
Practical Applications of Performance Modelling of

Security Protocols Using PEPA

Thesis by

Yishi Zhao

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

On Dynamic Resource Allocation in Systems with Bursty
Sources

Thesis by

Joris Slegers

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Newcastle University

Newcastle upon Tyne, UK

2009

(Submitted February 12, 2009)

Newcastle University

Newcastle upon Tyne, UK

2011

To my parents

&

To Xin Jing

i

Acknowledgments

Firstly and foremost, I would like to thank my supervisor, Dr. Nigel Thomas, for

his invaluable guidance, supervision, and advice. I also appreciate Prof. Aad van

Moorsel and Dr. Nick Cook in my thesis committee for discussing the direction

of my research.

Secondly I’d like to thank my examiners: Dr. Jeremy Bradley of Imperial College

London and Prof. Aad van Moorsel for the valuable comments in the viva.

Many thanks then go to Allan Clark, Adam Duguid, Stephen Gilmore and Mi-

cro Tribastone from University of Edinburgh for clarifying aspects of the PEPA

Eclipse Plug-in and the apparent rate.

I also would like to thank my friends Yingjie He, Rachel Zhang, Xiao Chen and

Ahmad Salah El Ahmad for making my four years PhD life vigorous.

Finally, I would like to give the credits to my parents and my fiancee for their

love, support and encouragement.

ii

Abstract

Trade-off between security and performance has become an intriguing area in

recent years in both the security and performance communities. As the secu-

rity aspects of security protocol research is fully-fledged, this thesis is therefore

devoted to conducting a performance study of these protocols. The long term

objective is to translate formal definitions of security protocols to formal per-

formance models automatically, then analysing by relevant techniques. In this

thesis, we take a preliminary step by studying five typical security protocols, and

exploring the methodology of construction and analysis of their models by us-

ing the Markovian process algebra PEPA. Through these case studies, an initial

framework of performance analysis of security protocol is established.

Firstly, a key distribution centre is investigated. The basic model suffers from the

commonly encountered state space explosion problem, and so we apply some effi-

cient solution techniques, which include model reduction techniques and ordinary

differential equation based fluid flow analysis. Finally, we evaluate a utility func-

tion for this secure key exchange model. Then, we explore two non-repudiation

protocols. Mean value analysis has been applied here for a class of PEPA models,

and it is compared with an ODE approximation. After that, an optimistic non-

repudiation protocol with off-line third trust party is studied. The PEPA model

has been formulated using a concept of multi-threaded servers with functional

rates. The final case study is a cross-realm Kerberos protocol. A simplified

technique of aggregation with an ODE approximation is performed to do effi-

cient analysis. All these modelling and analysis methods are illustrated through

numerical examples.

iii

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Motivation and Aims . 1

1.2 Outline of thesis . 4

1.3 Publication History . 6

1.4 Contributions . 7

2 Literature Review 9

2.1 Specification and Solution of Large PEPA Models 9

2.1.1 PEPA . 9

2.1.1.1 Syntax . 10

2.1.1.2 Apparent rate and Operational semantic 11

2.1.1.3 A simple example 13

2.1.2 Notions of equivalence . 13

iv

2.1.2.1 Bisimulations . 14

2.1.2.2 Isomorphism and weak isomorphism 15

2.1.2.3 Strong equivalence 17

2.1.3 CTMC based methods . 17

2.1.3.1 Derivation of CTMC 17

2.1.3.2 Matrix solution 18

2.1.3.3 Aggregation . 20

2.1.3.4 Decomposition 21

2.1.3.4.1 Product form 21

2.1.3.4.2 Component substitution 22

2.1.3.4.3 Distributed solution 22

2.1.3.5 Kronecker . 22

2.1.4 Simulation . 23

2.1.4.1 Discrete event simulation 24

2.1.4.2 Stochastic simulation 26

2.1.5 Stochastic Model checking 27

2.1.6 Fluid flow analysis . 27

2.1.6.1 ODE derivation 28

2.1.6.2 Solution by simulation 29

2.1.6.3 Analytic solution 29

2.1.6.4 Stochastic differential equations 30

v

2.1.6.5 Higher moment from ODEs 30

2.1.6.6 Accuracy of fluid approximation 31

2.1.7 Mean Value Analysis . 34

2.1.7.1 A class of closed queueing networks in PEPA . . 34

2.1.7.2 Solution . 35

2.1.7.3 Limitation . 39

2.2 Related work . 39

2.2.1 Informal analysis . 40

2.2.2 Formal analysis . 42

2.3 Summary . 45

3 Key Distribution Centre 46

3.1 Introduction . 46

3.2 Protocol specification . 47

3.3 Modelling Choices . 50

3.3.1 Preliminary results . 54

3.4 The Model . 61

3.4.1 Model simplification and approximation 61

3.4.2 Numerical results . 65

3.5 Fluid analysis . 70

3.5.1 Numerical results of ODEs 72

3.5.2 Multiple KDC servers . 75

vi

3.6 Utility function . 78

3.6.1 Numerical results of utility function 79

3.7 Summary . 83

4 Non-repudiation Protocols ZG1&ZG3 85

4.1 Introduction . 85

4.2 Non-repudiation protocols specification 86

4.2.1 ZG1 specification . 86

4.2.2 ZG3 specification . 88

4.3 PEPA models of non-repudiation 90

4.3.1 ZG1 PEPA Model . 90

4.3.2 ZG3 PEPA Model . 91

4.3.3 Mean value analysis . 93

4.3.4 ODE analysis . 95

4.4 Numerical results . 97

4.5 Limitations and Extended results 102

4.6 Functional Rates Specification . 104

4.6.1 Numerial results . 108

4.7 Utility function . 111

4.7.1 Numerical results . 112

4.8 Summary . 114

5 An Optimistic Fair Exchange Protocol 116

vii

5.1 Introduction . 116

5.2 A e-commerce Protocol (basic) . 117

5.3 PEPA Model of the basic protocol 119

5.3.1 ODE analysis . 121

5.4 Numerical results of the basic protocol 122

5.5 Extended protocol . 125

5.6 PEPA Model of extended protocol 127

5.6.1 ODE analysis . 130

5.7 Numerical results of extended protocol 133

5.8 Utility function of extended protocol 138

5.8.1 Numerical results . 139

5.9 Summary . 141

6 Kerberos Protocol 142

6.1 Introduction . 142

6.2 Protocol specification . 143

6.3 The model . 144

6.4 Simplification . 150

6.5 ODE analysis . 153

6.6 Numerical results . 155

6.7 Utility function . 159

6.7.1 Numerical results . 160

viii

6.8 Summary . 162

7 Conclusion and Further Work 163

7.1 Conclusions . 163

7.2 Further work . 167

References 169

ix

List of Figures

1.1 An overview of performance analysis of security protocol 3

1.2 The work flow of performance analysis in context 4

2.1 Operational Semantic of PEPA 12

2.2 The derivation graph of S . 16

2.3 The derivation graph of R . 16

2.4 The underlying CTMC of Process/Resource Model 18

2.5 Average response time calculated by the ODEs and CTMC (Spec-

ification) . 31

2.6 Average queue length at processor varied with population size

(Specification) . 33

3.1 Key Distribution Scenario. 47

3.2 Initial model of key distribution centre. 51

3.3 Alternative model of key distribution centre. 52

3.4 Utilisation of the KDC varied with number of client pairs (KDC

modelling choices) . 55

x

3.5 KDC utilisation varied with rate of use of the key (KDC modelling

choices) . 56

3.6 KDC utilisation varied against the rate of request (KDC modelling

choices) . 57

3.7 Response time varied with number of client pairs (KDC modelling

choices) . 59

3.8 Response time varied with rate of use of the key (KDC modelling

choices) . 59

3.9 Response time varied against the rate of request (KDC modelling

choices) . 60

3.10 Average utilisation varied against the number of client pairs (KDC

approximation) . 65

3.11 Average response time varied against the number of client pairs

(KDC approximation) . 66

3.12 Relative error in utilisation of approximation compared to simula-

tion (KDC approximation) . 67

3.13 Relative error in average response time of approximation compared

to simulation (KDC approximation) 67

3.14 Average utilisation varied against the rate of session key use (KDC

approximation) . 69

3.15 Average Response time varied against the rate of session key use

(KDC approximation) . 69

3.16 Number of waiting clients over time 1 (KDC ODE) 73

3.17 Average response time calculated by the ODE method and QN

approximation (KDC ODE) . 73

xi

3.18 Number of waiting clients over time 2 (KDC ODE) 74

3.19 Proportion of Alice1 components, calculated by ODE solution and

QN model (KDC ODE) . 77

3.20 Average queue length calculated by ODE solution and QN model

(KDC ODE) . 78

3.21 Cost varied against the number of clients calculated by the queue-

ing network model (KDC utility function) 80

3.22 Cost varied against the number of clients calculated by ODEs

(KDC utility function) . 81

3.23 Cost varied with number of KDCs calculated by ODEs (KDC util-

ity function) . 82

3.24 Cost varied with number of KDCs calculated by ODEs and QN

model (KDC utility function) . 82

3.25 Cost varied with rate of usekey calculated by ODEs (KDC utility

function) . 83

4.1 A non-repudiation protocol invented by Zhou and Gollmann (ZG1) 87

4.2 Another non-repudiation protocol invented by Zhou and Gollmann

(ZG3) . 89

4.3 Average number of waiting jobs of ZG1 calculated by the ODE

and MVA (ZG1&ZG3) . 97

4.4 Average number of waiting jobs of ZG1 calculated by the ODE

(ZG1&ZG3) . 98

4.5 Average number of waiting jobs of ZG1 varied with population size

calculated by the MVA (ZG1&ZG3) 99

xii

4.6 Average response time of ZG1 varied with population size calcu-

lated by the MVA (ZG1&ZG3) 100

4.7 Average number of AB1 component of ZG3 calculated by the ODE

and MVA (ZG1&ZG3) . 100

4.8 Average number of AB1 component of ZG3 varied with population

size calculated by the MVA (ZG1&ZG3) 101

4.9 Average response time for AB1 component of ZG3 varied with

population size calculated by the MVA (ZG1&ZG3) 101

4.10 Average number of waiting jobs with ZG1 and ZG3 calculated by

the MVA (ZG1&ZG3) . 102

4.11 Average response time of ZG3 varied with population size with

different service rates on second job type calculated by the MVA

(ZG1&ZG3) . 104

4.12 Average queue length varied with population size calculated by the

ODE (ZG1&ZG3) . 109

4.13 Average response time varied with population size calculated by

the ODE (ZG1&ZG3) . 110

4.14 Average queue length varied with population size with different

number of servers calculated by the ODEs (ZG1&ZG3) 111

4.15 Cost varied against the number of clients calculated by ODEs (ZG

utility function) . 112

4.16 Cost varied with number of TTP servers calculated by ODEs (ZG

utility function) . 113

4.17 Cost varied with rate of work calculated by ODEs (ZG utility

function) . 114

xiii

5.1 A basic e-commerce fair exchange protocol 117

5.2 Average number of waiting customers in sendCg and sendCabort

varied with population size calculated by ODEs and stochastic

simulation(basic e-commerce protocol) 123

5.3 Average number of waiting customers in sendCk varied with pop-

ulation size calculated by ODEs and stochastic simulation(basic

e-commerce protocol) . 123

5.4 Average response time of action “sendCg(sendCabort)” varied with

population size calculated by ODEs and stochastic simulation(basic

e-commerce protocol) . 124

5.5 Average response time of action “sendCk” varied with popula-

tion size calculated by ODEs and stochastic simulation(basic e-

commerce protocol) . 124

5.6 Average number of waiting customers at TTP varied with pop-

ulation size calculated by ODEs and stochastic simulation(the e-

commerce protocol with misbehaviour) 133

5.7 Average number of waiting customers at merchant varied with pop-

ulation size calculated by ODEs and stochastic simulation(the e-

commerce protocol with misbehaviour) 134

5.8 Average number of waiting customers with and without TTP var-

ied with population size calculated by ODEs 135

5.9 Average response time at merchant varied with population size

calculated by ODEs . 136

5.10 Average response time for TTP varied with population size calcu-

lated by ODEs . 137

5.11 Average response time for sendCg varied with population size cal-

culated by ODEs . 137

xiv

5.12 Proportion of satisfied customers varied with population size cal-

culated by ODEs . 138

5.13 Cost varied against the number of clients calculated by ODEs (Fair

exchange protocol utility function) 139

5.14 Cost varied with number of TTP servers calculated by ODEs (Fair

exchange protocol utility function) 140

5.15 Cost varied with rate of work calculated by ODEs (Fair exchange

protocol utility function) . 140

6.1 One realm in multi-realms Kerberos protocol 143

6.2 Comparison of relevant derivatives between original and simplified

model . 152

6.3 Average waiting customers for KDC varied with population size

calculated by ODEs and stochastic simulation 156

6.4 Average waiting customers for S varied with population size cal-

culated by ODEs and stochastic simulation 157

6.5 Average waiting customers for KDC and S varied with population

size for two realms simplified model and original model calculated

by ODEs . 157

6.6 Average waiting customers for KDC and S varied with population

size for three realms simplified model and original model calculated

by ODEs . 158

6.7 Average waiting time for customers at KDC and S varied with

population size for three realms and two realms of simplified model

calculated by ODEs . 158

6.8 Cost varied against the number of clients calculated by ODEs (Ker-

beros utility function) . 160

xv

6.9 Cost varied with rate of work calculated by ODEs (Kerberos utility

function) . 161

7.1 Enhanced work flow of performance analysis in context 166

xvi

Chapter 1

Introduction

1.1 Motivation and Aims

One of the more intriguing areas of system engineering to emerge over recent

years has been the study of the performance overhead introduced by making a

system secure. According to Stallings [59]:

“The more frequently session keys are exchanged, the more secure

they are, because the opponent has less cipher text to work with for

any given session key. On the other hand, the distribution of session

keys delays the start of any exchange and places a burden on network

capacity. A security manager must try to balance these competing

considerations in determining the lifetime of a particular session key.”

It is clear that as more functionality is added to a system, more execution time

is required to complete the additional tasks involved. However, in the case of

security, the benefit accrued from any additional overhead is not easy to quan-

tify and so it is very hard for the performance engineer to argue a particular

performance target should take precedence over a security goal. One area where

alternative secure solutions exist is in cryptography, where there may be a choice

of algorithm, or even a choice of key length, which will greatly influence the

1

performance of the system. In many situations performance also contribute to

the security rather than just speeding up or slowing down the system. Under a

poor performance, the legitimate protocol actions might lead the system to leak

restricted information. If the scalability of system under heavy load, the security

protocol is potentially vulnerable by timing attacks, and it is also very likely to

expose a functional flaw. Moreover, if we consider a user send or exchange some

restrict information under a security protocol which has a very good security but

execute slowly. The user is likely to lose his patient to wait, or do not have enough

time to wait. Under the situation, the user might avoid the security protocol and

send his information by insecure means. Finally recalling our quoted paragraph

above, if a client holding a session key to wait a very long time in a key exchange

protocol, the hackers may obtain more cipher text and also has more time to

work on cracking the key. From the motivation, cryptographic protocols are one

of the few areas of security to have received much attention from the both per-

formance and security community. To date this work has been largely limited to

measurement and has not addressed the underlying causes of delay which might

be understood by modelling or detailed code analysis.

If a trade-off problem is being faced by a security manager, how to choose or how

to use a protocol becomes a major issue. Security properties of common security

protocols are generally well understood. However, investigation of performance

aspects of the security protocols is usually ignored in the development stage.

Hence, security managers need to study a new protocol every time a trade-off

analysis is required. This motivated us to investigate the idea that whether we

can translate a security protocol from a security aspect model to a performance

model, and then, manipulate the performance model to fit different environment,

and finally choose suitable analysis techniques to analyse the protocol to obtain

performance metrics, e.g. utilisation, response time, queue length, etc. (see

Figure 1.1) As the security protocols are usually modelled by process algebra,

obviously, the best type of performance model formalism as the translation is

stochastic process algebra. This translation can keep the formality of the security

protocols and can also be formally analysed and reasoned. That is also one of the

2

major reasons for using PEPA (this modelling language introduced in Chapter 2)

in this work. O’Shea has been working on the translation of security protocols,

and a naive version has been implemented in [49].

A → S : A, B, NA

………

A = (sendToS, r).A1
………

S=(sendToS,infty).S

………
A[N] <sendToS> S[M]

Response time
Utilisation

Queuing length
………

translation

fitting scenario

analysis

Figure 1.1: An overview of performance analysis of security protocol

The work in this thesis focuses on the later part of our initial idea. After obtain-

ing a translated performance model, which is assumed to use a stochastic process

algebra, we then investigate how to manipulate the model to fit different scenar-

ios and what kind of analysis techniques can be employed to different types of

protocols. By doing this, a security manager could easily study the performance

aspects of security protocols, even if the translation is not automatic. In addition,

because the state space explosion becomes a major issue in formal analysis, we

primarily focus on efficient and scalable solutions for analysis. In this thesis, four

different kinds of security protocols have been investigated. Several modelling

styles and analysis techniques have been explored with these protocols, and the

advantages and disadvantages of these techniques has been addressed. Through

these cases studies, we aim to produce a initial version of framework by which

arbitrary security protocols can be analysed for performance and possibly the

trade-off between performance and security for security managers. We propose a

rough work flow that is followed for these case studies in Figure 1.2.

The first step is modelling the system by PEPA. We then simplify the model to

make it easier for analysis. After that, the model is analysed by some techniques.

Once the metrics (such as queue length and response time) are obtained, we utilise

it in a cost function analysis. By the cost function, one can conduct scalability

3

System Performance
model

Model
simplification

Cost function
analysis

AnalysisMetrics

Figure 1.2: The work flow of performance analysis in context

management and capacity planning to the system.

1.2 Outline of thesis

The remainder of this thesis is organised as follows:

Chapter 2 (Literature Review) This chapter generally reviewed the technical

background which includes the PEPA language and its steady state analysis tech-

niques, especially, solutions for large scale methodologies, and the case studies

about performance analysis of security related applications.

Chapter 3 (Key Distribution Centre) In this chapter we explore perfor-

mance of a model of a key distribution centre. The basic model suffers from

the commonly encountered state space explosion problem, and so we apply some

efficient techniques, including model simplification (partial evaluation) and ODE

based fluid flow analysis, to solve it. Finally, we evaluate a utility function of

this secure key exchange model. The analysis techniques are explored through

numerical results. The approximation is compared with discrete event simulation

and the ODE results are verified by stochastic simulation.

4

Chapter 4 (Non-repudiation Protocols ZG1&ZG3) In this chapter we

study the overhead introduced by secure functions in considering two of non-

repudiation protocols. Again, considering scalable analysis and following the pre-

vious study of performance modelling on the KDC, partial evaluation and fluid

flow approximation based on ordinary differential equations (ODEs) have been

chosen. Then, traditional mean value analysis (MVA) is applied to PEPA mod-

els here. Additionally, Functional Rates has been adopted in the second model

(ZG3) to avoid unintended system behaviour. The models are analyzed numeri-

cally and results derived from mean value analysis are compared with the ODE

solution.

Chapter 5 (An Optimistic Fair Exchange Protocol) This chapter studies an

optimistic fair exchange e-commerce protocol, which is in fact a non-repudiation

protocol with an off-line third trust party (TTP). Two PEPA models are formu-

lated in two cases: without TTP (no misbehaviour) and with TTP (misbehavior

exists). A multiple threads modelling concept and a new version of functional

rates has been adopted here. Following the case studies in the last two chapters,

partial evaluation and the most efficient ODE approximation are employed, and

concept of functional rates for ZG3 is utilised in the model of the TTP involving.

The analysis is explored numerically and compared with stochastic simulation.

Chapter 6 (Kerberos Protocol) In this chapter an authentication protocol,

Kerberos, is investigated. To consider the scenario of the multi-realms environ-

ment, a new type of simplification is applied. The simplified model is equivalent

to original model only in terms of the steady state distribution, and it is analysed

numerically by our previously studied fluid flow approximation, then, again it is

verified by stochastic simulation.

Chapter 7 (Conclusion and Further Work) This chapter gives a conclusion

of this thesis and proposes further work.

5

1.3 Publication History

Journals:

Efficient solutions of a PEPA model of a key distribution centre, Y. Zhao and

N. Thomas, in:Performance Evaluation 67(8), pp 740-756, Elsevier B.V., 2010.

Mean value analysis for a class of PEPA models, N. Thomas and Y. Zhao, ac-

cepted by Computer Journal. doi: 10.1093/comjnl/bxq064 (extended version of

EPEW 2009).

Conferences and workshops:

Modelling secure secret key exchange using stochastic process algebra, Y. Zhao

and N. Thomas, in:Proceedings of 23rd UK Performance Engineering Workshop,

Edge Hill University, 2007.

Approximate solution of a PEPA model of a key distribution centre, Y. Zhao

and N. Thomas, in:Performance Evaluation - Metrics, Models and Benchmarks:

SPEC International Performance Evaluation Workshop, LNCS 5119, Springer

Verlag, 2008.

Fluid flow analysis of a model of a secure key distribution centre, N. Thomas and

Y. Zhao, in:Proceedings 24th Annual UK Performance Engineering Workshop,

Imperial College London, 2008.

A cost model analysis of a secure key distribution centre, Y. Zhao and N. Thomas,

in:Proceedings of International Symposium on Trusted Computing, IEEE Com-

puter Society, 2008.

Mean value analysis for a class of PEPA models, N. Thomas and Y. Zhao, in:6th

European Performance Engineering Workshop, Springer-Verlag, 2009.

Experiences of using the PEPA performance modelling tools with a non-repudiation

protocol, Y. Zhao and N. Thomas, in:European Simulation and Modelling Con-

ference, EUROSIS-ETI, pp 95-100, 2009.

6

Comparing methods for the efficient analysis of PEPA models of non-repudiation

protocols, Y. Zhao and N. Thomas, in:15th International Conference on Parallel

and Distributed Systems, December 8-11, Shenzhen, Guangdong, China, pp 821-

827, IEEE Computer Society, 2009.

A simplified solution of a PEPA model of kerberos protocol, in : The 1st Interna-

tional Workshop on Service Oriented QoS Management from Theory to Practice,

IEEE Computer Society, 2011.

1.4 Contributions

The main contributions are summarised following:

• The development of partial evaluation techniques that can be used to permit

fluid analysis in Chapter 3. This is a general simplification technique which

can reduced the system component in the model, and can be applied by a

range of protocols in some scenarios.

• We identify the diverge point (N∗) in fluid flow analysis with PEPA, and

discuss engineering approach to tackle engineering approximation of ODE

analysis in Chapter 3.

• We identify that in closed queueing network model, the ODE analysis of its

equivalent PEPA model is exactly the same to the asymptotic bounds of it.

• The Mean Value Analysis has firstly been applied to a range of PEPA

models, and it is detailed compared with fluid flow analysis in Chapter 2

and 4.

• Two version of non-repudiation protocols are analysed and compared in

terms of their trade-off between performance and security in Chapter 4.

• We employ functional rates in Chapter 4 in PEPA model to solve an un-

intended completion between different service actions. It is also can be

7

considered as a simplification, as it avoids to specify the detailed behaviour

of the non-repudiation server.

• We apply multi-threads modelling form for an optimistic fair exchange pro-

tocol in Chapter 5.

• The optimistic fair exchange protocol with misbehaviour and without mis-

behaviour are explored and compared in Chapter 5.

• An aggregation technique has been applied to Keberos protocol for efficient

analysis in Chapter 6.

• Utility function is proposed and analysed for all cases studies from Chapter

3 to Chapter 6.

8

Chapter 2

Literature Review

This chapter reviews several literatures related to this thesis. Section 2.1 intro-

duces the PEPA modelling language used throughout this thesis, and solution

methods for large scale systems. Solutions like simulation, fluid flow analysis

and mean value analysis are described precisely, because they are applied to the

models in the subsequent chapters. Other solution methods are only given a brief

description. The analysis techniques described here all give rise to steady state

solutions. The mean value analysis is the novel contribution of the work presented

here. Furthermore, some related work are surveyed in Section 2.2.

2.1 Specification and Solution of Large PEPA

Models

2.1.1 PEPA

In this thesis we model protocols using the Markovian process algebra PEPA.

This approach has a number of advantages over a direct approach using Markov

chains. As a formal specification, a PEPA model can be derived automatically

from, and compared automatically with, formal definitions of the protocol we

9

are modelling. Functional properties of the model, such as deadlock freeness,

can also be checked automatically. These attributes of the model specification

are particularly important in the field of security, where correctness is vital if

security properties are to be maintained. Furthermore, the analysis of the model

we are considering here is based on formulating progressively simplified versions of

the model. Because of the formal nature of the specification we can apply formal

transformations to the model based on known concepts of equivalence. Therefore

we know that the approximate model we derive shares certain properties with the

original model. In brief, we know, and can prove, that the approximation is still

a valid model of the original protocol. This would not be possible if we simply

chose the approximation by some expert intuition or arrived at it by some less

formal means. Furthermore, by taking this approach we can apply the same set

of techniques to other related protocols, potentially automating the solution.

A formal presentation of PEPA is given in [33], in this section a brief informal

summary is presented. PEPA, being a Markovian Process Algebra, only sup-

ports actions that occur with rates that are negative exponentially distributed.

Specifications written in PEPA represent Markov processes and can be mapped

to a continuous time Markov chain (CTMC). Systems are specified in PEPA in

terms of activities and components. An activity (α, r) is described by the type of

the activity, α, and the rate of the associated negative exponential distribution,

r. This rate may be any positive real number, or given as unspecified using the

symbol >.

2.1.1.1 Syntax

The syntax for describing components is given as:

(α, r).P | P +Q | P/L | P BC
L
Q | A

The component (α, r).P performs the activity of type α at rate r and then behaves

10

like P . The component P + Q behaves either like P or like Q, the resultant

behaviour being given by the first activity to complete.

The component P/L behaves exactly like P except that the activities in the set

L are concealed, their type is not visible and instead appears as the unknown

type τ .

Concurrent components can be synchronised, P BC
L
Q, such that activities in the

cooperation set L involve the participation of both components. In PEPA the

shared activity occurs at the slowest of the rates of the participants and if a rate

is unspecified in a component, the component is passive with respect to activities

of that type. A
def
= P gives the constant A the behaviour of the component P .

In this thesis we consider only models which are cyclic, that is, every derivative

of components P and Q are reachable in the model description P BC
L
Q. Neces-

sary conditions for a cyclic model may be defined on the component and model

definitions without recourse to the entire state space of the model.

2.1.1.2 Apparent rate and Operational semantic

The Apparent rate is defined as the externally observed rate of that type of

activity. Consider the case where N clients waiting in a queue for K (K < N)

servers with single service rate µ, this is the same as that the N clients are served

by a single server with the service rate Kµ. More formally, the apparent rate of

action type α in a component P , denoted by rα(P), is the sum of the rates of all

activities of type α which can be performed by P . It is formulated as follows:

1. rα((β, r).P) =





r ifβ = α

0 ifβ 6= α

2. rα(P +Q) = rα(P) + rα(Q)

3. rα(P/L) =





rα(P) ifα /∈ L
0 ifα ∈ L

11

4. rα(P BC
L
Q) =





rα(P) + rα(Q) ifα /∈ L
min(rα(P), rα(Q)) ifα ∈ L

The Operational semantic of PEPA defines the rules of how the system enables.

Figure 2.1 formally presents the operational semantics of PEPA, in which the

operational rules are given and that if the transition above the inference line

can be inferred, then we can infer the transition below the line. Following the

rules, a labelled transition system can be generated which represents an underlying

Markov chain for the PEPA model.
3.3. THE PEPA LANGUAGE 29

Prefix

(α, r).E
(α,r)

−−−→ E

Choice

E
(α,r)

−−−→ E′

E + F
(α,r)

−−−→ E′

F
(α,r)

−−−→ F ′

E + F
(α,r)

−−−→ F ′

Cooperation

E
(α,r)

−−−→ E′

E BC
L

F
(α,r)

−−−→ E′ BC
L

F

(α /∈ L)
F

(α,r)

−−−→ F ′

E BC
L

F
(α,r)

−−−→ E BC
L

F ′
(α /∈ L)

E
(α,r1)

−−−→ E′ F
(α,r2)

−−−→ F ′

E BC
L

F
(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L) where R =
r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))

Hiding

E
(α,r)

−−−→ E′

E/L
(α,r)

−−−→ E′/L

(α /∈ L)
E

(α,r)

−−−→ E′

E/L
(τ,r)

−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A
def
= E)

Figure 3.1: Operational Semantics of PEPA

For any activity instance its activity rate is the product of the apparent rate of the action
type in this component and the probability, given that an activity of this type occurs, that
it is this instance that completes. This leads to the following rule:

E
(α,r1)

−−−→ E′ F
(α,r2)

−−−→ F ′

E BC
L

F
(α,R)

−−−→ E′ BC
L

F ′
(α ∈ L) where R =

r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))

On the basis of the semantic rules PEPA can be defined as a labelled multi-transition
system. In general a labelled transition system (S, T, { t→ | t ∈ T}) is a system defined by

a set of states S, a set of transition labels T and a transition relation
t→ ⊆ S × S for each

t ∈ T . In a multi-transition system the relation is replaced by a multi-relation in which
the number of instances of a transition between states is recognised. Thus PEPA may be

Figure 2.1: Operational Semantic of PEPA

12

2.1.1.3 A simple example

Here is a simple and well known example following [33] (page 25):

Process0
def
= (use, r1).P rocess1

Process1
def
= (task, r2).P rocess0

Resource0
def
= (use, r3).Resource1

Resource1
def
= (update, r4).Resource0

System
def
= Process0 BC

use
Resource0

The model describes a simple system in which a process executes some task cycli-

cally, and it must utilize a resource firstly to finish the task. Meanwhile, the

resource is only not available when being accessed by the process, and then reset

the state for other processes. Therefore, the Process component will undertake

two activities with two states (Process0 and Process1) in the model. Process0

use with rate r1, and Process1 task with rate r2. Similarly, Resource0 , rep-

resents a state of Resource, which carries out action use, in cooperation with

Process, and another state Resource1 update at rate r4. Finally, the system is

interpreted by initial states (Process0, Resource0) for each component cooper-

ating over action use. This example, referred to as the Process/Resource Model,

is utilized to illustrate some of the solutions throughout this chapter.

2.1.2 Notions of equivalence

Concept of equivalence is usually used for investigating the relationship between

two models in process algebra, and it is also very useful to simplify the complex

model to a neat version for analysis. This Section introduces several notions of

equivalence of PEPA that proposed by Hillston in [33].

