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SINGLE CHANNEL BLIND SOURCE SEPARATION

ABSTRACT

Single channel blind source separation (SCBSS) is an intensively researched field with
numerous important applications. This research sets out to investigate the separation of
monaural mixed audio recordings without relying on training knowledge. This research
proposes a novel method based on variable regularised sparse nonnegative matrix
factorization which decomposes an information-bearing matrix into two-dimensional
convolution of factor matrices that represent the spectral basis and tempora code of the
sources. In this work, a variational Bayesian approach has been developed for computing
the sparsity parameters of the matrix factorization. To further improve the previous work,
this research proposes a new method based on decomposing the mixture into a series of
oscillatory components termed as the intrinsic mode functions (IMF). It is shown that IMFs
have severa desirable properties unique to SCBSS problem and how these properties can
be advantaged to relax the constraints posed by the problem. In addition, this research
develops a novel method for feature extraction using psycho-acoustic model. The monaura
mixed signa is transformed to a cochleagram using the gammatone filterbank, whose
bandwidths increase incrementally as the center frequency increases; thus resulting to
non-uniform time-frequency (TF) resolution in the analysis of audio signal. Within this
domain, a family of Itakura-Saito (I1S) divergence based novel two-dimensional matrix
factorization has been developed. The proposed matrix factorizations have the property of
scale invariant which enables lower energy components in the cochleagram to be treated
with equal importance as the high energy ones. Results show that all the developed

algorithms presented in this thesis have outperformed conventional methods.
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CHAPTER 1

CHAPTER 1

INTRODUCTION TO THESIS

1.1 Background of Source Separation

In recent years, source separation (SS) has received considerable attention from both
signa processing and neutral network researchers. Source separation means when given a
mixture signal, it can be separated with independent components. In this area, the methods
to solve SS problem can be categorized either as supervised SS methods or unsupervised
SS methods. The terms “supervised” and “unsupervised” denote the requirement of
training information and without training information, respectively. Blind (or unsupervised)
source separation (BSS) refers to the powerful technique of separating a mixture of
underline sources without training data nor a priori knowledge about the original sources
and parameters of the mixing system. During the last decade, tremendous developments
have been achieved in the area of BSS [1-11] and BSS has become one of the most
promising and exciting topics with solid theoretical foundations and potential applications
in the fields of neural computation, advanced statistics, and signal processing. BSS has
been successfully applied in various fields such as speech enhancement, recognition,
biomedical image processing, image processing, remote sensing, communication systems,

exploration seismology, geophysics, econometrics, data mining and neural networks.
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1.1.1 BSS problem formulation

A general BSS problem can be mathematically defined as follows: A set of observations
y(t):[yl(t) ACE (t)]T which are random processes is generated as a mixture of
underlying source signals x(t) = x,(t) % (t) -+ (t)}T according to:

AU M Mp o My (D)

RO Ma M M O gk @

O [my me o m (50
where M is the unknown mixing matrix of dimension N,xN, and t is the time or
sample index. The technique of BSS ams to estimate both the origina sources
x(t):[xl(t)xz(t)---xNS(t)}T and the mixing matrix M using only the observations
y(t) =[y1(t) ACE (t)]T. It is noted that (1.1) represents a simplified model which may
not be an accurate representation of the real environment. Issues such as nonlinear
distortions, propagation delay of signals and noise should be taken into account and
evaluated in order to present arealistic model. Hence the need for further research has led

to various branches of research in BSS.

1.1.2 Classification of BSS

A review of current literature shows that there exits three main classification of BSS.
These include: Linear and Nonlinear BSS; Instantaneous and Convolutive BSS;
Overcomplete and Underdetermined BSS. In the first classification, linear agorithms
dominate the BSS research field due to its simplicity in analysis and its explicit separability.

Linear BSS assumes that the mixture is represented by a linear combination of sources [1,

2
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6, 12], as defined in (1.1). Extension of BSS for solving nonlinear mixtures has aso been
introduced [13-19]. This model which takes nonlinear distorted signals into consideration
offers a more accurate representation of a realistic environment. In the second
classification, when the observed signals consist of combinations of multiple time-delayed
versions of the original sources and/or mixed signals themselves, the system is referred as
the convolutive mixture. Otherwise, the absence of time delays results in the instantaneous
mixture of observed signals. An example of the simplest and conventional form of linear
instantaneous BSS model is the linear mixture, which is expressed in (1.1). Finaly, when
the number of observed signals more than the number of independent sources (N, > N.,),
this refers to overcomplete BSS. On the other hand, when the number of observed signals
smaler than the number of independent sources ( N, <N, ), this becomes to

underdetermined BSS.

1.1.3 Applications of BSS

Due to the diverse promising and exciting applications, BSS has attracted a substantial
amount of attention in both the academic field as well as the industry area. During the last
decade, tremendous developments have been achieved in the application of BSS,
particularly in wireless communication, medical signal processing, geophysical exploration
and image enhancement/recognition [3, 20-36]. The so-called “cocktail party” problem
within the BSS context refers to the phenomenon of extracting origina voice signals of the
speakers from the mixed signals recorded from severa microphones. Similar examples in

the field of radio communication involve the observations which correspond to the outputs

3
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of several antenna elements in response to several transmitters which represents the
origina signals. In the analysis of medica signals, eectroencephalography (EEG),
magnetoencephal ography (MEG) and electrocardiogram (ECG) [3, 11, 20, 22] represents
the observations and BSS is used as a signal processing tool to assist noninvasive medical
diagnosis. BSS has also been applied to the data analysis in other areas such as finance and
seismology. Further evidence of these applications can be found in [23-36]. In addition,
BSS [11] has been applied in chemometrics, for example to determine the spectra and
concentration profiles of chemical components in an unresolved mixture. Especialy, in
most audio applications, applying simple processing to a certain source within a
polyphonic mixture is virtualy impossible to separate signals. This creates a need for
source separation methods, which first separate the mixture into sources, and then continue
the separated sources individually. These applications include audio coding, analysis, and

manipulation of audio signals.

1.1.4 Single channel source separation (SCSS)

1.1.4.1 Time domain SCSS mixing model

In this thesis, the special case of instantaneous underdetermined SS problem termed as
single channel source separation is focused. In general case and for many practical
applications (e.g. audio processing) only one-channel recording is available and in such
cases conventional source separation techniques are not appropriate. However, this is the

most interesting case seen from a hearing instrument industry point of view such that the
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specific applications [37] are described as following:

1

It is often desirable to process a single instrument in a recording. For example, in a
single microphone recording of vocals and acoustic guitar, we might want to adjust the
volume of the guitar or shift the pitch of the vocals. Thus, if the individual instruments
can be distinguished from a mixture, they can be processed individually.

Speech recognition in the presence of noise, particularly heavy non-stationary noise, is
a challenging problem. Speech recognition performance could improve if the speech
can be distinguished from the noise and perform recognition on the portion of the
mixture that corresponds to speech.

Musicians often spend large amounts of time trying to listen to a song and learn the
part of a specific instrument by ear. This task becomes more difficult when the given
piece of music has numerous parts by numerous instruments (which is often the case).
If the instrument of interest can be extracted, it could ssimplify the task of the musician.
In practice, this is a common problem for guitar players that try to learn their parts
from recordings of bands.

Automatic music transcription of polyphonic music is a challenging problem. If each
of the instruments in the mixture can be modeled, they can be transcript individually.

A number of music information retrieval (MIR) tasks involve extracting information
from individual sources. For example, guitar and piano parts could be good indicators
of the key of a song. However, the percussion part will rarely have any useful
information for this task. Although, the sound mixture can be directly used for many

of these tasks, extracting the information from the right source could improve the
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performance.

Other field such as neuroscience (spike sorting) [38, 39] seeks to elucidate concerns the
mechanisms used by dedicated parts of brains to perform specific tasks. This is aso
performed by single channel. This leads to the SCSS research area where the problem can

be simply treated as one observation instantaneous mixed with several unknown sources:
NS
y(t) =2 % (t) 1.2)
i=1

where i=1...,N, denotes number of sources and the goal is to estimate the sources x (t)
when only the observation signal y(t) isavailable. Thisis an underdetermined system of
equation problem. Recently, new advances have been achieved in SCSS and this can be
categorized either as supervised SCSS methods or unsupervised SCSS methods. More

details of the above methods will be reviewed in Chapter 2.
1.1.4.2 Time-Frequency domain SCSS mixing model

Audio mixtures of sources in the time domain can be modeled as (1.2). In the TF domain,

the mixture (1.2) becomes:
NS
Y(f,t)=> X (f,t) (1.3)
i=1

where Y(f,t;), X,(f,t;) denote TF components which can be obtained by applying
short time Fourier transform (STFT) or other TF analysis methods. The anaysis of
different TF transform will be discussed in detail in Chapter 5. Here, the time slots are
given by t,=12,...,T, while frequencies are given by f=12,...,F. F and T, represent

the total frequency units and time slots in the TF domain, respectively. Note that in (1.3),
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each component is a function of t, and f . The power spectrogram is defined as the

squared magnitude of (1.3):

Y(F L) = i (|Xi(f )+ X (F 0 +2]%, (1.1

iLj(i=])

x](f 'ts)

cos(6, ; (f ,ts))) (1.4)

where 6, ;(f,t;) measures the projection of |X,(f,t;) onto ‘Xj(f,ts)

[8]. For a large
sample size, X;(f,t;) and X;(f,t;) are assumed orthogona and hence, the cross term
6, ;(f,t))=x/2. However, for finite sample size, this assumption on 6, ;(f,t;)=7/2 may

not hold and 2|X,(f,t,)|

Xj(f’ts)

cos(6,;(f.t,)) is treated as the residual noise. In our

simulation experiments, all testing recordings are using large sample size and thus a matrix

representation for (1.4) is given asfollows:
2 N 2
DI (1.5)
i=1

where [Y*=[[Y(f.t)]" [{354 and X" =[|x,(f.L)f ]{32-5 ae two-dimensiona
matrices (row and column vectors represent the time slots and frequencies or frequency
bins, respectively) which denotes the power TF representation of (1.2). The superscript «.”

is element-wise operation. Eqgn. (1.5) is a synthesis equation since it describes how |Y|'2 is

generated asamixing of |X|”.

1.2 Objectives of Thesis

The aims of this thesis are to investigate SCSS methods in terms of its fundamental
theory, assumptions, applications and limitations as well as further develop new
frameworks of single channel blind source separation (SCBSS) for audio mixture. Three

novel methods have been imposed, namely, SCBSS using variable regularised sparse

7
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features; SCBSS using empirica model decomposition (EMD) subband variable
regularised sparse features; and SCBSS using cochleagram and Itakura-Saito divergence
based matrix factorization. Rigorous mathematical derivations and simulations are carried

out to substantiate the efficacy of the proposed al gorithms.

The objectives of thisthesis are listed as follows:

i). To present a unified perspective of the widely used existing SCSS methods. The
theoretical aspects of SCSS are presented to provide sufficient background knowledge
relevant to the thesis.

ii). To develop useful audio signal analysis agorithms that have desirable properties
unique to SCBSS problem and use these properties can be advantaged to relax the
constraints posed by the problem.

iii). To develop a measure for audio signal separability and analysis the source separation
in different TF representation.

iv). To develop novel methods for SCBSS which addresses the following:

« Non-stationarity, spectral coherence and temporal correlation of the audio signals.

e Formulation of an iterative learning process to update model parameters and
estimate source signals.

o Deélivery of enhanced accuracy and evidence in the form of comparisons to

existing counterpart algorithms based on synthesized and real audio signals.
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1.3Thesis Outline

This research is carried out with the focus predominantly on single channel audio
mixtures. Three novel generative methods for SCBSS are proposed in this thesis. Real time
testing has been conducted and it is shown that the proposed methods gives superior

performance over other existing approaches.

In Chapter 2, an overview of recent SCSS methods is given, which reviews a major
SCSS methods. The start of this chapter is by introducing supervised SCSS methods which
includes both time and frequency model based methods. The current unsupervised SCSS

methods have a so been reviewed in this chapter.

In Chapter 3, a new unsupervised SCSS method is developed to separate music
instantaneous mixture. A novel matrix factorization algorithm is proposed to decompose an
information-bearing matrix (TF representation of mixture) into two-dimensional
convolution of factor matrices that represent the spectral basis and tempora code of the
sources. In addition, a variational Bayesian approach is derived to compute the sparsity
parameters for optimizing the matrix factorization. Simulation of single channel music

source separation is carried out to effectiveness of the proposed method.

In Chapter 4, a new unsupervised SCSS method is developed to separate audio
instantaneous mixture (the audio mixture include music&music, speech&music and
speech& speech). The ideais based on decomposing the mixture into a series of oscillatory

components termed as the intrinsic mode functions. In order to decompose the
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sub-mixtures (IMF), the proposed variable regularised sparse two-dimensional matrix
factorization (as detailed in Chapter 3) is incorporated. Simulation of single channel audio

source separation is carried out to effectiveness of the proposed method.

In Chapter 5, a new unsupervised SCSS method is developed to separate music& music
and speech&music instantaneous mixture. The idea is based on time-frequency anaysis
and feature extraction. The monaural mixed signal is transformed to a cochleagram using
the gammatone filterbank, whose bandwidths increase incrementally as the center
frequency increases; thus resulting to non-uniform TF resolution in the analysis of audio
signa. In addition, a family of IS divergence based novel two-dimensiona matrix
factorization algorithms has been derived to estimate the spectral basis and tempora code
of the sources. The proposed method is a more complete and recovers high quality
estimates of the individual sources. Several comparisons and simulation are carried out to

effectiveness of the proposed method.

This thesis is concluded with Chapter 6. This chapter presents the closing remarks as

well asfuture avenues for research.

1.4 Contribution

The contribution of this thesis is to generate novel solutions for SCBSS of audio
mixtures. Hence, the proposed methods overcome the limitations associated with the
conventional approaches. This thesis presents three novel methods with a significant

improvement in performance in terms of both accuracy and versatility. The following

10
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outlines the contributions of thisthesis;

).

A unified view for the existing SCSS methods based on the linear instantaneous

mixing model.

I1). A novel variable regularised two-dimensional sparse nonnegative matrix factorization

(v-SNMF2D) is proposed. The proposed model allows overcomplete representation by
allowing many spectral and temporal shifts which are not inherent in the nonnegative
matrix factorization (NMF) and sparse NMF (SNMF) models. In addition, imposing
gparseness is necessary to give unique and redlistic representations of the
non-stationary audio signals. Unlike the conventiona two-dimensional sparse NMF
factorization (SNMF2D), the proposed model imposes sparseness on tempora code
H element-wise so that each individual code has its own distribution. Therefore, the
sparsity parameter can be individualy optimized for each code. This overcomes the
problem of under- and over-sparse factorization. In addition, each sparsity parameter
in the proposed model is learned and adapted as part of the matrix factorization. This

bypasses the need of manual selection asin the case conventional approach.

iin). A new framework for SCBSS based on the EMD and v-SNMF2D is proposed.

e Audio signals are mostly non-stationary and the EMD decomposes the mixed
signa into a collection of oscillatory basis components termed as intrinsic mode
functions (IMFs) which contain the original source basic properties. In the
proposed scheme, instead of processing the mixed signal directly, the IMFs are
utilized as the new set of observations. The impetus behind this is that the degree

of mixing of the sources in the IMF domain is now less ambiguous and thus, the

11
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dominating source in the mixture is more easily detected. Moreover, the spectral
and temporal patterns (i.e. the spectral bases and tempora codes, respectively)
associated with each IMF are now simpler and sparser than that of the mixed
signal. As such, these patterns can be extracted using a suitably designed sparse
algorithm.

e The proposed v-SNMF2D benefits conventiona SNMF2D in terms of improved
accuracy in resolving spectral basis and tempora code. This benefit has been
extended to single channel source separation by merging the proposed v-SNMF2D
with EMD.

iv). A novel framework to solve SCBSS based on the cochleagram TF representation and a
family of IS divergence based novel two-dimensional nonnegative matrix factorization
IS proposed.

o Construction of the audio signal TF representation using the gammatone filterbank.
It produces a non-uniform TF domain termed as the cochleagram whereby each TF
unit has different resolution unlike the classic spectrogram which deals only with
uniform resolution.

e The mixed audio signal is more separable in the cochleagram than in the
spectrogram and log-frequency spectrogram. A measurement of separability in the
TF domain has been derived for SCSS and a quantitative performance measure has
been developed to evaluate how separable the sources are given the monaural
mixed signal. In addition, the ideal condition has been identified when the sources

are perfectly separable.

12
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e A family of IS based novel two dimensional nonnegative matrix factorization
algorithms has been developed to extract the spectral basis and temporal code. The
proposed factorization is scale invariant whereby the lower energy components in
the TF representation can be treated with equal importance as the higher energy
components. Within the context of SCBSS, this property enables the
spectral-temporal features of the sources that are characterized by a large dynamic
range to be estimated with higher accuracy. Thisisto be contrasted with the matrix
factorization based on Least Square (LS) distance [29] and Kullback-Leibler (KL)
divergence [30] where both methods favor the high-energy components but neglect

the low-energy components.

13
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CHAPTER 2

OVERVIEW OF SINGLE CHANNEL SOURCE
SEPARATION

This chapter gives an overview of the existing learning methods for SCSS which have
proven to produce applicable separation results in the case of audio signals. These methods

can be categorized either as supervised SCSS methods or unsupervised SCSS methods.

For supervised SCSS methods, the probabilistic models of the source are trained as a
prior knowledge by using some or the entire source signals. The mixture is first
transformed into an appropriate representation, in which the source separation is performed.
The source models are either constructed directly based on knowledge of the signal sources,
or by learning from training data (e.g. using Gaussian mixture model construct source
models either directly based on knowledge of signal sources, or by learning from isolated
training data). In the inference stage, the models and data are combined to yield estimates
of the sources. This category predominantly includes the frequency model-based SCSS
methods [40-44] where the prior bases are modeled in time-frequency domain (e.g.
spectrogram or power spectrogram), and the underdetermined-ICA time model-based
SCSS method [45-47] which the prior bases are modeled in time domain. Figure 2.1 shows

agenera framework for supervised SCSS methods.
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Figure 2.1: A general framework for supervised SCSS methods.
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In Figure 2.1, the input to the separation system is the audio mixture and the relative
training data for the source models. The mixture is transformed into a suitable
representation and combined with the source models and mixing model in the inference
stage, that either directly or through a signal reconstruction method computes estimates of

the separated sources.

For unsupervised SCSS methods, this denotes the separation of completely unknown
sources without using additional training information. These methods typically rely on the
assumption that the sources are non-redundant, and the methods are based on, for example,

decorrelation, statistical independence, or the minimum description length principle. Figure
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2.2 shows a general framework for unsupervised SCSS methods.
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[ Feature ]
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Figure 2.2: A general framework for unsupervised SCSS methods.

In Figure 2.2, the input to the separation system is only the audio mixture. The mixtureis
transformed into a suitable representation that directly through a signal reconstruction
method to compute the estimates of the separated sources. This category includes several
widely used methods: Firstly, the CASA-based SCBSS methods [48-54] whose godl is to
replicate the process of human auditory system by exploiting signal processing approaches
(eg. notes in music recordings) and grouping them into auditory streams using
psycho-acoustical cues. Secondly, the subspace technique based SCBSS methods using
NMF [55] or independent subspace anaysis (ISA) [56] which usually factorizes the

spectrogram of the input signal into elementary components. Of specia interest, EMD [57]
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based SCBSS methods which can separate audio mixed signal in time domain and recover
sources by combing other data analysis tools, e.g. independent component analysis (ICA)

or principle component anaysis (PCA).

All the methods mentioned above (supervised SCSS and unsupervised SCSS methods)
are formulated using a linear instantaneous signal model which is explained in Section

114

2.1 Supervised SCSS

Here, the supervised SCSS refers to the single channel source separation applications
where prior (or training) information about the sources is available. For example, the
source instruments can be defined manualy by the user, and in this case it is usualy
advantageous to optimize the algorithm by using training signals where each instrument (or

source) is present in isolation.

2.1.1 Frequency model-based SCSS

The frequency model-based SCSS methods [40] are similar to the model-based audio
signa enhancement techniques. These methods exploit the hidden Markov models (HMM)
or other algorithms such as e.g. nonnegative matrix factorization, sparse code, etc to
generate codebook of audio signals. The HMM based methods are widely used and the

heart of these frequency model-based SCSS methods is the approximation of the posterior

P(Xi g, s X 1Y, ) by Gaussian distribution [58, 59]. The posterior distribution can be
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expressed as:
NS
(XX 1Y, ) PY, 1o JTTP(% ) (2.1)
i=1
X, @t,)? X (Lt vat)
where x;, = : Xyt = : and y = : are the power
RAGEN'k Xy (F 1) RGN

spectrum vectors. The priori information for the sources in probability density functionsis

assumed as Gaussian mixture models (GMM) is defined as:

p(ﬁi,ts) = ZW.GQAM N (Xi,ts VTP M ) (22)
k

e~ -1, ) 25 (5. -0

23
(2r) det(z,,, )" &9

where N(Ki,ts;gix ’Zi:K ):

where u;, isthe mean vector, ¥;, is the covariance matrice, le,Q"M >0 isthe weight

(satisfying > wi™ =1) , {k} denotes the hidden states of i™ source, “det’ denotes
k

determinant and ‘t’ is matrix transpose. In frequency model-based SCSS methods, the
u, and X,  of each source are trained before separation process. Within these prior
parameters of each source, the factoria hidden Markov model (FHMM) can be employed
to separate the mixture. Good separation requires detailed source models that might
employ thousands of full spectral states e.g. in [58], GMMs with 8000 states were required
to accurately represent one person’s speech for a source separation task. The large state
space is required because it attempts to capture every possible instance of the signal.
However, these model-based SCSS techniques are computationally intensive not only for
training the prior parameters but also for presenting many difficult challenges during both

the learning and inference stages.
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2.1.2 Underdeter mined-1 CA time model-based SCSS

In the underdetermined-1CA time model-based SCSS method [47], the key point is to
exploit a priori knowledge of sources such as the basis functions to generate sparse coding.
The sources are then projected onto a set of basis functions whose coefficients are as sparse
as possible. Thus the separation algorithm use hybrid of maximum likelihood (ML) and
maximum a posteriori (MAP) estimators to recover the independent components. In this

case, the observation model is expressed as:
NS
y(©) =2 mx ) (2.4)
i=1

where m isthei™ source mixing coefficient, while the individual sources are constructed
by basis functions and their coefficients. The basis functions and coefficients learned by
ICA constitute an efficient representation of the given time-ordered sequences of a sound
source by estimating the maximum likelihood densities. Hence the individual sources can

be expressed as:
N,
Xit _ Zai'ﬁ’fﬁt,nu =AiICA§t,nu where S} =Wi|CAX} (2_5)
n=1

where N, is number of basis functions, ai'fﬁf isthe n" basis functions of i source in
the form of O dimensional column vector. Here small length O with O<<T from
independent source is employed to analysis. The time duration isfromtto t+0O-1,an O
dimensional column vector x; =[x (t),x (t+1),...,x (t+O—1)]T. A% =lafa,.. a5 |
is the basis matrix which contains basis functions of i source signal and s' is the basis
coefficient. An example of basis functions based on ICA agorithm is shown in Figures 2.3
(A) and (B).
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Figure 2.3: (A) and (B) represent male and femal e basis functions derived from ICA agorithm.

For simplicity, the authors consider two sources mixed in single channel (i.e. N, =2).

