achieving non-repudiation of PIP3A4

3.1.4 Example protocol composition

This section shows a possible composition for rendering PIP3A4 non-repudiable. The example shows

which protocol instances are present at each level of the protocol hierarchy.

Figure 3.16 (a) shows how non-repudiation of PIP3A4 can be achieved using any non-repudiation

protocol, where as Figure 3.16 (b) shows how non-repudiation of PIP3A4 can be achieved using the

Delivery Agent protocol (presented in Section 3.2). In both diagrams the PIP3A4 implementation

(located at the Domain Specific MEP level) maps onto a single validated request/response imple-

mentation (at the Generic MEP level). The validated request / response MEP uses two validated

fair NR-send MDPs, one for the request and one for the response. The validated fair NR-Send MDP

is mapped onto different non-repudiation protocols in each figure. In Figure 3.16 (a), the MDP is

mapped onto any protocol that does not offer validation. As a result, a separate protocol instance

is required for the message and the validation. In Figure 3.16 (b), the MDP is mapped onto two

instances of the Delivery Agent protocol. As a result, each instance of the protocol handles both

the message and the validation.
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3.2 Delivery-agent based fair exchange

This section shows how a delivery agent (inline TTP) can be used to achieve the non-repudiation

guarantees provided by the Fair NR-Send and Validated Fair NR-Send MDPs (Figures 3.14 & 3.15

respectively).

A DA

msg, NRO

NRS

NRR BNRR

Validator

NRV
NRV

validation msg

msg

NRO

ack

Figure 3.17: Executing a validated fair NR-send MDP through a delivery agent

Figure 3.17 shows the addition of this inline TTP to the interaction in Figure 3.15. The TTP

acts as a delivery agent to A and B and will be referred to as DA. Four pieces of evidence are

generated:

• NRS. Proof that the DA received msg and is able to continue the protocol;

• NRO. Proof that msg originated at A;

• NRR. Proof that B has received msg;

• NRV. Proof of validation regarding the outcome of B ’s validation of msg (NRO of the vali-

dation).

It should be noted that the NRV maps directly to the second NRO in Figure 3.15. The distinction

has only been made to ease the discussion. The NRS does not have a direct mapping to any evidence

in the Fair NR-Send or Validated Fair NR-Send protocols and, as a result, the NRS is ignored by

the MDP.

As shown in Figure 3.17, A starts an exchange by sending a message, with proof of origin, to

DA. This is equivalent to the first message in Figure 3.15 with the NRO appended. DA exchanges

msg and NRO for NRR with B (before application-level validation of msg). The DA provides NRR

to A — equivalent to the second message in Figure 3.15. Subsequently, B performs application-level

validation of msg (as in the third message of Figure 3.15) and provides NRV to DA. The DA, in turn,

provides NRV to A and an acknowledgment to B. Note the exact sequence of message exchange will

be dictated by the actual protocol used and should not be inferred from Figure 3.17.
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It is the responsibility of the DA to ensure fairness and liveness for well-behaved parties in

interactions that the DA supports. Further, the DA’s fairness and liveness guarantees hold for well-

behaved parties in spite of any misbehaviour by any other party involved in an interaction (including

misbehaviour by interceptors). Since the cooperation of misbehaving parties cannot be guaranteed,

in extremis the DA will ensure that any disputes that arise can be resolved in favour of well-behaved

parties.

There follow two variations of a fair non-repudiation protocol supported by the protocol Layer,

providing the guarantees required by the Fair NR-Send and Validated Fair NR-Send protocols.

First, an overview of the chosen protocols is presented with discussion of the motivation behind

the choice. Then the protocol assumptions and notation are stated. The section concludes with a

detailed description of each protocol. In addition to the main protocol, sub-protocols for abnormal

termination are also presented. Since the delivery agent is trusted, these sub-protocols can be used

to deliver fairness and liveness guarantees in the event of failure of the main protocol.

3.2.1 Protocol overview

Coffey and Saidha developed a fair non-repudiation protocol utilising an in-line TTP [16]. This

was later improved by Zhou and Gollman in [92]. Two protocols are discussed, both of which

are derived from the improved version. Both protocols include an extension to support the extra

validation messages required by the Validated Fair NR-Send protocol. The first protocol is a further

modification to support lightweight end users. The second is intended for use with a more lightweight

delivery agent, as envisaged by Coffey and Saidha.

In the first protocol, the delivery agent is responsible for much of the evidence verification and

for the long-term storage of evidence for audit. The end users are only required to verify evidence

produced by the delivery agent. They only require long-term storage for the information necessary

to link an interaction to the evidence held by the delivery agent (such as a protocol run identifier).

This approach means the end users do not have to provide as much infrastructure support for fair

exchange. For example, they only need access to the certificate and public key of the delivery agent

for verification and not the information for all parties they will potentially interact with.

In the second protocol, the responsibilities for evidence verification and long-term storage are

transferred to the end users. In this case, the delivery agent may discard information after completion

of a protocol run. Furthermore, the lightweight delivery agent only signs the NRS as opposed to all

evidence generated.

3.2.2 Assumptions

The standard perfect cryptography assumptions [72] are made:
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1. Message digests are one-way, collision resistant.

2. It is computationally infeasible to predict the next bit of a secure pseudo-random sequence

even with complete knowledge of the algorithmic or hardware generator and all of the previous

bits in the sequence.

3. Digital signatures cannot be forged.

4. Encrypted data cannot be decrypted except with the appropriate decryption key.

The following assumptions are made with respect to well-behaved parties to a non-repudiable inter-

action:

1. Communication channels between well-behaved parties provide eventual message delivery (there

is a bounded number of temporary network and computer related failures).

2. Each party has persistent storage for messages. More precisely, well-behaved parties will ensure

that messages are available for as long as is necessary to meet their obligations to other parties.

Longer term storage may be required for their own purposes.

3. Well-behaved parties only exchange messages that are well-constructed with respect to the

protocol being executed. For example: messages exchanged are either tamper-resistant (en-

crypted), or tampering is detectable and well-behaved parties will cooperate to ensure a well-

constructed message is eventually delivered.

To guarantee fairness, the same assumptions are made with respect to the DA as in existing fair

exchange protocols, namely:

1. The DA is well-behaved.

2. The DA ensures protocol resolution in favour of well-behaved parties.

3.2.3 Notation

In the protocols, participant A wishes to send a business message, msg, to participant B. All com-

munications between A and B take place through delivery agent DA. Table 3.1 provides the notation

used for basic protocol elements. To simplify protocol descriptions, and without loss of generality,

it is assumed that the signature scheme is recoverable. That is, if necessary, x (and any items

that are concatenated to construct x) may be recovered from sigP (x)3. To allow verification of rn

as a protocol authenticator, it is also assumed that id contains h (rn). Table 3.2 defines the non-

repudiation evidence exchanged during a protocol run. DA associates a termination state with each

exchange. The state is SUCCEEDED if the exchange is successfully completed and ABORTED

if the exchange is cancelled.
3If the signature scheme is non-recoverable, then any necessary items are sent with the associated signature.
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Notation Description
rn secure pseudo-random number
h (x) secure digest of x
id unique protocol run identifier
i, j concatenation of items i and j
P → Q : m P sends m to Q
sigP (x) P ’s digital signature on x
encP (x) encryption of x with P ’s public key
V AL | INV signifies msg validity or invalidity
NV AL signifies msg not validated

Table 3.1: Notation for protocol elements

Non-repudiation token Description
NRSDA = sigDA (id, A, B) DA’s NRS of initial pro-

tocol message
NROA = sigA (id, A, B, h (msg)) A’s NRO of msg
NRRB = sigB (id, A, B, h (msg)) B ’s NRR of msg
NRVB = sigB (id, V AL | INV ) B ’s NRV of msg
NRODA = sigDA (id, A, B, msg) DA’s NRO of msg for B
NRRDA = NRODA DA’s NRR of msg for A
NRVDA = sigDA (id, V AL | INV ) DA’s NRV of msg
NRV ′

DA = sigDA (id, NV AL) DA’s substitute NRV of
msg

Table 3.2: Definition of non-repudiation tokens
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3.2.4 Fair exchange for light-weight end users

This section first discusses normal execution to successful completion of the main protocol for light-

weight end users. We then present abort and resolve sub-protocols for exception handling.

Normal protocol execution

Normal execution of the main protocol is shown below, followed by a commentary on each step.

1 A → DA : encDA (msg, rn, NROA)

2 DA → A : NRSDA

3 DA → B : id, A, B, h (msg)

4 B → DA : encDA (NRRB)

5 DA → A : NRRDA

6 DA → B : msg, NRODA

7 B → DA : NRVB

8 DA → B : id, rn

9 DA → A : NRVDA

Step 1: A sends a business message (msg), a secure pseudo-random number (rn) and its non-

repudiation of origin token (NROA) to DA. At this step, if DA finds that the id included in

NROA is not unique, an appropriate response will be generated to prompt A to restart the

protocol with a newly generated id. Otherwise, the protocol will proceed to step 2. The rn

provided by A is used in step 8 as the acknowledgement of receipt of B’s NRV token. All items

are encrypted to guarantee that B does not obtain the items before providing non-repudiation

of receipt.

Step 2: DA provides proof of submission to A to signal willingness to proceed with protocol exe-

cution. This step may be executed in parallel with step 3.

Step 3: To enable B to construct NRRB: DA sends the id, the participant identifiers A and B

(recovered from NROA) and a digest of msg to B.

Step 4: B responds with NRRB. It is safe for B to send the receipt to DA before obtaining msg

because DA, as TTP, can and will provide msg in return. NRRB is encrypted to guarantee

that A can only obtain the receipt if the exchange runs to some form of successful completion.

Step 5: DA sends NRRDA to A. This is DA’s receipt for msg and assurance that it has received

and verified NRRB. This step may be executed in parallel with step 6.

Step 6: DA sends msg and associated NRODA to B.
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Step 7: B performs application-level validation of msg. The outcome of this validation is signed

along with id to form NRVB that is sent to DA.

Step 8: rn, hitherto known only to A and DA, is sent to B as acknowledgement of receipt for

NRVB. This step may be executed in parallel with step 9.

Step 9: DA sends NRVDA to A — non-repudiation of the outcome of validation of msg.

At the end of execution of the main protocol, A has acquired the following evidence: NRSDA,

NRRDA and NRVDA — non-repudiation of submission, receipt and validation of msg. In return,

B has acquired: msg, NRODA and rn — the business message with non-repudiation of origin and

acknowledgement of validation of msg. DA has the complete set of evidence, including: NROA,

NRRB and NRVB.

Fairness is guaranteed because DA controls the release of the evidence to A and B. Furthermore,

DA’s signature on the evidence provided to A and B : (i) serves as a guarantee that DA has seen,

verified and will store the evidence for future reference; and (ii) reduces the verification work of A

and B to that of verifying the signature and associated credentials of a well-known TTP.

If B does not wish to perform application-level validation of msg, then the protocol can terminate

at step 6. In this case, at step 4, B sends DA both NRRB and a default NRVB token that confirms

the validity of msg. At step 5, DA sends A both NRRDA and NRVDA. At step 6, DA sends rn to

B with msg and NRODA.

On successful completion of the main protocol, DA sets termination state to SUCCEEDED.

Exception handling

In exceptional circumstances A or B may request that DA terminate the main protocol before

completion. Such requests typically occur because A or B is concerned about the liveness of protocol

execution (whether, as a result, of the non-cooperation of a participant or extraneous factors such

as network delays). There are two types of request:

abort: where the requesting party wishes to terminate the protocol as if no exchange had taken

place. That is, neither A nor B receive any useful information about the exchange.

resolve: where the requesting party seeks DA’s assistance in securing normal termination. That is,

all expected items (or their equivalent) are available to well-behaved parties.

These requests are, in effect, the statement of a preference for how the exchange should complete.

Irrespective of the type of request, it is the responsibility of DA to ensure that fairness guarantees

hold for all honest parties. Depending on the progress of the main protocol and whether the exchange

termination state has already been set, DA must determine whether the exchange should terminate
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in ABORTED state (no exchange has taken place) or SUCCEEDED state (exchange has taken

place). An exchange can terminate in SUCCEEDED state if and only if: (i) A is entitled to

NRSDA, NRRDA and NRVDA (or an equivalent substitution); and (ii) B is entitled to msg, rn

and NRODA.

DA is empowered to issue the substitute non-repudiation of validation, NRV ′
DA, in place of

NRVDA. NRV ′
DA is DA’s signed confirmation that B has not validated msg. Once DA has produced

NRV ′
DA no validation of msg by B will be accepted. NRV ′

DA is equivalent to invalidation of msg

with the supplementary information that B did not cooperate in the decision. At first sight, this

places A at a disadvantage, since B can receive msg and simply decide not to cooperate in its

validation. However: (i) in any case, B may autonomously decide that a message is not valid (and

such invalidation may be subject to extra-protocol dispute resolution); and (ii) A obtains evidence

of B ’s lack of participation in validation. Thus, in terms of evidence exchanged, the substitution of

NRV ′
DA for NRVDA is fair.

From the above, we observe that fairness is guaranteed to both A and B if:

1. the main protocol completes normally; or

2. B chooses not to engage in the main protocol by not responding to step 3 (up to and including

step 3, A has only received NRSDA and B has no useful information about msg); or

3. the exchange is aborted when the main protocol has progressed no further than step 4 (at

step 4, B sends NRRB to DA but the protocol can still be aborted because A does not have

NRRDA and B is yet to receive msg or NRODA); or

4. the exchange is completed successfully after execution of step 4 (at step 4, DA has all the

information necessary to complete the exchange; after execution of step 5, DA must guarantee

that all expected items are available to both A and B).

The pivotal point in the main protocol is step 4. Before step 4, DA can only respond to either

type of termination request by aborting the exchange. Upon execution of step 4, DA has rn, msg,

NROA and NRRB but is yet to complete the release of information to either A or B. Thus, at this

point, they can satisfy whichever type of termination request they receive first. Once DA releases

critical information in step 5, they must respond to a termination request by successfully resolving

the exchange.

A request from an end user, U ∈ {A, B}, to DA to abort an exchange results in execution of the

following abort sub-protocol:
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1 U → DA : sigU (sid, ABORT, id)

if ABORTED

or (not SUCCEEDED and lastStep < 5) then:

2.1 DA → U : sigDA (sid, ABORTED, id)

else if lastStep < 7 then:

2.2 DA → U : SUCCDA, resU , NRV ′
DA

else:

2.3 DA → U : SUCCDA, resU , NRVDA

where:

sid = unique sub-protocol identifier

SUCCDA = sigDA (sid, SUCCEEDED)

resA = NRSDA, NRRDA

resB = rn, msg, NRODA

In step 1, U submits a signed request to abort the exchange identified by id. DA then checks the

state of the exchange. If termination state is not already SUCCEEDED and the main protocol has

not progressed beyond step 4 (lastStep < 5), then DA sets termination state to ABORTED. DA

provides U with non-repudiation of aborted exchange in step 2.1. If the exchange cannot be aborted,

DA checks whether the main protocol has progressed beyond step 6. If not, then step 2.2 above is

executed to complete a successful exchange with substitute NRV ′
DA. Otherwise step 2.3 is executed

to complete successful exchange of the evidence that would have been provided during normal

execution. As shown above, resU is the resolution evidence provided to A or B, as appropriate. If

either step 2.2 or 2.3 is executed, DA sets termination state to SUCCEEDED.

The corresponding resolve sub-protocol is:

1 U → DA : sigU (sid, RESOLV E, id)

if ABORTED or lastStep < 4 then:

2.1 DA → U : sigDA (sid, ABORTED, id)

else if lastStep < 7 then:

2.2 DA → U : SUCCDA, resU , NRV ′
DA

else

2.3 DA → U : SUCCDA, resU , NRVDA
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Apart from the signed request that initiates the resolve sub-protocol, the only significant differ-

ence to the abort sub-protocol is that execution of step 2.1 is triggered if either termination state is

ABORTED or the main protocol has not progressed beyond step 3.

Once the termination state of an exchange has been set (whether after execution of the main

protocol or one of the above sub-protocols), DA will forever respond in the same way to any subse-

quent request to abort or resolve the identified exchange (with appropriate abort token or resolution

evidence). DA also responds in the same way to any subsequent message of the main protocol. That

is, once the termination state has been set, DA suspends the main protocol at lastStep.

Termination may also be triggered by the a priori indication of deadlines for the acknowledge-

ments provided in the main protocol (NRS, NRR and NRV). In this case, in step 1 of the main

protocol A can indicate deadline(s) for delivery that they wish to be observed (on a best effort

basis). During protocol execution, DA determines locally whether a delivery deadline is achievable.

If not, DA will pro-actively terminate the exchange and issue appropriate abort or resolve tokens to

A and B depending on the state of the main protocol at the time of termination.

3.2.5 Fair exchange with light-weight delivery agent

Normal protocol execution

The protocol for fair exchange with light-weight DA is:

1 A → DA : encDA (msg, rn, NROA)

2 DA → A : NRSDA

3 DA → B : id, A, B, h (msg)

4 B → DA : encDA (NRRB)

5 DA → A : NRRB

6 DA → B : msg, NROA

7 B → DA : NRVB

8 DA → B : id, rn

9 DA → A : NRVB

This protocol is closer to the Coffey-Saidha protocol with the addition of steps 7 to 9 for NRV of

msg. The difference between this protocol and the light-weight end user protocol is that A and B

are now responsible for verification of each other’s evidence and for its long-term storage. Thus,

in steps 5, 6 and 9, DA relays the tokens provided by A and B rather than generating new signed

tokens.
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Exception handling

The abort and resolve sub-protocols are basically as defined in Section 3.2.4 except that the resolution

evidence provided in steps 2.2 and 2.3 is now:

resA = NRSDA, NRRB

resB = rn, msg, NROA

For successful termination before step 7, the DA provides NRV ′
DA (as described in Section 3.2.4).

For successful termination after step 6, DA provides NRVB (as opposed to NRVDA). The abort

token is identical to that defined in Section 3.2.4.

