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Abstract 

 

This dissertation addresses the world’s first demonstration of strained Si Heterojunction 

Bipolar Transistors (sSi HBTs). The conventional SiGe Heterojunction Bipolar Transistor (SiGe 

HBT), which was introduced as a commercial product in 1999 (after its first demonstration in 

1988), has become an established device for high-speed applications. This is due to its 

excellent RF performance and compatibility with CMOS processing. It has enabled silicon-

based technology to penetrate the rapidly growing market for wide bandwidth and wireless 

telecommunications once reserved for more expensive III–V technologies. SiGe HBTs is 

realised by the pseudomorphic growth of SiGe on a Si substrate, which allows engineering of 

the base region to improve performance. In this way the base has a smaller energy band gap 

than the emitter, which increases the gain.  The energy band gap of SiGe reduces with 

increasing Ge composition, but the maximum Ge composition is limited by the amount of 

strain that can be accommodated within a given base layer thickness. Therefore, a new 

innovation is necessary to overcome this limitation and meet the continuous demand for 

high speed devices. Growing the SiGe base layer over a relaxed SiGe layer (Strain Relaxed 

Buffer) can increase the amount of Ge that can be incorporated in the base, hence, 

increasing the device performance. In this thesis, experimental data is presented to 

demonstrate the realisation of sSi HBTs. The performance of this novel device has been also 

investigated and explained using TCAD tool. 
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Symbols 

 

A   Cross-section of the junction 

A*  Richardson’s constant 

aSi  Lattice constant of Si 

aSiGe  Lattice constant of Si1-xGex 

aGe  Lattice constant of Ge 

Ea  Activation energy 

BVCEO  Collector-emitter breakdown voltage at open base 

BVCB0  Collector-base breakdown voltage at open base 

β  Current gain 

C  Capacitance 

Ci  Impurity concentration 

Cjc  Base-collector depletion capacitance 

D0  Diffusion coefficient 

Dn  Electron diffusivity 

Dp  Hole diffusivity 

     Electron diffusivity in the base 

     Hole diffusivity in the emitter 

D1  Distance to the collector 

D2  Distance to the base 

      Reduction of the ban-gap of the base due to the presence of Ge 

ΔEG  Band-gap difference 



Symbols 
 

iv 
 

∆EG,H  Band -gap narrowing caused by doping 

∆EC  Conduction band discontinuity 

∆EV  Valence band discontinuity 

δ  Tunnelling coefficient 

EF  Fermi level 

EFn  Electron quasi Fermi level 

EFp  Hole quasi Fermi level 

Eg  Band-gap 

 Ei  Intrinsic Fermi level 

En  Electric field vectors 

Ep  Electric field vectors 

EW  Emitter window width 

   Electric field 

f  Frequency 

fC  Corner frequency 

fT  Cut-off frequency 

fmax  Maximum oscillation of frequency 

ħ Reduced Planck’s constant 

IB  Base current 

IC  Collector current 

In  Electron diffusion current 

Ip  Hole diffusion current 

IR-G  Thermal generation current 

J  Net flux of the impurity material 
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JC  Collector current density 

Jn  Electrons current density 

Jp  Holes electron dnsity 

k  Boltzmann’s constant 

K  Constant 

χ  Electron affinity 

L  Length 

LP  Hole diffusion length 

λ  Thermal conductivity 

m  Ideality factor 

me  Electron mass 

µn  Electron mobility 

µp  Hole mobility 

τE  Emitter transit time 

N region Region that is doped with donors impurity 

    Acceptor concentration in the base 

  
   Uncompensated acceptors 

  
   Uncompensated donor ions 

     ase doping 

     Density of state in the conduction band in the base layer 

     Density of state in the valence band in the base layer 

    Emitter doping concentration 

ni  Intrinsic carrier concentration 

    Intrinsic carrier concentration in the base region 
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     Intrinsic carrier concentration in the emitter region. 

np  Electron concentration in the P region 

nie  Intrinsic carrier concentration at high doping level 

n  Electron concentration 

Ndeff  Effective doping concentration in the emitter 

p  Hole concentration 

P region Region that is doped with acceptor impurity 

pn  Hole concentration in the N region 

pp  Hole concentration in the P region 

PS  Power consumption 

q  Electronic charge 

R Resistance 

rB  Base resistance 

rbe Base-emitter resistance 

Rth  Thermal resistance 

    spectral power density  of the base current noise source 

     spectral noise density of the collector  current noise source 

Sø  Phase noise 

T  Temperature 

TO  Ambient temperature 

τ  Characteristic time constant of Lorentzian spectrum 1/f2 

τn  Electron life time 

τp  Hole life time 

    Base transit time 
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        Auger recombination rate 

USRH Shockley-Read-Hall recombination rate 

Un  Electron recombination rates 

Up  Hole recombination rates 

V  Voltage 

VBE  Base–emitter voltage 

veff  Saturation velocity 

     Mean electron thermal velocity 

νp  Mean hole thermal velocity 

Wp  Width of the P region 

Wn  Width of the N region 

W  Depletion layer width 

WE  Emitter width region 

WB  Base width region 

WM  Mesa length 
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Chapter 1. Introduction 

1.1 Introduction 

The transistor was probably the most important invention of the 20th Century. It is the key 

element of any integrated circuit. This device can operate as switch or amplify a signal. The 

transistor is considered as a perfect alternative to the vacuum tube, since it is small and 

consumes low energy compared to the vacuum tube. Since the first fabrication of the 

transistor, there have been an enormous number of developments in the design and the 

fabrication techniques. 

Given the recent development and need in the communication market, the bipolar 

transistor, which is Si based, may not be able to meet the increasing demand for high speed 

devices. This has opened the door widely to the integration of the SiGe into bipolar 

technology, leading to the fabrication of Silicon Germanium (SiGe) heterojunction bipolar 

transistors (HBTs). This device exhibits high performance compared to Si bipolar junction 

transistors (BJTs). However, a continuous improvement of the SiGe HBT’s performance 

required an increase of the Ge content in the base. This is not possible, since the amount of 

the Ge that can be used in SiGe HBTs is limited by the magnitude of the strain that can be 

accommodated within the base region. Using a Strain Relaxed Buffer (relaxed SiGe) as a 

virtual substrate (in place of Si) can allow more Ge to be introduced in the base layer.    

1.2 History and development of Si bipolar junction transistor 

The transistor is a three terminal, solid state electronic device. In a three terminal device we 

can control electric current or voltage between two of the terminals by applying an electric 

current or voltage to the third terminal. The transistor was not the first three terminal 

device. The vacuum tube triode preceded the transistor by nearly 50 years. They played an 

important role in the emergence of home electronics and in the scientific discoveries and 

technical innovations which are the foundation for our modern electronic technology. The 

vacuum tube triode also helped push the development of computers. They were used in 

several different computer designs in the late 1940's and early 1950's (In the late 1940's, big 

computers were built with over 10,000 vacuum tubes and occupied over 93 square meters 
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of space). But the limits of these tubes were soon reached. As the electric circuits became 

more complicated, one needed more and more triodes. Engineers packed several triodes 

into one vacuum tube to make the tube circuits more efficient. The vacuum tubes tended to 

leak, and the metal that emitted electrons in the vacuum tubes burned out. The tubes also 

required so much power that big and complicated circuits were too large and the energy 

consumption rate was high. The problems with vacuum tubes lead scientists and engineers 

to think of other ways to make three terminal devices. Instead of using electrons in vacuum, 

scientists began to consider how one might control electrons in solid materials, like metals 

and semiconductors. 

In 1947, scientists working at Bell Telephone Laboratories were trying to understand the 

nature of electrons at the interface between a metal and a semiconductor (Germanium). 

They realized that by making two point contacts very close to one another, they could make 

a three terminal device - the first "point contact" transistor [1]. Although the first fabricated 

transistor was made using Ge, we actually live in silicon world. Greater than 95% of the 

semiconductor market uses the semiconductor Silicon (Si). This profound market dominance 

of Si rests on a number of surprisingly practical advantages that Si has over the other 

numerous semiconductors, including [2]:  

 An extremely high quality dielectric (SiO2) can be grown on Si and used for isolation, 

passivation, or as an active layer (e.g., gate oxide). 

 Si can be grown in very large, low defect single crystals, yielding many (low-cost) IC’s 

per wafer.  

 Si has good thermal properties allowing for the efficient removal of dissipated heat. 

 Si can be controllably doped with both N and P type impurities. 

 Si has excellent mechanical strength, facilitating ease of handling and fabrication. 

 It is easy to make very low-resistance ohmic contacts to Si, thus minimizing device 

parasitic. 

 Si is extremely abundant and easily purified. 

Since the fabrication of the first Si bipolar junction transistor, there have a large number of 

innovations and break-throughs. Bipolar junction transistors were typically formed as 

follows (assuming an NPN device). A patterned N subcollector is first formed on a P-type 
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silicon wafer by diffusion. An N-type epitaxy layer is then grown on top. A P-type pocket for 

the base region is then formed by diffusion. This is followed by the formation of an N-type 

emitter. The P-type region directly underneath the emitter forms the intrinsic base, while 

the remainder of the P-type pocket forms the extrinsic base as shown in Figure 1. 

 

Figure 1: Cross-sectional view of a basic planar bipolar transistor 

Typical emitter junction depth is about 500 nm, and typical intrinsic base width is about 250 

nm  [3]. The emitter and base region that are formed by the diffusion technique tend to be 

very wide, which slows down the device. However, the ion-implantation technique has 

allowed the production of narrow base and emitter regions [4]. Another development is the 

ability to grow a thin, heavily doped Si crystal epitaxially. High doping level means 

introducing more carriers which reduce of the base resistance and also the collector series 

resistance. The electrical isolation of the bipolar has also been subjected to some 

development. In the early stage, the device was junction-isolated using a P-type region. This 

region tends to be very large because the impurity diffuses laterally. For the isolation to be 

effective, the P-type region must completely surround the device. In addition, the isolation 

junction must be reversed biased by connecting the P-substrate to the most negative 

voltage in the circuit. Instead of using this method, which results in large isolation area, 

designers nowadays tend to use deep trench isolation. This method reduces the isolation 

area. The deep trenches are formed by first etching silicon trenches which are filled the 

trenches with oxide or a combination of oxide and polysilicon, followed by planarization 

using chemical-mechanical polishing [5]. 
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The next stage of the evolution of Si bipolar transistor was the integration of the polysilicon 

emitter. The early experiments treated the heavily doped N-polysilicon as a metal. Perhaps 

the most exciting finding of these experiments was that the N polysilicon contacts to Si did 

not behave like ohmic contacts at all. Minority holes injected from the base into the shallow 

N type emitter, instead of recombining at the polysilicon-silicon interface, as expected for an 

ohmic contact, recombine primarily inside the N polysilicon layer, leading to significant 

increase in current gain [6]. The use of polysilicon was not limited to the emitter; P-type 

polysilicon is also used between the intrinsic base and the base contact. This actually 

reduces the extrinsic base area, therefore reducing the parasitic capacitance. However, this 

may cause an increase of the base resistance [7]. 

1.3 Impact of SiGe material on semiconductor technology 

While silicon dominates in mainstream integrated circuit microelectronics, there are areas 

of analogue electronics, especially in high frequency applications, that have allowed GaAs, 

InP and other materials to dominate smaller niche markets such as radio frequency and 

power amplifiers [2].  If the performance of Si transistors or circuits could be improved by 

the addition of another semiconductor material then numerous new applications could be 

opened up. Silicon Germanium (SiGe) is one such material which may be epitaxially grown 

on silicon wafers and allows engineering of the bandgap, energy band structure, effective 

masses, density of state and mobilities while fabricating circuits using conventional Si 

processing tools [1]. SiGe has moved from being a research material to an important 

material that is used in the manufacturing of different semiconductor devices. A thin SiGe 

layer grown as the base of a bipolar transistor on a Si wafer leads to the fabrication of 

devices known as SiGe HBTs. The performance can be greatly improved over a normal Si 

bipolar junction transistor because the base can be doped to larger densities which reduces 

the resistivity of the base and hence the RC time constant for switching. The reduced base 

resistance is also important for reducing noise in the transistors, an important parameter in 

analogue and RF applications [8]. It is also important to mention that grading the Ge content 

in the base then builds an electric field into the device, which accelerates the carriers across 

the base and therefore increases the speed of the transistor [9]. The reduced bandgap of 

the base also leads to an increase in the gain of the transistor, as the minority carrier 

concentration is inversely proportional to the band gap.  
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The use of SiGe is widespread in CMOS technology.  The continuous development of CMOS 

technology was achieved by shrinking the device dimensions. However this approach has 

also turned out to be increasingly difficult. Therefore considering other techniques, such as 

improving the carrier mobility becomes important. On any CMOS chip with both P and N 

type transistors, the major limitation in the performance is the PMOSFETs. The mobility and 

effective mass of holes is much worse than the mobility and effective mass of electrons in Si. 

To balance the current drive in CMOS circuit design, the N and P transistors have to be sized 

and this greatly reduces the circuit performance. The limitation caused by the low mobility 

of the holes in the Si can be mitigated using SiGe in the source and drain to compress the 

silicon channel [10]. Since The hole mobility in this latter is known to be high compared to 

unstrained Si. Tensile strained silicon improves electron mobility and is used in NMOSFETs.  

Strained Si is considered as one of the leading techniques for improving the mobility of 

carriers and therefore enhancing the performance of MOSFETs.  

1.4 Project motivation 

Bipolar technology has been subjected to a large number of innovations in recent decades. 

One of the most significant break throughs, which has allowed a continuous improvement 

of the bipolar transistor, is the implantation and epitaxial techniques that allow the 

fabrication of a thin base layer.  Another development is the implementation of the 

polysilicon emitter, which blocks the diffusion of minority carriers in the emitter, therefore 

increasing the current gain. However, these successive achievements may not be sufficient 

to meet the continuous demand of high speed devices.  

The recent improvement of epitaxial growth techniques has lead to the fabrication of SiGe 

HBTs. This device is formed using a thin SiGe layer in the base region instead of Si, which is 

found in Si bipolar transistors. The small band-gap of SiGe results in an exponential increase 

of the minority carrier concentration in the base and therefore the collector current. The 

profile of the Ge concentration in the base can be constant. However it is also possible to be 

linear, leading to the formation of triangular or trapezoidal profiles. These profiles give rise 

to a drift field in the base region which aids the minority carrier transport through the base, 

therefore increasing the speed of the device. Many papers report that the performance of 

the SiGe HBT is proportional to the Ge content in the base; however increasing the amount 
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of the Ge is not an endless process. The grown layer of SiGe on Si substrate is under strain.  

An increase of the Ge content raises the amount of strain in the SiGe. The final result would 

be the formation of defects and relaxation of the SiGe layer.  If these defects are in the 

active region of the wafer where the transistors are fabricated, they will often lead to a 

device failure. This is a clear barrier toward the improvement of SiGe HBTs.  

 In order to improve the performance of SiGe HBTs, it is important to increase the Ge 

content in the base, while keeping the strain below a certain critical level. This can be 

achieved using a SiGe Strain Relaxed Buffer as a virtual substrate. In this case, the difference 

of the lattice constant between the base and collector is small which reduces the strain in 

the base.  Therefore, the structure of the new device is as follows: relaxed SiGe in the 

collector compressed SiGe in the base and strained Si in the emitter. This device is called a 

strained Si HBT (sSi HBTs), Figure 2. 

 

Figure 2: different layer forming sSi HBTs, The Ge composition values given here are 
indicative for a typical device. 

The Strain Relaxed Buffer (SRB) has also been used in the fabrication of strained Si 

MOSFETs[11].  Current BiCMOS technology consists of the integration of SiGe HBTs and 

conventional MOSFETs. Using relaxed SiGe virtual substrates in the fabrication of sSi HBTs 

has raised the possibility of the integration of strained Si MOSFETs and sSi HBTs in one chip. 

The dissertation is broken up into four sections: 

 The basic equations that govern the operation of Si BJTs are developed. The impact 

of the implementation of SiGe into bipolar technology is also presented along with 

the properties of SiGe material. 

 Several experimental data (SIMS, TEM image, EELS and the Raman spectroscopy) are 

presented to confirm the fabrication of sSi HBTs. The Si BJTs, SiGe HBTs and sSi HBTs 



Chapter 1. Introduction  
 

7 
 

are compared in term of current gain. This comparison shows that this novel device 

exhibits a maximum current gain of 3700 compared with 334 for co-processed SiGe 

HBTs and 135 for Si BJTs. The common emitter characteristic has also shown that sSi 

HBTs suffers from the self heating. 

 2D simulation of Si BJTs, SiGe HBTs and sSi HBTs is presented. MEDICI from Synopsys 

is used due its ability to consider the impact of the Ge content on the material 

properties and therefore on the device performance. An agreement between the 

experimental data and the simulation results is reported. This confirms that the band 

gap of the base layer is the main factor that causes the high performance of sSi HBTs. 

An investigation of the performance of HBTs based on Ge and GaAs is also reported 

showing that this device might have a good current gain. However the band 

discontinuity and more precisely the valence band discontinuity blocks this device 

from reaching its full potential. 

 The first comparison study of low frequency noise between sSi HBTs, SiGe HBTs, and 

Si BJTs is presented. This has shown that sSi HBTs exhibit higher low-frequency noise 

compared to control devices at fixed base current. The presence of a high 

concentration of defects that are caused by the strain-relaxed buffer is responsible 

for the low-noise performance of sSi HBTs. However, it is shown that this novel 

device demonstrates the lowest noise level (better noise performance) for the same 

collector current compared with the other control bipolar devices. The noise level in 

a circuit can therefore be reduced by using sSi HBTs as compared with either Si BJTs 

or SiGe HBTs.  This results the high current gain of these devices. A relationship 

between low frequency noise and defects is shown by material characterization.   

1.5 Conclusion 

This chapter presents a summary of the development of bipolar technology. The 

performance of Si BJTs has improved significantly as a consequence of using novel designs 

and fabrication methods such as implantation and epitaxy. This chapter has also discussed 

the impact of SiGe on the bipolar transistor and also on CMOS technology. The limited 

amount of strain that can be accommodated in the SiGe base layer is seen as a real barrier 

to enhance the performance of HBTs. The SRB that is used as a substrate in the fabrication 

of strained Si MOSFETs is seen as a possible solution to the limitation of SiGe HBTs. 
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Chapter 2. Background 

2.1 Introduction 

Most semiconductor devices contain at least one PN junction. This junction is fundamental 

to the performance of functions such as rectification, amplification, switching and other 

operations in electronic circuits. Two physical phenomena are responsible for the flow of 

the current in the PN junction, drift and diffusion. Determining the basic equation that 

governs this junction is the first step to understand the operation of bipolar transistors.  