After obtaining prior source basis functions, the estimated sources can be recovered by

employing maximum likelihood estimator follows as:



CHAPTER 2

L =log{ p(x (L., )W) p% (L. T)| Wi

<> 3 [10gp(s, )+100 (s, )|

t=1n,=1

(2.6)

Thus the estimated sources can be obtained by following gradients-based learning rule:

oLY o[ N, N,
o3t o« Z ”EZ{‘P(S{?nU)V\’ll%o}_”12{‘P(Stz?nu)vvlzﬁ1/:,o}
4 01| npm = ] 07
oLy o[ N, N, T (27)
2| Mo W - m 3 {o(s W)
Z, o=1| n=1 n,=1 _
with  tn=t-o+1 vo=1..,0 , W =W'An,0) and

() = olog p(s|Qy,u,0)

. The coefficients of Gaussian exponential density model

0s

Om
p(S|qm,u,U)oceXp{—‘ﬂ } is determined by parameters mean u, exponent ¢, and
(e}

o= E[(s—u)z] where E[-] denotesthe expectation.

2.2 Unsupervised SCSS

Here, the unsupervised SCSS (or SCBSS) means--in single channel source separation

applications, the training information about the sources is not provided.

2.2.1 CASA-based SCBSS

The Computational Auditory Scene Anaysis (CASA)-based SCBSS methods [48] whose
godl is to replicate the process of human auditory system by exploiting signal processing
approaches (e.g. notes in music recordings) and grouping them into auditory streams using
psycho-acoustical cues. The main ideais based on exploiting an appropriate transformation

such as STFT or cochleagram TF representation whereby the observation mixture is
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segmented into time-frequency cells which are then used to characterize note objects by
harmonicity, common onset, correlated modulation and duration of sinusoidal partials, and
finaly build note streams based on pitch proximity [60-62]. Hence, they segregate the
instruments playing different pitch range into different streams. The estimated sources are
then reconstructed by using some criteria to group the clusters of similar featuresin the TF
domain. Nevertheless, CASA-based SCBSS techniques cannot efficiently segregate
instruments playing in the same pitch range into different streams. They aso cannot
replicate the entire process performed in the auditory system since the process beyond the
auditory nerve is not well studied. In addition, it is difficult to group the sources if one of

them is assumed to be fully voiced.

2.2.2 Nonnegative matrix factorization based SCBSS

Recently, solutions to SCBSS using factorization-based approaches have gained
popularity [63-71]. They exploit an appropriate TF analysis on the mono input recordings,
(1.5) yielding a TF representation which can be decomposed as:

Y|* ~DH (2.8)
where |Y|'2 eR™" isthe power TF representation of mixture y(t) which can be further
factorized as the product of two nonnegative matrices, DeR™! and He R, If | is
chosen to be | =T, no benefit is achieved in terms of representation. Thus the idea is to
determine | <T, so the data matrix D can be compressed and reduced to its integral
components such as D isamatrix containing only a set of spectral basis vectors, and H

Is an encoding matrix which describes the amplitude of each basis vector at each time point.
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Nonnegative matrix factorization (NMF) [72—74] has been proven to be a very useful tool
in a variety of signal processing fields. Recently, NMF methods have successfully been
exploited for separating drums from polyphonic music [75] and automatic transcription of
polyphonic music [76]. In addition, NMF gives a parts-based decomposition [77].
Commonly used cost functions for NMF are the generalized Kullback-Leibler (KL)
divergence and Least Square (LS) distance which have been introduced in [74],

respectively, as:

o ‘Yf’ts‘zlog\p,ts
ftg

~ 122
Vil

~ |2 . . . . .
where |¥|” =DH . In above, C,, isequivalent to assuming a Poisson noise model for the

(2.9)
9= 3 2 (v -

data and C,s is equivalent to the maximum likelihood estimation of D and H in
additive independent and identically distributed (i.i.d.) Gaussian noise. The widely used
estimation algorithms of Lee and Seung [74] minimize the chosen cost function by
initializing the entriesof D and H with random positive values, and then update those
iteratively using multiplicative rules. Each update decreases the value of the cost function

until the algorithm converges. The update rule for KL divergenceis given by:

(IY[*/DH)HT (Iv[*/oH)DT
and H«He-—mF—

D«D
HT 1D’

(2.10)
where ‘+’ and ./’ denote the element-wise multiplication and division, respectively. ‘1’ is

. A . s .
an al-one F by T, matrix, and ‘ —&’ denotes the element-wise division of matrices
NMF

Aue and B, . Theupdaterulefor LS distanceis given by:
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|.2 T

DT|Y|.2
D«De——— and H<«H—
DHH D DH

(2.11)

A sparseness constraint can be added to the above cost functions and this termed as sparse
NMF (SNMF) where the penalty term is given as:
P =23 f (Hi,ts) (2.12)
it
where 1 isaparameter that controls the trade-off between sparseness and reconstruction
error and f(+) is a function that measures sparseness. A typica choice [78] is
f(H,.)=|H:.|, which is also known as an L, norm regularization. This corresponds to

the assumption that the elementsin H arei.i.d. one-sided exponential.

Severa other types of prior over D and H are defined e.g. in [79-82], it is assumed
that the prior of D and H satisfy the exponential density and the prior for the noise
variance is chosen as an inverse gamma density. In [83], Gaussian distributions are chosen
for both D and H . The mode parameters and hyperparameters are adapted by using the
Markov chain Monte Carlo (MCMC) [81-83]. In al cases, a fully Bayesian treatment is
applied to approximate inference for both model parameters and hyperparameters. While
these approaches increase the accuracy of matrix factorization, it only works when large
sample dataset is available. Moreover, it consumes significantly high computational
complexity at each iteration to adapt the parameters and its hyperparameters. Other cost
functions for audio spectrograms factorization have also been introduced such as that of
Abdalah and Plumbley [84] which assumes multiplicative gamma-distributed noise in
power spectrograms, while Parry and Issa [85] attempt to incorporate phase into the

factorization by using a probabilistic phase model. Families of parameterized cost
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functions, such as the Beta divergence [86] and Csiszar’s divergences [87] have been
presented for the separation of audio signals. After factorization, the recovered i source
TF representation can be estimated as: ‘7("2 =D,H,, where D, represents the spectral
basis of i source in TF representation and H, represents the code for each spectral basis
element. Regardless of the cost function being used, in order to achieve audio source
separation, some methods are required to group the basis functions by source or instrument.
Different grouping methods have been proposed in [37], but in practice, if the sources
overlap in the TF domain, it is difficult to obtain the correct clustering. This issue is
discussed in [88]. In addition, most of the above techniques developed so far work only for
music separation and thus, they have some important limitations that explicitly use training
knowledge about the sources. As a consequence, those methods could deal only with avery

specific set of signals and situations.

2.2.3 Independent subspace analysis based SCBSS

An alternative approach to SCBSS is based on independent subspace analysis techniques
[89, 90]. The main idea of subspace analysis methods is to decompose the time-frequency
space of the mixed signal as the sum of independent source subspaces. Given the power
spectrogram of mixture TF representation |Y|'2, Each time frame of the mixture power

spectrogram is expressed as aweighted sum of N, independent basis vectors, z.™:

N

y, =Wz (213)
S p=1

where each basis vector is weighted by a time-varying scalar w . Thus each source is
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spanned by a subset of such basis vectors that define a subspace which is a matrix with
basis vectorsin columns z'* = [z's“ 2 ] . In ISA methods, the weight coefficients are

1 1eees NIiSAvi

obtained by projection of the input y onto each basis component in the subspace.

Assume orthonormal components, namely:

WlISAT _ ZiISAT y

i P

(2.14)
This is the projection of y, on to the subspace spanned by the basis vectors z!*. By

successively projecting onto each of the | sets of basis vectors, thusthe y  is decomposed

to sums of independent subspaces as.

Y, =Izzi'5'*wi'SAT (2.15)

s i=1

To extend the method to all time frames of power spectrogram, the source spectrogram can
be estimated as |X LZ =Z*W/*" where W'* =[wi?,...,wi3 ]. Finally, use inverse STFT
to reconstruct ‘5("2 back to time domain source signal. However, these techniques
employ the STFT to construct the TF plane which leads to a remarkable amount of
cross-spectral terms due to the harmonic phenomena and the window overlapping between
successive time frames. This drawback implies that it is difficult to represent the mixture as
the sum of individual source subspaces. The separation efficiency [40] is greatly affected
by the cross-spectral energy introduced by STFT. Another limitation of subspace analysis
based SCBSS techniques is that this process works well on extracting drums from a
mixture because they tend to account for most of the variance in musical signals. However,

because of the way in which the model represents the data, it is limited to stationary pitch

sounds such as drums.
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2.2.4 Empirical mode decomposition based SCBSS

The EMD has recently gained reputation as a method for analysing nonlinear and
non-stationary time series data. By combining other data analysis tools, the EMD can be
employed to separate the audio sources from a single mixture. Molla and Hirose [40]
proposed a subspace decomposition based SCBSS method using EMD and Hilbert
spectrum (HS). The EMD decompose the mixture into a sum of band-limited functions,
also labeled as IMFs, namely:

y(t)= icm ) +rs" (1) (2.16)
=i
where c,(t) isthen™ IMF, N isthe total number of IMFs, and rf“°(t) isthefinal residue.

Constructing the Hilbert spectrum for both mixed signal and IMFs, this gives

yH =[Yf'1]f:l'"”F and C!=[Cl, lfj: . By computing the spectral projection vectors

t=1,...,T,

between the mixture and individual IMF components, thisis defined as:

or (1) = (1)

=———"1— For n=1..,N 217
@, (F)o,(f) @10

TS
where &£7(f) is the cross spectrum of y(t) and c,(t) , ¢)(f)=>)Y and
t=1

TS
on.(f)=> Cr, . Thus we can arrange the spectral projection vectors as individua column

t=1

of amatrix W" =[e}',...,67 | and then derive spectral independent bases from W" by
applying PCA and ICA. Once these sets of spectral independent bases are obtained, the KL
divergence based k-means clustering is used to group the bases into (number of sources)

subsets. Finaly, synthesis time domain estimated sources X (t) .

The performance of the above EMD based SCBSS method rely too heavily on the
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derived independent basis vectors which are only stationary over time. Therefore, good
separation results can be obtained only if basis vectors are statistical independent over time.
For some source (e.g. male and female speeches), the features can be very similar and

hence, it becomes difficult to obtain the independent basis vectors by PCA or ICA.

2.3 Summary

In this chapter, awide variety of methods for SCSS have been surveyed. In general sense,
all approaches can be considered as forms of constrained optimization where sources are
estimated to be consistent with the observed mixture under constraints such as mutual
statistical independence. The underlying theme is that as the number of observations
decreases and the similarity of the underlying sources increases, the more challenge the
separation methods must be. This is a big challenge for the extreme case in separating
monaura mixtures of multiple sources. The supervised SCSS methods are more accuracy
and reliable since they rely on access to source-specific training data to learn tight
characteristic in the form of source models. In addition, the supervised SCSS methods can
be used for all types of mixtureif the prior knowledge or training data of the source models
are provided. However, in most real applications, only observation signal is available in
such case the supervised SCSS methods cannot separate it efficiently because of the lack of
the prior knowledge of source models. On the contrary, the unsupervised SCSS methods
can solve this limitation for the specific types of the mixture. In addition, most
unsupervised SCSS methods are less computation intensive than supervised SCSS methods.

Thus, for most real applications, this draws to big research interests on the unsupervised
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SCSS methods. The main research focus can be summarised as the following issues: i).
How to develop the unsupervised SCSS methods for al types of the mixture? ii). How to
achieve the high accuracy separation performance? iii). How to learn source model and
automatically detect the number of sources when only mixture signal is available? In this
thesis, three novel unsupervised SCSS methods have been developed and the design of

each method will be described in the next three chapters.
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CHAPTER 3

SINGLE CHANNEL BLIND SOURCE SEPARATION USING
VARIABLE REGULARISED SPARSE FEATURES

In this chapter, a novel variable regularised two-dimensional sparse nonnegative matrix
factorization (v-SNMF2D) is proposed. The proposed model alows overcomplete
representation by alowing many spectral and temporal shifts which are not inherent in the
NMF and SNMF models. Thus, imposing sparseness is necessary to give unigue and
realistic representations of the non-stationary audio signals. Unlike the conventional
SNMF2D, the proposed model imposes sparseness on temporal code H element-wise so
that each individual code has its own distribution. Therefore, the sparsity parameter can be
individually optimized for each code. This overcomes the problem of under- and
over-sparse factorization. In addition, each sparsity parameter in the proposed model is
learned and adapted as part of the matrix factorization. This bypasses the need of manual
selection of these parameters as in the case of SNMF2D. The proposed method is tested on
the application of SCBSS and the experimental results show that the proposed method can

give superior separation performance.

The chapter is organized as follows: Section 3.1 introduces the background of NMF2D
and SNMF2D. In Section 3.2, the new v-SNMF2D model is derived. Experimental results

coupled with a series of comparison with other NMF techniques are presented in Section
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3.3. Findly, Section 3.4 concludes the chapter.

3.1 Background

3.1.1 Two-dimensional nonnegative matrix factorization

The recently developed two-dimensional NMF factorization (NMF2D) model [91]
extends the NMF model to be a two-dimensional convolution of D and H . The
factorization is based on amodel that represents temporal structure and pitch change which
occur when an instrument plays different notes. In audio source separation, the model
represents each instrument compactly by a single time-frequency profile convolved in both
time and frequency by a time-pitch weight matrix. This model dramatically decreases the
number of components needed to model various instruments and effectively solves the

SCBSS problem. The two basic cost functions are given in the following:

1 2 2
(Least square) ClaFzp ZEZ‘('Y'“‘S _Zf,ts) (3.1)

. 1 2 |Y it 2
(Kullback-Leibler) Cuty 2° :EZ|Y|H Iogz—‘5—|Y|ft +Z,, (32

f ot ° ftg e °
T . . ¢
for vfeF,vt,eT, where Z=) D'H’ . Here the verticad arrow in D denotes
T

downward shift which moves each element in the matrix D° down by ¢ rows, and the

bl

horizontal arrow in H? denotes right shift which moves each element in the matrix H?

totheright by = columns. This can be interpreted as the follows, i.e.:
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1111 0000 0111
ae_|2222 & j1111 10222
3333 2222 0333
4 4 4 4 3333 0 4 4 4

h

In above, D" ={Dj,|f=1..,Fandi=1..I| denotes the t" dlice of D and

H? ={H{ |i=1..,] andt,=1..T,} denotes the ¢ dice of H which can be derived

S

using the cost functions (3.1) or (3.2).

3.1.2 Two-dimensional spar se nonnegative matrix factorization

The use of sparse representation is strongly related to the principle of parsimony, i.e.,
among all possible accounts the simplest is considered the best. If no forma prior
information is given, parsimony can be considered a reasonable guiding principle to avoid
overfitting. Thus, the NMF2D model can be extended to SNMF2D [92] model whereas the

two basic cost functions (3.1) and (3.2) with sparse penalty term on H are given in the

following:
1 L 3\2
(Least square) cowez ZEE(M?‘S -2, ) +21(H) (3.3)
. 1 2 |Yit 2 =
(Kullback-Leibler) Can' 2P :EZ|Y|HS |og2—’5—|Y|“S +Z;, +2f(H) (3.4)
fits f ot
5 f‘ﬁ ST -
for vfeF,vt,eT, whereZ=>'D"H’, D7, =D§’i/ > (D7;)* and f(H) can be any
r’¢ T, f

function with  positive derivative such as L, —norm(a>0) given by
1«
f(H) =[H]|, =[Z ‘Hﬁts a} . The SNMF2D is more effective than NMF2D in some
$its

situations that the structure of a factor in H? can be input into the signature of the same
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factor in D° and vice versa. Hence, this leads to ambiguity that can be only resolved by
forcing the structure on D through imposing sparseness on H? . However, the
drawbacks of SNMF2D originate from its lack of a generalized criterion for controlling the
sparsity of H. In practice, the sparsity parameter 1 is set manualy. When SNMF2D
imposes uniform sparsity on all temporal codes, this is equivalent to enforcing each
tempora code to be identical to a fixed distribution according to the selected sparsity
parameter. In addition, by assigning the fixed distribution onto each individual code, thisis
equivalent to constraining al codes to be stationary. However, audio signas are
non-stationary in the TF domain and have different temporal structure and sparsity. Hence,
they cannot be redlistically enforced by a fixed distribution. These characteristics are even
more pronounced between different types of audio signals. In addition, since the SNMF2D
introduces many temporal shifts, thiswill result in more temporal codes to deviate from the
fixed distribution. Therefore, within the context of SCBSS, when SNMF2D imposes
uniform sparsity on al the tempora codes, this will inevitably result in under- or
over-sparse factorization which will subsequently lead to ambiguity in separating audio
mixtures. Thus, the above suggests that the present form of SNMF2D is still technically
lacking and is not readily suited for SCBSS especially mixtures involving more types of

audio signals.

3.2 Proposed Method

In this section, a new factorization method is derived and it is named as the variable

regularised two-dimensional sparse nonnegative matrix factorization. The model is given
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asfollows, where D’ isthei™ columnof D*, H? isthei™ row of H?

L - Tma fma VT

Y[ = DD DH +ve= ZIZZZD?H? VA (3.5)

7=0 $=0 i=1 7=0 ¢=0

where H’ - p(H¢|A¢)=Hf[/1ftsexp(—/msHﬁts)

|
i =t

In this model (3.5), it is worth pointing out that each individual element in H’ is
constrained to a exponential distribution with independent decay parameter 2/ . we first
define  D=[D° D' - D™ | , H=[H°H' - H*] and A=[A° A' - A%=] |
A*={}, li=1..,| andt,=1..T,} denotesthe ¢ ™" dliceof sparse parameter A and V'
is assumed to be independently and identically distributed (i.i.d.) as Gaussian distribution
with noise having variance o*. Theterms 7, and ¢, arethe maximum number of
shiftsand ¢ shifts, respectively. Thisisin contrast with the conventional SNMF2D where

)Jﬁ

it

is simply set to a fixed constant i.e. i,‘f’ts =2 for dl it,,¢. Such setting imposes
uniform constant sparsity on all temporal codes H? which enforces each temporal code to
be identical to a fixed distribution according to the selected constant sparsity parameter.

The 3D-representationfor D, H and A arepresented in Figure 3.1.

The consequence of this uniform constant sparsity has aready been discussed in Section
3.1. In Section 3.3, the details of the sparsity analysis for source separation and evaluate its

performance against with other existing methods will be presented.
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Frontal-slice 3D representation:+

r=l__.1,.+ p=1_ 0+ p=1_ .+
K « E
"~ P |
| . [
¢ o ¥
D=+ H= A=
th _q: o g g
7™ slice ¢ o} -511::&1;J ) -511ce‘;
D; D; # ¢ o T
1 L H;, - Hl:r, A1 M1
Dt = o _ R R -
i i H = : . S Y A= e
D, D;; H _Hos T
7l IT, Ar1 Ar
Vertical--and - Horizontal-slice- 3D representation:+
i=1,....1 i=1,....7
H=-
v v
d™slice ¢ d™-slice +,
-l =1 5 é-1 4d=1
H;T H;'J; Al AT
H.= : ) : o A= : : o
. dmi_ i S
Hi= - H{ " Aft= A

Figure 3.1: 3D-representationfor D, H and A.

In above, D has been sliced in two directions, namely, the frontal (i.e. ™-slice) and
vertical (i.e. i™-dlice). Itisvalidthat D can aso have horizontal slice representation but

this has not been shown asit is not needed in the development of the proposed algorithm.
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Similarly, H and A have been dliced in two directions, frontal (i.e. ¢"-sice) and

horizontal (i.e. i"-slice). However, the vertical slice representation has not been shown as

it is not required in the development of the algorithm.

3.2.1 Formulation of the v-SNM F2D

To facilitate such spectral basis with variable sparse code, we choose a prior distribution

p(D,H) over the factors {D,H} in the analysis equation. The posterior can be found by

using Bayes’ theorem as follows:

p(Y|*|D,H)p(D,H)

p(D,H||Y[*) = .

(3.6)

where the denominator is constant and therefore, the log-posterior can be expressed as.
log p(D,H ||Y|*) =log p(Y|” |D,H) +log p(D,H) + const (3.7)
where ‘ const > denotes constant. The noise is assumed to be independently and identically

distributed with Gaussian distribution having variance o?. Thus, the likelihood of the

observations given D and H can be written  * as

i >t 2

2 1 2
Y[*|D,H) =———exp| -||Y|" - DiH?
p(Y[*| >¢z;“4W' 222

I T

20*| where |||~ denotes the
Fro

F

Frobenius norm. The second term consists of the prior distribution of H and D where

they are jointly independent. Each element of H is constrained to be exponentia
distributed with independent decay parameters, namely, p(H|A)=[] A exp(-4/ H!, )
i,.ts

sothat f(H)=) A% H/ .Thepriorover D isflat with each column constrained to have
.9t

! To avoid cluttering the notation, we shall remove the upper limits from the summation terms. The upper
limits can be inferred from (3.3).
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unit length. Hence, the negative posterior serves as the Least Square (LS) cost function

which is defined as;

2
by >

L -YEEOH;

VSNMF 2D
C

+f(H)
Fro (3.8)

+ 2 A H]

Fro $its

o >r
yyyo
it ¢

B 202

The sparsity term  f(H) forms the L;-norm regularization to resolve the ambiguity by

forcing al structurein H onto D. Therefore, the sparseness of the solution in (3.8) is

highly dependent on the regularization parameters 2, .

3.2.1.1 Estimation of the spectral basis and temporal code

In the matrix factorization, each spectral basisis constrained to be of unit length. Hence,

V6 e

this can be represented by Z= ZZZDTH"S where D};D}/\/W is
7,f

factor-wise normalized to D°. The derivatives of (3.8) corresponding to D° and H’ of

v-SNMF2D are given by:

anS\lMFZD a 2
s , [ z(|y|ft Z,,) +f(H)J
oDy, anl 202 4 (39)

( fragt, gt )H:ﬁt -’
anS\lMFZD a

T, aH? fz(m“ ”) +f(H)J
i"tg i
4 (3.10)

oH?

i"tg

:té[
1w, ) o
:_?ZDf—q}’,i’ (|Y|?,l;+r _Zf,ls'+r)+ ( 7 )

Thus, by applying the standard gradient decent approach:
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) -, acVS\IMFZD)
D...«D.. —-n,———=
T i r]D 6DTf,,
anSNMFZD (3'11)
¢’ ¢’
Hi',t; <~ Hi',t; — My oH :pts

where np and n, are positive learning rates which can be obtained by following the

approach of Lee and Seung [74], namely:

o’D’, i o’HY,
" and N, - i ) (3.12)
AT ey 6H»¢,t,

'S-M
Nx
<
<
P
a
.
O
-

Thus, the multiplicative learning rules become:

¢¢ er
D‘L’
H? < H’ e %H af(H) where  f(H)=> A% Hf (3.13)
Z DT ~ 1,0t
To_ or
3 Y[“H? 5 D"
DT <« DT .% Where D; i :ﬁ (314)
fi

Z ZH 7, f

In (3.13) and (3.14), ‘.’ is the element wise product, the column vectors of D* will be
factor-wise normalized to unit length.
3.2.1.2 Estimation of thevariable regularization parameter

Since H? are obtained directly from the original sparse code matrix H?, it suffices to

0
compute the regularization parameters associated only with H? . Therefore, the cost

=0 canbeset:

frae N T
+ 2> "’tsH
(3.15)

$=0 i=1 t,=1

functionin (3.8) with 7

e L 2
Y DH?
$=0

Fro

2 i
+ Y Vec(A*) Vec(H?)