13

2.1.2.1 Bisimulations

The bisimuation is based on the observable behaviour. Two components are

considered bisimulation if their behaviour appears the same to a external observer,

denoted by ∼. Therefore, if P ∼ Q, an action performed by P must match the

related action with Q, and also the subsequent actions must also be matched. The

formal definition can be referred to [33]. We use a simple example to demonstrate

the concept here. Two components P and Q are defined in PEPA as follows.

P
def
= (task1, r1).P1

P1
def
= (task2, r2).P

Q
def
= (task1, r1).Q1

Q1
def
= (task2, r2).Q2

Q2
def
= (task1, r1).Q3

Q3
def
= (task2, r2).Q

P perform task1 that matches Q, then its derivative P1 matches Q1. After that

P goes back to perform task1 again, however, it matches Q2 as the subsequent

derivative of Q1. Therefore P ∼ Q.

There is also a weak bisimulation concept, which allows the internal actions are

not in the set of observable actions. Let us define τ as the internal action that

can not be seen by a external observer, and redefine P as follows:

P
def
= (task1, r1).P1

P1
def
= (τ, r).P2

P2
def
= (task2, r2).P

14

Now, P and Q are considered as weak bisimulation. Although there is not

matched action of Q to τ , a external observer can not observe τ of P as well.

2.1.2.2 Isomorphism and weak isomorphism

Different from bisimulation, isomorphism is not observation based, and it is a very

strong notion of equivalence, denoted by =. Two components are considered as

isomorphism if all the derivatives of one component correspond to another, and

they can perform exactly the same activities. Therefore, we must compare their

derivation graphs to show that two components are isomorphism.

To set a example, let us define component S as:

P
def
= (α, r1).P1

P1
def
= (β, r2).P

Q
def
= (α, r1).Q1

Q1
def
= (γ, r3).Q

S
def
= P BC

α
Q

and define component R as:

R
def
= (α, r1).R1

R1
def
= (β, r2).(γ, r3).R

+(γ, r3).(β, r2).R

By comparing the derivation graph of component S (Figure 2.2) and R (Figure

15

2.3), we can find that their derivatives are match and they are able to carry out

exactly the same activities. Therefore, S and R are isomorphic (S = R).

P BC
α
Q

P1 BC
α
Q1

P BC
α
Q1 P1 BC

α
Q

�
�
�
�
�
�
�
�
�
�
�
��7

S
S
S
S
S
S
S
S
S
S
S
SSo

?

�
�

�
�
�

�
��+

Q
Q
Q
Q
Q
Q
QQs

(α, r1)

(γ, r3) (β, r2)

(β, r2) (γ, r3)

Figure 2.2: The derivation graph of S

R

R1

(γ, r3).R (β, r2).R
�
�
�
�
�
�
�
�
�
�
�
��7

S
S
S
S
S
S
S
S
S
S
S
SSo

?

�
�

�
�
�

�
��+

Q
Q
Q
Q
Q
Q
QQs

(α, r1)

(γ, r3) (β, r2)

(β, r2) (γ, r3)

Figure 2.3: The derivation graph of R

Weak isomorphism has the same definition for two components as isomorphism

expect for their internal actions, τ , denoted by ≈. Therefore, τ type activities

can have the different details if two components are weak isomorphism. Let us

define component A and B as follows:

A
def
= (τ, r1).(τ, r2).A

16

B
def
= (τ, r3).B

A and B are not match for the internal action τ . However, once we set r3 as

1
1
r1

+ 1
r2

, component B now has a single τ activity of equivalent total duration and

they (A and B) are have the same visible behaviour. Hence, A and B are now

weak isomorphic (A ≈ B).

2.1.2.3 Strong equivalence

Another equivalence notion of PEPA is strong equivalence. According to [33],

“Two PEPA component are strong equivalent if there is an equivalence relation

between them such that, for any type α, the total conditional transition rates

from those components to any equivalence class, via activities of this type, are

the same.” This kind of equivalence has not been used in context, one can refer

to [33] for details.

2.1.3 CTMC based methods

2.1.3.1 Derivation of CTMC

It is easy to understand from the definition of PEPA that this formalism is a

high level modelling language to a Continues-Time Markov Chain. To solve a

PEPA model, therefore, it is necessary to derive an equivalent CTMC as a first

step. The CTMC is represented by a derivation graph which is more clearly un-

derstood by an analyst. A derivation graph consists of nodes, which represent

the components and its derivatives, and arcs, which illustrate possible transitions

between the corresponding components and labeled by the action type and action

rate. According to [33] (page 32-33) and the operational semantics of PEPA,

the derivation graph of the Process/Resource Model given in Figure 2.4 can be

17

drawn. It is essential to note that this only can be done manually with a small

CTMC and it has been assumed to have a finite state space.

Process0 BC
use

Resource0

Process1 BC
use

Resource1

Process0 BC
use

Resource1 Process1 BC
use

Resource0

�
�
�
�
�
�
�
�
�
�
�
��7

S
S
S
S
S
S
S
S
S
S
S
SSo

?

�
�

�
�
�

�
��+

Q
Q
Q
Q
Q
Q
QQs

(use,min(r1, r3))

(update, r4) (task, r2)

(task, r2) (update, r4)

Figure 2.4: The underlying CTMC of Process/Resource Model

2.1.3.2 Matrix solution

Given the underlying CTMC derived from a PEPA model depicted in the deriva-

tion graph, we can solve the model in a number of ways. The most direct and

obvious way is solving a matrix to give the steady state distribution. [61] This

matrix, which is termed the infinitesimal generator matrix and denoted by Q, is

an n × n matrix that characterizes the n states of the CTMC. The elements qij

represent the transition rates of the system from state i to j, in the jth column

of the ith row of the matrix. The diagonal elements are chosen to ensure that

the sum of the elements in every row is zero, hence, qii = − ∑
j∈S,j 6=i

qij, where S

is state space. Once Q is obtained, the following global balance equation can be

utilised to calculate steady state distribution (π):

πQ = 0

Where
∑
πi = 1.

To consider the small example Process/Resource model, firstly, four states can

18

be identified:

X0 = Process0 BC
use

Resource0

X1 = Process1 BC
use

Resource1

X2 = Process0 BC
use

Resource1

X3 = Process1 BC
use

Resource0

Then, the infinitesimal generator matrix Q is:

Q =




−min(r1, r3) min(r1, r3) 0 0

0 −(r2 + r4) r2 r4

r4 0 −r4 0

r2 0 0 −r2




Finally, by solving the global balance equation, the steady state distribution (π)

is obtained:

π(X0) =
r2r4(r2 + r4)

(r2 + r4)r2r4 +min(r1, r3)r2r4 +min(r1, r3)r2
2 +min(r1, r3)r2

4

π(X1) =
r2r4min(r1, r3)

(r2 + r4)r2r4 +min(r1, r3)r2r4 +min(r1, r3)r2
2 +min(r1, r3)r2

4

π(X2) =
min(r1, r3)r

2
2

(r2 + r4)r2r4 +min(r1, r3)r2r4 +min(r1, r3)r2
2 +min(r1, r3)r2

4

π(X3) =
min(r1, r3)r

2
4

(r2 + r4)r2r4 +min(r1, r3)r2r4 +min(r1, r3)r2
2 +min(r1, r3)r2

4

Now, from π, one can calculate performance metrics, i.e. utilisation, throughput,

etc, by corresponding rules.

19

All the above steps can be done manually, because the example is very small and

the infinitesimal generator matrix is quite small also. Under the circumstances, it

is a simple matter to solve the global balance equation by Gaussian elimination.

However, direct Gaussian elimination is infeasible when the infinitesimal genera-

tor matrix is large. An automated solution can be limited by a lack of memory,

caused by having to store a manipulate a large matrix Q. If the matrix solution

is infeasible then the iterative method, block method or projection method can

be applied to address the state space explosion problem to some extent [62].

2.1.3.3 Aggregation

As the state space explosion becomes the major issue in state space based mod-

elling, several techniques for large PEPA models have been proposed. Aggrega-

tion, which has been applied to PEPA by Gilmore, Hillston and Ribaudo [21],

is one of these methods, and it is widely used technique for reducing the size

of CTMC in performance modelling. The state space of the CTMC can be di-

vided to several classes, each of which is considered as a single state and form

a new CTMC that is relatively amenable to a matrix solution. Details of this

technique are described in [21], and a simple example is illustrated here with the

Process/Resource model:

Let us consider two processes competing for one resource in this model by rewrit-

ing the system equation as:

System
def
= (Process0||Process0) BC

use
Resource0

From this initial state, there are two one step states can be evolved by first process

engaging use with resource or second process carrying out use:

20

(Process1||Process0) BC
use

Resource1

(Process0||Process1) BC
use

Resource1

Since only overall behaviour is concerned, these two states has been considered

to be two states of exactly the same class of state. After identifying all the

classes, therefore, by aggregating all the states in each class, a new CTMC can

be obtained by modifying old transition rates. Obviously, the size of new CTMC

has been reduced.

2.1.3.4 Decomposition

Decomposition is an alternative solution for state space explosion of PEPA model.

PEPA has been formally-defined as a compositional formalism on the underlying

Markov chain. This compositional characteristic may take advantage of sep-

arately solving corresponding sub-models before combing these results to the

whole model when direct solution of large models are infeasible. In such a way,

generating the global state space has been avoided.

2.1.3.4.1 Product form If the state space S of a Markov process X(t) is

in the form of S = S1 × S2, that means there are two pieces of information in

each state capturing different aspects of the current state. When the process

X(t) exhibits a product form solution, which write as π(s) = π1(s1) × π2(s2),

it indicates that these different aspects of the state description are independent

with respect to their equilibrium distribution.

Product form solution is a traditional technique that has been applied to queueing

models and stochastic Petri nets. In terms of application of PEPA, refer to [35]

for details of results in the classical style.

More recently Harrison has derived a number of interesting results using proper-

21

ties of the reversed process, captured in his Reversed Compound Agent Theorem

(RCAT) and its extensions [24, 26, 25, 27]. These results are particularly note-

worthy for their ability to describe previously distinct product form solutions

within the same theoretical framework.

2.1.3.4.2 Component substitution When a product form does not exist,

the PEPA models can still be decomposed under certain conditions to provide

solutions to certain global measures. The property of behavioural independence,

exploited by Thomas [63], can be applied to derive different types of decompo-

sition. In the class of PEPA model, which exhibit the property of behavioural

control, a component is amenable to be replaced by one of its simpler derivatives.

This simple component has fewer states, nevertheless, gives the same set of in-

teractions. Thomas provides an iterative solution in [66], which can be used to

obtain approximate results but is much more scalable.

2.1.3.4.3 Distributed solution Knottenbelt [40, 39] proposed another de-

composition solution of large CTMC based on distributed disk-based architecture.

This technique does not avoid solving the whole Markov chain, but is solving the

entire Markov chain in a decomposed way. The Markov chain is divided in several

partitions, then distributed to different machine to process. Finally, those dis-

tributed results are combined to a final solution in some way. Bradley [4] applied

this technique to PEPA through the IPC tool, by which a PEPA model can be

converted to an intermediate format that can be solved in distributed manner.

2.1.3.5 Kronecker

In the case of a large Markov model that consists of N submodels, the generator

matrix Q can be expressed as a set of N smaller matrices which are represented by

tensor algebra. This compact representation requires less memory for storing and

manipulating Q, and it is termed Kronecker representation. This representation

has been applied to PEPA model by Hillson and Kloul [36]. Depending on the

22

functional dependency, the infinitesimal generator matrix of the Markov chain

associated with a PEPA model is expressed as:

Q =
N⊕

i=1

Ri +
∑

α∈Z
rα

(
N⊕

i=1

Pi,α −
N⊕

i=1

P̄i,α

)

where

• N is the total number of components in the PEPA model and Z is the set

of cooperating action types.

• rα is the minimum of the functional rates of action type α over all compo-

nents Ci, i = 1 . . . N .

• Ri is the transition matrix of component Ci relating solely to its individual

activities.

• Pi,α is the probability transition matrix of component Ci due to activity of

type α.

• P̄i,α is a matrix representing the normalization associated with the shared

activity α in component Ci.

One can refer to [37] for functional dependency, and details of the Kronecker

representation are illustrated by an example and validated in [36]. In gener-

ally Kronecker methods use less memory than direct matrix solution, and so are

potentially more scalable, however the solution may be slower.

2.1.4 Simulation

Simulation is usually applied to do performance analysis when the model can-

not be solved analytically or numerically, this because the state space cannot be

handled. By counting a simulation time, events occur following relevant rules,

23

simulating a real system running. One can carry out a short-run or long-run

scheme to obtain different performance measures. From the time aspect, simula-

tion model can be classified broadly as either a discrete time system or continuous

time system. In a discrete time system, only selected moments in time are con-

sidered (the time at which specific events occur). In addition, some economic

models are recognized as this type, because the required data is only available

at particular instants (e.g. end of day trading figures). Continuous time can be

further classified as either continuous time continuous event system or continuous

time discrete event system. The former type studies systems where the state con-

tinuously changes with time, and will be used here as an approximate solution

that introduced in Section 2.5. Continuous time discrete event system, which

depicted in first subsection, is our most interesting class, because it describes the

same features as our PEPA model. More detailed coverage of simulation can be

found in [45, 28].

In the context of this thesis, the discrete time instants would represent stochas-

tic events, such as arrivals or service completion. There are many examples of

discrete time models of computer systems, where the time instants correspond

to system (clock) cycles. Furthermore, efficient discrete time methods may be

used to simulate continuous time systems by imposing fixed instants at which

observations can be made.

2.1.4.1 Discrete event simulation

In continuous time discrete event systems, the time parameter is continuous and

events construct a list in a chronological sequence manner. When simulating, each

event occurs at an instant in time and indicates a system state evolution. For

example, suppose that a printer is being simulated, and the system is defined only

by the number of jobs waiting for printing. Therefore, one job joining or leaving

marks a change of state and happens at a discrete time moment. There are a

number of programming languages can be utilised to discrete event simulation,

e.g. C, C++, Java, Simulink(Matlab), etc. One also can use a simulator to

24

particular class of systems, for example network simulators such as NS2. Details

can be found from [2], some important components of discrete event simulation

are described as follows:

• Clock: The simulation must keep track of current simulation time, there-

fore, a simulation clock is necessary to be created. In contrast to perfor-

mance measurement on a real system, this clock hops a time interval given

by a completion of an event. The time interval is added to the clock de-

pends on the particular distribution which associated with relevant events.

In simulating a PEPA model, all time intervals are negative exponential

distributed with a mean which is reciprocal of the rate of relevant events.

• Event lists: Every event represents a potential change of state of the sys-

tem. Events in the current list are all the events that could occur in the

next system step. Therefore the event list should be updated in every sim-

ulation clock hop. The rate of each event is proportional to the probability

of which event will happen next.

• Random number generation: To determine which event will happen

in the event list, a random number should be generated. As the random

number is chosen by a computer, even the best algorithm cannot obtain a

real random number, but can only approach real random. Therefore, it is

usually termed pseudo-random number. Several algorithms can be directly

used for the simulation, these include linear congruential generators, lagged

fibonacci generators, linear feedback shift registers, feedback with carry

shift registers, Blum Blum Shub, Fortuna, and the Mersenne twister, etc.

• Termination condition: Because the simulation usually running in a

cycling manner, one should provide an ending condition for the program

to stop it running forever. According to different performance measures,

common choices are at “any particular time”, “after a number of events

executed”, or “when some performance measures reach some typical value”.

25

One approach to simulating a PEPA model without writing the entire simulation

code, is to use the Möbius [14] tool. Möbius is a multi-paradigm modelling tool,

by which different formalisms can be combined to model one system. In such

way, all advantages of each formal method can be utilised in one model. PEPA

is included in those formalisms that are supported by Möbius, however, it is not

the original version, but an extend version called PEPAk [12]. Three additional

items have been added to original PEPA:

• Formal Parameters: a process variable or a component now takes one or

more parameters to specify its state in the form of P [x1, · · · , xn]
def
= Q.

• Guards: consequent events are enabled only when the condition in the

guards has been satisfied. For example, consider an expression P [x]
def
= [x <

10] => Q, which indicates only in the condition of x less than 10, can this

local transition happen.

• Value Passing: values may now be communicated between sequential

components via activities.

Möbius also supports a number of analysis methods, which include discrete event

simulation. By transferring the original PEPA to PEPAk in Möbius, one can

easily run a simulation. The KDC model in Chapter 3 has been solved in Möbius

by discrete event simulation, but the results are not as reliable as we expected. It

would appear that same pitfalls may exist with PEPAk under Möbius, at least,

in some particular cases.

2.1.4.2 Stochastic simulation

Stochastic simulation, proposed by Gillespie [20], is a major technique for large

chemical reaction systems. Bradley et al applied this traditional technique to

PEPA models in [6]. A set of rate equations can be generated by the stoichio-

metric function from the original PEPA model, and then, solved by the Dizzy

26

tool [52]. The technique was applied to a voting system modelled in PEPA, show-

ing that at least O(1010000) states are able to be solved within only a few seconds,

clearly demonstrating that it is far more efficient than CTMC based methods.

2.1.5 Stochastic Model checking

Stochastic model checking is used to check whether a stochastic model meets a

given specification. The specification is formally expressed by probabilistic tem-

poral logic, which includes Probabilistic Computation Tree Logic (PTCL) and

Continuous Stochastic Logic (CSL) for DTMC and CTMC respectively. Infor-

mally, a specification could, for example, be “the probability of a system failure

less than 10 hours is 25% ”. PEPA model checking is supported by the model

checker PRISM [38]. More recently, the CSL for PEPA model checking has been

implemented in PEPA eclipse-plugin [68] by Smith [58]. Stochastic model check-

ing is not investigated in this thesis, more background of stochastic model check-

ing can be found in [41].

2.1.6 Fluid flow analysis

ODE based fluid flow analysis is an approximate analysis technique based on

the solution of coupled ordinary differential equations (ODEs), first applied to

stochastic process algebra by Hillston [34]. In this style of model analysis, the

model is expressed as a finite number of replicated components and ODEs which

represent the flow between behaviours (PEPA derivatives) of the components.

Thus, by solving the ODEs, it is possible to count the number of components

behaving as a given derivative at any given time, t. In the absence of oscillations,

the limit, t −→∞, then tends to a steady state value.

It is important to make two crucial observations about this approach. Firstly,

this is a fluid approximation, not a discrete behaviour. Therefore, we observe a

continuous evolution of a derivative, so we can, at any given time, see a fraction

27

of a derivative behaving in some way, and another fraction behaving in another.

Secondly the analysis is deterministic. Thus, not only will simulating such a sys-

tem produce exactly the same results every time, but also if the rate of an action

is r, then a component will have completely evolved (or flowed) into its derivative

in exactly 1/r time units. Furthermore, ODE analysis has been shown to only

give a good prediction in certain classes of model, when there is at most one ac-

tive minimum function [65]. Despite these restrictions, the technique is extremely

useful when considering very large numbers of components. The accuracy of ODE

analysis is discussed in Section 2.1.6.6.

2.1.6.1 ODE derivation

The following general differential equation [34] can be used to generate a set of

ODEs for a system:

dN(Cij, t)

dt
= −

∑

(α,r)∈Ex(Cij)
r × min

Ckl∈Ex(α,r)
(N(Ckl, t))

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈Ex(α,r)

(N(Ckl, t))

Where, Cij denotes jth local derivative of component type Ci. N(Cij, t) is the

number of Cij at time t, Ex(Cij) and En(Cij) is the set of exit activities and entry

activities of Cij respectively.

Consider our Process/Resource Model, the set of ODEs of the system can be

generated as:

d

dt
Process0(t) = r2Process1(t)−min(r1, r3)Process0(t)

d

dt
Process1(t) = min(r1, r3)Process0(t)− r2Process1(t)

28

d

dt
Resource0(t) = r4Resource1(t)−min(r1, r3)Resource0(t)

d

dt
Resource1(t) = min(r1, r3)Resource0(t)− r4Resource1(t)

2.1.6.2 Solution by simulation

The simplest way of solving a set of ODE is simulating over a suitably long time

frame until we observe the long run (steady state) behaviour. In doing so we need

to be careful that in discretizing time we make the time step sufficiently small so

as to not alter the system behaviour. Typically we take the time step, δt, such

that, δt ≤ 1/(rmaxN).

2.1.6.3 Analytic solution

When the system is in steady state, it is clear that the state of derivatives will

not change anymore. Hence, the left part of the set of ODEs become zero as

t −→ ∞, if a steady states solution exists. To consider our Process/Resource

model, two equations with four variables can be obtained:

r2 lim
t→∞

Process1(t)−min(r1, r3) lim
t→∞

Process0(t) = 0

min(r1, r3) lim
t→∞

Resource0(t)− r4 lim
t→∞

Resource1(t) = 0

Further more, we know the initial number of each component. For example,

we assume there are N process component and M resource component in initial

stage. Therefore:

29

lim
t→∞

Process0(t) + lim
t→∞

Process1(t) = N

lim
t→∞

Resource0(t) + lim
t→∞

Resource1(t) = M

Consequently, a closed form solution can be obtained by solving four equations

with four variables.

lim
t→∞

Process0(t) =
r2

min(r1, r3) + r2
N

lim
t→∞

Process1(t) =
min(r1, r3)

min(r1, r3) + r2
N

lim
t→∞

Resource0(t) =
r4

min(r1, r3) + r4
M

lim
t→∞

Resource1(t) =
min(r1, r3)

min(r1, r3) + r4
M

2.1.6.4 Stochastic differential equations

A stochastic differential equation (SDE) based fluid flow approximation is pro-

posed by Hayden and Bradley [29, 30]. Noise is introduced to the deterministic

ODEs by recourse to a Brownian motion or thinned Poisson random measures, in

the situation that one is willing to model the influence that introduced by random

noise in a system. This type of analysis has not been utilised here. Details of the

approach, which is mathematically challenging, can be found in [29, 30, 57].

2.1.6.5 Higher moment from ODEs

Later on, Hayden and Bradley explored general-order moment analysis of fluid

approximation in [32, 31]. This approach can analyse more significant aspects

30

of the models, such as variance of second moment, rather than mean value of

first moment. It also provides a path to evaluate the accuracy of the first order

analysis. Furthermore, this type of analysis can be easily conducted by the tool

GPA, which developed by Stefanek, Hayden and Bradley [60].

2.1.6.6 Accuracy of fluid approximation

As only ODE based fluid flow analysis is utilised in this thesis, we illustrate the

accuracy of ODE approximation in this section by two typical examples. Firstly,

we plot one of the results from the KDC case study in Chapter 3 following.

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
N

W

CTMC, rp=1
CTMC, rp=2
CTMC, rp=4
ODE, rp=1
ODE, rp=2
ODE, rp=4

Figure 2.5: Average response time calculated by the ODEs and CTMC, rq =
rB = rA = rc = 1 and ru = 1.1

One can refer to Section 3.4 for the KDC model and Section 3.5 for the ODEs.

Figure 2.5 shows the average response time of KDC server against the scale (num-

ber of clients, N)) of the system. The results from ODE approximation are very

close to CTMC results when N is extremely small, and the ODE approximation

gives accurate results when the system scale is very large. However, it is not diffi-

cult to notice that there are divergence areas for each set of results in the middle of

31

the curves. The inaccurate areas can be identified, and the details are in Section

3.5. Furthermore, we can find that the small scale and large scale are determined

by the parameters in particular cases. In practice, this ODE approximation is not

applicable if one is looking for exact solution in the divergence area. However,

some of the optimistic job and trend analysis are fit for the approximation.

The KDC model in Section 3.4 only have one service type. Further inaccurate

issue has been found by Thomas in [65] with two kind of services in a model. We

use the example from [65] to shown the situation as follow.

Proc
def
= (service, µ).P roc

Disk
def
= (request, η).Disk

User1
def
= (think, ξ).User2

User2
def
= (service, pµ).User1 + (service, (1− p)µ).User3

User3
def
= (write, η).User1

System
def
= (Proc||Disk[K]) BC

{service,write}
User1[N]

The system describes a processor and an array of K independent disks. Users

request a service from the processor.After this they either think for a while, before

making another request, or their results requires writing to a disk before thinking

and then another request.

Following derivation equations in Section 2.1.6.1, the ODEs can be derived as:

d

dt
User1(t) = pµmin(1, User2(t)) + ηmin(K,User3)− ξUser1(t)

d

dt
User2(t) = ξUser1(t)− µmin(1, User2(t))

32

d

dt
User3(t) = (1− p)µmin(1, User2(t))− ηmin(K,User3)

d

dt
Proc(t) = 0

d

dt
Disk(t) = 0

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

Lproc(N)

MVA, p=0.8

ODE, p=0.8

MVA, p=0.6

ODE, p=0.6

Figure 2.6: Average queue length at processor varied with population size, ξ =
10, µ = 30, η = 5, K = 3

Clearly, there are two type of minimum functions in the ODEs. Figure 2.6 com-

pares the ODE analysis with a exact solution, mean vale analysis in terms of the

queue length at processor. When p is large (0.8), ODEs give our expected results

that it is accurate after the divergence area with large number of clients. Under

this value of p, only a few Users go to the write service at Disk, and this means

one of the queue is heavy loaded and another one is not busy. However, if we

assign the similar workloads to each server by setting p to 0.6, ODEs results do

not converge with the exact solution even when number of clients is very large.

From the investigation of ODE analysis with applications, we can initially con-

cludes that ODE method perform very well with very small scale and large scale

33

situation in cycled PEPA models with only one minimum function. If there are

more than one minimum functions in system ODEs, the method still could give

acceptable results if one of the server services most of the clients. However, the

ODE analysis is inaccurate when the servers are equally loaded.

2.1.7 Mean Value Analysis

Mean value analysis (MVA) is a method for deriving performance metrics based

on steady state averages directly from the queueing network specification, without

the need to derive any of the underlying Markov chain. As such it is relatively

computationally efficient as long as the population size is not excessively large.

2.1.7.1 A class of closed queueing networks in PEPA

Consider a model of a closed queueing network of N jobs circulating around a

network of M service stations, denoted 1, . . . ,M ; each station is either a queueing

station or an infinite server station. There are Mq queueing stations. Let M be

the set of all queueing stations. At each queueing station, i, there is an associated

queue (bounded at N) with Ki servers. The servers are able to serve jobs of only

one type; each job type, j, is served at rate rj. At each infinite server station, i,

jobs of type i experience a random delay with mean 1/ri. All services times are

negative exponentially distributed.

There are J job types. Each job type can be served at most one station. When a

job of type j completes a service at a given station, it will proceed to service at a

station (possibly the same station) as a job of type k according to some routing

probability pjk.

In PEPA a queue station can be modelled as

QStationi
def
= (servicei, ri).QStationi , ∀i ∈M

Note that ri is always specified as finite, and not >. This is because passive

34

actions are subject to the apparent rate in PEPA. The infinite server stations are

not represented explicitly.

Each job will receive service from a sequence of stations determined by a set of

routing probabilities,

Jobi
def
=

J∑

k=1

(servicej, pjkrj).Jobk , 1 ≤ i, j ≤ J

Where, 0 ≤ pjk ≤ 1 and
J∑

k=1

pjk = 1 , 1 ≤ j ≤ J

Denote Si to be the set of all job types which perform servicei actions, i.e. Si = j

if servicei ∈ A(Jobj).

The entire system can then be represented as follows:

(∏

∀i∈M
(QStationi[Ki])

)
BC
L
Job1[N] (2.1)

Where

L =
⋃

∀i∈M
{servicei}

2.1.7.2 Solution

We now consider the arrival theorem, first derived independently by Sevcik and

Mitrani [55] and Lavenberg and Reiser [43], applied to this class of PEPA model.

Theorem 1 Arrival Theorem. Consider a component Jobi evolving into its

successor derivative, Jobj in a system given by (2.1). The steady state distribution

of the number of components behaving as any component Jobk at that moment

is equal to the steady state distribution of the number of components behaving as

Jobk in a system without the evolving job.

35

The arrival theorem is as profound as it is simple and seemingly intuitive. It

consequently gives rise to the well known mean value analysis, whereby the av-

erage behaviour of a system of N components may be derived from the average

behaviour of a system of N − 1 components. Therefore it is never necessary to

derive a solution to the full CTMC if we are only concerned with the average

behaviour of systems of this kind. This follows from the following set of relation-

ships, derived following the pattern of Haverkort [28] pp. 241-245.

Theorem 1 implies that the average time a component spends in behaviour Jobj,

denoted Wj(N), where A(Jobj) = servicei and i ∈ M, is given by the average

number of Jobk (∀k ∈ Si) components in a system with one fewer Jobl, ∀i,
components in total. Denote Lj(N) to be the steady state average number of

components behaving as Jobj in a system with N jobs in total. If
∑
∀i∈Sj Li(N −

1) ≤ Kj − 1 and j ∈M then

Wi =
1

rj
, ∀i ∈ Sj (2.2)

Otherwise, if
∑
∀i∈Sj Li(N − 1) > Kj − 1 and j ∈M then

Wi ≈
1 +

∑
∀i∈Sj Li(N − 1)

Kjri
(2.3)

Clearly, if j /∈ ⋃∀i∈M S〉, then Wj(N) is a constant, given as Wj(N) = 1/rj. The

exact solution of equation (2.3) can be found in [67].

We now need to compute a quantity generally referred to as the visit count,

denoted Vi. The visit count is the number of times derivative Jobi is visited,

relative to the number of times some reference derivative JobI is visited, where

1 ≤ I ≤ J . The actual value of Vi is not crucial, rather its value relative to the

value of VI . As such the choice of I is strictly arbitrary.

We can compute the visit count from the routing probabilities pij. Define the

probability that a component will evolve from Jobi to Jobj, without revisiting

36

Jobi, as follows:

Pij(σ) = pij +
∑

∀k/∈σ
pikPkj(σ)

The set σ here contains only the starting and ending behaviours of interest, in

this case i and j, i.e. it is used to tell us if we reach Jobj or first return to Jobi.

For convenience define the shorthand,

Pij = Pij({i, j})

By definition, Pii = 1. Clearly the system is irreducible if

Pij > 0 ∀i, j , i 6= j

Now we choose some reference point I, such that,

Vi =
PIi
PiI

, ∀i 6= I

and VI = 1. Thus, Vi gives the number of times a component assumes the

behaviour Jobi, relative to the number times it assumes the behaviour JobI .

Given the quantity Vj, we can now compute the average response time per passage

for a component behaving as Jobj.