The current gain and the cut-off frequency are the main parameters used to characterise 

the bipolar transistor. While the first parameter is viewed as the factor that reflects the DC 

performance of the device, the second characterises the speed of the device. The doping 

level in the emitter, base and collector in addition to the width of these regions represent 

the parameter design space that is used to enhance the device performance. However, 

increasing both the DC and AC performance leads to a conflict of parameter design space 

requirement. For instance, low base doping increases the current gain, however this results 

in a reduction of the base resistance and by consequence the cut-off frequency. This means 

that Si BJTs may not able to meet the continuous demand of high speed devices for the 

communication market. This has opened the door to the use new innovation methods to 

improve the performance of Si BJTs. The incorporation of SiGe in the fabrication of the 

bipolar transistor has lead to a new device known as the SiGe heterojunction bipolar 

transistors. This latter device has shown high DC and AC performance over Si BJTs. The 

impact of SiGe is not restricted to bipolar transistors. Indeed it improves the performance of 

MOSFETs and BiCMOS technology as well.      

2.2 PN junction 

A bipolar transistor is simply two back-to-back PN junctions. Hence it is important to study 

the electrical characteristic of this junction. One useful feature of the PN junction is that the 

current can only flow quite freely from the P to N direction when the P region has a 

relatively positive external voltage relative to N. This asymmetry of the current flow makes 

the PN junction very useful as a rectifier.  When N and P region are brought together to 
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form the PN junction, diffusion of carriers takes place because of large carrier concentration 

gradients at the junction. Thus holes diffuse from the P side into the N side, and electrons 

from the N side into the P side as seen in Figure 2.1. 

 

Figure 2.1: Separate P and N region and the direction of hole and electron diffusion 
current. 

The resulting diffusion current cannot build up indefinitely, however, because an opposing 

electric field is created at the junction. Consider that electrons diffusing from N to P leave 

behind uncompensated donor ions   
 in the N material, and holes leaving the P region leave 

behind uncompensated acceptors   
 , it is easy to visualise the development of a region of 

positive space charge near the N side of the junction and negative charge in the P side. The 

resulting electric field   is directed from the positive charge toward the negative charge. 

Thus   is in the direction opposite to that of diffusion current for each type of carrier. 

Therefore, the field creates a drift component of current from N to P, opposing the diffusion 

current. Figure 2.2 illustrates a PN junction with the neutral regions of P type and N type 

material and also the depletion region (space charge). 

The equilibrium state of the PN junction can be disturbed when applying an external voltage 

to it. There are two distinctive biasing conditions: one is the forward bias and the other is 

the reverse bias. In the first case the minority carriers are injected into P and N region. The 

injected carriers are supplied by the reservoir of the majority carriers, which in turn are 

supplied by the external voltage source. In the reverse biased case, the minority carriers are 

extracted from P and N region due to the enhanced electric field, leading to a small current. 

This current is reduces as the reverse biased is increases. 

However, a very small reverse current does flow. This reverse saturation current depends 

only on the thermal generation of holes and electrons near the junction. This reverse 

saturation current is quite small but it increases with increasing temperature.    
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Figure 2.2: PN junction, direction of the hole and electron current (drift and diffusion) 

The density of charge carriers is characterised by the Fermi level EF.  A change of the Fermi 

level, e.g. towards the conduction band, causes electron density to increase and hole 

density to decrease. Equation (2.1) and (2.2) represents the electron and hole density, 

respectively. 

 
         

        

  
  (2.1) 

          
        

  
  (2.2) 

Where ni is the intrinsic carrier concentration, Ei is the intrinsic Fermi level, EFn and EFp is the 

electron and hole quasi Fermi level, respectively. Figure 2.3 illustrate the band structure of P 

and N-type doped semiconductor.   

 

Figure 2.3: Band structure of P and N-type doped semiconductor. 

The product of equation (2.1) and (2.2) equation leads to equation (2.3) of the product pn 
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(2.3) 

Applying this product to the edges of the depletion region (at the position Xn and Xp) leads 

to the following equations. 

                             
      

  

  
   (2.4) 

Where V is the voltage across the PN junction, q is the electronic charge, pn and nn are the 

hole and electron concentration in the N region, respectively. While np, pp are the electron 

concentration in the P region, respectively. It is important to mention that this product 

increases at forward. Figure 2.4 illustrates minority carrier distributions on the two sides of 

the PN junction for forward bias. 

 

Figure 2.4: Distribution of the minority carrier under forward bias 

The minority carrier concentration at the edge of the depletion region is higher than at 

equilibrium. For low injection of minority carries we can neglect changes in the majority 

carrier concentrations. Therefore it is possible to write: 

             (2.5) 

where, nno is the electron concentration in the N region (at equilibrium). Similarly: 

            (2.6) 

Where, ppo in the hole concentration in the P region (at equilibrium).   

At equilibrium (No external voltage), equation (2.4) can be written as follow  

                 
   (2.7) 
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Where, pno is the hole and electron concentration in the N region (at equilibrium) and npo is 

the electron concentration in the P region (at equilibrium).  

By considering equation (2.4), (2.5) and (2.7), it is possible to develop an equation for the 

electron concentration in the P region at the position Xp as follows: 

Similarly, using equation (2.4), (2.6) and (2.7) the hole concentration in the N region at the 

position Xn is given by the following equation. 

                
  

  
   (2.9) 

It is important to mention that equation (2.8) and (2.9) are developed under certain 

assumptions. The externally applied voltage appears totally across the immediate junction, 

therefore all parasitic resistances and associated voltage drops due to the current flow were 

assumed to be negligible. Moreover, the generation recombination phenomenon is 

considered negligible. 

The majority carrier current from one side of the PN junction is the minority carrier current 

on the other side of the junction. The total current flow can therefore be found by simply 

adding the two minority diffusion currents:    

          (2.10) 

Where In is the electron diffusion current and Ip is the hole diffusion current. Since the 

current is caused by the diffusion of the carriers, therefore the total current can be written 

as follow.  

        

   

  
     

   

  
 (2.11) 

Where q is the electronic charge, A is the cross-section of the junction, Dp and Dn are the 

hole and electron diffusivity, respectively. Taking in consideration the gradients from Figure 

2.4 and substituting equation (2.8) and (2.9) into equation (2.11) gives the current voltage 

relationship of the PN junction. 

 
      

   

  
      

  

  
         

   

  
      

  

  
     (2.12) 

Where Wp and Wn are the width of the P and N region, respectively.  

                
  

  
   (2.8) 
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The above equation can be rearranged in a simple form  

 
       

   

  
   

   

  
       

  

  
     (2.13) 

If the N region width Wn is large compared to the hole diffusion length LP and the P region 

width Wp is large compared to the electron diffusion length Ln. Then Wn should be replaced 

by Lp and Wp by Ln. According to this, the equation (2.13) can be rewritten as follows:    

  
       

   

  
   

   

  
       

  

  
     (2.14) 

The thermal voltage at room temperature (300 K) is 0.0259 V. In practice the applied voltage 

in the forward mode is higher than 0.7 V, therefore the term -1 is very small compared to 

exp (qV/kT) and it is reasonable to eliminate it (2.15).     

 
       

   

  
   

   

  
       

  

  
   (2.15) 

In the reverse mode the term exp (qV/kT) becomes very small compared to -1, therefore 

equation (2.13) can be simplified to equation (2.16).  

The above equation was derived assuming no generation of carriers in the depletion layer. 

In an actual device, the thermal generation of carriers in the depletion layer should be taken 

into consideration. The current due to thermal generation (IR-G) increases with the width of 

the depletion layer W, which increases with the applied reverse bias. So, an IR-G increase as 

reverse voltage is increased. Equation Figure 2.19 illustrates the thermal generation current. 

 
      

     

   
 (2.17) 

Where    
     

 
 (2.18) 

τp and τn are the hole and electron life time. 

High current will pass through the diode when the applied voltage is equal (or higher than) 

the break down voltage of the PN junction. The current-voltage equation (2.16) does not 

obviously reflect this behaviour, because the break down phenomenon was not taken into 

consideration when developing this equation.   

         
   

  
   

   

  
] (2.16) 
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Figure 2.5 represents the current voltage relationship for PN junction. 

 

Figure 2.5: Current-voltage characteristic for PN junction 

2.3 Basic operation of the Si BJTs 

In order to use a bipolar transistor in a practical circuit, external bias must be applied to the 

emitter-base junction and collector-base junction. These two junctions provide four possible 

bias configurations. The forward active mode (The emitter-base junction is forward biased 

while the collector base is reversed biased) is the most useful arrangement. This is because 

in this configuration the gain of the transistor can be exploited to produce current 

amplification [1]. 

In the forward biased emitter-base junction, holes are injected into the N region (emitter) 

which form a minority (hole) carrier gradient. This causes a diffusion of holes and gives rise 

to the main component of base current. Meanwhile electrons are injected into the P base 

region. Some injected electrons recombine with holes in the base, but the majority diffuse 

through the base. Since the base-collector junction is reversed biased, these electrons are 

extracted from the base to the collector region forming the collector current. To have a 

good n-p-n transistor, it is preferable that almost all the electrons injected by the emitter 

into the base should be collected, thus the P type region should be narrow, and the hole life 

time should be long [2]. 

Figure 2.6 illustrates the minority carrier distribution, this figure shows that the diffusion of 

holes in the emitter is the source of the base current, while the diffusion of the electrons in 



Chapter 2. Background  
 

16 
 

the base gives rise to the collector current. Consequently, it is possible to use equation (2.15) 

to write the base and collector current equations as follows:  

 
       

        
 

    
     

    

  
  (2.19) 

Where    the electron diffusivity in the base is,     is the intrinsic carrier concentration in 

the base region. 

 
       

        
 

    
     

    

  
  (2.20) 

 

Where    the electron diffusivity in the emitter is,     is the intrinsic carrier concentration 

in the emitter region. 

 

Figure 2.6: minority carrier distribution in the emitter and base region (the base-emitter 
region is forward biased). 

In practice however, the collector and base currents do not follow equation (2.19) and (2.20) 

at low and high base emitter voltage. Figure 2.7 represents the theoretical and the 

experimental Gummel plot (collector and base current).  
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Figure 2.7: comparison between the experimental and theoretical Gummel plot. 

The first information to emerge from this comparison is the base current is usually higher 

than in the theoritical case at low base-emitter voltage. Moreover, both base and collector 

currents show a reduction at high voltage. The behaviour of the base current at low voltage, 

which exhibits an exp (qV/mkT), where 1<m≤2 dependence is caused by the recombination 

current in the depletion region as well as the extrinsic base. The parameter m is known as 

the ideality factor and it is equal to 1 in the case of pure diffusion current. The amount of 

deviation of the base current from the ideal behaviour depends strongly on the transistor 

structure, device structure and fabrication process. This parameter actually determines the 

physical properties of defects such as their position in the band gap, the concentration and 

the position in the device. This behaviour is widely known, not only in BJTs but also in HBTs 

using different material i.e. [Si/SiGe], [AlGaAs/GaAs] and [InGaP/GaAs] [3, 4].  

Figure 2.8 represents a schematic diagram illustrating the series resistance in a bipolar 

transistor.  

 

Figure 2.8: Schematic illustrating the series resistance in bipolar transistor. 
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 The modelling study that has been carried out earlier has ignored the impact of the series 

resistance, and it assumed that all external voltage actually appears across the PN junction 

[5]. This can be a good approximation only at low voltage.  The influence of the series 

resistances on the transistor currents can be understood from the circuit diagram in Figure 

2.9. The external connections to the transistor are the terminals C, B, and E, whereas the 

internal terminals of the ideal transistor that we have been discussing so far are the 

terminals C’, B’ and E’. 

 

Figure 2.9: Circuit diagram showing internal collector, base and emitter series resistance 

The relationship between the internal and external base-emitter voltage can be derived 

using Kirchoff’s law: 

                     (2.21) 

 

                          (2.22) 

 

                          (2.23) 

Equation (2.23) shows that the voltage across the emitter-base junction VB’E’ is actually 

smaller than the external base–emitter voltage VBE. Considering this result, the base and 

collector current can be written as follow: 

   
   

       
 

    
     

                     

  
  (2.24) 

 



Chapter 2. Background  
 

19 
 

 
   

       
 

    
     

                     

  
  (2.25) 

Considering the series resistance, the base and collector current given by equation (2.24) 

and (2.25) are smaller that the given by equation (2.19) and (2.20).  

2.4 Current gain  

The current gain represents an important parameter to characterise the DC performance of 

a bipolar transistor. It is given by the ratio of the collector current to the base current. Using 

equation (2.19) and (2.20) the current gain is   

 
  

  
  

 
       

       
 (2.26) 

According to the equation above, the current gain is independent of the applied voltage. 

However, this is not the case in practice where the current gain is lower at low and high 

voltage. This is because of the behaviour of the base current and also of the collector and 

base current at high voltage. The behaviour of the current gain at low voltage can be 

predicted using the equations of the base and collector current. As was mentioned earlier, 

the ideality factor of the base current at low base-emitter voltage is generally higher than 1. 

Therefore it is acceptable to rearrange equation (2.20) to form the following equation: 

  
          

    

   
  (2.27) 

Where m is the ideality factor. In this case, the current gain is not independent of the 

voltage as shown by the following equation.   

 

  
  
  

 
     

    
  

 

     
    
   

 
 (2.28) 

 

The above equation can be simplified. 

 
  

  
  

      
    

  
    

 

 
      

   
 
 

     (2.29) 

Figure 2.10 represents a comparison between the experimental and theoretical current gain, 

which shows that the current is lower at low and high voltage. 
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Figure 2.10: comparison between the experimental and theoretical current gain. 

The low current gain at the high base emitter voltage is caused by the deviation of the base 

and collector current from the ideal behaviour in this region. 

Equation (2.26) illustrates the main design requirement of a bipolar transistor. In particular, 

the ratio Nd/Na is of great importance. In order to increase the current gain, the emitter 

doping should be as high as possible. Meanwhile the base doping should be as low as 

possible. However both strategies have drawbacks. In the case of emitter doping, high 

doping will cause the band gap narrowing phenomenon. High doping concentration can 

perturb the perfect periodicity of the semiconductor and reduce its band gap. The intrinsic 

carrier concentration in this case is subjected to some changes as suggested by the following 

equation 

    
    

      
     

   
   (2.30) 

where ni is the intrinsic carrier concentration at low doping levels, nie is the intrinsic carrier 

concentration at high doping level and ∆EG,H is the band gap narrowing caused by doping. A 

simple way of modelling the band gap narrowing in the emitter is through an effective 

doping concentration in the emitter Ndeff as reported by Kumar et al [6].  

 
         

  
 

   
         

      
   

   (2.31) 

The above equation clearly indicates that the band gap narrowing has the effect of reducing 

the current gain.   

The resistance of a semiconductor bar with length L and cross-section A is given by the 

following equations: 
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 (2.32) 

Where µn is the electron mobility, µp is the hole mobility, n is the electron concentration and 

p is the hole concentration. Equation (2.32) shows that a reduction of the doping will 

decrease the hole or the electron concentration, which will lead to an increase of the 

resistance. Therefore, reducing the base doping to raise the current gain will cause an 

increase of the base resistance. This drop of the base resistance reduces the switching 

speed of the bipolar transistor. The base resistance combined with parasitic capacitance 

form an RC time constant which slow down the device. This impact can be seen clearly in 

equation (2.33).  

 
      

  
       

 (2.33) 

Where fmax is the maximum oscillation frequency, ft is the cut-off frequency, Cjc is the base-

collector depletion capacitance and RB is the base resistance. So there is a clear conflict 

between the requirements for high speed and high current gain. 

Another strategy that can be used to boost the current gain, is increasing the emitter depth 

and reducing the base width. The first option will lead to an increase of the emitter transit 

time as suggested by equation (2.34). This is extremely important parameter since it affects 

the speed of the device. 

 
   

    

    
 (2.34) 

Therefore, when designing a high speed bipolar transistor it is necessary to have a small 

emitter depth. The second option, which is reducing the base width, poses two issues. From 

the fabrication point of view it is difficult to fabricate a very thin base layer. This is because 

of the boron out-diffusion issue. The punch-through is an issue that may occur when having 

a very thin base layer. In the common emitter configuration, the emitter-base junction is 

forward biased. When the base-collector junction is reversed biased, this will increase the 

width of the depletion region of this junction. In the limit, this depletion region (collector-

base) could extend across the whole width of the base and join up with the emitter-base 

depletion region [7]. In this case, the emitter and collector are connected together by a 
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single depletion region as illustrated in Figure 2.11. A large current will flow between the 

emitter and the collector which causes the device to fail. 

 

Figure 2.11: Schematic illustration of a bipolar transistor operating in punch through. 

The above discussion about the current gain has shown that there is a conflict in design 

requirements between high current gain and high speed devices. In order to boost both DC 

and AC performance of the device, a new approach needs to be applied.    

2.5 Epitaxial growth of silicon-germanium material 

The possibility to combine the low cost advantages of the Si-technology with the high 

performance nature of III-V or II-VI heterostructures is believed to improve silicon-based 

heterostructures devices [8]. The lattice mismatch between the lattice constant of Ge and Si 

which is 4.17 % has allowed the possibility to epitaxially grow strained SiGe layers on Si [9]. 

For many applications of lattice mismatched materials the use of Vegard's law is practical. 

This law expresses the linear interpolation of the lattice constant of alloys as a function of 

parameter x defining the chemical composition of the alloy (compound). For a binary 

compound Si1-xGex Vegard's law has the form 

                     (2.35) 

Where aSi, aGe and aSiGe are the lattice constant of Si, Ge and Si1-xGex, respectively. However, 

frequently a deviation from Vegard's law has to be considered for more exact analysis [10]. 

A systematic investigation of Si1-xGex thin film lattice properties as a function of the Ge 

content shows that the SiGe lattice constant can be fit by a parabolic relationship of the 

form [11] 

                                     (2.36) 

where the lattice constants are expressed in nm 

when the SiGe is deposited on a Si substrate, the mismatch may be accommodated in one of 

two ways [12]: 
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 The lattice mismatch strain can be accommodated by a tetragonal distortion of the 

unit cell in the epitaxial layer. So that SiGe lattice constant fits to the Si lattice 

constant as illustrated in Figure 2.12 (A). In this case the SiGe layer is under 

compressive stress. This growth is perfect for the fabrication of the SiGe HBTs. 