1
$=0

S| Vee(|Y[? )—%Zax(l ®3)Vec(H”’)
$=0

Fro

with Vec(-) representing the column vectorization, ‘®’ is the Kronecker product, and |
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isthe identity matrix. Defining the following terms:

2, = 10, 1 e
X:Vec(|Y| ), D=|1®D:I®D:-:l® D: |,

Vec(H’) | 2’ )
y H1 - 31; (3.16)
h= ec( ) A= L 2= A?’l
i
| Vec(H=) | e -
Thus, (3.15) can be rewrittenintermsof h as:
1 =BT
F(h)=——|y-Dh| +2"h (317)
20° =
Note that h and 2 are vectors of dimension Rx1 where R=IxT x(¢, +1). To

determine A, the Expectation-Maximization (EM) algorithm can be used and treat h as
the hidden variable where the log-likelihood function can be optimized with respect to A .
To reiterate our aim, we are not developing a full Bayesian inference on the generative
model in (3.8). Rather, the proposed Bayesian inference is only focused on the
approximation of the posterior distribution of H . Using the Jensen’s inequality, it can be

shown that for any distribution Q (h), the log-likelihood function satisfies the following:

(3.18)

h|r,D,o?
p(y,h|2 o)th

n -2
Inp(zIL-D’U)ZIQ@'”( Q (h)

One can easily check that the distribution that maximizes the right hand side of (3.18) is

given by Q (h)=p(h|y,r,D,c?) which isthe posterior distribution of h. In this method,

the posterior distribution in the form of Gibbs distribution is expressed as:
Q (h)-—-exp[-F()] where 2, = [exp[-F()]dh (3.19)
h

The functional form of the Gibbs distribution in (3.19) is expressed in terms of F(h) and
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this is crucial as it will enable us to simplify the variational optimization [93, 94] of A.

The maximum likelihood estimation of 2 can be expressed by:

Inp z,nlz,ﬁ,oz)dn (3.20)

Similarly:
2ML) argmaij (In p(z |h,c;2,5)+ In p(hm))dn

N (3.21)
=argr2naxIQ h)in p(zm,az,D)dh

Since each element of H is constrained to be exponential distributed with independent
decay parameters, thisgives p(h|A) =Hipexp(—1php) and therefore, (3.18) becomes:
p
1" =argmax [Q (h)(In4, - A,h, )dh (3.22)
A
The Gibbs distribution Q (h) treats h as the dependent variable while assuming all

o[Q (h)(In4,—2,h,)dh
o

p

other parameters to be constant. Solve =0. As such, the

functional optimization of A in (3.22) is obtained by differentiating the terms within the

integral with respectto 1, and the end result is given by:

1
= for p=12...,R (3.23)
" [h,Q (h)dh
where 1, isthe p" element of . Since:
=1 1 — 1
Py Ih.o* D)= o exp(— =1y ~Dh] J (3.24)

where N, =F xT, theiterative update rulefor o*™ isgiven by:
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(3.25)

Despite the simple form of (3.23) and (3.25), the integral is difficult to compute
analytically and therefore, an approximation to Q (h) can be found. It is noted that the
solution h naturally partition its elements into distinct subsets h, and h,, consisting

of components vpeP such that h =0, and components vmeM such that h >0.

Thus, the F(h) can be expressed as following:

F(h) :%"Z—BPDP —Dw h,, "2 +L,T3bp +LTM hy,
:%["X_BM hM ||2 - Z(X_BM bM )T (BPDP) +||5PDP||2} +2‘ng +z\,-|\l;| bM
= oa [y =Bt | +ly o]~y -2y, ) (Bohe )+ 2" (B ) [ 151, 4211, (326)

-l B+ O oo G-

F(bwm) F(hp) 14
=F(hy)+F(e)+y

In (3.26), the term | X”Z in v issimply aconstant which does not affect the optimization
while (Duh,, )T(prp) measures the orthogonality between Dwh,, and Drh, whichis
assumed to be uncorrelated. Therefore, (3.26) can be simplified to F(h)~F(h,,)+F(h,).

Hence, Q (h) can be decomposed as:

Qh =Ziexp[—F(n)]

h

< —exp[~(F(0,) + F(h,)]

h

=Ziexp[—F(np>]exp[—F(nM )] (3.27)

h

1 1
= Z_exp[—F(DP)]Z—eXp[—F(DM )]

P M

= QP (DP)QM (DM )
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where Z, = [exp[-F (h,)]dh, and Z, =[exp[-F(h,)]dh, . In order to characterize
Qp(hp) we need to alow some positive deviationto h, (any negative valuesof h, will
be rejected since NMF only allow nonnegative values). Hence, h, must take on zero and
positive values in Q,(hy). The distribution Q,(h,) can be approximated by using the

Taylor expansion about the MAP estimate, h™*" isgiven by (3.13):
Qs (h,20)= Q(h)‘DM e

mz_];e(p[_{F(bMAP)_'_(b_bMAP)TaF—D) +l(b_hMAP)T 82_F(_D) L (b_bMAP )}J

= T
_ (3.28)
ocexp{ (a—FJ } bp_%bgepbp
hMAP

)
x| | @0 -2 By +1 | h,—2hl@rh,
o o 2

el
Rl
.
o
=y
(0]
4
3
2
=.
X
o,
o
Q
(@]
=
g
o
=]
o
(72
—
(@)
1=
T
>
=
=
o
c
Q
=
el
o
=
z

Is obtained in the form of (3.28), its integral is difficult to evaluate and does not yield
closed analytica form of the moments which subsequently prohibits inference of the
sparsity parameters. To overcome this problem, we propose to variationally approximate

Q- (h,) using the mean-field approximation with a factorized exponential distribution as:

G-(hp >0 =[] —exp(-h, /u,) (3.29)

peP p

The variational parameters gz{up} for VpeP are obtaned by minimizing the

Kullback-Leibler divergence between Q, and Q. :

QP (bp)dh
Qu(hp) " (3.30)
=argmin [Q, (he)| INQ, (he) ~InQ, (h) [l

u=min[Q, (h,)In

where
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b0 1)l = 3 [ 0, [ . 1,

peP

=> . —exp —hy /u, )(=Inu, —hy 7u, )dh,

peP

. i (331)
:_pze;‘)lnupj.o exp(—hp/up)d[u—p]—pepj —pexp( h, /u )d[i}
=—> Inu, +1
and
IQP(DP)In[QP(DP)]thZ_I[(éhMAP_iZBTXJrLJ fl +2hP®p ]Q( p)dh
7 " (3.32)

— ¥ >0, (hh)-

peP,meM peP o -

- 357.1] o

with (+) denotes the expectation under the distribution of Q. (h,) such that

(hohyn)=upUy, and (h,)=u, which leadsto:

mlnb u+;u Ou->Inu, (3.33)

peP
D X”‘J , ©=0,+diag(®,) and *diag(-)’ denotes a matrix
P

with the argument on the diagona The optimization of (3.33) can be accomplished using

nonnegative quadratic programming method [94] as following:

G(u,0) = é;wlZ(@u)
2 p

peP

->Inu, (3.34)

peP

Taking the derivative of G(u,t) in (3.34) with respect to u and setting it to be zero,

thisgives:

(6a) = 4
~—Pu +b ——=0 (3.35)
up up

The above equation is equivaent to the following quadratic equations:
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6 i
—( _ )" u2+bu, -1=0 (3.36)

Up

Solving (3.36) for u, leadsto the following update equation:

U, < u i (3.37)

As for components h,,, Q, (hy,) has the functional form equivalent to a multivariate
Gaussian distribution. Therefore, we propose to approximate Q, (h, ) as as joint
Gaussian with mean h"" . Thus wusing the factorized approximation

Q (h)=Q,(h,)Q, (h,) in(3.32), thefollowing is obtained:

e if peM
p
A, = ) (3.38)
— if peP
u

p

for p=12..,R and hy* isthe p" element of sparse code h, computed from (3.13).

and its covariance C%':

(6;1) if p,meM
p,m

Com= (3.39)
u? Otherwise
Thus, the update rule for &* can be obtained as:
= 1y o8 (s 8} 7e(5"0c]] - [ it pewm
=—||y-Dh —-Dh)+Tr(D D where h = 3.40
TN, (y-Dh) (y-Dh)+ r( C) P {up if peP (340)

where “ Tr(+ )’ denotes trace function. Table 3.1 shows the specific steps of the proposed
v-SNMF2D method. In the table, G=|Y|* with H% and U corresponding to the

matrix representation of (3.38).
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Table 3.1: Proposed v-SNMF2D algorithm

1. Initidize D* and H? with nonnegative random values.

2. Define IST”:DT”/ )7 .
T, f

- 0 o
3.Compute Z=>>>Df H?.
i ¢

4. Compute @p = ! BrDe Minimize ”JinQLHJf%HT(:)!—Z'”Up respectto u,.

_? peP
1 .
W |f pEM
5.Assign %=1 °
1 if P
W | pe
p
6. Assign ozzi[(y—BH)T (y_Bﬁ)+Tr(5T5COV):|
N,L\= /=
b7,
DG
7. Update H¢<—H¢o%f.
> . D'Z +3
9 >t

8. Compute Z=3"5"3 D7 H? .
it ¢

9.Update D" «— D" o

10. Repesat steps 2 to 9 until convergence.

3.3 Single Channel Blind Source Separ ation
3.3.1 Estimated sources

and this will be obtained by using the proposed

The matrices to determine are {|X |'2}::1

o Y e . . i
matrix factorization as ‘xi‘2=22DfH;” with D' and H? estimated using (3.13) and
T 9

(3.14). Once these matrices are estimated, the i binary mask according to Mask; (f,t;) =1

2

is formed if [X(f.t)]">|X;(f.t)

and zero otherwise. Finaly, the estimated

time-domain sources are obtained as X; = Resynthesize(Mask; ¢ Y) where ‘Resynthesize’
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[92] denotes the inverse mapping of the log-frequency axis to the original frequency axis
and followed by the inverse STFT back to the time domain [35] and % =[%(D)....,% (T)]T

denotes the i estimated audio sources in time-domain.

3.3.2 Experiment set up

The proposed method is tested by separating audio sources. Severa experimental
simulations under different conditions have been designed to investigate the efficacy of the
proposed method. All simulations and analyses are performed using a PC with Intel Core 2
CPU 6600 @ 2.4GHz and 2GB RAM. MATLAB is used as the programming platform. To
generate mixed signal, a 4 second polyphonic music containing trumpet and piano is
analysed. The mixed signal is sampled at 16 kHz sampling rate. The TF representation is
computed by normalizing the time-domain signal to unit power and computing the STFT
using Hamming window of length 1024 point with 50% overlap between two frames. The
frequency axis of the obtained spectrogram is then logarithmically scaled and grouped into
175 frequency bins in the range of 50Hz to 8kHz with 24 bins per octave. This corresponds
to twice the resolution of the equal tempered musical scale. For the v-SNMF2D parameters,
the convolutive components in time and frequency are selected to be ¢={0,1,2,3} and

¢={0,...,31}, respectively. The corresponding sparse factor was determined by (3.38).

3.3.3 Quality Evaluation
The separation performance in terms of the signal-to-distortion ratio (SDR) is used for
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evaluation. This is a globa measure that unifies signal-to-interference ratio (SIR), and

signa-to-artifacts ratio (SAR) [95, 96]. Specifically, the above three metrics are described

as follow:

1. Signa-to-distortion ratio (SDR) — this is an overal measure of performance as it
accounts for both of the SIR and SAR criteria

2. Signal-to-interference ratio (SIR) — this is a measure of the suppression of the
unwanted source.

3. Signal-to-artifacts ratio (SAR) — this is a measure of the artifacts (such as musica
noise) that have been introduced by the separation process.

The goa isto maximize SIR (asthisis the measure of the actual separation) while trying to

keep SAR as high as possible (in order to prevent the introduction of artifacts). In order to

compute these metrics, a given estimated time domain signal % (t) is decomposed as a

sum of the following parts:

1. X.q actua source estimate.

2. e, interferencesigna (i.e. the unwanted source).

3. e, : atifacts of the separation agorithm.

The decomposition is done up to a constant scaling factor. Using these terms, the metrics

are computed as follows:

||Xtafget||2 SAR: ||Xtarget + Qnterf ||2 and SDR: ||Xtarget||2

SIR= :
[E- e[ € + €t

(3.41)
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3.3.4 Impact of sparsity

In this implementation, several experiments have been conducted to compare the
performance of the proposed method with SNMF2D under different sparsity regularization.
To investigate the impact of sparsity regularization on source separation performance, three

cases’ are conducted:

Case (i): Uniform constant sparsity with low sparseness, i,‘f’ts =1=0.01 forall it,¢.
Case (ii): Uniform constant sparsity with high sparseness, i,‘f’ts =1=100 foral izt,¢.

Case (iii): Proposed adaptive sparsity according to (3.38).

The time and TF domain of the original trumpet, piano music and its mixture are shown
in Figure 3.2. The trumpet and the piano play a different short melodic passage each
consisting of three distinct notes. However, both trumpet and piano overlap in time, and
the piano notes are interspersed in frequency with the trumpet notes. Hence, this is a
challenging task for single channel source separation which will test the impact of sparsity

for matrix factorization.

2 Cases (i) and (i) correspond to the two-dimensional sparse nonnegative matrix deconvolution (SNMF2D)
[92]. This section therefore presents the comparison of our proposed method with the SNMF2D with uniform
constant sparsity.
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Figure 3.2: Time-domain representation and spectrogram of the piano music (top panels),
trumpet music (middle panels) and mixed signal (bottom panels).

3.3.4.1 Estimated spectral basis and temporal code

Figures 3.3 to 3.5 show the results of the matrix factorization in terms of spectral
basis D and temporal code H? for cases (i) to (iii), respectively. Figure 3.3 shows
the case of ‘under-sparse’ factorization which is clearly evident by the spreading of the
estimated temporal codes. Figure 3.4 shows the case of ‘over-sparse’ factorization
where some of the tempora codes have been discarded. On the other hand, Figure 3.5
shows the case of ‘optimally-sparse’ factorization based on the proposed adaptive

tuning of the sparsity parameter.
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3.3.4.2 Audio source separation results

In above, the analysis of the sparsity factorization was presented in teems of D7 and H?.
In the following, the audio source separation results for each case are shown. Figures 3.6 and

3.7 show the separated sources in terms of spectrogram and time-domain representation,

respectively.
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Figure 3.6: Separated signals in spectrogram. (A)-(B): piano and trumpet music for case (i). (C)-(D):
piano and trumpet music for case (ii). (E)-(F): piano and trumpet music for case (iii).
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Figure 3.7: Separated signals in time-domain. (A)-(B): piano and trumpet music for case(i). (C)-(D):
piano and trumpet music for case(ii). (E)-(F): piano and trumpet music for case(iii).

Panels (A)-(D) in both Figures 3.6 and 3.7 clearly show that better source separation
results require careful selection of the sparsity regularization. In the case of ‘under-sparse’
factorization (e.g. (A)-(B)), the factorization still contains the mixed components (as
indicated by the red box marked area) in each separated source. In the case of over-sparse
factorization (e.g. (C)-(D)), the spectral basis of the source occurs too rarely in the
spectrogram and this results in lesser information which do not fully recover the origina
source as noted in the middle panels (indicated by the red box marked area). In the case of
the proposed method (e.g. (E)-(F)), it assigns a regularization parameter to each temporal
code which is individually and adaptively tuned to yield the optimal number of times the
spectral basis of a source recurs in the spectrogram. The sparsity on H? is imposed
element-wise in the proposed model so that each individua code in H? is optimally

sparse in the L;-norm. In the conventional SNMF2D method, the sparsity is not fully
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controlled but is imposed uniformly on all the codes. The ensuing consequence is that the
temporal codes are no longer optimal and this leads to ‘under-sparse’ or ‘over-sparse’

factorization which eventually resultsin inferior separation performance.

The analysis for cases (i) and (ii) in Figures 3.6 and 3.7 is based on a single fixed

uniform sparsity parameter i.e. 4% =1 for al it

1tgy

¢ where 1 is set to be either very
high or very low. It might be argued that such settings of uniform sparsity parameter are
unrealistic for source separation. Therefore, in this sub-section, the performance
comparison will be investigated when the uniform constant sparsity parameter is
progressively varied from 0 to 10 with every increment of 0.1 (i.e. 1=0,0.1,0.2,...,10) and

the best result is retained and tabulated in Table 3.2.

Table 3.2: Performance comparison between different sparsity methods

Estimated sources Methods SDR | SAR | SIR
. Proposed sparsity 101 | 123 | 126

Recovered trumpet music - -
vered trumpet mu (Best) Uniform sparsity | 82 | 10.4 | 101
Proposed sparsity 11.2 | 134 | 138

Recovered piano music

(Best) Uniform sparsity 8.6 10.1 | 105

From Table 3.2, the performance improvement of the proposed method against the
uniform constant sparsity method can be summarised as follows: (i) For the recovered
trumpet music, the improvement per source in terms of the SDR is 1.9dB. (ii) For the
recovered piano music, the improvement per source in terms of SDR is 2.6dB. Analysing
the separation results, there is clear indication that when the sparse parameter is

uncontrolled, this will result in poorer separation results than that based on adaptive
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sparsity. Compared with the uniform constant sparsity, the proposed method renders a

more accurate part based regularised factorization asindicated in Table 3.2.
3.3.4.3 Adaptive behavior of sparsity parameter

In this sub-section, we will show the obtained results of the sparsity parameters adapted
by using the proposed method. Several sparsity parameters have been selected to illustrate
its adaptive behavior. Figure 3.8 shows the convergence trajectory of four adaptive sparsity
parameters A/, A/s°, Al and Af;y corresponding to their respected temporal codes.
All sparsity parameters are initialized as ;tftszlo for dl it,¢ and are subsequently
adapted according (3.38). After 150 iterations, the above sparsity parameters converge to
their steady-states. It is noted that these values are significantly different for each sparsity
parameter eg. A/;°=24.4, A{;°=198, A/J =587 and A/ =17.46. In addition, it is
worth pointing out that the SDR result scales up to 10.6dB when ){’ts Is adaptive. This
represents a 2dB improvement over the case of uniform constant sparsity (which is only
8.4dB in Table 3.2). In summary, the above results are clear to indicate that the
performance of source separation have been undermined when uniform constant sparsity is
imposed on all temporal codes. On the other hand, significant improved performances can
be obtained by alowing the sparsity parameters to be individualy adapted for each

temporal code.
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3.3.5 Comparison with other sparse NMF-based SCBSS methods

In section 3.3.4, analysis has been carried out to investigate effects between adaptive
sparsity and uniform constant sparsity on source separation. In this evauation, the
proposed method will be compared with other sparse NMF-based SCBSS methods. These
consist of the following:

e NMF with Temporal Continuity and Sparseness Criteria [37] (NMF-TCS) is based on
factorizing the magnitude spectrogram of the mixed signal into a sum of components,
which include the tempora continuity and sparseness criteria into the separation
framework.

e SNMF (amultiplicative update algorithm by Lee and Seung [74]).

o Automatic Relevance Determination NMF (NMF-ARD) [97] exploits a hierarchical
Bayesian framework SNMF that amounts to imposing an exponential prior for pruning

and thereby enables estimation of the NMF model order.
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Figure 3.9: Separated signals in spectrogram. (A)-(B): piano and trumpet music using SNMF.
(C)-(D): piano and trumpet music using NMF-ARD. (E)-(F): piano and trumpet music using
NMF-TCS.
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Figure 3.10: Separated signals in time-domain. (A)-(B): piano and trumpet music using SNMF.
(C)-(D): piano and trumpet music using NMF-ARD. (E)-(F): piano and trumpet music using
NMF-TCS.
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In Figure 3.9 and 3.10, panels (A)-(F) show that the NMF and SNMF are weak models
since it does not take into account the relative position of each spectrum thereby discarding
the temporal information. Better separation results require the model that can represent
both temporal structure and the pitch change which occurs when an instrument plays
different notes simultaneoudly. If the tempora structure and the pitch change are not
considered in the model, the mixing ambiguity will still contain (marked red box) in each
separated source. Table 3.3 further gives the SDR, SAR and SIR comparison results

between our proposed method and the above three sparse NMF methods.

Table 3.3: Performance comparison between different methods

Mixtures Methods SDR | SAR | SIR
Proposed method 101 123 | 126

. NMF-TCS 4.6 7.6 7.8

Recovered trumpet music

SNMF 3.7 54 6.5

NMF-ARD 3.3 6.2 6.9

Proposed method 11.2 134 | 138

: . NMF-TCS 4.3 7.2 52

Recovered piano music

SNMF 2.8 51 34

NMF-ARD 31 6.5 4.1

The improvement of the proposed method compared with NMF-TCS, SNMF and
NMF-ARD can be summarised as follows: (i) for the recovered trumpet music, the average
improvement in terms of SDR is 5.5dB (ii) for the recovered piano music, the average
improvement in terms of SDR is 7dB. Anaysing the separation results, the proposed
method leads to the best separation performance for both recovered sources. The SNMF
method performs with poorer results whereas the separation performance by the NMF-TCS

method is dlightly better than the NMF-ARD and SNMF methods. The proposed method
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gives significantly better performance than the NMF-TCS, SNMF and NMF-ARD
methods. The reasons are: Firstly, the SNMF and NMF-ARD do not have convolutive
factors 7,4 ={0} . Assuch, SNMF and NMF-ARD are weak models since they do not take
into account the relative position of each spectrum thereby discarding the temporal
information. The spectral basis obtained via NMF-TCS, SNMF and NMF-ARD methods
are not adequate to capture the tempora dependency of the frequency patterns within the
audio signal. Secondly, the NMF-TCS, SNMF and NMF-ARD do not model notes but
rather unique events only. Thus if two notes are always played simultaneously they will be
modeled as one component. Also, some components might not correspond to notes but

rather to the model e.g. background noise.

3.4 Summary

This chapter has presented a new variable regularised two-dimensiona sparse
nonnegative matrix factorization. The impetus behind this is that the sparsity achieved by
conventionat NMF, SNMF, NMF2D and SNMF2D methods is not enough; in such
situations it is useful to control the degree of sparseness explicitly. In the proposed method,
the regularization term is adaptively tuned using a variational Bayesian approach to yield
desired sparse decomposition, thus enabling the spectral basis and temporal codes of
non-stationary audio signals to be estimated more efficiently. This has been verified based
on the simulations. In addition, the proposed method has yielded significant improvements
in single channel audio source separation when compared with other sparse NMF-based

source separation methods.

58



CHAPTER 4

CHAPTER 4

SINGLE CHANNEL BLIND SOURCE SEPARATION USING
EMD-SUBBAND VARIABLE REGULARISED SPARSE
FEATURES

In the previous chapter, the novel v-SNMF2D based SCBSS method has been proposed
to separate music mixtures only. In this chapter, a new framework for SCBSS to separate
all types of audio mixtures based on the EMD and v-SNMF2D is proposed. The proposed
solution separates audio sources from single channel without relying on training
information about the original sources. Audio signals are mostly non-stationary and the
EMD decomposes the mixed signal into a collection of oscillatory basis components
termed as intrinsic mode functions (IMFs) which contain the basic properties of the
original source (e.g. amplitude and frequency). In the proposed scheme, instead of
processing the mixed signal directly, the IMFs are utilized as the new set of observations.
The impetus behind this is that the degree of mixing of the sources in the IMF domain is
now less ambiguous and thus, the dominating source in the mixture is more easily detected.
Moreover, the spectral and tempora patterns (i.e. the spectral bases and temporal codes,
respectively) associated with each IMF are now simpler and sparser than that of the mixed
signal. As such, these patterns can be extracted using a suitably designed sparse al gorithm.
To this end, the proposed v-SNMF2D is used to complete the separation process. The

proposed variable regularization benefits conventional SNMF2D in terms of improved
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accuracy in resolving spectral bases and temporal codes which were previously not
possible by using SNMF2D aone. This benefit has been extended to SCSS by merging the

proposed v-SNMF2D with EMD.