Ŵj(N) = VjWj(N) (2.4)

From Little’s theorem we know that

Lj(N) = Xj(N)Wj(N) = X(N)VjWj(N) = X(N)Ŵj(N) (2.5)

Where Xj(N) is the observed rate of activity servicej when the population size

is N , and X(N) is the sum of all possible Xj(N)′s.

37

Summing (2.5) over all behaviours Jobi, i = 1, 2, . . . , J gives,

J∑

j=1

Lj(N) = X(N)
J∑

j=1

Ŵj(N) = X(N)Ŵ (N) = N

where Ŵ (N) =
∑J

j=1 Ŵj(N). Thus,

X(N) =
N

Ŵ (N)

Hence, with Little’s law applied for a given behaviour Jobj,

Lj(N) = Xj(N)Wj(N) = X(N)VjWj(N) =
N

Ŵ (N)
Ŵj(N) (2.6)

We are now in a position to calculate Lj(N) for any value of N if we can calculate

Lj(1). A solitary Jobi component will never compete for cooperation over the

actions in L, and so will experience a delay of 1/ri in each derivative Jobi. Hence,

the average number of components behaving as Jobj when N = 1, Lj(1) is given

by the proportion of time a component spends in that behaviour.

Lj(1) =
Vj

rj
∑J

i=1
Vi
ri

(2.7)

We now apply the following iterative solution.

1. Calculate Lj(1) for j = 1, 2, . . . J , using (2.7).

2. n = 2

3. Compute Ŵj(n) for j = 1, 2, . . . J , using (2.2), (2.3) and (2.4) and Lj(n−1)

from 1 above.

4. Compute Ŵ (n) =
∑J

j=1 Ŵj(n).

5. Compute Lj(n) for j = 1, 2, . . . J , using (2.6) and Ŵ (n) from 4 above.

6. Increment n.

38

7. If n ≤ N return to step 3 else end.

2.1.7.3 Limitation

Clearly, the approach is limited in both the metrics that can be derived and also

the class of model that is considered. The former limitation is a feature of mean

value analysis (hence the name). However, the class of model could be extended

in a number of ways. Mean value analysis applies to multiple classes of jobs

in closed queueing network. Therefore it should be straightforward to define a

class of model with different groups of components, each with potentially different

action rates and routing probabilities. This would be a relatively simple extension

of the current class, but would involve careful use of notation to distinguish classes

in a meaningful way.

Moreover, it should be noted that there can only be one service action type at a

station and that must be given the same rate in any job type where it is enabled.

Although intuitively it is possible to model the case where there are more job

types enabled at a queueing station, doing so potential introduces race conditions

and therefore distorts the effective service rate. We are still considering how

such a situation might be best specified and it may be more feasible to consider

approximate solutions in this scenario.

2.2 Related work

In this section, various related papers has been reviewed. All these papers explore

the performance of security mechanisms, or timing properties of security systems

more generally. According to the analysis methods, we classify those papers to

informal, which includes performance measurement and computer based simula-

tion, and formal modelling, which are mathematical based modelling techniques.

We focus on the latter part.

39

2.2.1 Informal analysis

Argyroudis et al [1] established a test bed upon an HP mobile device to mea-

sure three commonly used security protocols: SSL, S/MIME and IPsec. By

employing different key length and different scenarios, the results show that it is

not a obstacle to apply strong cryptographic protocols on handheld devices. This

paper only studied the three types of security protocols individually, still stick

on SSL and S/MIME, Gutmann [22] conducts a comparison between these two

protocols and those with similar functions protocols: PGP and SSH. SSL and

PGP are both secure messaging protocols, and S/MIME amd SSH are both

secure communication protocols. In contrast to Argyroudis et al [1], Gutmann

[22] measured the performance the protocols upon a normal PC and investigated

more thoroughly and detailed in terms of the overhead analysis. In addition,

these protocols also have been compared in low-powered devices. The results

form a reference for performance and security engineers to choose one of these

protocols in the relevant environment. In [16], Dick and Thomas only focus on

the PGP protocol. Based on four different hardwares, two versions of PGP

have been explored. They studied the overhead which is introduced by different

encryption/decryption algorithms and different key lengths.

Potlapally et al [50] investigated another element of performance, energy con-

sumption, over the SSL protocol. The experiments have been set on a client-

server environment which consists of a mobile device as a client equipped a wire-

less access point to the LAN and a PC as a server that is wired to the LAN.

Different ciphers and hash algorithms with SSL have been tested and compared

for the energy loss. Further more, the authors analysed the trade-off between

energy consumption and security for this protocol.

Rodeh et al [54] studied security protocols that have been applied to ensemble

group communication system. They measured the latency of an ensemble stack

which is defined as being the period from message arrival to message departure,

and this delay also has been compared in two machines with different CPUs.

Moreover, timing property of rekey actions has been measured as this action

40

potentially affects the trade-off between security and performance.

Moralis et al [47] compared X.509 standard and the Kerberos protocol in a web

services environment. By setting up a test bed, delay of requests in different stages

have been measured in the scenario of heavy load with different message size and

fix message size with different loads. The results show that either mechanism

could perform better in appropriate conditions. Still considering the security of

web services, Lamprecht et al [42] measured encryption/decryption time of differ-

ent implementations of different encryption algorithms in the scenario of secure

transaction in web services environment. Chromiak and Lojewshi studied similar

research issue in [10], in which they only focus on JCE/JCA with Bouncy Cas-

tle provider but covered more algorithms. They then measured the time taking

of every stage in encryption/decryption process. These commonly used crypto-

graphic algorithms have also been investigated and measured by Freeman and

Miller with different processors in [19]. Furthermore, to consider performance-

critical systems, the authors analysed the security-performance trade-off in case

of best security/worst performance, good performance/good security and good

security/fast performance.

Zhao evaluated the BGP protocol in her PHD thesis [70] by using a Java-based

discrete event simulator SSFNet. She analysed detailed performance issues of

BGP and its extension Secure-BGP, and those performance issues have been illus-

trated numerically. Additionally, Public Key Infrastructure (PKI) has been eval-

uated, and analysed how this infrastructure affect security of BGP. In [56] Sha et

al simulated an access control protocol ALOHA and its extension ALOHA/PCD.

By comparing the packet delay and channel throughput under the same condi-

tions, the results show that ALOHA/PCD performs much better than its older

version.

Although informal analysis could be applied to any type of system in any situa-

tion, all the experiment results do not show the underlying reason of the latency

and that could be realised by formal analysis.

41

2.2.2 Formal analysis

Cho et al [9] investigated the potential attack in Dynamic Group Communica-

tion system (DGCs) to explore how the different rekeying methods affect both

security and performance of the whole system, and optimised those methods with

appropriate parameters. Based on Stochastic Petri-Net (SPN), the model of three

rekeying protocols in DGCs have been established in the environment of Mobile

Ad Hoc Networks, and the results clearly show the optimisation point. However,

the largest number of requests in the experiments is eight, and that is far less

than a real case. The authors also have not provided the analysis techniques or

tools for readers to establish more confidence of the results.

Wang et al [69] formulated a queueing model for three types of attack on email

systems. To address the trade-off of security and performance, not only the per-

formance metric, average queue length, is obtained, but also metrics of depend-

ability, system availability and information leakage probability, are calculated.

In the context, the queueing model represents a quasi-birth-death Markovian

process, and can be analytically solved efficiently. Nevertheless, the computation

effort apparently becomes very significant if a large number of agents are involved

in the system.

El-Hadidi et al [17] evaluated performance of the Kerberos protocol in an dis-

tributed environment. A basic scenario of Kerberos protocol has been modeled

by queueing network, and the queueing model has been analytically solved to ob-

tain average time for transferring a message between a client and a server. Later

on, the authors extended the paper by comparing the performance of the Kerberos

protocol to two other authentication protocols: authenticated Diffie-Hellman ex-

change protocol and HAH protocol in [18]. Again, the authors formulated queue-

ing models for all three authentication protocol and solved them analytically.

By comparing the average messaging time, the results show that the Kerberos

protocol has the best performance in terms of the speed, nevertheless, the HAH

protocol is the best protocol by considering the trade-off between security and

performance. There are two drawbacks in these two papers: firstly, the authors

42

did not investigate the case of multi-realms in the Kerberos protocol, which could

cause more traffic issues; secondly, the analytical solution may be frustrated if the

system is large enough. Those issues have been considered in [23] by Harbitter

and Menasce. the Kerberos protocol has been investigated more thoroughly with

three inner-mechanism in multi-realms scenario. Again, queueing network tech-

niques have been employed to model the systems, however, rather than analytical

solution, the authors applied mean value analysis (MVA). MVA is only able to

obtain mean values, but avoids generating the entire state space, and so is a very

efficient analysis technique. The results of MVA have been compared with those

obtained from measurement.

Liu et al [44] studied an authentication protocol, and derived a queueing model,

which represents a quasi-birth-death Markovian process. By applying RG factor-

ization, the authors efficiently solved the queueing model analytically to obtain

the state space distribution. Performance metrics then have been calculated and

analysed. To some extent, this analysis method is efficient, however, it is not

difficult to find that the equations of the analytical solution may take a long time

to solve, or even terminated in some point because of limited memory.

Bodei et al [3] proposed a new method for performance evaluation of security

protocols based on LySa. LySa is a process algebra used for analysing security

properties of security protocols, however, authors assigned rates to enhanced la-

bels of the transitions of the system to transform to a Markov chain, which has

been utilised for performance analysis. Under this way, a security protocol is able

to be investigated for both security and performance property to realise trade-off

analysis, and the method has been illustrated by an example, the Otway-Rees

protocol. The transformed Markov chain of the Otway-Rees protocol has been

analytical solved to obtain the steady state distribution. However, it is difficult to

fit a particular scenario from this performance aspect and is infeasible to analyse

a security protocol under a large scale environment. A way of scalable trade-off

analysis has been proposed in [7]. Based on a study of timing attack, Buch-

holtz et al studied both security and performance aspects of a security protocol,

the Wide-Mouthed Frog (WMF). Rather than transform the security model

43

to a Markov chain, the authors extracted both security and performance model

from a UML diagram. Again, the security model is specified by LySa, however,

the performance model is specified by PEPA (Performance Evaluation Process

Algebra). One could modify this PEPA model to fit any scenario to conduct

performance analysis. The authors recommended a tool chain IPC/DNAmaca

as a PEPA analyser, that not only can be used for steady state analysis, but also

can obtain passage-time distribution. Further more, IPC/DNAmaca is able to

solve large scale PEPA models.

Thomas [64] conducted a peformability study of a secure e-voting system. The

model is formulated by a stochastic process algebra PEPA. Along with more

distributed voters coming to the system, the model encountered the state space

explosion problem. Two simplification methods were proposed. Firstly, the au-

thor aggregated some internal actions to reduce the state space. Secondly, a

queue-based approximation is derived. By comparing the state space of the orig-

inal model and both approximations, the queue-based approximation model was

more scalable than aggregation, however, the aggregation method was more ac-

curate.

Bradley et al [5] explored three types of Internet worm attack based on a PEPA

model. To consider scalable analysis, fluid flow approximation (based on ordi-

nary differential equations) is employed to analyse the PEPA models. This kind

of analysis approximates the original discrete state space into continuous states,

and it is able to cope with model of 1010000 states and beyond. The authors inves-

tigated number of infected machines, network connections, susceptible machines

and changes over time with different network capacity and patch rate under these

three types of Internet worm attack. However, these results have not been verified

by observation.

44

2.3 Summary

This chapter describes the PEPA language and some of the current efficient so-

lutions for PEPA models that we employed or attempted to employ in this work,

and some related case studies.

45

Chapter 3

Key Distribution Centre

3.1 Introduction

This chapter studies a secure symmetric key exchange protocol, which utilises

a trusted third party known as a key distribution centre (KDC), first proposed

by Needham and Schroeder [48]. Firstly, three versions of the model have been

specified and analyzed numerically, but, in doing so, we encountered the state

space explosion problem. The remainder of this chapter explores possible ap-

proaches to solving and evaluating a utility function, based on those techniques,

to better understand the behaviour of this system. The contributions of this

Chapter includes the development of partial evaluation, identification of diverge

point (N∗) in ODE approximation, and identification of ODE analysis is the same

as asymptotic bounds of the equivalent closed queueing model.

This chapter is organised as follows. In the next section (Section 3.2) we introduce

the system to be modelled, the key distribution centre and a utility function used

to evaluate its behaviour. This is followed by three proposed modelling choices

with preliminary numerical results. Section 3.4 introduces the chosen modelling

form, followed by a simplified (equivalent) version and an approximation. Some

numerical results of the approximation are presented, including comparison of

the approximation results with discrete event simulation. After that, a simple

46

fluid analysis based on ordinary differential equations is introduced in Section

3.5, along with numerical results which are compared with both the earlier ap-

proximation and stochastic simulation. The utility function and its numerical

results analysis are illustrated in Section 3.6. Finally we will end with a brief

summary of this chapter in Section 3.7.

3.2 Protocol specification

We now describe the specific problem we seek to model. The protocol is illustrated

in Figure 3.1 below, following the descriptions in [59] and [11].

?

 #
�

S
S
S
S
S
S
SwS

S
S
S
S
S
So

-
Alice Bob

KDC

1
2

3

5

4

Figure 3.1: Key Distribution Scenario.

Additionally:

• Alice and KDC share a key KA

• Bob and KDC share a key KB

Informally we can describe the protocol as follows.

1. Alice sends a request to the KDC.

2. If Alice is known and trusted by the KDC, it responds with an encrypted

message only Alice can read, which includes a session key for Alice and Bob

to use and a further encrypted message only Bob can read.

47

3. Alice will then forward part of the message from the KDC directly to Bob.

4. Bob will decrypt this message (as he knows the decryption key) and re-

sponds to Alice with some random data (called a nonce) encrypted with

the session key.

5. Alice will confirm the use of the session key by replying to Bob with a

modification of the nonce, encrypted with the session key.

The key features of this protocol are that only Alice can read the message sent

by the KDC (step 2) as only Alice and the KDC know the key KA. Included

in this message is another message further encrypted with KB, the key shared

by Bob and the KDC. Alice cannot read this message, but instead forwards it to

Bob (step 3). This message tells Bob that Alice is genuine (i.e. has communicated

with the KDC and displays a correct ID) and informs Bob of the session key; only

Bob can read this message. Alice and Bob now both know the session key KS

and the remainder of the protocol ensures that Bob trusts Alice and the session

key (and Alice trusts Bob).

More formally we can define the protocol as follows [11].

1. Alice −→ KDC : A,B,N1

2. KDC −→ Alice : {KS, A,B,N1{KS, IDA}KB}KA

3. Alice −→ Bob : {KS, IDA}KB

4. Bob −→ Alice : {N2}KS

5. Alice −→ Bob : {f(N2)}KS

where,

• X −→ Y denotes a communication from X to Y .

• x1, . . . xn denotes a tuple of n values.

48

• {x1, . . . xn}K denotes a tuple of n values encrypted with the key K.

• N1 and N2 are nonces (random items of data).

• IDA is a unique identifier for Alice.

• f(N) denotes a predefined function applied to the nonce N .

The performance of the protocol use is dominated by competition for resources at

the KDC. Thus, when a client (Alice) contacts the KDC to obtain a session key,

the request will be queued awaiting service and processed along with other waiting

requests according to some scheduling strategy. We assume that this strategy is

FCFS, and hence the service of any incoming request will be dependent on the

service of all other requests already present in the system, the rate at which

requests can be serviced, rp, and the number of servers available, K.

We now wish to explore two closely related questions: “how many clients can

a given KDC configuration support?” and “how much service capacity must we

provide at a KDC to satisfy a given number of clients?” In the first instance we

would fix K and rp and find the largest value of the population size, N , before

the performance begins to significantly degrade. In the latter case we would fix

N and rp and find an optimal value of K. In addition to these two cases, we may

also ask, given a demand (from N client pairs with use rate ru and request rate

rq) on a given system (of K servers running at rate rp), what is the maximum rate

at which keys can be refreshed before the KDC performance begins to degrade?

In answering these questions we need to consider what we mean by the perfor-

mance of the KDC. In the solution of this model we will introduce a number of

performance measures, including utilisation, throughput, average queue length

and average response time. All of these measures are important, but considering

all of them at once will not lead to a clear picture of optimal performance. Instead

we introduce a utility function to be optimised. This function is based on the

assumption that there is a cost in keeping customers waiting (as the longer they

wait, the less they will be satisfied) and a competing cost in providing resources

at the KDC (e.g. purchasing and maintaining or leasing servers).

49

This gives rise to the following simple utility function.

C = c1L+ c2Krp , c1, c2 ≥ 0 (3.1)

Where L is the mean queue length at the KDC. The cost rates c1 and c2 are

dependent on the particular system in question and may further depend on the

type of quality of service contract that is in place with customers. If we wish to

improve the responsiveness of the system, we would increase c1, whereas if we

want to minimise running costs we would increase c2.

3.3 Modelling Choices

There are three approaches that we have developed to model this secure key

distribution scenario for multiple clients. First, we consider Alice and Bob as

a pair of clients, and repeated this pair in the model to communicate with key

distribution centre to specify multiple clients, as illustrated in Figure 3.2. In this

model, a response from the KDC must succeed the request behaviour of each

corresponding Alice, and precede any other interaction.

In PEPA this model can be modelled as follows:

KDC
def
= (request,>).(response, rp).KDC;

Alice
def
= (request, rq).(response,>).(sendBob, rB).

(sendAlice,>).(confirm, rc).(usekey, ru).Alice;

Bob
def
= (sendBob,>).(sendAlice, rA).(confirm,>).(usekey,>).Bob;

System
def
= KDC BC

L
(Alice BC

K
Bob)[N]

50

?

6

Alice

Bob

�

�

?

6

Alice

Bob

��

�

�
�

�
�
�

�
�
�

�
�=�

�
�
�
�
�
�
�
�
�> Z

Z
Z
Z
Z
Z
Z
Z
Z
Z~Z

Z
Z
Z

Z
Z
Z

Z
Z
Z}

KDC

Figure 3.2: Initial model of key distribution centre.

where L = {request, reponse},K = {sendBob, sendAlice, confirm, usekey}, N
is number of pairs of clients.

The second model has been approached in a different way. In this approach,

multiple clients were manually added by different names and parallel request and

response are allowed here, this means that the KDC can receive (and queue)

several request before responding to them, as shown in Figure 3.3.

This approach can be modelled in PEPA as follows (φ in this model is the number

of pairs of clients):

KDC
def
= (requestA,>).KDC1

+ (requestC,>).KDC2

+ · · ·

+ (requestA(2φ−2),>).KDCφ;

51

?

6

Alice1

Bob1

��

�

?

6

Alice2

Bob2

��

�

?

6

AliceN

BobN

��

�

�
�

�
�
�

�
�
�

�
�=�

�
�
�
�
�
�
�
�
�>

�

� S

S
S
S
S
S
SSw
S
S
S
S
S
S
SSo

KDC

Figure 3.3: Alternative model of key distribution centre.

KDC1
def
= (responseA, rp).KDC + (requestC,>).KDC(φ+1)

+ (requestE,>).KDC(φ+2)

+ · · ·

+ (requestA(2φ−2),>).KDC(2φ−1);

· · ·

A
def
= (requestA, rq).(responseA,>).(sendB, rB).(sendA,>).

(confirmA, rc).(usekeyA, ru).A;

B
def
= (sendB,>).(sendA, rA).(confirmA,>).(usekeyA,>).B;

· · ·

A(2φ−2)
def
= (requestA(2φ−2), rq).(responseA(2φ−2),>).

(sendA(2φ−1), rA(2φ−1)).(sendA(2φ−2),>).

52

(confirm, rc).(usekey, ru).A(2φ−2);

A(2φ−1)
def
= (sendA(2φ−1),>).(sendA(2φ−2), rA(2φ−2)).

(confirm,>).(usekey,>).A(2φ−1);

System
def
= KDC BC

L
((A BC

K
B)|| · · · ||(A(2φ−2) BC

Z
A(2φ−1))

where L = {requestA, responseA, · · · , requestA(2φ−2), responseA(2φ−2)}, K =

{sendB, sendA, confirmA, usekeyA}, Z = {sendA(2φ−1), sendA(2φ−2),

confirm(φ−1), usekey(φ−1)}.

The third approach uses the same infrastructure as model one (Figure 3.2). The

two main differences are that model three makes requests and responses in par-

allel, so the KDC can hold several requests in a queue, as in model two; and an

anonymous response mechanism is introduced here, that means KDC does not

explicitly distinguish between requests.

PEPA model for third approach as follows: (φ in this model means number of

pair of clients)

KDC
def
= (request,>).KDC1;

KDC1
def
= (response, rp).KDC + (request.>).KDC2;

KDC2
def
= (response, rp).KDC1 + (request,>).KDC3;

KDC3
def
= (response, rp).KDC2 + (request,>).KDC4;

· · ·

53

KDCφ
def
= (response, rp).KDC(φ−1);

Alice
def
= (request, rq).(response,>).(sendBob, rB).(sendAlice,>).

(confirm, rc).(usekey, ru).Alice;

Bob
def
= (sendBob,>).(sendAlice, rA).(confirm,>).(usekey,>).Bob;

System
def
= KDC BC

L
(Alice BC

K
Bob)[N]

where L = {request, reponse},K = {sendBob, sendAlice, confirm, usekey}, N
is number of pair of clients.

3.3.1 Preliminary results

The three models of key distribution are now compared numerically using the

PEPA Workbench [13]. In all cases the parameters are set to 1.0 (except ru=1.1

for numerical computation reasons) and other parameters are varied as shown.

Three experiments have been set up for each model to test the utilisation of the

KDC, i.e. the state of the KDC holding at least one request. First, we increased

number of clients to the limit of the PEPA Workbench. Then we varied the rate

of usekey (ru) in case of three pair of clients in second experiment. Finally, rate

of request (rq) has been varied in case of three pair of clients for testing.

In the first experiment, a “run out of memory java heap space” occurs when the

number of pairs exceeds five. Therefore, five data points were acquired for each

model in the first trial. Figure 3.4 shows the KDC utilisation as the number of

client pairs is increased. We see that for all three models, utilisation increases

when adding more clients to the model, as expected. The reason is clearly that as

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
pair of clients

ut
ili

za
tio

n
of

 K
D

C
Model1
Model2
Model3

Figure 3.4: Utilisation of the KDC varied with number of client pairs.

more clients are involved, more requests will be made, thus, the KDC has more

work to do.

The second feature that can be observed in Figure 3.4 is that the utilisation of the

KDC in model 1 increases slower and is smaller at any point (except the start)

than for model 2 and model 3. In the case of one pair of clients, the three models

gave exactly the same result, as we would expect. In model 1, the response of the

KDC must succeed a request behaviour of each corresponding Alice. As such, the

KDC cannot hold multiple requests at the same time. Thus, subsequent requests

are blocked until the KDC is idle when the request can be made. In the case of

models 2 and 3, requests are queued so that once one request has been processed,

another service may begin immediately. Thus, the system described by model 1

is therefore clearly less efficient.

Another aspect shown in Figure 3.4 is that model 2 and model 3 have exactly the

same results. The only difference between model 2 and model 3 is in distinguish-

ing which client pair are being responded to. In model 3 the KDC component

merely keeps track of the number of waiting clients, whereas in model 2 each

client is distinguished by name and action. This means that more information

55

is potentially available in model 2, although in practice this does not change the

amount of work the KDC has to undertake, so the utilisation is the same in each

case.

Figure 3.5 shows the result of the second experiment.

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1
rate of usekey(ru) in 3 pair clients

ut
ili

za
tio

n
of

 K
D

C

Model1
Model2
Model3

Figure 3.5: KDC utilisation varied with rate of use of the key.

For the reason discussed above, model 2 and model 3 have the same result in

this experiment as well. The utilisation of the KDC in model 1 is again smaller

than in model 2 and model 3 in any same rate of key use. There are some new

features here in experiment two: first, the utilisation of the KDC increases when

ru is increased; secondly, the utilisation of the KDC in all models increases more

slowly as ru gets larger; finally, all three models keep the same increasing rate.

For the first feature, the reason is that increasing ru leads to clients sending

requests to the KDC more frequently. Therefore, the KDC has more requests to

process. The profile of the plots is a direct result of the variation of ru, which is

the reciprocal of the duration of the key use. When ru is small, a small increase

has a large effect (a large decrease in usekey duration), however obviously the

same increase has a much smaller effect when ru is large (duration is very short,

and the decrease is minimal).

56

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

1 2 3 4 5 6 7 8 9 10
rate of request(rq) in 3 pair clients

ut
ili

za
tio

n
of

 K
D

C

Model1
Model2
Model3

Figure 3.6: KDC utilisation varied against the rate of request.

Finally, we come to the third experiment show in Figure 3.6. We again found

two features are the same as discussed in experiments one and two, namely, that

model 2 and model 3 have the same result in this experiment, and the utilisation

of the KDC in model 1 is smaller than in model 2 and model 3 for any given rate

of request. The differences from other experimental results are that utilisation of

the KDC increases as rq increases. Clearly, the faster the clients request, more

likely that the KDC is busy. Another characteristic of these results is that the

utilisation of the KDC in all models increases more slowly as rq gets larger. The

reason is similar as changing ru in experiment two. The time for a client pair to

cycle through their states is given as Tk + 1
rq

+ 1
ru

, thus increasing of rq makes 1
rq

smaller every time, although the increasing part is getting smaller every time as

well. Finally, we found that utilisation of the KDC in model 1 is getting close

to that in model 2 and model 3. With rq increasing, the time that the KDC

has to wait between requests in model 1 is getting smaller, which makes model 1

closer to model 2 and model 3 where there is no such waiting as the requests are

queued. Clearly as ru → ∞ the different calculations of utilisation will converge.

As well as the utilisation of the key distribution centre, we would also wish to

57

measure the performance perceived by the user. To do this we calculate the

average response time, which we define as the time from when the previous session

key has finished being used, to the time when the new session key was started to

be used. The average response time, W, is calculated as follows:

W =
1− puse
puseruse

(3.2)

Where puse is the steady state probability that a given key is being used by a

given communicating pair. Because all the models are symmetric with respect to

communicating pairs, it does not matter which component we choose to measure

to find puse. The reason that response time is defined in this way, and not as more

conventionally to be just the time taken by the server, is that model 1 includes

blocking of requests when busy. This is a clear performance difference between

model 1 and the other two approaches and therefore needs to be incorporated in

the metric to get a consistent comparison.

The same three experiments we conducted as above, and calculated average re-

sponse time by (3.2). Figure 3.7 shows the response time varied as number of

clients pair is increased.

Again, we found Model 2 and Model 3 have exactly the same results and all

three models become the same in the case of one pair of client, for the same

reasons that have been discussed above. Here, for all three models, response time

increases when adding more clients to the system. It is clear that more clients

involved in, the system takes more time to respond in average. Another feature

is that average response time in Model 1 is larger than in Model 2 and Model 3

in any case of same number of pairs of clients (except one). There are two parts

involved in our defined response time: request time and service time. All models

have the same request time in this experiment. But, for Model 2 and Model 3,

system need less time to process all jobs as requests are queued at the KDC rather

than requests being blocked until the previous one has finished being processed

in Model 1. Therefore, Model 1 shows less efficient results.

58

0

5

10

15

20

25

30

35

40

1 2 3 4 5
pair of clients

re
sp

on
se

 ti
m

e Model1
Model2
Model3

Figure 3.7: Response time varied with number of client pairs.

15.5

16

16.5

17

17.5

18

1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1
rate of usekey

re
sp

on
se

 ti
m

e

Model1
Model2
Model3

Figure 3.8: Response time varied with rate of use of the key.

Figure 3.8 shows the results of varying the rate of usekey (ru) in case of three

pair of clients. Response time becomes larger as the rate of usekey is increased;

then, average response time in all models increased more slowly as ru gets larger;

finally, all three models almost keep the same increasing rate. Two parts are

59

involved in our defined response time: request time and service time. Request

time is stable in this experiment. Increasing rate of usekey leads to requests to

the KDC more frequently, this increasing waiting time. Thus, increasing average

waiting time is the reason for average response time getting larger here. For the

second feature, the average waiting time for one in n requests is that n−1
nrs

(rs is

service rate of KDC), which equal to 1
rs
− 1

nrs
. The increasing part is getting

smaller when more requests waiting. There is no changing influence fundamental

differences among these three models, the results keep almost the same increasing

rate consequently.

10

11

12

13

14

15

16

17

18

1 2 3 4 5 6 7 8 9 10
rate of request

re
sp

on
se

 ti
m

e

Model1
Model2
Model3

Figure 3.9: Response time varied against the rate of request.

The results of last experiment were showed in Figure 3.9. The difference here

is that average response time for all three models decreased when rq increases.

Again, request time and service time are the two parts which influence response

time. Request time (1
rq

) decreasing here has more effect than increasing of service

time, for which influences the decreasing average response time. Another charac-

teristic of these curves is that average response time in all models decreases more

slowly when rq is larger.

60

3.4 The Model

To consider the three modelling approaches, Model 1 is obviously less desirable

according to the results. In addition, the request action in the KDC only allows

customers start to enter the queue after the previous client has been served,

which does not capture reality and is not efficient. In Model 2 we introduced the

possibility that the KDC is serving multiple requests from multiple Alices. Each

Alice still only makes one request at a time and each request is served by the KDC

(we are not overly concerned here about the order of service). Note that due to the

semantics of the specification events occur sequentially and not simultaneously.

In addition we do not allow batched requests. It is worth observing here that

Model 2 is cumbersome to specify; if we want to consider an extra client then

we not only need to specify new Alice and Bob components, but also the KDC

component needs to be modified to incorporate the additional behaviours. Model

2 also suffers from the commonly encountered state space explosion problem. For

each Alice (and corresponding Bob) the state space is multiplied by another 6

behaviours, hence the state space is 6N , where N is the number of client pairs

(Alice+Bob).With N = 9 the state space has already grown to over 1 million

states; if N is only 5, the solution still involves (very sparce) matrices with over

60 million elements. Even the best distributed Markov chain solvers generally

only tackle state spaces of a few million states at most. Therefore, Model 3 is the

most efficient modelling form of these three approaches.

3.4.1 Model simplification and approximation

Although Model 3 is relatively efficient, the state space explosion still exists.