 Another mechanism for strain relaxation in thicker epitaxial layers is the introduction 

of misfit dislocations, which allows the epitaxial layer to relax toward its free lattice 

parameter trough the formation of misfit dislocation as illustrated in Figure 2.12 (B). 

This latter are basically where there is a missing or dangling bond in the lattice 

between two layers. 

 

Figure 2.12: Schematic illustration of compressed (A) and relaxed SiGe (B). 

The misfit dislocation can thread to the surface and lead to the threading dislocations as 

shown in the Figure 2.13.The grown SiGe in this case is relaxed, it is known as strain relaxed 

buffer (or virtual substrate). It is used to grow strained Si to enhance the mobility for 

MOSFETs technology. This work presents the first implication of strained relaxed buffer in 

bipolar technology. The existence of the misfit dislocations and threading dislocation 

represent the main problem with this system [13, 14]. The relaxation of the grown SiGe 
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layer take place only when its thickness is higher than specific thickness called the critical 

thickness.  

 

Figure 2.13: Misfit and threading dislocation in Si/SiGe heterostructure [15]. 

There has been much debate on the determination of the value of the critical thickness. Van 

der Merwe introduced the concept of critical thickness based on equilibrium theory. He 

defined critical thickness as the film thickness below which it was energetically favourable to 

contain the misfit by elastic energy stored in the distorted crystal [12]. Figure 2.1 illustrates 

the critical thickness.  

 

Figure 2.14: Critical thickness of the SiGe layer [12]. 

The most important information to emerge from this data is that the critical thickness 

decreases with the increase of the Ge content. This is because the increase of the Ge 

content raises the lattice constant and therefore reduces the lattice mismatch between the 
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Si substrate and the SiGe. The final result is that the strain increases within the SiGe layer. It 

is important to keep the thickness of the SiGe leyer well under the critical thickness when 

designing a device based on SiGe herostructures. This is because the relaxation of the SiGe 

means the formation defects. If these defects are in the active region of the wafer where 

the transistors are fabricated, they will often lead to a device failure. These failures can be 

caused directly by the electronic states associated with the defects which leads to excessive 

leakage. Failure may also be less direct. During processing, the defects may trap other 

impurities in the wafer that contribute to these electronic states. This might also lead to 

excessive impurity diffusion during the processing which can change the physical structure 

of the transistor [16]. 

2.6 Band gap structure of the Si/SiGe structure 

The 4.17% lattice mismatch between Si and Ge has been exploited in a variety of 

pseudomorphic Si/SiGe heterostructure. Either Si or SiGe, is strained to match the lattice 

constant (parallel to the interface plane) to that of the unstrained substrate material, SiGe 

or Si respectively. The lattice constant perpendicular to the interface also changes to 

compensate for this lateral strain in the active material. There are two main configurations 

of Si/SiGe heterostructure as illustrated in Figure 2.15. For the SiGe HBTs the configuration 

(A) is the important [17].  

 

Figure 2.15: Schematic of the Si/SiGe heterostructure. Configuartion (A): strained SiGe on 
Si, Configuartion (B): strained Si on SiGe. 

Since Ge has a significantly smaller bandgap than Si (primarily due to its larger lattice 

constant), it is not surprising that the bandgap of SiGe will be smaller than that of Si. The 
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strain in a pseudomorphic SiGe alloy, however, also plays an important role in shaping the 

final band alignment [11]. Figure 2.16 illustrates the band gap of strained and relaxed SiGe 

versus the Ge content. 

 

Figure 2.16: Band gap as function of relaxed and strained SiGe. 

It can be seen that in addition to the Ge content, the strain has a dramatic effect on the 

band-gap of SiGe. The variation of the band-gap of SiGe (at low temperature 4.2 K) with the 

Ge content can be described by the following empirical equation developed by Weber et. Al 

[18].  

                                                       (2.37) 

To estimate the Si1−xGex band gap at higher temperatures, the relationship of temperature 

with the band gap of Si as shown below [17]: 

                  
            

     
                       (2.38) 

This reduction of the band-gap is clearly key to the importance of SiGe in the design of SiGe 

HBTs. The equation (2.39) represents the widely accepted expression of the collector 

current for SiGe HBTs. This equation shows that a reduction of the band gap corresponds 

with an exponential increase of the collector current.  

         
    

  
 
         

    
     

   

  
        (2.39) 

Where   is the electronic charge,   is the device area,     is the diffusion coefficient of 

electron in the base (SiGe layer),    is the base width,     is the base doping,     is the 
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base-emitter voltage,    is Boltzmann’s constant,      and     are the density of state in 

the conduction band and the density of state in the valence in the base layer, respectively 

and    is the band gap of the base layer. This equation also shows that the determination of 

the band gap plays a crucial role in the determination of the performance of the device.   

There have been many investigations into the bandgap of pseudomorphically grown 

strained SiGe on a relaxed Si substrate, based on the performance of SiGe HBTs [19]. To 

extract the bandgap of the strained SiGe and doped SiGe three ways may be used. The first 

possibility is to measure IC at room temperature and to make reasonable assumptions for 

   ,    and    in strained SiGe. With the help of a proper knowledge of the base width and 

doping density, which can be extracted using SIMS data, it is then possible to calculate the 

bandgap Eg [19]. This is the first way to determine Eg over the Ge content. The second way 

[19] is to make use of the temperature dependence of IC. For this, it is necessary to know 

the temperature dependence of     in P type SiGe at the same doping concentration used 

in the transistor. Using this method one has to assume similar temperature dependences of 

the densities of states and Eg in SiGe as in Si. The advantage is that no knowledge about the 

base doping and thickness, the SiGe density of states and the absolute value of the diffusion 

coefficient of electron      are needed [19]. The third possibility is to fabricate a similar all 

Si transistor [19]. By comparing the collector current of the Si transistor to that of the SiGe 

HBTs one can extract a Eg (SiGe) to Eg (Si) from the temperature dependence of the ratio of 

IC in the two devices. The drawback of this method is that one has to assume the same 

temperature dependence of     in Si and SiGe, which is improbable because of the 

additional effect of alloy scattering even at similar doping levels. Moreover it is 

technologically difficult to get an all-Si transistor with similar base doping. So usually     

(base doping) of the Si transistor is much less than in the SiGe HBT which introduces an 

additional error. This explains the scattering of the value of the band gap of the strained 

SiGe that has been reported in many literatures.  

Another parameter of SiGe that is affected by the Ge content is the value of     and     

(the density of states of the conduction and valence band). For Ge content approximately 

equal to 15 %, the value is of     dropps to 2/3 of that of relaxed Si [20]. This is followed a 

by slight increase of its value (   ) with the increase in Ge content. The value of     

dramatically decreases for Ge content less that 20 % as shown in Figure 2.17. This is 
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disadvantageous for SiGe HBTs, since this reduction of     and     will lead to a decrease 

of the intrinsic carrier concentration (in the SiGe base layer) and then of the collector 

current [17]. However, the impact of the density of states is considered to be minor 

compared to that of the band-gap.    

 

Figure 2.17: Conduction and valance band density of state in SiGe [20]. 

The amazing advancements achieved in recent years in Si CMOS technology have come 

primarily from scaling, i.e. from reducing the critical dimensions of the transistors. This has 

been accomplished by advances in photolithography as well as innovations in the fabrication 

processes and the use of new materials and novel high dielectric constant materials for the 

gate insulator. Because it has become increasingly difficult to further reduce critical 

dimensions such as the gate oxide thickness, alternative ways of improving transistor 

performance are also being employed. One important approach is to increase the charge 

carrier mobility using strained Si [21]. 

An important benefit of compressed SiGe is that can be used to boost the performance of 

PMOS devices. On any CMOS chip, the major limitation in performance is the PMOS. The 

mobility and effective masses of holes are smaller than those of electrons in Si. To balance 

the current drive in CMOS circuit design, the NMOS and PMOS have to be scaled [22]. The 

changes in the band-gap of the strained SiGe effectively modifies the hole transport 

properties in the layer, giving chances to improve the performances of PMOS [23]. Leonardo 

et. al. report 2.5 × hole  enhancement in SiGe over Si [24].  
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The epitaxial growth of Si on relaxed SiGe leads to the formation of tensile strained Si. This is 

because the lattice constant of Si is smaller than that of SiGe. The electron carrier mobility is 

known to be high in tensile strained Si compared to relaxed Si, hence, the importance of this 

material in the fabrication of N channel MOSFETs. This has been shown in many 

experimental reports [25].  

Several groups have reported theoretical and experimental values of the strained Si band 

gap on SiGe substrates as a function of the Ge content of the relaxed SiGe substrates using 

different calculation methods that account for conduction band and valence band shifts. 

According to this literature, a strained Si band gap shrinkage is expected as the Ge 

composition is increased in the SiGe substrate i.e., as strain is increased [26]. Equation (2.40) 

illustrates the band gap of strained Si versus the Ge content at 300 K [17].  

                               (2.40) 

This change in the band gap leads to a reduction of the carrier effective mass and band 

scattering rates, and therefore an increase of the carrier mobility (electron and hole) [27]. 

This mobility increases with an increase in strain which is determined by the Ge content of a 

SiGe layer  underneath strained-Si films [28].Figure 2.18 shows also that    and    are 

smaller in strained Silicon compared to relaxed Si. 

 

Figure 2.18: Conduction and valence band density of state in strained Si [20]. 
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2.7 Dopant diffusion in SiGe 

Every semiconductor device technology relies on the ability to fabricate well-controlled, 

locally doped regions of the wafer. The chemical impurities must first be introduced into 

some sections of the wafer. They must be active so they can contribute the desired carrier 

concentration. After the impurities are introduced they may redistribute in the wafer. This 

may be intentional or it may be a consequence of some other thermal process. In either 

event, it must be controlled and monitored. The motion of the impurity in the wafer occurs 

primarily by diffusion: any impurity that is free to move will experience a net distribution in 

response to a concentration gradient. The source of this movement is the random motion in 

the material. Since a high concentration region has more impurty atoms, there is a net 

movement of impurities away from the concentration maximum. This effect is not limited to 

impurities in semiconductors *16+. Fick’s first law of diffusion given by equation (2.41)  can 

also be used to describe heat transfer, the motion of electrons and gaseous impurities such 

as air pollution.        

The basic equation that describes diffusion is Fick’s first law [16]:  

     
        

  
       (2.41) 

Where Ci is the impurity concentration, D is the coefficient of diffusion and J is the net flux 

of the impurity material. The negative sign express the fact that there is net movement in 

the direction of decreasing concentration.   

Diffusion in semiconductors can be visualised as atomic movement of the impurity in the 

crystal lattice by vacancies or interstitials. Figure 2.19 shows two basic atomic diffusion 

models in a solid. The open circles represent the host atoms occupying the equilibrium 

lattice positions. The solid dots represent impurity atoms. At elevated temperatures, the 

lattice atoms vibrate around the equilibrium lattice sites. There is a finite probability that a 

host atom acquires sufficient energy to leave the lattice site and to become an interstitial 

atom, thereby creating a vacancy. When a neighbouring impurity atom migrates to the 

vacancy site, as illustrated in Figure 2.19 (a) the mechanism is called vacancy diffusion. If an 

interstitial atom moves from one place to another without occupying a lattice site Figure 

2.19 (b), the mechanism is interstitial diffusion. An atom which is smaller than the host atom 
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often moves interstitially [29].  The boron is known to diffuse on silicon using interstitial 

mechanism. 

 

Figure 2.19: Atomic diffusion mechanisms for a two dimensional lattice. (a) Vacancy 
mechanism; (b) interstitial mechanism. 

The logarithm of the diffusion coefficient for Si plotted against the reciprocal of the absolute 

temperature is known to give a straight line in most cases. This implies that over 

temperature range, the diffusion coefficient can be expressed as  

          
   

  
        (2.42) 

Where D0 is the diffusion coefficient in cm2/s and Ea is the activation energy in eV.  

For the interstitial diffusion model, Ea is related to the energy required to move dopant 

atoms from one interstitial site to another. The value of Ea is found to between 0.5 and 2 eV 

in Si. For the vacancy diffusion model, Ea is related to both the energy of motion and the 

energy of formation of vacancies. Thus Ea for vacancy diffusion is larger than that for 

interstitial diffusion which is usually between 3 and 5 eV [29].   

Understanding the dopant diffusion in SiGe, allows an accurate prediction of the doping 

profile after thermal annealing to be performed [30].   

The nature of a Si/SiGe heterostructure introduces several complications to a dopant 

diffusion model as compared to diffusion in bulk Si. First, there is a so-called ‘‘chemical 

effect’’ caused by the introduction of Ge atoms *31+. The equilibrium concentration of self-

interstitials and vacancies are closely related to the bonding energies of atoms. In covalent 

crystals, the heat of sublimation is equivalent to the energy needed for the rupture of half of 

the atomic bonds. The heat of sublimation values of pure Ge and Si crystals are, respectively, 
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equal to 374.5 and 455.6 kJ mol−1. Thus, the atomic bonding energy in relaxed SiGe is 

lowered by the presence of Ge atoms and it is expected that both interstitial and vacancy 

concentrations will increase [32]. Secondly, SiGe has a larger lattice parameter, so when it is 

grown epitaxially on a Si substrate, the SiGe layer will be biaxially strained in order to 

comply with the smaller lattice parameter of the Si substrate. This macroscopic strain may 

influence the diffusion process as well [31]. 

Moriya et al. [33] have found that the boron diffusion is retarded in strained SiGe. This is 

advantageous for SiGe HBT design, since it facilitate the design of a device with a very thin 

base layer which therefore decreases both the base resistance and transit time. This results 

in an increase of device speed. The retardation of the boron in SiGe helps also to prevent 

the formation of parasitic energy barriers. This occurs when the boron penetrates outside 

the SiGe layer [34]. In the extreme case, depletion regions (emitter/base and base/collector) 

are formed in the Si region and hence the Si band gap is obtained at this depletion region. 

On moving into SiGe layer, a decrease of the band gap is obtained, which lead to the 

formation of parasitic barriers as illustrated in Figure 2.20.  Even a small amount of out 

diffusion is reported to degrade the collector current and therefore the current gain [34].  

 

Figure 2.20: Parasitic barriers in SiGe HBTs. 

Figure 2.21 illustrates the impact of Ge content on boron diffusion over a wide range of 

temperature. This figure shows that the presence of Ge leads to a reduction of boron 

diffusion.  
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Figure 2.21: Boron diffusion in SiGe with different Ge content [35]. 

The work presented by Moriya et al. [33] did not separate the chemical influence and the 

strain influence on the boron diffusion, however this was done by Kuo et al. [36].  

The strain dependence can be determined directly by measuring the diffusion in a SiGe layer 

grown pseudomorphically on a relaxed SiGe template. Varying the Ge content in the relaxed 

SiGe will allow a change in the amount of strain and also the type of the strain (compressive 

or tensile) in the pseudomorphic SiGe layer. Figure 2.22 represents the influence of the 

strain on boron diffusion at 800 °C. This data shows that the strain has a small impact on 

boron diffusion.  

 

Figure 2.22: Influence of the strain on boron diffusion [36]. 
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The impact of the Ge is not the same for all dopant species. Figure 2.23 shows that 

phosphorus diffusion is enhanced in SiGe relative compared to that in Si and the 

enhancement increases with increasing Ge content [31]. 

 

Figure 2.23: Phosphorus diffusion in SiGe [31]. 

2.8 Performance of SiGe HBTs 

The performance of semiconductor devices tends to improve as the dimensions shrink. This 

simple principle of scaling has been the key to the spectacular success of the semiconductor 

industry over the past half-century. It has worked for virtually all types of transistors, 

including the Si-based bipolar transistor [37]. 

Historically, scaling has run into difficulties many times in the course of bipolar technology 

evolution, which have been successfully overcome with help from material and structural 

innovations, such as the self-aligned base, poly emitter, and most recently, the SiGe base. 

There has been tremendous progress in the ability to grow device quality SiGe films. The 

initial growth technique used was Si MBE [38], but this was replaced by high quality CVD 

techniques such as UHV/CVD . The ability to in situ dope SiGe films with B and P and 

incorporate C (to reduce the boron diffusivity) in the film has greatly extended the 

performance levels achieved [39]. The ability to grow high quality SiGe has lead to a 

successful fabrication of SiGe HBTs. This device consists of having a thin SiGe layer as base 

instead of Si for Si BJTs.  
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Bandgap engineering with the incorporation of Ge in the base of silicon bipolar transistors 

results in improved performance of these devices with only a modest increase in process 

complexity. The Ge content has tipically, one of three possible profiles as shown in Figure 

2.24. The first one is the Box profile: the Ge content is constant throughout the base. The 

second is the triangular profile, where the Ge content changes linearly with depth. The third 

one is the trapezoidal, which is a combination of the triangular and box profile. The small 

band gap of the SiGe layer increases the amount of minority carriers injected into the base 

exponentially, thus causing an increase in the collector current for the same forward bias. In 

addition, the band gap grading gives rise to a drift field which aids the minority carrier 

transport through the base. The incorporation of a small amount of Ge into the Si in the 

base layer therefore greatly enhances the performance of the transistor [40]. Figure 2.24 

illustrates the three possible profiles.  

 

Figure 2.24: Different type of Ge profile (Box, Trapezoidal and Triangular) that can be used 
in bipolar technology. 

Generally, the use of Ge enhances both DC (current gain) and AC (cut-off frequency) 

performance of SiGe HBTs. However, triangular profile increases more the speed of the 

device while the box profile has great impact on the current gain of the device. Figure 2.25 

shows the current gain ratio for SiGe HBTs and Si BJTs. This ratio decrease when moving 

from box profile to triangular profile. Figure 2.26 illustrates the cut off frequency of two 

SiGe HBTs with different profiles. While the speed of both devices increase with increase of 

Ge content in the base, it obvious that the use of a triangular profile leads to the highest 

cut- off frequency. 
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Figure 2.25: Plot of current gain ratio vs. position w, (that is, XT/WB) of the peak Ge 
content at the base of the SiGe HBT (w =0 for the box profile, w =1 for the triangular 

profile, trapezoidal otherwise) [41]. 

 

 

Figure 2.26: Cut off frequency versus Ge content for both Box and triangular profile [41]. 