The chapter is organized as follows: Section 4.1 introduces the background of EMD. In
Section 4.2, the proposed source separation framework is fully developed. Experimenta
results coupled with a series of performance comparison with other SCBSS techniques are

presented in Section 4.3. Finally, Section 4.4 concludes this chapter.

4.1 Background

4.1.1 Empirical mode decomposition

EMD is a signal processing tool for decomposing any non-stationary signal into
oscillating components by empirically identifying the physical time scales intrinsic to the
data. These oscillating components are termed as the intrinsic mode functions (IMF). For
in-depth information on EMD, interested readers are referred to [98-104]. In principle, the
IMFs satisfy two fundamental conditions: Firstly, in the whole dataset, the number of
extrema (minima and maxima) and the number of zero crossing must be same or differ at
most by one. Secondly, the mean vaue of envelop defined by the local minimais aways
zero. Thefirst condition is obvious; it is similar to the traditional narrow band requirements
for a stationary Gaussian process. The second condition is a relatively new idea for
non-stationary data; it modifies the classical global requirement to alocal one. The specific

steps to decompose arbitrary data series into IMF components [40] can be summarised as:
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).
i).

i),

Determine al the maxima and minima of the seriesy(t).
Generate the lower Low(t) and upper High(t) envelops for connecting the maxima and
minimawith cubic spline function.

Point by point averaging the two envelops to calculate the local mean series as

(Low(t) + High(t))
. .

0™ () =

. A new data series h°(t) can be obtained by subtracting the local mean series

fromh™° (t) = y(t) — ™" (t) . Check the properties of: if not an IMF, replace y(t) with
h°(t) and repeat y times when the procedures from step one until the local mean

envelop is approximate to zero. The first IMF component, c, (t) then can be extracted

from data c, (t)=h>""(t) and itsresidue r"""(t) are evaluated as. ™" (t)=y(t)—c,(t).

. Once the first IMF is obtained which represents the highest frequency component of

the origina series. The residua signal still contains information of y(t). The
procedure is repeated for all subsequent residues until the range below a

predetermined level or the residue has a monotonic trend.

The fina results is: r,"°(t) =r™ () —c,(t),-,r ™ ) =r=°(t)—c (t) . At the end of

decomposition, the mixed signal can be represented as.

YO=36,0+8°0 (@)

where c,(t) isthen™ IMF, N isthe total number of IMFs, and rf“°(t) isthefinal residue.

Figure 4.1 shows the EMD of a signal mixture (panel (A)) containing a male and afemale

speech. The IMFs (panels (B)-(G)) are similar to the bandlimited functions for representing

the time series data. Therefore, EMD is suitable for analysing non-stationary data and can

be considered as a dyadic filterbank with each narrow band contains most energy of one
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dominating source. Also, the frequency of IMFs decreases as the order increases e.g. the 6

IMF contains lower frequency components of the mixture than that of the 5" IMFs.
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Figure 4.1: EMD of male-female speech mixture showing the first six (out of 10) IMFs.

4.2 Proposed Separation Method

In this section, the foundation of how EMD and matrix factorization can be unified
within the context of SCBSS. Three benefits will be obtained from this merger. The EMD

decomposes the audio mixture signal as a collection of IMFs as follows:
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YO =Y 0+ (42)
=l
These IMFs which are derived from the data can serve as the basis of expansion, which can
be linear or nonlinear as dictated by the data. In addition, it is complete and almost
orthogonal. Thus, the extracted IMFs are real-valued signals [98] that contain the basic
properties of the original source. From the filtering point of view, the EMD process can be
considered as a dynamic filterbank where the bandwidths are ranged automatically and
dependent on the input signal. This is unlike the conventional filterbank which has fixed
bandwidths that are independent of the input signal. Given the nature of this dynamic
filterbank, the first benefit EMD bringsto SCBSSis as follows: For each IMF of the mixed
signa, the degree of mixing from the origina sources is considerably reduced in that
particular sub-band of frequencies. To validate this finding, the 9,; is defined to measure
the dominating factor of thei™ original source on the n™ IMF as follows:
le(t)—cz(t)F

SEko-aof

i=1 t

8, =1

n,i

(4.3)

In this analysis, a mixture of male (x(t)) and female (x,(t)) speeches is used. The

dominating factor of each source to each IMF istabulated in Table 4.1. The higher value of
%, the more contribution from the i source is to the "™ IMF. From Table 4.1, it is
observed that the value is high on either 9, or 9, which indicates that the mixing at
the IMF levels is dominated either by source 1 or source 2, respectively. In this example, it

is clear that source 1 dominates in the 1% and 5" — 7" IMFs while source 2 dominates in

the 24" IMFs.
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Table 4.1: Domination proportion of each source signal to each IMF

n" IMF 91 (%) 9, (%)
1% IMF 64.38% 35.62%
2" IMF 42.53% 57.47%
34 IMF 32.64% 67.36%
4" IMF 36.61% 63.39%
5" IMF 66.82% 33.18%
6" IMF 66.01% 33.99%
7" IMF 66.03% 33.97%

The second benefit EMD brings to SCBSS is that since each IMF corresponds to a
filtered signal bounded within a particular range of sub-band frequencies, the complexity
of the spectral basis and tempora code associated with each IMF will be simpler and
sparser than that of the mixed signal. The degree of sparsity depends on the sources and the
order of the IMF. Not only that, it is also found that the sparsity varies across all the IMF
order. This is shown in Figure 4.2. This effectively means that in the TF domain of each
IMF there is arelatively clear distinction of the spectral basis and tempora code between
the dominating source and the less dominating one. As a result, lesser number of
components is used in the NMF and yet able to maintain a robust source separation
performance. This will be elaborated in Section 4.3. In addition, the sparseness of the IMF
suits the proposed v-SNMF2D method since it enables the user to correctly select the
model order for the convolutive factors (7, and ¢, in (3.5)). Finaly, the third benefit
issince al IMFs are amost orthogonal; the statistical contents in each IMF are relatively
decoupled from each other. Therefore, each IMF can be treated independently; when any
error is resulted from the processing, this will be confined to that particular IMF only. At

the source reconstruction stage, this error will be averaged over al the IMFs; thus the
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contribution of this error to the reconstructed source will be minimized.
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Figure 4.2: (A)-(B) denote the spectrogram of male and female speeches, respectively. (C) denotes
the spectrogram of mixed speech (male + female). (D)-(F) denote the spectrogram of the first three
IMFs decomposed by EMD. The spectral and temporal patterns’ complexity associated with each
IMF (D)-(F) issimpler and sparser than the mixed speech (C).

During the decomposition, the maximum IMF order is determined by assessing whether

.
the n'™ IMF is of acceptable quality as judged by its power (10Ioglo(2

t=1

c” (t)‘zj) relative to

.
the mixture’s power 10Ioglo[2|y(t)|2J. In this thesis, a threshold has been set at 5% of

t=1

the mixture’s power. For example, if the n" IMF power is less than a pre-specified
threshold of mixture signal, this particular IMF will be rgected. By using this threshold
approach, it is possible to consistently select the most significant IMFs. For simplicity, N is

assumed as the maximum order and therefore, the mixture signal can be modeled as:
R N
()= e (1) (4.4)
n=1
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In vector form, (4.4) can be written as.
y=Ciw 1y (4.5)
where C%, =[c/,c}, ¢, ] with ¢ =[c!®....c/M] . ¥=[3®.9@....9M]" and
1, is a vector 1, =[1,...,1]' consist of N components of unit scalar. Similarly, the
original sources can be decomposed using the EMD as.
X, =Ciy 1y, and X, =Ci 1y, (4.6)
where Cy, =[ct,cp,....cy | and Cp =[ce.cr....c | which contains N, and N,
number of IMFs, respectively. The {c*} and {c2} are defined as the sub-sources of
x(t) and x,(t), respectively. The aim is to estimate these sub-sources given only {c!},

assign each of them to the correct source class and finally reconstruct the estimated sources

in the time domain.

4.2.1 Matrix representation of IMFsin TF domain

To estimate the sub-sources, ¢ from (4.6) is projected into the TF domain, in which
the mixed signal becomes:

CY(f,t)=CX(f,t)+Cl(f,t) forn=12..N (4.7)
where C)(f,t,),Cx(f,ty) and C}*(f,t;) denote the TF components obtained by
applying the STFT eg. CI(f.t,)=STFT(c(t)) for z=y, x and x,. In practice, the
frequency axis of the spectrogram for the audio signals is logarithmically scaled and this
convention has been adopted in this chapter. The power spectrogram is defined as the

squared magnitude of (4.7):

2

2

2
+ +2

coslo,(ft)  (48)

Ci(f.t)

Co(f.ty)

Co (1)

Co(f.ty)

Co (1)
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where 6,(f,t;) measures the projection of C}(f,t;) onto C;*(f,t,). For large sample
Size, the C(f,t;) and C(f,t,) are assumed as orthogona and hence, 6,(f,t)=7/2.
However, for finite sample size, 6,(f,t))=7/2 may not hold and the

JIC2 (f,t,)|cod6,(f,t,)) is treated as the residual noise. Note that in (4.8) each

component isafunctionof f and t, variables. As such, a matrix representation for each

component can be represented as C7, ., =[ CZ(f,t )]:z: where row and column vector

=12,..1g

represents the time slots and frequency bins respectively. Hence, (4.8) becomes:

(Synthesis) Clhiy| +VI° (4.9)

2
X
Chir ,ts)‘ +

y _
Cr ,ts)‘ =

where V!° isthe residua noise. Eqn. (4.9) is a synthesis equation since it describes how

* and Vv °. Note that all elements

y
Cn(f,ts)‘ (ft)‘ (f,ts)‘

2 . .
are nonnegative whereas the elements in V° could be both

X
Cnif ,ts)‘

. X 2
in [cx, [ and

positive and negative. However, the overall sum in (4.9) is always nonnegative and
therefore, an analysis equation in a form of matrix factorization can be constructed. The
model of the proposed factorization agorithm termed as the v-SNMF2D is given as

follows:

Ty fmax VO T | T fme V6 o7

Cliroo| =22 D HE+V = 22,200 Hy + V) (4.10)

7=0 ¢=0 i=1 7=0 ¢

(Analysis)

where H? ~ p(H% |A%) = HH S op(-A% HY L)

i=1 tg=1

The advantages of using v-SNMF2D have aready been described in Chapter 3. It is worth
pointing out that each individual element in H? is constrained to a exponential
distribution with independent decay parameter /lmt In (4.10), D;; isthe i™ column of

D;, H?; isthe i™ row of H’. In terms of interpretation, D;. represents the spectral
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basis of the n"™ IMF of the i source in the spectrogram domain and H?. represents the
tempora sparse code for each spectral basis element. In the proposed algorithm, the two
matrices to separate are

2 2 . . . . . .
Cliy| and [Cx, | inthe synthesis equation. This estimation

corresponds to the case of i ={12} intheanaysisequation.

4.2.2 Estimation of sub-sources

The n" order sub-sources Cliin and [C32 are estimated as

—7T

I _ 2 g
rH? Cﬁims)‘ =Y >'D;,H?, . Inthedefault setting, D}; isthe
T

~ 2
Cnxl(f,ts)‘ :Z%: Dh,Hp, and

i™ column of D that corresponds to the i row of H%, where i={12} for the case of
two sources. If more components are considered in  the Vv-SNMF2D
eg.D; =[dp,,...d5, | Vi, >2, this necessitates an efficient clustering method to group the
column vectors dy;  to their respective sources. The details of the clustering methods will
2

and

CX1

n(f.tg)

be presented in Section 4.3. Once Crty * aeed mated, the time-domain

sub-sources € can be reconstructed as follows:

&% = Resynthesize(Mask* o C?,
€sy g( ) (4.11)
¢y = Resynthesize(Mask > «C); 1))
where ‘Resynthesize’ denotes the inverse mapping of the log-frequency axis to the
original frequency axis and followed by the inverse STFT back to the time domain [92].

The mask signals are determined element wise by:

Mask’ = 1'if‘[éﬁ<f,ts>l,ts >‘[C§éf,ts)]“

0, otherwise.

(4.12)

S
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The estimated sub-sources in (4.11) are subsequently clustered into groups according to the
number of sources. The Kullback-Leibler divergence (KLd) based k-means clustering
algorithm [40] is used for grouping the subsets of the sub-sources. The sub-sources are
firstly represented as vectors which are then normalized to unit length and transformed into
their corresponding probability mass function. They are then grouped into x clusters
according to the entropy contained by individual vectors. In this paper, the symmetric KLd
is used to measure the relative entropy between two probability mass function p,(¢) and

p,(¢) over arandom variable Q:

KLd p] E p] Io E Io 4.13
p2 ot g 8 +£EQ p2 g (8) ( )

After convergence, all sub-sources will be grouped into their respective clusters which are
given as Cy ={&,c,...¢ ) and Cpg ={g7.¢r,...65 | . The estimated time-domain
signal of the i™ source is then obtained by summing up the sub-sources from each cluster
as:

=C:1, and  %,=C%1,, (4.14)

The core procedure of the proposed method is summarised in Figure 4.3.
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Figure 4.3: Core procedure of the proposed method.

4.3 Resultsand Analysis

The proposed monaural source separation method is tested by separating audio sources.
Severa experimental simulations under different conditions have been designed to
investigate the efficacy of the proposed method. To generate mixtures, 40 sentences of the
target speakers (20 male and 20 female sentences from 8 male and 8 female subjects) are
selected from the TIMIT speech database and 20 music signals including 10 Jazz and 10
piano signals are selected from the RWC [100] database. Three types of mixture have been
generated: (i) Jazz mixed with piano, (ii) speech mixed with music and (iii) speech mixed
with speech. The sources are randomly chosen from the database and the mixed signal is
generated by adding the chosen sources. In al cases, the sources are mixed with equal
average power over the duration of the signals. All mixed signals are sampled at 16 kHz

sampling rate and the audio mixture is divided into blocks of length 0.65s. Smaller-size
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blocks perform better when the signal spectra are frequently changing. The TF
representation is computed by normalizing the time-domain signal to unit power and
computing the STFT using 1024 point Hamming window FFT with 50% overlap. The
frequency axis of the obtained spectrogram is then logarithmically scaled and grouped into
175 frequency bins in the range of 50Hz to 8kHz with 24 bins per octave. This
corresponds to twice the resolution of the equal tempered musical scale. For the
v-SNMF2D parameters, the convolutive components in time and frequency are selected to
be r={0,...,4} and ¢={0,...,4}, respectively. The distortion measure between the
original and estimated source is computed by using the improvement of signal-to-noise

ratio (ISNR) [57] which is defined as:

> |x @) > |x @)
ISNR =10log,, —

—10l t 415
SO-%OF Sy -x 0 @19

where % (t) denotes the estimated i™ sources. The ISNR is used as the quantitative
performance measure for separation, and the average ISNR will be tabulated in the
evaluation graphs. The ISNR represents the degree of suppression of the interfering signals
to improve the quality of the target one. The higher value of ISNR indicates better

separation performance.

4.3.1 Effects on audio mixtures separ ation with/without EM D preprocess

In this section, we first investigate the performance of the proposed method without
using the EMD preprocessing for separating audio mixtures. This is motivated by the fact

that in the IMF subband domain, the spectral and temporal patterns of each IMF are
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simpler and sparser than that of the mixed signal. Therefore, the spectral and temporal
patterns of the dominating source and the less dominating one can be separated by using
the matrix factorization methods (i.e. SNMF2D or v-SNMF2D). In addition, any error
resulted in the IMF subband during the source separation can be alleviated at the source
reconstruction stage. Thus, it is hypothesized that with the EMD preprocessing, the audio
source separation will be significantly enhanced. Figure 4.4 and 4.5 shows the performance
of our proposed method without and with the EMD preprocessing, respectively, under

various audio mixtures.

@D SNMF2D
7 B v-SNMF2D
6
—~ 5 B
m
4
Z 3
w2
=2
1 [
0
Speech&Speech Music&Speech Music&Music

Figure 4.4: Overall separation results of different mixtures without EMD preprocess.

[ EMD+SNMF 2D

7 B EMD+v-SNMF2D

6
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Speech&Speech Music&Speech Music&Music

Figure 4.5: Overall separation results of different types of mixtures with EMD preprocess.
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Figure 4.4 shows that without the EMD preprocessing, the ISNR is degraded
substantially since the mixing ambiguity has been highly affected by the level of spectral
overlap between |X,[* and |X,[°. This is evidenced in Figure 4.6 which illustrates the
mixture of original male and femal e speeches (top panels), the single channel mixed signal
(middle panel), and the separated speeches (bottom panels) using the v-SNMF2D without
the EMD preprocessing. The ISNR for the separated speeches, on average, is calculated to
be 2.7dB per source. The ambiguity between the two speeches is highlighted in the red box
marked area. Figure 4.10 (D)-(E) further illustrate this observation on the TF plane by
means of another mixture of male speech and Jazz music. By visua inspection, a
considerable level of spectral overlap has not been correctly separated. On the other hand,
Figure 4.5 shows a large improvement gain in ISNR by incorporating the EMD
preprocessing. An average improvement of 2.5dB per source has been obtained across all
the different type of mixtures by using the v-SNMF2D with EMD preprocessing as
compared to using the v-SNMF2D aone. Similarly, an average improvement of 2dB per
source is obtained for the SNMF2D with EMD preprocessing as compared to using the

SNMF2D done.
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Figure 4.6: Separation results without applying EMD preprocess.

In the following, the results of the v-SNMF2D with EMD preprocessing are shown.
Figures 4.7 and 4.8 show the time-domain separation results. In both figures, subplots(a)
show the estimated sub-sources by exploiting the hybrid EMD and v-SNMF2D while
subplots(b) show the reconstructed speech signals and the error between the original and
the reconstructed signals based on the four estimated sub-sources (e.g. €'). The mean
square error (MSE) between the original and the reconstructed speech is 0.34 and 0.32 for
male speech and female speech, respectively. It is also found that as the number of
estimated sub-sources increases (e.g. 6), the error becomes progressively smaler (MSE =

0.31 and 0.28 for male and femal e speeches, respectively).

74



CHAPTER 4

Sub-sources of Group 1 Recorered male speech
T T T
a ¢ [ 4
‘% ? { bl
2 - 2 2 bl |
E L ﬂ *" - E_ v - £ ‘"%‘"J\.‘". LW”H‘ M ,' w (J'|lh,|m-- —
q € <E( 5 1
Wz 03 WM 05 0 o 1 M 6 -0, - v v . - v
. 0 01 02 03 04 05 06
Time [5] Tirme [s] e ]
Error between original and recovered male speech
$ g §°
2 2 | S
E‘ 1 —“*—*«--—----— _é 0 N | P lb % 0 iy b »mmwg
< < <E( 5
Il Il Il 1 Il Il
[ T ] oW i 0 03 i 5 6
Time [s] Time [s] Time|s]
(A) (B)

Figure 4.7: (A) Estimated sub-sources for male speech. (B) Reconstructed mal e speech and error.
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Figure 4.8: (A) Estimated sub-sources for female speech. (B) Reconstructed female speech and
error.

4.3.2 Impacts of sparsity selection

In this section, the impact of sparsity selection isinvestigated. Choosing f(H,) aswel
as each of the scalar regularization parameter i, ={/1;:’,i,ts} will have significant impact on
the matrix factorization and the final separation results. The proposed agorithm resolves
this difficulty by using the EMD to reduce the mixing ambiguity in each sub-band. In
addition, since the sparsity of each IMF on the TF plane varies across different IMF order,

the sparseness constraint of H,, that impacts each IMF ought to be optimally controlled.
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Table 4.2 shows the value of the sparse regularization parameter that corresponds to each

IMFs of different mixtures. In Table 4.2, {J,P,M,F} represent Jazz, piano music, male

and femal e speech.

Table 4.2: Assignment of regularization parameter

Regularization parameter
in vector form for each J&P (JorP)&(MorF) | M&(MorF)
IMF
L) 0.1 5 5
A, 0.05 5 5
Ay 0 1 5
A, 0 1 5
As 0 1 1
A 0 0 1
A, 0 0 0

For mixture of piano and speech, the regularization parameters can be set similarly to the
ones used for jazz and speech mixture. Table 4.2 shows that as the IMF order increases,
lower values can be assigned to A, for each type of mixture. This is evidenced from the
fact that the EMD can automatically range the bandwidths so that in each sub-band only
one source with the most energy is retained. This allows the selection of the sparsenessin
each H, . Itisalso found that different types of audio mixtures require different selection
of the sparseness regularization. Using the mixture of music and speech as an example, itis
well documented that music pitches jumped discretely while speech pitches do not so that

A, can be set to zero from the 6™ IMF onwards since these correspond to the lower
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frequency bands and are dominated with most energy from the speech components. In the
lower frequency bands, very little mixing exists between the music and speech signa so
that imposing sparseness will lead to over-sparse code and eventually render less efficiency
in estimating the speech signal components. On the contrary, it is difficult to set A, equal
to zero for mixture of male and female speeches since the fundamental pitches of both
signas are too similar for the SNMF2D to separate. It should be noted that the above

regularization parameters are set empirically and by no means, are the optimal values. The

selection of A¢, =4 for al it,¢ of n" individua IMF is based on Monte-Carlo

it A
simulation over many different realizations of audio mixture. The selection proceeds as
follows: Firstly, athreshold is set for atarget ISNR e.g. ISNR = 4dB. Secondly, the value
of 1 for each IMF that renders signal separation with ISNR above this target threshold
will be accepted while the ones that do not will be discarded. Thirdly, this process is
repeated for different sources of the same type of mixture. Finally, the 1 for each IMF is

selected by averaging over al realizations. In the following figure, the results are obtained

using this Monte-Carlo simulation.
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Figure 4.9: Histogram of regularization parameter in SNMF2D for each IMF.

Figure 4.9 shows the histogram of the regularization parameter for each IMF using the
Monte-Carlo ssimulation. Each column in the above figure represents the histogram of
selective A over all realizations for IMF order from 1% to 7. Based on the above
histogram, the selective 1 assigned to each IMF is thus obtained in Table 4.2. However,
the Monte-Carlo approach to obtain these regularization parameters is not as optimal as our

proposed method in terms of signal separation.

The proposed method resolves this issue by adaptively updating these sparse
regularization parameters while the spectral bases and the tempora codes are still being
learned. To study the effects of sparsity regularization on the separation results, Figure 4.10

shows the spectrograms computed using the EMD SNMF2D and EMD v-SNMF2D.
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Figure 4.10: (A)-(B) denote the origina spectrogram of male speech and Jazz music respectively.
(C) denotes the spectrogram of the mixture. (D)-(E), (F)-(G), and (H)-(I) denote the reconstructed
spectrogram of male speech and Jazz music by directly using the SNMF2D method (without EMD),
EMD SNMF2D method, and EMD v-SNMF2D method, respectively.

In Figure 4.10, it is noted that errors still present in the estimated male speech
spectrogram by using the SNMF2D and the EMD SNMF2D methods. The components in
the red box marked region in (D) and (F) definitely belong to the Jazz music but have been
attributed to the male speech instead. As a result, the estimated male speech contains
interference from the Jazz music whereas the estimated Jazz music loses some of its
information. Because of the ‘under- or over-sparse’ resolution, the estimates are only
coarse by using the EMD with SNMF2D. Consequently, this leads to ambiguity in the TF
region which reduces the separation efficiency. On the other hand, the performance has

been significantly improved when the decomposition of spectral bases and temporal codes
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are performed using the variable sparse regularization. It is noted that the level of mixing

ambiguity has been progressively reduced from using the SNMF2D without EMD

preprocessing to the proposed v-SNMF2D with EMD preprocessing.
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Figure 4.11: Separation results of EMD-SNMF2D by using different uniform regularization.