Although not as bad as Model 2, the KDC state in Model 3 still needs to be

modified when one wants to add a new client to the system. To counter this,

and to make the model easier to specify and understand, some simplification

techniques have been applied to derive a form of the model which gives the same

results for the key steady state metrics. This approach is based on the concept

61

known as bisimulation; whereby two models may be said to be equivalent if any

sequence of actions that is possible in one model, has an equivalent sequence of

actions (at the same rate) in the other model (strong bisimulation requires that

equivalent actions have the same name, which is not the case here). This leads

us to an alternative representation of the model as follows (Model 4).

KDC
def
= (request,>).KDC + (response, rp).KDC

Alice
def
= (request, rq).(response,>).Alice′

Alice′
def
= (sendBob, rB).(sendAlice,>).(confirm, rc).Alice

′′

Alice′′
def
= (usekey, ru).Alice

Bob
def
= (sendBob,>).(sendAlice, rA).(confirm,>).Bob′

Bob′
def
= (usekey,>).Bob

System
def
= KDC BC

L

(
Alice BC

K
Bob

)
[N]

Where, L = {request, response}, K = {sendBob, sendAlice, confirm, usekey},
N is number of pair of clients.

Clearly the component Bob is almost redundant, and the sharing of the action

request and its enabling in the KDC component has no effect on the behaviour of

the model. Hence an even simpler equivalent specification would be (Model 5):

(this process has been termed partial evaluation in [11])

62

KDC
def
= (response, rp).KDC

Alice
def
= (request, rq).(response,>).Alice′

Alice′
def
= (sendBob, rB).(sendAlice, rA).(confirm, rc).Alice

′′

Alice′′
def
= (usekey, ru).Alice

System
def
= KDC BC

response
Alice[N]

Where N is number of Alices.

This model and the preceding one are clearly isomorphic, i.e. they have equiv-

alent CTMCs with a one-to-one mapping between states and transitions. We

can now apply the well known approximation technique of combining successive

internal actions into a single action with a modified rate. This is equivalent to

lumping states in the underlying Markov chain (Hillston [33] introduced the weak

isomorphism equivalence for exactly this purpose). Thus we obtain the following

simple form of the model (Model 6).

KDC
def
= (response, rp).KDC

Alice
def
= (response,>).(τ, rx).Alice

System
def
= KDC BC

response
(Alice|| . . . ||Alice)

63

Where rx is given by

rx =

(
1

rq
+

1

rB
+

1

rA
+

1

rc
+

1

ru

)−1

Model 6 is equivalent to a simple closed queueing system with one queueing

station (the KDC) and an exponential delay after service before returning to the

queue. It is a simple matter to write down the balance equations for such a

system.

rpπi = (N + 1− i)rxπi−1 , 1 ≤ i ≤ N

where πi is the steady state probability that there are exactly i jobs waiting for

a response from the KDC and N is the number of pairs of clients (the number of

instances of Alice in the above PEPA model specification). Thus it is possible to

derive expressions for the average utilisation of the KDC and the average number

of requests waiting for a response.

U = 1−
[
N !

N∑

i=0

ρi

(N − i)!

]−1

and,

L = N !(1− U)
N∑

i=1

ρii

(N − i)!

where ρ = rx/rp.

This approximation is, in fact, an M/M/1/./N queue and the throughput and av-

erage response time are easily computed from the above expressions (see Mitrani

[46] pages 195-197).

T = (N − L)rx

and

W =
N

T
− 1

rx

64

3.4.2 Numerical results

This approximation is now compared with simulation results for the full model.

The simulation was written in Java using the roulette wheel approach. The

simulation has been verified numerically against the PEPA model using the PEPA

Workbench Eclipse Plug-in [68] for small numbers of clients (N ≤ 6). The PEPA

Workbench will not give results for larger models due to problems with performing

computations on the large matrices involved, hence the need for the simulation.

Initially in the experiments which follow, the parameters are set to 1.0 (except

ru=1.1 for numerical computation reasons in the PEPA Workbench) and other

parameters are varied as shown.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20 22

N

U

simulation, rp=1
simulation, rp=2
simulation, rp=3
simulation, rp=4
approximation, rp=1
approximation, rp=2
approximation, rp=3
approximation, rp=4

Figure 3.10: Average utilisation varied against the number of client pairs. ru =
1.1, rA = rB = rc = rq = 1.

In Figure 3.10 we show the utilisation (of the KDC) varied against the numbers

of client pairs for both the simulation and the approximation for various values

of rp. Increasing the value of rp in this way is equivalent to replacing the KDC

with a faster server. In Figure 3.11 we show the average response time (average

waiting time plus average service time) of the KDC for the same systems. Clearly,

for both metrics, there is a very close match between the simulation and the

65

approximation. Hence, in Figures 3.12 and 3.13, we show the percentage error,

given as (approximation-simulation)/simulation, for both metrics to provide a

greater insight into the accuracy of the approximation. This shows that the

approximation and simulation agree to within 2% for the utilisation and within

4% for average response time. In all cases the simulation is run to a terminating

condition of a 95% confidence interval. Not surprisingly this becomes increasingly

more difficult to attain as N increases, hence the run-time increases with N .

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22

N

W

simulation, rp=1

simulation, rp=2
simulation, rp=3

simulation, rp=4

approximation, rp=1
approximation, rp=2

approximation, rp=3
approximation, rp=4

Figure 3.11: Average response time varied against the number of client pairs.
ru = 1.1, rA = rB = rc = rq = 1.

The most significant difference between the simulation and the approximation is

the time it takes to derive results. The simulation took several weeks to code

and each run takes in excess of 10 hours (we are not claiming this to be the most

efficient simulation possible) whereas the approximation was coded into MS Excel

in less than half an hour and results are almost instantaneous. It is worth noting

that these metrics are based on long run averages, which we would expect the

approximation to be fairly accurate in predicting, particularly utilisation. If the

measure of interest was a transient measure then the lumping of states might not

give such an accurate picture. Furthermore, if we wished to predict the end to

end performance of the protocol, i.e. from request to confirm, then we would need

66

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

2 4 6 8 10 12 14 16 18 20 22
N

re
la

tiv
e

di
ffe

re
nc

e
rp=1
rp=2
rp=3
rp=4

Figure 3.12: Relative error in utilisation of approximation compared to simula-
tion. ru = 1.1, rA = rB = rc = rq = 1.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

2 4 6 8 10 12 14 16 18 20 22
N

re
la

tiv
e

di
ffe

re
nc

e

rp=1
rp=2
rp=3
rp=4

Figure 3.13: Relative error in average response time of approximation compared
to simulation. ru = 1.1, rA = rB = rc = rq = 1.

to perform a slightly different approximation which separates the usekey action

from the other lumped actions.

67

The results show that there is obviously a benefit from increasing the server speed

at the KDC, but the increase in server speed is not necessarily exactly propor-

tional to the increase in capacity. For example, if we have a target maximum

utilisation of 0.65, then with rp = 1 the KDC can cope with at most 4 client

pairs. If we increase the server rate to rp = 3 then the capacity is 10 client pairs,

not 12 as we might intuitively expect. However, if we specify the maximum av-

erage response time to be 2, then rp = 1 gives the capacity as 4, rp = 2 gives 12,

and rp = 3 gives the capacity as 18 client pairs. Clearly in this case the increase

in server speed from rp = 1 to rp = 2, or rp = 3, has a significantly greater impact

on the client capacity than we might expect. Note also that, whilst intuitively

we may consider that it is possible that a greater impact could be made by con-

sidering multiple KDC severs, we know (from well established queueing theory

results) that for a simple M/M/k queue it is preferable to have one fast server

than two of half the speed. Clearly therefore we would rather double the speed

of the processor, than double the number of processors at the KDC (although

doing both would clearly be beneficial).

In the above experiments the duration for which the session key is used is set to

be approximately the same as the durations for any other action. We have done

this so that we can explore the behaviour of the KDC when it is heavily loaded,

despite only having a small number of client pairs. Clearly this is not a practical

scenario and having established the accuracy of the approximation we can now

go on to consider larger systems with a greater duration of the use of the session

key.

Figures 3.14 and 3.15 show the utilisation and average response time for various

values of ru and rp when N = 150. When the use rate is low (ru = 0.01)

the performance is good for rp > 2 (in fact the response time for rp = 2 is

more than five times that of rp = 5, although this is not clear in the graph).

However, increasing the use rate has a dramatic effect on both the utilisation

and the average response time. The systems rapidly become saturated, except

rp = 5 (and to a lesser extent rp = 4) which grows more gently. At ru = 0.05

all the systems are saturated (100% utilisation). A similar picture is evident

68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.02 0.03 0.04 0.05

ru

U
rp=1
rp=2
rp=3
rp=4
rp=5

Figure 3.14: Average utilisation varied against the rate of session key use, ru.
rq = rA = rB = rc = 1, N = 150

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0.01 0.02 0.03 0.04 0.05

ru

W

rp=1
rp=2
rp=3
rp=4
rp=5

Figure 3.15: Average Response time varied against the rate of session key use,
ru. rq = rA = rB = rc = 1, N = 150.

for the average response time. For rp = 5 the average response time increases

exponentially. However, for rp = 1, where the response time is obviously much

greater, the increase is inversely exponential, i.e. the rate of increase decreases as

69

ru increases. This is because rp = 1 is already saturated at ru = 0.01 and so a

large number of clients are already spending a long time in the queue awaiting

a response from the KDC. Hence, decreasing the time they use the session key

does not greatly change their overall behaviour (which is already dominated by

queueing). The other cases of 1 < ru < 5 fall between these extremes, with the

saturation point being clearly evident in the plot of the average response time.

3.5 Fluid analysis

Thus far we have considered a traditional approach to modelling and analysis. In

this section we consider an alternative approach proposed by Hillston [34], based

on the solution of ordinary differential equations. In this style of analysis, the

model is expressed as a number of replicated components and the ODEs represent

the flow between behaviours (PEPA derivatives) of the components. Thus, by

solving the ODEs, it is possible to ‘count’ the number of components behaving as

a given derivative at any given time, t. In the absence of oscillations, the limit,

t −→∞, then gives a steady state value.

Rewriting model slightly, removing redundancy and naming each derivative of

Alice (for clarity) we get:

KDC
def
= (response, rp).KDC

Alice
def
= (request, rq).Alice1

Alice1
def
= (response, rp).Alice2

Alice2
def
= (sendBob, rB).Alice3

Alice3
def
= (sendAlice, rA).Alice4

Alice4
def
= (confirm, rc).Alice5

Alice5
def
= (usekey, ru).Alice

70

The system is then defined as:

KDC[K] BC
response

Alice[N]

Where, K is the number of KDC’s (hitherto K = 1) and N is the number of

client pairs (Alices’s). It is then a simple matter to write down the ODEs for this

system as follows.

d

dt
Alice(t) = ruAlice5(t)− rqAlice(t)

d

dt
Alice1(t) = rqAlice(t)− rpmin(KDC(t), Alice1(t))

d

dt
Alice2(t) = rpmin(KDC(t), Alice1(t))− rBAlice2(t)

d

dt
Alice3(t) = rBAlice2(t)− rAAlice3(t)

d

dt
Alice4(t) = rAAlice3(t)− rcAlice4(t)

d

dt
Alice5(t) = rcAlice4(t)− ruAlice5(t)

d

dt
KDC(t) = 0

In our analysis we are interested primarily in the number of client pairs await-

ing a response from the KDC (or KDC’s). This is represented in the model by

the number of Alice1’s; L(N) = Alice1(t −→ ∞) when there are N client pairs

(Alice’s) in the population. From this we can derive the average response time

which can be compared with that derived from the queueing network approxima-

tion. We compute the average response time for a system of N client pairs and

one KDC server (K = 1), W(N), as follows;

W (N) =
L(N − 1) + 1

rp

This computation is based on the queueing theory result of an arrival as random

observer, see Mitrani [46] page 141 for example. For K > 1 the computation is

only slightly more complex. If the random observer sees a free server, then the

average response time will be the average service time. However, if the random

71

observer sees all the servers busy, then the average response time will be the

average service time plus the time it takes for one server to become available

(including scheduling the other jobs waiting ahead of the random observer).

W (N) =
1

rp
, L(N − 1) + 1 ≤ K

W (N) =
1

rp
+
L(N − 1) + 1−K

Krp
=
L(N − 1) + 1

Krp
, L(N − 1) + 1 > K

It is a feature of the fluid flow approximation that (for t > 0) the KDC will never

be idle, but instead will always have some fluid flowing through it. As such we are

unable to compute the utilisation of the KDC directly. This is clearly a limitation

of this form of analysis.

3.5.1 Numerical results of ODEs

Figure 3.16 shows the evolution over time of the number of clients awaiting a

response as derived from the ODE analysis. Initially all the clients are behaving

as Alice, hence Alice1(0) = 0. Shortly after the start there is a large influx of

fluid into Alice1 before the system settles into a stable flow. Interestingly this

initial surge is much more pronounced when rp = 4 than rp = 1. This is due to

the fact that the flow out of Alice1 is much greater when rp = 4.

Figure 3.17 shows the average response time calculated by the ODE method,

compared with the queueing approximation described earlier. This approximation

has previously been compared with simulation and shown to be accurate to within

the 95% confidence interval of the simulation in Section 3.4.2.

We expect the ODE method to be accurate when N is large. Figure 3.17 shows

that it is possible to generate accurate results even when N is quite small. How-

ever, there is a clear difference between the two methods where the gradient

changes. This is shown more explicitly in Figure 3.18, where the evolution of

the ODEs is compared with the stochastic simulation of the PEPA model [6]

derived directly using the PEPA Eclipse Plug-in. When N is sufficiently far

72

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20
t

N
o.

 o
f A

lic
e1

's

rp=1
rp=2
rp=4

Figure 3.16: Number of waiting clients over time, N = 30, rq = rB = rA = rc = 1
and ru = 1.1

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
N

W

QN, rp=1
QN, rp=2
QN, rp=4
ODE, rp=1
ODE, rp=2
ODE, rp=4

Figure 3.17: Average response time calculated by the ODE method and QN
approximation, rq = rB = rA = rc = 1 and ru = 1.1

from the gradient change there is good agreement between the ODE solution

and the stochastic simulation. However, at N = 6 the divergence is significant;

73

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

t

L(N)

ODE: N=2
ODE: N=6
ODE: N=10
Simulation: N=2
Simulation: N=6
Simulation: N=10

Figure 3.18: Number of waiting clients over time, rp = rq = rB = rA = rc = 1
and ru = 1.1

the stochastic simulation never achieves the lower queue length predicted by the

ODEs.

It is of clear practical importance to be able to predict the divergence. This point,

N∗, can be estimated using the method of asymptotic bounds of closed queueing

networks (see Haverkort [28] pages 245-246 for example).

N∗ = K +
Krp
rx

= K +Krp

(
1

rq
+

1

rB
+

1

rA
+

1

rc
+

1

ru

)
(3.3)

Below N∗ the asymptotic bound is given as

L(N) =
Nrx
rx + rp

(3.4)

Above N∗ the asymptotic bound is given as

L(N) =
Nrx −Krp

rx
(3.5)

74

These bounds can also easily be found by solving the ODEs analytically in the

limit t −→∞, where the min(KDC(t), Alice1(t)) term is replaced with Alice1(t)

and KDC(t) respectively. Thus, in this instance at least, the ODE solution is

giving an alternative means for calculating known asymptotic results for closed

queueing networks (see [65]). Note that W (N) is computed from L(N−1), and so

in Figure 10, the divergence occurs at approximately 6.91 (rp = 1), 11.82 (rp = 2)

and 21.64 (rp = 4), i.e. N∗ + 1.

We have also compared the two methods for larger values of N and have found

there to be almost no difference for N > 40 for the parameters used here. It is

important to note that there are numerical issues with computing the queueing

approximation due to the difficulty of handling large factorials (and their recip-

rocals) and these problems do not occur with the ODE solutions or asymptotic

results. Thus, as long as we avoid the region around N∗, the ODE solution is

giving accurate results without problems with scalability.

3.5.2 Multiple KDC servers

We now turn our attention to the consideration of multiple servers at the KDC.

In particular we would wish to know if it is more beneficial to increase the number

of servers or increase the speed of the server. It is well known that for an M/M/K

queue, it is preferable to have 1 server serving at rate µ than K servers serving

at rate µ/K. This is because if there are less than K jobs in the queue then

some of the K servers will be idle, thus reducing the overall service rate. In

the ODEs above this is evident in rpmin(KDC(t), Alice1(t)). If Alice1(t) > K

then all K servers are in use and the flow rate from the KDC would be Krp.

However, if Alice1(t) < K then fewer servers would be in use and the rate would

be rpAlice1(t).

There is an issue with specifying the interactions between multiple components

in PEPA that we need to be aware of here. We can easily increase the number

75

of servers at the KDC in the PEPA specification.

System
def
= (KDC|| . . . ||KDC) BC

response
(Alice|| . . . ||Alice)

However, we must give the response action in Alice the rate rp, rather than being

passive.

Alice
def
= (response, rp).(τ, rx).Alice

This is because of the way in which a passive action would be subject to the

apparent rate in PEPA. Hence, K KDCs and 1 Alice would give rise to response

occurring at rate Krp; whereas if the rate is rp in both KDC and Alice, then

this problem does not arise.

Thus the approximation becomes an M/M/K/./N queue, where K is the number

of instances of the KDC component (i.e. servers at the KDC). Hence the balance

equations become,

(N − i)rxπi = (i+ 1)rpπi+1 , 0 ≤ i < K

(N − i)rxπi = Krpπi+1 , K ≤ i < N

Thus we can calculate π0

π0 =

[
N !

K−1∑

i=0

ρi

(N − i)!i! +N !
N∑

i=K

ρi

(N − i)!K!Ki−K

]−1

The average queue length can be then calculated by

 L = N !π0

[
K−1∑

i=1

ρii

(N − i)!i! +
N∑

i=K

ρii

(N − i)!K!Ki−K

]

The average response time and throughput can then be computed as before.

Figure 3.19 shows the proportion of Alices waiting at the KDC (i.e. L(N)/N) for

K = 1 with rp = 4 and K = 4 with rp = 1 for both the queue approximation and

the ODE solution. When N is large (in this case N ≥ 25) the ODE values are the

76

same, however for smaller N the single faster server is seen to perform better (for

the reason discussed above). The reason the ODE values are identical for large

N is simply that the fluid level of Alices waiting at the KDC will never fall below

K in the ODE solution. The values for the QN approximation differ slightly from

each other, even when N = 40. This is because even at this load there is still the

chance that the queue will fall below 4 requests for short periods. Clearly, as N

increases the probability that this happens will become increasingly insignificant

and hence the values will converge.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

5 10 15 20 25 30 35 40
N

L(
N

)/N

QN, K=1 & rp=4
QN, K=4 & rp=1
ODE, K=1 & rp=4
ODE, K=4 & rp=1

Figure 3.19: Proportion of Alice1 components, calculated by ODE solution and
QN model, rq = rB = rA = rc = 1 and ru = 1.1

There is a clear divergence between the ODE and QN results around the change

in gradient as we have already observed in Figure 3.17. Figure 3.20 shows this in

more detail for the average queue size. Note that although the two ODE solutions

converge atN = 25, there is still a significant difference with the queueing network

(QN) solutions at this point, near to N∗.

77

0

1

2

3

4

5

6

7

8

20 21 22 23 24 25
N

L(
N

)

QN, K=1 & rp=4
QN, K=4 & rp=1
ODE, K=1 & rp=4
ODE, K=4 & rp=1

Figure 3.20: Average queue length calculated by ODE solution and QN model,
rq = rB = rA = rc = 1 and ru = 1.1

3.6 Utility function

We now return to our proposed utility function.

C = c1L+ c2Krp , c1, c2 ≥ 0 (3.6)

Taking the asymptotic results (3.4) and (3.5) for L gives a simple exposition of

this utility function. If N < N∗ then

C =
c1Nrx
rx + rp

+ c2Krp (3.7)

This function is always increasing with K. If N > N∗ then

C = c1
Nrx −Krp

rx
+ c2Krp (3.8)

If we seek to find the largest value of N before the performance begins to signif-

78

icantly degrade, then (3.7) and (3.8) will increase linearly with N (as all other

parameters are fixed). Clearly, the rate of cost increase after N∗ will always be

greater than the rate below N∗. Thus, N∗ represents the point at which the

cost begins to grow significantly, especially if rp is large. Similarly, if we seek to

minimise C with respect to K for a given N then c1Nrx is fixed and so (3.8) is

increasing with K if c1 < rxc2.

Now, recall that (3.3) gives

N∗ = K

(
rx + rp
rx

)

So, for small K, N∗ will also be small and as K increases, so will N∗. If N is

fixed, then we can define K∗ such that:

K∗ = N

(
rx

rx + rp

)

Clearly, if K < K∗ then N > N∗ and if K > K∗ then N < N∗. Thus, (3.7)

and (3.8) predict the optimal value of K to be Kopt = 1 if c1 < rxc2 and Kopt =

INT (K∗ + 0.5) if c1 > rxc2 However, as these asymptotic results will always

underestimate L in the region around N∗ the relationship is more accurately

described as Kopt = 1 if c1 ≤ rxc2 and Kopt ≈ K∗ if c1 > rxc2.

3.6.1 Numerical results of utility function

We now illustrate the scenarios described above through numerical examples.

Figures 3.21 and 3.22 show the cost varied against the number of clients, cal-

culated by the queueing network model and ODEs respectively. Clearly, under

these parameter values with rp = 1, the cost rises rapidly at around 80 clients,

which is the approximate maximum capability that the KDC can handle before

performance starts to significantly degrade. In a small system (N < 60), the

utility function is dominated by c2Krp, hence the cost is greater for a faster

KDC. The reason for this is the server will often be idle, and so the system is

79

not making efficient use of computational resources. In the cases rp = 2, 3 and

4, when N = 120 clients the exact computation of C using the queueing network

model becomes more costly, and so we adopt the use of the ODE solution. Figure

3.22 shows that the maximum number of clients which can be supported by the

KDC in case of rp = 2, 3 and 4 are around 210, 310 and 410, respectively with

these parameter values. Thus, doubling the service rate from rp = 2 to rp = 4

effectively doubles the capacity of the system in this case.

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100 110 120
N

C
os

t

rp=1

rp=2

rp=3

rp=4

Figure 3.21: Cost varied against the number of clients calculated by the queueing
network model, K = 1, c1 = c2 = 1, rq = rA = rB = rc = 1, ru = 0.01

We now start to seek to find the optimal value of K in order to minimize the

cost of the system. According to the analysis in the previous section, Kopt always

equals 1 when c1 ≤ rxc2. Hence, investigation of Kopt when c1 > rxc2 is more

interesting and valuable. We employ the ODE solution as the more efficient

approach in optimisation, particularly as we wish to explore larger population

sizes (N = 500, 1000, 2000 clients). In addition, we consider the running cost

c2 to be either 1/10 or 10, to explore the case where we are more interested in

minimising running costs or queue length (hence response time).

Figure 3.23 shows the results of cost varied with number of KDCs. Generally,

80

0

5

10

15

20

25

30

130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430
N

C
os

t

rp=2
rp=3
rp=4

Figure 3.22: Cost varied against the number of clients calculated by ODEs, K =
1, c1 = c2 = 1, rq = rA = rB = rc = 1, ru = 0.01

more clients need more KDCs to support them, in order to reduce the optimal

cost. In each of the three cases (N = 500, N = 1000 and N = 2000 clients), the

larger c2 results in a decreasing cost before the optimal point and an increasing

rate after that. For any given number of clients, the optimal value of K in Figure

14 is shown to be independent of c2. Kopt =5, 10, 20 for N = 500, 1000, 2000

although results from the asymptotic solution are not entirely accurate around N*.

The real optimal value of K should be around these values (K∗). Consequently,

we calculated a range of K around K∗ by the queueing network model to show

how the true value of Kopt can vary from K∗. Figure 3.24 compares the cost

around K∗ in case of 1000 clients with c2 = 0.1 and 10 calculated by ODEs

and the queueing network model. In the case of c2 = 10, Kopt is 10 which

is the same as the ODE result but with a slightly different value of cost. In

the case of c2 = 0.1, 15 KDCs gives the minimal cost with value 11.144 which

is slightly smaller than case of K = 14 and 16 with value 11.184 and 11.178,

respectively. The cost at K∗ is calculated by ODEs which is clearly close to the

optimal value. As such we propose that the asymptotic bound, whilst not giving

the exact optimal solution in every case, can often be used to calculate a near

81

optimal cost extremely efficiently.

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
K

C
os

t
N=2000, c2=1
N=1000, c2=1
N=500, c2=1
N=2000, c2=0.1
N=1000, c2=0.1
N=500, c2=0.1
N=2000, c2=10
N=1000, c2=10
N=500, c2=10

Figure 3.23: Cost varied with number of KDCs calculated by ODEs, c1 = 1,
rq = rp = rA = rB = rc = 1.0, ru = 0.01

0

50

100

150

200

250

300

350

400

7 8 9 10 11 12 13 14 15 16 17 18 19 20
K

C
os

t

AB, N=1000 & c2=0.1
AB, N=1000 & c2=10
QN, N=1000 & c2=0.1
QN, N=1000 & c2=10

Figure 3.24: Cost varied with number of KDCs calculated by ODEs and QN
model, c1 = 1, rq = rp = rA = rB = rc = 1.0, ru = 0.01

Figure 3.25 shows the cost varied with the rate of key refresh, calculated by ODEs.

82

0

50

100

150

200

250

300

350

400

450

500

0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016
ru

C
os

t

c2=1
c2=0.1
c2=10

Figure 3.25: Cost varied with rate of usekey calculated by ODEs, c1 = 1, rq =
rp = rA = rB = rc = 1.0, N = 1000, K = 10

In this experiment, the number of servers and clients has been fixed. Generally,

large ru results in a greater cost, caused by more frequently refreshing the key

and hence more workload has been added to the KDC servers, and consequently

more waiting jobs. As noted by Stallings [59], although the cost is increased, the

system becomes more secure as the eavesdropper has less cipher text to crack

any given session key. A security manager must try to make a balance between

security and performance. The balance point here is the value of ru where the

cost starts to increase rapidly. It is a simple matter to find that ru = 0.01 is the

approximate optimal refresh rate for all three cases considered (c2 = 0.1, 1 and

10). Thus it is clear that the simple ODE solution is sufficient to find the measure

require and in practical circumstance, the security manager could choose a value

for ru ≤ 0.01.

3.7 Summary

In this chapter we have shown how a key distribution centre can be modelled

and analysed using the Markovian process algebra PEPA. The intuitive means

83

of modelling the protocol is cumbersome and suffers from state space explosion,

preventing meaningful analysis with significant numbers of clients. We have taken

three main approaches to coping with this problem; first we have implemented a

simulation of the model, secondly we have attempted to approximate the system

behaviour with a much simpler model, and finally ODE analysis has been applied

as a deterministic fluid flow analysis. The approximation shows good accuracy

of prediction when compared with simulation, scales exceptionally well and is

fast to compute. ODE results have been compared with those derived from the

approximation. This (ODE) approach has two main limitations. Firstly, it is not

always as accurate as the queueing approximation and secondly, we have not been

able to obtain all our desired metrics. However, the ODE approach does not suffer

the same numerical problems as the queueing approximation, is very efficient to

solve and is shown to be very accurate when the number of clients is large. By

using the asymptotic results, it is possible to compute the metrics of interest very

efficiently. These techniques have been applied to a utility function to explore

the capacity planning for a system associated with this protocol. Three proposed

questions have been answered through numerical results which have been acquired

by a very efficient approach of combining techniques.

We can improve our proposed work flow by this case study. In the modelling

stage, one can model the clients as the same replicated component (first and

third modelling choice in this Chapter) or assign different name to it (second

modelling choice in this Chapter). If the performance model is simple and small

scaled, one can directly analyse it, otherwise, the model should be simplified.

Partial evaluation is able to be employed to reduced the components of clients, if

the clients in security protocols are tightly coupled. In the analysis stage, CTMC

method can be applied if the simplified model is small enough. If the PEPA

model can be transformed to a simple closed queueing network model, one only

need to calculated the balance equation to solve the model. Furthermore, one

can resort to ODE analysis to very large scale models. This is an approximation

which only gives accurate results when system is very large. Therefore, it is a

good complement to other exact solutions.

84

Chapter 4

Non-repudiation Protocols

ZG1&ZG3

4.1 Introduction

In this chapter two non-repudiation protocols are studied that are used to extend

the kind of modelling and analysis introduced in Chapter 3. The behaviour of

the first protocol is similar to the KDC model in Chapter 3. The second protocol

behaves more complicatedly as the non-repudiation server is able to serve multiple

classes of job. For the analysis, the ODE solution has been employed for reasons

of efficiency. The second protocol highlights a PEPA modelling problem, which is

the server capturing an unintended race. This problem has been solved by using

functional rates. In addition, mean value analysis (MVA) techniques has been

applied. MVA is not as computationally efficient as the ODE solution, however,

it is also not complicated and might therefore be used as an alternative solution

in situations when the ODE solution is not accurate, i.e. around N∗. Finally, a

utility function of second protocol is introduced to make a cost analysis. The novel

contributions of this Chapter includes applying MVA to a class of PEPA model,

the functional rates specification to solve an unintended resource competition,

and detailed comparison between ODE approximation and MVA.

85

The remainder of this chapter is organised as follows. In the next section we

introduce the two non-repudiation protocols to be modelled. Then, the PEPA

models of two non-repudiation protocols are introduced, and this is followed by

numerical results. Section 4.5 describes some of the problems with the current

mean value analysis approach in PEPA and presents some extended numerical

results. After that, functional rates are utilized to solve the problem of an unin-

tended race and illustrated by some numerical results in Section 4.6. In Section

4.7, a cost function of ZG3 and its numerical results are presented. There is a

summary in final section.

4.2 Non-repudiation protocols specification

A non-repudiation service will prevent either of the principals involved from deny-

ing the contract after the agreement. The two protocols depicted here were first

proposed by Zhou and Gollmann [71, 72] and use a non-repudiation server, known

as a Trusted Third Party (TTP). We denote these two protocols by ZG1 and ZG3,

respectively.

4.2.1 ZG1 specification

• A: originator of the non-repudiation exchange

• B: recipient of the non-repudiation exchange

• TTP : on-line trusted third party provide network services accessible to the

public

• M : message sent from A to B

• C: ciphertext for message M

• K: message key defined by A

• NRO = sSA(fNRO, B, L, C) : Non-repudiation of origin for M

86

• NRR = sSB(fNRR, A, L, C) : Non-repudiation of receipt for M

• sub K = sSA(fSUB, B, L,K) : proof of submission of K

• con K = sST (fCON , A,B, L,K) : confirmation of K issued by TTP

First, A sends the ciphertext (C) and a non-repudiation origin (NRO) for message

M to B, and then B replies back with a non-repudiation receipt (NRR) to A.