2.9 BiCMOS technology using VS HBT 

Silicon integrated circuits presently dominate the semiconductor industry. The two most 

important devices used in Si technology are field effect and bipolar transistors. For digital 

circuit applications, complementary metal oxide semiconductor (CMOS) technology 

dominates because of its low power dissipation and high density of integration However, 

MOS transistors have a number of disadvantages, foremost among which are limited drive 
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capability and limited high frequency performance. CMOS has been the work horse for 

microprocessors and static random access memories. Bipolar transistors with their high 

speed and high transconductance (therefore high current drive) have mostly been used in 

analogue applications. The main drawback in bipolar digital circuits is the high power 

consumption. To improve single chip functionality, bipolar complementary metal oxide 

semiconductor (BiCMOS) has been developed to combine the advantages of CMOS and 

bipolar devices.   

 

Figure 2.27: Structure of BiCMOS chip [1]. 

The BiCMOS process is also ideal for analogue and mixed-signal applications because the 

best features of MOS and bipolar transistor can be combined to deliver the best system 

performance. With analogue BiCMOS, a wide variety of different analogue and digital 

building blocks can be integrated into a single chip. This system integration approach 

enables digital functions, such as processors and memories, to be freely integrated with 

analogue functions, such as A-D converters, amplifiers and filters. In this way a powerful and 

universal technology is created, which makes possible the integration of all types of 

electronic system. 

The main drawback of BiCMOS technology is the higher costs due to the added process 

complexity. Impurity profiles have to be optimized for both NPN, PNP and CMOS issues. This 

greater process complexity results in a 1.25 to 1.4  cost increase compared to conventional 

CMOS technology [42]. 
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In the early BiCMOS processes, considerable effort was applied to minimising the total 

number of the processing steps by merging the processing steps of MOS and bipolar 

transistor wherever possible. For example, the P+ source /drain implant can be used for the 

extrinsic base of the bipolar transistor, the N+ source/drain implant for the collector contact 

and CMOS polysilicon gate for the polysilicon emitter of the bipolar transistor. In more 

recent BiCMOS technology, the trend is not to merge the process steps for the MOS and 

bipolar transistor, but rather to add the bipolar transistor with minimum distraction to the 

CMOS process. The reason for this change is partially due to the large effort required to 

develop a deep sub-micron CMOS process, and partly due to importance of time to market 

[1]. 

Analogue BiCMOS requires additional components such as resistors, capacitors, diodes and 

PNP bipolar transistors. RF BiCMOS requires, in addition, inductors. While some of these 

components can be fabricated without any additional process steps others require extra 

processing.  Resistors can be easily produced without any additional processing by using the 

series resistance of the various layers that comprise the bipolar and the MOS transistors. 

Capacitors can be easily produced by using a thin silicon dioxide as dielectric and t therefore 

producing a parallel plate capacitor. Inductors are generally fabricated by realizing a metal 

spiral in the top level of metallization, as shown in Figure 2.28. The contact to the centre of 

the spiral is made to a lower level of metal through a via [1].   

 

Figure 2.28: Plan and cross-views of an integrated circuit inductor. 
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The introduction of SiGe material into Si-based technology has remarkably enhanced the 

drive current and the speed of bipolar devices, leading to the fabrication of SiGe HBTs. 

BiCMOS technology has also benefited from this achievement, since SiGe HBTs have been 

successfully integrated with CMOS devices. This has resulted in even higher BiCMOS chip 

performance. However, up to now, there has been no integration of strained MOSFETs 

devices with bipolar devices.   

2.10 Conclusion 

This chapter presents a review of the basic equations that govern the current in the PN 

junction. This was an important task, since this junction is the basic element of bipolar 

transistor and all types of transistor. This was followed by statement of the equation of the 

collector and base current and therefore the current gain. Different strategies to improve 

the performance of the device have been discussed. The drawbacks of these methods have 

been also reported. The study has shown that it is difficult to improve both the DC and AC 

performance of bipolar transistor without adding a new aspect to this device. This aspect is 

the ability to engineer the band gap of the base region. Using SiGe in the base region was 

the method to accomplish this task, which has lead to the fabrication of SiGe HBTs. This 

device has proved his hog performance compared to Si BJTs.  This chapter has also report 

the impact of the SiGe  and strained Si on CMOS technology. 

 The profile of the Ge in the SiGe base layer can have two main shapes; the triangular and 

box profile. The triangular profile is known to increase the speed of the device while the box 

profile enhances the current gain. The improvement of the performance that has been 

shown by the SiGe HBTs is also linked to the total amount of the Ge in the base, more Ge 

simply mean increase in the performance. However, increasing the Ge percentage in the 

SiGe layer cannot be infinitely. This is because the lattice constant of the SiGe is higher than 

of the Si and having high Ge content may cause the production of defects.  
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Chapter 3. Electrical & material characterisation 

of sSi HBTs 

3.1 Introduction 

The market for analogue RF ICs for mobile communication has been growing rapidly. This 

trend has pushed the need for new processing technologies that can achieve higher 

operating frequencies, lower power consumption and more compact system integration. 

The conventional SiGe HBTs, which consists of a SiGe layer in the base, was introduced as a 

commercial product in 1999 after its first demonstration in 1988 [1]. The introduction of the 

Ge in the base is known to be the factor behind the outperformance of the SiGe HBTs over 

Si BJTs. However, if the Ge content is above a certain level, the magnitude of the strain 

becomes larger which results in the formation of dislocations. Advanced epitaxial growth of 

strained and relaxed SiGe layers enhances the amount of Ge that can be incorporated in the 

base. This is accomplished using a Strained Relaxed Buffer (SRB) in the collector which 

reduces the strain magnitude in the base.  

The current BiCMOS chip consists of the integration of the SiGe HBTs and conventional 

MOSFET. Using SRB in the fabrication of sSi HBTs has raised the possibility of integration of 

strained Si MOSFET and sSi HBTs in one chip. 

This chapter presents the first experimental demonstration of NPN sSi HBTs, which consist 

of Strained Si (emitter), compressed SiGe (base) and SiGe strain-relaxed buffer (collector).    

The design requirement for each layer (i.e. collector, base and emitter) in order to have best 

performing devices are discussed. The fabrication process steps and also doping levels, Ge 

content and thickness of each layer are provided. Material characterisation of sSi HBTs is 

presented and compared with co-processed NPN SiGe HBTs and NPN Si BJTs. A comparison 

of important figures of merit e.g. current gain, ideality factor, breakdown voltage and Early 

voltage is made between all devices. The result of this comparison is discussed and linked to 

material proprieties of each device.  
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Any effort in life is rarely one person’s individual accomplishment but is rather completed 

through a collective support network and the work presented in this chapter is no exception. 

During the preparation of this work, the main focus has been on data analysis with less 

effort on performing electrical characterisation and masks design. 

3.2 Collector layer design  

A relatively low collector doping at the depletion edge of the collector-base junction is an 

important requirement for a small collector-base capacitance. This is an essential 

requirement for a high speed device [2]. However, low collector doping can also introduce 

high series resistance [3]. An approach which has been used in early bipolar processes is the 

introduction of an n+ buried layer (subcollector) which will provide a low resistive path to 

the collector contact. The buried layer is fabricated by implanting arsenic or antimony and 

heating at high temperature to diffuse the dopant. This step is followed by growing a low 

doped epitaxial layer which serves as a collector. Auto doping of the epitaxial (collector) 

layer which occurs through diffusion of the dopant from the buried layer may increase the 

collector doping; this is a issue for high speed devices where the collector layer is thin [4]. 

An alternative method, which is known as selective implant collector (SIC), is performed 

after the fabrication of the base layer and emitter window opening, the energy of the SIC 

implant is chosen to have low doping at the depletion edge on the collector side [4, 5]. For Si 

BJTs and SiGe HBTs presented in this work, the subcollector was grown epitaxially on (100) 

Si wafer at 1080 °C. However the collector was grown at only 750 °C to reduce the diffusion 

of the P toward the base. The epitaxy was performed in an ASM Epsilon 2000E RP-CVD 

reactor using in-situ doping. The subcollector and collector were doped to 3∙1019 cm-3 and 

5∙1017 cm-3 respectively, and have thicknesses of 0.4 µm and 1 µm respectively. The out 

diffusion of the dopant from the subcollector, which can increase the doping level at the 

collector base depletion region, is prevented by the thickness of the collector. For the sSi 

HBTs, the subcollector and collector are formed from relaxed SiGe. This was grown at 850 °C 

using terrace grading with an average rate of 10%-Ge µm-1, topped with a 1.2 µm thick 

Si0.85Ge0.15 layer. This relaxed SiGe layer is called Strain Relaxed Buffer layer (SRB). 
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3.3 Base layer design 

The challenge in the fabrication of the base layer for bipolar transistors is the fabrication of 

a thin base layer. However, this challenge is even more serious for SiGe HBTs and sSi HBTs, 

where the boron profile should be retained within the SiGe layer during the post-epitaxial 

processing [6]. A thin base layer reduces the base transit time which improves the cut-off 

frequency [7], however it also raises the base resistance. In order to deal with this trade off 

between the cut-off frequency and base resistance, the base layer should be thin and highly 

doped. A low base resistance improves the maximum frequency of oscillation fmax [8]. 

The diffusion of the boron during the device processing toward the collector and emitter is 

called boron out-diffusion. This leads to the formation of parasitic energy barriers at the 

emitter base and base collector junctions [9]. These barriers suppress the transport of 

electrons from the emitter to the collector which result in reduced collector current [10]. To 

avoid the formation of these barriers, several approaches have been implemented. 

Introduction of a small amount of carbon (0.2–0.5%) in the SiGe layer reduces the boron 

diffusivity. This, in fact, decreases the boron out-diffusion and creates the possibility of 

extending the thermal budget of the fabrication process [11]. In this work another option 

has been used, which is implementing 5 nm of undoped SiGe layer on both sides of the p-

type SiGe layer to allow for out diffusion, while keeping the heterojunction located in the n-

type adjacent layers. This necessitates estimating the amount of out-diffusion accurately 

since the presence of undoped layers will contribute to poorer device performance. The Si 

base layer of Si BJTs was grown epitaxially at 750 ºC, while the SiGe base layer was grown at 

650 ºC having Ge compositions of 30% and 15% for sSi HBTs and SiGe HBTs, respectively. 

The Ge profile is designed to be constant through the base layer for both devices. Emitter 

layer design 

3.4 Emitter layer design 

The emitter is required to be highly conductive for electrons and designed to provide a 

sufficient barrier for holes injected from the base. Therefore, the highest doping level of the 

emitter is required. 

An emitter layer with a thickness of 30 nm was epitaxially grown at 750 ºC for all devices (i.e. 

Si BJTs, SiGe HBTs and sSi HBTs). It was doped at 5∙1017 cm-3. This was followed by a 
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deposition of heavily doped poly-silicon (P, 5∙1019 cm-3). The polysilicon improves the ability 

to have a shallow emitter base junction [12]; also it is reported that the interfacial oxide 

between the emitter and the polysilicon suppress the minority carrier transport, leading to 

an enhancement in the current gain [13]. It is also stated that the base current decreases 

significantly with only a slight increase of the interfacial oxide thickness [14]. Prior to the 

deposition of the polysilicon an RCA cleaning was performed. This particular method 

decreases the base current compared to HF [15]. The layer thicknesses, doping level and Ge 

content for the three devices are summarised in Table 3.1. 

 

 

 

 

 

 

Table 3.1. The layer thicknesses, doping level and Ge content for Si BJTs, SiGe HBTs and sSi 
HBTs. 

3.5 Strain-relaxed buffer  

The high performance of SiGe HBTs over Si BJTs is due to the use of Ge content in the base 

layer [16]. However, the amount of Ge content that can be incorporated is limited by the 

magnitude of strain that can be accommodated in the base. For a given SiGe layer thickness 

there is a maximum Ge content that can be used; exceeding this value will lead to the 

relaxation of the SiGe layer through the formation of misfit dislocation defects [17], these 

defects are known to degrade the device performance through the recombination 

mechanism. To enhance the amount of Ge that can be used in the base, the strain should be 

kept to a certain value. This can be accomplished using a Strain Relaxed Buffer (SRB). This 

consists of growing a thick SiGe layer, in which the Ge concentration is increased from 0% to 

15% in smooth way (10%-Ge µm-1). This layer is topped with a SiGe layer with fixed Ge 

content. This technique has a critical problem.  The SiGe layer, which becomes very large to 

Layer t (nm) Doping (cm-3) 
Ge (%) 

Si BJTs SiGe HBTs sSi HBTs 

Emitter 30 1∙1018 0 0 0 

Spacer 5 0 0 15 30 

Base 12.5 2∙1019 0 15 30 

Spacer 5 0 0 15 30 

Collector 1000 5∙1017 0 0 15 

Subcollector 400 5∙1019 0 0 15 
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reduce the threading dislocation defect, causes a self-heating effect [18]. This problem can 

be overcome by using thin SRB. It can be produced by incorporating C into SiGe SRB during 

the early growth stages, this results in a final SRB relaxation level of 90% after annealing [19]. 

Another way to produce a thin SRB is to subject the SiGe buffer to ion implantation to form 

defects that work as a dislocation source for strain relaxation [20]. These methods lead to 

the fabrication of thin SRB on the order of 200-400nm. Moreover Bauer et al reported SRB 

as thin as 70 nm [21].    

3.6 Fabrication process steps 

The starting point was the growth of the subcollector, collector, base and emitter layer 

epitaxially as shown in figure 1(a), which was performed at Warwick university. This was 

followed by etching of the material surrounding the emitter, down to the collector to form 

mesa isolation, so the emitter could be isolated from the base and collector contacts, as 

shown in figure 1(b). An N-type collector link was implanted using P at a dose of 5∙1015 cm-2 

and energy of 20 keV and an extrinsic base region was subsequently implanted using BF2 at 

a dose of 1∙1015 cm-2 and an energy of 35 keV as illustrated in figure 1(c). The next step was 

low thermal oxide (LTO) deposition (400 nm) to isolate the structure and define the 

collector and emitter window, as shown in figure 1(d). Heavily doped n+ polysilicon (P, 5∙1019 

cm-3) was deposited for both contacts, figure 1(e), followed by RTA step, which was 900 °C 

for 10s. Etching the polysilicon was necessary to isolate the emitter poly from the collector 

poly, see figure 1(f). LTO deposition (400nm) was performed to define the emitter, base and 

collector window contacts, as illustrated in figure 1(g). The process was concluded with the 

deposition of the Al base, emitter and collector contacts with a TiW barrier layer and a 

forming gas anneal. The final transistor structure is shown schematically in figure 1(h). The 

fabrication process for all devices was performed at KTH in Sweden, while the design was 

carried out at Newcastle University. 

In order to explore the impact of parameter design space on the current gain, devices were 

fabricated with different values of EW emitter window width, LE emitter window length, D1 

distance to the collector and D2 distance to the base. Figure 3.2 shows a schematic diagram 

of a bipolar device and the parameter design space.  

 

http://www.iue.tuwien.ac.at/phd/ceric/node8.html
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Figure 3.1. Simplified process flow, Si BJTs, SiGe HBTs and sSi HBTs were fabricated using 
the same process flow. 

  

                  

(a)Initial Structure      (b) Mesa formation 

            

(c) Collector link & extrinsic base implantation (d) Emitter / collector window 

             

(e) Polysilicon deposition    (f) Polysilicon etching 

           

(g) Oxide deposition     (h) Metalisation 
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Figure 3.2: Schematic diagram illustrating different parameters design space. 

3.7 Material characterisation 

Material characterisation of sSi HBTs was carried out and compared with results from co-

processed SiGe HBTs and Si BJTs. Transmission electron microscopy (TEM), secondary ion 

mass spectroscopy (SIMS), and electron energy loss spectroscopy (EELS) were used to 

analyse material properties. 

Figure 3.3, Figure 3.4 and Figure 3.5 illustrate the SIMS data for sSi HBTs, SiGe HBTs and Si 

BJTs respectively. In Figure 3.4, the Ge profile is “box like” for SiGe HBTs with a maximum 

value of 15%. This is in a good agreement with the target value. For the sSi HBTs, the Ge 

profile in the base is slightly higher than the target value; it is also slightly higher towards 

the collector end of the base than the emitter end. Figure 3.6 shows a comparison of the 

boron profile for all devices. The boron profile for the sSi HBTs is sharper compared with 

that of the other devices; also the boron profile for the SiGe HBTs is sharper compared with 

Si BJTs. This is due to reduced boron diffusion caused by the presence of the Ge [22]. A 

sharper boron profile is favourable for the fabrication of the thin base devices because it 

reduces the base transit time, hence improving the AC performance [23].  
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Figure 3.3: Phosphorus, boron and Ge profile for sSi HBTs. 

  

Figure 3.4: Phosphorus, Boron and Ge Box profile for SiGe HBTs. 

  

Figure 3.5: Phosphorus and Boron profile for Si BJTs. 
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Figure 3.6: Comparison of the Boron profile in Si BJTs, SiGe HBTs and sSi HBTs. 

Raman spectroscopy confirmed that strain in the emitter of the sSi HBTs was fully 

maintained following processing. The peak position in the Raman spectrum shown in Figure 

3.7 confirms that the SRB (Si0.85Ge0.15 ) is fully relaxed and that the tensile strain in the 

emitter of the sSi HBTs was maintained after processing [24]. The base layer is too thin to be 

seen in these Raman spectra.  

  

Figure 3.7: Raman spectra from strained sSi HBTs, SiGe HBTs and Si BJTs. 

The TEM image for sSi HBT in Figure 3.8 shows well defined collector, base and emitter 

layers, with an abrupt transition between layers. Also it can be shown that the base layer is 

formed from two regions (Base 1, Base 2) with different Ge content (different degree of 

grey colour); this is consistent with the SIMS data which shows that the Ge content in the 

base is slightly higher towards the collector end of the base than the emitter end. Figure 3.9 

is the TEM image for the SiGe HBTs, where the SiGe base layer is well defined. Figure 3.10 
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shows the TEM image of the Si BJTs; the image shows only one region because the emitter, 

base and collector layers are Si-based only. 

 

Figure 3.8: TLM image for sSi HBTs. 

 

Figure 3.9: TLM image for SiGe HBTs. 

 

Figure 3.10: TLM image for Si BJTs. 
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Electron energy-loss spectroscopy (EELS) is an analytical technique that measures the 

change in kinetic energy of electrons after they have interacted with a specimen. When 

carried out in a modern transmission electron microscope, EELS is capable of giving 

structural and chemical information about a solid, with a spatial resolution down to the 

atomic level [25].  