3.2.6 TTP message validation

TTP can host B ’s message validators if during the execution of the non-repudiation protocol TTP

receives a plain text version of the message. When this is the case, DA can verify msg on receiv-

ing step 1. If the message is valid, the protocol continues, otherwise DA responds to A with an

appropriate NRV and the protocol ends.

3.3 Summary

This chapter presented a non-repudiation protocol hierarchy which allows for a large variety of

application requirements. These requirements are fulfilled by providing a multitude of messaging

patterns coupled with varying levels of non-repudiation and validation guarantees. Furthermore,

these messaging patterns are (to some extent) agnostic to the choice of non-repudiation protocol. As

a result, the underlying non-repudiation protocol can be modified without disrupting the application.

To facilitate configurable service-based non-repudiation, a delivery agent based protocol was

presented that provides fair non-repudiation of application message and validation of the application

message. It was shown how this protocol could be modified to facilitate lightweight end users or

lightweight delivery agent. Furthermore, it was shown how exception handling sub-protocols can be

used to ensure fairness is achieved in the presence of unexpected behaviour.
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Chapter 4

Protocol Representation

This chapter develops a notation for specifying a class of TTP based fair non-repudiation protocols.

The chapter then shows how an executable protocol can be derived automatically from such a

specification. Due to high level of automation, confidence that the protocol being executed faithfully

represents the intended protocol specification is greatly increased. Furthermore, the tedium (and

possibility of bug introduction) associated with protocol development is also removed.

The chapter begins by discussing a class of supported protocols. This includes a definition of

the properties required for a protocol to be added to this class. The chapter then presents a means

for representing this class of protocols as a series of finite state machines (FSMs). The actions and

events used in these FSMs largely comprise sending and receiving protocol messages (respectively).

The chapter concludes with a rigorous method for automatic generation and verification of protocol

messages.

In this chapter three participants will be discussed. The participant who initiates the non-

repudiation protocol will be referred to as A. The participant with whom A wishes to exchange with

is referred to as B. The trusted third party used in the execution is referred to as TTP.

When discussing non-repudiation protocols, three types of sub-protocol are discussed. The main

protocol is referred to as exchange. The exception handling sub-protocols are referred to as abort

and resolve.

4.1 Supported non-repudiation protocols

The protocol support described in this chapter is intended for a subset of non-repudiation protocols.

Protocols in this subset must conform in the following ways.

1. Structure. The protocol must comprise one main protocol and zero to two sub-protocols. The

exchange protocol must facilitate normal execution of the protocol. If present, the exception

handling sub-protocols must be used to request a trusted third party to bring the main protocol

to completion. These sub-protocols should move the protocol to a consistent state in which
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no party is disadvantaged. The two possible sub-protocols are namely abort and resolve. The

abort sub-protocol attempts to move the protocol to an aborted state in which no party has

any evidence and B does not have the application message. The resolve sub-protocol attempts

to move the protocol to a resolved state in which both A and B have required evidence and B

has the application message.

2. Representation. The protocol must be representable using the notation described in Sec-

tion 4.3. The semantics for each of the described tokens must also match the semantics intended

by the protocol author.

From the protocol comparison in Section 2.2.6, nine out of the ten protocols are supported; these

are [16, 90, 87, 88, 47, 35, 81, ?]. The Zhang and Shi protocol [84] and a derivation [91] of the Zhou

Gollmann [90] protocol are both unsupported as they contain timing information in the protocol.

The Zhang and Shi protocol uses timing information to provide deadline by which a certain part

of the protocol must complete — this prevents the protocol responder from needing to wait an

arbitrarily long time for the protocol to complete. The Zhou Gollmann protocol uses timing for this

same reason and also to allow the TTP to add a time-stamp to the evidence (this states at what time

the message was available to the protocol responder). The issue of supporting timing and deadlines

has been left as further work and is discussed in Section 6.4.1.

4.2 Finite state machine representation

The progress of a participant through the various stages of a non-repudiation protocol can naturally

be expressed as a finite state machine. Here, transitions between states occur when a protocol

message is received. Transitions also occur when an exception is detected, such as the perceived

non-cooperation of another participant. Each transition could trigger an action. This action could

be either to send another protocol message or begin exception handling. Each participant has a

finite state machine for the exchange protocol and one for exception handling.

In order to create the FSMs, the subset of non-repudiation protocols was taken and each one

carefully inspected. Due to their similarity, it was possible to construct a set of general FSMs that

could be used to represent any protocol in that classification. A similar process could be applied to

other security protocols.

4.2.1 Exchange protocol FSMs

During the execution of a non-repudiation protocol, each participant will operate a finite state

machine that facilitates normal movement through the exchange protocol and also the initiation of

exception handling. There follows a description of the exchange protocol FSM for A, B and TTP.
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start

Figure 4.1: A’s Exchange Protocol FSM

4.2.1.1 A’s exchange protocol FSM

Figure 4.1 shows the FSM of the exchange protocol as executed by A. A begins in the initial state,

S0. In this state, all received messages are ignored and thus result in A remaining in state S0. On

occurrence of the begin protocol event, a transition is made to state S1. During this transition, an

action is invoked, this action is to send the first protocol message to the intended recipient.

From state S1 A may do the following:

1. Normal progress. A will move from state Sm to Sm+1 (where, 0 < m < n) when a valid and

expected protocol message is received. A send message action occurs if A’s next involvement

in the protocol is to send a protocol message. Numerous protocol messages could be sent until

the participant’s next involvement is to receive a protocol message or until the protocol has

completed.

2. No progress. A will remain in the same state if an unexpected or invalid message is received.
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Figure 4.2: B’s Exchange Protocol FSM

3. Transition to HandleException . This will occur on detection of an un-handleable internal

exception or in the event of a timeout. Timeouts occur when a particular protocol message is

not received by a given deadline. The action on this transition is used to invoke an exception

handling sub-protocol.

The above options are available for all states Sm, where, 0 < m < n.

States Sn and Handle Exception are end states. State Sn represents a successful completion of

the protocol where as the Handle Exception end state may represent a successful or aborted protocol

run. The FSM for the exception handling sub-protocol is discussed in Section 4.2.2.1.

4.2.1.2 B and TTP’s exchange protocol FSM

Figure 4.2 Shows B and TTP’s exchange protocol FSM. This FSM is similar to that shown in

Figure 4.1, with the following differences:

• There is no state S0. This is because B and TTP may not initiate the exchange protocol.

• The state S1 is now the start state. This is because B and TTP begin by waiting for the first

valid and relevant protocol message.

86



CHAPTER 4. PROTOCOL REPRESENTATION 87

• The state S1 does not detect an exception. This is because no exception can occur before the

protocol run has begun (from point of view of B or TTP).

• The transition from state S1 to S2 can only occur on receipt of an expected and valid protocol

message. Neither B nor TTP may send a protocol message until they have received their first

protocol message.

In the case of an offline TTP, an exchange protocol FSM would not exist. This is because offline

TTPs are only required to execute the exception handling sub-protocols. Furthermore, in a protocol

with no exception handling sub-protocols, the TTP would not have an exception handling FSM.

4.2.2 Exception handling FSMs

In exceptional circumstances, a participant may request termination before (its perception of) the

exchange protocol is completed. This would typically occur if the participant is concerned about the

timeliness of the protocol execution. This could be a result of non-cooperation of another participant

or excessive network delays.

If an exception is detected during the execution of the exchange protocol, the exception handling

FSM is executed. Some non-repudiation protocols have sub-protocols for bringing the main protocol

to a consistent completion. Other’s do not support exception handling. A consistent completion is

one in which all participants have the same view regarding the status of the protocol. These views

consist of:

• Aborted. The protocol terminates as if no exchange has taken place. That is, no participant

(excluding trusted third parties) receives any useful information about the exchange.

• Resolved. All well behaved participants experience normal termination. That is, all expected

items are available to well behaved participants.

When participating in a non-repudiation protocol without exception handling sub-protocols, there

is a risk of breaking fairness. On detection of an exception, the participant is forced to simply quit

the protocol, regardless of its progress.

4.2.2.1 A and B’s exception handling FSM

Figure 4.3 shows the finite state machine for exception handling at end user participants, A and B.

The state machine starts in the Handle Exception state which is arrived at when the main state

machine detects an exception. From this initial state, there are three options available for handling

the exception.
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Handle
Exception

Waiting for
Result

request resolve
send resolve request to TTP

quitted

quit
notify status

Aborted Resolved

receive resolve token
notify success

receive abort token
notify failure

request abort
send abort request to TTP

start

Figure 4.3: Generic exception handling FSM

1. Quit. This event is raised if the exchange protocol has no exception handling sub-protocol

or if the participant has not released any information that could be deemed useful to another

party, such as non-repudiation evidence.

2. Request abort. This event is raised if the exchange protocol has an associated sub-protocol

capable of bringing the exchange protocol to an aborted state.

3. Request resolve. This event is raised if the exchange protocol has an associated sub-protocol

capable of bringing the exchange protocol to a resolved state.

When both abort and resolve exception handling sub-protocols are available, a choice can be made

on the preferable outcome of the exchange protocol. This choice is only a preference and is not

guaranteed to happen in practice. This occurs because the exchange protocol may not be in a

position that allows fair completion to the preferred state. For example a TTP cannot resolve a

protocol if it does not have enough tokens. Similarly a protocol cannot be aborted if one participant

(other than the TTP) has received useful information.

4.2.2.2 TTP’s exception handling FSM

Should an exception handling sub-protocol exist, it is the responsibility of the trusted third party

to execute it at the request of end user participants. It could also be the case that the TTP detects

an exception and initiates the exception handling sub-protocol itself.

Figure 4.4 shows the FSM for the exception handling sub-protocol from the TTP’s point of view.

The FSM shown is for an exception handling sub-protocol that supports abort and resolve requests;

although a particular sub-protocol may only support one of these requests. If the sub-protocol does

88



CHAPTER 4. PROTOCOL REPRESENTATION 89

Waiting

Received
Abort

Request

resolve
request

Aborted Resolved

Aborting Resolving

send abort token

!resolvable

resolvable

Received
Resolve
Request

abort
request

abortable

!abortable

send requestor oriented resolve token
notify success

any message
send abort token any message

send requestor oriented resolve token

start

Figure 4.4: TTP Exception Handling FSM
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not support resolve requests, the FSM will be similar, but with no ’Received Resolve Request’ state

(and attached transition arrows). Similarly, if the sub-protocol does not support abort requests,

there will be no ’Received Abort Request’ state.

The TTP knows in each state of the exchange protocol whether it can be aborted or resolved. It

is possible that in some states of the exchange protocol, that it could be both aborted or resolved.

This can occur when the TTP has all knowledge required to complete the protocol and no end user

participant has received any useful information, such as non-repudiation evidence. On receiving a

request to abort the main protocol, the TTP will check to see if the exchange protocol is abort-able.

If this is the case, the TTP will mark the protocol as aborted and indicate this by responding to

the exception handling request with an abort token. If the exchange protocol is not abort-able, the

TTP will mark the protocol as resolved and then respond to the exception handling request with

requester specific resolve tokens. Similarly, when the TTP receives a request to resolve the protocol,

the exchange protocol will be resolved if possible and aborted if not.

Once the exchange protocol has been marked as aborted or resolved, all protocol messages

received by the TTP will receive the final status of the protocol as a response.

4.3 Non-repudiation protocol notation

The transition through a finite state machine is mostly dependent on the sending and receiving

of valid protocol messages. In this section, a rigorous mechanism for creating and verifying valid

protocol messages is presented. In order to undertake this process, the non-repudiation protocol

must be canonicalised. This is done by expressing the protocol in some specific notation. This

notation is described in Section 4.3.2.

Given a protocol expressed in the notation, the section goes on to describe how a protocol message

can be generated and verified. This is done by exploiting a particular property of non-repudiation

protocols. This property being that non-repudiation protocols are composed of a careful and gradual

release of information. Once in possession of a full set of correct information, a participant holds

all required evidence to the interaction. The release of information is guarded by prior receipt of

correct protocol messages.

4.3.1 Assumptions

The following assumptions are made when automatically creating and verifying protocol messages.

• The protocol messages can be described using the following notation.

• The protocol messages can be generated using the following protocol message generation tech-

niques.
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• The protocol messages can be verified using the following protocol message verification tech-

niques.

• Where necessary, all participants have a set of initial knowledge that contains the participant’s

own private key and the public key of all other participants. It is assumed that participants

will add to this knowledge as they receive new tokens.

• The initiator of the protocol knows the identity of all other participants and the contents of

the application level message.

• Each participant has a common agreement on what cryptographic algorithms to use.

Typically, all protocol messages are sent (or pushed) from one participant to another. However,

some protocols operate a feature where a participant is required to pull a protocol message from

another participant. This feature is used slightly to reduce the requirements of trusted third parties.

To simplify the process, all pull messages must be replaced with pushes.

4.3.2 Notation for describing protocols

To allow a non-repudiation protocol to be machine interpretable, it must be specified using a specific

notation. This notation allows the specification of common terms and methods commonly used in

non-repudiation protocols. Furthermore each token could be represented using a combination of

other tokens, recursively.

Message

The message is the payload of any non-repudiation protocol and is the subject of subsequent evidence.

The message is represented using the following notation:

msg

The message is a primitive term and is present in the initial knowledge of A.

Validation

Validation tokens state that a particular token must be validated. This validation mechanism can

be used to integrate message validation into a protocol. A validation token can be expressed using

the following notation:

val(x)

Where x can be any concatenation of tokens. x will usually be the message, msg.
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Flags

Flags are used to give a human readable label to a particular protocol message. They typically

describe the purpose of the protocol message. A flag is represented using the following notation:

f(x)

Where x is a piece of free text used for the description. Multiple flags can be present in a single

protocol message. Some special flags are also present; these are interpreted by the system interpreting

the protocol notation. These special flags are as follows:

f(ABORT). Represents a request to abort the current protocol run.

f(RESOLVE). Represents a request to resolve the current protocol run.

f(ABORTED). States that the current protocol run has been aborted.

f(SUCCEEDED). States that the current protocol run has succeeded.

Participants

Each participant in the protocol must be identified. Only the identifiers used in the section of the

protocol describing the message flow can be used. For example, “A”, “B” and “DA” could be three

participant identifiers.

Nonce

Several nonces may be used in a protocol and, as a result, need to be uniquely identifiable. A nonce

is a unique number. All parties must ensure that they have never seen this nonce before.

The following notation is used to represent a particular nonce:

ni

Here “i” represents a number unique to each instance of a particular nonce. For example, a protocol

containing two separate nonces would use the notation n1 and n2 to define each instance. The

shorthand ’n’ may be used if only one nonce is present.

Random number

Several random numbers may be used in a protocol and, as a result, need to be uniquely identifiable.

A random number should not be predictable. The following notation is used to represent a particular

random number:

rni
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Here ’i’ represents a number unique to each instance of a particular random number. For example,

a protocol containing two separate random numbers would use the notation rn1 and rn2 to define

each instance. The shorthand ’rn’ may be used if only one random number is present.

Symmetric key

Similarly to a nonce, several symmetric keys may be used in a protocol and, as a result, need to be

uniquely identifiable. The following notation is used to represent a particular symmetric key:

ki

Here ’i’ represents a number unique to each instance of a particular symmetric key. For example, a

protocol containing two separate symmetric keys would use the notation k1 and k2 to define each

instance. The shorthand ’k’ may be used if only one symmetric key is present.

Digest

A digest over a concatenation of tokens can be described using the following notation:

h(t1,t2...,tn)

Here ’t1’ represents the first token and ’tn’ represents the nth token. For example, a digest over two

participants A and B along with the message msg could be represented as follows:

h(A,B,msg)

Run identifiers

A run identifier has the same semantics as a digest, but is named differently. In addition to it being

a digest, it also conveys some extra information that states it can be used to uniquely identify a

protocol run. By expressing a run identifier in the notation, the middleware knows how to identify

protocol runs. If no run identifier is present, the middleware will provide a default. Many protocols

have unique labels that are used as run identifiers — this notation allows the middleware to utilise

them.

A run identifier created from a concatenation of tokens can be described using the following

notation:

runID(t1,t2...,tn)

Here ’t1’ represents the first token and ’tn’ represents the nth token. For example, a run identifier

created from two participants A and B along with the message msg could be represented as follows:

runID(A,B,msg)

The actual value of the run identifier will be a digest of the concatenation of each enclosing term.
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Asymmetric encryption

Asymmetric encryption, or more specifically public key encryption is represented with the following

notation:

eP_x(t1,t2...,tn)

Here ’x’ represents the participant whose public key is used for encrypting the concatenation of the

tokens t1 to tn.

Symmetric encryption

Symmetric encryption is represented using the following notation:

ekn(t1, t2...,tn)

Here ’kn’ represents the particular symmetric key used to encrypt the concatenation of the tokens

t1 to tn. ’kn’ should be present elsewhere in the protocol as an individual token (unless part of a

participant’s initial knowledge).

Signature

A digital signature is represented using the following notation:

sS_x(t1, t2...,tn)

Here ’x’ represents the identity of the participant who’s private key is used to sign the concatenation

of the tokens t1 to tn.

Control flow notation

Control flow notation can be used to make a decision on what message to send next. The control

flow takes the following form:

IF <expr1> THEN

n.1 X -> Y : message1

ELSE IF <expr2> THEN

n.2 X -> Y : message2

ELSE

n.3 X -> Y : message3

If participant X evaluates expr1 to true, participant X sends message1 to participant Y. Otherwise,

if participant X evaluates expr2 to true, participant X sends message2 to Y. Otherwise participant

X sends message3 to Y.
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Expressions use the logical operators (==, !=, &&, ||, <, >). Also, the tokens ’AND’ and ’OR’

may be used in place of ’&&’ and ’||’ respectively. Some variables may be queried as part of an

expression, these comprise:

• lastStep. This is the last step of the exchange protocol that the participant evaluating the

expression successfully undertook.

• status. This variable reports the status of the protocol. status can take one of three values,

(ABORTED, SUCCEEDED, INCOMPLETE).

The protocol step numbers use a decimal point to indicate that each step is sub step of a given step

n.