Now B possesses the ciphertext, but cannot read it as he still hasn’t got the key

to decrypt C. According to the non-repudiation requirement, B is not a trusted

agency to A for sending the key directly to B, they only can resort to a trusted

third party (TTP). After receiving the key and proof of submission (sub K), the

TTP will generate a confirmation of K (con K) and publish in a read only public

area. Finally, B can get the key from this public area to decrypt ciphertext (C)

and A fetches the confirmation of submission as non-repudiation evidence.

TTP

A B

3
.f
S
U
B
,B
,L
,K
,s
u
b
_
K

5
.f
C
O
N
,A
,B
,L
,K
,c
o
n
_
K

1.fNRO,B,L,C,NRO

2.fNRR,A,L,NRR

4
.fC
O
N,A
,B
,L
,K
,co
n_
K

Figure 4.1: A non-repudiation protocol invented by Zhou and Gollmann (ZG1)

87

(sendB) 1.A→ B : fNRO, B, L, C,NRO

(sendA) 2.B → A : fNRR, A, L,NRR

(sendTTP) 3.A→ TTP : fSUB, B, L,K, sub K

(publish&

getByB) 4.B ↔ TTP : fCON , A,B, L,K, con K

(publish&

getByA) 5.A↔ TTP : fCON , A,B, L,K, con K

4.2.2 ZG3 specification

• L : a unique label chosen by TTP to identify the message M

• Ts : the time that TTP received A’s submission

• Td : the time that TTP delivered and available to B

• NRO = sSA(fNRO, TTP,B,M) : non-repudiation of origin for M

• NRS = sSD(fNRS, A,B, Ts, L,NRO) : non-repudiation of submission of M

• NRR = sSB(fNRR, TTP,A, L,NRO) : non-repudiation of receiving a mes-

sage labelled L

• NRD = sSD(fNRD, A,B, Td, L,NRR) : non-repudiation of delivery of M

ZG1 describes a non-repudiation protocol with minimized involvement of a trusted

third party, acting as a “low weight notary”. However, timing evidence of sending

and receiving is required in some applications; hence ZG3 can be adopted in this

situation. A sends the plaintext (M) and a non-repudiation origin (NRO) to the

trusted third part (TTP), and then fetches the time of receiving (Ts) and non-

repudiation of submission (NRS) from a public area, after TTP has published

this information. The TTP tells B it received M from A by sending the NRO.

B generates a non-repudiation of receiving for TTP following. Finally, B and A

can fetch M and the time of delivery (Td), with other non-repudiation evidence,

from the public area, after the TTP has published.

88

TTP

A B
1
.f
N
R
O
,D
,B
,M
,N
R
O

2
.f
N
R
S
,A
,B
,T
s,
L
,N
R
S

3
.A
,L
,N
R
O

4
.fN
R
R,L
,N
R
R

5
.L
,M

6
.f
N
R
D
,T
d
,L
,N
R
R
,N
R
D

Figure 4.2: Another non-repudiation protocol invented by Zhou and Gollmann
(ZG3)

(request) 1.A→ TTP : fNRO, TTP,B,M,NRO

(response&

getByA1) 2.A↔ TTP : fNRS, A,B, Ts, L,NRS

(response) 3.TTP → B : A,L,NRO

(sendTTP) 4.B → TTP : fNRR, L,NRR

(response&

getByB) 5.B ↔ TTP : L,M

(response&

getByA2) 6.A↔ TTP : fNRD, Td, L,NRR,NRD

As ZG1 is very similar to KDC, we now only propose three similar performance

questions for ZG3: “how many clients can a given TTP configuration support?”,

“how much service capacity must we provide at a TTP to satisfy a given number

of clients?” and “what is the maximum rate at which keys can be refreshed before

the TTP performance begins to degrade?” These questions are answered through

numerical results in section 4.7.

89

4.3 PEPA models of non-repudiation

Following the approach established in the analysis of KDC protocols in Chapter

3, we form a translation from the protocol specification into a PEPA model and

extend this to the multiple client case.

4.3.1 ZG1 PEPA Model

We begin by forming components of a pair of principals A and B.

TTP
def
= (publish, rp).TTP

A0
def
= (sendB, rb).A1

A1
def
= (sendA, ra).A2

A2
def
= (sendTTP, rt).A3

A3
def
= (publish, rp).A4

A4
def
= (geyByA, rga).A5

A5
def
= (work, rw).A0

B0
def
= (sendB, rb).B1

B1
def
= (sendA, ra).B2

B2
def
= (publish, rp).B3

B3
def
= (getByB, rgb).B4

B4
def
= (work, rw).B0

SystemZG1
def
= TTP [K] BC

publish
(A0 BC

L
B0)[N]

Where, L = {sendB, sendA,work}.

In order to simplify the model specification and analysis, we combine A and B

90

into a new component called AB, using a process referred to as partial evaluation

[11]. This gives rise to the following description for the complete system when

there are N pairs of principals.

TTP
def
= (publish, rp).TTP

AB0
def
= (sendB, rb).AB1

AB1
def
= (sendA, ra).AB2

AB2
def
= (sendTTP, rt).AB3

AB3
def
= (publish, rp).AB4

AB4
def
= (getByA, rga).AB5

+(getByB, rgb).AB6

AB5
def
= (getByB, rgb).AB7

AB6
def
= (getByA, rga).AB7

AB7
def
= (work, rw).AB0

SystemZG1
def
= TTP [K] BC

publish
AB0[N]

AB0 to AB7 in the above ZG1 PEPA model denote the different behaviours of

the AB component, and its evolution along the sequence of prescribed actions

in the protocol. The choice from AB4 to AB5 and AB6 means step 4 and step

5 in ZG1 can happen in any order. The work action is used to define that B

can do something with the key and ciphertext after he has obtained these, before

returning to the state AB0 to make a new request again, which forms a working

cycle to investigate the steady state.

4.3.2 ZG3 PEPA Model

Once again we begin by defining the behaviour of a pair of principals.

TTP
def
= (response, rp).TTP

91

A0
def
= (request, rt1).A1

A1
def
= (response, rp).A2

A2
def
= (getByA1, rga1).A3

A3
def
= (response, rp).A4

A4
def
= (sendTTP, rt2).A5

A5
def
= (response, rp).A6

A6
def
= (getByA2, rga2).A7

A7
def
= (work, rw).A0

B0
def
= (response, rp).B1

B1
def
= (getByA1, rga1).B2

B2
def
= (response, rp).B3

B3
def
= (sendTTP, rt2).B4

B4
def
= (response, rp).B5

B5
def
= (getByB, rgb).B6

B6
def
= (work, rw).B0

SystemZG3
def
= TTP [K] BC

response
(A0 BC

L
B0)[N]

Where, L = {getByA1, sendTTP,work}.

As before, these are combined to form the merged component AB in the descrip-

tion of the complete system.

TTP
def
= (response, rp).TTP

AB0
def
= (request, rt1).AB1

AB1
def
= (response, rp).AB2

AB2
def
= (getByA1, rga1).AB3

AB3
def
= (response, rp).AB4

92

AB4
def
= (sendTTP, rt2).AB5

AB5
def
= (response, rp).AB6

AB6
def
= (getByB, rgb).AB7

+(getByA2, rga2).AB8

AB7
def
= (getByA2, rga2).AB9

AB8
def
= (getByB, rgb).AB9

AB9
def
= (work, rw).AB0

SystemZG3
def
= TTP [K] BC

response
AB0[N]

The PEPA model of ZG3 has a similar structure to that for ZG1. The main

difference is the TTP component in ZG3 should respond three times for different

requests in one cycle, which increases the difficulty of modelling and analysis, as

discussed in Section 4.5.

4.3.3 Mean value analysis

Mean value analysis, which has been described in Chapter 2, is a traditional

efficient solution for stochastic models. MVA is efficient as it avoids generation

of the entire Markov chain. We defined a class of PEPA models, which can be

applied with MVA. ZG1 and ZG3, which are the first two PEPA models that

have been applied with MVA, belong to this class of PEPA model. Because of

the computational effort of the exact solution, an approximated version has been

applied here. The approximation also shows acceptable results in a case study in

Chapter 3, and it is good enough for most purposes.

Three key points should be addressed for the models studied here. First, in order

to apply this characteristic model amenable to mean value analysis to ZG1 and

ZG3, the branching actions have been modified to have the same name in each

model (see the equations below for each model respectively). This modification

does not affect the analysis and is merely a consequence of the way in which the

93

class has been specified.

AB4
def
= (get, rga).AB5 + (get, rgb).AB6 (ZG1)

AB6
def
= (get, rgb).AB7 + (get, rga2).AB8 (ZG3)

The second factor is the calculation of a quantity referred to as the visit count

(Vi). This quantity specifies the number of times a derivative ABi is encountered,

relative to some reference derivative ABI . For both models here, all Vi is 1, except

the branching points. For ZG1:

V5 =
rga

rga + rgb

V6 =
rgb

rga + rgb

For ZG3:

V7 =
rgb

rga2 + rgb

V8 =
rga2

rga2 + rgb

The final observation is that the rates of the response actions in ZG3 are the

same in AB1, AB3 and AB5. This restriction is necessary in order to restrict the

overall service rate at the TTP. Whilst this can affect the performance estimation

of individual parts of the protocol, this restriction has negligible effect of on overall

mean system performance.

94

4.3.4 ODE analysis

ODE analysis is the most efficient solution of the techniques that were introduced

in the last chapter. Although, the approximation is inaccurate around a location

(N∗), it gives a very good trend and is very accurate when population is large.

The area around N∗ also can be solved by other exact solutions (i.e. MVA) as a

combined solution if necessary. In addition the location of N∗ can be predicted

by deriving the point at which the two sides of the minimum function coincide.

A more detailed description can be found in [34] and also a brief description in

Chapter 2.

In experiments we have performed with different models, we have observed that

the ODEs give good predictions of the steady state behaviour only when there is

at most one active minimum function [65]. This condition holds for the models

considered here as there is only one type of Trusted Third Party.

The ODEs for ZG1 and ZG3 can be derived following the approach of Hillston [34].

ODEs of ZG1:

d

dt
AB0(t) = rwAB7(t)− rbAB0(t)

d

dt
AB1(t) = rbAB0(t)− raAB1(t)

d

dt
AB2(t) = raAB1(t)− rtAB2(t)

d

dt
AB3(t) = rtAB2(t)− rpmin(AB3(t), TTP (t))

d

dt
AB4(t) = rpmin(AB3(t), TTP (t))

−rgaAB4(t)− rgbAB4(t)

d

dt
AB5(t) = rgaAB4(t)− rgbAB5(t)

d

dt
AB6(t) = rgbAB4(t)− rgaAB6(t)

d

dt
AB7(t) = rgbAB5(t) + rgaAB6(t)− rwAB7(t)

95

d

dt
TTP (t) = 0

ODEs of ZG3:

d

dt
AB0(t) = rwAB9(t)− rt1AB0(t)

d

dt
AB1(t) = rt1AB0(t)− [rp

AB1(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB2(t) = −rga1AB2(t) + [rp

AB1(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB3(t) = rga1AB2(t)− [rp

AB3(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB4(t) = −rt2AB4(t) + [rp

AB3(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB5(t) = rt2AB4(t)− [rp

AB5(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB6(t) = −rgbAB6(t)

−rga2AB6(t) + [rp
AB5(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB7(t) = rgbAB6(t)− rga2AB7(t)

d

dt
AB8(t) = rga2AB6(t)− rgbAB8(t)

d

dt
AB9(t) = rga2AB7(t) + rgbAB8(t)− rwAB9(t)

d

dt
TTP (t) = 0

Our analysis is interested primarily in the number of clients waiting for a publish

(or response in ZG3) action from the TTP , as the clients can then fetch what

they need from the public area or obtain a service results. This is represented

96

in the model by the number of AB3 in ZG1, AB1, AB3 and AB5 in ZG3. The

average queuing length L(N) is the number of requests awaiting a response from

the TTP . It is the number of the AB3 (in ZG1), or AB1, AB3 and AB5 (in ZG3),

derivatives when t −→∞ when there are N customers in the population.

The average response time is another interesting metric for us. Again, the same

as KDC application to obtain this we apply the arrival theorem. It can be ap-

proximately calculated as follows.

W (N) =
1

rp
, L(N − 1) + 1 ≤ K

W (N) =
1

rp
+
L(N − 1) + 1−K

Krp

=
L(N − 1) + 1

Krp
, L(N − 1) + 1 > K

4.4 Numerical results

0

5

10

15

20

25

30

35

40

45

50

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
N

L(N)

ODE
MVA

Figure 4.3: Average number of waiting jobs of ZG1 calculated by the ODE and
MVA, rp = rb = ra = rt = rga = rgb = 1, rw = 0.01

97

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
N

L(N)

Figure 4.4: Average number of waiting jobs of ZG1 calculated by the ODE,
rp = rb = ra = rt = rga = rgb = 1, rw = 0.01

Figure 4.3 shows the average number of waiting client requests calculated by

MVA compared with ODE results. Obviously, the average number of waiting

clients increases as the population size increases. The rate of increase is initially

slow, but is far greater when N is large. As we would expect, the results from

ODE analysis are acceptable when N is very small or very large. The maximum

divergence point emerges when N = 110, the further we go beyond this point, the

more accurate the results become. Hence, if we set this case in a real situation,

ODE analysis becomes the best choice as its efficiency and accuracy when N

larger than about 150, as MVA tends to compute more slowly for larger N . The

results of ODE analysis for larger numbers of clients are presented in Figure 4.4.

The ODEs are solved in Matlab within less than one minute for largest case

(N = 108) in our graph, rather than MVA which takes more than 20 minutes

when N is 105.

Figure 4.5 shows the average number of waiting jobs at the TTP , for different

values of service (publish) rate, rp, varied with population size, N . The compar-

ison is between a single server and multiple servers with the same total service

98

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
N

L(N)

rp=0.6, K=1
rp=0.3, K=2
rp=0.2, K=3

Figure 4.5: Average number of waiting jobs of ZG1 varied with population size
calculated by the MVA, rb = ra = rt = rga = rgb = 1, rw = 0.01

capacity. In initial stages (small N and small average queue length), the case of

rp = 0.2 and K = 3 shows the worst performance(longer queueing size), as not all

serves have been utilised and the working servers have lower capability. Therefore,

we can see a linear growth of queueing length when K = 3 and N < 50. However,

once the population grows sufficiently for all servers to be highly utilised, then the

three cases will show identical performance. Obviously, when demand is low, it

is better to have one fast server than several slow ones, but as demand increases,

only the overall service capacity matters.

This situation is clearer when we plot the average response time varied with

number of clients in Figure 4.6. The average response time does not change when

there are a small number of clients involved in the system, but the performance

converges once there are sufficiently large populations.

Under the assumption of the same rate of response for derivatives of AB1, AB3

and AB5, ZG3 performs very similarly to ZG1, as illustrated in Figure 4.7, Figure

4.8 and Figure 4.9 with the same parameters as the ZG1 model. According to

the assumption, AB1, AB3 and AB5 always have the same value. Therefore, we

99

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
N

W(N)

rp=0.6, K=1
rp=0.3, K=2
rp=0.2, K=3

Figure 4.6: Average response time of ZG1 varied with population size calculated
by the MVA, rb = ra = rt = rga = rgb = 1, rw = 0.01

choose one of them to be presented in these three figures.

0

2

4

6

8

10

12

14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
N

L1(N)

MAV
ODE

Figure 4.7: Average number of AB1 component of ZG3 calculated by the ODE
and MVA, rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01

Figure 4.10 compares the performance between ZG1 and ZG3. Obviously, as the

100

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
N

L1(N)

rp=0.6, K=1
rp=0.3, K=2
rp=0.2, K=3

Figure 4.8: Average number of AB1 component of ZG3 varied with population
size calculated by the MVA,rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
N

W1(N)

rp=0.6, K=1
rp=0.3, K=2
rp=0.2, K=3

Figure 4.9: Average response time for AB1 component of ZG3 varied with popula-
tion size calculated by the MVA, rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01

TTP in ZG1 is designed as a “low weight notary”, the number of waiting requests

at the TTP of ZG1 is always smaller than that in ZG3 with the same parameters.

101

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N

L(N)

ZG1
ZG3

Figure 4.10: Average number of waiting jobs with ZG1 and ZG3 calculated by
the MVA, rp = rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01

However, a system engineer should clearly be very careful to choose either of

these two protocols based on the trade off between performance and the need for

added security functionality.

4.5 Limitations and Extended results

We have specified the ZG3 model using the same service (response) rate, as there

are two main difficulties if publishing with different rates for derivative AB1, AB3

and AB5. Firstly, if the TTP serves the three jobs with different rates, then the

PEPA model of ZG3 is intuitively written like

TTP
def
= (response1, rp1).TTP + (response2, rp2).TTP

+(response3, rp3).TTP

However, this expression gives rise to a competition between response1, response2

102

and response3 in PEPA, which does not capture the intended behaviour of the

actual system. This problem can be solved by using functional rates (see details

in next section).

Another problem is the average response time calculation using MVA with dif-

ferent service rates at the TTP and multiple servers. In this case, in order to

obtain the response time, the time it takes for one TTP server to become avail-

able should be calculated first. However, in FCFS queueing this requires us to

know the queued order of the requests, which is clearly infeasible. We can only

obtain the response time for three responding rates when there is a single TTP

server. Thus, the waiting time for an arriving request is the time for a single

TTP server to respond to all the requests in the queue, which does not require

any knowledge about the order in which requests are queued.

This situation has been illustrated in Figure 4.11, which we include here as an

indication of the kind of scenario we could investigate. Here W (1), W (3) and

W (5) denotes the response times for the three responding actions by the TTP

in the ZG3 protocol, with the rates rp1,rp2 and rp3 respectively. These are equiv-

alent to the derivatives AB1, AB3 and AB5 in the PEPA model. Clearly, the

average response time for the second job type is slightly larger than first one and

smaller than third job, because of the reciprocal ratio between response time and

responding rate. However, average response time of all three job types grow at

the same rate. The reason is obviously that the time for processing all the re-

quests already within the queue is the same, only the time to process the arriving

request differs. Thus, the difference between the response times of these three

response actions is a constant.

It is also interesting to note the differences that occur as we alter the rate of the

second and third response action. This difference between the two sets of curves

is quite significant, far more so than we might naively expect. The initial stage

(N = 1 ∼ 5) of the average response time of the second type of jobs (W (3))

becomes larger as response rate decreases. Nevertheless, all three job types tends

to respond quicker than the first set as N increases, because the average service

103

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
N

W(N)

W1, rp2=0.5, rp3=0.2
W3, rp2=0.5, rp3=0.2
W5, rp2=0.5, rp3=0.2
W1, rp2=0.4, rp3=0.3
W3, rp2=0.4, rp3=0.3
W5, rp2=0.4, rp3=0.3

Figure 4.11: Average response time of ZG3 varied with population size with
different service rates on second job type calculated by the MVA, rp1 = rt1 =
rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01

time (1/rp1+1/rp2+1/rp3) is decreased, and the proportion of this type of request

waiting at the TTP is smaller.

4.6 Functional Rates Specification

As we mentioned above, an intended race gives over capacity of the servers when

different publish actions are modelled. Each type of services should only stick on

this type of customer. Therefore, the actual service rate in our model becomes a

function of number of each type of customers waiting for the service. The model

with functional rates can be specified as follow:

AB0
def
= (request, rt1).AB1

AB1
def
= (publish1, rx1).AB2

AB2
def
= (getByA1, rga1).AB3

104

AB3
def
= (sendB, rx3).AB4

AB4
def
= (sendTTP, rt2).AB5

AB5
def
= (publish2, rx2).AB6

AB6
def
= (getByB, rgb).AB7

+(getByA2, rga2).AB8

AB7
def
= (getByA2, rga2).AB9

AB8
def
= (getByB, rgb).AB9

AB9
def
= (work, rw).AB0

TTP
def
= (publish1, rx1).TTP

+(publish2, rx2).TTP

+(sendB, rx3).TTP

System
def
= TTP [K] BC

publish1,publish2,sendB
AB0[N]

Where,

rx1 = rp1
AB1(t)

AB1(t)+AB3(t)+AB5(t)
min(AB1(t) + AB3(t) + AB5(t), TTP (t)),

rx2 = rp2
AB5(t)

AB1(t)+AB3(t)+AB5(t)
min(AB1(t) + AB3(t) + AB5(t), TTP (t)).

rx3 = rb
AB3(t)

AB1(t)+AB3(t)+AB5(t)
min(AB1(t) + AB3(t) + AB5(t), TTP (t)).

publish1, publish2, sendB are the different action names corresponding to response

in ZG3 model in section 4.2.

In this ZG3 PEPA model, we specified the functional rates for each cooperation

under action publish1, publish2 and sendB by rx1, rx2 and rx3, respectively,

instead of rp1, rp2 and rb. Each of these function describes a product of the

actual service rate for one job in the system(rp1, rp2 or rb), the proportion of the

number of waiting jobs of each type (ABi ∗ ((AB1 +AB3 +AB5)−1), i = 1, 3, 5)

and the times of service (min(TTP,AB1+AB3+AB5)), which stick each service

only on its job type to eliminate the potential race.

There are several ways to solve this model. The most convenient and direct way

is loading the PEPA in IPC (International PEPA Compiler) [73] tool and solve it.

The PEPA eclipse plug-in [68, 74] is usable, but does not support PEPA models

105

with functional rates. However, it is possible to derive an equivalent model in

the CMDL (Chemical Model Definition Language) format directly from above

PEPA model using a version of the PEPA eclipse plug-in, which can contain rate

functions and is able to be analyzed by the fluid flow approach (based on ODE)

or stochastic simulation, supported by the tool. The following CMDL model is

generated by eclipse plug-in and modified with functional rates.

//Rates //Population sizes

rb = 1.0; AB0 = N ;

rga1 = 1.0; AB1 = 0;

rga2 = 1.0; AB2 = 0;

rgb = 1.0; AB3 = 0;

rp1 = 1.0; AB4 = 0;

rp2 = 1.0; AB5 = 0;

rt1 = 1.0; AB6 = 0;

rt2 = 1.0; AB7 = 0;

rw = 0.01; AB8 = 0;

AB9 = 0;

TTP = K;

//Reactions

getByA1, AB2 → AB3, rga1;

getByA21, AB6 → AB7, rga2;

getByA22, AB8 → AB9, rga2;

getByB1, AB6 → AB8, rgb;

getByB2, AB7 → AB9, rgb;

publish1, TTP + AB1 → TTP + AB2, rx1;

publish2, TTP + AB5 → TTP + AB6, rx2;

request, AB0 → AB1, rt1;

sendB, TTP + AB3 → TTP + AB4, rx3;

sendTTP,AB4 → AB5, rt2;

work,AB9 → AB0, rw;

106

Where,

rx1 = [rp1 ∗ AB1 ∗ ((AB1 + AB3 + AB5)−1) ∗min(TTP,AB1 + AB3 + AB5)]

rx2 = [rp2 ∗ AB5 ∗ ((AB1 + AB3 + AB5)−1) ∗min(TTP,AB1 + AB3 + AB5)]

rx3 = [rb ∗ AB3 ∗ ((AB1 + AB3 + AB5)−1) ∗min(TTP,AB1 + AB3 + AB5)]

This CMDL format model is formed by Rates, Population sizes and Reactions.

TheRates section is exactly the same as specified in the PEPA model. Population sizes

contains the initial population of all derivatives and components. In our scenario,

there are N pair clients which have not started any behaviours at the initial stage,

that are represented by AB0 = N and other derivatives have no population. K is

the population of the TTP all the time as there are no derivatives associated with

it. The most important and main section of CMDL definition is Reactions, in

which system behaviours defined as all actions name, individual state transitions

and their rates.

The final solution is derived manually by generating a set of ODEs which repre-

sent the PEPA Model, then solving these ODEs by any mathematical tools, e.g.

MatLab. This kind of method is not convenient in terms of personal effort(writing

ODEs and scripting code), however, it is more flexible. The set of ODEs with

functional rates can be derived as follows:

d

dt
AB0(t) = rwAB9(t)− rt1AB0(t)

d

dt
AB1(t) = rt1AB0(t)− [rp1

AB1(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB2(t) = −rga1AB2(t) + [rp1

AB1(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB3(t) = rga1AB2(t)− [rb

AB3(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB4(t) = −rt2AB4(t) + [rb

AB3(t)

AB1(t) + AB3t+ AB5(t)

107

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB5(t) = rt2AB4(t)− [rp2

AB5(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB6(t) = −rgbAB6(t)

−rga2AB6(t) + [rp2
AB5(t)

AB1(t) + AB3t+ AB5(t)

×min(AB1(t) + AB3(t) + AB5(t), TTP (t))]

d

dt
AB7(t) = rgbAB6(t)− rga2AB7(t)

d

dt
AB8(t) = rga2AB6(t)− rgbAB8(t)

d

dt
AB9(t) = rga2AB7(t) + rgbAB8(t)− rwAB9(t)

d

dt
TTP (t) = 0

4.6.1 Numerial results

Previously in this chapter, an assumption of the same action name and the same

rates has been made for publish1, publish2 and sendB. With functional rates,

now more general scenario can be investigated. e.g. any differences between these

three TTP services.

Figure 4.12 shows the average queue length varied with the number of customers

involved in this non-repudiation system, solved by the ODE solution supported by

the tool. The divergence point (N∗) is at N = 14 and 16 respectively for the two

curves. According to the results derived in the previous chapter, it is known that

the further one goes from this area, the more accurate the ODE analysis becomes.

However, this does not really affect our analysis, and the divergence point can be

exactly predicted. The queuing length increases when more customers join the

system for both cases. In the case where rp1 = 0.5 and rp2 = 0.2, the number

of waiting jobs is always larger than when rp1 = 0.4 and rp2 = 0.3, due to the

lower average service rate. In addition, the queue length of this set of parameters

increases faster, because the slower server gets more load.

108

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
N

L(N)

rp1=0.4, rp2=0.3
rp1=0.5, rp2=0.2

Figure 4.12: Average queue length varied with population size calculated by the
ODE, rb = rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01, K = 1

To calculate the average response time, the equations which were proposed in

Section 4.4 can no longer be adopted. As the second limitation we described

in Section 4.5, response time can not be calculated easily in the case of multiple

servers and multi-type services in one station. However, if we assume there is just

one sever in a queueing station, then the average response time is the average

service time of all jobs ahead of a randomly observed job, plus the time to serve

the randomly observed job [46]. In this case(ZG3), the equation can be written

as follows:

W =
L(1)

rp1
+
L(3)

rb
+
L(5)

rp2
+

1

ri
, ri = rp1, rb, rp2 (4.1)

Where, the service rate ri depends on the job type of the random observer, and

L(1),L(3) and L(5) are the number of different types of waiting jobs.

Figure 4.13 shows the average response time varied with system capacity by

individual service behaviours. Here W (1), W (3) and W (5) denote the response

109

times for the three responding actions by the TTP in the protocol, with the

rates rp1,rb and rp2 respectively. These are equivalent to the derivatives AB1,

AB3 and AB5 in the PEPA model. Clearly, the average response time for the

first job type is slightly larger than third one (AB5) and smaller than second job

(AB3), because of the reciprocal ratio between response time and responding rate.

However, average response time of all three job types grow at the same rate. The

reason is obviously that the average time for processing all the requests already

within the queue is the same, only the time to process the arriving request differs.

Thus, the difference between the response times of these three response actions

is a constant.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
N

W(N)

W1, rp1=0.5, rp2=0.2
W3, rp1=0.5, rp2=0.2
W5, rp1=0.5, rp2=0.2
W1, rp1=0.4, rp2=0.3
W3, rp1=0.4, rp2=0.3
W5, rp1=0.4, rp2=0.3

Figure 4.13: Average response time varied with population size calculated by the
ODE, rb = rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01, K = 1

When we alter the rate of the second and third response actions, the difference

between the two sets of curves is quite significant, far more so than we might

naively expect.The initial stage (N = 1 ∼ 6) of the average response time of the

first type of jobs (W (1)) becomes larger as response rate decreases. Nevertheless,

all three job types tend to respond quicker than the first set as N increases,

because the average service time (1/rp1 + 1/rb + 1/rp2) is decreased, and the

proportion of this type of request waiting at the TTP is smaller.

110

Moreover, multiple servers can be analyzed, as illustrated in Figure 4.14. Here,

L(1), L(3) and L(5) denote the queuing lengths for the three responding actions

by the TTP in the protocol, corresponding to AB1, AB3 and AB5 in the PEPA

model. In each set of curves, larger service rate results in a smaller number of

waiting customers. Generally, there are fewer jobs waiting if more servers are

provided. Nevertheless, the number of the first type waiting jobs (L1) with four

TTP servers reaches the number of second type jobs with two TTP servers when

N = 145, as they are fastest and slowest one in each set respectively.

0

5

10

15

20

25

30

35

40

45

50

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145
N

L(N)

K=2, L1

K=2, L3

K=2, L5

K=4, L1

K=4, L3

K=4, L5

Figure 4.14: Average queue length varied with population size with different
number of servers calculated by ODEs, rb = rt1 = rga1 = rb = rt2 = rgb = rga2 =
1, rp1 = 0.5, rp2 = 0.8, rw = 0.01

4.7 Utility function

We now introduce the utility function to answer our proposed performance ques-

tions for ZG3.

C = c1L+ c2Krp , c1, c2 ≥ 0 (4.2)

111

This utility function keeps the same form as which we defined in Chapter 3 for

KDC to make a consistent investigation. In this function, L denotes the average

waiting customers at the non-repudiation server (TTP), and K is the number of

servers. rp is the response rate of the TTP server. We assume the TTP server

responds any type of jobs in the same rate here. C1 and C2 are cost rates, and

they many depend on the type of system or quality of service agreement with

customers.

4.7.1 Numerical results

0

5

10

15

20

25

30

35

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155
N

C
os

t

rp = 2
rp = 4

Figure 4.15: Cost varied against the number of clients calculated by ODEs, K =
1, c1 = c2 = 1, rt1 = rga1 = rb = rt2 = rgb = rga2 = 1, rw = 0.01

Figure 4.15 presents the cost varied against the number of clients, calculated by

ODEs. Generally, the more clients come to the system, the longer the average

queue length is. As the service capacity does not change in this experiment,

therefore, the cost increases along with the number of clients according to the

utility function. Moreover, it is not difficult to find that the performance start

to degrades significantly since N = 70 when rp = 2 and N = 140 when rp = 4

112

under these parameters.