Figure 3.11 shows the Ge profile measured by EELS for the sSi HBTs. Although the Ge profile 

is noisy, it is still possible to conclude that the Ge content in the collector is constant. In the 

base, the Ge content is slightly higher towards the collector end of the base than the 

emitter end. This is can be only seen by ignoring the noise in the data. This is consistent with 

the SIMS results in Figure 3.3. Figure 3.12 shows the EELS data for the SiGe HBTs. The data 

shows a high level of noise. However the box-like profile is still visible. This is consistent with 

the SIMS results in Figure 3.4. Figure 3.13 illustrates the EELS results for Si BJTs, which shows 

no evidence of the presence of Ge.  

 

Figure 3.11: EELS data for sSi HBTs. 
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.    

Figure 3.12: EELS data for SiGe HBTs. 

 

Figure 3.13: EELS data for SiGe HBTs. 

3.8 Characterization methods  

A typical starting point for device characterization is taking DC measurements to determine 

the current gain . The current gain is obtained by measuring the collector current IC and 

base current IB as a function of the forward base-emitter voltage VBE. Figure 3.14 illustrates 

the measurement set-up used to determine this figure of merit. The base terminal was 

grounded as well as the collector terminal while the emitter terminal was swept by a bias 

ranging from 0 V to -1 V. The measurements were performed in a Cascade probe station 

using Agilent 4155c parameter analyser which is controlled by Easy express software. The 

Gummel plot, i.e. the plot of IC and IB versus VBE with the currents plotted on a log scale, is 

an exceptionally useful tool in bipolar device characterisation. First, the current gain is 
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defined as the ratio of the collector and the base current. Second, it allows measuring the 

ideality factor which reflects the quality of the emitter base depletion region [26].  

 

Figure 3.14: Measurement set up used to extract the Gummel plot. The collector and base 
contacts were grounded and the emitter contact was swept from 0 V to -1 V. 

3.9 Gummel plot 

Figure 3.15 shows a comparison of the collector current for sSi HBTs, SiGe HBTs and Si BJTs. 

The SiGe HBTs exhibits a higher collector current compared with Si BJTs, as has been 

reported by others [27, 28]. However, the collector current in the sSi HBTs is  increased 

considerably compared to both devices. The equation (3.1) represents the collector current. 

    
        

 

    
   

    

  
 (3.1) 

Where   is the electronic charge,   is the device area,     is the diffusion coefficient of 

electron in the base,    is the base width,    is the acceptor concentration in the base,     

is the base-emitter voltage,    is Boltzmann’s constant and    
  is the intrinsic carrier 

concentrations in the base and it is given by the equation (3.2). 

    
           

    

  
 (3.2) 

Where,     and     are the density of states in the conduction and valence bands in the 

base layer, respectively.    is the band gap of the base layer. Inserting the equation (3.2) 

into (3.1) leads to equation (3.3). 

         
    

  
 
         

    
     

    

  
  (3.3) 



Chapter 3. Electrical & material characterisation of sSi HBTs 
 

56 
 

The equation (3.1) shows that the collector current depends on the material properties of 

the base layer. The product        is slightly smaller for the sSi HBTs and SiGe HBTs 

compared with Si BJTs, this suggests a reduction of the  collector current by factor of about 

3 for sSi HBTs and SiGe HBTs [29]; however, there are other important parameters which 

are responsible for the enhancement of the collector current. The most important factor is 

the band gap. The band gap of the base layer decreased from 1.17 eV for the Si BJTs to 1.04 

eV for the SiGe HBTs and 0.94 eV for the sSi HBTs [30]. Moreover, according to the SIMS 

data, the Boron profile in the sSi HBTs base layer is sharper compared to SiGe HBTs, this 

results in a small WB for sSi HBTs compared to other devices, similarly WB for SiGe HBTs is 

small compared to Si BJTs. A smaller WB further enhances the IC. The local small peak in the 

Ge concentration close to the collector shown in Figure 3.3 acts as an accelerating field that 

increases IC for sSi HBTs. The conduction band in both the SiGe HBTs and the sSi HBTs 

exhibits a discontinuity at the base-collector junction; this discontinuity causes a reduction 

in IC. The conduction band discontinuity is slightly smaller for the sSi HBTs compared to SiGe 

HBTs. In conclusion, the exponential dependence of the collector current on the band gap, 

together with the smaller band gap of the base layer for the sSi HBTs, suggests that the 

band gap is the important factor which results in a high IC. 

Figure 3.16 shows that the base current for the SiGe HBTs and the Si BJTs is the same. 

However, the sSi HBTs exhibits a slightly higher base current. The equations (3.4) and (3.5) 

describe the base current and the intrinsic carriers, respectively.  

    
        

 

    
   

    

  
 (3.4) 

Where   is the electronic charge,   is the device area,     is the diffusion coefficient of 

holes in the emitter,    is the emitter width,    is the donor concentration in the emitter, 

    is the base-emitter voltage,    is Boltzmann’s constant and    
  is the intrinsic carrier 

concentrations in the emitter and it is given by the equation (3.5). 

 

 

 

   
           

    

  
    

 

(3.5) 
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Where,     and     are the density of state in the conduction and valence bands in the 

emitter layer, respectively.    is the band gap of the emitter layer. Inserting (3.5) into (3.4) 

leads to equation (3.6). 

 
         

    

  
 
         

     
     

    

  
  (3.6) 

According to the equation (3.6), the base current is inversely proportional to the band gap 

of the emitter layer    . The sSi HBT is formed from a relaxed SiGe (collector), a compressed 

SiGe (base) and a tensile strained Si, which serves as the emitter. The strained Si has a 

smaller band gap compared with relaxed Si which increases the intrinsic carrier 

concentration [31, 32]. This results in the sSi HBTs having a higher base current compared 

with the other devices. The emitters in both the Si BJTs and the SiGe HBTs are formed from 

relaxed Si. 

  

Figure 3.15: Collector current for sSi HBTs, SiGe HBTs and Si BJTs @ VBC =0 V. WE=1 µm and 
LE=10 µm. 
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Figure 3.16: Base current for sSi HBTs, SiGe HBTs and Si BJTs @ VBC =0 V. WE=1 µm and 
LE=10 µm. 

3.10 Current gain  

The current gain is calculated from the ratio of the collector current and the base current. 

Figure 3.17 shows a plot of current gain  as a function of base-emitter voltage VBE at VCB=0. 

It is plotted on a logarithmic scale and shows that the maximum value of is 3700, 334 and 

135 for the strained Si HBTs, SiGe HBTs and Si BJTs respectively. This represents an 

improvement in the gain of the sSi HBTs by 11x compared with the conventional SiGe HBTs 

and an improvement of 27x compared with the conventional Si BJTs. Figure 3.17 also shows 

that the maximum current gain is achieved at lower VBE for the sSi HBTs. In other words the 

amplitude of the input signal needed for the sSi HBTs in order to operate (at maximum β) is 

low compared to the other devices. This advantage makes sSi HBTs ideal for amplifier 

circuits. 



Chapter 3. Electrical & material characterisation of sSi HBTs 
 

59 
 

 

Figure 3.17: Current gain vs. VBE for sSi HBTs, SiGe HBTs and Si BJTs. 

3.11 Ideality Factor 

The ideality factor is an important parameter that reflects the mechanisms behind the 

collector and base currents. Figure 3.18 shows the flow of electrons and holes in a bipolar 

transistor in the common-emitter configuration. As the electron leave the emitter some 

inevitably recombine with holes in the emitter-base junction (A), remaining electrons diffuse 

toward the collector, however small amount of the electrons recombine before reaching the 

collector-base depletion region (B). Negligible recombination can occur in this region 

because the high electric field.   For the base current, the holes are injected from the base to 

the emitter, part of these holes recombines in the emitter- base junction (C). The remaining 

holes diffuse to the polysilicon emitter. In ideal operation, the drift and diffusion 

mechanisms should be predominating and therefore the ideality factor is equal to 1. The 

ideality factor of the collector current is found to be equal to 1 for all devices, 

demonstrating that the diffusion mechanism is causing the collector current. The ideality 

factor for the base current is 1.4 for the strained Si HBTs, 1.2 for the SiGe HBTs, and 1.4 for 

the Si BJTs. It is almost very difficult to achieve base current with ideality factor of 1; this is 

because the imperfection and impurities in the bulk and at the interfaces [33]. 
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Figure 3.18: Current component in an NPN bipolar transistor operating in the common-
emitter mode. 

3.12 Emitter-base diode 

Figure 3.20 presents the emitter-base characteristic. In the forward bias regime, three 

regions can be observed. In the first region (A), the current is higher than expected; this is 

caused by a recombination of the carriers which particularly occurs in the depletion region. 

Since this contribution to the current is small it can be seen only at low current. In the 

region (B) the current is mainly caused by the diffusion of the minority carriers. The third 

region (C) shows current saturation; this saturation is caused by the series resistance [34]. 

The emitter-base diode associated with the sSi HBTs device exhibits a high current 

compared with the emitter-base diodes of the other devices; also the diode associated with 

the SiGe HBTs shows a high current compared with a Si-based diode (Si BJTs). This increase 

of the current is due to incorporation of the Ge in the anode (base layer) which causes an 

enhancement in the intrinsic carrier concentration [35].  

When the electric field across a reverse-biased p-n junction approaches 106 Vcm-1, the n-

side conduction band appears opposite to the p-side valence band as shown in the Figure 

3.19. This is lead to a significant current flow caused by tunnelling of electrons from the 

valence band of the p-type region into the conduction band of n-type region. The tunnelling 

current density is given by equation (3.7) [36]. 
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Figure 3.19: Schematic illustration band-to-band tunnelling in p-n junction under reverse 
bias. 

       
    

     

       
        

       
   

    
  

 
   (3.7) 

Where   the electronic charge, me is is the electron mass,   is the electric field,    is the 

band-gap and  is the reduced Planck’s constant. 

This equation suggests that reduction of the band-gap should lead to an increase in the 

tunnelling current. This is consistent with Figure 3.20, which shows that the base-collector 

diode associated with the sSi HBTs exhibits the highest current since the band gap of the 

SiGe reduces with the increase of the Ge content [37].  

 

Figure 3.20: Emitter base diode characteristic. 
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3.13 Collector base diode 

Figure 3.21 illustrates the base-collector diode characteristic for all devices. The base- 

collector diode associated with the Si BJTs and SiGe HBTs exhibit similar characteristics 

except at high voltage (over 0.8 V), where the base-collector diode associated with the SiGe 

HBTs is higher. For the sSi HBTs base-collector diode, the high forward current is due to the 

high intrinsic carriers concentration associated with the SiGe layer. The ideality factor is 

highest for the sSi HBTs base-collector diode and lowest for Si BJTs base-collector diode. 

This is most likely due to the larger number of defects in the strained Si HBTs, associated 

with the SRB [38]. Under reverse bias the sSi HBTs base-collector diode shows a high 

tunnelling current; this is due to the low band gap of the SiGe layer.  

 

Figure 3.21: Collector-base diode characteristic. 

3.14 Common emitter characteristic 

The sSi HBTs exhibit a high collector current which results in high power dissipation. This 

power is translated into heat, mainly in the base collector depletion region, where the 

current and the electrical field are high [39]. The thermal conductivity of the SiGe layer is 

known to be small compared to Si [40]. The high power dissipation and the low thermal 

conductivity of SiGe in the SRB result in an excessive increase of the temperature. The high 

temperature causes a strong lattice vibration which decreases the electron/hole mobility 

leading to a reduction in the collector current as shown in Figure 3.22 [41]. This effect is 

recognized as being due to self-heating. The strained Si MOSFET on SRB is also known to 
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exhibit this phenomenon [42, 43]. However, self-heating can be reduced using thin instead 

of thick SRB [44]. 

A comparison of the common-emitter characteristics for sSi HBTs, SiGe HBTs and Si BJTs at 

IB= 3µA is shown in Figure 3.23. The collector current in the sSi HBTs is 7x larger than in the 

SiGe HBTs and 22x larger than in the BJTs at a collector-emitter voltage of VCE = 1 V. Clearly, 

Si BJTs and SiGe HBTs do not exhibit self-heating. If the self-heating in the sSi HBTs were to 

be reduced, then the enhancements in IC would be even larger. Figure 3.24 and Figure 3.25 

represent the common characteristics for SiGe HBTs and Si BJTs. No effect of self-heating 

was observed. The extracted Early voltage (VA) for the Si BJTs and SiGe HBTs were 6.0 V and 

1.6 V, respectively. The reduced VA is due to the base modulation.  

 

Figure 3.22: Collector current IC vs. VCE (transfer characteristics) for the sSi HBTs. 

 

Figure 3.23: Comparison of the collector current IC VS. VCE for sSI HBTs, SiGe HBTs and Si 
BJTs. 
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Figure 3.24: Collector current IC vs. VCE (transfer characteristics) for the SiGe HBTs. 

 

Figure 3.25: Collector current IC vs. VCE (transfer characteristics) for the Si BJTs. 

3.15 Break down voltage 

The breakdown mechanisms (Avalanche & Tunnelling) of a bipolar transistor are similar to 

that of a PN junction. Since the base-collector junction is reversed biased, it is this junction 

where breakdown typically occurs. Just like for a PN junction, the breakdown mechanism 

can be due to either avalanche multiplication or tunnelling. Since the doping of the collector 

in these devices does not exceed 1018 cm-3, the breakdown phenomenon is dominated by 

avalanche multiplication. The electric field in the space-charge region of the collector base 

junction is large. Electrons injected from the emitter drift to the collector through the 

collector base space-charge region. For a sufficiently high electric field, electrons can gain 

enough energy from the electric field to create an electron-hole pair upon impact with the 

lattice. This carrier generation process is known as “impact ionization”. Electrons and holes 

generated by impact ionization can subsequently acquire energy from the strong electric 
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field, and create additional electron-hole pairs by further impact ionization [45]. This 

process of multiplicative impact ionization is known as “avalanche multiplication”. This 

breakdown is not destructive. However, the high voltage and rapidly increasing current do 

cause large heat dissipation in the device, which can cause permanent damage to the 

semiconductor. The Figure 3.27 (a) illustrates the circuit used to measure the BVCB0, the 

base-collector junction is reversed biased while the emitter is open circuit.  

 

Figure 3.26: Phosphorus, Boron and Ge Box profile for SiGe HBTs. The collector-base 
junction is located deep in the Si Collector layer. 

The Figure 3.26 shows the SIMS profile for SiGe HBTs. The collector-base junction is located 

deep in the Si collector layer and even at high reversed biased collector-base junction; the 

depletion region will still be allocated at the Si layer. Thus impact ionization occurs mostly in 

the Si region, resulting in the BVCB0 being equal for Si BJTs and SiGe HBTs (6.6 V), as shown in 

Figure 3.28. However, the breakdown voltage BVCB0 is 7.2 V for sSi HBTs, which is higher 

than both SiGe HBTs and Si BJTs.   
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Figure 3.27: Circuit used for measuring BVCB0 (a) and BVCEO (b) 

The BVCEO, measured at base open (Figure 3.27 (b)), were found to be 2.5, 2.7 and 4.5 V for 

sSi HBTs, SiGe HBTs and Si BJTs, as illustrated in Figure 3.29. In this case the avalanche 

breakdown of the base-collector junction is further influenced by transistor action in the 

common-emitter mode of operation, since the holes generated by impact ionization are 

pulled back into the base region which results in an additional component of base current. 

This additional base current causes an even larger flow of electrons through the base and 

into the collector due to the current gain of the device. This current is larger for sSi HBTs, 

since it exhibits the highest current gain, compared to Si BJTs and SiGe HBTs. This larger flow 

of electrons in the base collector junction causes an even larger generation of electron-hole 

pairs which causes the sSi HBTs to have a small BVCEO. The breakdown mechanism prove the 

relationship between the current gain and BVCEO [46]. According to the experimental values 

for the breakdown, the BVCB0 is higher than BVCEO, as reported by others [47]and is 

consistent with equation (3.8) [48]. 

       
     

     
 

  
 (3.8) 

 

The figure of merit ∙BVCEO describes the ability to offer simultaneously high  and high 

BVCEO for given device.[49]. The sSi HBTs exhibited a much higher ∙BVCEO (9250 V) than both 

the SiGe HBTs (900 V) and the Si BJTs (600 V). The ∙BVCEO for sSi HBTs is 15x that of Si BJTs, 

which confirms that sSi HBTs is a good platform for high performance HBTs.  

 

Figure 3.28: Collector-base breakdown voltage with the emitter open circuit BVCBO. 
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Figure 3.29: Collector-emitter breakdown voltage with the emitter open circuit BVCEO. 

3.16 Impact of parameter design space 

 

Figure 3.30: Schematic diagram showing the Polysilicon emitter and the emitter window. 

Figure 3.30 shows the polysilicon emitter region. The low-doped emitter layer was 

epitaxially grown (5∙1017 cm-3). The thickness of the grown layer is 30nm. LTO deposition 

(400nm) followed by etching is used to define the emitter window EW. A polysilicon doped 

by in-situ doping was then deposited. During the RTA step the N type dopant diffuses from 

the polysilicon to form the heavy doped emitter region. The emitter window should be 

cleverly designed since a large EW risks having a direct contact between the N+ emitter 

region and the P+ extrinsic base. This will cause the emitter-base junction capacitance to be 

high [50]. Devices with 0.5 µm, 1 µm, 2 µm and 3 µm have been fabricated to assess the 

impact of EW on the collector and base current of the devices. Figure 3.31 illustrates the 

variation of IC and IB versus EW for all devices at VBE=0.7 V. It is plotted on a logarithmic scale 

and shows that IC and IB increase with increasing EW. Equations (3.1) and (3.4) represent IC 

and IB respectively. The only parameter that appears in both equations is the area A; an 

increase of this parameter leads to an increase of both currents. This suggests that the 

effective area of the device is controlled by EW and not WM the mesa length. For further 

investigation of this finding, two devices with different EW (0.5 µm and 3 µm) were 

simulated in Taurus-Medici.  
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Figure 3.31: Collector and base current for sSi HBTs, SiGe HBTs and Si BJTs vs. EW (LE=1) 

 

Figure 3.32: Current flow line using Taurus-Medici, WE=0.5 µm. 
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Figure 3.33: Current flow line using Taurus-Medici, EW=0.5 µm. 

Figure 3.32 and Figure 3.33 represent the current flow line at VBE=0.8 V and VBC=0 V for two 

devices with 0.5 µm and 3 µm emitter width respectively and the same value of WM. the 

current flow line shows that the actual width of the intrinsic part of the  device depends on 

EW; it is slightly bigger than EW. This demonstrates that the intrisic area of the device is 

proportional to WE. This explains the electrical results presented by Figure 3.31, which 

shows both IC and IB increasing with the increase of EW.  