4.3.2.1 Example

There follows a representation of the Delivery Agent protocol (Described in Section 3.2) represented

using this notation. In the notation, several variables have been used to represent run identifiers

and non-repudiation evidence. These can be replaced inline with the following definitions:

ID = runID(A, B, DA, rn)

NROa = sS_A(ID, A, B, h(msg))

NRSda = sS_DA(ID, A, B)

NRRb = sS_B(ID, A, B, h(msg))

NRVb = aS_B(ID, val(msg))

NROda = sS_DA(ID, A, B, msg)

NRRda = NROttp

NRVda = sS_ttp(ID, val(msg))

NRNVda = sS_ttp(ID, val(msg))

There follows the exchange protocol of the Delivery Agent protocol (Described in Section 3.2).

1 A -> DA : eP_TTP(ID, A, B, rn, msg, NROa)

2 DA -> A : ID, A, B, NRSda

3 DA -> B : ID, A, B, h(msg)

4 B -> DA : ID, A, B, eP_TTP(NRRb)

5 DA -> A : ID, A, B, NRRda

6 DA -> B : ID, A, B, msg, NROda

7 B -> DA : ID, A, B, val(msg), NRVb

8 DA -> B : ID, A, B, rn

9 DA -> A : ID, A, B, val(msg), NRVda
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The remainder of the Delivery Agent protocol notation is presented in Section A.1.

4.3.3 Protocol message creation

A protocol message can be generated providing each of the composing tokens is available in the

participant’s knowledge. Some tokens will be available in the participant’s initial knowledge, such

as the participant’s private key, other participants’ public keys and maybe some symmetric keys.

Other knowledge is acquired as the protocol progresses. Non-primitive tokens can be generated

if and only if all the composed tokens are in the participant’s knowledge and any other tokens

required to undertake the operation are also in the participant’s knowledge. It could be envisaged

that a participant may try to construct a message without having enough knowledge. However, it

is assumed that the protocol has been subjected to some verification and thus a participant will not

attempt to send a message unless all prior messages received are correct. These assumptions ensure

that all protocol message creation attempts will succeed.

It should be noted that tokens are only created if their value is not already in the participant’s

knowledge. Otherwise, the value is simply taken from the knowledge and re-used. There follows a

description of how each token is created. Some tokens have to be taken from the knowledge as the

participant does not currently know the tokens used to create it.

Message

The message is a primitive token that will be present in A’s initial knowledge. Other participants

can only generate protocol messages containing this token if they have received it in a prior protocol

message.

Validation

Validation tokens have one of three values, valid, invalid and not validated. When creating a vali-

dation token it must be evaluated to one of these values. This validation is delegated to the system

interpreting the notation in much the same way that a digest token is evaluated by the system to

create a digest value.

Flags

All participants can create any flag.
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Participants

The participant tokens are present in A’s prior knowledge, thus the initiator is always able to use

them. Other participants will receive these tokens when they first participate in the protocol. It is

likely that these tokens will be passed in each protocol step.

Nonce

If generating a message in which a nonce is specified for the first time (with respect to the whole

protocol run), it should be created. This involves checking for uniqueness. If the nonce has prior

specification (with respect to the whole protocol run), it should be known and thus can be placed

in the protocol message.

Random number

If generating a message in which a random number is specified for the first time (with respect to

the whole protocol run), it should be created. This involves checking for uniqueness. If the random

number has prior specification (with respect to the whole protocol run), it should be known and

thus can be placed in the protocol message.

Symmetric key

A symmetric key is either in a participant’s initial knowledge, or is received in an earlier protocol

message.

Digest

A digest of a concatenation of tokens can be created iff the whole concatenation of tokens is known.

Run identifier

A run identifier based on a concatenation of tokens can be created iff the whole concatenation of

tokens is known.

Asymmetric encryption

A concatenation of tokens may be encrypted iff the whole concatenation of tokens is known. It is

assumed that the public key of the specified participant will be known.

Symmetric encryption

A concatenation of tokens may be encrypted using a symmetric key iff the whole concatenation of

tokens is known and the specified symmetric key is also known.
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Signature

A concatenation of tokens may be signed iff the whole concatenation of tokens is known and the

specified secret key is that of the participant generating the message.

4.3.4 Protocol message verification

On receiving a protocol message, the recipient participant must verify it to be correct. This involves

verifying each token that composes the message. Primitive tokens (ones that are not composed from

other tokens) can always be verified. Whereas non-primitive tokens can only be verified if the tokens

used to represent them are also verifiable. Thus verification of each non-primitive token must be

deferred until, but no later than, all the composed tokens are available.

Message

The message itself cannot be verified as only the initiator knows what it should contain. However,

it is likely that the knowledge of this message will allow other non-primitive tokens to be verified.

For example, a digest of the message may have been sent in a prior step. Receiving the message will

allow the digest of the message to be verified.

Validation

Validation tokens do not need verifying. It is typical that they would be enclosed in a signature

token, in which case the signature token is verified.

Flags

None of the flags need validating. It is typical that they would be enclosed in a signature token, in

which case the signature token is verified.

Participants

The first message of the protocol will state which participants are to be present in the execution of

the protocol. Subsequent steps of the protocol can be verified by ensuring the participant identifiers

are used where intended.

Nonce

On first sight of a particular nonce, it should be checked for uniqueness and then stored for subsequent

use. When receiving a message supposed to contain a nonce, that has already been seen, it should

be checked for equality against the nonce received earlier.
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Random number

On first sight of a particular random number, it should be stored for subsequent use. When receiving

a message containing a random number that has already been seen, it should be checked for equality

against the random number received earlier.

Symmetric key

Symmetric keys should be stored such that any tokens encrypted under that particular key can be

decrypted.

Digest

The digest value can only be verified if the participant is in possession of the tokens subject to the

digesting algorithm. Otherwise the verification must be deferred until the required tokens have been

received.

Run identifier

The run identifier value can only be verified if the participant is in possession of the tokens subject to

the digesting algorithm used to create the run identifier. Otherwise the verification must be deferred

until the required tokens have been received.

Asymmetric encryption

If the token was encrypted under the recipient’s public key, then the token may be decrypted and

the contents stored. Otherwise the token is stored in its encrypted form for later use, maybe to be

forwarded on to another participant.

Symmetric encryption

Tokens encrypted under a symmetric key can be decrypted, provided that the corresponding sym-

metric key is available. Again, it may be necessary to wait for the symmetric key to arrive before the

contents can be acquired. Similarly to tokens encrypted under an asymmetric key, the sole purpose

could be to forward the cipher text to another participant.

Signature

Tokens signed using a digital signature may be verified iff the signed tokens are available. It is

assumed that the public key of the signatory is available.
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4.4 Example creation and verification steps

This section shows the steps undertaken by A and DA when creating and verifying the first two

protocol messages of the delivery agent protocol (Described in Section 3.2).

Protocol message 1 - created by A

To create protocol message 1, A begins by inspecting the notation:

ID = runID(A, B, DA, rn)

NROa = sS_A(ID, A, B, h(msg))

1 A -> DA : eP_DA(ID, A, B, rn, msg, NROa)

The following steps are undertaken by A to create the protocol message:

1. Generate ID . ID represents a run identifier token, this token is simply a digest over the

enclosed tokens. A can construct the run identifier as all the enclosed tokens are known or

can be generated. A, B and DA are participant tokens and are in A’s initial knowledge.

rn represents a random number and appears for the first time. A creates a value for rn by

generating a new random number.

2. Generate NROa . NROa represents A’s signature over a concatenation of tokens. The

signature can be created because A has access to his own private key and all the containing

tokens are known. ID has just been created, A and B are participant tokens, and are thus in

A’s initial knowledge. Finally, the digest over the message can be constructed as the message

is also in A’s initial knowledge.

3. Generate the protocol message. The protocol message comprises of several tokens en-

crypted with DA’s public key. DA’s public key will be in A’s initial knowledge and all the

encrypted tokens are now known by A.

The following steps are undertaken by DA to verify the protocol message:

1. Decryption. Firstly the protocol message must be decrypted. This can be done as the

protocol message was encrypted with DA’s public key and DA holds the corresponding private

key.

2. Verify NROa . The signature can be verified as A’s public key is in DA’s initial knowledge

and ID, A, B and h(msg) are all present in the now decrypted protocol message. Furthermore,

h(msg) can also be verified as msg is also now known.

3. verify ID . ID is a digest over four tokens, all present in the decrypted protocol message, so

it can be verified.
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Protocol message 2 - created by B

To create protocol message 2, DA begins by inspecting the notation:

ID = runID(A, B, DA, rn)

NRSda = sS_DA(ID, A, B)

2 DA -> A : ID, A, B, NRSda

The following steps are undertaken by DA to create the protocol message:

1. Generate NRSda . ID, A and B are all present in the protocol message so DA can sign their

concatenation to generate NRSda.

2. Generate the protocol message. ID, A and B can be taken from protocol message 1 and

NRSda was generated in the previous step. Thus DA can generate the full protocol message.

The following steps are undertaken by A to verify the protocol message:

1. Verify previously seen tokens. Those tokens (ID, A, B) proposed by A in protocol message

1 can be checked for equality. Leaving just NRSda requiring verification.

2. Verify NRSda . A knows the values for A, B, DA and rn (they were used by A in protocol

message 1). Thus the signature over these tokens can be verified (A also knows DA’s public

key).

The remaining protocol messages can be generated and verified in a similar fashion.

4.5 Summary

In this chapter it was shown how a class of TTP based fair non-repudiation protocols could be

modeled in order to facilitate a rigorous implementation. Correct progress through a protocol was

managed using a collection of FSMs. State transitions in the FSM where undertaken on receipt of

a valid protocol message. Such a transition would then trigger an action to send zero or more valid

protocol messages. The chapter presented a rigorous means for generating and verifying protocol

messages. This process relied on the protocol specification being canonicalised. Canonicalisation

was achieved by representing the protocol using some specific notation. The process of representing

the FSM, creating protocol messages and verifying protocol messages is automated from the canon-

icalised protocol specification. This increases confidence that the running protocol is faithful to the

protocol’s specification.
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Chapter 5

Middleware Implementation

This chapter presents a Web services based implementation (WS-NRExchange) of a framework for

executing non-repudiation protocols. The middleware implements the messaging stack described in

Chapter 3. Firstly an overview of Web services and the standards used to support WS-NRExchange is

presented. Section 5.2 describes a high-level view of the WS-NRExchange architecture. This section

presents the middleware architecture and the interaction with existing Web service standards and

services. Section 5.3 describes the form of protocol messages exchanged during the the execution of

a non-repudiation protocol and how they are verified and generated using the principles presented

in Chapter 4. Section 5.4 shows the internal implementation of the middleware and describes how

protocol messages are handled. Furthermore, the implementation of each layer of the messaging

stack is presented (presented in Section 3.1). The chapter concludes by showing how the finite state

machines from Section 4.2 can be used as a basis for rigorous implementation of a non-repudiation

protocol. Example protocol messages are present in Appendix A.

The middleware described in this chapter is based on work published in cooperation with Nick

Cook and Santosh Shrivastava [?].

5.1 Web services and supporting standards

The implementation of WS-NRExchange is based on Web services. A Web service is a service that

can be described, published, located and invoked over the Web. Web services are based on open

standards and are designed to be platform-neutral. Web services are an instance of a service oriented

architecture (SOA). The following is a definition of SOA by IBM:

SOA is an approach to build distributed systems that deliver application functionality

as services to end user applications or to build other services.

A service is a package of functions that do not depend on the context or state of other services.

Each service can publish its functionality, while other services are capable of discovering and binding
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dynamically to this functionality. Web services adopt the SOA concept using an XML-based message

layer (called SOAP [33]) and can use any transport layer such as HTTP and SMTP. The main

significance of Web services is that it has been embraced by a large proportion of the industry.

5.1.1 SOAP

The SOAP specification [33] describes a message format encoded in XML. The purpose of a SOAP

message is primarily for inter-service communication and is the messaging format used by Web

services. A SOAP message consists of an envelope and zero or more attachments. The envelope is

split into two sections, a header and a body. The body contains the message destined for the intended

recipient. The header contains information required by intermediaries who may need to process the

SOAP message in some way. For example, routing information may be placed in the header and

processed by various routing devices as the SOAP message travels to its intended recipient.

<soap:envelope>
<soap:header>

<!-- information intended for intermediaries -->
</soap:header>
<soap:body>

<!-- message intended for ultimate recipient -->
</soap:body>

</soap:envelope>

Figure 5.1: SOAP Envelope

As a SOAP envelope is encoded in XML, it is understandable by any XML aware system; thus

SOAP is a good communication mechanism for heterogeneous systems.

5.1.2 WSDL

Web service description language (WSDL) is a language for describing how to interface with a Web

service. To interact with a Web service, a consuming application must know the services interface,

including how to structure content and which transport protocol to use. WSDL explicitly describes

this interface in a standardized, machine-readable format. Figure 5.2 shows a very simplified WSDL

document for a purchase order service. This service exhibits a single operation for receiving a

purchase order message. The service responds with an acknowledgement message. Towards the

top of the WSDL document the purchaseOrder and acknowledgement messages are defined using

a message element. This message element describes the required structure of the message. In this

example, both message elements state that the body of their message must contain a String and

nothing else. This type could also comprise a more complex structure. The portType element states

what operations can be called on the service. In this example, there is an operation for raising a
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<definitions>
<message name="purchaseOrder">

<part name="body" element="xs:String"/>
</message>
<message name="acknowledgement">

<part name="body" element="xs:String"/>
</message>
<portType name="purchaseOrderService">

<operation name="raisePurchaseOrder">
<input message="purchaseOrder"/>
<output message="acknowledgement"/>

</operation>
</portType>

</definitions>

Figure 5.2: Example simplified WSDL document

purchase order (raisePurchaseOrder operation). This operation has an input and output element.

The input element states what type of message is required to invoke the service. The output element

states what message type is returned from the service. In this example the service is invoked with

a purchaseOrder message and an acknowledgement message is returned.

5.1.3 XML Signature

XML Signature [27] specifies a mechanism for creating an XML representation of a digital signature.

<PurchaseOrder id=”po1”>
<ItemID>15683</ItemID>
<Quantity>2</Quantity>
<CreditCardNum>1234-5678-9012-1314</CreditCardNum>

</PurchaseOrder>

Figure 5.3: XML Purchase Order

Figure 5.3 shows an XML document that represents a purchase order. Figure 5.4 shows the

purchase order signed with XML Signature.
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<PurchaseOrderDocument>
<Signature>

<SignedInfo>
<Reference "URI=#po1” >
<DigestMethod Algorithm=”...” />
<DigestValue> ... </DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>...</SignatureValue>
<KeyInfo>...</KeyInfo>

</Signature>
<PurchaseOrder id=”po1”>

<ItemID>15683</ItemID>
<Quantity>2</Quantity>
<CreditCardNum>1234-5678-9012-1314</CreditCardNum>

</PurchaseOrder>
</PurchaseOrderDocument>

Figure 5.4: XML Signature Example

The example is split into two parts. The signature and the information being signed. The

Signature block contains the XML signature which is signing the PurchaseOrder block. The signature

contains a SignedInfo block – This is what is actually signed. This block contains a reference to the

purchase order and a digest of the purchase order. The digest algorithm is also specified. The digest

ties the purchase order to the SignedInfo block. The SignedInfo block is digitally signed and the

signature placed in the SignatureValue block. The KeyInfo element contains information regarding

which key to use when verifying the signature. This may be the key itself or some reference to a key.

Verification of the signature occurs in two phases. Firstly the signature value needs to be checked,

using the key described in the KeyInfo Block. This ensures it represents a valid signature on the

SignedInfo block. If this is valid the second phase occurs. This phase is responsible for ensuring that

the referenced data has not been modified. This entails passing the target of the reference through

the specified digest algorithm and ensuring it matches the contents of the DigestValue block.

The example uses a detached signature. This is because the reference points to something outside

the Signature block. This reference can be any URL and thus may point to information outside

the root of the XML document. Other types of XML signatures are Enveloped and enveloping

signatures. An enveloped signature is placed inside the XML block to be signed. An enveloping

signature contains the signed block within the Signature block.

The example shows the key aspects of XML Signature. The reader is encouraged to refer to [27]

for the definitive usage.

5.1.4 XML Encryption

XML Encryption provides a means for encrypting certain portions of an XML document.
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<PurchaseOrder>
<ItemID>15683</ItemID>
<Quantity>2</Quantity>
<CreditCardNumber>

<EncryptedData>
<EncryptionMethod Algorithm=”...”/>
<CipherData>
<CipherValue>...</CipherValue>

</CipherData>
<KeyInfo>...</KeyInfo>

</EncryptedData>
</CreditCardNumber>

</PurchaseOrder>

Figure 5.5: XML purchase order with encrypted credit card number

Figure 5.5 shows the the purchase order from Figure 5.3 with an encrypted credit card number.

This is done by replacing the value from the CreditCardNumber block with an EncryptedData block.

The EncryptedData block contains several tags, one CipherData block for holding the cipher text

and several meta tags to describe how to undertake decryption. The EncryptionMethod tag states

which encryption algorithm was used and the KeyInfo block describes what key should be used for

decryption.

The example shows the key aspects of XML encryption. The reader is encouraged to refer to [26]

for the definitive usage.

5.1.5 WS-Security

WS-Security [59] is a specification for creating self-protecting SOAP documents. The fundamental

components of the specification and those of most interest to this thesis are XML Signature and

XML Encryption. XML signature and XML encryption are simply XML-based standards. They

are completely agnostic as to the rest of the XML document and thus are unaware of the SOAP

standard. WS-Security provides a SOAP specific way of using XML Signature and XML Encryption.

It describes where the various parts of the two standards should be placed and also adds some extra

stipulations regarding their use.
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<Soap:Envelope>
<Soap:Header>

...
</Soap:Header>
<Soap:Body>

<PurchaseOrder>
<UnitID>15683</UnitID>
<Quantity>2</Quantity>
<CreditCardNumber>1234-5678-9012-1314</CreditCardNumber>

</PurchaseOrder>
</Soap:Body>

</Soap:Envelope>

Figure 5.6: Purchase Order SOAP Message

Figure 5.6 shows the purchase order from Figure 5.3 placed in the body of a SOAP message.