Figure 4.11 shows the impact of sparsity regularization on the separation results in terms

of the ISNR under different uniform regularization. In this implementation, the uniform

regularization for all IMF ischosen asi.e. A, =X,=---=4,=c, ¢=0,05,...,5. Figure 4.12

summarises the average separation results of the EMD-NMF2D, EMD-SNMF2D, selective

uniform regularization EMD-SNMF2D based on Table 4.2 and EMD v-SNMF2D methods.
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Figure 4.12: Separation results of EMD-based SNMF2D using regularization schemes.

80



CHAPTER 4

For comparison purpose, the average performance improvement of the proposed method
has been summarised based on Figure 4.12 as follows: (i) for mixture of music signas, the
average improvement is 1.4dB per source, (ii) for mixture of speech and music signdl, the
average improvement is 1.6dB per source, and (iii) for mixture of speech signals, the
average improvement is 1.7dB per source. The above results clearly indicate that the best

performance is achieved by the EMD preprocessing with v-SNMF2D.

4.3.3 Comparison with other SCSS methods

4.3.3.1 Underdeter mined-based | CA SCSS method

In the underdetermined-1CA time model-based SCSS method [47], the key point is to
exploit the prior knowledge of the sources such as the basis functions to generate the
gparse codes. In this work, these basis functions are obtained in two stages: (i) Training
stage: the basis functions are obtained by performing ICA on each concatenated sources. In
our experiments, a set of 64 basis functions is derived for each type of source®. For
example, to generate the ICA speech basis functions, 10 male and 10 femal e speeches from
TIMIT speech database are used. Similarly, to generate the ICA music basis functions, 5
Jazz and 5 piano signals from RWC database are used. These training data exclude the
target sources which have been exclusively used to generate the mixture signals. (ii)
Adaptation stage: the obtained ICA basis functions from the training stage are further
adapted based on the current estimated sources during the separation process. At this stage,

both the estimated sources and the ICA basis functions are jointly optimized by

% Here the types of source signals are the male speech, female speech, jazz and piano music.
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maximizing the log-likelihood of the current mixture signal until it converges to the

steady-state solution.

4.3.3.2 Hilbert subspace decomposition SCBSS method

The method of [57] performs source separation without training information by
decomposing the Hilbert spectrum of the mixed signal into independent source subspaces.
Once a set of independent basis vectors is obtained by means of PCA and ICA, the KLd
based k-means clustering algorithm is utilized for grouping purpose and the Hilbert
spectrum of individual source is constructed by each group subset. The time-domain

estimated sources are calculated from the Hilbert spectrum of each of the extracted signals.

4.3.3.3 Comparison Results

Figure 4.13 shows the separated male and female speeches based on the above two
SCSS methods. Figure 4.14 shows the comparison results between the proposed method
and the above two SCSS methods in terms of the ISNR. In the case of the
underdetermined-ICA time model-based SCSS method, it is noted that the recovered
sources have not been clearly separated and the mixing ambiguity region is still large when
compared with the original speechesin Figure 3.13 (top panels). The proposed method has
yielded considerable improvement over the underdetermined-ICA time model-based SCSS
method and this is summarised as follows: (i) for mixture of music signas, the proposed
method results in an average improvement of 2.3dB per source, (ii) for mixture of speech
and music signal, an average improvement of 2.9dB per source, and (iii) for mixture of

speech signals, an average improvement of 4.1dB per source. The performance of the
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underdetermined-ICA time model-based SCSS method relies on the ICA-derived time
domain basis functions. Figure 4.14 indicates that high level performance is achieved only
when the basis functions of each source are sufficiently distinct. The result becomes
considerably less robust in separating mixture where the original sources are of the same
type e.g. mixture of speeches [101]. Speech basis functions learned from the ICA exhibit
waveforms that resemble Gabor wavelets, however, the set of basis functions from the
mal e speech has high degree of correlation with that of the female speech. Therefore, these
two sets of basis functions overlap significantly with each other. Hence, the
underdetermined-ICA time model-based SCSS method is less efficient in resolving the
mixing ambiguity in portions of the speech mixture where the basis functions for the male

and female are very similar.
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Figure 4.13: (A)-(C) denote the original male, female speeches and mixture, respectively. (D)-(E)
denote the recovered male and femal e speeches by using the underdetermined-ICA SCBSS method.
(F)-(G) denote the recovered male and femal e speeches by using the Hilbert SCBSS method.
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Figure 4.14: Overall results between the proposed method, underdetermined-ICA time model -based
SCSS and Hilbert SCBSS methods.

In Figure 4.14, ‘U-ICA SCSS’ and ‘H-SCBSS’ denote the Underdetermined-ICA time
model-based SCSS and Hilbert SCBSS methods, respectively. The decomposition obtained
by the Hilbert SCBSS method shows that this technique leads to better separation results
than the underdetermined-ICA time model-based SCSS method. However, it is noted that
the separated speeches still contain high level of mixing ambiguity and therefore, it
degrades the separation performance. This is evidenced in Figure 4.14 which shows the
comparison of the proposed method with the Hilbert SCSS method: (i) for mixture of
music signals, the average improvement is 2.4dB per source, (ii) for mixture of speech and
music signal, the average improvement is 2.5dB per source, and (iii) for mixture of speech
signas, the average improvement is 3.2dB per source. The performance of the Hilbert
SCBSS method relies too heavily on the derived frequency independent basis vectors
which are stationary over time. Therefore, good separation results can be obtained only if
the basis vectors are dtatistical independent within the processing window. The

distinctiveness of the corresponding amplitude weighting vectors is also highly dependent
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on the independence of the basis vectors. Thus, if the frequency features are too similar, it
becomes difficult to obtain the independent basis vectors by using the ICA. This explains
the reason Figure 4.14 shows arelatively poorer performance when separating mixture that
contains speech sources. Comparing with the Hilbert SCBSS method, the proposed
v-SNMF2D yields an optimally sparse part-based decomposition that is unique under
certain conditions e.g. sparse and nonnegative component, making it unnecessary to
impose constraints in the form of statistical independence between the sources.
Furthermore, the spectral bases D’ and sparse code H? in the proposed method are
derived separately at each individual IMF. Thus, these spectral bases and tempora codes
are non-stationary over time leading to more robust separation results compared with the

stationary basis vectors obtained from the Hilbert SCBSS method.

4.3.3.4 Comparison with NM F-based SCBSS methods

In this evaluation, the following NM F-based SCBSS methods are used for comparison:
e NMF with Temporal Continuity and Sparseness Criteria [37] (NMF-TCS) based
SCBSS method as described in Chapter 3.
e Automatic Relevance Determination NMF (NMF-ARD) [97] based SCBSS method as

described in Chapter 3.

Currently, there are no reliable NMF methods for automatic estimation of the number of
components (e.g. the basis vectors in D) and normally, this has to be set manualy. As
discussed in Section 4.2, each IMF is separated into a number of components that

corresponds exactly to the number of sources. However, in this implementation, more
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components than the number of sources are used for evaluating the efficiency of the
proposed method. In order to obtain the baseline comparison of each method, all NMF
algorithms are tested by factorizing the mixture signal into 1,=2,4,...,10 components. In
the case of NMF-ARD, the threshold has been modified such that it accepts all the
initialized components. Since more than two components are used and the tested methods
are blind, there is no information to tell which component belongs to which source. Thus,
the clustering method proposed in [57] is utilized where the original sources are used as
reference to create component clusters for each source. However, a large number of
componentsi.e. 1,>10 may not necessarily produce better results since more sub-sources
need to be classified. If the recovered sub-sources are incorrectly clustered, then these
sub-sources will become interference to the supposedly correct estimated source. We have
carried out additional analysis to compare the KLd-based k-means clustering method [57]
with the supervised clustering method in [37]. The finding shows that if the sub-sources
are too sparse, both methods will introduce errors during the clustering process. For
example, beyond the 7" stage decomposition by the EMD, the TF sub-sources are too
sparse to assign them to the correct sources. If wrongly clustered, this particular sub-source
will become interference to the intended source. To mitigate this situation, a power
threshold is set as described in Section 4.2 to judge whether the IMF is of acceptable
quality. The findings have shown that the results based on KLd k-means clustering method
are identical to the supervised clustering method in [37] except in specia circumstances
where the sub-sources are overly too sparse in the TF domain. Figure 4.15 shows the ISNR

performance between the proposed method and the NMF-TCS, NMF-ARD methods under
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different mixture types, and the increasing number of components from1 =2,4,6,810.
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Figure 4.15: Average ISNR using different number of components.

In Figure 4.15, the ISNR improvement of the proposed method compared with
NMF-TCS and NMF-ARD can be summarised as follows: (i) for mixture of music signals,
the average improvement is 4.3dB per source, (ii) for mixture of speech and music signal,
the average improvement is 3.1dB per source, and (iii) for mixture of speech signals, the
average improvement is 3.3dB per source. Analysing the separation results, NMF-ARD
performs with poorer results whereas the separation performance by NMF-TCS is dlightly
better than NMF-ARD. The common feature among these two methods is that they do not
incorporate the preprocessing step that benefits the nonnegative matrix factorization. This
renders the performance less efficient especially in terms of separating mixture that

contains speech sources. The result indicates that without the EMD preprocessing, it
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becomes difficult to obtain the unique spectral basis D especially when the spectral
overlapping between the sources in TF domain is large since each column in D may
contain the combination spectral information of both sources. In this case, by directly using

NMF methods, the separation of sourcesis no longer efficient.

4.4 Summary

This chapter has presented a novel framework of amalgamating EMD with v-SNMF2D
for single channel source separation. In this chapter, it is shown that the IMFs have severd
desirable properties unigque to single channel source separation problem: (i) the degree of
mixing in each IMF is less ambiguous than the mixed signd, (ii) the IMFs has simpler and
sparser spectral and temporal patterns which allows the proposed v-SNMF2D algorithm to
efficiently track them, and (iii) the IMFs serve as the orthogonal temporal bases for signal
separation; hence errors resulted from any IMF will be averaged over all the IMFs leading
to smaller errors at the signal reconstruction stage. In the proposed v-SNMF2D algorithm,
the sparsity parameters are individually optimized and adaptively tuned using the
variational Bayesian approach to yield the optimal sparse codes. The proposed framework
enjoys a least two significant advantages. Firstly, it avoids the strong constraints of
separating blind source among all types of audio mixture without training knowledge.
Secondly, the v-SNMF2D algorithm gives a robust sparse decomposition and under
non-negativity condition, the decomposition is unique making it unnecessary to impose

constraints in the form of statistical independence of the sources.
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CHAPTER 5

SINGLE CHANNEL BLIND SOURCE SEPARATION USING
GAMMATONE FILTERBANK AND ITAKURA-SAITO
MATRIX FACTORIZATION

In this chapter, a novel framework to solving SCBSS based on the cochleagram TF
representation and a family of IS divergence based novel two-dimensional nonnegative
matrix factorization algorithms are proposed. The proposed solution separates audio
sources from a single channel without relying on training information about the original
sources. The unigueness of the proposed work can be summarised as follows:

() Using the gammatone filterbank to construct audio signal TF representation. It
produces a non-uniform TF domain termed as the cochleagram whereby each TF unit
has different resolution unlike the classic spectrogram which deals only with uniform
resolution.

(i) The separability theory has been derived in the TF domain and a quantitative
performance measure has been developed to evaluate how separable the sources in
the monaural mixed signa. In particular, the ideal condition has been identified when
the sources are perfectly separable. We also proposed a separation framework using
the gammatone filterbank. The latter produces a non-uniform TF domain termed as
the cochleagram whereby each TF unit has different resolution unlike the classical

spectrogram which deals only with uniform resolution. Towards this end, it is shown
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(iii)

that the mixed signal is significantly more separable in the cochleagram than the
classic spectrogram and the log-frequency spectrogram (constant-Q transform).

A family of IS divergence based novel two-dimensional nonnegative matrix
factorization algorithms has been developed to extract the spectral and temporal
features of the sources. The proposed factorizations are scae invariant whereby the
lower energy components in the cochleagram can be treated with equal importance as
the higher energy components. Within the context of SCBSS, this property is highly
desirable as it enables the spectral-temporal features of the sources that are usually
characterized by large dynamic range of energy to be estimated with significantly
higher accuracy. This is to be contrasted with the matrix factorization based on LS
distance and KL divergence where both methods favor the high-energy components

but neglect the low-energy components.

This chapter is organized as follows: Section 5.1 introduces the different TF matrix

representations and the separability theory is developed. In Section 5.2, the family of IS

divergence based NMF2D and regularised NMF2D agorithms are derived. The proposed

source separation framework is fully developed. Experimental results and a series of

performance comparison with other matrix factorization methods are presented in Section

5.3. Finally, Section 5.4 concludes the work of this chapter.
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5.1 Time-Frequency Representation

The section sets out to investigate effective TF representations to enhance the
separability of SCSS. It is generadly accepted that TF anaysis is the core technique for
characterizing and manipulating audio signals. In the task of audio source separation, one
critical decision isto choose a suitable TF domain to represent the time-varying contents of
the signals. In this section, we concentrate on the analysis of three widely used TF
representations classic spectrogram, log-frequency spectrogram and cochleagram. In order
to analyse the impacts of these TF representations, the separability analysis of source

separation in the TF domain has been devel oped.

5.1.1 Classic spectrogram

The signal y(t) isfirst multiplied by a finite length window function, and the Fourier
Transform is taken as the window is dlid along the time axis, resulting in a
two-dimensional power representation of the signal, namely:

Y (f ,TW)|2 :Ui y(t)win(t —z,,) e > " dt i (5.1)
where win(t) isthewindow functionand r isthetime-shift. The classic spectrogram as
computed by the STFT is equivalent to a bank of K, filters equally spaced at the
frequencies:

fS

STFT

fior " =Ky for kg =1...,Kgq (5.2

K

with constant bandwidth:
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T g s (5.3)

where B, is the main-lobe width in bins, a parameter given for each type of impulse
response. (e.g. For Hanning windows, the main-lobe width is B,=4 bins) and f,
denotes the sampling frequency. The details on the classic spectrogram analogy can be

found in [106].

5.1.2 L og-frequency spectrogram (constant-Q transform)

The classic spectrogram decomposes signals to components of linearly spaced
frequencies. However, in western music the typically used frequencies are geometrically
spaced. Thus, getting an acceptable low-frequency resolution is absolutely necessary,
while a resolution that is geometrically related to the frequency is desirable, athough not
critical. The constant Q transform as introduced in [105], tries to solve both issues. If f,,,
is the fundamental frequency of one note, then the center frequencies are geometrically
spaced as:

£ = f - 29 (5.4
where K, denotes the maximum number of filters per octave. In addition, the bandwidth
of the k, " filter is:

V2 = ka(ZJ/KQ —1) (5.5)
Thus, the filters cover the whole frequency range without overlapping. This yields a

constant Q ratio of frequency to resolution, which is expressed as:

Q™ — f_kg _ (ZJ/KQ _1)71 (5.6)
vie .
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In general, the twelve-tone equal tempered scale which forms the basis of modern western

music divides each octave into twelve half notes where the frequency ratio between each

successive half note is equal. The fundamental frequency of the note which is k,

halfnotes above can be expressed as fkg = f,,,- 29/, Taking the logarithmic, it gives

ko

aIogz. Thus, in a log-frequency representation the notes are linearly

log f,2 =109 i +
spaced. In the method, the frequency axis of the obtained spectrogram is logarithmically
scaled and grouped into 175 frequency bins in the range of 50Hz to 8kHz (given

f, =16kHz ) with 24 bins per octave and the bandwidth follows the constant-Q rule [105].

5.1.3 Gammatone filter bank and Cochleagram

Gammatone filterbank was previously proposed in [107, 108] as a model to cochlear
filtering which decomposes the time-domain input into the frequency domain. The impulse
response of a gammatone filter centered at frequency f isgiven by:

t' e ™ cog(27 ft) , t>0

0. dse (5.7)

g(f-t)={

where ¢ denotes the order of filter, v represents the rectangular bandwidth which
increases as the center frequency f increases. With regards to a particular filter channel
c, let f. be the center frequency. Then, the filter output response x(c,t) can be
expressed as:

x(c,t) = x(t) * g(f.,t) (5.8)
where ‘*’ represents convolution. The response is shifted backwards by (¢/-1)/(2zv) to

compensate for the filter delay. The output of each filter channdl is divided into time frame
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with 50% overlap between consecutive frames [49]. The resulting outputs form the
time-frequency spectra which are then constructed to form the cochleagram. This is
supported by the physiological studies [110, 111] of auditory nerve tuning curves[112] and
psychophysical studies of critical bandwidth [113]. Both studies have indicated that
auditory filters are distributed in frequency according to their bandwidths, which increase
guasi logarithmically with increasing center frequency. Thus, the bandwidth of each filter
Is set according to its equivalent rectangular bandwidth (ERB) which is a psychophysical
measurement of the critical bandwidth in human subjects (as described in Glasberg and
Moore [113]) as.

ERB( f) = 24.7(4.37 f /1000+1) (5.9)
More specificaly, they define b, =1.019ERB(f.) where b, determines the rate of decay
of the impulse response, which is related to bandwidth. Additionally, the gains of the filters
are adjusted according to the 1SO standard for equal loudness contours [114] in order to
model the pressure gains of the outer and middle ears. Thus, the use of the gammatone
filter is consistent according to the neurobiological modeling perspective. Equation (5.7)
provides a close approximation to the experimentally derived auditory nerve fiber impulse
responses, as measured by [115] using a reverse-correlation technique. Furthermore, the
fourth-order gammatone filter provides a good match to psychophysically derived

“rounded-exponential” models of human auditory filter shape [116].
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5.1.4 Difference between classic spectrogram, log-frequency spectrogram

and cochleagram

The classical spectrogram as computed by the STFT has an equal-spaced bandwidth
across al frequency channels. Since speech signas are characterized as highly
non-stationary and non-periodic whereas music changes continuously; therefore,
application of the Fourier transform will produce errors especialy when complicated
transient phenomena such as the mixing of speech and music occur in the analysed signal.
Unlike the spectrogram, the log-frequency spectrogram possesses non-uniform TF
resolution. However, it does not exactly match to the nonlinear resolution of the cochlear
since their centre frequencies are distributed logarithmically along the frequency axis and
al filters have constant-Q factor [105]. On the other hand, the gammatone filters used in
the cochlear model (3) are approximately logarithmically spaced with constant-Q for
frequencies from f /10 to f /2 and approximately linearly spaced for frequencies
below f,/10 . Hence, this characteristic results in selective non-uniform resolution in the TF
representation of the analysed audio signal. Figure 5.1 shows an example of frequency

response for different types transform.
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Figure 5.1: (A) Normalized frequency responses of 17-channel STFT filter bank. (B) Normalized
frequency responses of 17-channel constant-Q filter bank. (C) Normalized frequency responses of
17-channel gammatone filter bank.

From Figure 5.1, it can be seen that the classic spectrogram which is based on the STFT
yields a time-frequency representation with only uniform frequency and time resolutions.
On the other hand, the log-frequency spectrogram based on constant-Q transform has
non-uniform time-frequency resolution and the time-resolution trade-off is strongly biased
towards improving frequency resolution in the low-frequency region. The cochleagram
based on gammatone filter bank also has non-uniform time-frequency resolution whileit is
more balanced between the high and low frequency areas when compared to the
constant-Q representation. In the next sub section, the comparison of separability based on

above three TF representations is carried out and the cochleagram is found as the most
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suitable TF tool when using NMF2D model for audio source separation.

5.1.5 Separ ability analysis

For separation, one generates a TF mask corresponding to each source and applies the
generated mask to the mixture to obtain the estimated source TF representation. In
particular, when the sources do not overlap in the TF domain, an optimum mask
Mask® (f,t.) exists which allows one to extract the i original source from the mixture
as:

X, (f,t,) = Mask® (f,t.)Y(f,t.) (5.10)
where ‘opt’ denotes optimum. Given any TF mask Mask(f,t,)) such that

0<Mask (f,t,))<1 for al (f,t), we define the separability in the TF domain for target

source x(t) inthe presence of theinterfering sources p (t) = ZN: X (t):

j=1j=

2

Fro (5.11)

2

Fro

[Mask; (f,t.)X;(f.t,)| ~ [Mask, (f,t)P(f,t,)]

X (F 1)l [%:CF )],

Fro

SY‘)X\ R oA
Mask; -

where X (f,t)) and P(f,t) isthe TF representation of x(t) and p(t) ,respectively. In

addition, the separability of the mixture with respect to all the N, sourcesis defined as:

Mask; ,...,Masky

Ns
SY—>><1 ..... XN :Niz S’\\;:Sé(iﬂ (512)
i=1

Eqn. (5.11) is equivalent to measuring the ability of extracting the i™ source X, (f.t)
from the mixture Y(f,t,) given the TF mask Mask (f,t,). Egn. (5.12) measures the
ability of extracting all the N, sources simultaneously from the mixture. To further study

the separability, the following two criteria [51] are used: (i) Preserved signa ratio (PSR)
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which determines how well the mask preserves the source of interest and (ii)
Signal-to-interference ratio (SIR) which indicates how well the mask suppresses the

interfering sources:

2 2

s [Mask; (f,t,)X,(f.t,)| RX & [Mask; (f,t) X, (f.t,)]

PSR} e and £ Fro  (5.13)
| X, (F )l " Mask (fLORELLE,
Using (5.13), (5.11) can be expressed as.
S;:sk)‘(‘ﬂ = PSR:A(:ask, - PSR&(‘ask, / Sl va)/l(ésk, (5.14)
Anaysing thetermsin (5.14), namely:
x, ._] 1 . if suppMask™ =suppMask
PRy = .
<1 , if suppMask™ c suppMask;
(5.15)

o , if supp[Mask X;]suppP =&
finite, if supp[Mask X;]nsuppPR # &

SR :={
where ‘supp’ denotes the support. When Si2% =1 (i.e. PSRj, =1 and SRy, =x),
this indicates that the mixture y(t) is separable with respect to the i™ source x(t). In
other words, X, (f,t,) doesnot overlap with P(f,t;) andthe TF mask Mask (f,t,) has
perfectly separated the i™ source X;(f,t,) fromthe mixture Y(f,t,). This corresponds to
Mask (f,t,) =Mask™ (f,t,) in (5.10). Hence, this is the maximum attainable 2"
value. For other cases of PSRj, and SR}, , Sy " <1. Using the above concept,

we can extend the analysis for the case of separating N, sources. A mixture y(t) issad

to be fully separable to all the N, sourcesif and only if S; "% =1 in (5.12). For

..... Masky

Y5 Xq s Xy

thecase Sy, " vas, <1,thisimpliesthat some of the sources overlap with each other in

Y5 Xq e Xy

the TF domain and therefore, they cannot be fully separated. Thus, S, "5~ provides
the quantitative performance measure to evaluate how separable the mixture is in the TF

domain. In the following, we show the analysis of how cochleagram, log-frequency
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spectrogram and classic spectrogram affect the separability of the mixture. To make the
comparison fair, the ideal binary mask (IBM) [109] from the original sources is generated

for comparing all TF representations.