In order to invistigate the impact of emitter window length LE (perpondiculaire on Figure 

3.34 ) on the performance, Devices were fabricated with different value of LE. Figure 3.36 

illustrates this effect on the performance of all devices. The collector and base current raises 

with the increase of the emitter window length. This indicates that the length of the intrinsic 

area of the device is proportional to the emitter window length. To conclude, the intrinsic 

area of the device is determined by mainly the area of the emitter window. 

While LE and EW were found to have an impact on the devices performance, D1, distance to 

the collector and D2 (Figure 3.35), distance to the base show no clear effect on the collector 

and base current. However these parameters will probably have an impact on the speed of 

the device, since the exitrince capacitance will be affect by the value of D1 and D2.  
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Figure 3.36: Collector and base current for sSi HBTs, SiGe HBTs and Si BJTs vs. LE (EW =2 
µm) 

3.17 Benefit of sSi HBT structure 

The trade-off between the current gain and the maximum frequency of oscillation is an 

important issue in the design of Si BJTs. The current gain is known to be inversely 

proportional to the base doping, as shown in the equation (3.9) [51]; however, a low base 

doping leads to a high base resistance which causes a decrease in the maximum frequency 

of oscillation [52]. The sSi HBTs provides the flexibility to trade off its current gain to 

enhance the maximum frequency of oscillation. 

 
       

       
 (3.9) 

Where     is the diffusion coefficient of electron in the base,    is the emitter width,    is 

the donor concentration in the emitter,     is the diffusion coefficient of holes in the 

emitter,    is the base width and    is the acceptor concentration in the base. 

The compatibility of SiGe HBTs with conventional CMOS fabrication enables high levels of 

integration that make SiGe BiCMOS technology a cost effective solution for many 

applications [53]. However, the integration of SiGe HBTs with the current strained Si/SiGe 

MOSFETS is not possible. Recent theoretical and experimental studies reveal that strained 

Si/SiGe MOSFETs outperform their conventional Si-based counterparts, owing to enhanced 

carrier transport through strained channel layers [54]. Using SRB in the fabrication of sSi 
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HBTs and strained Si/SiGe MOSFET offers the possibility of integrating both devices, leading 

to new improvements in BiCMOS technology.  

3.18 Deviation in the electric performance 

As Semiconductor devices shrink to nanometer design rules, each process margin for 

manufacturing devices becomes tighter and tighter. With the wafer area getting larger 

(300mm wafers), radially dependent process variation is becoming a more serious issue. It is 

well-known how important it is to control and optimize the uniformity during process steps 

such as CMP, photolithography, and etching. It is routinely observed that a lot of process 

variation is radially distributed across a wafer in single wafer manufacturing equipment, 

often resulting in serious device parameter variation and or yield loss near the edge [55]. 

The cross-wafer variation in performance (maximum β) was mapped in order to identify 

whether there was a region of the wafer causing lower performance and also to determine 

the impact of RTA on the current gain. The maximum current gain was measured using an 

Agilent 4155c parameter analyser. The devices were located in the same position (i.e. the 

same size) on the die for all wafers.  

 

Figure 3.37: Wafer map indicating the location of the best performing (highest current 
gain) Si BJTs annealed at 900°C and 925 °C. 
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By mapping the position of the best performing devices (highest current gain), it was found 

that those devices are located at the wafer centre while the poorer performing ones are 

situated on the edge of the wafer. In order to optimise the doping drive-in from the poly to 

the emitter, a batch split was included, with either the 900 °C or a 925 °C anneal for 10s. A 

maximum current gain which is higher than 100 is the criteria used to determine the best 

performing devices among the devices annealed at 900 °C for 10 s. This was not the case for 

devices annealed at 925 °C for 10 s, where the best performing devices are considered to 

exhibit a maximum current gain which is higher than 50. This difference was driven by the 

dissimilarity in the performance between devices annealed at 900 °C and 925 °C. Only 5 

devices were found to exhibit a maximum current gain over 100 among the devices 

annealed at 925 °C. In addition the figure Figure 3.37 shows that the number of failed 

devices is higher in this batch compared to the batch where that RTA was 900 °C. This 

difference in the performance shows the importance of choosing the optimum annealing 

temperature. Rapid thermal-annealing is used to activate the dopant and remove the 

implant damage. This processing step causes redistribution of the dopant, which is 

undesirable.  

 

Figure 3.38: Wafer map indicating the location of the best performing SiGe HBTs annealed 
at 900°C and 925 °C. 
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Figure 3.38 shows the cross-wafer variation for SiGe HBTs annealed at 900 °C and 925 °C. 

The best performing devices for the batch annealed at 900 °C are located in the centre of 

the wafer, while the poorer performing ones are situated at the edge. For the batch 

annealed at 925 °C, the best performing devices are mostly situated in the bottom part of 

the wafer. This suggests that the origin of the degraded performance is likely to be a result 

of processing error since uniform processing tends to result in the best devices located in 

the wafer centre. Also fewer devices are reported to be not working; these devices are 

located in the edge of the wafer. In addition, the figureFigure 3.38 shows that the SiGe HBT 

devices annealed at 900 °C exhibit higher maximum current gain compared to the SiGe HBT 

devices annealed at 925 °C. 

The sSi HBT wafer map in the figureFigure 3.39 shows that the best performing devices in 

the batch annealed at 900 °C were located randomly across the wafer, in contrast, the best 

sSi HBTs devices in the batch annealed at 925 °C are located in the centre. Also, annealing 

the sSi HBTs at 900 °C results in much lower current gain, and a higher number of failed 

devices compared to sSi HBTs devices annealed at 925 °C. This shows that 925 °C is the 

optimum annealing temperature for sSi HBT devices.  

 

Figure 3.39: Wafer map indicating the location of the best performing sSi HBTs annealed 
at 900°C and 925 °C. 
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A histogram of the maximum current gain of all devices (i.e. Si BJTs, SiGe HBTs and sSi HBTs) 

annealed at 900 °C and 925 °C is shown in the figure Figure 3.40. The cross-wafer uniformity 

is reasonable even for the sSi HBTs devices. The 900 °C split exhibited better cross-wafer 

uniformity. 

 

Figure 3.40: Histogram of the current gain for Si BJTs, SiGe HBTs and sSi HBTs annealed at 
900 °C and 925 °C. 

However, the 925 °C split shows higher maximum current gain for sSi HBTs. The histogram 

in the figureFigure 3.41 shows that for the 925 °C split, over 40 % of the measured sSi HBTs 

devices exhibit a maximum current of over 3500 , this percentage is as small as 0.06 % for 

the sSi HBTs annealed at 900 °C. For Si BJTs, over 60 % of the devices annealed at 900 °C 

show a maximum current gain which is higher than 100, this percentage has decreased to 

17 % for Si BJTs devices annealed at 925 °C. 
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Figure 3.41: Histogram of the current gain for Si BJTs, SiGe HBTs and sSi HBTs annealed at 
900 °C and 925 °C. 

3.19 Conclusion 

This chapter has focused on the material and electrical characterisation of sSi HBTs and 

compared the results with the co-processed SiGe HBTs and Si BJTs. Using a strain-relaxed 

buffer to grow strained-Si in the channel has lead to significant improvement in the 

performance of the bipolar transistor. This is the first time that a strained-relaxed buffer has 

been used to improve SiGe heterojunction bipolar transistor, through the increase of the 

amount of Ge incorporated in the base. The target doping level and Ge content were 

confirmed using different characterisation methods, leading to the first experimental 

demonstration of sSi HBTs. The Raman spectroscopy method has been used to examine the 

strain in different layers of all devices. An important outcome is confirmation that the strain 

in the emitter of the sSi HBTs was fully maintained following processing. The sSi HBT has 

improved the possibility of integrating strained Si CMOS and sSi HBTs in one chip. This was 

not possible using SiGe HBTs.  

In addition to the advantages of the structure of sSi HBTs. The electrical characterisation 

shows that this novel device exhibit a maximum current gain of 3700 compared with 334 for 

co-processed SiGe HBTs and 135 for the Si BJTs. Moreover, the maximum current gain is 

achieved at lower VBE for the sSi HBTs, which demonstrates high performance with low 

power consumption of this device. This advantage makes the sSi HBTs ideal for portable 

communications devices since it results in greater battery lifetimes.  
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The low base resistance is an important factor to improve the fmax, also the BVCEO is a vital 

parameter to assess the capability of the device to operate at high voltage. Since there is a 

trade-off between these two factors and the current gain, it is possible to decrease the 

current gain to increase both Rb and BVCEO while maintaining sufficient current gain.  

This chapter has demonstrated good DC performance of the sSi HBTs compared with the Si 

BJTs and the SiGe HBTs. This is the first step towards the fabrication of sSi HBTs optimised 

for RF performance.   
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Chapter 4. 2D simulation study of sSi HBTs 

4.1 Introduction 

The use of TCAD software has experienced a major shift in the last decade. Tools such as 

semiconductor device and process simulators are no longer viewed as research tools 

available only to university scientists and industrial researchers. As powerful workstations 

are easily accessible, device and process simulations have become a routine exercise for 

engineers to conduct the process integration, device analysis, circuit characterization and 

yield optimization. The proliferation of TCAD tools has a significant economical impact on 

the semiconductor industry. First, the shortening of the design-to-manufacture time for new 

products mandates a rapid design cycle for bringing up new technologies. An effective use 

of TCAD tools saves much experimental time for calibrating process and device parameters 

and minimizes the number of the trial-and-error iterations. Second, the skyrocketing cost of 

modern IC fabrication facilities forces engineers to re-evaluate the methodology for new 

technology development. Advanced simulation capability greatly reduces the cost by 

detecting design flaws in the early design stage and achieving optimal solutions through 

parameter calibration. Currently, process and device simulation has established itself as an 

indispensable tool for developing and optimising device and microelectronic process 

technologies in the R&D phase. 

The main outcome of the last chapter is that sSi HBTs exhibit high performance compared to 

SiGe HBTs and Si BJTs.  The outperformance of sSi HBTs has been linked to the Ge content in 

the base, which has enhanced the intrinsic carrier concentration and therefore the collector 

current. In order to validate this explanation, 2D simulations have been performed using 

MEDICI (now available from Synopsys). This tool was chosen because of its capability to 

simulate the changes in physical parameters that occur in the SiGe system i.e. band-gap, 

density of states, electron affinity. The most important part of the simulation is to include 

the right models for the simulated device. In this simulation study, several models have 

been included such as band-gap narrowing, concentration dependent mobility, thermionic 

field emission.  A discussion of the important of these models is also presented. 
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4.2 Physical model  

Numerical analysis based on the fundamental equations governing semiconductors has 

become necessary in IC technology development, and is often referred to as "device 

simulation”. MEDICI is part of a technology computer-aided-design (TCAD) package, which 

includes process simulation, device simulation, and parameter extraction programs[1]. The 

use of a device simulator or TCAD tools in general, requires substantially more knowledge of 

the internal workings of the simulator than the use of, say, a circuit simulator such as SPICE. 

For instance, users must choose which mobility model to use, which statistics (Fermi-Dirac 

or Boltzmann) to use. The default physical models are usually the simplest ones, and often 

give inaccurate results, particularly for advanced device technologies such as SiGe. 

As was mentioned earlier, choosing the right model in the simulation is fundamental in the 

calibration process. Each device has its own mobility model that is suitable to its operation 

method. Mobility is a measure of the time interval between collisions for a carrier moving 

through a semiconductor lattice. The two most important collision mechanisms in bipolar 

transistors are lattice and impurity scattering, and the total mobility is given by the sum of 

the probabilities of collision due to these individual mechanisms. Lattice scattering is caused 

by collision between carriers and the atoms of the semiconductor lattice. These lattice 

atoms are displaced from their lattice site by thermal vibration, since thermal motion 

increases with temperature, the mobility decreases with temperature. However, as the 

doping concentration increases beyond 1015 cm-3 - 1016 cm-3, which is the case in bipolar 

transistors, the lattice scattering mechanism becomes less important and impurity 

scattering becomes the major factor in defining the carrier mobility.  

The impurity scattering is caused by collisions between carriers and impurity atoms in the 

semiconductor lattice. An increase of doping will increase the number of collision which will 

lead to further decrease in the mobility. This impact has been confirmed by experiment and 

was reported for different semiconductors such as Si, Ge and GaAs [2, 3]. Therefore, it is 

important to choose the mobility model that reflects the impact of the impurity (doping) on 

the mobility. The model chosen was the Concentration Dependent Mobility model and it has 

been added to the simulation by adding the term CONMOB to the model statement. 
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In lightly doped semiconductors, the dopant atoms are sufficiently widely spaced in the 

semiconductor lattice, therefore it is reasonable to assume that the dopant atoms have little 

effect on the perfect periodicity of the semiconductor lattice and therofore on the edge of 

the valence and conduction bands. However this is not true at heavy doping, where the 

dopant can perturb the perfect periodicity of the semiconductor and reduce its band-gap. 

This effect is known as band-gap narrowing. The important effect on the operation of 

bipolar transistors is that it affects the intrinsic carrier concentration as illustrated by the 

following equation [4]: 

            
     

   
   (4.1) 

where ni is the intrinsic carrier concentration at low doping levels, nie is the intrinsic carrier 

concentration at high doping level and ∆EG,H is the band-gap narrowing caused by the 

doping. Various band-gap narrowing models have been developed for use in bipolar 

transistor simulation. However, the Slotboom BGN model is the most widely used band-gap 

narrowing model. This model has been implemented in nearly every major commercial 

device simulator, including MEDICI [5]. The following equation represents Slotboom model: 

                
 

  
      

 

  
 
 

    (4.2) 

With ∆EG,L=6.92 meV, 1.3×1017 cm-3 and C=0.5 and N is the doping level.    

It is important to mention that based on the above equation the band-gap narrowing in 

Silicon will occur at doping levels which are higher than about 1.3×1017 cm-3. Since the 

doping level in the device is higher than this value, then it is important to include this effect 

for an accurate simulation [6]. 

It is obvious that the incorporation of Ge into Si bipolar transistors, to produce SiGe HBTs 

and sSi HBTs, has improved the performance of bipolar technology. However, it leads to 

more defects present in the device. These defects cause energy states to be introduced into 

the forbidden gap. These energy states act as a stepping stones for the generation and 

recombination (G-R) of electrons and holes. As was reported in chapter 3, the ideality factor 

of the base current at low voltage (VBE <0.4 V) is higher than 1. This increase of the ideality 

factor is caused by the generation recombination phenomenon. Therefore, the AUGER and 
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CONSRH models have been used to account for the generation–recombination processes, 

which are only important for the base current at low base voltages (VBE < 0.4 V). 

Generally, drift and (or) diffusion mechanism are responsible for the transport of electrons 

and holes in semiconductor. However, this is true only in continuous media (in the absence 

of band discontinuity). The energy bands in both the SiGe HBTs and the strained Si HBTs 

exhibit a discontinuity at the base-collector junction. The electrons must pass this 

discontinuity through thermionic-field emission or tunnel phenomenon. Therefore, 

including these phenomena in the simulation is necessary.  

4.3 Impact of band-gap discontinuity 

The use of energy-gap variation beside electric field to control the force acting on electrons 

and holes results in greater design freedom. This leads to higher heterostructure 

performance for microwave and high-speed circuit applications. For abrupt heterojunction 

bipolar transistors (HBTs), the carrier transport across the heterojunction is controlled by 

thermionic emission and tunnelling, unlike transport in continuous media, which is 

governed by drift and diffusion mechanism. Using compositional grading when moving from 

one side of the junction to other, leads to a reduction of the discontinuity in the energy 

band. This reduction results in an improvement of the current gain [7]. 

The band-gap of SiGe is known to be inversely proportional to the amount of the Ge. 

However, there are other factors that can also lead to this reduction such as strain and high 

impurity concentration. 

As was mentioned earlier, the difference in the band-gap of the material results in the 

creation of a band-gap discontinuity. The conduction band in both the SiGe HBTs and the sSi 

HBTs exhibits a discontinuity at the base-collector junction as shown in Figure 4.1.   

 

Figure 4.1. Conduction band discontinuity at the collector-base junction 
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The conduction band discontinuity causes a potential barrier which electrons must 

overcome through thermionic-field emission (TFE) and tunnelling. This barrier dramatically 

reduces the effective saturation velocity (veff) of the carriers at the base-collector interface 

[8]. In the presence of such a discontinuity in the conduction band, the saturation velocity 

can be expressed as follow [9].  

      
   

      

      
    

  
  (4.3) 

where A* is the Richardson’s constant and r is a fitting parameter  (r < 1), ∆EC is the 

conduction band discontinuity, NC is the conduction band effective density of states and NV 

is the valence band effective density of sates. The degradation of the current gain β due to 

this barrier can be minimised by grading the germanium concentration at the base-collector 

junction [10].  The impact of the discontinuity on the collector current can be seen in the 

equation (4.4).  

     
    

    
   

   

 
    
      

 
  

 
 

        
   
     

 (4.4) 

 

where Na is the doping variation through the base,  niB is the intrinsic carrier concentration 

in the base, DnB is the electron diffusion coefficient in the base, WB is the base  width. It can 

be seen from equation (4.4) that the impact of the conduction band edge discontinuity is to 

reduce the collector current IC by reducing νeff.   

Although, the difference in the band-gap is the source of the conduction and the valence 

band discontinuity, there are different models which predict the value of these 

discontinuities based on the difference in the band-gap. The most basic model which used 

by MEDICI, is given by the following equations: 

        (4.5) 

Where ∆EC is the conduction band discontinuity and ∆χ is the difference in the electron 

affinity of the two layers forming the heterojunction. 

The valence band discontinuity is calculated using the following equation 
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              (4.6) 

where ∆EV is the valence band discontinuity. 

The conduction and valence band discontinuities used in the simulation were found in Ref 

[11, 12][11, 12][11, 12][11, 12][11, 12][11, 12]. The corresponding heterojunction band 

alignments were adjusted by the electron affinities χ, taking the affinity of the relaxed SiGe
 

collector layer as a reference for sSi HBTs and the relaxed Si layer as reference for SiGe HBTs. 

Figure 4.2 and Figure 4.3 illustrate the importance of including this model into consideration. 

The important information to emerge from these figures is that neglecting the conduction 

band discontinuity leads to an overestimation of the collector current. 
    