<Soap:Envelope>
<Soap:Header>

<wsse:Security>
<!-- XML Signature -->
<ds:Signature>
<ds:SignedInfo>

<ds:Reference URI=”#po1” >
<ds:DigestMethod Algorithm=”...”/>
<ds:DigestValue> .. </ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue> .. </ds:SignatureValue>
<ds:KeyInfo>..</ds:KeyInfo>

</ds:Signature>
<!-- XML Encryption -->
<xenc:ReferenceList>
<xenc:DataReference URI=”#CCNum” />

</xenc:ReferenceList>
...

</wsse:Security>
</Soap:Header>
<Soap:Body>

<PurchaseOrder id=”po1”>
<ID>15683</ID>
<Quantity>2</Quantity>
<CreditCardNumber>
<xenc:EncryptedData Id=”CCNum”>

<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</CreditCardNumber>
</PurchaseOrder>

</S:Body>
</S:Envelope>

Figure 5.7: WS-Security Protected Purchase Order SOAP Message

The example in Figure 5.7 shows XML Signature and XML Encryption applied to the SOAP mes-

sage to sign the PurchaseOrder element and encrypt the CreditCardNumber block. WS-Security dic-

tates that the entire XML Signature must be placed within the SOAP header within a wsse:Security
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element. The wsse:Security block contains all the WS-Security specific elements.

The credit card number cipher-text still replaces the plain text version. However, meta data,

such as information regarding which key to use when decrypting, is delegated to the header and

placed within the wsse:Security block. Also inside this block is a ReferenceList. This refers to all

the encrypted elements in the SOAP document. Their is no way of stating whether the signature

was created before or after the credit card number was encrypted. However, good practice dictates

that signatures should be taken on plain text. This is because, given some signature over some

ciphered text, it cannot be proved that the signatory was able to view the corresponding plain text.

Other WS-Security information can be put in the wsse:security block. However, this has been

left out for the sake of brevity. The interested reader should refer to [59].

5.1.6 WS-Reliability & WS-Reliable Messaging

WSReliability [21] is a recent OASIS standard where as WS-Reliable Messaging [68] is an industry-

proposed standard by IBM, Microsoft et al, for reliable messaging. Both specify message content,

exchange patterns and persistent storage to which each party must adhere to achieve various forms

of reliable message delivery.

5.1.7 WS-Addressing

WS-Addressing [20] provides transport-neutral mechanisms to address Web services and messages.

Web service end points and message identifiers can be specified. The former allows intermediary

message processors to inspect and modify the target end point. The latter allows multiple messages

to be associated with a context.

5.1.8 XML Key Management Service (XKMS)

WS-Security operates best using public key cryptography; this is because it does not suffer from the

key distribution problems of shared key cryptography. However, public key cryptography requires

a supporting infrastructure for managing key distribution, certification and life cycle management.

This has been managed in the past by PKI (Public Key Infrastructure); however, this technology has

proved hard to implement and maintain. The advent of Web services have meant that this technology

can be optionally outsourced to a (trusted) specialist provider. XKMS is a W3C submission [36]

that provides a means for implementing such services.

5.1.9 Digital Signature Service (DSS)

DSS is an OASIS proposed standard for digital signature services for signature creation and vali-

dation, and (secure) trusted time stamping. The service can be used by a trusted third party to
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implemented a time stamping service. The service can also be used, within an organisation, to apply

a corporate signature, rather than an individual’s signature.

5.2 WS-NRExchange architecture

This section describes the WS-NRExchange architecture. The architecture is based on Web service

technologies; this section describes how each of the technologies is used and how WS-NRExchange

utilises various services.

DSS XKMS

XML Signature
XML Encryption

WS-NRExchange

SOAP

RM

WS-Security

Figure 5.8: WS-NRExchange and Web service standards

To place the following discussion in context, Figure 5.8 shows how various XML and Web service

standards support WS-NRExchange.
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Figure 5.9: WS-NRExchange architecture

Figure 5.9 shows the interactions between the various components and services that make up

the implementation. TTP, A and B each provide an NRExchange Web service that manages their
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participation in non-repudiation protocols. Each Web service exposes the same interface for pro-

tocol execution. At A and B this service is deployed as an interceptor that mediates Web service

interactions that require fair non-repudiation. This interceptor may be co-located with the local

application that uses it or may, for example, be part of a corporate firewall service. The end-users,

A and B, may themselves be Web services or Web service clients or both. The NRExchange ser-

vices access additional local services for signing evidence, message persistence and application-level

validation. The signing service is required to apply signatures to the parts of messages that have

not already been signed1. This service may be an implementation of DSS or some other mechanism

for obtaining private keys to apply signatures as defined by WS-Security. Persistence is required to

meet fault tolerance requirements and also for audit. The NRExchange services also accesses trusted

timestamping services and public key management services (DSS and XKMS services provided by

third parties). For protocols that use an inline TTP, trusted timestamps may optionally be applied

by the DA Web service.

As described in Section 5.3.1, a WSDL interface has been defined for the interaction between

NRExchange services. The messages exchanged comply with the WS-Security specification. The ser-

vices are written to the DSS and XKMS specifications for access to trusted timestamping, signature

verification, public key life-cycle management etc.

The NRExchange Web service also provides a local interface to allow registration of application-

specific listeners for message validation and other events. A message validation listener may trigger

arbitrarily complex validation of a business message. If no validation listener is registered, then the

NRExchange service assumes that a message is valid with respect to business contract. Registration

of event listeners allows notification of protocol-related events. For example, an application can

register to receive notification of zero or more of the acknowledgements generated by the protocols.

5.3 Protocol messages

This section describes the interface to to the WS-NRExchange service and the structure of the

protocol messages exchanged during the execution of a non-repudiation protocol. The method

for generating protocol messages is also presented. Example protocol messages can be found in

Section A.3.

5.3.1 WS-NRExchange interface

Figure 5.10 shows an extract of the WSDL of an NRExchange Web service showing the operations

that are exposed to other NRExchange services for protocol execution.

1It is possible, for example, that the message body or documents attached to a message have been signed at the
application level, in which case the NRExchange service does not need to countersign.
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<portType name="NRExchange">
<operation name="processMessage">
<input message="ProtocolMessage"/>
</operation>
<operation name="abort">
<input message="ProtocolStateMessage"/>
</operation>
<operation name="resolve">
<input message="ProtocolStateMessage"/>
</operation>
<operation name="setProtocolState">
<input message="ProtocolStateMessage"/>
</operation>

</portType>

Figure 5.10: Extract of NRExchange WSDL

Participants in a non-repudiation protocol use the processMessage operation to exchange protocol

messages with each other. The sender provides a protocol message for the receiver to process accord-

ing to a specified non-repudiation protocol. Message elements are defined in a related XML Schema

and are sufficiently general and extensible to allow all protocol execution between NRExchange

services to be conducted using the processMessage operation.

The abort and resolve operations are for pro-active termination (see Section 3.2.4). These oper-

ations are typically used by a TTP to inform another participant service that an identified protocol

run has been aborted or resolved with the given protocol state. Invocation of these operations may

result in execution of a new non-repudiation protocol using the protocol execution operations —

assuming both end users still want to undertake the original interaction.

The SOAP binding for the NRExchange service specifies two types of message:

1. Protocol messages that are exchanged during execution of an exchange protocol or of an

exception handling sub-protocol using processMessage and, optionally, processRequest; and

2. Protocol state (housekeeping) messages inform participants of the outcome of an exception

handling sub-protocol.

Both types of message use a WS-Security header to carry security tokens such as: signatures over

evidence; timestamps; credential and key information; security context and access control informa-

tion.

5.3.2 Protocol message format

As shown in Figure 5.11, protocol messages must have a NRExchangeProtocol header. This is an

extensible container for non-repudiation protocol data items that are defined in the NRExchange

XML schema. The NRExchange schema specifies that any NRExchangeProtocol header must have

protocol name, runId and messageNumber attributes. The protocol name is a URI that serves to
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<soapenv:Envelope>
<soapenv:Header>
<wsse:Security />
<nrex:NRExchangeProtocol name runId messageNumber

purpose? runSequence? Id?>
<nrex:Acknowledgement />*
<nrex:AcknowledgementsRequired />?
(<nrex:DigestReference Id?>
<nrex:Reference />+
<ds:Transforms />?
<ds:DigestMethod />
<ds:DigestValue />

</nrex:DigestReference>)*
<nrex:Participant role? nrexchangeURI? Id?/>2+
<nrex:RandomNumber />*
<nrex:RelatedRun />*
(<nrex:RunIdGenerator baseURI? runId Id?>
<nrex:DigestReference />?

</nrex:RunIdGenerator>)?
</nrex:NRExchangeProtocol>

</soapenv:Header>
<soapenv:Body />?

</soapenv:Envelope>
Key:
? = 0 or 1 occurrences
+ = one or more
n+ = n or more
* = 0 or n occurrences

Figure 5.11: General form of ProtocolMessage

uniquely identify the protocol, or sub-protocol, being executed and may also provide access to proto-

col documentation including schema that specialise the NRExchange schema. The runId is a unique

identifier that is normally generated from some base URI and a random digest (a digest of a secure

pseudo-random number and other associated input). The inputs to runId generation can be speci-

fied using a RunIdGenerator element. The messageNumber is a positive, non-zero double value that

corresponds to the step of the protocol being executed. Depending on the protocol being executed or

the step of the protocol, the following optional items may be included in the NRExchangeProtocol

header: the purpose of the protocol message (ABORT, RESOLVE etc.); the participants in the

protocol; the runIds of any related protocol or sub-protocol runs; random numbers; digest values;

encrypted elements and message validation information. The message body, if present, contains

the application data originally intended to be conveyed from sender to receiver as the body of the

business message. The full protocol message schema can be found in Setion A.4.

Housekeeping messages do not have an NRExchangeProtocol header. They carry protocol state

or state request information intended for another NRExchange service in the message body. The

general form of a protocol state message is shown in Figure 5.12. In addition to identifying the

protocol and run to which a message relates, a ProtocolState element may include information

such as: the protocol status; if terminated, the termination state; and the message numbers of any

messages seen by the recipient. Protocol messages may be provided as attachments to a protocol
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<soapenv:Envelope>
<soapenv:Header>
<wsse:Security />
</soapenv:Header>
<soapenv:Body>
<nrex:ProtocolState name runId />
</soapenv:Body>

</soapenv:Envelope>

Figure 5.12: General form of ProtocolStateMessage

state message.

5.3.3 Protocol message creation

A protocol message SOAP envelope is created by inspecting each of the tokens of the message in

the protocol notation. Each of the tokens is taken individually and a transformation is applied to

generate the corresponding XML. There follows a description of the transformations undertaken for

each of the protocol tokens specified in Section 4.3.2.

Message

The message is not transformed, this is because a message token in WS-NRExchange is a SOAP

envelope. The message becomes the basis of the protocol message. WS-Security and NRExchange-

Protocol headers are added to the SOAP header of the message. Thus the original message can be

derived by removing the NRExchangeProtocol header and any additional WS-Security elements.

Validation

Message validation tokens are represented using an Acknowledgement element. The following pro-

tocol header shows the transformation applied to the three validation results (valid, invalid and not

validated).

<nrex:NRExchangeProtocol ...>

<nrex:Acknowledgement type=”nrex.ack.VALIDATOR” isValid=”(true|false) runID=”...” >

<nrex:ValidationInfo>

<!-- if not valid state so here -->

</nrex:ValidationInfo>

</nrex:Acknowledgement>

</nrex:NRExchangeProtocol>

For the validation result valid, the isValid attribute is set to “true”. For the validation results invalid

and not validated, the isValid attribute is set to “false”. For the token not validated, the value of the

ValidationInfo element is set to “Not Validated”.
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Participants

Every participant taking part in the protocol must be defined in every protocol message. Thus

for the exchange protocol, participant blocks are present for A, B and the TTP, whereas in the

exception handling sub-protocols there will only be two participant elements, one for the TTP and

one for the exception handling protocol initiator. There follows the general form of the Participant

element, where participant A is referred to as SENDER and B is referred to as RECEIVER.

<nrex:Participant role=”nrex.role.(SENDER|RECEIVER|TTP)”>
//ID of (SENDER|RECEIVER|TTP)

</nrex:Participant>

Nonce

The following protocol notation:

n1

Is transformed into the following XML:

<nrex:Nonce id=’n1’ >
<!-- nonce value -->

</nrex:Randomnumber>

This element is placed in the NRExchangeProtocol header. The id refers to the token name in the

protocol notation and the actual nonce value is set to the element’s value.

Random number

The following protocol notation:

rn1

Is transformed into the following XML:

<nrex:RandomNumber id=’rn1’ >
<!-- random number value -->

</nrex:Randomnumber>

This element is placed in the NRExchangeProtocol header. The id refers to the token name in the

protocol notation and the actual random number is set to the element’s value.

Symmetric key

The following protocol notation:

kn
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Is transformed into the following XML:

<wsse:Security>
<wsse:Embedded>

<wsse:BinarySecurityToken
ValueType=’...’
EncodingType=’...’
Id=’kn’ >

...
</wsse:BinarySecurityToken>

</wsse:Embedded>
</wsse:Security>

The symmetric key is placed in the WS-security header as an embedded security token. The key itself

is encoded and becomes the value of the wsse:BinarySecurityToken element. The type of encoding

used is specified in the EncodingType attribute and the type of symmetric key is described by the

ValueType attribute. The key name as stated in the protocol description is set to the Id attribute.

Digest

A digest is transformed into a nrex:Digest element which is placed in the root of the nrex:NRExchangeProtocol

header.

The following protocol notation:

h(x,y)

Is transformed into the following XML:

<nrex:Digest Id=”h_x_y”>

<nrex:Reference runId=”...” messageNumber=”...” URI=”...” Id=”h_x” type=”...”>

<ds:Transforms>...</ds:Transforms>

</nrex:Reference>

<nrex:Reference runId=”...” messageNumber=”...” URI=”...” Id=”h_y” type=”...”>

<ds:Transforms>...</ds:Transforms>

</nrex:Reference>

<ds:Digestmethod algorithm=”...”/>

<ds:DigestValue>...</ds:DigestValue>

</nrex:Digest>

Here, the nrex:Digest element contains a series of nrex:Reference elements which point to the lo-

cation of the digested tokens, x and y. The nrex:Reference element gives the protocol run (runId

attribute), protocol message number (messageNumber attribute), and location in that protocol mes-

sage (URI attribute) of the digested token. Each nrex:Reference element contains a series of zero

or more ds:transforms elements. These are used to state what transformations have been applied

to the elements before the digest was applied. For example, removing white space characters. The

ds:DigestMethod element states what algorithm was used to create the digest. This would typi-

cally be specified in the configuration of the middleware. The nrex:DigestValue element contains
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the digested value. This digested value is achieved by undertaking several steps. Firstly, each of

the elements referenced by the nrex:Reference are obtained and their transforms are applied. The

transformed elements are then concatenated and passed to the digest algorithm, which produces the

digest value.

This mechanism for creating a digest ensures that a single digest of the concatenation of tokens

x and y is produced, as opposed to creating individual digests for x and y, which will break security

in some protocols. Also, it should be noted that the nrex:Reference may reference an element in a

protocol message that has not yet been received. In which case, verification of the digest must be

defferred.

Run identifier

The run identifier token from the protocol notation describes how the run identifier value is to be

generated. The protocol initiator must include this value in the first protocol message. Thus the

protocol initiator must be capable of generating the run identifier. The value of the run identifier is

placed in the runId attribute of the nrex:NRExchangeProtocol header and is then present in every

protocol message.

The nrex:RunIdGenerator element is present in the nrex:NRExchangeProtocol header of all pro-

tocol messages that have a runId token in the associated protocol notation. There follows an example

of a nrex:RunIdGenerator :

<nrex:RunIdGenerator runId=’...’>

<nrex:Digest>

...

</nrex:Digest>

</nrex:RunIdGenerator>

The nrex:RunIdGenerator is simply a wrapper around a nrex:Digest which states to the middleware

that the value of the digest is used to create the run identifier.

Encryption

Encryption of tokens is handled differently depending on the presence of other tokens. If the en-

cryption token is solitary, the whole SOAP envelope is encrypted. If other (plain text) tokens exist

in the protocol message, only the tokens enclosed in the encryption token are encrypted.

When encrypting the whole SOAP envelope, the following procedure is followed:

1. Encrypt the body. The contents of the body is encrypted and replaced by an EncryptedData

element.
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2. Encrypt the headers. All headers are concatenated and the result encrypted. The headers

are replaced by an EncryptedData element. If a WS-Security header is present, that is also

encrypted.

3. Insert WS-Security header. A new WS-Security header is added with references to the

encrypted header and body.

The following example shows the transformation of protocol message 1 from the Delivery Agent

protocols described in Section 3.2.

Protocol description:

1 A -> DA : eP_DA(msg, rn1, NROa)

The resultant XML is as follows:

<soap:Envelope>
<soap:Header>

<wsse:Security>
<xenc:ReferenceList>
<xenc:DataReference URI=”#encHeaders”/>
<xenc:DataReference URI=”#encBody”/>

</xenc:ReferenceList>
</wsse:Security>
<xenc:EncryptedData Id=’encHeaders’>

<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</soap:Header>
<soap:Body>

<xenc:EncryptedData Id=’encBody’>
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</soap:Body>
</soap:Envelope>

When decrypting the SOAP envelope above, the following procedure is followed:

1. Decrypt the body. The CipherValue of the body is decrypted and the corresponding En-

cryptedData element is replaced with the result.

2. Decrypt the headers. The CipherValue of the headers is decrypted and the corresponding

EncryptedData element is replaced with the result.

3. Discard the Security header. The security header used in the encrypted SOAP envelope

is discarded.

When the encryption element is not solitary in the protocol message, only the tokens encapsulated

by the encryption token are encrypted. Each token is first transformed into XML and placed in the
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appropriate place. The tokens are then grouped by common token parent. Each group is encrypted

individually and the resultant EncryptedData element replaces the clear text XML. A DataReference

element is added to the WS-Security header for each EncryptedData element. The following example

shows the transformation of a protocol message containing encrypted and plain text tokens.