0

200

400

600

800

1000

1200

1400

1600

1 6 11 16 21 26 31 36 41 46 51 56
K

C
os

t

N = 500
N = 1000
N = 1500

Figure 4.16: Cost varied with number of TTP servers calculated by ODEs, c1 =
c2 = 1, rt1 = rga1 = rb = rt2 = rgb = rga2 = rp = 1, rw = 0.01

Figure 4.16 shows the cost varied with the number of TTP servers, calculated

by ODEs. As we expected, the system needs more TTP server to support more

clients to keep a reasonable cost. At the early stage of increasing number of

servers, cost of service is very small. Thus, waiting customers dominate the total

costs. With more servers are introduced to the system, cost of service is increas-

ing. Meanwhile, average queue length is reducing under the same total number

of client. Therefore, cost of service will dominate the total cost finally. However,

there should be a optimal point between the two thresholds. The optimal points

in our experiment are K = 14, K = 28, and K = 42 for N = 500, N = 1000, and

N = 1500 respectively.

The relationship between cost and rate of key fresh is illustrated in Figure 4.17.

The more frequently the users request a new session key, the more workload has

been introduced in the system at TTP server. Consequently, cost of customers

waiting is increased. However, the high frequency of refreshing key gives a hacker

less time and cipher text to creak the session key. In practical situation, the

113

0

50

100

150

200

250

300

350

400

450

0.001 0.006 0.011 0.016 0.021 0.026 0.031 0.036 0.041 0.046
r w

C
os

t

K = 1
K = 2
K = 4

Figure 4.17: Cost varied with rate of work calculated by ODEs, c1 = c2 = 1, rt1 =
rga1 = rb = rt2 = rgb = rga2 = rp = 1, N = 500

balance need to achieve by a engineer to realise both acceptable security and

performance. In this case, we assume the balance point is the value of rw where

the cost start to increase rapidly. Hence, it is easy to find that the optimal point

here is rw = 0.008, rw = 0.014 and rw = 0.024 for one server, two servers and

four servers respectively.

4.8 Summary

In this chapter we have applied both mean value analysis and fluid approximations

to solve PEPA models of two non-repudiation protocols. Both approaches enable

systems with extremely large numbers of components to be solved efficiently.

When the population size, N , is very large, there is almost no difference between

the values obtained by either method, although the fluid approximation is slightly

quicker. However, when N is small the fluid approximation diverges in the region

around a known point, hence in such cases, mean value analysis is preferable. We

also analysed a utility function for ZG3 to further understand the system from a

114

practical aspect.

In addition, this study has highlighted some limitations with the initial approach

used. The unintended competition behaviour has been solved by applying func-

tional rates and deriving ODEs. For the average response time calculation, al-

though we can solve this scenario when there is only one server (at the trusted

third party), we have not been able to apply mean value analysis (even by using

ODEs solution, we only can obtain average queue length) to the case where there

are multiple servers.

We can add two aspects to our proposed work flow by through this case study. In

simplification step, functional rates specification can be utilised to avoid to write

full detailed behaviour of the server when there is an unintended competition

between different service actions. MVA is able to utilised in the analysis stage as

an exact solution, however, it is only can be applied in our defined class of PEPA

model.

115

Chapter 5

An Optimistic Fair Exchange

Protocol

5.1 Introduction

The case study in this chapter is another type of non-repudiation protocol, dif-

ferent from ZG1 and ZG3 introduced in the last chapter. This is an optimistic

non-repudiation protocol, which only utilises the third trust party when accidents

happen. This leads us to model the protocol in two ways: with misbehaviour

and without. Moreover, we employ a different modelling form, in which a server

has been considered as several threads, with each thread associated with a cus-

tomer. Hence, the service rates of the server becomes a function of the number

of threads. The analysis technique used in this case is ODEs as it is scalable and

efficient. The contribution of this Chapter are employment of a multi-threads

modelling concept and the comparison between the protocol with and without

misbehaviour.

In the next section a specification of the basic version (no misbehaviour) of the

e-commerce protocol is given. The subsequent section then introduces the PEPA

model of this basic version of the protocol, followed by numerical results. After

that, an extended version (with misbehaviour) of the e-commerce protocol is

116

described. Section 5.6 gives the PEPA model and a set of ODEs for this case,

then some numerical results. We then conduct a utility function analysis in

Section 5.8. Finally this chapter has been summarised in Section 5.9.

5.2 A e-commerce Protocol (basic)

This e-commerce protocol is an optimistic non-repudiation protocol, which adopts

an offline TTP (Third Tust Party) not only to ensure fair exchange, but also to

minimize the workloads from TTP server. Following the formal description in

[51], the basic protocol (without misbehaviour of any principals) is illustrated

below:

3.sendMp

4.sendCg

5.sendMk

6.sendCk

1.download

2.agreePrice

Figure 5.1: The basic protocol

There is a set environment before protocol operates, in which C (Customer) opens

an account with B (Bank) and M (Merchant) registers with the TTP. The protocol

is then covered in six steps:

1. C selects a product to purchase.(download) The customer chooses

a product, and downloads it from the Internet merchant. However, this

e-product has been encrypted, and so the customer cannot acquire the

product without a decryption key. This product can be used for validation

later.

117

2. C and M agree upon a price for the product.(agreePrice) Several

messages may be exchanged between C and M in this step.

3. C sends PO (purchase order) to M.(sendMp) The customer sends

three elements to the merchant:(a)the purchase order; (b)a digitally signed

cryptographic checksum of the PO; and (c) the PT (Payment Token).

4. M sends encrypted product to C or abort the transaction.(sendCg

or sendCabort) the merchant checks the purchase order which was re-

ceived at the last step: if the merchant is not satisfied, then an abort

message is sent to C; otherwise, the following is sent to C: (a) a sgined

cryptographic checksum of the purchase order; (b) encrypted product; (c)

signed cryptographic checksum of the encrypted product; (d) encrypted

random number; and (e) signed cryptographic checksum of the encrypted

random number.

5. C sends payment token decryption key to M or abort the trans-

action.(sendMk or sendMabort) C checks the message from M, if it is

an abort, then abort the transaction. C validates the product, and sends

M a signed abort message if the product has failed to be validated; other-

wise, sends the payment token decryption key and a signed cryptographic

checksum of the encrypted product decryption key.

6. M sends product decryption key to C or terminates the transac-

tion.(sendCk) If M receives an abort message from C, it terminates the

transaction. Otherwise, if the received PT decryption key works, M sends

the following to C:(a) the product decryption key; (b) signed cryptographic

checksum of the encryption product decryption key; (c) the multiplicative

inverse of a random number; (d) signed cryptographic checksum of the en-

crypted multiplicative inverse of the random number.

To address the performance aspects of this protocol, this illustration focuses on

the behaviour. Therefore the security contents have been eliminated from the de-

scription above. The original paper [51] gives a more detailed version. Moreover,

118

the protocol presented here is the basic version without TTP involved, as a “no

dispute” assumption has been made. An extended model with misbehaviour of

participants will be illustrated in Section 6.

5.3 PEPA Model of the basic protocol

In this work, we consider a scenario of a number of customers buying an e-

product from a merchant under this fair exchange protocol. This merchant has

been divided to number of threads (T) to serve each customer, and the number

of threads has been allocated in dynamic way which means the threads number

depend on the number of active customers. Therefore, all the rates of active

actions of the merchant depend on the active customers numbers. In other words

it depends on the state of the system, through a functional rate. The more

threads that have been allocated, the slower the individual rate of each thread.

Consequently, these functional rates and the number of threads are in inverse

ratio. The model is formulated as:

C0
def
= (download, rd).C1

C1
def
= (agreePrice, ra).C2

C2
def
= (sendMp, rsmp).C3

C3
def
= (sendCg, f1).C4 + (sendCabort, f2).C7

C4
def
= (sendMk, rsmk).C5 + (sendMabort, rsma).C6

C5
def
= (sendCk, f3).C6

C6
def
= (work, rw).C0

C7
def
= (sendMabort, rsma).C6

T0
def
= (download, rd).T1

T1
def
= (agreePrice, ra).T2

119

T2
def
= (sendMp, rsmp).T3

T3
def
= (sendCg, f1).T4 + (sendCabort, f2).T7

T4
def
= (sendMk, rsmk).CT5 + (sendMabort, rsma).T6

T5
def
= (sendCk, f3).T6

T6
def
= (work, rw).T0

T7
def
= (sendMabort, rsma).T6

System
def
= C0[N] BC

L
T0[N]

Where, L = {download, agreePrice, sendMp, sendCg, sendCabort, sendMk,

sendMabort, sendCk,work}
f1 = rscg, f2 = rsca, f3 = rsck, (if N = 1);

f1 = rscg
C3+1

, f2 = rsca
C3+1

, f3 = rsck
C5+1

, (if N > 1).

Again, as each customer and merchant thread are tightly coupled, the partial

evaluation [11] approach has been employed and the model as follows:

CT0
def
= (download, rd).CT1

CT1
def
= (agreePrice, ra).CT2

CT2
def
= (sendMp, rsmp).CT3

CT3
def
= (sendCg, f1).CT4 + (sendCabort, f2).CT7

CT4
def
= (sendMk, rsmk).CT5 + (sendMabort, rsma).CT6

CT5
def
= (sendCk, f3).CT6

CT6
def
= (work, rw).CT0

CT7
def
= (sendMabort, rsma).CT6

System
def
= CT0||CT0|| · · · ||CT0︸ ︷︷ ︸

N

120

Where, f1 = rscg, f2 = rsca, f3 = rsck, (if N = 1);

f1 = rscg
CT3+1

, f2 = rsca
CT3+1

, f3 = rsck
CT5+1

, (if N > 1).

CT0 to CT7 in the above model denote the different states and the evolution of the

CT component. The work action is utilized to define that customers can use the

product to do something before returning to state CT0 to buy another product,

which forms a working cycle to investigate the steady state. The system consists

of a number of parallel independent CT components that are initialized with

state CT0. Each customer has been partially evaluated with a merchant thread,

hence no cooperation between the new combined components CT . In addition,

the functional rate we mention above has been roughly defined as “the rate of

merchant active actions when only one customer involved in the system” divided

by “the number of active customers associated with there relevant action plus one”

if more than one customer in the system, following the rule that they are in inverse

ratio. Those functional rates have been expressed as f1, f2 and f3 in our model.

This assumption is probably not acceptable from engineering aspect. However,

it’s not possible to get a accurate functional rate expression without practical

experiment. Hence, the main purpose of this work is to show the feasibility

of this kind of modelling and analysis approach rather than practical results.

Additionally, the reason to add one in the denominator of the functional rate is

to avoid the numerical fault in ODE analysis by using Matlab in next section.

However, the addend could be ignored with increasing number of customers.

5.3.1 ODE analysis

Once again, because of the scalability and efficiency properties, ODEs have been

employed here. The set of ODEs for this fair exchange protocol can be derived

following the approach of Hillston [34].

121

d

dt
CT0(t) = rwCT6(t)− rdCT0(t)

d

dt
CT1(t) = rdCT0(t)− raCT1(t)

d

dt
CT2(t) = raCT1(t)− rsmpCT2(t)

d

dt
CT3(t) = rsmpCT2(t)−

rscg
CT3 + 1

CT3(t)−
rsca

CT3 + 1
CT3(t)

d

dt
CT4(t) =

rscg
CT3 + 1

CT3(t)− rsmkCT4(t)− rsmaCT4(t)

d

dt
CT5(t) = rsmkCT4(t)−

rsck
CT5 + 1

CT5(t)

d

dt
CT6(t) =

rsck
CT5 + 1

CT5(t) + rsmaCT7(t) + rsmaCT4(t)− rwCT6(t)

d

dt
CT7(t) =

rsca
CT3 + 1

CT3(t)− rsmaCT7(t)

In our analysis we are interesting in the average number of waiting clients that

are represented by the sum of number of CT3 and CT5 in steady state(t →
∞). Following this thread modelling concept, it a simple matter to calculate the

average response time for each service action of a merchant thread as:

WsendCg =
1

f1

(t→∞),

WsendCabort =
1

f2

(t→∞),

WsendCk =
1

f3

(t→∞).

5.4 Numerical results of the basic protocol

Figure 5.2 shows the average number of waiting customers in sendCg and send-

Cabort against total number of customers involved in the system. As we would

expect, the average number of waiting customers increases when the population

122

0

20

40

60

80

100

120

140

160

1 50 100 150 200 250 300 350
N

C
T3

L(CT3, ODE)
L(CT3, SS)

Figure 5.2: Average number of waiting customers in sendCg and sendCabort
varied with population size calculated by ODEs and stochastic simulation,rd =
ra = rb = rsmp = rsmk = rscg = rsck = rsca = rsma = 1, rw = 0.01

0

0.5

1

1.5

2

2.5

1 50 100 150 200 250 300 350
N

C
T5

L(CT5, ODE)

L(CT5, SS)

Figure 5.3: Average number of waiting customers in sendCk varied with popu-
lation size calculated by ODEs and stochastic simulation,rd = ra = rb = rsmp =
rsmk = rscg = rsck = rsca = rsma = 1, rw = 0.01

size increases. In the initial stage, the increase rate is slow, and it become grater

when N is large. Obviously, this results follows the common consensus that ODE

gives very accurate results when the system is large. In this situation, the large

123

0

20

40

60

80

100

120

140

160

1 50 100 150 200 250 300 350
N

av
er

ag
e

re
sp

on
e

tim
e sendCg(SS)

sendCg(ODE)

Figure 5.4: Average response time of action “sendCg(sendCabort)” varied with
population size calculated by ODEs and stochastic simulation,rd = ra = rb =
rsmp = rsmk = rscg = rsck = rsca = rsma = 1, rw = 0.01

0

0.5

1

1.5

2

2.5

3

3.5

1 50 100 150 200 250 300 350
N

av
er

ag
e

re
sp

on
se

 ti
m

e

sendCk(SS)
sendCk(ODE)

Figure 5.5: Average response time of action “sendCk” varied with population
size calculated by ODEs and stochastic simulation,rd = ra = rb = rsmp = rsmk =
rscg = rsck = rsca = rsma = 1, rw = 0.01

scale has been defined as N > 250, as ODE and simulation results are converge

from this area. However, this is not reflected in another part of total queue

length (average number of waiting customers in sendCk, CT5), and which is show

124

in Figure 5.3. It not difficult to identify two issues from this graph: firstly, the

number of CT5 becomes almost stable and increases extremely slowly in both

ODE and stochastic simulation analysis; then, ODE results and SS results do not

coverage for CT5 even when N = 350 and beyond, tough they converge for CT3

if N > 250. So, we go back to the PEPA model, and address the rates that flow

into CT3 (rsmp), flow out from CT3 (f1 and f2), flow into CT5 (rsmk) and flow out

from CT5 (f3). The rates rsmp and rsmk are fixed, hence, f1, f2 and f3 are the

keys to affect the results. As we know, f1, f2 and number of CT3 are in inverse

ratio, and f3 and CT5 are in inverse ratio, therefore, f3 is much larger (up to 100

times) than f1 and f2 as more customers are involved in the system, according to

the results of number of CT3 and CT5 in steady state from Figure 5.2 and Figure

5.3, especially when N > 200. Hence, more customers have been blocked in the

CT3 state as more customers arrive, and so the change of number of customers

in state CT5 becomes very small. This is also the reason for divergence between

the ODE and SS results. From the number of CT5 in Figure 5.3, obviously, this

is still a very small scale for CT5 even when N = 350, because the very slow rate

f1 causes a very few customers flowing into state CT5 when N is large. Once the

average number of waiting customers has been acquired, we can easily calculate

average response time using the formulas given in last chapter, shown in Figure

5.4 and Figure 5.5. The profiles of the curves of average response time for action

sendCg(sendCabort) and sendCk are quite similar to those of their queue lengths.

5.5 Extended protocol

The protocol illustrated in Section 5.2 is a basic version, that operates without

misbehaviour of any participants. As this is an optimistic fair exchange protocol,

it is necessary to investigate the performance of the TTP. Following [51], to get

TTP to operate, several misbehaviours have been introduced as follows:

M behaves improperly:

• M receives the payment token decryption key in step 5, but does not send

125

the correct product decryption key in step 6.

1. C send all he got in the exchange to TTP. (sendTPall)

2. TTP asks M to send the correct decryption key and start a timer.

(notifyM1)

3. M send the correct key to TTP or has no response. (sendTPk1 or

tiemout1)

4. if M sends the correct key, TTP forwards the key to C; if not, TTP

sends a decryption key which preserved before this exchange to C and

take appropriate action against M. (sendCkbyTP1 or sendCkbyTP2,

takeactionM)

• M receives the payment token decryption key in step 5, but disappears

without sending the product decryption key.

1. C’s timer expires. (noresponsedelay)

2. C send all he got in the exchange to TTP. (sendTPall)

3. TTP asks M to send the correct decryption key and start a timer.

(notifyM2)

4. M has no response. (timeout2)

5. TTP sends a decryption key which preserved before this exchange to C

and take appropriate action against M. (sendCkbyTP2, takeactionM)

• M claims that it did not send the correct decryption key because it has not

received payment.

1. M sends the reason that he did not receive proper payment. (sendT-

Preason)

2. M still need to send product decryption key to TTP. (sendTPk2)

3. Once TTP got the product decryption key from M, he sends appro-

priate decryption key to M and C. (sendMkbyTP1, sendCkbyTP3)

126

C behaves improperly: M got the payment decryption key from TTP again

after he claims the wrong key in first instance. However, he still can not decrypt

the payment by the key again:

1. Notify TTP that the fail of using the payment decryption key again. (sendTP-

noti)

2. TTP gets in touch with Bank to obtain a new key. (getkfromB)

3. Sends the new key to M. (sendMkbyTP2)

Again, the description above is mainly about behavior, in order address perfor-

mance. More detailed security content has been described in [51]. The terms in

the brackets after each item with bold font are the action name we used in the

PEPA model. Moreover, we would like to propose three performance questions

for this extended protocol as well as our previous case studies: “how many clients

can a given TTP configuration support?”, “how much service capacity must we

provide at a TTP to satisfy a given number of clients?” and “what is the maxi-

mum rate at which keys can be refreshed before the TTP performance begins to

degrade?” These questions are answered through numerical results in section 5.8.

5.6 PEPA Model of extended protocol

According to the same scenario of basic protocol, extended version can be mod-

elled following:

CT0
def
= (download, rd).CT1

CT1
def
= (agreePrice, ra).CT2

CT2
def
= (sendMp, rsmp).CT3

CT3
def
= (sendCg, f1).CT4 + (sendCabort, f2).CT7

127

CT4
def
= (sendMk, rsmk).CT5 + (sendMabort, rsma).CT8

CT5
def
= (sendCk, f3).CT6 + (noresponsedelay, rn).CT14

CT6
def
= (work, rw).CT0 + (sendTPall, rstp).CT9

CT7
def
= (sendMabort, rsma).CT8

CT8
def
= (work, rw).CT0

CT9
def
= (notifyM1, r1).CT10

CT10
def
= (sendTPk1, f7).CT11 + (timeout1, r10).CT12

CT11
def
= (sendCkbyTP1, r3).CT8

CT12
def
= (sendCkbyTP2, r4).CT13

CT13
def
= (takeactionM, r6).CT8

CT14
def
= (sendTPall, rstp).CT15

CT15
def
= (notifyM2, r2).CT16

CT16
def
= (sendTPreason, f4).CT17 + (timeout2, r11).CT12

CT17
def
= (sendTPk2, f5).CT18

CT18
def
= (sendMkbyTP1, r7).CT19

CT19
def
= (sendCkbyTP3, p ∗ r5).CT20 + (sendCkbyTP3, (1− p) ∗ r5).CT8

CT20
def
= (sendTPnoti, f6).CT21

CT21
def
= (getkfromB, r9).CT22

CT22
def
= (sendMkbyTP2, r8).CT8

TP
def
= (notifyM1, r1).TP + (notifyM2, r2).TP + (sendCkbyTP1, r3).TP

+(sendCkbyTP2, r4).TP + (sendCkbyTP3, r5).TP

+(takeactionM, r6).TP + (sendMkbyTP1, r7).TP

+(sendMbyTP2, r8).TP + (getKfromB, r9).TP

+(timeout1, r10).TP + (timeout2, r11).TP

System
def
= TP [K] BC

L
CT0[N]

Where, L = {notifyM1, notifyM2, sendCkbyTP1, sendCkbyTP2,

sendCkbyTP3, takeactionM, sendMkbyTP1, sendMkTP2, getKfromB,

128

timeout1, timeout2},
r1 = rnm1

CT9∑
waitingJobsTP

min(
∑
waitingJobsTP , TP),

r2 = rnm2
CT15∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r3 = rscktp1
CT11∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r4 = rscktp2
CT12∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r5 = rscktp3
CT19∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r6 = rta
CT13∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r7 = rsmktp1
CT18∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r8 = rsmktp2
CT22∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r9 = rkb
CT21∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r10 = rt1
CT10∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

r11 = rt2
CT16∑

waitingJobsTP
min(

∑
waitingJobsTP , TP),

∑
waitingJobsTP =

∑
∀iCTi(t), i ∈ {9, 15, 11, 12, 19, 13, 18, 22, 21, 10, 16}.

if N = 1:

f1 = rscg, f2 = rsca, f3 = rsck, f4 = rstpr, f5 = rstpk, f6 = rstpno, f7 = rstpk,

if N 6= 1:

f1 = rscg
CT3+1

, f2 = rsca
CT3+1

, f3 = rsck
CT5+1

, f4 = rstpr
CT16+1

, f5 =
rstpk

CT17+1
, f6 = rstpno

CT20+1
,

f7 =
rstpk

CT10+1
.

Compared to the PEPA model of basic protocol, a number of actions have been

added. Thus, the number of local states of the CT component increases to 23,

elearly enlarging the state space. Furthermore, the number of functional rate

expressions has been extended to 7, each following the same formula as in the

model of basic protocol. Let f1 to f7 denote these functional rates. Following a

previous study in Chapter 4, a new kind of functional rates have been applied to

avoid over estimating the value of rates of cooperation actions, which are denoted

by ri, i = 1, 2, · · · , 11. Each of these functions describes the actual service rate if

there is one job in the system(rnm1, rnm2, rscktp1, rscktp2, rscktp3, rta, rsmktp1, rsmktp2,

rkb, rt1 and rt2), or as a proportion of the number of waiting jobs (at TTP) of

each type (CTi/
∑
waitingJobsTP , i = 9, 15, 11, 12, 19, 13, 18, 22, 21, 10, 16) and

the times of service (min(TP,
∑
waitingJobsTP), which allocates each service

with respect to its job type to eliminates the potential race.

129

5.6.1 ODE analysis

Again, a set of ODEs, which represents the PEPA model of extended protocol,

can be generated as follows:

d

dt
CT0 = rwCT6(t) + rwCT8(t)− rdCT0(t)

d

dt
CT1 = rdCT0(t)− raCT1(t)

d

dt
CT2 = raCT1(t)− rsmpCT2(t)

d

dt
CT3 = rsmpCT2(t)−

rscg
CT3(t) + 1

CT3(t)−
rsca

CT3(t) + 1
CT3(t)

d

dt
CT4 =

rscg
CT3(t) + 1

CT3(t)− rsmkCT4(t)− rsmaCT4(t)

d

dt
CT5 = rsmkCT4(t)−

rsck
CT5(t) + 1

CT5(t)− rnCT5(t)

d

dt
CT6 =

rsck
CT5(t) + 1

CT5(t)− rwCT6(t)− rstpCT6(t)

d

dt
CT7 =

rsca
CT3(t) + 1

CT3(t)− rsmaCT7(t)

d

dt
CT8 = rsmaCT4(t) + rsmaCT7(t)

+rscktp1
CT11(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

+rta
CT13(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

+(1− p)rscktp3
CT19(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

+rsmktp2
CT22(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)− rwCT8(t)

d

dt
CT9 = rstpCT6(t)− rnm1

CT9(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

d

dt
CT10 = rnm1

CT9(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

− rstpk
CT10(t) + 1

CT10(t)

−rt1
CT10(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT11 =

rstpk
CT10(t) + 1

CT10(t)

130

−rscktp1
CT11(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT12 = rt1

CT10(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

+rt2
CT16(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

−rscktp2
CT12(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT13 = rscktp2

CT12(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

−rta
CT13(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT14 = rnCT5(t)− rstpCT14(t)

d

dt
CT15 = rstpCT14 − rnm2

CT15(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

d

dt
CT16 = rnm2

CT15(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

− rstpr
CT16(t) + 1

CT16(t)

−rt2
CT16(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT17 =

rstpr
CT16(t) + 1

CT16(t)−
rstpk

CT17(t) + 1
CT17(t)

d

dt
CT18 =

rstpk
CT17(t) + 1

CT(17)(t)

−rsmktp1
CT18(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT19 = rsmktp1

CT18(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

−rscktp3
CT19(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT20 = prscktp3

CT19(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

− rstpno
CT20(t) + 1

CT20(t)

d

dt
CT21 =

rstpno
CT20(t) + 1

CT20(t)

−rkb
CT21(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

d

dt
CT22 = rkb

CT21(t)∑
waitingJobsTP

min(
∑

waitingJobsTP , TP)

−rsmktp2
CT22(t)∑

waitingJobsTP
min(

∑
waitingJobsTP , TP)

131

d

dt
TP = 0

Where,
∑
waitingJobsTP =

∑
∀iCTi(t), i ∈ {9, 15, 11, 12, 19, 13, 18, 22, 21, 10, 16}.

In this analysis, we are primarily interesting in average number of waiting cus-

tomers and average response time. The total waiting customers consist of cus-

tomers waiting at Merchant (L(merchant)) and TTP (L(ttp)), and they are cal-

culated as:

L(merchant) =
∑

∀i
CTi + CT10 ∗ (

f7

f7 + r10

) + CT16 ∗ (
f4

f4 + r11

), i ∈ {3, 5, 17, 20}.

L(ttp) =
∑

∀i
CTi + CT10 ∗ (

r10

f7 + r10

) + CT16 ∗ (
r11

f4 + r11

),

i ∈ {9, 11, 12, 13, 15, 18, 19, 21, 22}.

It is easy to find that, in state CT10 and CT16, customers have been forked

into either the waiting service from the merchant or TTP. Hence, the average

waiting customers in CT10 and CT16 has been divided into two parts according

to the relevant rate of racing in above equations. As with the queue length, the

average response time also contains two types. A merchant’s mean response time

is calculated as:

Wmerchant−i =
1

fi
, i ∈ {1, 2, 3, 4, 5, 6, 7}.

And following the previous study in Chapter 4, we can only evaluate the model

when the number of TTP (K) is 1. To apply the arrival theorem, the average

response time at the TTP can be approximately calculated as:

132

Wttp−i(N) =
∑

∀i

Li(N − 1)

ri
+

1

ri
, i ∈ {1, · · · , 11}.

Where, L1 = CT9, L2 = CT15, L3 = CT11, L4 = CT12, L5 = CT19, L6 = CT13, L7 =

CT18, L8 = CT22, L9 = CT21, L10 = CT10 ∗ (r10
f7+r10

), L11 = CT16 ∗ (r11
f4+r11

).

Furthermore, we intend to investigate the proportion of satisfied customers (been

served), which defined as:

Ps(N) =
CT8

N
.

5.7 Numerical results of extended protocol

0

20

40

60

80

100

120

1 30 60 90 120 150 180 210 240
N

av
er

ag
e

w
ai

tin
g

cu
st

om
er

s L(SS)
L(ODE)

Figure 5.6: Average number of waiting customers at TTP varied with population
size calculated by ODEs and stochastic simulation, p = 0.5, rw = 0.01 and all
other rates are 1.

Figure 5.6 compares the average number of waiting customers at TTP against ini-

tial population of customers calculated by ODEs and stochastic simulation. The

queue length increases when more clients are involved in the system. However, it

133

is not difficult to spot that the two curves seems to keep a constant error when N

is larger than 120. This phenomenon does not follow the ODE’s normal excellent

accuracy when N is very large. To investigate more deeply, we find that the

population of behaviours after CT12 is actually very small, due to the race that

between action sendTPk and timeout1 in component CT10, and also between ac-

tion sendTPreason and timeout2. In the case where N = 240, it is a simple matter

to calculate the functional rate of sendTPk f7(N = 240) ≈ 0.85397, and the func-

tional rate of timeout1 r10(N = 240) ≈ 0.0020397. The large difference also exists

between sendTPreason and timeout2. About 400 times difference causes just a

few components evolving to CT12 and its further (evolving) behaviours. Thus,

N = 240 still can not be considered as a large scale system with the current set

of rates. That explains why the two methods do not converge when N = 240.

Nevertheless, the two curves will converge eventually in some value of N . To take

a further experiment, we set rt1 and rt2, the original rates of timeout1 and time-

out2, to 200, and keep all other rates unchanged. This is in order to switch more

clients to the behaviours after CT12. Still in case of N = 240, L(ODE) ≈ 99.9595

and L(SS) ≈ 100.0637, illustrating the argument above.

0

1

2

3

4

5

6

7

1 30 60 90 120 150 180 210 240
N

av
er

ag
e

w
ai

tin
g

cu
st

om
er

s
at

 M
er

ch
an

t

L(ODE)
L(SS)

Figure 5.7: Average number of waiting customers at merchant varied with popu-
lation size calculated by ODEs and stochastic simulation, p = 0.5, rw = 0.01 and
all other rates are 1.

134

The average number of waiting customers at the merchant is presented in Figure

5.7. Generally, the more customers involved, the more customers that will be

waiting at the merchant. However, the results calculated by ODEs and stochastic

simulation do not converged. This is caused by the same reason as discussed

above. When the TTP is working for misbehaviour cases, it is become very busy

(if there is only one TTP server, as in our model) and most of the customers are

waiting for the TTP. Therefore, the scale of the queue length at the merchant

remains very small. This is why results of ODE and stochastic simulation did

not converge here.

0

10

20

30

40

50

60

70

1 21 41 61 81 101 121 141 161 181
N

av
er

ag
e

w
ai

tin
g

cu
st

om
er

s off line TTP
on line TTP

Figure 5.8: Average number of waiting customers with and without TTP varied
with population size calculated by ODEs, p = 0.5, rw = 0.01 and all other rates
are 1.