5.1.5.1 Mixture of two sources

In this experiment, three types of mixture are generated: (i) music mixed with music, (ii)
speech mixed with music and (iii) speech mixed with speech. All source signals are
sampled at 16kHz. The speech signals are selected from TIMIT database and normalized
to unit energy. The music sources are selected from the RWC [100] database and similarly
normalized to unit energy as well. Two sources are randomly chosen from the databases
and the mixed signal is generated by live mixing the two sources. All mixed signals are
sampled at 16 kHz sampling rate. The separability results for a mixture of two sources are

tabulated in Table 5.1.

Table 5.1: Overall separability performance for mixture of two sources

Types of TF domain Mixtures PSR SIR S

music and music 0.996 275.8 0.993
Cochleagram music and speech 0.995 186.8 0.989
speech and speech 0.984 184.2 0.979
music and music 0.958 165.5 0.953

Log-frequency y
music and speech 0.942 118.5 0.947

spectrogram

speech and speech 0.943 20.2 0.934
music and music 0.885 55.8 0.869
Spectrogram music and speech 0.882 53.6 0.865
speech and speech 0.871 50.83 0.854

TF representation using different window length has also been investigated and the
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evaluation results are tabulated in Table 5.2.

Table 5.2: Separability under different window length

Types of TF domain Window Length S
20ms (320) 0.985
Cochleagram 32ms (512) 0.972
64ms (1024) 0.965
128ms (2048) 0.892
20ms (320) 0.813
L og-frequency spectrogram 32ms (512) 0874
64ms (1024) 0.948
128ms (2048) 0.912
20ms (320) 0.801
32ms (512) 0.834
Spectrogram
64ms (1024) 0.864
128ms (2048) 0.842

Table 5.2 shows the average sparability results for all types of the mixture when using
different window length. The bracketed number shows the number of data points
corresponding to the particular window length. It is quite clear that, for both spectrogram
and log-frequency spectrogram settings, the STFT with 1024-point window length is the
best setting to analyse the separability performance. The results of PSR, SIR and
separability for each TF domain are obtained by averaging over 300 redlizations. From the
listening performance test in [51], it was concluded that Si;" >0.8 implies acceptable
separation performance. From the results in Table 5.1, it is noted that that all TF

representations satisfy this condition. Analysing the separability results, it is seen that the

spectrogram performs with the relatively poorer results with S0z, ~0.86 while the

log-frequency spectrogram shows better results Sz, ~0.94 than the spectrogram.

ask; ,Mask,

However, cochleagram exhibits the best separability among the three TF representations
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with S22, ~0.98. In addition, it should be noted from Table 5.1 that the average SIR

of cochleagram exhibits much higher value than those of spectrogram and log-frequency
spectrogram. This implies that the amount of interference between any two sources is

lesser in the cochleagram.

5.1.5.2 Mixture of multiple sources

The analysis conducted in 5.1.4.1 is based on a mixture of two sources. In below, we
extend the separability analysis over a number of sources from 2 to 8. For mixture of music
and speech sources, the number of music sources is selected to balance with number of
speech sources (e.g. for mixture of 8 sources, 4 are drawn from music and another 4 from
speech; for mixture of 7 sources, either 3 (or 4) are drawn from music and another 4 (or 3)
from speech). Thisis shown in Figure 5.2. Similar to the first experiment, the separability

performance for each TF representation is obtained by averaging over 300 realizations.

In Figure 5.2, it is observed that for all number of sources, the cochleagram can be
singled out to show the best separability performance across all different types of mixture.
It is worth pointing out that the cochleagram always retain ahigh level of separability even
when the number of sources increases. Also, the curve of separability decreases steadily as
the number of sources increases. On the contrary, other TF representations fail to separate

the mixture when large number of sourcesis present, e.g. for mixture of music and speech

Yo Xq e Xy

8 sources mixed), S, % ~0.65 for spectrogram and S : ~0.3 for
Mask, Masky ,...,Masky,

..... Masky,

log-frequency spectrogram. They are all below the acceptable level of separability (which

Yo Xy Xy
Masky ,...,Masky,

IS Syas, >0.8). On the other hand, cochleagram maintains at S ~ 0.9
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which is manifold well above the rest. It is noted that the curve of separability for the
log-frequency spectrogram decreases very sharply as number of sourcesincreases. In Table
5.1, it is seen that the log-frequency spectrogram leads to better separability than the
classic spectrogram. However, this is not always the case especialy when the number of
sources in the mixture is increased from four onwards. The curve in Figure 5.2 is clear to
indicate that the separability of the spectrogram degrades more gracefully as compared
with the log-frequency spectrogram. Finally, of al the three mixture types and over the
range of number of sources, only the cochleagram preserves the separability larger than 0.8.
Therefore, based on this study, it can be concluded that the cochleagram is the most

separable TF transform for SCBSS among the above three TF representations.
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Figure 5.2: Overall separability performance for each mixture type.
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5.2 Itakura-Saito based Two-dimensional Nonnegative Matrix

Factorization Algorithms

In this section, a family of IS divergence based novel two-dimensional nonnegative
matrix factorization will be proposed. These agorithms consist of Quasi-EM
two-dimensional nonnegative matrix factorization using the 1S divergence (Quasi-EM
ISNMF2D); multiplicative update rule based regularised two-dimensional sparse
nonnegative matrix factorization using the IS divergence (ISSSNMF2D) and multiplicative
update rule based variable regularised two-dimensional nonnegative matrix factorization
using the IS divergence (ISVRNMF2D). The IS divergence [117] is obtained from the
maximum likelihood (ML) estimation of a short-time speech spectra under the
autoregressive modeling. It was originally presented as a measure of the goodness of fit
between two spectra and has been proven to be efficient especialy in terms obtaining the
good perceptual properties of the reconstructed audio signals. The IS divergence also leads
to desirable statistical interpretations of the NMF [118]. Most significantly, the NMF with
IS divergence is scale invariant which enables low energy components of |Y|‘2 bear the
same relative importance as high energy ones. This is relevant to situations where the
coefficients of |Y |'2 have a large dynamic range such as in audio short-term spectra. The

IS divergence isformally defined as:
a a
d b)=—-log—-1 5.16
s(@fb)=1—log (5.16)

The IS divergenceis alimit case of the g -divergence[86] which is defined as:
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ﬁ(ﬂl_l)(aﬁ +(B-Db —pab’t) | pen\{og
ds(alb)=4 a(loga-logb)+(b-a) , B=1 (5.17)

a a
2 jog2-1, p=0
b b p

It is interesting to note that for B =2, the Euclidean distance is obtained as expressed by
the Frobenius norm and for B =1 the generalized Kullback-Leibler divergence is defined.
Therefore, the g -divergence can be simply represented as d, (;/a|;/b)=yﬂdﬂ (a|b). For
B =0, thisresults to the IS divergence which is unique to the 8 -divergence as it holds the
property of scale invariant, namely:

dis(ralyb)=d;s(a|b) (5.18)
Eqgn. (5.18) shows that a good fit of the factorization for a lower energy component a
will cost as much as higher energy component b. On the other hand, factorizations by
exploiting LS distance or KL divergence are highly dependent on the high-energy
components but less emphasis the low-power components. This inadvertently leads to less

precision in the overall estimation of the TF patternsin |Y |'2.

5.2.1 Quasi-EM based two-dimensional nonnegative matrix factorization

using the | S divergence

To facilitate the factorization, the following generative model [118] is defined by:

K 7
Ve, =21)k’ts where Vyy ~ N{O,th’tsf diag [dka vt =1...,T, (5.19)
7.9

k=1
where df is the K" column of D* and h{ is the k" row of H’. where y,_eC™,

v, €C™ and N,(u,X) denotes the proper multivariate complex Gaussian distribution
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and the components v, ... v, are both mutualy and individualy independent. The

Expectation-Maximization (EM) framework will be developed for the ML estimation of
0= { D, H“’} . Due to the additive structure of the generative model (5.19), the parameters

describing each component vy =[v,, ... v, ;] can be updated separately. To perform the

latter, the SAGE algorithm [119] is used. We now consider a partition of the parameter
space 9=U::19k as 0,={d;,h{| The SAGE agorithm works by formulating the

conditional expectation of the minus log likelihood of v, asfollows:
M0 ,10) = _Lk p(ve|Y,0') log p(v, |8, ) dv, (5.20)
where 0’ aways contains the most up-to-date parameter values {df, h? } .

5.2.1.1 Estimation of the spectral basis and temporal code using Quasi-EM method

One iteration of the SAGE algorithm includes computing the E-step and minimizing the

M-step Q\"(0,]6’) for k=1,...,K . The minus hidden-datalog likelihood is defined as:

T, F
—|ng 1’k|9 ZZ og N, [kat 0, Zd ¢khkt r]
2 (5.21)
iTZiog(Zdi Y ] NG
f1fa - A zd¥¢khkt—r

where = in the second line denotes equality up to constant terms. Then, the hidden-data

posterior is obtained through Wiener filtering:

T F
l’k Y, 9 HH N, (Uk,f,ts‘ulfofﬂt kaofStt ) (5.22)

=1f=1

s

for a fixed k. Thus, the E-step merely includes computing the posterior power V. of
component v, , defined as [V, =V, ¢, ‘uk ‘ +opt, where u’T and ofF

are the posterior mean and variance of v, ¢, , given by:
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zd ¢kh<t -7
ufs = 5.23
k,ftg — zd ¢|ht_, ( )
7,0,
zd ¢khkt -7
oPost di , h, . (5.24)
k,ftg — zdf l h¢t B T¢z|¢k f-g,l h,ts

7,0,

The M-step can be conducted to treat as the following one-component NMF problem:

T, F

0,10 zzlog(zd h J—‘uk” o
k -¢.k" Kts—7 zd ¢khli¢’t57r

to=1 f=1

(5.25)

T
z DIS(‘ukft‘ +kat |Zd ¢kh»<t rj

t=1 f=1

Given (5.25), the E-step merely includes computing the posterior power V> of
component v, , defined as [V, =V, =|uf%, ‘ +of% where ufF  and &%

are the posterior mean and variance of v, ;, defined in (5.21) and (5.22). Table 5.3 shows

the pseudo MATLAB code of the proposed Quasi-EM IS-NMF2D agorithm. The M-step

lp >t

thus amounts to minimising D,S[V""S"|de h¢J in (5.25) where V™' denotes V™ as
)

computed from 6. The derivative of a given element of g, =>df,, N, ., with

respectto df, and h{, isdefined as

a azdf¢k ktz'
k,f,t

o et 5.26
adlf—"k' ad‘;' o K’ t—7 ( )
agk . Gde -9, k kt -7

L 2 — —dbl 5.27
ahfgtfs 5h|‘ff,t; f—¢'k ( )

The derivatives corresponding to d;, and h,f’ts can be obtained as:
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o (010 o Vit
- = . lo =
T, odiy ; 9(Gere) g

k,ft

s

f-f’

!
=2 e Vet pog
- ) -t
o Ire Gkt

' (5.28)
_z Ok, tt, ~Vkoft, | pft
= e B L1V
1, Ok, 1, !
B Ok, tg1, — Vi fraar, p
- z 2 hk',’[s—r'
X Ok, t+o.t,
and
0Q"(0.,16) _ 0 Vioi s,
7 =—5—| 210g(gk 1. )+
ahk',t_; ahk',t; fitg Ok 1t
Ok, 1 1, _VIL,f,tS ¢t
= ——— A (5.29)
f i Ok, 1 1,
B Okt tee — Vi far g
- 2 f-¢'k
7, f gk,f o+t

Unlike the conventiona EM algorithm [118], it is not possible in (5.28) and (5.29) to
directly set oQ" (0 ,0')/d}., =0 and oQ" (0 ,/0')/n., =0 . Therefore, closed form
expressions for estimating df, and hff,ts cannot be accomplished. To overcome this
problem, we develop the following update rules and unify it as part of the M-step. The

rules are derived as follows:

0" (8,10")
ad?.

0Q." (0,10")

d?’k'(_d?'k'_no ;
o ot

and h{, «hi, —n, (5.30)

where np and n, are positive learning rates which can be obtained by following the

work in [74]:

.
df

TI — h?",ts'
D ™ _
z(gk,f'm,ts) .
Pts

and =g -
" zdf—¢',k'(gk,f,t;+r) '
T, f

(5.31)

Thus, the update rule is obtained as:
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_d?’,k’Z(( Ok 49t )72 (VI’< gty ~ Gkt )) hl(f',ts—r’

df e« df - o =
Z(Qk,f’+¢,ts) hl?’,ts—r’
R . (5.32)
(gk,f'+¢,ts) hl(f’,ts—r’ + Z((gk,f’Jr(p,ts) (V|’<,f'+¢,ts ~ Ok g, ))h?’,ts—z'
=df | 2 = -
Z(gk,f'+¢,ts) I"f’,tsff'
AN
Z( Ok, tr4art, )72 Vi tr1g, hf',t;f’
_ dr' .t
£k T,
¢2(gk,ff+¢,ts) o
1
Similar, the update rulesin h/’, writes.
_hf",té zf d;7¢',k' (( Ot AT )72 (Vl:,f At O 1 K+t ))
hf",; < hlfs - = =
t t zfd:—qﬁ’,k’ (gk,f,ts’ﬂ) l
z d:—qﬁ',k' (gk, ftg+r )71 + zd;ﬂp',k' (( Ot ter )72 (VI:,f e~ Gt e ))
=hl, | = ot (5.33)

1
T
zdf—¢’,k’(gk,f,t;+r)
7, f

-2
T ’
z df—(p’,k’ (gk,f At ) Vit
¢ T, f

' - =)
zdf—qﬁ’,k’ (gk,f,ts’H)
7, f

Comparity with the standard gradient descent approach, the above update rules have an

advantage of ensuring the nonnegativity constraints of df, and h,f’ts are adways
maintained during every iteration. In matrix notation, the above can be written as follows:

M\ 72 1y —>T¢T Wirea\2
Z¢ (GkJ Vi | hi Zfdﬁ (GkJ Vi
and ! e

h¢ < h!

16 VLo N
¥ (e IRHLN

The specific steps of update rule for Quasi-EM ISSNMF2D agorithm are summarised as

follow:
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Table 5.3: Quasi-EM IS-NMF2D algorithm

Initialize D° and H? with nonnegative values
for iter=1:iteration

for k=1:K
I >t Iy >t
Compute T, =Z“Z“d;h‘;’/ZZD’H¢j (E-step)
T ¢
Compute V, =YZe|Y[*+(1-T,) (ZZd h¢] (E-step)

Run M-step until the convergence is achieved

L7 V2% < L7 —r\1
¢<_hﬁo{zfd;[(ij ovk] Z,dﬁ(ij J foral =, ¢ (M-step)
Normalize h{
2 45\ .
di «d e z¢ k oV, [h! 2 foral =, ¢ (M-step)

Normalize dj

end
end

lp >
In Table 5.3, the term ZZ D' H? needs to be computed only once at initidization, and

l’ —T l' -7 l« -7

subsequently be updated as ZZDTH"’ ZZd h¢+ZZd h! where a represents

the old updatesand & denotesthe new updates.

5.2.2 Two-dimensional spar se nonnegative matrix factorization using the

| S divergence

In this sub-section, we consider to directly use multiplicative update (MU) approach for
IS divergence based two-dimensional nonnegative matrix factorization. In addition, the
sparse parameter will be analysed and the family of (MU) IS-based two-dimensiona
nonnegative matrix factorization algorithms will be developed. To facilitate the
decomposition in (5.12), the following generative model [118] is considered:
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& ( ZSﬁJQJ-E (5.35)

where “e” is element-wise product and E is a matrix of multiplicative independent and
identically-distributed (i.i.d.) Gamma noise with mean unity i.e. p(E, )=¢°(E;, |a,s)

where £°€(E, «. la,s) denotes the gamma probability density function (pdf) defined as:

a

E°(E,, la.g)= “exp(—¢E; ),E(, 20 (5.36)

a-1
Ty (Eee)
Next, choose a prior distribution pp 4 (D,H) over the factors {D,H} in the model. The

posterior is found using Bayes rule, namely:

p(Y|* ID,H) po 1 (D, H)

p(D.H[[Y[*)= : (5.37)
P(Y[")
where the denominator is a constant and the log-posterior can be expressed as.
log p(D,H ||Y|'2) =log p(|Y|'2 |D,H)+log p,, , (D,H) + const (5.38)

Under the independent and identically distributed (i.i.d.) noise assumption, the first term of

the right hand side of (5.38) can be expanded as:

2 -
~log p(Y |D,H) Zngg Y l“ e | /XX DY HY
tg=1f=1 zzszlH |¢ts it ¢
o Y2 Y [2
igii | '“ ~Zlog | i'“s -1 (5.39)

¢ ot
‘“1222% foo° ZZ;D?JH&
7

= Dls(|Y |'2

where = in the third line denotes equality up to a positive scale and a constant. The ratio
a/c issimply the mean of the Gamma distribution which by definition is equal to unity.

Thus, the last line of (5.39) is obtained by setting «/c=1. The second term of (5.38)
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consists of the prior distribution of H and D where they are jointly independent. The

prior over H which is assumed to be onesided exponentia i.e

pu(HIA) =TT T[TAexw(-2H{, ) with scdle parameter i which weights the
o0t

importance of the sparsity term to the reconstruction and the prior over D is assumed to

be flat with each column constrained to have unit norm. The I1S-divergence cost function

for SNMF2D is defined as the negative log likelihood of p(Y |D,H) with prior over H:

Ca™??(D,H)=~log p(Y |D,H)~log p, (H)

Y e
= D|S[IYI'2 Zgi’H?}rif(H) (5.40)
)
s Y[ Y[
¥ |“¢ ——log | |”; — -1+ A1 (H)
RO OLLIIED Y MULT
i ¢

where f(H)=||H||1=Z‘H§’ftS‘ is L, —normregularization which can resolve the ambiguity
bits

by forcing al structures in H onto D giving the correct components. Finaly,

cRMF20(p H) is equivalent to D,S[|Y|'2

Yo ¢ N
[ ?JH»f(H) up to a positive factor
it ¢

and a constant. Hence the scale invariance of the 1S-divergence can be interpreted by the

. . . . oy . ~ |2
multiplicative noise equivalence. In fact, it is that the noise acts as a scale factor on ‘Y‘H :

Vo >
here M ZDTH"’

5.2.2.1 Estimation of the spectral basis and temporal code (IS-SNM F2D)

In the matrix factorization, each spectral basisis constrained to be of unit length. Hence,

~L¢ T

this can be represented by Z= ZZZD’W’ where ISTfli:D””/ (%) is
7, f
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factor-wise normalizedto D*. Inview of this constraint, the (5.40) can be re-defined:

2
SNMF 2D _ |Y|f,t5 _ | |ft _
L ?(D,H) = X s —log=—=—1|+f(H) (5.41)

| £ ft,

Using the above, the derivatives of (5.41) correspondingto D and H? are given by:

SNMF 2D Y [?
8;,;[' :aDéi’ 2£|2|f,t5|og|z|ft 1} Af(H)
£, il fal St £,
=~ \2(s
=S () (2o VIR (542
s
~ -2 _ ~
= _‘;((Z f'+¢,ts) (| Y |f2'+¢"[s —Zirigs, ))H?’,tsr’
Similarly:
HLSYMF 2D L o .
s = 3B (20 ) (2 I VI )2
it ftg (543)

-2 ~
__sz ¢’ (( f'[;H') (|Y .fzvté_*_r_zf,ts#r))—f_l

Consequently, by applying the standard gradient decent approach, namely:

aLSNMF 2D

oD%

8LSNMF 2D

D?rlir <« D?r’ir _r]D and H ;ér:trs < H ?:té _T]H (544)

oY,

where np and n, are positive learning rates which can be obtained by following the

approach of Lee and Seung [74] , namely:

(5.45)

Inserting (5.45) into (5.44) leads to the multiplicative update rules:
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~ ~ -2 ~
_DTf',i’Z((Z f'+¢,ts) (| Y |.f2’+¢,tS -Z 4+t )) H?,t;r'

DY ¢ DY - b . =}
Z(Zf’+¢,ts) Hiq)',ts—r'
¢vts

(2 4.t )_1Hi¢’,t5—r’ + %((Zf’+¢,t ) (| Y |f "+t Zf "+t ))H?’,ts—f’
Z(Z '+t )_l H ?',I;T'

AN

Z(Zf'+¢t) |Y|f+¢t i"t—t'

o Pl
— Df, .y - 71 ¢
¢Z(Zf'+¢’ts) Hi"ts_’['
s

(5.46)

Similarly, the update rules for H;’?it,s gives:

>0y (Zoed) +A+ZDf¢.((z“;H) (Y2, - “H))_A
sz(ﬁl( ft+f)_l+i
2.0 f“"(( ”'”)_2(|Y|'f2,t;+r))

=H?, = —
sz(ﬁl( ft+‘r) +A

(5.47)

it

In terms of matrix notation, the multiplicative learning rules in (5.46) and (5.47) can be

written as:

¢ —2 T‘?ﬁ —>TT ~L¢T «T —2
z[} ¥ ZD[U |Y|J
D'« D e = and H’ <« H’e o =t
(A} e v «<ry
Z{ZJ H? ZTDT(ZJ ny

Table 5.4 summarises the basic steps of the proposed IS-SNMF2D algorithm.

(5.48)
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Table 5.4: IS-SSNMF2D algorithm

1. Initidize D* and H? with nonnegative random values
2. Initialize 2 with positive values.

3. |5Tf,izDTf,i/ Z(Drf,i)z
T, f

- 0 o
4. Cdculate Z=>>> D H/
it ¢

:LJPT <r =2 erz

s b (z} M
J‘:‘PT r —1

ZTDT(Z] +A

- L o
5. Calculate Z=3> > D; H/
it ¢

1Y% M Yo
iy

19 = —>tT

7. Repeat from step 3 to 6 until convergence.

3. H  «H%e

6. D'« D" e

Using the ISSSNMF2D as the starting point, a family of 1S divergence based nonnegative
matrix factorization algorithms can be obtained. Firstly, by constraining the convolutive
factors 7,¢={0} and sparse regularization 2=0 in (5.48), this yields the IS divergence

based nonnegative matrix factorization (IS NMF):

(EAZYEMT e DO IYE)

(ISNMF) D« De — —
(DH) " HT D" (DH)

(5.49)

Secondly, by constraining the convolutive factors z,¢={0} and enabling the sparsity
term on f(H) with L;-norm, the IS divergence based sparse nonnegative matrix

factorization (IS-SNMF) is obtained as follow:
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(ISSNMF) D« De (5.50)

((DH
(

where |5f,i =Df’i/ > (D¢;)? . Findly, by setting the sparse regularization A1=0 in
T, f

(5.48), this gives the IS divergence based two-dimensional nonnegative matrix

factorization (MU IS-NMF2D), namely:

2[(%J'2.|$72J:; Zéfl[(zf)-iﬁ
wf2) W r.o(7)

(MU IS\NMF2D) D® < D" »

o >
where Z=>">">'D/ H? . In the result section, we will conduct an experimental study on
it ¢

the efficacy of all the above agorithms for source separation and subsequently analyse

their performance in terms of the sparsity 1 and the convolutive factors {zr,¢}.