Protocol description:

A -> B : eP_B(rn1, rn2), rn3

Resultant XML

<soap:Envelope>
<soap:Header>

<wsse:Security>
<xenc:ReferenceList>
<xenc:DataReference URI=”#eP_B_rn1_rn2”/>

</xenc:ReferenceList>
</wsse:Security>

</nrex:NRExchangeProtocol>
</xenc:EncryptedData>
<xenc:EncryptedData Id=’eP_B_rn1_rn2’>
<xenc:CipherData>

<xenc:CipherValue>...</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
<nrex:RandomNumber id=”rn3”>...</nrex:RandomNumber>

</nrex:NRExchangeProtocol>
</soap:Header>
<soap:Body/>

</soap:Envelope>

In the above SOAP envelope the three random numbers (rn1,rn2,rn3) have been placed in the

NRExchangeProtocol header. The two random numbers (rn1,rn2 ) requiring encryption have been

encrypted and replaced by EncryptedData element. The two random numbers (rn1,rn2 ) have a

common token parent, and so have been concatenated and placed in a single EncryptedData element.

The key required to decrypt the cipher value is inferred from the Id attribute which states what

protocol token the EncryptedData element represents.

Signature

A signature is transformed into an XML signature and is placed within the WS-security header.

There are two types of signatures (i) signatures over the application message and (ii) signatures over

other protocol tokens. In case (i) MSG is signed. MSG is a SOAP envelope and will comprise a

body and zero or more headers. For example, the protocol notation:

sS_A(MSG), MSG

Results in the following XML:
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<soap:Envelope>
<soap:Header>

<wsse:Security>
<ds:Signature>
<ds:SignedInfo>

<ds:Reference URI=’#header1’>
<Transforms>...</Transforms>
<DigestMethod Algorithm=’...’/>
<DigestValue>...</DigestValue>

</ds:Reference>
<ds:Reference URI=’#header2’>
<Transforms>...</Transforms>
<DigestMethod Algorithm=’...’/>
<DigestValue>...</DigestValue>

</ds:Reference>
<ds:Reference URI=’#body’>
<Transforms>...</Transforms>
<DigestMethod Algorithm=’...’/>
<DigestValue>...</DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>...</ds:SignatureValue>

</ds:Signature>
</wsse:Security>
<header1 id=’header1’/>
<header2 id=’header2’/>

</soap:header>
<soap:Body id=’body’/>

</soap:Envelope>

Here, additional XML is added to MSG. The additional XML comprises a WS-Security header with

a digital signature. The signature references each of the headers and the body.

Case (ii) caters for the signature of other protocol tokens, these are all placed in the NRExchange-

Protocol header. The NRExchangeProtocol header contains other information that adds context to

the protocol tokens, thus it is required that the whole NRExchangeProtocol header is signed. For

example, the following protocol notation:

sS_A(rn1), rn1, rn2

Results in the following XML:

<soap:Envelope>
<soap:Header>

<wsse:Security>
<ds:Signature>
<ds:SignedInfo>

<ds:Reference URI=’#nrex_header’>
<Transforms>...</Transforms>
<DigestMethod Algorithm=’...’/>
<DigestValue>...</DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>...</ds:SignatureValue>

</ds:Signature>
</wsse:Security>
<nrex:NRExchangeProtocol id=’nrex_header’ ... >

<nrex:RandomNumber id=’rn1’ ...>
<nrex:RandomNumber id=’rn2’ ...>

</nrex:NRExchangeProtocol>
</soap:header>

120



CHAPTER 5. MIDDLEWARE IMPLEMENTATION 121

<soap:Body/>
</soap:Envelope>

Here the whole NRExchangeProtocol header is referenced and signed. As a result, both rn1 and

rn2 are signed, despite the protocol notation stating that only rn1 should be signed. Signing extra

tokens is not of concern as it creates extra evidence and does not affect the tokens that were intended

to be signed. Furthermore, it simplifies the signature process and ensures all contextual information

is also signed.

In the above examples the signed tokens are also present in the same SOAP envelope as their

corresponding signature. This is not a requirement; it is possible that the Signature element may

reference elements from other protocol messages. When this is the case, their is still a Signature

element in the WS-Security header; however, the notation described in Section ?? is used to reference

an element in another protocol message.

Flags

The flags, f(ABORT), f(RESOLVE), f(ABORTED) and f(SUCCEEDED) are placed in the purpose

attribute of the NRExchangeProtocol header as follows:

<nrex:NRExchangeProtocol
purpose=’(ABORT|RESOLVE|ABORTED|RESOLVED)’
...>

Proactive termination messages

Exception handling sub-protocols occur between the TTP and one other party that was present in

the corresponding exchange protocol. At the end of the protocol these two parties have a common

view of the outcome. The third party, who was involved in the exchange protocol, is unaware that

an exception handling sub-protocol has occurred. Thus it is common for the TTP to pro-actively

notify the third party of the outcome. This is done by the TTP sending the third party a protocol

state message. The protocol state message appears as follows:

<soap:Envelope>
<soap:Header>

<wsse:Security ... />
<nrex:NRExchangeProtocol ... />

</soap:header>
<soap:Body>

<nrex:ProtocolState name=”...” runid=”...”>
<nrex:Status>nrex.status.TERMINATED</nrex:Status>
<nrex:TerminationStatus>nrex.termination.(ABORTED|SUCCEEDED)</nrex.TerminationStatus

</nrex:ProtocolState>
</soap:Body>

</soap:Envelope>

The status is set to ’TERMINATED’ because the protocol has completed. The completion status of

the protocol (’ABORTED’ or ’SUCCEEDED’), is specified in the TerminationStatus element. The
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NRExchangeProtocol header will contain any tokens required by the third party to ensure a fair

outcome.

If the TTP does not proactively notify the third party, the third party will timeout and even-

tually invoke an exception handling protocol in which the final outcome of the protocol run will be

discovered.

5.3.4 Protocol message verification

This section describes how to obtain and verify protocol tokens from a protocol message. XPath

queries are used to select specific values from the SOAP envelope. XPath queries provide a means for

selecting a set of elements, attributes and values from an XML document according to some criteria.

The basic notation allows the selection of elements using a directory structure like notation. Here

the ’/’ character used to delimit each level of the hierarchy. Further filtering can be applied based

on values of attributes.

Message

The application message does not receive any transformation as it is initially a SOAP envelope.

However, when transforming it into a protocol message, a NRExchangeProtocol header is added

and possibly some security tokens into the WS-Security header. These need to be removed to obtain

the original application message. The following XPath query returns all (there should only be one)

NRExchangeProtocol headers.

//nrex:NRExchangeProtocol

The ’//’ states that any element fulfilling the forthcoming query should be returned. Therefore this

query will return all elements named ’nrex:NRExchangeProtocol’ within the SOAP envelope.

Participants

The following query is used to extract a particular participant element form the protocol message.

//nrex:NRExchangeProtocol/nrex:Participant[@role=’nrex.role.RECEIVER’]/text()

The value of the role attribute is set dependent on which participant element is to be received. This

query can be run three times, once for each type of participant. Here all ’nrex:NRExchangeProtocol’

headers are selected with a ’nrex:Participant’ child. A further filter is applied with the “[@role=-

’nrex.role.RECEIVER’]” notation. This states that only participant elements containing an attribute

called ’role’ with value ’nrex.role.RECEIVER’ should be returned. The ’/text()’ notation states that

the text value of the element should be returned, rather than the element itself.
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Nonce

The following syntax returns the nonce’s value.

//nrex:NRExchangeProtocol/nrex:Nonce[@id=’n1’]/text()

Here the ’[@id=’n1’] ’ syntax ensures that the nonce returned is that with a specific id attribute

value. The id attribute is used to associate the value of the nonce with a particular nonce specified

in the protocol description. In this example, the nonce returned is the one associated with the token

’n1’ from the protocol description.

Random number

The following syntax returns the random number’s value.

//nrex:NRExchangeProtocol/nrex:RandomNumber[@id=’rn1’]/text()

Here the ’[@id=’rn1’] ’ syntax ensures that the random number returned is that with a specific

id attribute value. The id attribute is used to associate the value of the random number with

a particular random number specified in the protocol description. In this example, the random

number returned is the one associated with the token ’rn1’ from the protocol description.

Symmetric key

Several pieces of information need to be obtained when acquiring a symmetric key. Each piece of

information is with respect to a particular instance of a symmetric key. This is because the protocol

message could contain several symmetric keys. Each symmetric key has its own ’BinarySecurity-

Token’ element, the id attribute is used to associate it with a particular symmetric key from the

protocol description. Each XPath query specifies the value of the id attribute to ensure the relevant

values are returned.

The following XPath query returns the value of the actual symmetric key.

//wsse:Security/wsse:Embedded/wsse:BinarySecurityToken[@id=’kn’]/text()

The following XPath query returns the type of the key.

//wsse:Security/wsse:Embedded/wsse:BinarySecurityToken[@id=’kn’]/@ValueType

The following XPath query returns the encoding type. Due to the symmetric key being originally

binary, it must be encoded before placing it into a SOAP envelope.

//wsse:Security/wsse:Embedded/wsse:BinarySecurityToken[@id=’kn’]/@EncodingType
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Digest

Several pieces of information need to be obtained when acquiring a digest. The id attribute of the

nrex:Digest element is used to specify which nrex:Digest element is of interest. The id attribute

is the same as that of the digest token in the protocol description (with parenthesis replaced with

underscores and the final underscore removed).

The following XPath query returns all the nrex:Reference elements from the nrex:Digest with

the required id.

//nrex:NRExchangeProtocol/nrex:Digest[@id=”...”]/nrex:Reference

Each nrex:Reference element should then be handled individually to obtain and transform the ref-

erenced element. The referenced element could be in a different protocol message of a different

protocol run. Thus, the run identifier, message number and location in the protocol message must

be found.

The following XPath query should be applied to the nrex:Reference element to obtain the value

of the runId attribute.

//nrex:Reference/@runId

The following XPath query returns a message number from the nrex:Reference element:

//nrex:Reference/@messageNumber

The following XPath query returns the URI value the nrex:Reference element:

//nrex:Reference/@URI

The following XPath query returns a collection of values for each ds:Transforms element.

//nrex:Reference/ds:Transforms/text()

Once each of the referenced elements have been obtained and transformed they are concatenated and

then passed to a digesting algorithm. The chosen digest algorithm is obtained using the following

XPath query:

//nrex:NRExchangeProtocol/nrex:Digest[@id=”...”]/ds:DigestMethod/text()

The result of applying the digest is then compared for equality with the claimed digest value. The

claimed value of the digest is obtained using the following XPath query:

//nrex:NRExchangeProtocol/nrex:Digest[@id=”...”]/ds:DigestValue/text()
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Run identifier

An nrex:RunIdGenerator is a wrapper on an nrex:Digest and, as a result, is validated in the same

fashion as an nrex:Digest element. The only difference is that the XPath queries applied to the

protocol message need to be modified to take into account the wrapping of the nrex:RunIdGenerator

element. For example, the following XPath query is used to obtain all the nrex:Refernce elements

from the enclosed nrex:Digest element:

//nrex:NRExchangeProtocol/nrex:RunIdGenerator/nrex:Digest/nrex:Reference

Encryption

To decrypt the elements of a SOAP envelope, a list of encrypted elements must first be obtained.

This is done with the following XPath query.

//wsse:Security/wsse:ReferenceList/wsse:DataReference/@URI

The next step is to decrypt each of these elements. The following XPath query returns a particular

EncryptedData block, given an Id found by the previous query.

//xenc:EncryptedData[@Id=’...’]/xenc:CipherData/xenc:CipherValue/text()

This value is decrypted and the result replaces the EncryptedData block. The recipient of the

protocol message knows which elements can be decrypted as the protocol notation states which key

was used to encrypt each token.

Signature

A signature consists of one or more digests encrypted by the signatory. To verify a signature element

each of the enclosed digests must first be verified. On successful verification, the signature value is

obtained and decrypted using the signatory’s public key. The decrypted value is then compared to

the value of the SignedInfo block.

The following XPath query returns the signature value:

//wsse:Security/ds:Signature/ds:SignatureValue/text()

The following XPath query returns the signedInfo block:

//wsse:Security/ds:Signature/ds:SignedInfo

Flags

Flags are passed in the purpose attribute of the NRExchangeProtocol header. The following XPath

query returns the value of the purpose element:

//nrex:NRExchangeProtocol/@purpose
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Validation

To establish whether an application message was valid, the following XPath query is used:

//nrex:NRExchangeProtocol/nrex:Acknowledgement[@type=’nrex.ack.VALIDATOR’]/@isValid

If an application message is found to be invalid, it could be due to it not actually have been

validated. If this is the case, the text of the ValidationInfo element would be set to ’Not Validated’.

The following XPath query returns the text value of the ValidationInfo element:

//nrex:NRExchangeProtocol/nrex:Acknowledgement[@type=’nrex.ack.VALIDATOR’]/nrex:ValidationInfo/text()

Pro-active termination messages

On receiving a protocol status message, the protocol can be discovered to be terminated by running

the following XPath query.

//nrex:ProtocolState/nrex:status/text()

If the protocol has been terminated, the outcome of the termination is discovered by running the

following XPath query.

//nrex:ProtocolState/nrex:TerminationStatus/text()

5.4 WS-NRExchange service implementation

This section describes the implementation of the WS-NRExchange service. Each participant is re-

quired to host this service before participating in a non-repudiation protocol. The WS-NRExchange

service is a Web service that is hosted from a Web services enabled web server. The implementation

is based on the non-repudiable messaging stack presented in Section 3.1. Each layer communicates

via messages. A particular protocol is run by exchanging a series of messages with the layer bel-

low. It is assumed that all nodes are fault tolerant and that all messages will arrive in a finite but

unknown amount of time.

5.4.1 Domain specific MEP layer

The domain specific MEP layer is implemented by mapping the messages of a particular domain

specific MEP onto one or more runs of a generic MEP protocol. If two message exchange pattern

instances are used, an identifier must be present in both runs, such that it is apparent from any

non-repudiation evidence that both runs form a single domain specific MEP. This identifier is also

used by the generic MEP layer to provide cross protocol run context.

126



CHAPTER 5. MIDDLEWARE IMPLEMENTATION 127

Msg
Msg
Val

Message Exchange Pattern Layer

Application

purchase
order

Business Interaction Patterns

purchase
order

receipt ack
Confirmation

Resp

Confirmation
receipt ack

Resp
Val

Resp Val (confirmation receipt ack)

Resp (confirmation)

Msg Val (Purchase Order Receipt Ack)

Msg (purchase order)

Protocol Responder

Msg Msg Val

Message Exchange Pattern Layer

Application

purchase
order

Business Interaction Patterns

purchase
order

receipt ack
Confirmation

Resp

Confirmation
receipt ack

Resp Val

Protocol Initiator

PIP 3A4 PIP 3A4

Fault Fault

Figure 5.13: domain specific MEP layer implementation

Figure 5.13 shows the implementation of the domain specific MEP layer from the point of view

of both the protocol initiator and the protocol responder. The domain specific MEP layer shown

in the diagram supports a single domain specific MEP (PIP3A4 presented in Section 3.1.1.1). In

practice other domain specific MEPs would also be supported. This particular implementation

of PIP3A4 exposes four queues for the protocol initiator and four for the protocol responder. It

should be noted that the implementation of this PIP undertakes validation of the purchase order

and the confirmation messages. After undertaking the validation, the PIP implementation notifies

the application of the result and also passes the result to the MEP layer (such that it can be passed

to the other participant). A description of each queue follows:

Protocol Initiator

• Outgoing ’purchase order’ queue. The protocol initiator application begins the PIP3A4

protocol by depositing the purchase order onto this queue.

• Incoming ’purchase order receipt ack’ queue. The protocol responder’s validation of

the purchase order is returned to the application via this queue.

• Incoming ’confirmation’ queue. The protocol responder’s decision to accept, reject or

pend the purchase order is returned to the application via this queue.

• Incoming ’confirmation receipt ack’ queue. The PIP3A4 implementation undertakes

validation of the confirmation message. The result is placed on this queue such that the

application can discover the result.

Protocol Responder

127



128 CHAPTER 5. MIDDLEWARE IMPLEMENTATION

• Incoming ’purchase order’ queue. The protocol responder receives the purchase order

from this queue.

• Incoming ’purchase order receipt ack’ queue. The PIP3A4 implementation undertakes

validation of the purchase order message. The result is placed on this queue such that the

application can discover the result.

• Outgoing ’confirmation’ queue. The protocol responder application decides whether to

accept, reject or pend the purchase order and submits an appropriate PIP3A4 a confirmation

message to this queue.

• Incoming ’confirmation receipt ack queue. The protocol initiator’s validation of the

confirmation message is returned to the application via this queue.

The implementation of PIP3A4 then maps each of these messages onto a single run of validated

request/response provided by the generic MEP layer. Figure 5.14 shows this mapping.

1. purchase order 1. req

PIP

2. receipt ack 2. val

Validated request/
response

MEP

3. resp

4. val

3. accepted / rejected

4. receipt ack

PIP3A4

Figure 5.14: PIP3A4 to message exchange pattern mapping

As stated earlier, other domain specific MEPs would be hosted by the business interaction layer.

These would be implemented using potentially different generic MEPs and would expose different

queues as an interface to the application. However, the implementation would be similar to that

described for PIP3A4. For example, PIP3A7 (presented in Section 3.1.1.2) would expose two sets of

queues, two to the protocol initiator and the other two to the protocol responder. The first set would

allow the protocol initiator to submit an updated purchase order (and validation). The second set

would allow the protocol responder to receive the updated purchase order (and validation). This

protocol would be implemented as a validated single message generic MEP.

1. updated purchase order 1. msg

PIP

2. receipt ack 2. val

Validated Single
Message

MEP

PIP3A7

Figure 5.15: PIP3A7 to message exchange pattern mapping

128



CHAPTER 5. MIDDLEWARE IMPLEMENTATION 129

Figure 5.15 shows the mapping from the PIP3A7 messages to the messages sent in the validated

single message generic MEP.