The total average waiting customers with and without misbehaviour have been

compared in Figure 5.8. Under the same rates for each relevant actions and the

same involved number of customers, far more customers are waiting in a situa-

tion of misbehaviour, especially, when N is very large. That is an intuitive and

expected result, because customers who encounter misbehaviour have recourse to

the TTP for help, and then wait at the TTP. Hence, it is clear that misbehaviours

reduce the performance of the whole system, and also demonstrate that this kind

(optimistic) non-repudiation protocol could perform much better than those that

135

always employ an on-line TTP.

0

0.5

1

1.5

2

2.5

3

1 20 40 60 80 100 120 140 160 180 200 220 240
N

av
er

ag
e

re
sp

on
se

 ti
m

e
sendCg
sendCabort
sendCk
sendTPk1
sendTPreason
sendTPk2
sendTPnoti

Figure 5.9: Average response time at merchant varied with population size cal-
culated by ODEs, p = 0.5, rw = 0.01 and all other rates are 1.

Figure 5.9 shows the average response time for the merchant at different actions.

Overall, if we increase total number of clients in the system, the merchant takes

longer to process each individual request. However, the response time increases

slowly, and that is caused by the queue length which has been shown in Figure

5.7. Following our functional rates definition for the merchant (fi), it is intuitively

understood that queue length and response time should have the same increasing

ratio. Moreover, more customers waiting for action sendCg and sendCabort than

others, this gives longer a response time for these two actions.

Then, we experiment to increase the capacity of the TTP to twice that shown

before (2), and plot the results for average response time for the TTP in all actions

and the merchant in action sendCg in Figure 5.10 and Figure 5.11. From Figure

5.10, it is clear to spot that the response time for customers waiting at TTP is

smaller if the TTP is more powerful. Nevertheless, the average response time

for customers waiting at the merchant for action sendCg increases if we double

the TTP’s capacity. A quicker response from the TTP means that the number

of customers waiting at misbehaviour stage decreases. Under the same total

136

0

20

40

60

80

100

120

1 21 41 61 81 101 121 141 161 181 201 221
N

av
er

ag
e

re
sp

on
se

 ti
m

e
fo

r T
TP rTTP = 1

rTTP = 2

Figure 5.10: Average response time for TTP varied with population size calcu-
lated by ODEs, p = 0.5, rw = 0.01 and all other rates are 1 except for rTTP ,
where rTTP ∈ {rnm1, rnm2, rscktp1, rscktp2, rscktp3, rta, rsmktp1, rsmktp2, rkb, rt1, rt2}.

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181 201 221
N

av
er

ag
e

re
sp

on
se

 ti
m

e
fo

r s
en

dC
g

rTTP = 1
rTTP = 2

Figure 5.11: Average response time for sendCg varied with population size cal-
culated by ODEs, p = 0.5, rw = 0.01 and all other rates are 1 except for rTTP ,
where rTTP ∈ {rnm1, rnm2, rscktp1, rscktp2, rscktp3, rta, rsmktp1, rsmktp2, rkb, rt1, rt2}.

number of clients, more customers go to the normal stage without misbehaviour.

Consequently, the number of customers (CT3) waiting for action sendCg increases,

and the average response time for these customers takes longer.

137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161 181 201 221
N

pr
op

or
tio

n
of

 s
at

is
fie

d
cl

ie
nt

s

rTTP=1
rTTP=2

Figure 5.12: Proportion of satisfied customers varied with population size cal-
culated by ODEs, p = 0.5, rw = 0.01 and all other rates are 1 except for rTTP ,
where rTTP ∈ {rnm1, rnm2, rscktp1, rscktp2, rscktp3, rta, rsmktp1, rsmktp2, rkb, rt1, rt2}.

Finally, we plot the proportion of satisfied customers (been served) in Figure

5.12. Generally, the proportion decreases for both case (rTTP = 1 and rTTP = 2)

if more customers come to the system. The two curves are very close before the

point, N = 120, and both keep a very high percentage of satisfied customers in

this area. After that point, those percentages start to go down clearly. However,

the proportion for rTTP = 1 drops more quickly than the other, and it becomes

50% when N = 240, while the percentage for rTTP = 2 is still above 80%.

5.8 Utility function of extended protocol

Again, we apply the similar utility function to answer our proposed performance

questions for extended protocol.

C = c1L+ c2Krp , c1, c2 ≥ 0 (5.1)

The same as the cost function in Chapter 3 and 4, L denotes the average waiting

138

customers at the non-repudiation sever (TTP), and K is number of servers. rp is

the response rate of the TTP . We assume the TTP server responds any type of

jobs in the same rate here. C1 and C2 are cost rates, and they many depend on

the type of system or quality of service agreement with customers.

5.8.1 Numerical results

0

20

40

60

80

100

120

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226
N

C
os

t

Figure 5.13: Cost varied against the number of clients calculated by ODEs, p =
0.5, K = 1, c1 = c2 = 1, rw = 0.01 and all other rates are 1

Figure 5.13 shows the cost varied against the number of clients calculated by

ODEs. Similar to the results of cost function in Chapter 3 and 4, more clients

results in more waiting customers with fixed service capacity. Therefore, the total

cost increases along with the cost of customer waiting goes up. Furthermore, it

is a simple matter to find that the cost rises rapidly when N is around 130, and

this is the maximum capacity that the TTP server can handle before performance

start to significantly degrade.

Figure 5.14 presents the cost varied with number of TTP servers calculated by

ODEs when total number of clients is 500. Again, customer waiting costs more in

139

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28
K

C
os

t

Figure 5.14: Cost varied with number of TTP servers calculated by ODEs, p =
0.5, N = 500, c1 = c2 = 1, rw = 0.01 and all other rates are 1

0

50

100

150

200

250

300

350

400

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
rw

C
os

t

Figure 5.15: Cost varied with rate of work calculated by ODEs, p = 0.5, N = 300,
c1 = c2 = 1, all other rates are 1 except for rw

140

initial stage. Along with the system being given more servers, number of waiting

clients is reduced. However, the cost of service dominate the total cost. The

optimal point is around 2 in this case.

Figure 5.15 shows the cost varied with the rate of refresh key, rw, calculated by

ODEs. With fixed service capacity and total number of clients, more frequently

refresh the session key results in more workload has been added in the system.

Therefore, the cost of customer waiting increases. Similarly, we can easily find

that the balance point between performance and security is around rw = 0.002.

5.9 Summary

This chapter investigates an optimistic fair exchange protocol in an e-commerce

environment. According to the optimistic characteristic, we model the protocol

when the third trust party is offline and online respectively. Additionally, in this

work, we consider the merchant server consists of several threads; PEPA works

well in this style of modelling. The ODE solution do not converge with stochastic

simulation when N is very large. However, in this context, this large N only gives

large scale for part of the derivatives, and they are still may converge under other

rates. Finally, a utility function has been analysed to better understand the

system.

This case study learnt a new modelling form that can be added to our proposed

work flow. In the modelling stage, the server (resource) can be modelled as serval

threads with associated functional rates.

141

Chapter 6

Kerberos Protocol

6.1 Introduction

This chapter explores a common authentication protocol, known as Kerberos.

The first PEPA model of multi-realms scenario is cumbersome to manage, be-

cause we need to change every customer’s behaviour if one more realm is added

to the whole environment (this situation has not been studied in previous chap-

ters). Hence, a simplified model, which is bisimilar to the original one, has been

proposed. To cope with state space explosion, following previous studies, an

ODE based fluid flow analysis is employed to solve the models. The results are

compared with stochastic simulation, and also compared with the original model.

The novelty of this Chapter is the aggregation technique we applied to reduce

the model components.

In the next section, a specification of the multi-realm Kerberos environment has

been described. Then, the scenario is modeled in PEPA. After that, the original

PEPA model has been simplified in Section 6.4, followed by fluid flow analysis of

the simplified model. Numerical results are presented in the subsequent section.

In Section 6.7, a utility function has been adapted to evaluate the protocol.

Finally, we draw conclusions in Section 6.8.

142

6.2 Protocol specification

Figure 6.1 illustrates a full-service Kerberos environment, which is termed a realm.

A realm usually consists of a Kerberos server, several clients, and some application

servers. A Kerberos server can work as both an Authentication server (AS) and

a Ticket granting server (TGS). Several realms form a network that we want to

investigate. As any clients in a realm can request service from local application

servers or remote application servers, following the Kerberos protocol (version 4)

specification in [59], two work flows have been defined:

Kerberos

Clients (N)Servers (K)
AS

TGS

Figure 6.1: One realm in multi-realms Kerberos protocol

• a client requests service from local application server

1. A client (U) requests a ticket-granting ticket (TGT) from local AS(a

function of Kerberos server, denoted by KDC in context). (requestTGT)

2. Local AS sends TGT to U. (responseTGT)

3. U requests a service-granting ticket (SGT) from local TGS(a function

of Kerberos server, denoted by KDC in context). (requstSGTl)

4. Local TGS sends SGT to U. (responseSGTl)

5. U request a service from a local application server (S) using SGT that

received from TGS in last step. (requestSl)

143

6. Local S delivers the service to U. (responseSl)

• a client requests service from remote application server

1. U requests a TGT from local AS. (requestTGT)

2. Local AS sends TGT to U.(responseTGT)

3. U requests a ticket for remote TGS from local TGS. (requestTGTr)

4. Local TGS sends the ticket for remote TGS to U. (responseTGTr)

5. U requests SGT for remote application server from remote TGS. (re-

questSGTrr)

6. Remote TGS sends U the SGT for the remote application server. (re-

sponseSGTrr)

7. U requests a service to remote application server. (requestSrr)

8. The remote application server delivers the service to U. (responseSrr)

These two work flows concurrently exist with a probability (P) which will be

introduced in sections of models.

6.3 The model

Following the protocol depiction in the previous section, our Kerberos scenario

can be modelled through PEPA as:

∀i :

Ui0
def
= (requestTGTi, rqtgt).Ui1

Ui1
def
= (responseTGTi, p ∗ rxi1).Ui2l

+
∑

∀j 6=i
(responseTGTi,

1− p
M − 1

∗ rxi1).Ui2rj

Ui2l
def
= (requestSGT li, rqsgtl).Ui3

144

Ui3
def
= (responseSGT li, rxi2).Ui4

Ui4
def
= (requestSli, rqsl).Ui5

Ui5
def
= (responseSli, ryi1).Ui6

Ui6
def
= (worki, rw).Ui0

∀j 6= i, f, g, k :

Ui2rj
def
= (requestTGTrij, rqtgtr).Ui(7+q∗5)

Ui(7+q∗5)
def
= (responseTGTrij, rxif).Ui(8+q∗5)

Ui(8+q∗5)
def
= (requestSGTrrij, rqsgtrr).Ui(9+q∗5)

Ui(9+q∗5)
def
= (responseSGTrij, rxig).Ui(10+q∗5)

Ui(10+q∗5)
def
= (requestSrrij, rqsrr).Ui(11+q∗5)

Ui(11+q∗5)
def
= (responseSrij, ryik).Ui6

KDCi
def
= (responseTGTi, rxi1).KDCi + (responseSGT li, rxi2).KDCi

+
∑

∀j 6=iand∀f
(responseTGTrij, rxif).KDCi

+
∑

∀j 6=iand∀g
(responseSGTrji, rxig).KDCi

Si
def
= (responseSli, ryi1).Si +

∑

∀j 6=iand∀k
(responseSrji, ryik).Si

System
def
=

∏

∀i
(Ui0[N]) BC

L
(
∏

∀i
(KDCi)||

∏

∀i
(Si[K]))

Where i, j ∈ 1, 2, · · · ,M (M is the number of realms).

q = j − 1, j < i; q = j − 2, j > i.

f ∈ {an|an = a1 + (n− 1)d}, a1 = 3, d = 1, n = M − 1.

g ∈ {bn|bn = b1 + (n− 1)d}, b1 = a1 +M − 1, d = 1, n = M − 1.

k ∈ {cn|cn = c1 + (n− 1)d}, c1 = 2, d = 1, n = M − 1.

L = {responseTGTi, responseSGT li, responseSli, responseTGTrij,
responseSGTrji, responseSrji}(∀j 6= i).

rxi1 = rptgt
Ui1(t)

Ui1(t)+Ui3(t)+
∑
∀q Ui(7+q∗5)(t)+

∑
∀q Ui(9+q∗5)(t)

145

∗min(Ui1(t) + Ui3(t) +
∑
∀q Ui(7+q∗5)(t) +

∑
∀q Ui(9+q∗5)(t), KDCi)

rxi2 = rpsgtl
Ui3(t)

Ui1(t)+Ui3(t)+
∑
∀q Ui(7+q∗5)(t)+

∑
∀q Ui(9+q∗5)(t)

∗min(Ui1(t) + Ui3(t) +
∑
∀q Ui(7+q∗5)(t) +

∑
∀q Ui(9+q∗5)(t), KDCi)

∀j 6= i, f, g

rxif = rptgtr
Ui(7+q∗5)(t)

Ui1(t)+Ui3(t)+
∑
∀q Ui(7+q∗5)(t)+

∑
∀q Ui(9+q∗5)(t)

∗min(Ui1(t) + Ui3(t) +
∑
∀q Ui(7+q∗5)(t) +

∑
∀q Ui(9+q∗5)(t), KDCi)

rxig = rpsgtr
Ui(9+q∗5)(t)

Ui1(t)+Ui3(t)+
∑
∀q Ui(7+q∗5)(t)+

∑
∀q Ui(9+q∗5)(t)

∗min(Ui1(t) + Ui3(t) +
∑
∀q Ui(7+q∗5)(t) +

∑
∀q Ui(9+q∗5)(t), KDCi)

ryi1 = rpsl
Ui5(t)

Ui5(t)+
∑
∀q Ui(11+q∗5)(t)

∗min(Ui5(t) +
∑
∀q Ui(11+q∗5)(t), Si)

∀j 6= i, k

ryik = rpsr
Ui(11+q∗5)(t)

Ui5(t)+
∑
∀q Ui(11+q∗5)(t)

∗min(Ui5(t) +
∑
∀q Ui(11+q∗5)(t), Si)

In the formal definition of a PEPA model of the Kerberos protocol above, i

denotes the ith realm, and therefore the all components of the model is replicated

for every realm (M realms in total). A branch is shown in Ui1: clients which

would like to get service from local servers will consequently behaviour as Ui2l

with probability p, and those who want to request remote servers will reach state

Ui2rj (sum of all j 6= i) with probability 1 − p. Hence, Ui2l to Ui5 denote states

for the local actions of realm i, and Ui2j to Ui(11+q∗5) are the states in a remote

requesting phase. Finally, they all come to state Ui6, and we then add a work

action before the clients starting another request from the initial stage Ui0 to

make it as cycle to investigate the steady state. This work action means that the

clients do something else or just a simple delay after getting service from servers,

and is utilised to control the requesting frequency.

In this model, the initial phase of remote requesting is represented by

∑

∀j 6=i
(responseTGTi,

1− p
M − 1

∗ rxi1).Ui2rj

146

j denotes all the realms remote to realm i, therefore, this sum contains M − 1

items. Each of these items has its own sequential actions for the remote requesting

stage. Hence, Ui2rj to Ui6 in the above model is replicated M − 1 times (all

remote realms; ∀j 6= i) for each local realm (i). Subscript q, utilised for the client

component in the remote requesting stage, is used to denote different names

of derivatives for each remote realms (∀j 6= i). As those realms are assumed

homogeneous, they have the same probability to be requested. This probability

is calculated by the total probability for remote requesting (1 − p) dividing by

the number of remote realms (M − 1).

The servers described in the model only execute their service actions. For the

KDC server, responseTGTi, responseSGli and responseTGTrij(∀j 6= i) are lo-

cal actions in realm i, and the subscript in responseTGTrij denotes that the

local KDC in realm i responds a TGT to local clients. However, this TGT is

utilised to request a remote KDC in realm j. The remote actions of a KDC are

responseSGTrji(∀j 6= i), and this means that the local KDC in realm i responds

a SGT to remote clients from one of the remote realms j. Similarly, an applica-

tion server (S) responds to local clients (in realm i) by action responseSli, and to

remote clients through actions responseSrji(∀j 6= i), which indicates a response

to remote clients from realm j by application server in local realm i. Following

previous study in Chapter 4, functional rates have been employed to avoid the

race between different responding services in the same server. The functional

rates are defined as the product of the actual service rate if there is only one

job in the system, the proportion of the number of waiting jobs of each type

and the number of instances of service; represented by rxi1, rxi2, rxif (∀f), rxig(∀g)

for KDC, and ryi1, ryik(∀k) for S. The subscript x indicates the rates of KDC

services, and y implies the rates of S. Let i denotes the number (or name) of the

realms where actions are executed; f , g and k are employed to assign different

names to those rates. Finally, the system is defined as clients in all realms (M

realms and N clients in each realm) shared all service actions with all KDC (one

in each realm) and all S (K in each realm). In this model, we assume that there

is only one type of application server in each realm.

147

To understand clearly, a two reals model is presented as follows:

U10
def
= (requestTGT1, rqtgt).U11

U11
def
= (responseTGT1, p ∗ rx11).U12l + (responseTGT1, (1− p) ∗ rx11).U12r

U12l
def
= (requestSGT l1, rqsgtl).U13

U13
def
= (responseSGT l1, rx12).U14

U14
def
= (requestSl1, rqsl).U15

U15
def
= (responseSl1, ry11).U16

Ul6
def
= (work1, rw).U10

U12r
def
= (requestSGTr12, rqtgtr).U17

U17
def
= (responseTGTr12, rx13).U18

U18
def
= (requestSGTrr12, rqsgtrr).U19

U19
def
= (responseSGTr12, rx24).U110

U110
def
= (requestSrr12, rqsrr).U111

U111
def
= (responseSr12, ry22).U16

U20
def
= (requestTGT2, rqtgt).U21

U21
def
= (responseTGT2, p ∗ rx21).U22l + (responseTGT2, (1− p) ∗ rx21).U22r

U22l
def
= (requestSGT l2, rqsgtl).U23

U23
def
= (responseSGT l2, rx22).U24

U24
def
= (requestSl2, rqsl).U25

U25
def
= (responseSl2, ry21).U26

U26
def
= (work2, rw).U20

U22r
def
= (requestSGTr21, rqtgtr).U27

148

U27
def
= (responseTGTr21, rx23).U28

U28
def
= (requestSGTrr21, rqsgtrr).U29

U29
def
= (responseSGTr21, rx14).U210

U210
def
= (requestSrr21, rqsrr).U211

U211
def
= (responseSr21, ry12).U26

KDC1
def
= (responseTGT1, rx11).KDC1

+(responseSGT l1, rx12).KDC1

+(responseTGTr12, rx13).KDC1

+(responseSGTr21, rx14).KDC1

KDC2
def
= (responseTGT2, rx21).KDC2

+(responseSGT l2, rx22).KDC2

+(responseTGTr21, rx23).KDC2

+(responseSGTr12, rx24).KDC2

S1
def
= (responseSl1, ry11) + (responseSr21, ry12)

S2
def
= (responseSl2, ry21) + (responseSr12, ry22)

System
def
= (U10[N]||U20[N]) BC

L
(KDC1||KDC2||S1||S2)

Where L = {responseTGT1, responseSGT l1, responseTGTr12, responseSGTr21,

responseTGT2, responseSGT l2, responseTGTr21, responseSGTr12, responseSl1,

responseSr21, responseSl2, responseSr12}
rx11 = rptgt ∗ U11

U11+U13+U17+U29
∗min(U11 + U13 + U17 + U29, KDC1)

rx12 = rpsgtl ∗ U13

U11+U13+U17+U29
∗min(U11 + U13 + U17 + U29, KDC1)

rx13 = rptgtr ∗ U17

U11+U13+U17+U29
∗min(U11 + U13 + U17 + U29, KDC1)

rx14 = rpsgtr ∗ U29

U11+U13+U17+U29
∗min(U11 + U13 + U17 + U29, KDC1)

149

rx21 = rptgt ∗ U21

U21+U23+U27+U19
∗min(U21 + U23 + U27 + U19, KDC2)

rx22 = rpsgtl ∗ U23

U21+U23+U27+U19
∗min(U21 + U23 + U27 + U19, KDC2)

rx23 = rptgtr ∗ U27

U21+U23+U27+U19
∗min(U21 + U23 + U27 + U19, KDC2)

rx24 = rpsgtr ∗ U19

U21+U23+U27+U19
∗min(U21 + U23 + U27 + U19, KDC2)

ry11 = rpsl ∗ U15

U15+U211
∗min(U15 + U211, S1)

ry12 = rpsr ∗ U211
U15+U211

∗min(U15 + U211, S1)

ry21 = rpsl ∗ U25

U25+U111
∗min(U25 + U111, S2)

ry22 = rpsr ∗ U111
U25+U111

∗min(U25 + U111, S2)

6.4 Simplification

Clearly, the above model not only suffers from the state space explosion prob-

lem with a large population, but is also problematic to specify. Once additional

realms are added in the scenario, further remote actions are needed for clients in

the remote requesting stage, KDC servers and application servers in the model.

Consequently, the number of functional rates is increased which cause further

complexity. Therefore, it is necessary to simplify this model, especially, the re-

mote requesting stage. A homogeneous assumption leads us to consider the possi-

bility of aggregating all realms, however, the cross realm actions obstruct a simple

combing of all relevant derivatives. That is because the cross realm actions can

no longer determine which remote realm to request after aggregation. These ac-

tions are requestSGTrrij, responseSGTrij, requestSrrij and responseSrij. The

actions requestSGTrrij and requestSrrij, are active actions of local clients, and

these actions are not shared with any other component. Hence, they can be con-

sidered a simple delay, and so responseSGTrij and responseSrij become the key

issue. Following the homogeneous assumption, these realms are exactly the same.

Therefore, each KDCi is the same (KDC1 ≡ · · · ≡ KDCi ≡ · · · ≡ KDCM). We

then can infer that all responseSGTrji are the same. Hence, responseSGTrji ≡
responseSGTrij. From an overall performance view, a KDC server responding to

a remote client is equivalent to one responding a relevant local client. Similarly,

150

responseSrji ≡ responseSrij. Now, the original model is able to be aggregated

and simplified as follows:

U0
def
= (requestTGT, rqtgt).U1

U1
def
= (responseTGT, p ∗ rx1).U2l + (responseTGT, (1− p) ∗ rx1).U2r

U2l
def
= (requestSGT l, rqsgtl).U3

U3
def
= (responseSGT l, rx2).U4

U4
def
= (requestSl, rqsl).U5

U5
def
= (responseSl, ry1).U6

U6
def
= (work, rw).U0

U2r
def
= (requestTGTr, rqtgtr).U7

U7
def
= (responseTGTr, rx3).U8

U8
def
= (requestSGTrr, rqsgtrr).U9

U9
def
= (responseSGTr, rx4).U10

U10
def
= (requestSrr, rqsrr).U11

U11
def
= (responseSr, ry2).U6

KDC
def
= (responseTGT, rx1).KDC + (responseSTGl, rx2).KDC

+(responseTGTr, rx3).KDC + (responseSGTr, rx4).KDC

S
def
= (responeSl, ry1).S + (responseSr, ry2).S

System
def
= U0[M ∗N] BC

L
(KDC[M]||S[M ∗K])

where L = {responseTGT, responseSGT l, responseTGTr, responseSGTrr,
responseSl, responseSr}.
rx1 = rptgt

U1(t)
U1(t)+U3(t)+U7(t)+U9(t)

min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx2 = rpsgtl
U3(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

151

rx3 = rptgtr
U7(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx4 = rpsgtr
U9(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

ry1 = rpsl
U5(t)

U5(t)+U11(t)
∗min(U5(t) + U11(t), S)

ry2 = rpsr
U11(t)

U5(t)+U11(t)
∗min(U5(t) + U11(t), S)

M is number of realms, N is number of clients in one realm, K is number of

application servers in one realm.

where L = {responseTGT, responseSGT l, responseTGTr, responseSGTrr,
responseSl, responseSr}.
rx1 = rptgt

U1(t)
U1(t)+U3(t)+U7(t)+U9(t)

min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx2 = rpsgtl
U3(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx3 = rptgtr
U7(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx4 = rpsgtr
U9(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

ry1 = rpsl
U5(t)

U5(t)+U11(t)
∗min(U5(t) + U11(t), S)

ry2 = rpsr
U11(t)

U5(t)+U11(t)
∗min(U5(t) + U11(t), S)

M is number of realms, N is number of clients in one realm, K is number of appli-

cation servers in one realm.

Original Model Simplified Model Original Model Simplified Model

∑
∀i Ui0 U0

∑
∀i
∑
∀j 6=i Ui2rj U2r

∑
∀i Ui1 U1

∑
∀i
∑
∀q Ui(7+q∗5) U7

∑
∀i Ui2l U2l

∑
∀i
∑
∀q Ui(8+q∗5) U8

∑
∀i Ui3 U3

∑
∀i
∑
∀q Ui(9+q∗5) U9

∑
∀i Ui4 U4

∑
∀i
∑
∀q Ui(10+q∗5) U10

∑
∀i Ui5 U5

∑
∀i
∑
∀q Ui(11+q∗5) U11

∑
∀i Ui6 U6

∑
∀iKDCi KDC
∑
∀i Si S

6.5 ODE analysis

d

dt
U0 = rwU7(t)− rqtgtU0(t)

d

dt
U1 = rqtgtU0(t)− rx1

d

dt
U2l = p ∗ rx1 − rqsgtlU2l(t)

d

dt
U3 = rqsgtlU2l(t)− rx2

d

dt
U4 = rx2 − rqslU4(t)

d

dt
U5 = rqslU4(t)− ry1

d

dt
U6 = ry1 + ry2 − rwU6(t)

124

Figure 6.2: Comparison of relevant derivatives between original and simplified
model

Figure 6.2 presents all derivatives from the aggregated model and its relevant

states in the original model. Obviously, the state space is reduced to some ex-

tent, and it is easier to write it down for different populations by only changing

number of realms (M) and clients (N) rather than changing system behaviour,

as in original model. However, transient behaviours of this simplification are

different from the original model, because some individual behaviours have been

eliminated, and those relevant behaviour are combined to one action.

152

6.5 ODE analysis

From the lessons we have learned from previous studies, fluid flow approxima-

tion (based on ODE) has been chosen as the scalable analysis technique here.

Following the approach in [34], the set of ODEs of aggregated model is derived

below:

d

dt
U0(t) = rwU7(t)− rqtgtU0(t)

d

dt
U1(t) = rqtgtU0(t)− rx1

d

dt
U2l(t) = p ∗ rx1 − rqsgtlU2l(t)

d

dt
U3(t) = rqsgtlU2l(t)− rx2

d

dt
U4(t) = rx2 − rqslU4(t)

d

dt
U5(t) = rqslU4(t)− ry1

d

dt
U6(t) = ry1 + ry2 − rwU6(t)

d

dt
U2r(t) = (1− p) ∗ rx1 − rqtgtrU2r(t)

d

dt
U7(t) = rqtgtrU2r(t)− rx3

d

dt
U8(t) = rx3 − rqsgtrrU8(t)

d

dt
U9(t) = rqsgtrrU8(t)− rx4

d

dt
U10(t) = rx4 − rqsrrU10(t)

d

dt
U11(t) = rqsrrU10(t)− ry2

d

dt
KDC(t) = 0

d

dt
S(t) = 0

Where:

153

rx1 = rptgt
U1(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx2 = rpsgtl
U3(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx3 = rptgtr
U7(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

rx4 = rpsgtr
U9(t)

U1(t)+U3(t)+U7(t)+U9(t)
min(U1(t) + U3(t) + U7(t) + U9(t), KDC)

ry1 = rpsl
U5(t)

U5(t)+U11(t)
∗min(U5(t) + U11(t), S)

ry2 = rpsr
U11(t)

U5(t)+U11(t)
∗min(U5(t) + U11(t), S)

To explore the performance of servers, we investigate the average queue length and

average response time for the KDC and the application server in this analysis.

In the aggregated model, the number of average waiting clients in the KDC is

represent by the sum of U1(t), U3(t), U7(t) and U9(t) when t → ∞. Following

the homogeneous assumption, all waiting clients are equally distributed in each

realm. Hence, the average queue length for each KDC is calculated as:

L(KDC) =
U1(t) + U3(t) + U7(t) + U9(t)

M
. (t→∞)

Similarly, total number of waiting clients in S is U5(t) + U11(t)(t → ∞), which

can be divided by the number of realms to obtain the average queue length for

S in one realm as:

L(S) =
U5(t) + U11(t)

M
. (t→∞)

In terms of the average response time, the same problem has been faced as pre-

vious study. If we apply Arrival Theorem to calculate average response time for

multiple servers with multiple jobs, the most essential item need to known is the

time takes for one server to become available, and the prerequisite is understand-

ing the order of different jobs in the queue. However, the order is not possible (or

not easy) to be obtained. Therefore, firstly, the average response time is defined

as waiting time here, which just means the average time to process all the jobs

in the queue. We then approximated it as the sum of the time of each type of

154

jobs being processed by all servers as follows:

W (KDC) =
U1(t)

M ∗ rptgt
+

U3(t)

M ∗ rpsgtl
+

U7(t)

M ∗ rptgtr
+

U9(t)

M ∗ rpsgtr
. (t→∞)

W (S) =
U5(t)

M ∗K ∗ rpsl
+

U11(t)

M ∗K ∗ rpsr
. (t→∞)

This approximation assumes each type of jobs are all equally served by all servers.

Apparently, closer for the time of processing those types of jobs, more accurate

for this approximated results. One can imagine that if a extremely large job is

processed firstly, and it will block other small jobs for a long time. This is a huge

difference to move it to the end of the queue.

In addition, we would like to propose similar performance questions for Kerberos

protocol: “how many clients can a given Kerberos server configuration support?”

and “what is the maximum rate at which keys can be refreshed before the Ker-

beros performance begins to degrade?” As there is only one Kerberos server is

each realm, we get ride of the question about varying the number of servers in this

case study. These questions are answered through numerical results in section

5.8.

6.6 Numerical results

Figure 6.3 shows the average queue length calculated by ODEs against the number

of client in each realm, and verified by stochastic simulation with two realms.

Overall, more involved customers cause more clients waiting at the KDC server.