5.2.3 Variableregularised two-dimensional nonnegative matrix

factorization using the I S divergence

In the Section 5.2.2, the ISSNMF2D algorithm has been developed. However, the
drawbacks of IS-SNMF2D originate from its lack of a generalized criterion for controlling
the sparsity of H . In practice, the sparsity parameter is set manually. In this section, we
proposed our model imposes sparsenesson H  element-wise so that each individual code
has its own distribution. Therefore, the sparsity parameter can be individually optimized

for each code. This overcomes the problem of under- and over-sparse factorization. In
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addition, each sparsity parameter in the proposed model is learned and adapted as part of
the matrix factorization. This bypasses the need of manua selection as in the case of
ISSNMF2D. Secondly, as each audio signal has its own temporal dependency of the
frequency patterns, the basis vectors in D have to be designed to match the
characteristics of these patterns efficiently. Hence, we incorporate a suitably designed
Gaussian prior on D to alow those frequency patterns to be expressed for each audio
source. To facilitate the decomposition in (5.12), given nonnegative two-dimensional
observation matrix |Y|*, a prior distribution p(D,H) is chosen over the factors {D,H)}

in the model. The posterior isfound using Bayes rule, namely:

p(D.H[YI*.A)- ML LOLUL (552

P(vT°)

where the denominator is a constatt and Az[AlAZ---A%] with

A¢={/1ﬁfts li=1..,1 and tszL...,Ts}. The D and H are assumed jointly independent, so
that the log-posterior can be expressed as.

log p(D, H HY |'2,A) =log p(|Y|'2 |D, H)+ log p(D)+log p(H | A)+ const (5.53)
Under the independent and identically distributed (i.i.d.) noise assumption, the minus log
likelihood —log p(|Y|*|D,H) is defined as (5.39). In the proposed model, the prior over

D is a factorial model where each " sliceof D is assumed to be zero-mean multivariate

rectified Gaussian with covariance matrix X, which can be expressed as;

po (D) =] py. (@)
=0

2 _1 Ty -147 T 5.54
Py (d) =1 (272, )
0, d” <0
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El,l,r o Zl,l T
where d* =Vec(D*)=|Dj":Dj' :-iD}" E]T and £ =| ¢ . i | isthe covariance
Zl,l,r El,m
matrix of Vec(D*). Here %, =E[D/D;"| f{i,j}e!, ‘E[-]" denotes the expectation. In
the case of source separation, we can assume that X, islarge whereas X, i#] is

small. Therefore, the inverse covariance matrix can be approximated as:

rt= (Zdiag,r + Lo ¢ )71

-1 -1 -1
~ Ediag,r - Ediag,rzoff ,TZdiag,r (5.55)
= Qdiag,r + Qoff T

-1 -1 -1
where Qo =Zgagcr Qott o = ~Zaing e Zoft « Zdiag. AN

e 0 o - 0 0 ooe o o L
0 x,,, 0 - 0 Toae 0 X :
Zdiag,r =| 0 5 y Toffp = : 230, '
0 : : L,
| 0 0 L] T X, 0 |
Oll OlF
In above, 0=| i . i | isa FxF matrix with zero elements and X, . is the
Orp -+ O

inverse covariance matrix of X, . Thus, the (i, j)th sub matrix of Qg . is given by
Qg i Which measure the correlation between the different basis vectors. Here, we
propose that each sub matrix Qg ;. isconstrained to ;. |, where | isidentity matrix

and u,, isascaar. Thegoal isto simplify the process for the end user to exercise control

over the correlation between the different basis vectors by using u, . .. Thus, we may cast

1,],T
the (5.55) into two parts as:

—log p, (d°) = %Vec( D7) Qg Ve D7 ) + %Vec(D’ ) Qg V(D7)
. ) (5.56)
=;/+§Vec(D’) 9 Vec(D’)

off ¢
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The term y=%VeC(DT )T Qo0 Vec(D*) relates only to the power of D*. On the other

hand, the desired constraint lies in the second term of (5.56) and since Qg . is an

off-diagonal matrix, then Vec(D* )T Qy Vec(D" ) simply reducesto > u, DY DS . Thus,
LG

with the factorial model in (5.56), the desired constraint may assume the following form:

(D) = - logp, (d) ~ 33, DD (557)

Lo
(i=1)

where ;. isascalar that determines the importance of the prior over D.

In the proposed prior model, no explicit constraint isimposed on the correlation between
any two elements in the same basis vector so that the spectral basis can learn directly from
the data. Since each element of D represent part of a feature, it is not necessary to add
any constraintsto X;; .. On the other hand, we may not be able to extract the underlying
features correctly from the dataif X,  is constrained to have a certain structure. This is
because X;;. represents the covariance matrix of D . Hence, when the covariance
matrix is constrained, D will be biased accordingly and therefore, part of the feature will
not be efficiently extracted. In this paper, the probabilistic framework is used for the
purpose of developing a platform to incorporate the stetistical correlation between D and
D} into the matrix factorization as part of the regularization. In source separation, such
constraint is required for the basis to be fully expressible (i.e. fully recovered) especially in
situation where the patterns overlap each other. Despite the proposed prior model for D

stems from the rectified Gaussian distribution, it is actually a combination of constrained

and unconstrained parameterization of the inverse covariance matrix as noted by Q. .

and Qg .. In Sections 5.3.4, we will verify and demonstrate that this prior model works
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efficiently for source separation. In the third term of (5.51), each element of H is

constrained to be exponential distributed with independent decay parameters 1/, , namely:

p(H1A) =T [T ][4}, exp(-2{ HY,) (5.58)
¢ I tS
with —logp(H |A) =D A% Hf, — > loga/ sothat f( A% H?, . Thus, the godl is
B,its its,0 Bt

to find spectral basis D* and temporal sparse code H? . By substituting (5.57) and (5.58)

into (5.53), the following cost function L}, can be expressed as:

Y[ Y[
Lsgoc > = _|og = -1 +f(H)—ZIog/l,"fts+ f(D)
Z Zf,tS it ¢

fit| &t

i (5.59)
Y
ocz| |f'ts—l Y |” —1+ZZ p;, DF D5 + £ (H)= Y log 2,
| Zta 6.6 e
(I¢J)
lp >
where Z = ZZZDTH"j and f( M H? . The sparsity term f(H) forms the

dilts
Li-norm regularization to resolve the ambiguity by forcing al structure in H onto
D .Therefore, the sparseness of the solution is highly dependent on the regularization

parameters A/, .
5.2.3.1 Estimation of the spectral basis and temporal code (IS-VRNMF2D)

Using above, the derivatives of (5.59) correspondingto D° and H? are given by:

oLy -2 .
o ZZ((Zf,tS) (Zf,ts_|Y|?tS))Hlftfr +Z:ui’jr’Df’,j

aDTf",i’ ftg j#i’ (560)

:_¢Z[((Zf'+¢,ts )_2(|Y|?,+¢t Zf "+t ))H",t’ +zlu|]r DTf N

]¢I

Similarly:
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e 30k ((2en) (20 -IVE ) 4

6H?,’t o

(5.61)
-2 '
= ZDf . (( f t;+f) (|Y|?,té+, —Zi e ))”L)%?,t;
Consequently, by applying the standard gradient decent approach, namely:
7' 7’ aI-\lls ¢ ¢ aL\IIS
Dij <= Dy =1p D7, and  Hf, «Hf, -ny W (5.62)

The term n, and 75, are positive learning rates which can be derived using the

approach of Lee and Seung [74] as.

DY, . HY
o= and o, - L 66

Z(Zf’+¢,ts )71Hi¢’,ts—r’ +Zﬂi'jr' Drf”,j ZDf -4 ( ft;ﬂ-) +’Lft;

Pt j#’

Inserting (5.63) into (5.62) leads to the multiplicative update rules:

S0 b CAN (VTN S el
7’ 7’ t
Df i (_Df i ’

= ji’
71 )
g‘(zf”‘ts) Hﬁ'tsff&;”w Dt (5.64)
' ;“(qur(p,t ) |Y|f +¢t
=D}, s _
CIN RS S
ol j=i’

Similarly, the update rules for H;’?it,s gives:

(sz ot ((Zf,t;+r )72(|Y|?,t;+f _Zf,tgw))*lﬂﬁ,’gJ
sz et (Zf,t;+r)7l+)"|?,'t;
sz i ((Zf,tw ) (|Y|i,tg+r))

= Hi’t'

: sz g (Zf,tg+r)7l+ﬂ’|?,,t;

HY

ity

<—H§’3t,—

(5.65)
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Theupdateof A follows by solving ;# =0.

it

o, ., 1
T H:by ¢ 7 (566)
AL, s
AL, = 1 where ‘2 *is element wise divide (5.67)
tOHY b

ts

In terms of matrix notation, the multiplicative learning rules in (5.64), (5.65) and (5.67)

can be written as;

242 T¢2 orT (72 erz
z\(2] -] 5.5((Z)
—— and H? < H’ e I -

p\ "ot 7\
Zq}(z} H?+D'E" ZD’(Z) +A?

T

D'« D e

(5.68)

where = isa I x| matrix whose (i,j)" element is given by ;. except the diagona
elements being zeros. In (5.68), A’ isthe matrix representation of A which is adaptive
according to (5.67) and the parameter ;. in E° is non-adaptive which can be selected
manually depending on applications. The above algorithm is termed as the variable
regularised two-dimensional nonnegative matrix factorization with IS divergence
(ISVRNMF2D). Table 5.5 summarises the basic steps of the proposed IS-'vRNMF2D

algorithm.
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Table 5.5: ISVRNMF2D agorithm

1. Initidize D* and H? with nonnegative random values
2. Initialize y,, with positive values.
lp >

3. Caculate Z=) > > DiH/
it ¢

z.o(2) o)

g7 «r\1
ZTD”(ZJ + A’

4, H? < H’ e

1

HY
Lo >t

6. Caculate Z =ZZZ Df HY
i ¢

To —2 T¢2 T
(2] b

) .71_”,T
Zq}(z} H?+D'E"

8. Repeat from step 3 until convergence.

5. Af=

7. D'« D' e

5.2.4 Summary of the proposed algorithms

In Section 5.2, a novel family of IS divergence based two-dimensional nonnegative
matrix factorization methods to solve SCBSS has been proposed. These include (i).
Quasi-EM based NMF2D with IS divergence (Quasi-EM IS-NMF2D). (ii). Multiplicative
update based NMF2D with IS divergence (MU IS-NMF2D). (iii). Multiplicative update
based SNMF2D with IS divergence (ISSSNMF2D). (iv). Multiplicative update based
variable regularised NMF2D with IS divergence (IS'vRNMF2D). The Table 5.6 and Figure

5.3 summarise the proposed IS divergence based NMF2D algorithms,
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Table 5.6: Summary of the proposed IS divergence based NMF2D algorithms

Regularization
Cost Update
Methods .
function method
D H
Quasi-EM .
Quasi-EM
ISNMF2D 1SD i i
MU ISSNMF2D MU
ISSNMF2D ISD - Uniform gonstant MU
sparsity
Correlation
ISVRNMF2D I Adapti it M
Sv SD of the basis daptive sparsity U

[ |S divergence NMF2D ]

[ Update rule ]

1 1
Expectation Multiplicative update (MU)
maximization (EM)

[ Quasi-EM NMF2D J Regularization ]_
Yes
NoO (1S'VRNMF2D |
[MU NMF2D]
[ 1S-SNMF2D |

(& J

Figure 5.3: The flow chart of the proposed IS divergence based NMF2D algorithms.
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5.2.5 Estimation of sources

The binary mask Mask; is generated same as Section 3.3.1 and finally, the estimated
time-domain signals are obtained as:

X, = Resynthesize(Mask; oY) (5.69)
for i=1,2 where X, =[X(1),....X(T)]" denotes the i"" estimated source. The time-domain
estimated sources are re-synthesized using the approach in [120] from the mixture by
weighting the mixture cochleagram by the mask and correcting phase shifts introduced

during the gammatone filtering.

5.3 Experimental Resultsand Analysis

The proposed monaural source separation method is tested on recorded audio signals.
Severa experimental studies have been designed to investigate the efficacy of the proposed
approach. For mixture generation, two sentences of the target speakers (male and female)
‘fcjf0’ and ‘mepm0’, were selected from TIMIT speech database and the others including
jazz and piano music. All mixtures are sampled at 16 kHz sampling rate. In all cases, the
sources are mixed with equal average power over the duration of the signals. In this section,
two types of mixtures are used: mixture of music and speech; mixture of different kinds of
music. As for the proposed family IS divergence based two-dimensiona matrix
factorization algorithms, the convolutive components are selected as follows: (i) For jazz
and speech mixture, r={0,...,4} and ¢={0,...,4}. (ii) For jazz and piano mixture,

t={0,...,6} and ¢={0,...,9} . (iii) For piano and speech mixture, r={0,...,6} and
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¢={0,...,9} . These parameters are selected after conducting the Monte-Carlo simulation
over many different realizations of audio mixture. The measure of distortion between the

original source and the estimated one is computed by using the SDR, SAR and SIR.

5.3.1 Effects on separation based on different TF representation

In this section, the performance of our proposed Quasi-EM IS-NMF2D algorithm is
evaluated by using three types of TF representation: (i) spectrogram (STFT with a
1024-point Hamming windowed FFT and 50% overlap), (ii) log-frequency spectrogram (as
described in section 5.1 with 1024-point Hamming window). and (iii) cochleagram based
on Gammatone filterbank of 128 channels, filter order of 4 (i.e.h=4in Egn.(5.2)), and the
output is divided into 20-ms time frame with 50% overlap between consecutive frames.
Speech signals and music are used to generate the monoaural mixture. In the following, we
show that the separation results based on the cochleagram is significantly more effective
than other TF domain. Table 5.7 shows the comparison of the proposed algorithm
(quas-EM IS-NMF2D) based on the spectrogram, log-frequency spectrogram and

cochleagram under various audio mixtures.
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Table 5.7: Separation results based on different TF representation

Mixtures TF methods SDR | SAR | SIR
spectrogram 3.47 6.57 | 486

jazz music and male speech log-frequency spectrogram 6.54 9.51 | 10.53
cochleagram 8.87 | 10.31 | 12.62

spectrogram -141 | 587 | 014

jazz music and femal e speech log-frequency spectrogram 397 948 | 6.17
cochleagram 9.34 9.77 | 14.37

spectrogram 210 434 | 6.23

piano music and male speech log-frequency spectrogram 231 542 | 6.64
cochleagram 7.16 8.56 | 12.08

spectrogram -1.01 | 515 | 1.13

piano music and female speech log-frequency spectrogram 0.27 801 | 225
cochleagram 7.44 9.18 | 11.38

spectrogram -059 | 634 | 0.97

jazz music and piano music log-frequency spectrogram 121 6.42 | 4.89
cochleagram 721 | 13.07 | 8.68

The separation results for all mixture types based on the spectrogram gives an average
SDR of 0.51dB while the log-frequency spectrogram gives an average SDR of 2.8dB.
However, a significantly higher performance is attained by the cochleagram with an
average SDR of 8dB which leads to a substantial gain improvement of 7.5dB and 5.2dB,
respectively. The major reason for the large discrepancy between them is in the mixing
ambiguity between [X,* and [X,|” in the TF domain. The larger the mixing ambiguity
between |X,|* and |X,|*, the more numerous TF units will be ambiguous which
subsequently decreases the possibility of correct assignment of each unit to the sources.
This inadvertently results in poorer performance of source separation. Figure 5.4 shows the
spectrogram of the original sources, the mixed signal, and the estimated sources using the
proposed Quasi-EM IS-NMF2D algorithm. The spectral overlapping between the two

sources has resulted in mixing ambiguity in the time-domain as highlighted with red box
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marked areain the last two panels of Figure 5.5.
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Figure 5.4: Separation results in spectrogram. Top panel: Spectrogram of the original sources.
Middle panel: Spectrogram of the mixture. Bottom panel: Spectrogram of the estimated sources.
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Figure 5.5: Time-domain separated results based on spectrogram.

Figures 5.4 and 5.5 substantiate the fact that STFT lacks provision for further low-level
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information about a particular TF unit and therefore, the resulting spectrogram fails to infer
the dominating source. This leads to high degree of ambiguity in TF domain and causes
lack of unigueness in extracting the spectral-temporal features of the sources. Figures 5.6
and 5.7 show the separation results based on log-frequency spectrogram. Comparing with
spectrogram, the separation performance is better since log-frequency spectrogram has the
prosperity of non-uniform time frequency resolution. However, according to the analysis of
separability in Section 5.1.4, the transform used by the log-frequency spectrogram is still
not be an optimal option for audio source separation. The spectral overlapping based on
log-frequency spectrogram between the two sources has resulted in mixing ambiguity in
the time-domain as highlighted with red box marked area in the last two panels of Figure

5.8.
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Figure 5.6: Separation results in log- frequency spectrogram. Top panel: Log-frequency
spectrogram of the original sources. Middle panel: Log-frequency spectrogram of the mixture.
Bottom panel: Log-frequency spectrogram of the estimated sources.
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Figure 5.7: Time-domain separated results based on log-frequency spectrogram.

On the other hand, the results of separation in the cochleagram have led to significant
SDR improvement. The cochleagram enables the mixed signa to be more separable and
thereby reduces the mixing ambiguity between [X,[* and [X,|”. This explains the
average performance of separating mixture jazz music and female utterance is highest
among all the mixtures because both sources have very distinguishable TF patterns in the
cochleagram. Figure 5.8 further shows the separation results in the cochleagram. The plot
clearly shows the spectral energy of the two audio sources is clustered at different
frequencies in the cochleagram due to their different fundamental frequencies. These
prominent features have been separated using the proposed Quasi-EM |IS-NMF2D

algorithm. Figure 5.9 shows the final recovered time-domain sources.
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Figure 5.8: Separation results in cochleagram. Top panel: Cochleagram of the original sources.

Middle panel: Cochleagram of the mixture.

Bottom panel: Cochleagram of the estimated sources.
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Figure 5.9: Time-domain separated results using the proposed a gorithm.

In the proposed method, the performance of source separation depends to an extent on

how distinguishable the two spectral bases D} and D), are from each other. When D
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and D; are distinguishable from each other and since {Hf’}ii1 are sparsg, it follows that
the mixing ambiguity between [X,|* and [X,|* which constitutes the magnitude of
interference in the TF domain will be small. Thus, by exploiting the sparse property of
{H?};, it is possible to determine |X,[* and |X,|* from |Y|” provided that D and
D, are sufficiently distinguishable. Figure 5.10 shows the results of D{ and H? for the
above mixture (mixing between female utterance and jazz music) when the factorization is
obtained in the cochleagram. In Figure 5.10, panels (A)-(B) refer to D] and D% which
are the estimated spectral bases of jazz music and female utterance, respectively. Panels
(C)-(D) refer to H? and H"z’ which correspond to the estimated temporal code (i.e. time
pitch signature) of jazz music and female utterance, respectively. In comparison, the results
of D! and H! have also been included when factorizing the same mixture in the

spectrogram and log-frequency spectrogram. These are shown in Figure 5.11 and 5.12,

respectively.
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Figure 5.10: Estimated D{ and H f” using the proposed a gorithm based on cochleagram.
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In sharp contrast with Figure 5.10, Figures 5.11 amd 5.12 show overlap in the spectral

bases between D] and D;. The cochleagram based spectral bases estimation shows less

overlap among the all. Hence, the recovered sources are much better as noted by the very

high values of SDR in Table 5.7.
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5.3.2 Impacts of convolutive factors and different update methods

In the proposed family IS based nonnegative matrix factorization algorithms, the
selection of the convolutive factors r and ¢ has significant impact on the fina
separation results. This liesin the fact that the NMF is a weak model since it does not take
into account the relative position of each spectrum thereby discarding the temporal
information. In addition, the NMF does not model notes but rather unique events. Thus if
two notes are always played simultaneously they will be modeled as one component. Also,
some components might not correspond to notes but rather to the model e.g. background
noise. The proposed a gorithm resolves these problems by extending the NMF model to be
a two-dimensional convolution of D and H with the IS divergence. It factorizes the
cochleagram using a model that represents both tempora structure and the pitch change
which occurs when an instrument plays different notes simultaneously. To verify the above,
an experimental study has been conducted to evaluate the performance of the different
matrix factorization methods: ISSNMF, MU ISNMF2D and Quasi-EM ISSNMF2D. Table

5.8 shows the performance with different algorithms under various audio mixtures.
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Table 5.8: Separation results using different matrix factorization algorithm

Mixtures Algorithms SDR | SAR | SIR

ISNMF 4.14 754 | 872
jazz music and male speech MU ISSNMF2D 7.45 9.23 | 11.96
Quasi-EM IS-NMF2D 8.87 | 10.31 | 14.62

ISNMF 451 7.13 | 853
jazz music and femal e speech MU ISSNMF2D 7.67 982 | 12.21
Quasi-EM IS-NMF2D 9.34 9.77 | 14.37

ISNMF -0.70 | 757 | 0.68

piano music and male speech MU ISNMF2D 5.84 8.21 | 10.07
Quasi-EM ISSNMF2D 7.16 8.56 | 12.08

ISNMF 2.59 6.32 | 512

piano music and female speech MU ISNMF2D 6.36 8.55 | 10.42
Quasi-EM ISSNMF2D 7.44 9.18 | 11.38

ISNMF 3.37 780 | 7.29

jazz music and piano music MU ISSNMF2D 6.18 | 10.60 | 8.29
Quasi-EM IS-NMF2D 721 | 13.07 | 8.68

Referring to Table 5.8, it is noted that the SDR performance vary significantly depending
on the matrix factorization algorithms used for separation. For all type of mixtures, the
IS-NMF agorithm delivers an average SDR of 2.78dB; the MU IS-NMF2D a gorithm with
an average of SDR 6.7dB and finally, the Quasi-EM IS-NMF2D a gorithm with an average
SDR of 8dB. The results obtained by using the NMF with convolutive factors outperform
the method without the convolutive factors. It is also noted that both MU ISSNMF2D and
Quasi-EM IS-NMF2D algorithms exhibit a good reconstruction in terms of SDR. However,
the resulting factorizations are not equivalent. This is because the Quasi-EM IS-NMF2D

algorithm prohibits zerosin the factorsi.e. D* and H? cannot take entries equal to zero.

1 >t
In particular, in order to minimize D,S[V; 1> di h‘{iJ, if either df, or h? iszerothen
wd

the resulting cost Dg [v{(,f o Zd”,khﬁ’vts_fj becomes infinite. On the contrary, thisis not
v
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a feature shared by the MU IS-NMF2D agorithm, which does not a priori exclude zero
coefficients in D* and H? (excepts for Z, =0, which would lead to a division by
zero). Since zero coefficients are invariant under multiplicative updates, if the MU
ISNMF2D agorithm attains a fixed point solution with zero entries, then it cannot be
determined if the limit point is a stationary point. On the other hand, if the limit point does
not take zero entries (i.e. belongs to the interior of the parameter space) then it is a
stationary point, which may or may not be a local minimum [118]. Consequently, the
Quasi-EM IS-NMF2D agorithm can be considered more reliable for updating D* aswell
as H’. Additionally, the Quasi-EM IS-NMF2D algorithm has outperformed all the above
algorithms at every type of audio mixture. More precisely, the Quasi-EM ISSNMF2D
algorithm leads to an average SDR improvement close to 1.3dB per source across al the
different type of mixtures as compared to the MU IS-NMF2D a gorithm. To further analyse
the performance of all the above matrix factorization methods in separating the mixed
signa and capturing the TF patterns of the sources, the cochleagram of the each recovered
source has been plotted in Figure 5.13. In Figure 5.13, panels (A)-(B), (C)-(D) and (E)-(F)
denote the recovered cochleagram of the female speech and jazz music by using the
ISNMF, MU IS-NMF2D and Quasi-EM IS-NMF2D algorithms, respectively. In particular,
panels (A)-(D) imply that ISSNMF algorithm cannot obtain better reconstruction of the
sources. On the other hand, it is noted that both MU ISSNMF2D and Quasi-EM IS-NMF2D
algorithms exhibit good reconstruction of the female speech as well as the jazz music.
However, the MU ISSNMF2D algorithm fails to identify several missing components as

indicated in the red box marked area of panel (C)-(D). Hence, less accuracy is obtained in
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the estimation of the jazz music as compared with the Quasi-EM IS-NMF2D algorithm
which has successfully estimated both sources with high accuracy. In summary, al the
results in Table 5.8 and Figures 5.13 unanimously show the importance of using the
two-dimensional convolutive model of matrix factorization in order to correctly estimate

the spectral and temporal features of each source.
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Figure 5.13: Decomposition results by using the family of IS-based nonnegative matrix
factorizations (A)-(B) ISNMF. (C)-(D) MU ISNMF2D. (E)-(F) Quas-EM ISSNMF2D.