5.4.2 Generic MEP layer

The generic MEP layer (as described in Section 3.1.2) provides four types of messaging patterns.

Each generic MEP is realised by a mapping to one or two instances of a message delivery primitive

(MDP) at the protocol layer (presented in Section 3.1.3). If two protocol MDP instances are used, an

identifier must be present in both runs, such that it is apparent from any non-repudiation evidence

that both runs form a single generic MEP. This identifier is also used by the generic MEP layer to

provide context over both runs of the MDP.
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Figure 5.16: Message exchange pattern layer implementation

Figure 5.16 shows the implementation of the generic MEP layer from the points of view of both

the protocol initiator and protocol responder. Here the generic MEP composer is responsible for

managing the mappings between generic MEP and the underlying MDP run(s). The generic MEP

layer exposes eight queues to the business exchange pattern layer. Four are specific to the protocol

initiator and the other four are specific to the protocol responder.

Protocol Initiator:

• Outgoing ’Msg’ queue. The protocol initiator deposits the first message of the protocol run

onto this queue. The chosen generic MEP is also stated here.
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• Incoming ’Msg val’ queue. If a generic MEP supporting validation is chosen, the protocol

responder’s validation of the first message returns on this queue.

• Incoming ’Resp’ queue. If a generic MEP supporting a response is chosen, the responder’s

response to the first message returns on this queue.

• Outgoing ’Resp val’ queue. If a generic MEP supporting validation of response is chosen,

the initiator’s validation of the response message is deposited on this queue.

Protocol Responder:

• Incoming ’Msg’ queue. The protocol responder receives the first message of the protocol

run from this queue.

• Outgoing ’Msg val’ queue. If a generic MEP supporting validation of the first message is

chosen, the responder’s validation of the first message is deposited on this queue.

• Outgoing ’Resp’ queue. If a generic MEP supporting a response is chosen, the responder’s

response to the first message is deposited on this queue.

• Incoming ’Resp val’ queue. If a generic MEP supporting validation of response is chosen,

the initiator’s validation of the response returns on this queue.

The generic MEP composer holds multiple mappings from each generic MEP onto each MDP offered

by the protocol layer. The following tables show the mappings for achieving fair non-repudiation

for each of the generic MEPs. Various other mappings exist for achieving different levels of non-

repudiation — these have been left out for the sake of brevity.

1. msg

 Generic MEP MDP

Fair nrSend
(run 1)

1. msg, nro

2. nrr

Single Message

Figure 5.17: Single message to fair non-repudiation protocol mapping

Figure 5.17 shows how Single Message generic MEP is mapped to a single run of fair nrSend.
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1. msg

 Generic MEP MDP

2. val

Fair val nrSend
(run 1)

1. msg, nro

2. nrr

3. val, nro

4. nrr

Validated Message

Figure 5.18: Validated single message to fair non-repudiation protocol mapping

Figure 5.18 shows how Validated Message generic MEP is mapped to a single run of fair Val

nrSend.

Fair nrSend
(run 1)

1. req 1. msg, nro

 Generic MEP

2. nrr

2. resp

MDP

Fair nrSend
(run 2)

1. msg, nro

2. nrr

Request/Response

Figure 5.19: Request/response to fair non-repudiation protocol mapping

Figure 5.19 shows how Request/Response generic MEP is mapped to two runs of fair nrSend.

Fair val nrSend
(run 1)

1. req 1. msg, nro

 Generic MEP

2. val

2. nrr

3. resp

4. val

MDP

3. val, nro

4. nrr

Fair val nrSend
(run 2)

1. msg, nro

2. nrr

3. val, nro

4. nrr

Validated Request/
Response

Figure 5.20: Validated Request/response to fair non-repudiation protocol mapping

Figure 5.20 shows how Validated Request/Response generic MEP is mapped onto two runs of fair

Val nrSend.
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5.4.3 Protocol layer

Figure 5.21 shows the internal design of the protocol layer from the perspective of both the protocol

initiator and the protocol responder.
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Figure 5.21: NRExchange Service Internals

A protocol run is initiated when the protocol layer receives an application message on the Ap-

plication msg queue. In addition to the application message, some meta information is also passed.

This meta information states which message delivery primitive (and protocol) to run and which

participants to involve. If a message delivery primitive offering validation is required, but the chosen

protocol does not support validation, two runs of the protocol must be run. The second protocol

run is used to obtain validation of the message from the protocol responder. If two protocol runs

are required, a common context identifier must be inserted into the application message and the

validation message. The protocol abstraction module then initiates the protocol run by making a

request to the message dispatcher. The message dispatcher is responsible for taking protocol be-

gin requests (and protocol messages) and passing them to the appropriate protocol handler. One

protocol handler is present for each supported protocol. On receiving a protocol begin request,

the protocol handler would typically log the application message and then send the first protocol

message to the appropriate participant (the first protocol message would also be logged).

The protocol layer exposes a Web service entry point to accept protocol messages from other

participants (for protocols that are currently in progress). On receiving a protocol message, it is first

intercepted by the Decryption Handler. It is the responsibility of this handler to decrypt as much

of the message as possible and pass it on to the NRExchange Web service. The NRExchange Web

service immediately puts the message on the protocol message queue and then listens for another
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message. No processing or inspection of the message is done here. The entry point is intentionally

lightweight to facilitate higher availability. The message dispatcher removes messages from the queue

one at a time. The message dispatcher is responsible for undertaking some rudimentary verification.

This involves checking that the message is part of a protocol supported by the NRExchange service

and that the run identifier is for a valid protocol run. If this verification is unsuccessful, the message

is simply dropped. On successful verification, a protocol handler is looked up for the current protocol

type.

As stated earlier, each supported protocol must have an associated protocol handler. The protocol

handler has a single method called proccessMessage that takes a protocol message and undertakes

some appropriate processing. For the Web services implementation, this protocol message is a

SOAP envelope. The protocol layer is agnostic to the implementation of the protocol handler. It

is the responsibility of the protocol implementor to design an appropriate mechanism for handling

protocol messages. A rigorous protocol handler implementation is presented in Section 5.5. It is

the responsibility of the protocol handler to verify the protocol message and then act upon it. Each

protocol handler has access to protocol specifications and a state store. The protocol handler notifies

the protocol abstraction module when it obtains an application message (as a protocol responder)

or validation of an application message (as a protocol initiator).

The protocol specifications can (optionally) be used by a protocol handler to discover what a

particular protocol message should contain. The protocol specifications are used by the protocol

handler presented in Section 5.5 for automatic message generation and verification. Whenever a

correct protocol message is sent or received, it must be placed in the state store. The state store

is a persistent collection of protocol messages which can be used to establish the state of a current

protocol run. This is done by observing the sequence of messages previously exchanged. The state

store is also responsible for maintaining the non-repudiation evidence.

When the protocol abstraction module receives an application message from the protocol handler,

it places it on the outgoing Application Message queue. If the chosen message delivery primitive

requires validation, the consumer of the application message should validate the message and return

the result on the incoming Application message validation response queue. If the chosen protocol

does not support validation, the protocol abstraction module will consume this validation response

and initiate a second protocol run to return the validation response to the originator of the application

message.

5.5 Finite state machine based protocol handler

This section describes one pattern for implementing a protocol handler. The pattern uses the

techniques described in sections 5.3.3 & 5.3.4 for generating and verifying protocol messages. The
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FSMs presented in Section 4.2 are used to decide on the correct course of action, in response to the

receipt of valid protocol messages. In using these techniques a rigorous implementation is produced.

The protocol handler is invoked when a new protocol message is received, for the associated

protocol. Protocol message handling begins with a series of verification steps. Should any of these

steps fail, the protocol message is dropped. After protocol message verification, some housekeeping

steps are undertaken and finally the finite state machine is notified with an event. There follows a

more detailed discussion of each step.

1. Signature verification. Signature verification would either be done autonomously or by

delegation to the DSS.

2. Token verification. The new message is inspected such that the protocol message type is

known. Each token is then verified using the verification principels presented in Section 5.3.4.

3. Expand knowledge. The protocol message is inspected for new tokens. The values of these

tokens are placed in a table and used when verifying and generating future protocol messages.

4. Message Persistence. The protocol message is persisted and forms part of the non-repudiation

evidence.

5. FSM transition. The protocol message is now known to be valid and a state transition can

be made. This is done by inspecting the protocol message number and raising an event on the

finite state machine implementation.

The finite state machine implementation will expose several event triggers. These events triggers

allow the protocol handler to inform the finite state machine when an event has occurred. There

are two types of events:

• Receive a particular protocol message. This event will cause the finite state machine to

move to another state (and undertake an action), or remain in the same state. The latter will

be the case if an unexpected protocol message is received.

• Detect an exception. This will cause the finite state machine to move to an exception

handling state. An action associated with this transition is run to invoke the exception handling

sub-protocol.

If the finite state machine receives an expected message (one that enacts an event causing transition

to a different state), the state will change and some action will be invoked. Three types of actions

exist:

• Send one or more protocol messages. This action occurs if the participants next involve-

ment in the protocol is to send a protocol message. Numerous protocol messages could be
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sent until the participant’s next involvement is to receive a message or until the protocol has

completed.

• Invoke exception handling sub-protocol. This action occurs when the detect exception

event occurs (providing the FSM is in a state supporting exception handling). This action

begins a new protocol with its own protocol handler.

• Notify success. This action notifies the protocol layer that the protocol has completed

successfully.

• Notify failure. This action notifies the protocol layer that the protocol failed to complete

successfully.

5.5.1 Protocol handler implementation

The protocol handler is implemented as a short method that undertakes the five steps discussed at

the beginning of this section. The pseudo code for the protocol handler follows:

handleMessage(protocolMsg)

{

if (!verifySignatures(protocolMsg))

{

//drop message

return;

}

if (!verifyTokens(protocolMsg))

{

//drop message

return;

}

expandKnowledge(protocolMsg);

persist(newMsg);

fsm.receiveM<number>();

}

The FSM implementation exposes a method for each event. It is one of these event methods that is

called at the end of the method. The actual event will depend on the protocol step that the protocol

message represents. For example, if a protocol message representing step 4 is received, the event

receiveM4 is raised on the FSM implementation by calling the receiveM4 method on the fsm object.

5.5.2 FSM implementation

Several automated FSM implementation generation tools exist [61, 1]. Nunni FSM Generator is

one such tool. The tool takes a FSM transition table and generates source code. The source code
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State Event New State Action
S0 recv_M1 S1 send_M2_M3
S1 recv_M4 S2 send_M5_M6
S2 recv_M7 S3 send_M8_M9
S3 exception HE inv_EH_Protocol
S4 exception HE inv_EH_Protocol

Table 5.1: State transition table for Delivery Agent protocol - participant DA

exposes methods for triggering events. On triggering an event, the current state is inspected and a

state transition is made (providing one exists for that particular event). On triggering an event an

action may be invoked. A callback method is created for each event. These callback methods are

left black, and must be filled in by the developer.

Table 5.1 shows the state transition table for the delivery agent’s FSM for the Delivery Agent

exchange protocol. The table has a row for each state transition. The first column shows the

current state. The second column represents the event needed to trigger the transition. The third

column holds the name of the new state to move to. The fourth column defines the action to invoke

as part of the transition.

public interface ProtocolFSM

{

//Events

public void recv_M1();

public void recv_M4();

public void recv_M7();

//Actions

public void send_M2_M3();

public void send_M5_M6();

public void send_M8_M9();

}

The above code shows the interface to the FSM implementation produced by the Nunni FSM Genera-

tor tool. The three event methods are called to trigger events on the FSM. The three action methods

are called when the FSM triggers the associated action. In this example, the send_M2_M3 method

would generate a protocol message for step 2 of the Delivery Agent exchange protocol and then send

it to the intended participant. The techniques described in Section 5.3.3 are used to generate this

message. This action also sends a step 3 protocol message in the same way.
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Figure 5.22: Protocol implementation process

5.6 Evaluation

This Section evaluates the solution provided by the thesis. It describes, (i) limitations in the pro-

tocol implementation process; (ii) configuration of the WS-NRExchange framework; and (iii) how

confidence in the correctness of the WS-NRExchange framework can be achieved.

5.6.1 Automation

Figure 5.22 shows the process of taking a protocol description from the literature and creating an

implementation, suitable for execution within the WS-NRExchange middleware. The dashed arrows

represent a manual step and the solid arrows represent an automated step. Each step is as follows:

1. Protocol description → Protocol notation. This step is manual. Here the protocol

description, from the literature, is inspected and re-written in the notation described in Sec-

tion 4.3.

2. Protocol notation → Finite state machine diagrams. This step is manual. Here the

protocol notation, is inspected and a set of FSMs are produced. The generic FSMs presented

in Section 4.2 should be used as a template.

3. Finite state machine diagrams → Finite state machine implementation. This step is

automated. The diagram is first converted into a state transition table. The state transition

table is then passed to a tool for creating Java implementations of FSMs. This process is

described in Section 5.5.

4. Protocol notation → Protocol message generator. This step is automated. Routines

exist for constructing a protocol message from the protocol notation. This process takes each
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token and represents it as a fragment of XML. Each XML fragment is then placed inside a

SOAP based protocol message. This process is described in Section 5.3.3.

5. Protocol notation → Protocol message verifier. This step is automated. Queries exist

for obtaining values of protocol tokens from a SOAP based protocol message. The protocol

notation is used to establish which tokens are expected. Then particular queries are used to

obtain the values of each token in turn. This process is described in Section 5.3.4.

5.6.2 Configuration

Configuration of the WS-NRExchange framework has not been addressed in this thesis.

• Security Tokens. Configuration of security token implementations is required. This is used to

state what implementation must be used for each of the tokens used in a protocol’s notation.

For example, to state what encryption and signature schemes should be used. This is also

required for protocols that use special signature schemes.

• Protocol Hierarchy. Configuration of protocol mappings is required. This would be used

to specify how each of the generic MDPs and domain specific MDPs are composed.

• Service Location. A configuration mechanism is required to state whether services (such

as audit and signature) are in house or third party. In the case of third party services the

configuration should state their location and also give the required information needed to

authenticate with the service.

5.6.3 Confidence in implementation

This Section describes two mechanisms that can be used to increase confidence in the WS-NRExchange

framework. They do not however, prove that the framework is correct.

Work by Kleiner and Roscoe [44] takes security protocols that have been designed for Web

services and reverse engineers some formal notation from them. The protocols targeted where never

designed in any formal notation. Instead they where designed using sequence diagrams and plain

English. The reverse engineering process involves observing a run of the protocol and obtaining each

protocol message. These protocol messages are parsed for recognised tokens such that a protocol

specification (similar to that used in the literature) can be obtained. The intention is to then verify

the protocol specification. However, the authors found some protocols that were so obviously flawed

that visual inspection was all that was needed to discover their flaws.

Round trip verification could be achieved using this process. Real protocol messages would be

observed from a protocol developed and run under the WS-NRExchange framework. These protocol

messages would then be reverse engineered using the process presented in [44]. The resulting protocol
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specification could then be compared to the original protocol specification. If they appear analogous,

we can be confident that the implementation process and execution framework is correct.

A. Gordon et. al. [31] provide a tool for inspecting single WS-Security protected SOAP messages

and checking them for known flaws. This process can be used to check some number of protocol

messages produced by the WS-NRExchange framework. The confidence in the correctness of the

produced protocol messages will be proportional to the number and variation of the protocol mes-

sages inspected. This process takes each SOAP message in isolation, so per protocol run inspection

cannot be achieved.

5.7 Summary

This chapter described the implementation of a framework for executing non-repudiation protocols.

A high level view showed how the various services used by the framework fitted together. The

framework utilises many current Web services standards; these were discussed. It was shown how a

protocol message could be represented as a SOAP envelope and how, given a protocol described in a

specific notation (described in Section 4.3), the protocol messages could be automatically generated

and verified.

In Section 5.4 the implementation of the WS-NRExchange Web Service was presented. This

service implemented each level of the non-repudiation hierarchy presented in Chapter 3. The chapter

concluded by presenting a rigorous pattern for developing protocol handlers. This protocol handler

implemented the FSMs presented in Section 4.2.

Example protocol messages and the protocol message schema can be found in Appendix A.
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Chapter 6

Summary and Future Work

This thesis has developed a framework for executing non-repudiation protocols. The framework

facilitated a flexible mechanism for creating a wide selection on non-repudiable message exchange

patterns. It was shown how a non-repudiation protocol could be represented using some formal

notation. This notation was used to derive finite state machines that model each participants’

execution of the non-repudiation protocol. It was also shown how protocol messages could be

automatically created and verified from the notation.

A concrete implementation of the framework was presented. This framework also showed how

the finite state machines could be implemented and how protocol messages could be constructed

and verified.

6.1 Non-repudiable business protocols (Chapter 3)

This chapter presented a non-repudiation protocol hierarchy which allows for a large variety of

application requirements. These requirements are fulfilled by providing a multitude of messaging

patterns coupled with varying levels of non-repudiation and validation guarantees. Furthermore,

these messaging patterns are (to some extent) agnostic to the choice of non-repudiation protocol. As

a result, the underlying non-repudiation protocol can be modified without disrupting the application.

To facilitate configurable service-based non-repudiation, a delivery agent based protocol was

presented that provides fair non-repudiation of application message and validation of the application

message. It was shown how this protocol could be modified to facilitate lightweight end users or

lightweight delivery agents. Furthermore, it was shown how exception handling sub-protocols can

be used to ensure fairness is achieved in the presence of unexpected behaviour.
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6.2 Protocol representation (Chapter 4)

In this chapter it was shown how a class of TTP-based fair non-repudiation protocols could be

modeled in order to facilitate a rigorous implementation. Correct progress through a protocol was

managed using a collection of FSMs. State transitions in the FSM were undertaken on receipt of a

valid protocol message. Such a transition would then trigger an action to send zero or more valid

protocol messages. The chapter presented a rigorous means for generating and verifying protocol

messages. This process relied on the protocol specification being canonicalised. Canonicalisation

was achieved by representing the protocol using some specific notation. The process of representing

the FSM, creating protocol messages and verifying protocol messages is automated from the canon-

icalised protocol specification. This increases confidence that the running protocol is faithful to the

protocol’s specification.