The diverged part between ODEs and stochastic simulation occurs when N is in

interval of 20 to 50. For N > 50, ODE coincides with results from stochastic

simulation, which follows the rule that fluid approximation approaching exact

results with large population, and the large population can be defined as 50

155

clients at the KDC in this case. The same comparison is presented in Figure 6.4

for application server (S). More clients waiting at S with increasing number of

clients in each realm (N), however, the curves flatten out as N increases. For

the whole system, the busier server KDC is, the more customers are waiting

at KDC than at S. Therefore, more clients of new arrivals are blocked at the

KDC rather than S, and this then leads the increasing rate reduced along with

N . This is also the reason that results of ODE and stochastic simulation do not

converge for S. Reviewing the value of queue length in Figure 6.3 and Figure 6.4,

the number of clients waiting at KDC are 100 times more then S. The scale of

number of customers waiting at S is still very small, and apparently results from

the ODEs cannot converge to stochastic simulation at this scale.

Figure 6.5 and Figure 6.6 compare the average queue length calculated from the

original model and simplified model by ODEs, in the case of two realms and

three realms, respectively. As the original model is hard to specify with four

realms and more, it is only possible to conduct this comparison manually for

a maximum of three realms. Those comparisons show that these results from

0

5

10

15

20

25

30

35

1 10 20 30 40 50 60 70
N

L(
kd

c)

ODE
SS

Figure 6.3: Average waiting customer for KDC varied with population size calcu-
lated by ODEs and stochastic simulation, rqtgt = rptgt = rqsgtl = rqtgtr = rpsgtl =
rqsl = rpsl = rptgtr = 1, rqsgtrr = rpsgtr = rqsrr = rpsr = 0.5, rw = 0.01, p =
0.6, K = 1,M = 2

156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 20 30 40 50 60 70
N

L(
s)

ODE
SS

Figure 6.4: Average waiting customer for S varied with population size calculated
by ODEs and stochastic simulation, rqtgt = rptgt = rqsgtl = rqtgtr = rpsgtl = rqsl =
rpsl = rptgtr = 1, rqsgtrr = rpsgtr = rqsrr = rpsr = 0.5, rw = 0.01, p = 0.6, K =
1,M = 2

0

5

10

15

20

25

30

35

1 10 20 30 40 50 60 70
N

L

Lkdc(simplified model)
Lkdc(original model)
Ls(simplified model)
Ls(original model)

Figure 6.5: Average waiting customer for KDC and S varied with population
size for two realms simplified model and original model calculated by ODEs,
rqtgt = rptgt = rqsgtl = rqtgtr = rpsgtl = rqsl = rpsl = rptgtr = 1, rqsgtrr = rpsgtr =
rqsrr = rpsr = 0.5, rw = 0.01, p = 0.6, K = 1,M = 2

157

0

5

10

15

20

25

30

35

1 10 20 30 40 50 60 70
N

L

Lkdc(simplified model)
Lkdc(original model)
Ls(simplified model)
Ls(original model)

Figure 6.6: Average waiting customer for KDC and S varied with population
size for three realms simplified model and original model calculated by ODEs,
rqtgt = rptgt = rqsgtl = rqtgtr = rpsgtl = rqsl = rpsl = rptgtr = 1, rqsgtrr = rpsgtr =
rqsrr = rpsr = 0.5, rw = 0.01, p = 0.6, K = 1,M = 3

0

10

20

30

40

50

60

70

1 6 11 16 21 26 31 36 41 46 51 56 61 66
N

W(N)

W(KDC-three realms)
W(S-three realms)
W(KDC-two realms)
W(S-two realms)

Figure 6.7: Average waiting time for customers at KDC and S varied with pop-
ulation size for three realms and two realms of simplified model calculated by
ODEs, rqtgt = rptgt = rqsgtl = rqtgtr = rpsgtl = rqsl = rpsl = rptgtr = 1, rqsgtrr =
rpsgtr = rqsrr = rpsr = 0.5, rw = 0.01, p = 0.6, K = 1

158

simplified model are exactly the same as original model, and it needs less time

to write the model down and less time to analyse that is considered efficient.

Additionally, it is noticed that the queue length for each KDC and application

server S for two realms is the same as those for three realms. This demonstrates

that adding a extra realms does not affect the overall performance of each server.

In this scenario, the remote requests will be shared amongst the remote realms.

Once a realm is added, more clients are coming the system, however, more servers

coming along too, and this could hold the balance between servers and consumers.

Nevertheless, for the whole system (network), there are far more waiting clients

in three realms than two realms. The situation is different for average waiting

time that illustrated in Figure 6.7. In Figure 6.7, we compared the average

waiting time for the customers waiting at KDC and S in case of three realms and

two realms. Generally, more clients involved in the system leads each customer

waiting longer, and the time for waiting at KDC is longer than waiting at S

which caused by the queue length (see Figure 6.5 and 6.6). However, different

from same queue length for each KDC and S for two and three realms, the

average waiting time for two realms are not equal to three realms, and it is longer

in three realms. The reason is that even the total queue length for each KDC does

not change, proportion of remote requests increasing if additional realm is added.

As we set that remote actions are slower then local actions, servers responds those

additional new remote requests slower. Hence, it is increasing the average waiting

time once adding additional realms.

6.7 Utility function

Once again, we apply the similar utility function to answer our proposed perfor-

mance questions for Kerberos protocol.

C = c1L+ c2rp , c1, c2 ≥ 0 (6.1)

159

Slightly different from the cost functions in previous Chapters, there is no number

of servers (K) here. This is because we intent to evaluate one individual realm in

this case, and there is only one Kerberos server in each realm under the scenario.

L denotes the average waiting customers at the non-repudiation server (TTP) in

one realm, and rp is the sum of the rates of local response (rptgt, rpsgtl, rptgtr) and

remote response (rpsgtr). C1 and C2 are cost rates, and they many depend on the

type of system or quality of service agreement with customers.

6.7.1 Numerical results

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71 81 91 10
N

C
os

t

 rlocal=1, rremote=0.5
 rlocal=2, rremote=1

Figure 6.8: Cost varied against the number of clients calculated by ODEs, p = 0.6,
M = 3, c1 = c2 = 1, rw = 0.01, rqtgt = rqsgtl = rqtgtr = rqsl = rpsl = 1,
rqsgtrr = rqsrr = rpsr = 0.5, rlocal ∈ {rptgt, rpsgtl, rptgtr}, rremote = rpsgtr

Figure 6.8 shows the cost varied against the number of clients calculated by ODEs.

As we expected, the queue length of customer at Kerberos server increases if more

clients come to the system. Consequently, the cost goes up under fixed service

capacity. When the local rate is 1 and the remote rate is 0.5, the performance

significantly degrades at the point where N = 38. If we double the rates for all

local and remote responses, this point goes to around N = 93.

160

0

20

40

60

80

100

120

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
rw

C
os

t

 rlocal=1, rremote=0.5
 rlocal=2, rremote=1

Figure 6.9: Cost varied with rate of work calculated by ODEs, p = 0.6, M = 3,
N = 100, c1 = c2 = 1, rw = 0.01, rqtgt = rqsgtl = rqtgtr = rqsl = rpsl = 1,
rqsgtrr = rqsrr = rpsr = 0.5, rlocal ∈ {rptgt, rpsgtl, rptgtr}, rremote = rpsgtr

Figure 6.9 presents the cost varied with the rate of refresh key, rw. Generally,

frequently refreshing the session key leads more workload has been added to the

system. Hence, cost increases with the number of waiting customers goes up.

When we double the response rates, the cost is smaller. The reason is that the

cost of customer waiting is reduced more than the increment of cost of service

capacity. However, the two curves becomes very close when rw is large, and this is

because the difference of costs of customer waiting for two curves become smaller

with a very large workload involved. Different from previous case studies, there

is no obvious point here to make a balance between security and performance.

Nevertheless, a security manager still could choose a heuristic balance point in

particular applications.

161

6.8 Summary

In this chapter we modelled a version of the Kerberos protocol with cross realm

requests. Even under an homogeneous assumption, the original model is cum-

bersome to formulate and suffers from commonly known state space explosion

problem. We then simplified the original model by aggregating some relevant

states, and it has been analysed by ODE approximation then verified by stochas-

tic simulation. Through comparison of the aggregated model and the original

model, this simplification is shown to obtain exact results for the overall perfor-

mance of the system. Additionally, adding a realm to the system does not affect

the performance of an individual server in this case. In this work, we assume

there are K but only one type of S in each realms. It is possible to add more

types of application server by naming it differently, however, this would obviously

increase the complexity, with more extra behaviours added. Finally, we apply the

techniques to a utility function to make a efficient capacity analysis to answer

our proposed performance questions.

Through this case study, an aggregation technique can be added to the proposed

work flow in simplification stage to decrease the difficulty of analysis when partial

evaluation is not applicable.

162

Chapter 7

Conclusion and Further Work

7.1 Conclusions

In this thesis five security protocols have been modelled and analysed, and these

protocols can be classified into different categories in order of complexity in terms

of system behaviour. We have applied the analysis techniques that have been

learned from former ones to latters. Firstly, in Chapter 3, we explored the per-

formance of a model of a key distribution centre, as it is a simple and basic

protocol for an initial case study. In the preliminary stage, we have proposed

three modelling choices to discuss and selected one which is simple, but which

captures the necessary behaviour. However, the chosen modelling method still

suffers from the commonly known state space explosion problem. We therefore

firstly implemented a simulation of the model, then an approximation is pro-

posed to simplify system behaviour, and finally ODE analysis has been applied

as a deterministic fluid flow analysis. The approximation shows good accuracy

of prediction compared with simulation, scales exceptionally well and is fast to

compute. ODE results have been compared with those derived from the approx-

imation, unfortunately it is not always as accurate as our simplification and we

have not been able to obtain all our desired metrics. On the other hand, the ODE

approach does not suffer the same numerical problems as the approximation, it

163

is extremely efficient to solve and it is shown to be extremely accurate when the

number of clients is huge. Finally, these techniques have been applied to a util-

ity function to explore the capacity planning for a system associated with this

protocol.

Then, two non-repudiation protocols, to be referred as ZG1 and ZG3, have been

studied in Chapter 4. ZG1 has similar system behaviour to KDC in the pre-

vious chapter, therefore we can directly apply partial evaluation and the ODE

approximation to solve it. However, the ZG3 model introduces an unintended

race between different service actions for the non-repudiation server. This prob-

lem has been solved by specifying functional rates to the servers for each type of

jobs. The ZG3 is able to be modelled and analysed through partial evaluation

and ODE approximation. The ODE analysis for PEPA with functional rates can

be either solved by coding in Matlab, or by translating to a CMDL model and

solved with the PEPA Eclipse plugin. Mean value analysis (MVA) has been

firstly applied for PEPA models here, and compared with ODE analysis through

numerical results. Both approaches enable systems with extremely large num-

bers of components to be solved efficiently. When the population size, N , is very

large, there is almost no difference between the values obtained by either method,

although the fluid approximation is slightly quicker. However, when N is small

the fluid approximation diverges in the region around a known point, hence in

such cases, mean value analysis is preferable.

In Chapter 5, we modelled an optimistic fair exchange protocol, which is another

type of non-repudiation protocol. In contrast to ZG1 and ZG3 in the previous

chapter, this optimistic non-repudiation protocol employs an off-line Third Trust

Party (TTP) that is only being activated if a dispute occurs between involved

clients. Therefore, two models are formulated: one for the case where there is no

dispute and one for the case where the TTP is involved with resolving a dispute.

Furthermore, we consider the Merchant server as consisting of several threads

and each thread is partially evaluated with a client. Hence, the response action

rates of the Merchant server becomes a functional rate, which depends on the

active number of relevant clients. In the model of the extended protocol (TTP

164

involved), the version of the functional rates used in ZG3 is employed to avoid the

race between different actions of the TTP server. Following the previous study,

the ODE approximation is adopted as the most efficient analysis technique here,

and the results are verified by stochastic simulation.

Finally, a cross-realm Kerberos protocol is investigated in Chapter 6. The orig-

inal PEPA model not only suffers from the state space explosion problem with

large populations and the large number of realms, but is also cumbersome to

formulate it. Adding additional realms to the whole system leads more actions

being specified. We therefore conduct a simplification process by aggregating

relevant states from different realms to a new state in the whole network. By

this simplification, one can easily modify parameters of population and number

of realms rather than change the system behaviour in the original model. Again,

according to our previous experience, ODE based fluid flow analysis has been ap-

plied, and the results have been verified by stochastic simulation. This simplified

model is compared with original model for a small number of realms to show the

accuracy of this aggregation. However, this simplification only works with steady

state distribution and would not be suitable if we wished to analyse transient

behaviour.

Through these case studies, we can enhance our proposed work flow as follow in

Figure 7.1.

Now, we have several modelling choices in the modelling stage. In security proto-

col, one can model the clients as the same replicated component (first and third

modelling choice in Chapter 3) or assign different name to it (second modelling

choice in Chapter 3). For the server, it can be modelled as a single component

(Chapter 3, 4, 6) or several threads (Chapter 5). However, the modelling form

only depends on the application and scenarios. If the performance model is sim-

ple and small scaled, one can directly analyse it, otherwise, the model should be

simplified. Partial evaluation is able to be employed to reduced the components

of clients (Chapter 3, 4, 5), if the clients in security protocols are tightly coupled.

Aggregation technique is also helpful to decrease the difficulty of analysis when

165

System
Performance model: muti-
threads modelling form for

resource component

Model simplification:
partial evaluation,

aggregation, functional rates
specification

Cost function
analysis

Analysis:
CTMC, ODE analysis,

queueing approximation,
mean value analysis

Metrics

Figure 7.1: Enhanced work flow of performance analysis in context

partial evaluation is not applicable (Chapter 6). Furthermore, functional rates

specification is alternative choice to avoid to write full detailed behaviour of the

server when there is an unintended competition between different service actions

(Chapter 4, 5, 6). If the simplified model is small enough, CTMC method can be

applied (few clients in Chapter 3). In some cases (Chapter 3), the PEPA model

can be transformed to a simple closed queueing network model, one only need

to calculated the balance equation to solve the model. Another efficient analysis

is mean value analysis, however, it only can be employed with our defined class

of PEPA model (Chapter 4), though, this class will be extended in future. Fi-

nally, one can resort to ODE analysis to very large scale models (Chapter 3, 4,

5, 6). This is an approximation which only gives accurate results when system

is very large. Therefore, it is a good complement to other exact solutions. After

analysis, one can use the obtained metrics to the cost functions to analyse the

performance of the security protocols or systems. This is able to be considered

as a initial framework that can be followed for the further case studies.

166

7.2 Further work

There is a large scope for further work. This work can be classified into three

categories: addressing the limitations of current work, applying other relevant

analysis techniques to the five protocols in context, and exploring more types of

security protocols. Though the works, we aim to further enhance our framework

and generalise the performance evaluation techniques for security protocols.

Some limitations exist in this work. Firstly, we assume two clients are tightly

coupled in the process of partial evaluation in Chapter 3 and Chapter 4. How-

ever, two clients might not have equal populations (e.g. 2 Alice with 3 Bob)

in some cases, therefore partial evaluation can not be applied in the case with-

out approximation. Then, we are not able to calculate average response time in

the situation of multiple server and multiple jobs, as the order of jobs are not

known. Finally, the whole system of Kerberos network is under the assumption

of homogeneous realms in Chapter 7. Obviously, a heterogeneous Kerberos cross

realm environment does not fit for our simplification process. All these limitations

remain issues of further exploration.

There are many other analysis techniques that can be attempted for these four

protocols. In this thesis we have focused exclusively on steady state performance,

whereas in practice many important metrics are transient in nature. Therefore

applying transient analysis techniques would extend the practical applicability of

this work. As ODE presents a deterministic approximation, stochastic differen-

tial equations based fluid flow analysis [29] can be applied by introducing noise

to ODE to approach the fact. Kronecker representation [36] provides a exact so-

lution to efficiently solve Markov chain with less memory needed. Product form

and semi-product form solution with Harrison’s RACT [24, 27] also can be em-

ployed to investigate those protocols in this thesis. Bradley and Hayden’s high

order moment analysis [32] can be utilised to analysis more performance metrics.

Additionally, performance measurement of prototype implementations is another

analysis approach, by which the results are not only able to be verified, but also

provide a path to validate the performance models.

167

As our long term objective is a general performance analysis approach to se-

curity protocols based on trade-off analysis between security and performance,

we therefore need to explore a greater range of security protocols with respect

to system behaviour. Two such protocols are proposed here. The first one is

Netbill Security and Transaction protocol [15], which provides a layered request

and response architecture. In this protocol, one of the components acts both as

client and server. Furthermore, the Bull/Otway authentication protocol [8] aims

at establishing fresh session keys between a number of participants and a server

(one key for each pair of agents adjacent in the chain). To formulate its perfor-

mance model, partial evaluation can not be applied and additional participants

changes all system behaviour. Therefore, further scalable modelling and analysis

approaches need to be explored.

168

References

[1] P. Argyroudis, R. Verma, H. Tewari and D. O’Mahony, Performance anal-

ysis of cryptographic protocols on handheld devices, in: Proceedings of the

Third IEEE International Symposium on Network Computing and Applica-

tions, Massachusetts, 2004.

[2] J. Banks, J. Carson, B. Nelson and D. Nicol, Discrete-event system simulation

- fourth edition, Pearson, 2005.

[3] C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, H. Nielson and

C. Priami, Performance evaluation of security protocols specified in LySa, in:

Journal of Electronic Notes in Theoretical Computer Science (ENTCS), 112,

2005.

[4] J. Bradley and W. Knottenbelt, The ipc/HYDRA Tool Chain for the Analysis

of PEPA Models, in: Proceedings of the 1st IEEE International Conference

on the Quantitative Evaluation of Systems, 2004.

[5] J. Bradley, S. Gilmore and J. Hillston, Analysing distributed Internet worm

attacks using continuous state-space approximation of process algebra models,

in: Journal of Computer and System Sciences, 74(6), 2008.

[6] J. Bradley, S. Gilmore and N. Thomas, Performance analysis of Stochastic

Process Algebra models using Stochastic Simulation, in: Proceedings of 20th

IEEE International Parallel and Distributed Processing Symposium, IEEE

Computer Society, 2006.

169

[7] M. Buchholtz, S. Gilmore, J. Hillston and F. Nielson, Securing statically-

verified communications protocols against timing attacks, in: Electronic Notes

in Theoretical Computer Science, 128(4), Elsevier, 2005.

[8] J. Bull and D. Otway, The authentication protocol, APM Technical Report,

Defence Research Agency, 1997.

[9] J. Cho, I. Chen and P. Feng, Performance analysis of dynamic group commu-

nication systems with intrusion detection integrated with batch rekeying in

Mobile Ad Hoc Networks, in: Proceddings of the 22nd International Confer-

ence on Advanced Information Networking and Applications, Okinawa, Japan,

IEEE, 2008.

[10] M. Chromiak and Z. Lojewshi, Stream security particularities in Java, Jour-

nal of Annales UMCS, Informatica, 8(5-13), 2009.

[11] A. Clark, A. Duguid, S. Gilmore and M. Tribastone, Partial evaluation of

PEPA models for fluid-flow analysis, in: Computer Performance Engineer-

ing: Proceedings of the 5th European Workshop on Performance Engineering

(EPEW), LNCS 5261, Springer-Verlag, 2008.

[12] G. Clark and W. Sanders, Implementing a stochastic process algebra within

the Möbius Modeling framework, in: Proceedings of the 9th International

Workshop on Process Algebra and Performance Models, Aachen, Germany,

2001.

[13] G. Clark and S. Gilmore and J. Hillston and N. Thomas, Experiences with

the PEPA Performance Modelling Tools, in: IEE Proceedings - Software, pp:

11-19, 146(1), 1999.

[14] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. Doyle,

W. Sanders, and P. Webster. The Möbius Modeling Tool, in: Proceedings

of the 9th International Workshop on Petri Nets and Performance Models,

pp: 241-250, Aachen, Germany, 2001.

170

[15] B. Cox, J. Tygar, and M. Sirbu, NetBill security and transaction protocol,

in: Proceedings of the 1st conference on USENIX Workshop on Electronic

Commerce, Berkeley, CA, USA, 1995.

[16] S. Dick and N. Thomas, Performance analysis of PGP, in: Proceedings of

22nd UK Performance Engineering Workshop (UKPEW), Bournemouth Uni-

versity, 2006.

[17] M. El-Hadidi, N. Hegazi and H. Aslan, Performance analysis of the Kerberos

protocol in a distributed environment, in: Proceedings of the 2nd IEEE Sym-

posium on Computers and Communications (ISCC ’97), Alexandria, Egypt,

IEEE, 1997.

[18] M. El-Hadidi, N. Hegazi and H. Aslan, Performance evaluation of a new

hybrid encryption protocol for authentication and key distribution, in: In-

ternational Symposium on Computers and Communications, Egypt, IEEE,

1999.

[19] W. Freeman and E. Miller, An experimental analysis of cryptographic over-

head in performance-critical systems, in: Proceedings of the 7th International

Symposium on Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems (MASCOTS), IEEE Computer Society, 1999.

[20] D. Gillespie, Exact stochastic simulation of coupled chemical reactions. Jour-

nal of Physical Chemistry, 81(25), pp: 2340-2361, 1977.

[21] S. Gilmore, J. Hillston and M. Ribaudo, An Efficient Algorithm for Aggre-

gating PEPA Models, IEEE Transactions on Software Engineering, 27(5),

2001.

[22] P. Gutmann, Performance characteristic of application-level security proto-

cols, draft paper at http://www.cs.auckland.ac.nz/ pgut001/pubs/app sec.pdf.

[23] A. Harbitter and D. Menasce, A methodology for analyzing the performance

of authentication protocols, Journal of ACM Transactions on Information

and System Security, 5(4), 2002.

171

[24] P.G. Harrison, Turning back time in Markovian process algebra, Theoretical

Computer Science, 290(3), 2003.

[25] P.G. Harrison, G-networks with Propagating Resets via RCAT, ACM SIG-

METRICS Performance Evaluation Review, 31(2), pp: 2-3, 2003.

[26] P.G. Harrison, Compositional reversed Markov processes, with applications

to G-networks, Performance Evaluation, 57(3), 2004.

[27] P. Harrison and N. Thomas, State-Dependent Rates and Semi-Product-Form

via the Reversed Process. in: Proceeding of the 7th European Performance

Engineering Workshop, Springer-Verlag, 2010.

[28] B. Haverkort, Performance of Computer Communication Systems: A model

Based Approach, Wiley, 1998.

[29] R. Hayden, Addressing the state space explosion problem for PEPA mod-

els through fluid-flow approximation, Undergraduate thesis, Imperial College

London, 2007.

[30] R. Hayden and J. Bradley, Fluid-flow solutions in PEPA to the state space

explosion problem, in: 6th Workshop on Process Algebra and Stochastically

Timed Activities, Imperial College, London, 2007.

[31] R. Hayden and J. Bradley, ODE-based general moment approximations for

PEPA, in: 7th Workshop on Process Algebra and Stochastically Timed Activ-

ities, Edinburgh, 2008.

[32] R. Hayden and J. Bradley, A fluid analysis framework for a Markovian pro-

cess algebra, in: Theoretical Computer Science, 411(22-24), pp: 2260-2297,

April, 2010.

[33] J. Hillston, A Compositional Approach to Performance Modelling, Cam-

bridge University Press, 1996.

[34] J. Hillston, Fluid flow approximation of PEPA models, in: Proceedings of 2nd

International Conference on the Quantitative Evaluation of Systems (QEST),

pp:33-43, IEEE Computer Society, 2005.

172

[35] J. Hillston and N. Thomas, Product form solution for a class of PEPA mod-

els, Performance Evaluation, 35(3-4), 1999.

[36] J. Hillston and L.J. Kloul, An efficient Kronecker representation for PEPA

models, in: Proceeding of the first Joint PAPM-PROBMIV Workshop, LNCS

2165, pp: 120-135, Aachen, Springer, 2001.

[37] J. Hillston and L.J. Kloul, From SAN to PEPA: A Technology Transfer, in:

Proceedings of the 1st Workshop on Process Algebras and Timed Activities

(PASTA’02), Edinburgh, 2002.

[38] A. Hinton, M. Kwiatkowska, G. Norman and D. Parker, PRISM: A tool

for automatic verification of probabilistic systems. in: Proceeding of the 12th

International Conference of Tools and Algorithms for the Construction and

Analysis of Systems, LNCS 3920, pp: 441-444. Springer, 2006.

[39] W. Knottenbelt, Parallel Performance Analysis of Large Markov Models,

PhD thesis, Department of Computing, Imperial College of Science, 1999.

[40] W. Knottenbelt and J. Bradley, Tackling Large State Spaces in Performance

Modelling, in: 7th International School on Formal Methods for the Design of

Computer, Communication and Software Systems (SFM), Springer, 2007.

[41] M. Kwiatkowska, G. Norman and D. Parker, Stochastic Model Checking,

in: 7th International School on Formal Methods for the Design of Computer,

Communication and Software Systems (SFM), Springer, 2007.

[42] C. Lamprecht, A. van Moorsel, P. Tomlinson and N. Thomas, Investigating

the efficiency of cryptographic algorithms in online transactions, International

Journal of Simulation: Systems, Science & Technology, 7(2), pp: 63-75, 2006.

[43] S. Lavenberg and M. Reiser, Stationary state space probabilities at arrival

instants for closed queueing networks with multiple types of customers, in:

Journal of Applied Probability, 17)(4), pp: 1048-1061, 1980.

173

[44] W. Liu, L. Yang, Q. Li, H. Dai and B. Hou, Performance analytic model

for authentication mechanism, in: International Conference on Networking,

Sensing and Control, pp: 1097 - 1102, Sanya, China, 2008.

[45] I. Mitrani, Simulation techniques for discrete event systems, Cambridge Uni-

versity Press, 1982.

[46] I. Mitrani, Probabilistic Modelling, Cambridge University Press, 1998.

[47] A. Moralis, V. Pouli, M. Grammatikou, S. Papavassilious, and V. Maglaris,

Performance comparison of web services security: Kerberos token profile

against X.509 token profile, in: Third International Conference on Networking

and Services (ICNS), Athens, IEEE, 2007.

[48] R. Needham and M. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12), 1978.

[49] N. O’Shea, Concerning Performance Driven Cryptographic Protocol Devel-

opment, in: 8th Workshop on Process Algebgra and Stochastically Timed Ac-

tivities, University of Edinburgh, 2009.

[50] N. Potlapally, S. Ravi, A. Ragunathan, and N. Jha, Analyzing the en-

ergy consumption of security protocols, in: International Symposium on Low

Power Electronics and Design, Seoul, Korea, ACM, 2003.

[51] I. Ray and I. Ray, An Optimistic Fair Exchange E-commerce Protocol with

Automated Dispute Resolution, in: Proceedings of the First International

Conference on Electronic Commerce and Web Technologies, LNCS 1875, pp:

84-93, 2000.

[52] R. Ramsey, D. Orrell, and H. Bolouri, Dizzy: stochastic simulation of large-

scale genetic regulatory networks. in: Journal of Bioinf. Comp. Biol., 3(2),

pp: 415-436, 2005.

[53] M. Reiser and S. Lavenberg, Mean value analysis of closed multichain queue-

ing networks, Journal of the ACM, 22(4), pp: 313-322, 1980.

174

[54] O. Rodeh, K. Birman, M. Hayden, Z. Xiao and D. Dolev, The architecture

and performance of security protocols in the ensemble group communication

system, Journal of ACM Transactions on Information and System Security,

4(3), 2001.

[55] K. Sevcik and I. Mitrani, The distribution of queueing network states at

input and output instants, Journal of the ACM, 28(2), pp: 358-371, 1981.

[56] X. Sha, X. Tan, N. Zhang and W. Liu, Performance analysis of multiple-

access protocol ALOHA/PCD, in: International Conference on Communica-

tion Technology Proceedings (ICCT), pp: 938-941, Beijing , China, 1996.

[57] J. Slegers, A Langevin interpretation of PEPA models, Electronic Notes in

Theoretical Computer Science, 261, 2010.

[58] M. Smith, Abstraction and Model Checking in the PEPA Plug-In for Eclipse,

in: 7th International Conference on the Quantitative Evaluation of Systems,

pp: 155-156, Williamsburg, VA, USA, 2010.

[59] W. Stallings, Cryptography and Network Security: Principles and Practice,

Prentice Hall, 1999.

[60] A. Stefanek, R. Hayden and J. Bradley, GPA - Tool for rapid analysis of very

large scale PEPA models, in: 26th UK Performance Engineering Workshop,

University of Warwick, 2010.

[61] W. Stewart, Introduction to the numerical solution of Markov chains, Prince-

ton University Press, 1994.

[62] W. Stewart, Performance Modelling and Markov Chains, in: 7th Interna-

tional School on Formal Methods for the Design of Computer, Communication

and Software Systems (SFM), Springer, 2007.

[63] N. Thomas, Exploiting behavioural independence and control in Markovian

process algebra, in: 1st Workshop on Process algebra with stochastic timed

activities, University of Edinburgh, 2002.

175

[64] N. Thomas, Performability of a secure electronic voting algorithm, Journal

of Electronic Notes in Theoretical Computer Science, 128(4), pp: 45-58, 2005.

[65] N. Thomas, Using ODEs from PEPA models to derive asymptotic solutions

for a class of closed queueing networks, in: 8th Workshop on Process Algebra

and Stochastically Timed Activities, University of Edinburgh, 2009.

[66] N. Thomas, J. Bradley and D. Thornley, Approximate solution of PEPA

models using component substitution, IEE proceedings on Computers and

Digital Techniques, 150(2), 2003.

[67] N. Thomas and Y. Zhao, Mean value analysis for a class of PEPA models.

in:The Computer Jouneral, 2010; doi: 10.1093/comjnl/bxq064.

[68] M. Tribastone, The PEPA plug-in project, in: Proceedings of 4th Interna-

tional Conference on the Quantitative Evaluation of Systems (QEST), pp:

53-54, IEEE Computer Society, 2007.

[69] Y. Wang, C. Lin and Q. Li, Performance analysis of email systems under

three types of attacks, in: Performance Evaluation, 67(6), 2010.

[70] M. Zhao, Performance evaluation of distributed security protocols using dis-

crete event simulation, PhD thesis, Dartmouth College, Hanover, New Hamp-

shire, 2005.

[71] J. Zhou and D. Gollmann, A Fair Non-repudiation Protocol, in: Proceed-

ings of IEEE Symposium on Security and Privacy (SP’96), IEEE Computer

Society, 1996.

[72] J. Zhou and D. Gollmann, Observation on Non-repudiation, in: Advances in

Cryptology-ASIACRYPT’96, LNCS 1163, pp: 133-144, Springer-Verlag, 1996.

[73] http://www.dcs.ed.ac.uk/pepa/tools/ipc/.

[74] http://eclipse.org.

176