 

Figure 4.2: Comparison of simulated IC–VBE characteristics when the conduction band 
discontinuity is included and not included for sSi HBTs. When it is not included, there is an 

over-estimation in the collector current. 
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Figure 4.3: Comparison of simulated IC–VBE characteristics when the conduction band 
discontinuity is included and not included for SiGe HBTs. There is an overestimation in the 

collector current, when it is not included. 

4.4 Impact of the Polysilicon emitter 

Bipolar transistors with a very low intrinsic base resistance are desirable for analogue 

applications [13]. Increasing the base doping can be used to reduce the intrinsic base 

resistance; however such a solution will lead to a reduction in the current gain. The 

polysilicon emitter is known to increase the current gain (by reducing the base current), so it 

is possible to reduce the base resistance while having high current gain.  

A number of previous studies have reported that, compared to conventional bipolar 

transistors, improvements in the current gain that ranged between factors 3 and 30 were 

obtained [14]. The enhancement of the current gain depends on the surface treatment 

being used before the deposition of the polysilicon. The wet chemical clean (which has been 

used in the fabrication of these devices) was reported to increase the current gain five times 

higher than that of the HF treatment (dip etching in hydrofluoric acid prior to polysilicon 

deposition) [Analytical Model and Current Gain Enhancement of Polysilicon-Emitter Contact 

Bipolar Transistors].  

The physical mechanisms that control the base current have been extensively investigated []. 

It has been established that the injection of minority carriers into a polysilicon emitter is 

controlled by a number of complex processes: hole transport and recombination in the 

monocrystalline region (emitter), hole transport across the polysilicon/silicon interface and 
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hole transport/recombination in the polycrystalline region. The transport across the 

interface has actually been more thoroughly studied, and different models have been 

developed. This is in part due to the fact that the physical structure of the interface is very 

sensitive to process condition. These mechanisms have been summarized in four basic 

models that have different predictions with respect to a decrease in the base current and an 

increase in the current gain. The first is termed the “oxide tunnelling model” and explains 

the improved current gain by tunnelling through a thin interfacial oxide layer. This layer 

suppresses minority carrier hole injection from the base into the emitter [15] . The second is 

termed the “grain boundary mobility model” and explains the improved current gain by 

reduced mobility at the grain boundaries in the polysilicon and at the pseudograin boundary 

at the polysilicon/silicon interface. The third is termed the “segregation model” and explains 

the improved current gain by the presence of a potential barrier at the polysilicon/Silicon 

interface due to dopant atom segregation. The fourth is called the “heteroemitter-like 

model”. This latter considers the polysilicon/silicon interface as a wide-bandgap material 

which can limit minority carrier transport from silicon to polysilicon, therefore increasing 

the current gain [14]. In conclusion, all these models report that the concentration of holes 

injected from the emitter to the polysilicon is reduced therefore the concentration of holes 

which reachs the emitter contact is small when using the polysilicon. Figure 4.4 illustrates 

the hole distribution in a polysilicon emitter with an interfacial layer, and for comparison the 

hole distribution in a single crystal emitter. 

 

Figure 4.4: The hole distribution in the polysilicon and silicon crystalline. 
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The challenge when using MEDICI to simulate polysilicon bipolar transistors with a 

polysilicon region is that the simulator treats the polysilicon as single crystal silicon, in terms 

of material properties). Therefore it is not possible to include the polysilicon effect in the 

simulation result. In order to take account of the impact of the polysilicon, the hole mobility 

and life time have been reduced in this region. The base current has been simulated for 

different value of the hole mobility in the polysilicon region (Mobility 1 (50 m2/(V.s)) < 

Mobility 2 (30 m2/(V.s) < Mobility 3 (10 m2/(V.s)). Figure 4.5 shows that a reduction of the 

hole mobility in the polysilicon region leads to a decrease in the base current. This can be 

explained using Einstein relation between the mobility and diffusivity and also the base 

current equation. 

 

Figure 4.5: Impact of the hole mobility in the polysilicon region on the base current. 

4.5 Impact of Recombination 

The base current is determined by the diffusion of the holes in the emitter region and for 

this reason is termed diffusion current. It is well known that the value of the ideality factor 

for diffusion current is 1 [16]. In reality, the base current results from diffusion and 

recombination process. This latter process occurs in the intrinsic and extrinsic part of the 

device. The base current which results from the recombination in the intrinsic device (the 

bulk and the space charge) is usually proportional to the device area. However, the base 

current; which is due to recombination in the extrinsic region, depends on the device layout. 

HBTs designed for high speed applications have a smaller size to improve the RF 

performance. Thus, the extrinsic base current becomes significant for those devices [17]. 
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The current which results from recombination (in the depletion region) is known to have an 

ideality factor which is higher than 1. This is illustrated in figure 3.17 in chapter 3 which 

shows the base current for all devices (i.e. Si BJTs, SiGe HBTs and sSi HBTs) is high at low 

base-emitter voltage. In the calibration process, it important to include the recombination 

model, so that the simulation and experimental results agree. Figure 4.6 illustrates the 

impact of the recombination model on the base current. This figure shows that in the case 

where the recombination models are included, the base current has an ideality factor which 

is higher than 1. In the absence of these models the base current has an ideality factor of 1 

 

Figure 4.6: Impact of the recombination phenomenon on the base current. 

In this simulation study, two recombination models have been used; AUGER and CONSRH.  

The AUGER recombination is a process that is involves three particles: an electron and a 

hole, which recombine and give off the resulting energy to another electron or hole. This 

process is described by the following equation 

                                    
   (4.7) 

 

Where 

 
              

 

   
          (4.8) 
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and               
 

   
          (4.9) 

where p is the local hole concentration, n is the local electron concentration, nie is the 

intrinsic carrier concentration, T is the temperature and AUGN, DN.AUGER, AUGP, and 

DP.AUGER are constants, The CONSRH recombination is described by  

      
      

 

             
     

                  
      

    
 (4.10) 

Where ETRAP represents the difference between the trap energy level and the intrinsic 

Fermi energy, τp is the hole lifetime and τn is the electron lifetime. τn is given by 

 
     

  
       

      

     
     

      

     
 
  

 (4.11) 

And τp is given by 

 
     

  
       

      

     
     

      

     
 
  

 (4.12) 

Where Ntotal is the total doping concentration and AN, BN, CN, NRSHN, EN, AP, BP, CP, 

NRSHP, and EP are constants. The total recombination rate is 

               (4.13) 

The comparison between experimental and simulated results for the Si BJT, SiGe HBTs and 

sSi HBTs are shown in Figure 4.7, Figure 4.8 and Figure 4.9, respectively.  

 

Figure 4.7. Comparison between the simulation and experiment for base current (Si BJTs). 
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Figure 4.8. Comparison between the simulation and experiment for base current (SiGe 
HBTs). 

 

Figure 4.9. Comparison between the simulation and experiment for base current (sSi 
HBTs). 

It is clear that there is a difference between the simulation and the experimental result at 

low base-emitter voltage, this difference is high in sSi HBTs compared to SiGe HBTs and the 

Si BJT. Achieving exact agreement between simulation and experiment at low emitter-base 

voltage is difficult. The circuit designer tends to use the devices in the linear region where 

the diffusion is the dominant mechanism. It is extremely difficult to achieve a total 

agreement between the simulation and experiment results at low emitter-base voltage 

because the defects that are responsible for the generation-recombination current can be 
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located in different part of the device (, SiO2 surface, depletion region etc.) and more 

importantly they are situated in different energy level. 

4.6 Ge Profile and SIMS profile 

In recent years, the most exciting development beyond the double polysilicon bipolar 

transistors is perhaps the SiGe heterojunction bipolar transistor. The first successful SiGe 

base transistor was made using an MBE process to form the SiGe layer [18]. The band-gap 

engineering by the introduction of Ge in the base of silicon bipolar transistors results in an 

improved performance of these devices with only a modest increase in process complexity. 

The smaller band-gap of the SiGe HBTs exponentially increases the amount of minority 

carriers in base, thus causing an increase in the collector current for the same forward bias. 

[19]. Equation (4.14) illustrates the exponential dependence of the intrinsic carrier density 

in the SiGe base layer on the band-gap.  

    
               

    

  
 (4.14) 

Where NCB in the conduction band effective density of state, NCV is the valence band 

effective density of state and EgB is the band-gap of the base layer. 

Equation (4.15) presents a comparison between the intrinsic carrier concentration in the Si 

and SiGe. 

    
              

        
    

  
 (4.15) 

 

Where   
            

          
 (4.16) 

 

    △EgB is the reduction of the band-gap caused by the Ge. While the factor    
    

  
 is 

equal 151 for SiGe HBT, it is over 103 for sSi HBTs. This shows that the reduction in the band-

gap is the primary factor behind the enhancement of the current gain; therefore great care 

must be taken when defining the Ge profile for calibration purposes. In reality, the equation 
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which shows the density of the intrinsic carriers is valid in the case of a Ge box like profile 

which is the Ge profile used in the SiGe HBTs. However the Ge profile for the sSi HBTs is 

more complex. Figure 4.10 presents different Ge profiles that are used in SiGe HBTs devices. 

 

Figure 4.10: Different type of Ge profile (Box, Trapezoidal and Triangular) that can be used 
in bipolar technology. 

Equation (4.17) represents the intrinsic carrier density, this equation can be used for any Ge 

profile i.e. box, triangular and trapezoidal.  

      
             

          
          

  

 

   
    

       

  
 (4.17) 

 

                              (4.18) 

The parameter ΔEgB (X = WB) and  ΔEgB (0) correspond to the reduction in the band-gap of 

the base layer due to the Ge content present in the base region at the base-collector 

junction and the emitter-base junction, respectively. The parameter X represents the 

position of the peak of the Ge profile in the base. The triangular profile is represented by 

X=WB, while X=0 corresponds to a box profile. The box profile introduces a high intrinsic 

carriers and therefore high current gain compared to the triangular profile. This latter 

introduce an electric field in the base, which greatly speeds up the transport of carriers 

across the base region [20]. 

The discussion above shows the base intrinsic carrier density is strongly influenced by the 

profile of Ge. This highlights the importance of the Ge profile in the calibration process and 
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proves that it (Ge profile) should be identical (as much as possible) to the actual Ge profile 

obtained from SIMS data.  

Figure 4.11 presents a comparison of the experimental Ge profile and the Ge profile used in 

the simulation.  The Ge profile is formed by two trapezoidal profiles. Each one can be 

modelled as a box and a triangular profile. It is clear that the Ge profile used in the 

simulation is close to the Ge profile extracted from the SIMS data. This will result in having 

an accurate intrinsic carrier density in the base and also take the internal electric field 

(caused by the triangular profile) into consideration. 

 

Figure 4.11. Comparison between the SIMS and the simulation Ge profile. 

The Ge profile was divided into different regions where the band-gap of each region was set 

to a specific value based on the Ge content and profile. The values of the band-gap were 

extracted from the work presented in [11]. The development of a Ge profile which nearly 

the same as the experimental profile comes with a cost; which is the use of very dense mesh 

in the base region, which therefore minimises the number of nodes available for the rest of 

the device simulation. In order to deal with this requirement, a very dense mesh was used 

only in the most important part of the device. 

The band-gap has a fundamental impact on the collector current. However, there are also 

less important factors that should be included for accurate simulation. The conduction and 

the valence band-density of states are smaller for SiGe compared to Si. This leads to a small 

intrinsic carrier density and therefore reduction of the collector current for both SiGe HBTs 
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and sSi HBTs. however the impact of the conduction and the valence band density of states 

is small compared to the impact of the band-gap. In order to perform an accurate simulation 

the values of the conduction and the valence band density of states for SiGe layer were 

taken in consideration [12].  

Another important parameter in the simulation is the doping profile. Since the base layer of 

all devices has a different amount of Ge, therefore it is expected that the boron profile will 

not be the same for all devices. This is because the Ge reduces boron diffusion [21]. The 

SIMS data was considered to develop the doping profile for the simulation of all devices. 

4.7 Self-heating 

The sSi HBTs exhibits high collector current density, which results in high power dissipation 

as illustrated by the following equation. 

           (4.19) 

Where PS is the power consumption, JC is the collector current density, VCE is the collector-

emitter voltage and A is the device area. This power is translated into heat which can lead to 

an excessive increase of the temperature of the device. The difference between the device 

temperature and the ambient temperature is given by the equation 

               (4.20) 

Where Rth is the thermal resistance, TO is the ambient temperature (300K) and T is device 

temperature. Since the thermal conductivity of the SiGe layer is known to be small 

compared to Si, then the temperature of sSi HBTs will be high compared to Si BJTs and SiGe 

HBTs. The high temperature of sSi HBTs causes a decrease of the collector current. This 

phenomenon is called self-heating.  It also occurs in AlGaAs/GaAs HBTs due to low thermal 

conductivity of the GaAs substrate [22].  Alatise et al reported the same phenomenon in 

strained Si MOSFETs on SRB (virtual substrate) [23]. 

Electro-thermal simulation with full coupling between the electrical and thermal equation is 

essential in order to accurately describe the self-heating phenomenon in sSi HBTs. The 

“lattice temperature advanced application” module in MEDICI was invoked, in this 

simulation. This application can describe the self-heating behaviour of sSi HBTs by solving 

the electron and hole energy balance equations consistently with other device equations, 
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the continuity equations for electrons and holes, as well as the electron and hole current 

density equations.  

Equations (4.21) and (4.22) represent the continuity equations for electrons and holes, 

respectively. 

   
  

  
 

 

 
        (4.21) 

 
  

  
 

 

 
        (4.22) 

Where n and p are the electron and hole concentration, respectively. Un and Up are the 

electron and hole recombination rates. 

When the temperature is not taken in consideration, the electron and hole current density 

equations have only two terms, the first one represents the drift phenomena, while the 

second correspond to diffusion. However, this is not enough to model the self-heating. 

Equation (4.23) and (4.24) present the electron and hole current density equation that 

include the impact of the temperature.    

                        (4.23) 

                        (4.24) 

Where μn and μp are the electron and hole mobility, respectively. En and Ep are the electric 

field vectors. 

In this case, the temperature is considered as the variable T (not a constant). The heat 

generation in the semiconductor is modelled using the following equation;    

                (4.25) 

The first and second terms are the Joule heating caused by the flow of electrons and holes 

in the device. Recombination of carriers also releases energy and gives rise to the third term. 

This latter is not important in majority carrier devices such as MOSFETs, since there is little 

carrier recombination. However, it is important in minority carrier devices such as bipolar 

transistors and P-N diodes. The low thermal conductivity of Ge, and therefore of the SiGe is 

known to be the cause of the self-heating phenomenon. In MEDICI, the thermal conductivity, 

which is known to be proportional to the temperature, is given by the following equation 

[24]. 
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                          (4.26) 

Since a model which describes the thermal conductivity of compound materials (SiGe) is not 

available in MEDICI, the parameters have been changed to define the thermal conductivity 

of SiGe. This thermal conductivity is known to be inversely proportional to the Ge content as 

shown in Figure 4.12 [25] 

 

Figure 4.12: Simulation and experiment data for common-emitter characteristic. 

Figure 4.13 shows both the simulation and the experimental data for a common emitter 

characteristic for sSi HBTs. Good agreement between the experimental and the simulation 

result has been achieved at IB=3 uA. Figure 4.14 and Figure 4.15 presents the common-

emitter characteristic for Si BJTs and SiGe HBTs. These figures shows that no self-heating has 

been observed in either device also there is a good agreement between the simulation and 

the experimental result.  



Chapter 4. 2D simulation study of sSi HBTs  
 

99 
 

 

Figure 4.13: Simulation and experiment data for common emitter characteristic. 

 

Figure 4.14: Simulation and experiment data for common emitter characteristic. 
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Figure 4.15: Simulation and experiment data for common emitter characteristic. 

4.8 Limitation of the Si/SiGe system 

Strained Si is considered as one of the leading techniques for improving the mobility of the 

inversion layer and therefore enhancing the performance of MOSFETs. Mainly, there are 

two methods to introduce strained Si into MOSFETs channel; process induced strain (local 

strain) and Substrate-induced strain (global strain). This latter is considered as the most 

effective way to introduce high tensile strain to the channel. It is based on epitaxial growth 

of strained silicon on a relaxed SiGe layer. Because of the lattice mismatch between Si and 

SiGe, the lattice of the Si layer is stretched (strained) in the plane of the interface. This 

deformation breaks the symmetry of the energy band structure and results in band splitting. 

The reduced inter-band/inter-valley scattering and effective masses result in enhanced 

carrier transport in the strained silicon layer that is used as the channel in MOSFETs [26]. 

However, using relaxed SiGe in the fabrication of the strained Si MOSFETs has lead to some 

issues. The self-heating is one of these problems; it is caused by the low thermal 

conductivity of SiGe. More over SiGe usually induces defects, which are known to decrease 

the performance of the device. Looking to the issues caused by SiGe which has been used to 

enhance the mobility, new materials with high mobility are considered to extend the 

performance of the MOSFETs.  Material such as GaAs and Ge are studied with immense 

interest in the fabrication of MOSFETs due to their much higher electron and hole mobility 

compared to the Si. Ming et. al report the fabrication of P-MOSFETs on Ge/ GaAs 

heterostructure. The Ge layer was epitaxially grown on the GaAs by high vacuum chemical 
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vapor deposition. The resultant transistor shows an excellent sub threshold characteristic, 

high ION/IOFF ratio and nearly  1.7 times enhancement of hole mobility over the universal 

mobility curve of Si [27]. 

 

Figure 4.16: Impact of the band gap of the base on the current gain of sSi HBTs. 

Figure 4.16 shows that sSi HBTs will continue to offer high current gain as long as the band 

gap of the base is reduced. This prediction is a result of simulation study that has been 

performed using MEDICI. Although this result looks promising, there are two main 

observations that need to be reported. Adding Ge to the base to enhance the collector 

current and therefore the current gain is not an endless process. More Ge leads to an 

increase of the lattice constant of the SiGe that forms the base. This increase will lead to 

more stress to be introduced in the base since the lattice constant of the SiGe (base) has to 

follow the lattice constant of the SiGe that forms the collector. When the stress in the base 

reaches a certain level, the structure becomes instable and this will lead to the formation of 

misfit dislocation which has a destructive impact (base current with ideality factor over 1 

even at VBE>0.4 V ) on the device performance (full relaxation of the SiGe base layer) [28]. 