6.3 Middleware implementation (Chapter 5)

This chapter described the implementation of a framework for executing non-repudiation protocols.

A high level view showed how the various services used by the framework fitted together. The

framework utilises many current Web services standards; these were discussed. It was shown how a

protocol message could be represented as a SOAP envelope and how, given a protocol described in a

specific notation (described in Section 4.3), the protocol messages could be automatically generated

and verified.

In Section 5.4 the implementation of the WS-NRExchange Web Service was presented. This

service implemented each level of the non-repudiation hierarchy presented in Chapter 3. The chapter

concluded by presenting a rigorous pattern for developing protocol handlers. This protocol handler

implemented the FSMs presented in Section 4.2.

6.4 Future work

There are several directions of future work that could be taken from this thesis. These are detailed

in the following sections.

6.4.1 Deadlines and Timing

Deadlines allow a participant to specify how long they are willing to wait for a response and are

used to ensure timeliness (i.e. preventing a participant waiting indefinitely). Timeliness can be

achieved simply by having a participant wait until the deadlines are reached and then quit the

interaction. However, quitting during a fair non-repudiation protocol may jeopardise fairness. As a
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result, exception handling protocols must be executed.

To ensure timeliness, it must be possible to specify deadlines for receipt of each message received

during domain specific MEPs, generic MEPs and MDPs. The protocol level would raise an exception

to the currently running protocol’s FSM. This would enact the exception handling FSM, which would

bring the protocol to completion.

Two non-repudiation protocols [84, 91] use time tokens as a mechanism for ensuring timeliness

and for adding timing information to evidence. It is not clear how a general handling of time tokens

can be achieved. As a result, the protocol representation techniques presented in Chapter 4 do not

support time tokens. However, if time tokens were supported, they could possibly be used to set

common deadlines between participants.

6.4.2 Fault tolerance

In order to maintain fairness, well behaved participants to a non-repudiation protocol must be

capable of executing the protocol correctly. If a participant were to fail during a protocol’s execution,

fairness may not be maintained. It could be possible that the failure causes loss of non-repudiation

evidence. It can’t be assumed that other participants will hand over the evidence for a second time,

especially if the failure has given them an advantage. Thus, non-repudiation services should be fault

tolerant to prevent loss of fairness. The implementation of the NRExchange service is not fault

tolerant. Rendering the service fault tolerant would require substantial work which would distract

from the ideas presented in this thesis.

The requirement for fault tolerance in non-repudiation is discussed further in [51, 29].

6.4.3 Reliable messaging

Many fair non-repudiation protocols are capable of handling loss of protocol messages. However,

in doing so they execute a separate sub-protocol which enacts the help of a TTP. This is quite an

expensive means for handling lost messages. By introducing a reliable messaging scheme, it can

be guaranteed that protocol messages are received exactly once or at least once. As a result, the

TTP does not need to be contacted in case of communication failures. WS Reliable Messaging

and WS-Reliability both provide guaranteed message delivery of SOAP messages. Implementing

reliable messaging at a lower level prevents the non-repudiation service from needing to worry about

message reliability and can simply assume that all messages will reach their destination. However,

this approach is rather inefficient. The NRExchange service duplicates a lot of effort present in

reliable messaging implementations. Thus it may be a good idea to implement reliable messaging

at the same level as the NRExchange service.
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6.4.4 DA Protocol verification

The protocol representation presented in Section 4 assumes a correct non-repudiation protocol spec-

ification. The Coffey and Saidha protocol [16] that formed the basis of the DA protocol (Section 3.2)

has been formally verified in [17]. The changes Zhou and Gollmann propose were published in [92]

but the resultant protocol was not verified. Furthermore, the changes made in [?] and in this thesis

have also not been formally verified. Formal verification of the DA protocol has been left as further

work.

The lack of formal verification does not affect the validity of this thesis. The ideas proposed in

this thesis ensure a faithful implementation of the designed protocol. Thus if this design is incorrect,

the implementation will also be incorrect. However, the process of taking the design and producing

an implementation remains correct; which is the contribution of this thesis.

6.4.5 Multi-party non-repudiation

The interactions presented in this thesis are only concerned with two party non-repudiation. Here

one party wishes to send a message to one other participant. Multi-party non-repudiation is a

generalisation of two party non-repudiation. Here one participant wishes to send a message to one

or more other participants. Fair multi-party non-repudiation protocols ensure fairness between the

message originator and each recipient. To ensure fairness, either (i) a particular recipient acquires

the message and non-repudiation of origin, and the message originator acquires non-repudiation

of receipt for that participant, OR (ii) that particular recipient does not receive the message or

non-repudiation of origin and the originator does not receive non-repudiation of receipt from that

particular recipient. Some multi-party fair non-repudiation protocols ensure that either all recipients

receive the message (and non-repudiation of origin) or none of them do. Whereas others allow a

sub-set of recipients to acquire the message (and non-repudiation of origin). Fair multi-party non-

repudiation is a new research area and there are few publications on this subject [63, 64, 45, 48, 52].

Fair multi-party non-repudiation protocols have a different interface to two party fair non-

repudiation protocols. The first difference is that the recipient is replaced with a set of recipients.

The second difference is that a set of non-repudiation of receipts is obtained (as opposed to a single

receipt), one for each recipient that successfully completed the fair exchange. As a result, none of

the MDPs currently present at the protocol level of the non-repudiation protocol hierarchy, support

multi-party non-repudiation. It should be possible to develop multi-party versions of all the MDPs,

should they be required.

To develop a multi-party fair NR-Send MDP, the following needs to be undertaken:

• Protocol implementation. A fair multi-party non-repudiation protocol must be developed.

This implementation would be located at the protocol level of the non-repudiation protocol
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hierarchy.

• New MDP. A new MDP must be presented by the protocol level. This MDP would take a

single message and a set or recipients; it would return a set of receipts.

• New generic MEP. A new generic MEP must be presented by the generic MEP level. This

generic MEP would take a message and set of recipients; it would return a set of acknowledge-

ments. This set would state which participants received the message. This generic MEP is

required as the application does not interface directly to the protocol level.

The protocol representation techniques presented in Chapter 4 do not support fair multi-party non-

repudiation protocols. However, multi-party non-repudiation protocols are simply a generalisation

of two party non-repudiation protocols. Therefore, it should be possible to extend the ideas in this

chapter to support multi-party variants. However, the research into fair multi-party non-repudiation

protocols is fairly recent and, as a result, there are not currently enough protocols present to establish

a suitably general scheme for representing them as finite state machines.

6.4.6 NR Information sharing

Work by colleagues described in Section 2.3.5 presents a scheme for achieving controlled access

to shared information. This service can be implemented as part of the non-repudiation protocol

hierarchy. The bulk of the NR-Information Sharing service would be implemented as a domain

specific MEP. This pattern would allow the application to read and write to the shared information.

When writing to the shared information state, a two phase commit protocol is executed. This

protocol would be implemented as a generic MEP. The generic MEP first proposes a new information

state to every other participant. Each participant then validates the request and returns the result.

The MEP collates the responses and then notifies each participant of the result. This MEP can be

composed of several validated NR-Send MDPs to propose the new state to each participant. The

validation part of the MDP is used to return the validation decision regarding the new proposed

information state. The notification of the result can be sent as either a send MDP or an NR-Send

MDP, depending on whether non-repudiation is required. NR-Information Sharing does not require

fair non-repudiation, so the simple non-repudiation MDPs are used. However, if fairness was required

at a later date, the validated fair NR-Send and fair NR-Send protocols could replace the validated

Send MDP and Send MDP (respectively) without disrupting the generic MDP, domain specific

MDP or the application. Furthermore, the generic MEP could be implemented using a multi-party

validated NR-Send MDP followed by a single multi-party Send MDP (should multi-party protocols

have been developed).

145



146 CHAPTER 6. SUMMARY AND FUTURE WORK

6.4.7 Support for other protocol classifications

Fair non-repudiation protocols are members of the broad classification of fair exchange protocols.

Future work could see the rigorous implementation techniques used to implement other security

protocols. In order to achieve this a set of FSM templates would need to be specified for each

supported security protocol. Furthermore, a new set of message exchange patterns would need to

be added to the hierarchy, to enable the application to utilise the new protocols.
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Appendix A

Examples

This appendix uses the Delivery Agent protocol (Described in Section 3.2) for the basis of an example

of what actual protocol notation and FSMs would look like. Two example protocol messages and

the protocol message schema is also present.

A.1 Protocol notation

This section presents the Delivery Agent protocol (Described in Section 3.2) represent in the notation

described in Section 4.3. In the notation several variables have been used to represent run identifiers

and non-repudiation evidence. These can be replaced inline with the following definitions:

ID = runID(A, B, TTP, rn)

ID1 = runID(A, TTP, rn1)

ID2 = runID(B, TTP, rn2)

NROa = sS_A(ID, A, B, h(msg))

NRSttp = sS_TTP(ID, A, B)

NRRb = sS_B(ID, A, B, h(msg))

NRVb = aS_B(ID, val(msg))

NROttp = sS_TTP(ID, A, B, msg)

NRRttp = NROttp

NRVttp = sS_TTP(ID, val(msg))

NRNVttp = sS_TTP(ID, val(msg))

A.1.1 Exchange protocol

1 A -> TTP : eP_TTP(ID, A, B, TTP, rn, msg, NROa)

2 TTP -> A : ID, A, B, NRSttp

3 TTP -> B : ID, A, B, h(msg)
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4 B -> TTP : ID, A, B, eP_TTP(NRRb)

5 TTP -> A : ID, A, B, NRRttp

6 TTP -> B : ID, A, B, msg, NROttp

7 B -> TTP : ID, A, B, val(msg), NRVb

8 TTP -> B : ID, A, B, rn

9 TTP -> A : ID, A, B, val(msg), NRVttp

A.1.2 Exception handling protocols

A.1.2.1 Protocol initiator’s (A) abort protocol

1 A -> TTP : ID1, A, TTP, f(ABORT), ID, sS_A(ID1, f(ABORT), ID)

IF status != SUCCEEDED

AND lastStep < 5 THEN

2.1 TTP -> A : ID1, A, TTP, f(ABORTED), ID, sS_TTP(ID1, f(ABORTED), ID)

ELSE IF lastStep < 7 THEN

2.2 TTP -> A : ID1, A, TTP, f(SUCCEEDED), sS_TTP(ID1, f(SUCCEEDED)),

NRSttp, NRRttp, NRNVttp

ELSE

2.3 TTP -> A : ID1, A, TTP, f(SUCCEEDED), sS_TTP(ID1, f(SUCCEEDED)),

NRSttp, NRRttp, NRVttp

A.1.2.2 Protocol responder’s (B) abort protocol

1 B -> TTP : ID2, B, TTP, f(ABORT), ID, sS_B(ID2, f(ABORT), ID)

IF status != SUCCEEDED

AND lastStep < 5 THEN

2.1 TTP -> B : ID2, B, TTP, f(ABORTED), ID, sS_TTP(ID2, f(ABORTED), ID)

ELSE IF lastStep < 7 THEN

2.2 TTP -> B : ID2, B, TTP, f(SUCCEEDED), ID, sS_TTP(ID2, f(SUCCEEDED)),

rn1, msg, NROttp, NRNVttp

ELSE

2.3 TTP -> B : ID2, B, TTP, f(SUCCEEDED), ID, sS_TTP(ID2, f(SUCCEEDED)),

rn1, msg, NROttp, NRVttp

A.1.2.3 Protocol initiator’s (A) resolve protocol

1 A -> TTP : ID1, A, TTP, f(RESOLVE), ID, sS_A(ID1, f(RESOLVE), ID)

IF status == ABORTED
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AND lastStep < 4 THEN

2.1 TTP -> A : ID1, A, TTP, f(ABORTED), ID, sS_TTP(ID1, f(ABORTED), ID)

ELSE IF lastStep < 7 THEN

2.2 TTP -> A : ID1, A, TTP, f(SUCCEEDED), ID, sS_TTP(ID1, f(SUCCEEDED)),

NRSttp, NRRttp, NRNVttp

ELSE

2.3 TTP -> A : ID1, A, TTP, f(SUCCEEDED), ID, sS_TTP(ID1, f(SUCCEEDED)),

NRSttp, NRRttp, NRVttp

A.1.2.4 Protocol responder’s (B) resolve protocol

1 B -> TTP : ID2, B, TTP, f(RESOLVE), ID, sS_B(ID2, f(RESOLVE), ID)

IF status == ABORTED

AND lastStep < 4 THEN

2.1 TTP -> B : ID2, B, TTP, f(ABORTED), ID, sS_TTP(ID2, f(ABORTED), ID)

ELSE IF lastStep < 7 THEN

2.2 TTP -> B : ID2, B, TTP, f(SUCCEEDED), ID, sS_TTP(ID2, f(SUCCEEDED)),

rn, msg, NROttp, NRNVttp

ELSE

2.3 TTP -> B : ID2, B, TTP, f(SUCCEEDED), ID, sS_TTP(ID2, f(SUCCEEDED)),

rn, msg, NROttp, NRVttp

A.2 Finite state machines

This section presents the finite state machine representation of the Delivery Agent protocol (De-

scribed in Section 3.2).
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A.2.1 Exchange protocol FSMs

A.2.1.1 Protocol initiator (A)

S0

S1

S2

S3

Handle
Exception

S4

Send message1

Receive message2

Exception(S3)
invoke EH sub protocol

(invalid | unexpected) message

(invalid | unexpected) message

(invalid | unexpected) message

Receive message5

any message

Receive message9
notify success

Exception(S1)

invoke EH sub protocol

Exception(S2)
invoke EH

sub protocol

start

Figure A.1: Exchange protocol FSM for initiator of DA protocol
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A.2.1.2 Protocol responder (B)

S0

S1

S2Handle
Exception

S3

Receive Message 3
Send Message 4

(invalid | unexpected) message

(invalid | unexpected) message

Receive message 6
Send Message 7

(invalid | unexpected) message

Receive message 8
notify success

Exception(S2)

invoke EH
sub protocol

Exception(S1)
invoke EH

sub protocol

start

Figure A.2: Exchange protocol FSM for responder of DA protocol
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A.2.1.3 Trusted third party (DA)

S0

S1

S2Handle
Exception

S3

Receive Message 1
Send Message 2
Send message 3

(invalid | unexpected) message

(invalid | unexpected) message

Receive message 4
Send Message 5
Send Message 6

(invalid | unexpected) message

Receive message 7
Send Message 8
Send message 9

notify success

Exception(S1)
invoke EH

sub protocol

Exception(S2)

invoke EH
sub protocol

Figure A.3: Exchange protocol FSM for TTP of DA protocol

A.2.2 Exception handling protocol FSMs

A.2.2.1 Protocol initiator and responder (A and B)

Handle
Exception

Waiting for
Result

request resolve
send resolve message 1

quitted

quit
notify failure

Aborted Resolved

receive abort message 2.2 /
receive abort message 2.3 /

receive resolve message 2.2 /
receive resolve message 2.3

notify success

receive abort message 2.1 /
receive resolve message 2.1

notify failure

request abort
send abort message 1

start

Figure A.4: Exchange protocol FSM for initiator of DA protocol
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A.2.2.2 Trusted third party (DA)

Waiting

Received
Abort

Request

Aborted Resolved

Aborting Resolving

send abort token
notify failure

!resolvable

resolvable

Received
Resolve
Request

Receive abort message 1

abortable

!abortable

send requestor oriented resolve token
notify success

any message
send abort token

any message
send requestor oriented resolve token

start

Receive resolve message 1

abortable IF not SUCCEEDED and lastStep < 5

resolvable IF not ABORTED and lastStep > 3

Figure A.5: Exchange protocol FSM for TTP of DA protocol

A.3 Soap protocol messages

This section uses a purchase order as a simple example of a business message. The discussion

shows a subset of business message content and the most significant annotations to the message for

non-repudiation protocol execution. Timestamps are omitted and so is encryption.

The following SOAP message represents a purchase order in an application that does not use

NRExchange services.

<SOAP:Envelope>

<SOAP:Header>

...

</SOAP:Header>

<SOAP:Body>
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<po:PurchaseOrder>

<Quantity>1000000</Quantity>

<itemID>234233</itemID>

</po:PurchaseOrder>

...

</SOAP:Body>

</SOAP:Envelope>

The above message is deliberately kept simple. In practice, business messages may be quite complex

and include numerous header and body elements along with mixed media attachments and references

to external information. Given the NRExchange infrastructure described in Section 5.2, it is possible

to ensure that fair exchange can be applied to messages regardless of their content, attachments or

references.

A.3.1 Exchange protocol message 1

The following XML shows message 1 of the Delivery agent protocol transformed into a SOAP

envelope, where the application message is the purchase order.
<soap:Envelope>

<soap:Header>

<!-- WS-Security header -->

<wsse:Security soap:actor=’...’ soap:mustUnderstand=’1’>

<!-- sender certificate -->

<wsse:BinaryToken ValueType=’wsse:X509v3’>

<!-- token value -->

</wsse:BinaryToken>

<ds:Signature>

<ds:SignedInfo>

<!-- reference to nrex_header -->

<ds:Reference URI=’#nrex_header’>

<ds:Transforms>

<!-- any transforms -->

</ds:Transforms>

<ds:DigestMethod Algorithm=’...’/>

<ds:DigestValue>FtaewlewrldsfRGrt8/...</ds:DigestValue>

</ds:Reference>

<!-- reference to body -->

<ds:Reference URI=’#message_body’>

<ds:Transforms>...</ds:Transforms>

<ds:DigestMethod Algorithm=’...’/>

<ds:DigestValue>thjribUhkhgtPl...</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>lsPiZkngCb4uDi/BsPear...</ds:SignatureValue>
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</ds:Signature>

<!-- other security tokens -->

</wsse:Security>

<!-- WS-NRExchange header -->

<nrex:NRExchangeProtocol

xmlns:nrex=’http://www.cs.ncl.ac.uk/ws/nrex/v1’

name=’http://www.cs.ncl.ac.uk/ws/nrex/protocols/coffsaid-lwuser/main’

runId=’Gfr56Rt4..’

messageNumber=’1.0’

soap:actor=’...’ soap:mustUnderstand=’1’ id=’nrex_header’>

<nrex:Participant role=’nrex.role.TTP’>

http://www.ttp.com/

</nrex:Participant>

<nrex:Participant role=’nrex.role.SENDER’>

http://www.purchaser.com/

</nrex:Participant>

<nrex:Participant role=’nrex.role.RECEIVER’>

http://www.supplier.com/

</nrex:Participant>

<nrex:RandomNumber id=”rn1”>

salfoeiur838rjlfdsk...