5.3.3 Impacts of NMF2D using different cost function

Experiments have also been conducted to evaluate the NMF2D under different cost
functions. Here, the Least Square (LS) distance and Kullback-Leibler (KL) divergence will
be used for evaluation. Figure 5.14 shows the separation results of using NMF2D based on

the LS, KL and IS cost functions. The agorithms LS-NMF2D was developed in [96], and
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KL-NMF2D in[97].

Table 5.9: Separation results using NMF2D with different cost function

Mixtures Algorithms SDR | SAR | SIR
LS-NMF2D 6.15 8.64 | 10.32
jazz music and male speech KL-NMF2D 7.24 | 10.63 | 11.45
Quasi-EM IS NMF2D 887 | 10.31 | 14.62

LS-NMF2D 4.69 8.63 | 10.11
jazz music and femal e speech KL-NMF2D 735 | 11.23 | 13.27
Quasi-EM IS NMF2D 9.34 9.77 | 14.37
LS-NMF2D 511 7.28 | 10.46

piano music and male speech KL-NMF2D 542 8.61 | 9.65
Quasi-EM ISSNMF2D 7.16 856 | 12.08

LS-NMF2D 4.21 790 | 6.22

piano music and female speech KL-NMF2D 5.38 832 | 832
Quasi-EM ISSNMF2D 7.44 9.18 | 11.38

LS-NMF2D 4.61 773 | 821

jazz music and piano music KL-NMF2D 586 | 10.01 | 7.89
Quasi-EM IS NMF2D 7.21 | 13.07 | 8.68

Table 5.9 shows the overall comparison results among the three algorithms. It is noted

that the results obtained by the Quasi-EM IS-NMF2D agorithm outperform those of LS

distance and KL divergence on an average SDR of 3.1dB, and 1.8dB, respectively. Thisis

evidenced by the fact that the IS divergence holds a desirable property of scale invariant so

that low energy components can be precisely estimated and they bear the same relative

importance as the high energy ones. On the contrary, factorizations obtained with LS

distance or KL divergence highly dependent on the high energy components but abandon

the low energy ones. In the cochleagram, the dynamic range can be large such that the

dominating signal at a particular TF unit may manifest as low or high energy components.

In addition, these components tend to exist as clusters. As such, when either LS distance-

or KL divergence-based NMF2D is used, these clusters with low energy tend to be ignored
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in favor of the high energy ones. This leads to mixing ambiguities in the cochleagram
especially for low energy ones which subsumed together leads to significant lost of
spectral-temporal information of the sources. Figure 5.14 shows the case of how different

cost functions have impacted the separation.
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Figure 5.14: Separation results: (A)-(B), (C)-(D) and (E)-(F) denote the recovered female speech
and jazz music in the cochleagram by using the LSNMF2D, KL-NMF2D and Quasi-EM
ISNMF2D agorithms, respectively.

From Figure 5.14, it can be clearly seen that by using the LS-NMF2D algorithm, it fails
in determining the correct TF components of each source. Figure 5.14 (A)-(B) aso shows a
considerable level of mixing ambiguities (red box marked area) which have not been
accurately resolved by the LS-NMF2D agorithm. The KL-NMF2D exhibits better
performance but ignores some low energy TF components in the red box marked area of

(C)-(D). On the other hand, the proposed Quasi-EM IS-NMF2D algorithm has successfully
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extracted the low energy components for both female speech and jazz music with high
accuracy. This result shows the significance of using the IS divergence as the cost function

for NMF2D in the estimation of spectral bases and temporal codes.

5.3.4 Impacts of regularizations selection

In this section, the impacts of regularizations on the factorization performance will be
analysed. As mentioned in Section 5.2.3, the SNMF2D imposes uniform sparsity on all
temporal codes and this is equivalent to enforcing each temporal code to be identical to a
fixed distribution according to the selected sparsity parameter. The drawbacks of using
uniform sparsity on all temporal codes are summarised in Chapter 3. Therefore, the above
suggests that the current form of SNMF2D s still technically lacking and is not readily
suited for SCBSS especialy mixtures involving different types of audio signals. The
proposed IS-VRNMF2D agorithm overcomes al the limitations associated with the
ISSSNMF2D as previously discussed above. As each audio signa has its own temporal
dependency of the frequency patterns, the basis vectors in D have to be designed to
match the characteristics of these patterns efficiently. Hence, a suitably designed Gaussian
prior on D is incorporated to alow those frequency patterns to be expressed for each

audio signal.

We will show that when the sparse constraints are not controlled, the matrix factorization
will be under- or over-sparse, and this will result in ambiguity in the estimation of

recovered sources. Figures 5.15 shows the factorization results based on the ISSSNMF2D
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and the proposed method. The top and middle panels clearly reveal that good separation
performance require suitably controlled sparse regularization. In the case of uncontrolled
sparse factorization, the estimated sources still retain redundant information where the two
sources are not fully separated. In the case of the ISVRNMF2D, it assigns a regularization
parameter to each temporal code which is individually and adaptively tuned to yield the
optimal number of times the spectral basis of a source recurs in the cochleagram. This is

noted in the bottom panels which clearly show the optimal separation result.

In Figure 5.15, panels (A)-(D) imply that better separation results require the optimal
sparse regularization when using ISSSNMF2D. If it is uncontrolled, the ISSSNMF2D will
lead to either ‘under-sparse’ (€.9. (C)-(D)) or ‘over-sparse’ (e.g. (A)-(B)) factorization that
still contain the mixed components in each separated sources. Panels (E)-(F) exhibits the
recovered sources by using ISVRNMF2D where it assigns a regularization parameter to
each temporal coefficient (code), which is individually optimized and adaptively tuned to

yield the optimal sparse and efficient matrix factorization.
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Figure 5.15: Separation results. Panels (A)-(B) denote the recovered cochleagram of the jazz music

and female speech by using ISSSNMF2D whereas /Lfts =1=10, u; =0. (C)-(D) denote the

recovered cochleagram of the jazz music and female speech by using ISSNMF2D whereas

)v,"fts =14=0.1, w;, =0. (E)-(F) denote the recovered cochleagram of the jazz music and female
speech by using ISVRNMF2D.
To investigate the effects of x4, and A% on the separation performance, three cases
are conducted:
Case (i): No sparseness 2/ =0 and u,, isvariedas g, =0,0510,...,5.
Case (ii): Uniform sparseness )v,‘{’ts =c and p,, isvaiedas 4, =0,0510,...,5.
Case (iii): Adaptive sparsenessand ;. isvariedas y;, =0,0510,...,5.
For each case, the optima results are based on Monte-Carlo simulation over 100

realizations.

141



CHAPTER 5

Table 5.10: Separation results using different regularization based matrix factorization algorithms

Mixtures TF methods SDR | SAR | SIR
Case (i) 775 | 914 | 11.22
jazz music and male speech Case (ii) 8.1 9.7 | 101
Case (iii) 9.4 103 | 108
Case (i) 792 | 963 | 1057
jazz music and female speech Case (ii) 8.7 102 | 119
Case (iii) 9.5 101 | 122
Case (i) 591 | 821 | 10.07
piano music and male speech Case (ii) 6.3 9.2 | 103
Case (iii) 75 95 | 111
Case (i) 6.65 | 855 | 10.42
piano music and female speech Case (ii) 7.6 9.6 9.1
Case (iii) 85 | 105 | 99
Case (i) 65 | 106 | 7.29
jazz music and piano music Case (ii) 7.7 103 | 74
Case (iii) 8.4 111 | 85

From Table 5.10, in comparison,

the average performance improvement of

ISVRNMF2D against the ISSSNMF2D and MU IS-NMF2D methods can be concluded as

follows: (i) For music mixture, the average improvement per source delivers an average of

1.3dB SDR and (ii) For mixture of speech and music signal, the improvement per sourceis

an average of SDR 1.4dB. Analysing the separation results in term of SDR, it is found that

if sparse regularization uncontrolled in ISSSNMF2D that will incurs either ‘under-sparse’

or ‘over-sparse’, it isless robust than ISVRNMF2D. Compared with the IS SNMF2D and

MU ISSNMF2D, the ISVRNMF2D method renders a more optimal part based regularised

decomposition whereas not only the learning algorithm is motivated by expressing patterns

more effectively but also leads to faster convergence and least state value of IS cost

function.
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5.3.5 Comparison with other SCBSS methods

Table 5.11: Separation results using different SCBSS methods

Mixtures TF methods SDR | SAR | SIR
ISVRNMF2D 9.4 10.3 | 10.8

jazz music and male speech NMF-TCS 3.2 6.7 8.1
NMF-ARD 2.6 59 7.3

ISVRNMF2D 9.5 101 | 122

jazz music and femal e speech NMF-TCS 3.8 6.2 8.9
NMF-ARD 2.3 6.4 7.8

ISVRNMF2D 7.5 9.5 111

piano music and male speech NMF-TCS 29 4.2 7.3
NMF-ARD 14 4.3 7.5

ISVRNMF2D 85 105 9.9

piano music and female speech NMF-TCS 25 45 7.1
NMF-ARD 13 4.3 7.6

ISVRNMF2D 8.4 11.1 8.5

jazz music and piano music NMF-TCS 2.8 7.3 74
NMF-ARD 15 7.7 8.1

In comparison, the average performance improvement of the proposed method over the

NMF-TCS and NMF-ARD method can be summarised as follows: (i) for music mixture,

the average improvement per source is 5.6dB SDR and 6.9dB SDR, respectively. (ii) for

mixture of speech and music signal, the improvement per source is 5.8dB SDR and 6.9dB

SDR, respectively. The reasons why NMF-TCS [37] and NMF-ARD [97] obtain the worst

separation performance are: Firstly, the NMF-ARD do not have convolutive factors

t,¢={0}. As such, NMF-ARD are weak models since they do not take into account the

relative position of each spectrum thereby discarding the tempora information. The

spectral basis obtained via NMF-TCS and NMF-ARD methods are not adequate to capture

the tempora dependency of the frequency patterns within the audio signal. Secondly, the

NMF-TCS and NMF-ARD do not model notes but rather unique events only. Thus if two
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notes are always played simultaneously they will be modeled as one component. Also,
some components might not correspond to notes but rather to the model e.g. background

noise.

5.4 Summary

In this chapter, a novel family of IS divergence based two-dimensional nonnegative
matrix factorization methods to solve SCBSS has been proposed. The chapter presents a
Quasi-EM based NMF2D with IS divergence (Quasi-EM IS-NMF2D), Multiplicative
update based (non-regularised and regularised) NMF2D with IS divergence (These consist
of ISSNMF2D, MU ISNMF2D and IS-'VRNMF2D). The separation system of
cochleagram and the family of IS divergence based factorization agorithms have been
developed in a principled manner coupled with the theoretical support of audio signa
separability. The proposed method enjoys at least three significant advantages: Firstly, it
avoids strong constraints of separating sources without training knowledge where only
single channel recording is provided. Secondly, the cochleagram rendered by the
gammatone filterbank has non-uniform time-frequency resolution which enables the mixed
signal to be more separable and improves the efficiency in source tracking. Finally, the IS
divergency holds a desirable property of scale invariant that enables low energy
components in the cochleagram bear the same relative importance as the high energy ones.
In the comparison of IS based non-regularised and regularised NMF2D agorithms, the
proposed I1S-VRNMF2D obtains the best separation performance. The impetus behind this

work is that, firstly, sparseness achieved by the conventiona NMF, SNMF, NMF2D and
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SNMF2D is not efficient enough; in source separation it is very necessary to yield control
over the degree of sparseness explicitly for each tempora code. Secondly, the modified
Gaussian prior is formulated to express the basis vectors more effectively; thus enabling

the spectral and temporal features of the sources to be extracted more efficiently.
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CHAPTERG6

CONCLUSION OF THE THESIS

The work in this thesis has fulfilled al the aims and objectives set out in Chapter 1. In
Chapter 2, an overview of the SCSS of linear instantaneous mixtures was presented. Both
supervised SCSS methods and unsupervised SCSS methods that aim to increase the
accuracy of the separated sources through various techniques were summarised and
organised into a unifying framework. However, the practicality of these approaches still
has several unresolved challenges which therefore limit the applications in reality. These
problems have been summarised in Chapter 2. Hence, this requires the development of
reliable solutions for the separation of single channel mixtures to improve the performance
at both theoretical and practical levels. This therefore provides the motivation for one of
the aims of this thesis, which is to develop new strategies for retrieving single channel

mixed sources.

6.1 Proposed Unsupervised L ear ning SCSS M ethods

In Chapter 3, a new v-SNMF2D is presented for solving unsupervised SCSS problem.
The impetus behind this is that the sparsity achieved by NMF is not enough; in such
situations it might be useful to control the degree of sparseness explicitly. In the proposed

method, the regularization term is adaptively tuned using a variational Bayesian approach
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to yield desired sparse factorization, thus enabling the spectral basis and temporal codes of
non-stationary audio signals to be estimated more efficiently. This has been verified based
on our experiments. In addition, the proposed method has yielded significant
improvements in separating single channel music mixture when compared with other

sparse NM F-based unsupervised SCSS methods.

In Chapter 4, a novel framework of amalgamating EMD with v-SNMF2D is presented
for solving unsupervised SCSS problem. In this chapter, it is shown that the IMFs have
severa desirable properties unique to single channel source separation problem: (i) the
degree of mixing in each IMF is less ambiguous than the mixed signa, (ii) the IMFs has
simpler and sparser spectral and temporal patterns which allows the proposed v-SNMF2D
algorithm to efficiently track them, and (iii) the IMFs serve as the orthogonal temporal
bases for signal separation; hence errors resulted from any IMF will be averaged over all
the IMFs leading to smaller errors at the signa reconstruction stage. To this end, we have
shown that the proposed method can deliver an acceptable separation performance for all

types of single channel audio mixture.

In Chapter 5, a new family of IS divergence based factorization methods to solve
unsupervised SCSS problem has been proposed. The chapter presents a Quasi-EM based
NMF2D with Itakura-Saito divergence (Quasi-EM IS-NMF2D), Multiplicative update
based (non-regularised and regularised) NMF2D with Itakura-Saito divergence (These
consist of ISSNMF2D, ISNMF2D and IS'vRNMF2D). The cochleagram rendered by the

gammatone filterbank has non-uniform time-frequency resolution which enables the mixed
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signa to be more separable and improves the efficiency in source separation. In addition,
the proposed IS-VRNMF2D obtains the best separation performance. These methods are
tested on two types of mixture (mixture of music sources and mixture of music and speech).

Table 6.1 summarise the proposed methods in this thesis

Table 6.1: Summary of the proposed SCBSS methods

Regularization
TF Cost Update
M ethods . .
representation | function method
D H
Adaptive sparsit
VvSNMF2D log-frequency LS - apHive sparsity MU
(VB)
EMD + Adapti it
EMD-vSNMF2D LS i deptive sparsity |
log-frequency (vVB)
i-EM ;
IcéuNail/l F2D Quasi-EM
cochleagram ISD - -
MU ISSNMF2D MU
Unif Stant
ISSNMF2D cochleagram ISD - nrrorm c.on a MU
sparsity
Correlation | Adaptive sparsity
IS-VRNMF2D cochleagram ISD . MU
SV &9 of the basis (MAP)

6.2 Comparison of the Proposed SCBSS M ethods

In this section, the proposed three SCBSS methods will be tested across all types of
mixture and compared in terms of SDR, SAR and SIR. In the proposed third method, the
ISVRNMF2D will be chosen for comparison as it has been proven to be the best method
among all types of IS divergence based nonnegative matrix factorization algorithms. The

following table summarises the comparison results.
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Table 6.2: Separation results using different SCBSS methods

Mixtures TF methods SDR | SAR | SIR
v-SNMF2D 6.6 7.2 8.3

jazz music and male speech EMD-vSNMF2D 8.8 7.7 9.2
ISVRNMF2D 9.4 10.3 | 108

v-SNMF2D 6.4 7.7 8.1

jazz music and femal e speech EMD-vSNMF2D 8.7 95 104
ISVRNMF2D 9.5 101 | 122

v-SNMF2D 52 6.2 7.1

piano music and male speech EMD-vSNMF2D 6.3 6.6 85
ISVRNMF2D 7.5 9.5 111

v-SNMF2D 54 6.5 7.3

piano music and female speech EMD-vSNMF2D 6.7 7.2 8.3
ISVRNMF2D 85 105 9.9

v-SNMF2D 7.1 8.5 9.6

jazz music and piano music EMD-vSNMF2D 74 105 91
ISVRNMF2D 8.4 11.1 8.5

v-SNMF2D 2.4 53 5.8

male speech and femal e speech EMD-vSNMF2D 5.7 7.1 8.2
ISVRNMF2D 35 6.2 7.1

In comparison, the ISVRNMF2D with cochleagram leads to the best separation
performance for most types of the mixture except the mixture of male speech and female
speech. The EMD-vSNMF2D also performs the relative good results as compared with
ISVRNMF2D. The reasons of using EMD as a preprocessing tool for SCBSS have been
described in Chapter 3. However, it is interesting to point that the big advantage of using
ISVRNMF2D with cochleagram is that this method is less complexity intensive than
EMD-vSNMF2D method and simultaneously retain a high level of the separation
performance. The reasons of relative poorer separation results obtained by v-SNMF2D can
be summarised as three points. Firstly, the v-SNMF2D model is based on least square cost
function, the drawbacks of using this cost function has already been discussed in Section

5.3.3. Secondly, the v-SNMF2D does not have prior on D such that the frequency
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patterns of each source may not be estimated as well as ISVRNMF2D. Finadly, the
v-SNMF2D is performed by using log-frequency spectrogram in such case the separability
of this TF representation is worse than cochleagram. However, the adaptive sparsity by
using variational Bayesian is more reliable than MAP approachs since the former prohibit

zero elements in each adaptive step for sparsity parameter.

6.3 FutureWork
6.3.1 Development of SCBSS method for non-stationary mixing model

In the future work, the SCBSS method to separate non-stationary (here non-stationary
refers to, the sources not located in the fixed place, e.g. the speaker is talking while he is
walking) and reverberant mixing model will be developed. The non-stationary and
reverberant mixing model has not been solved by using current SCSS methods. For

Instantaneous non-stationary mixing model, it gives as follows:
N,
y(®) =2 m®)x ) +n(t) (6.1)
i=1

where m(t) denotes the i" source mixing parameters at t time, and n(t) is additive

noise. For non-stationary reverberant mixing model, it gives as follows:
N, L -1

y(t) =2 > m(z, )% (t—7.)+n(t) (6.2)

i=17,=0

where m(z,,t) isthefiniteimpulseresponse of causal filter at t timeand z, isthetime

delay. Thus, the power TF representation of matrix representation is given by
2 S 2 2
IY[" =D M| e|X;[*+ V™. The matrix M, is a mixing parameter in TF domain (it is

i=1
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assumed that the mixing parameter is stationary within a short period such that (i) for
instantaneous  mixing M, =[m,,...m ;| where m, =[m, ,...mg | and

f=12,...,F

Mg =M =Me, s (i) for convolutive mixing M, =[m, | , M, is the

t,=1,2,...T,

(i,f,t,)" element of M, and V™ is the noise. The am of the developed SCBSS

’ 1ts

method is to estimate nonstationary mixingmodel M; and the sources |X,|*.

6.3.2 Development of signal dependent TF representation

In this novel idea, the time domain mixed signal will be projected onto signal-dependent
multidimensional transform domain where the specific features of each source sparsely and
smoothly clustered with maximally distinction. Figure 6.1 shows an example of the
proposed structure of the new signal dependent TF transform. It can be divided into two
stages. In the first stage, different types of audio signals will be trained to find the most
suitable signal dependent TF transform. Once this has been done, when different type of
audio sources mixed in single channel, the proposed signa dependent TF transform will

learn training information and automatically adjust itself to suit the mixture signal.

In Figure 6.1, ‘SDTFx’ denotes signal dependent TF transform of the source and
‘SDTFy’ denotes signal dependent TF transform of the mixture. ‘F(.)’ denotes the function
to analysis the features of each source when using different types of multidimensional
representation. For generating signal dependent TF transform, we can consider to use the
idea of hybrid compressive sensing method and dynamic filterbank technique to construct

the proposed signal dependent TF representation for audio source. This transform will
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bring at least two benefits to SCBSS problem: Firstly, the mixture in this domain will be

more separable than other conventional TF transform.

f.ﬁ %#” bl —  SDTR

. v l

Adaptive
S
_—
SOTH —» F() >
_ > !
Music %

Figure 6.1: The proposed multi-dimensional signal dependent TF transform.

To enhance the analysis of TF transformation, the separability theory of SCSS as
described in Chapter 5 can be used. This could be seen as a function of ‘F(.)’ that analyses
the features of different sources and these features can be clustered with different level of
distinction by using different types of TF representation. Secondly, the analysis of source
tracking (for identifying the TF patterns that belong to a particular original source) should

be substantially more effective in signal dependent TF domain than in other TF domains.

6.3.3 Development of Quasi-EM | S-vRNMF2D

As described in Chapter 5, the key difference between Quasi-EM ISNMF2D and MU
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ISNMF2D is that the former algorithm prohibits zeros in the factors i.e. D* and H?

cannot take entries equal to zero. In particular, in order to minimize d (Vk’

o e
>d; hﬁJ | if

7.9

either df, or hf,ts is zero then the resulting cost function becomes infinite. On the
contrary, this is not a feature shared by the MU ISSNMF2D algorithm, which does not a
priori exclude zero coefficientsin D” and H* (except for Z, =0, which would lead
to adivision by zero). Since zero coefficients are invariant under multiplicative updates, if
the MU ISSNMF2D agorithm attains a fixed point solution with zero entries, then it cannot
be determined if the limit point is a stationary point. On the other hand, if the limit point
does not take zero entries (i.e. belongs to the interior of the parameter space) then it is a
stationary point, which may or may not be a local minimum. Consequently, the Quasi-EM
ISNMF2D is better than MU ISSNMF2D. In addition, it is desirable to have regularization
for imposing the sparseness and constrain the correlation between different spectral bases
in the process of matrix factorization. This has been verified in Section 5.2.3. Thus, the
development of regularised Quasi-EM IS-NMF2D is necessary to improve the accuracy of
separation performance. Consider the generative model in (5.17), the EM algorithm works
by formulating the conditional expectation of the negative log likelihood of v, as:

p(vi Idi.h¢ ) p(d; ) p(h¢)

p(dﬁvhmvk): P(‘Dk)

(6.3)

where the denominator is a constant and it isassumed d and h{ arejointly independent

so that EM agorithm (5.18) can be presented as:
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MAP |<|0 = e, p v |Y, 9 |Og p( klnk)dnk
—j p(vy |Y,9) [Iog p(v +log p(dT ) +log p(h¢)] dv, (6.4)
——j p(v. Y, 9)[Iogp ]dvk log p(d’)—logp(h¢)

In (6.4), the prior distribution over d; can be assumed to be zero-mean multivariate
rectified Gaussian with covariance matrix =¥ and the prior distribution over h! can be

assumed to be exponential distributed with independent decay parameters 4!, . With these
assumptions, d; and h{ can be optimized by following the approach presented in

Section 5.2.3.
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