</nrex:RandomNumber>

<nrex:RunIdGenerator runId=’Gfr56Rt4..’>

<nrex:DigestReference runID=”Gfr56Rt4..” messageNumber=”1.0”>

<ds:Reference URI=”#rn1”>

<ds:DigestMethod>...</ds:DigestMethod>

<ds:DigestValue>...</ds:DigestValue>

</ds:Reference>

</nrex:DigestReference>

</nrex:RunIdGenerator>

</nrex:NRExchangeProtocol>

<!-- other soap header elements -->

</soap:Header>

<soap:Body Id=’message_body’>

<po:PurchaseOrder>

<Quantity>1000000</Quantity>

<itemID>234233</itemID>

</po:PurchaseOrder>

</soap:Body>

</soap:Envelope>

A.3.2 Exchange protcol message 2

<soap:Envelope>

<soap:Header>
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<!-- WS-Security header -->

<wsse:Security soap:actor=’...’ soap:mustUnderstand=’1’>

<!-- sender certificate -->

<wsse:BinaryToken ValueType=’wsse:X509v3’>

<!-- token value -->

</wsse:BinaryToken>

<!-- signature on nrexchange header -->

<ds:Signature>

<ds:SignedInfo>

<!-- xml signature info -->

<ds:Reference URI=’#nrex_header’>

<ds:Transforms>

<!-- any transforms -->

</ds:Transforms>

<ds:DigestMethod Algorithm=’AlgorithmName’/>

<ds:DigestValue>8j8jkj8TUpnmMM...</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>lb4uDiear...</ds:SignatureValue>

</ds:Signature>

<!-- other security tokens -->

</wsse:Security>

<!-- WS-NRExchange header -->

<nrex:NRExchangeProtocol

xmlns:nrex=’http://www.cs.ncl.ac.uk/ws/nrex/v1’

name=’http://www.cs.ncl.ac.uk/ws/nrex/protocols/coffsaid-lwuser/main’

runId=’Gfr56Rt4..’

messageNumber=’2.0’

soap:actor=’...’ soap:mustUnderstand=’1’ id=’nrex_header’>

<nrex:Participant role=’nrex.role.TTP’>

http://www.ttp.com/

</nrex:Participant>

<nrex:Participant role=’nrex.role.SENDER’>

http://www.purchaser.com/

</nrex:Participant>

<nrex:Participant role=’nrex.role.RECEIVER’>

http://www.supplier.com/

</nrex:Participant>

</nrex:NRExchangeProtocol>

<!-- other soap header elements -->

</soap:Header>

<soap:Body/>

</soap:Envelope>
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A.4 Protocol message schema

There follows the NRExchange protocol message schema:
<?xml version=’1.0’ encoding=’UTF-8’?>

<xsd:schema xmlns:ds=’http://www.w3.org/2000/09/xmldsig#’

xmlns:nrex=’http//www.cs.ncl.ac.uk/ws/nrex/v1’

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’

attributeFormDefault=’unqualified’

elementFormDefault=’qualified’

targetNamespace=’http//www.cs.ncl.ac.uk/ws/nrex/v1’>

<xsd:import namespace=’http://www.w3.org/2000/09/xmldsig#’

schemaLocation=’http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd’/>

<xsd:element name=’Acknowledgement’ type=’nrex:AcknowledgementType’/>

<xsd:element name=’AcknowledgementsRequired’

type=’nrex:AcknowledgementsRequiredType’/>

<xsd:element name=’DigestReference’ type=’nrex:DigestReferenceType’/>

<xsd:element name=’LogMetaInf’ type=’nrex:LogMetaInfType’/>

<xsd:element name=’NRExchangeLogEntry’ type=’nrex:NRExchangeLogEntryType’/>

<xsd:element name=’NRExchangeProtocol’ type=’nrex:NRExchangeProtocolType’/>

<xsd:element name=’Participant’ type=’nrex:ParticipantType’/>

<xsd:element name=’ProtocolState’ type=’nrex:ProtocolStateType’/>

<xsd:element name=’ProtocolStateRequest’ type=’nrex:ProtocolStateRequestType’/>

<xsd:element name=’RandomNumber’ type=’nrex:RandomNumberType’/>

<xsd:element name=’ReceiptsRequired’ type=’nrex:ReceiptsRequiredType’/>

<xsd:element name=’Reference’ type=’nrex:ReferenceType’/>

<xsd:element name=’RelatedRun’ type=’nrex:RelatedRunType’/>

<xsd:element name=’RunIdGenerator’ type=’nrex:RunIdGeneratorType’/>

<!-- enums -->

<xsd:simpleType name=’AckType’>

<xsd:restriction base=’xsd:string’>

<xsd:enumeration value=’nrex.ack.TTP’/>

<xsd:enumeration value=’nrex.ack.RECEIVER’/>

<xsd:enumeration value=’nrex.ack.VALIDITOR’/>

<xsd:enumeration value=’nrex.ack.OTHER’/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=’RoleType’>

<xsd:restriction base=’xsd:string’>

<xsd:enumeration value=’nrex.role.RECEIVER’/>

<xsd:enumeration value=’nrex.role.SENDER’/>

<xsd:enumeration value=’nrex.role.TSA’/>

<xsd:enumeration value=’nrex.role.TTP’/>

<xsd:enumeration value=’nrex.role.OTHER’/>

</xsd:restriction>

</xsd:simpleType>

165



166 APPENDIX A. EXAMPLES

<xsd:simpleType name=’PurposeType’>

<xsd:restriction base=’xsd:string’>

<xsd:enumeration value=’nrex.purpose.NRO’/>

<xsd:enumeration value=’nrex.purpose.NRR’/>

<xsd:enumeration value=’nrex.purpose.NRS’/>

<xsd:enumeration value=’nrex.purpose.NRV’/>

<xsd:enumeration value=’nrex.purpose.OTHER’/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=’StatusType’>

<xsd:restriction base=’xsd:string’>

<xsd:enumeration value=’nrex.status.ACTIVE’/>

<xsd:enumeration value=’nrex.status.TERMINATED’/>

<xsd:enumeration value=’nrex.status.OTHER’/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=’TerminationStatusType’>

<xsd:restriction base=’xsd:string’>

<xsd:enumeration value=’nrex.termination.ABORTED’/>

<xsd:enumeration value=’nrex.termination.SUCCEEDED’/>

<xsd:enumeration value=’nrex.termination.OTHER’/>

</xsd:restriction>

</xsd:simpleType>

<!-- protocol components -->

<!-- to specify the acknowledgements that are required -->

<xsd:complexType name=’AcknowledgementsRequiredType’>

<xsd:sequence>

<xsd:element name=’AckSpecification’ type=’nrex:AckSpecificationType’

maxOccurs=’unbounded’/>

</xsd:sequence>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<!-- acknowledgement to convey ack type information and validation status -->

<xsd:complexType name=’AcknowledgementType’>

<xsd:sequence>

<xsd:element minOccurs=’0’ name=’ValidationInfo’ type=’xsd:string’/>

<xsd:any maxOccurs=’unbounded’ minOccurs=’0’ namespace=’##other’

processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’type’ type=’nrex:AckType’/>

<xsd:attribute name=’messageReference’ type=’nrex:MessageNumberType’/>

<xsd:attribute name=’runIdReference’ type=’nrex:RunIdType’/>

<xsd:attribute name=’isValid’ type=’xsd:boolean’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>
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<!-- specification of an acknowledgement including optional deadline for its receipt -->

<xsd:complexType name=’AckSpecificationType’>

<xsd:sequence>

<xsd:any namespace=’##other’ minOccurs=’0’ maxOccurs=’unbounded’

processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’type’ type=’nrex:AckType’ use=’required’/>

<xsd:attribute name=’expires’ type=’xsd:dateTime’/>

</xsd:complexType>

<!-- reference type for forwared/backward reference to messages/elements

within messages or URIs relative to messages, optionally including digest

information -->

<xsd:complexType name=’ReferenceType’>

<xsd:sequence>

<xsd:element ref=’ds:Transforms’ minOccurs=’0’/>

<xsd:element ref=’ds:DigestMethod’ minOccurs=’0’/>

<xsd:element ref=’ds:DigestValue’ minOccurs=’0’/>

</xsd:sequence>

<xsd:attribute name=’protocolName’ type=’xsd:anyURI’/>

<xsd:attribute name=’runId’ type=’nrex:RunIdType’ use=’required’/>

<xsd:attribute name=’messageNumber’ type=’nrex:MessageNumberType’

use=’required’/>

<xsd:attribute name=’URI’ type=’anyURI’/>

<xsd:attribute name=’Type’ type=’anyURI’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<!-- collection of references used to create a single digest value where the

references themselves may contain a digest value -->

<xsd:complexType name=’DigestReferenceType’>

<xsd:sequence>

<xsd:element ref=’nrex:Reference’ maxOccurs=’unbounded’/>

<xsd:element ref=’ds:Transforms’ minOccurs=’0’/>

<xsd:element ref=’ds:DigestMethod’/>

<xsd:element ref=’ds:DigestValue’/>

</xsd:sequence>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<!-- list of messages that are available at a participant and who they are

available to -->

<xsd:complexType name=’MessageAvailabilityType’>

<xsd:sequence>

<xsd:element name=’Messages’ type=’nrex:MessageNumberList’/>

<xsd:element name=’AvailableTo’ type=’nrex:ParticipantType’/>

</xsd:sequence>

</xsd:complexType>
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<xsd:simpleType name=’MessageNumberList’>

<xsd:list itemType=’nrex:MessageNumberType’/>

</xsd:simpleType>

<xsd:simpleType name=’MessageNumberType’>

<xsd:restriction base=’xsd:double’>

<xsd:minExclusive value=’0.0’/>

</xsd:restriction>

</xsd:simpleType>

<!-- a log entry element for annotating a protocol with meta-information

when logging -->

<xsd:complexType name=’LogMetaInfType’>

<xsd:sequence>

<xsd:element maxOccurs=’unbounded’ minOccurs=’0’ ref=’nrex:Participant’/>

<xsd:element minOccurs=’0’ name=’Annotation’ type=’xsd:string’/>

<xsd:any namespace=’##other’ processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’logDate’ type=’xsd:dateTime’/>

<xsd:attribute name=’logTime’ type=’xsd:unsignedLong’/>

<xsd:attribute name=’protocolName’ type=’xsd:anyURI’/>

<xsd:attribute name=’protocolRunId’ type=’nrex:RunIdType’/>

<xsd:attribute name=’protocolMessageNumber’ type=’nrex:MessageNumberType’/>

<xsd:anyAttribute namespace=’##other’ processContents=’lax’/>

</xsd:complexType>

<xsd:complexType name=’NRExchangeLogEntryType’>

<xsd:sequence>

<xsd:element minOccurs=’0’ ref=’nrex:LogMetaInf’/>

<xsd:any namespace=’##other’ processContents=’lax’/>

</xsd:sequence>

</xsd:complexType>

<!-- the top-level nrexchange protocol header type -->

<xsd:complexType name=’NRExchangeProtocolType’>

<xsd:sequence>

<xsd:element ref=’nrex:Acknowledgement’ minOccurs=’0’

maxOccurs=’unbounded’/>

<xsd:element ref=’nrex:AcknowledgementsRequired’ minOccurs=’0’/>

<xsd:element ref=’nrex:DigestReference’ minOccurs=’0’

maxOccurs=’unbounded’/>

<xsd:element ref=’nrex:Participant’ minOccurs=’2’

maxOccurs=’unbounded’/>

<xsd:element ref=’nrex:ProtocolState’ minOccurs=’0’/>

<xsd:element ref=’nrex:ProtocolStateRequest’ minOccurs=’0’/>

<xsd:element ref=’nrex:RandomNumber’ minOccurs=’0’

maxOccurs=’unbounded’/>

<xsd:element ref=’nrex:ReceiptsRequired’ minOccurs=’0’/>

<xsd:element ref=’nrex:Reference’ minOccurs=’0’ maxOccurs=’unbounded’/>
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<xsd:element ref=’nrex:RelatedRun’ minOccurs=’0’

maxOccurs=’unbounded’/>

<xsd:element ref=’nrex:RunIdGenerator’ minOccurs=’0’/>

<xsd:any namespace=’##other’ processContents=’lax’ minOccurs=’0’

maxOccurs=’unbounded’/>

</xsd:sequence>

<xsd:attribute name=’name’ type=’xsd:anyURI’ use=’required’/>

<xsd:attribute name=’runId’ type=’nrex:RunIdType’ use=’required’/>

<xsd:attribute name=’messageNumber’ type=’nrex:MessageNumberType’ use=’required’/>

<xsd:attribute name=’runSequence’ type=’xsd:unsignedLong’/>

<xsd:attribute name=’purpose’ type=’nrex:PurposeType’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

<xsd:anyAttribute namespace=’##any’ processContents=’lax’/>

</xsd:complexType>

<xsd:complexType name=’ParticipantType’>

<xsd:simpleContent>

<xsd:extension base=’xsd:anyURI’>

<xsd:attribute name=’authenticationRef’ type=’xsd:anyURI’/>

<xsd:attribute name=’messageOwner’ type=’xsd:boolean’/>

<xsd:attribute name=’role’ type=’nrex:RoleType’/>

<xsd:attribute name=’nrexchangeURI’ type=’xsd:anyURI’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<!-- a request for the status of a protocol as perceived by recipient of

request -->

<xsd:complexType name=’ProtocolStateRequestType’>

<xsd:sequence>

<xsd:element name=’LastMessageSeen’ type=’nrex:MessageNumberType’/>

<xsd:element name=’AttachMessages’ type=’nrex:MessageNumberList’

minOccurs=’0’ />

<xsd:any namespace=’##other’ minOccurs=’0’ maxOccurs=’unbounded’

processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’name’ type=’xsd:anyURI’ use=’required’/>

<xsd:attribute name=’runId’ type=’nrex:RunIdType’ use=’required’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<xsd:complexType name=’ProtocolStateType’>

<xsd:sequence>

<xsd:element name=’Status’ type=’nrex:StatusType’/>

<xsd:element name=’LastMessage’ type=’nrex:MessageNumberType’

minOccurs=’0’/>

<xsd:element name=’TerminationStatus’
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type=’nrex:TerminationStatusType’ minOccurs=’0’/>

<xsd:element name=’TerminationOriginator’ type=’nrex:ParticipantType’

minOccurs=’0’/>

<xsd:element name=’MessageAvailability’

type=’nrex:MessageAvailabilityType’ minOccurs=’0’

maxOccurs=’unbounded’/>

<xsd:element name=’AttachedMessages’ type=’nrex:MessageNumberList’

minOccurs=’0’/>

<xsd:any namespace=’##other’ minOccurs=’0’ maxOccurs=’unbounded’

processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’name’ type=’xsd:anyURI’ use=’required’/>

<xsd:attribute name=’runId’ type=’nrex:RunIdType’ use=’required’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<!-- referencable base64 encoded random number -->

<xsd:complexType name=’RandomNumberType’>

<xsd:sequence>

<xsd:element minOccurs=’1’ name=’Value’ type=’xsd:base64Binary’/>

</xsd:sequence>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<!-- specification of what should be receipted during protocol execution,

may, for example, identify external information that must be

receipted -->

<xsd:complexType name=’ReceiptSpecificationType’>

<xsd:sequence>

<xsd:any maxOccurs=’unbounded’ minOccurs=’0’ namespace=’##other’ processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’URI’ type=’xsd:anyURI’/>

</xsd:complexType>

<!-- list of receipt specifications -->

<xsd:complexType name=’ReceiptsRequiredType’>

<xsd:sequence>

<xsd:element maxOccurs=’unbounded’ name=’ReceiptSpecification’ type=’nrex:ReceiptSpecificationType’/>

</xsd:sequence>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<!-- specification of a protocol run that is related to current run in some

way, along with optional status information -->

<xsd:complexType name=’RelatedRunType’>

<xsd:sequence>

<xsd:element maxOccurs=’unbounded’ minOccurs=’0’ ref=’nrex:Participant’/>

<xsd:element minOccurs=’0’ name=’Status’ type=’nrex:StatusType’/>

<xsd:element minOccurs=’0’ name=’LastMessage’ type=’nrex:MessageNumberType’/>
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<xsd:element minOccurs=’0’ name=’TerminationStatus’ type=’nrex:TerminationStatusType’/>

<xsd:element minOccurs=’0’ name=’TerminationOriginator’ type=’nrex:ParticipantType’/>

<xsd:element minOccurs=’0’ name=’AttachedMessages’ type=’nrex:MessageNumberList’/>

<xsd:any maxOccurs=’unbounded’ minOccurs=’0’ namespace=’##other’ processContents=’lax’/>

</xsd:sequence>

<xsd:attribute name=’protocolName’ type=’xsd:anyURI’/>

<xsd:attribute name=’runId’ type=’nrex:RunIdType’ use=’required’/>

</xsd:complexType>

<!-- run id generator to specify how a the given run id was generated from

a set of 0 or more digest references -->

<xsd:complexType name=’RunIdGeneratorType’>

<xsd:sequence>

<xsd:element ref=’nrex:DigestReference’ minOccurs=’0’/>

</xsd:sequence>

<xsd:attribute name=’baseURI’ type=’xsd:anyURI’/>

<xsd:attribute name=’runId’ type=’nrex:RunIdType’ use=’required’/>

<xsd:attribute name=’Id’ type=’xsd:ID’/>

</xsd:complexType>

<xsd:simpleType name=’RunIdType’>

<xsd:restriction base=’xsd:anyURI’/>

</xsd:simpleType>

</xsd:schema>
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