The second issue is the increase of the conduction band discontinuity at the collector base 

junction. Adding more Ge to the base cause a reduction of its band-gap, this obviously 

raised the conduction band discontinuity as illustrated in Figure 4.17. The impact of the 

continuous decrease of the band-gap of the base and the increase of the conduction band 

discontinuity is illustrated in Figure 4.16. While the current gain is increased with the 

decrease of the base band-gap, the magnitude of this increase is reduced.    
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Normally, this magnitude should increase exponentially when considering the reduction of 

the base band-gap only, it is important to mention that the increase of the current gain in 

Figure 4.17 correspond to a reduction of the band-gap by a value of 0.1 eV. It is clear that 

the conduction band-gap discontinuity becomes more and more important when the band-

gap of the base reaches certain value.   

 

Figure 4.17: Evolution of the conduction band discontinuity at the collector-base junction 
with a reduction of the band-gap of the base. 

4.9 Ge/GaAs heterostructure system 

The current silicon based semiconductor-oxide devices are approaching their physical and 

technological limits because of aggressive scaling. In the search for material solutions 

alternative to silicon, germanium is gaining considerable interest. Germanium potentially 

offers several advantages with respect to silicon, such as higher electron and hole mobilities, 

lower operating voltages  [29]. Droopad reports the fabrication of Ge p-channel MOSFETs. 

This device exhibits excellent sub-threshold swing of 86 mV/dec and Ion/Ioff ratio greater 

than four orders. Additionally, 1.7 times hole mobility enhancement over the universal 

curve of Si was achieved. GaAs material has been also used in the fabrication of the n-

channel MOSFETs, the resultant device shows high performance compared to all prior n-

channel MOSFETs [30, 31].     

The electron mobility in GaAs is 8500 cm2 V-1s-1 compared to 3900 cm2 V-1s-1 in Ge, this is the 

reason behind the fabrication of n-channel MOSFETs based on GaAs channel. Meanwhile, 

Ge has been used in the fabrication of the p-channel MOSFETs due to its (Ge) high hole 

mobility 1900 cm2 V-1s-1 compared to GaAs (400 cm2 V-1s-1) [3]. 
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It is clear that high mobility is the driving force toward the implementation of Ge and GaAs 

in MOSFET technology. However, these materials can be also used in the fabrication of HBTs 

because of their different band-gap, more over the resultant HBTs could operate at high 

speed due to the high mobility of the Ge and GaAs. Additionally, this will allow the 

integration of Ge/GaAs CMOS and Ge/GaAs HBTs in one chip.  

The band-gap of Ge is known to be equal to 0.66 eV, while it is 1.4 eV for GaAs [2]. It is clear 

that there is a huge band-gap difference between the Ge and GaAs; this will be reflected in 

the intrinsic carrier density in both semiconductors. Figure 4.18 and Figure 4.19 illustrates 

the I-V characteristic of Ge diode and GaAs diode, respectively. Ge diode exhibits high 

current because of the high intrinsic carriers that are available in the Ge material compared 

to GaAs. 

 

Figure 4.18: Current flowing through Ge diode VS Anode-Cathode voltage. 
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Figure 4.19: Current flowing through GaAs diode VS Anode-Cathode voltage. 

Having GaAs in the emitter region and Ge in the base and collector region will result in high 

current gain. However there is another issue which prevent this device from reaching its full 

potential which is the band-gap discontinuities. 

When semiconductors with different band-gap and electron affinities are brought together 

(Ge and GaAs in this case) to form a junction, we expect discontinuities in the energy bands 

as the Fermi levels line up at equilibrium. These discontinuities in the conduction and the 

valence band accommodate the difference in the band-gap between the two 

semiconductors. In an ideal case the conduction band discontinuity is a result of the 

difference in the electron affinity as presented by equation (4.5). Meanwhile the valence 

band discontinuity would be found from the difference between the band-gap and the 

conduction band discontinuity as presented in equation (4.6). 

Figure 4.20 shows spatial variations of the conduction band EC and the valence band EV at 

equilibrium for an NPN Ge/GaAs HBTs. It is clear that the difference between the band-gap 

of Ge and GaAs results in a large valence band-gap offset. This agrees with the theory since 

the affinity of Ge is 4.13 eV and 4.07 eV of the GaAs. Therefore △EC is equal 0.06 eV and the 

valence band discontinuity is given by the following equation. 
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              eV 

(4.27) 

 

 

 

 

Figure 4.20: Energy band diagram for npn GaAs/Ge Profile. 

Carrier transport across band-gap discontinuities is governed by thermionic emission and 

tunnelling, unlike transport in continuous media, which is governed by drift and diffusion 

mechanism. Based on the thermionic emission concept, the electron current density at the 

heterojunction interface can be described as the difference of the two opposing electron 

flux as shown by equation (4.28) [24]. 

      
  

 
     

       
       

   

  
         (4.28) 

Where     
    and     

   is the electron density at both sides of the heterojunction,     is 

the mean electron thermal velocity, q is the electronic charge and ∆EC is the conduction 

band discontinuity and δn is the tunnelling coefficient. 

Considering the above equation, it is also possible to develop an equation for the collector.  

    
           

    
    

                  
           

  
  

 (4.29) 
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Where JC is the collector current density, NE is the emitter doping, VB1 and VB2 are the built in 

potential at both side of the heterojunction, WB is the base width and Dn is the electron 

diffusion in the base.    

Equation (4.29) shows that an increase of the conduction band-gap discontinuity will reduce 

the collector current density. Similarly, it is possible to write the equation of the base 

current density:  

    
           

    
  

  

                  
           

  
  

 (4.30) 

Where Jb is the base current density, νp is the is the mean hole thermal velocity, δp is the 

tunnelling coefficient, WE is the emitter width, ∆EV conduction band discontinuity and Dp is 

the electron diffusion in the base. Equation (4.30) shows that the valence band discontinuity 

will reduce the base current density. 

As was previously stated, MEDICI uses the value of the affinity to calculate the conduction 

band discontinuity, and then use this latter to calculate the valance band discontinuity △EV. 

Therefore by changing the affinity of one of the materials, it possible to tune the conduction 

band discontinuity and therefore the valence band discontinuity. 

 

Figure 4.21: Impact of band-gap discontinuity on collector and base current. 

Figure 4.21 shows the collector and the base current at VBE =1 V for different value of ∆EC. At 

∆EC=0.06 V (∆EV=0.77 V), which is the default value (the first data point from the left), the 
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base current is just over 10-12 uA/um. This is very small amount of current for a HBTs   

operating at VBE =1 V. This current is believed to be a result of leakage mechanism and not 

diffusion. It is known that the base current depends on the minority carrier concentration 

gradient in the emitter as well as the valence band discontinuity. In this case, the hole 

current is subjected to valence band discontinuity, in addition to a low minority carrier 

concentration in the emitter (GaAs). These two reasons explain the small value of the base 

current. Another important result that emerges from this figure is that, the base current 

increases with the increase of △EC (decrease △EV), this is because the potential barrier 

(valence band discontinuity) that holes have to cross is getting smaller. Meantime, the 

collector current is getting smaller because the potential barrier for the electron is 

increasing (△EC increase). The above analysis reflects the importance of band discontinuity 

in the operation of HBTs.  

In practice, the band discontinuities are found experimentally for particular semiconductor 

pairs. For example, in the commonly used system GaAs/AlGaAs, the band gap difference 

between the wider band-gap AlGaAs and narrow band-gap GaAs is apportioned 

approximately 2/3 in the conduction band and 1/3 in the valence band for the 

heterojunction For GaAs/Ge system. There are mainly two types of methods that can be 

used to experimentally extract the band offsets; optical and transport method. Since the 

performance of the heterojunction device is governed by the band offsets then the current 

voltage characteristic can be used to calculate these band offsets. The band offsets values 

that are obtained by the transport method are viewed to be unreliable. This is because the I-

V measurements are not governed by band offsets only but also they are affected by 

intentional doping, quality of the contact, recombination, tunnelling and leakage current. 

This explains the wide scatter in results obtained using this technique for the same system 

[32]. 

Internal photoemission measurement is considered as one of the best optical methods used 

to determine the band offsets. This method can be understood as a process of optically 

induced transitions of mobile charge carriers, electron or hole, from one side to the other of 

a PN junction. When light with photon energy hν ( h is Planck's constant and ν is the 

frequency of the photon), is greater than the barrier height, a photocurrent is generated by 
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photoelectrons excited from one side of the PN junction to the other as illustrated in Figure 

4.22 [33].  

 

Figure 4.22: Photo emission of an electron from one side of the heterojunction to the 
other side. The product hν should be higher than the barrier high, so that the transition 

can take place. 

Table 4.1 summarises some reported values of the valence band discontinuity (GaAs/Ge 

system) and also the extraction methods that have been used to determine these values. It 

is clear that there is a huge difference in the reported values. This is because the band-gap 

discontinuity is affected by the fabrication process of the heterojunction (i.e. temperature, 

quality and method of the epitaxial growth etc.) and also by the extraction method. 

Growth Temperature (°C) Extraction method ∆EV (V) 

500 I-V 0.72+-0.01 

500 I-V 0.5+-0.1 

500 IPE 0.45+-0.04 

Table 4.1: Different value of the valence band discontinuity in Ge/GaAs system [34]. 

Since the development of the heterojunction devices, there has been a lot of work to 

control the band offsets so an improvement of the performance of these devices can be 

achieved.  One of the methods that is used to artificially control these band offsets consists 

of the incorporation of an ultrathin ionized donor or acceptor sheets at the heterojunction 

interface. The electrostatic potential of this "doping interface dipole" is added to or 

subtracted from the potential of the discontinuity. Since the separation between the charge 

sheets is on the order of  the carrier de Broglie wavelength, electrons crossing the interface 

"see" a new band discontinuity (∆EC - eV), where V is the potential of the double layer 
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(Figure 4.23). Using this technique, Capasso et al. demonstrated an artificial reduction of the 

conduction band discontinuity of the order of 0.1 eV in an AI0.25 Ga0.75As/GaAs 

heterojunction. The other approach is compositional grading of the emitter base junction to 

smooth out a large part of the band-gap discontinuities [7]. This method proves great deal 

of importance, since it proves its ability to improve the performance of different HBTs 

devices such as [Si, SiGe] and [GaAs, AlGAs]. In order to apply this approach to GaAs/Ge 

HBTs, there is a need to pseudomorphically grow GaAs1-XGeX alloy.  

 

Figure 4.23. Impact of the doping interface dipole on the conduction band discontinuity. 

4.10 Conclusion 

A 2D simulation study of sSi HBTs has been reported for the first time. For an accurate 

simulation, it was necessary to include different models. High doping levels are known to 

reduce the band-gap of the semiconductor, therefore it is important to include a band-gap 

narrowing model in the simulation. The literature shows that the hole and electron mobility 

decreases with the increase of the doping level. This is a good reason to include 

concentration dependant mobility in this study. The defect characterisation that has been 

presented in the previous chapter has shown the existence of defects in all devices, but with 

different level of concentration. The sSi HBTs have the highest defect concentrations 

compared to SiGe HBTs and Si BJTs. These defects are known to cause 

generation/recombination phenomena, therefore it was important to include generation 

recombination models in this simulation. The conduction band discontinuity at the collector 

base junction has an impact on the performance of both SiGe HBTs and sSi HBTs. The 

thermionic emission field was considered in this work. This is because the carrier transport 

across the band-gap discontinuities is governed by thermionic emission, unlike transport in 

continuous media, which is governed by drift and diffusion mechanism. The Gummel plot 

and also common emitter data that have been obtained by the simulation have shown good 
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agreement with the experimental data. It has been proven also that band-gap engineering is 

the main factor behind the performance of sSi HBTs. MEDICI has been also used to predict 

the impact of reducing the band-gap of the base layer beyond 0.94 eV. The study has shown 

that sSi HBTs will carry on delivering an increase in high current gain. However, this increase 

is not as high as it should be. The analysis has shown that when the band-gap of the base 

reaches certain value, the collector base junction becomes more and more important. The 

new improvements that have been achieved in the fabrication of MOSFETs based on high 

mobility material such as Ge and GaAs have shown the importance of these materials in the 

future of the bipolar semiconductor technology. MEDICI simulator has been used to 

investigate the potential of the HBT based on Ge and GaAs. The results show that such 

devices might have good current gain, however the band discontinuity and more precisely 

the valence band discontinuity is blocking this device from reaching its full potential.  
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Chapter 5. Low Frequency Noise in sSi HBTs  

5.1 Introduction 

The intent of manufacturers is to propose low cost RF devices for communication systems. 

An important parameter of bipolar transistor RF performance is low-frequency noise 

[1].Even though the noise is at low frequencies, it can affect the high frequency 

performance of bipolar circuits, for example, the phase noise in oscillators is related to low 

frequency noise of individual devices [2].  

Oscillators are electronic circuits that produce a repetitive electronic signal, often a sine 

wave or a square wave. The low frequency noise of bipolar devices can be upconverted to 

undesired phase noise in the oscillator. The phase noise is a short-term random frequency 

fluctuation of a signal, it is measured in the frequency domain, and is expressed as a ratio of 

signal power to noise power measured in a 1 Hz bandwidth at a given offset from the 

desired signal. The phase noise in oscillators can limit the channel frequency spacing in 

communication systems [3] and the ultimate Signal-to-Noise ratio (SNR) which can be 

achieved when listening to a frequency modulated (FM) or phase modulated (PM) signal. In 

addition, the phase noise affects the Bit Error Rate (BER) performance of a digital 

transmission system. The low frequency noise is known to affect the performance of the 

mixers since it sets a fundamental limit on the minimum discernible signal level that can be 

received [4].  

The low noise amplifier (LNA) is one of the key components in a typical wireless receiver. As 

the first block in the receiver chain, placed directly after the antenna, it needs to amplify 

received weak signals without adding much noise and distortion. If the internal noise of the 

LNA is high, then the wanted signal will be surrounded by noise which makes the detection 

of the signal difficult [5]. 

In addition, low frequency noise is considered as a very powerful monitoring tool for 

technological process characterisation and device reliability diagnostics. In effect, the 1/f 

noise is a very sensitive indicator of the device quality [6]. Noise measurements have been 

used to characterize deep-level defects and impurities, as well as surface states and hot-
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electron phenomena. Moreover, phenomena such as electron migration in interconnections 

and point contact effects have been characterized using noise measurements [7]. Moreover 

noise has been linked to the time to failure of the sample [8].  

This chapter presents the first noise analysis for sSi HBTs. The measurement set-up used in 

this work is presented and the importance of each element is discussed. The different noise 

mechanisms that exist in the bipolar transistor was presented and linked to its physical 

source. A comparison of the noise performance of sSi HBTs with co-processed SiGe HBTs 

and Si BJTs at fixed base current and collector current is presented. The impact of the low 

frequency noise on phase noise is also discussed. The impact of fabrication is known to have 

a fundamental effect on the noise performance [9], hence the importance to discuss the 

impact of rapid thermal annealing on the noise performance of the device.  

5.2 Measurement set-up 

When measuring low frequency noise, the challenge is to be able to measure the noise 

introduced by the Device under Test (DUT) without the contribution of the rest of the 

system (bias sources, amplifiers etc.). Historically, there have been several approaches on 

how to effectively measure the 1/f noise, based on the use of either a voltage amplifier [10] 

or transimpedance amplifier. The first one is based on the measurement of noise voltage 

drops induced in a resistor and amplified by a low noise voltage amplifier. The second one 

directly converts noise currents into noise voltages through a transimpedance amplifier [6]. 

Such methods enable the determination of the equivalent current noise sources at the 

access of the device (base contact). Figure 5.1 shows a schematic diagram of the 

measurement set-up, which consists of a HP 4155A semiconductor parameter analyser, low 

pass filter, SR570 low noise amplifier (LNA), and Agilent 35670A dynamic signal analyzer 

(DSA).  
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Figure 5.1: Schematic diagram of the measurement set up 

The input bias is accomplished by using the HP 4155A semiconductor parameter analyser. 

When performing noise measurements, great care must be taken to prevent external noise 

from being introduced into the DUT. This is especially important because any noise from the 

bias source will be increased by the gain of the DUT. For this reason a high quality filter is 

used to minimise noise (within the frequency band of interest, above 1 Hz) to flow into the 

DUT from the HP 4155A semiconductor parameter [11].  

 

Figure 5.2: SIB curves illustrating the impact of the filter. 

Figure 5.2 represents the impact of the filter on the spectral noise density SIB. In the absence 

of the filter, the measured noise level is slightly higher compared to the noise level 
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measured with the use of the filter, especially at frequencies over 300 Hz where very high 

noise has been detected (not   to 1/f). The capacitors (of the filter) are able to eliminate 

this excess noise since they behave as a short circuit for high frequency signals. The filter is 

built using metal film resistors, for lowest possible 1/f noise and good quality capacitors, for 

minimum leakage. In the case of a bipolar transistor, 1/f noise is generated in the emitter-

base region. Thus the resistance of the filter should be higher than the base-emitter 

resistance in all bias level otherwise it will be shorted by the filter capacitors [12]. This 

necessity can be explained more by modelling the noise in the transistor using a current 

source in parallel with rbe. Figure 5.3 presents the equivalent circuit of the filter and DUT. 

 

Figure 5.3: equivalent circuit for the filter and DUT 

   
       
        

   (5.1) 

If          (5.2) 

then          (5.3) 

Equation (5.3) shows that the current    will flow through Rout, which means that the noise 

measured at the output of the DUT will be lower than the actual value. This conclusion is 

illustrated in Figure 5.4, which shows that the measured SIB is small when using 50 Ω as 

output resistance. Also, it is difficult to see 1/f dependence in this measurement (in case of 

50 Ω).       
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Figure 5.4: SIB curves illustrating the impact of the output resistance of the filter Rout on the 
noise measurement. 

The device output is directly connected to the SR570 LNA, which is battery powered for low 

intrinsic noise. Besides amplifying the output noise, the amplifier provides a current and a 

voltage supply which are used to bias the device output. The voltage supply allows the 

setting of the collector bias while the current source provides an offset current as not to 

drive the LNA into saturation. The SR570 LNA can supply an output voltage of up to 5 V and 

a maximum current compensation of 5 mA. The gain (expressed in terms of sensitivity A/V) 

can be varied between 10-3 to 10-12 A/V. Proper operation of the SR570 LNA requires that 

the sensitivity (gain setting resistor) has a higher (lower) value than the transconductance 

(output resistance) of the device [13], However, care must be exercised since too high 

sensitivity increases the SR570 noise contribution. The amplifier is also equipped with a 

comprehensive set of programmable low pass and high pass filters. In this application, they 

are typically set to pass the frequency range of interest, namely 1 Hz to 100 kHz.  

The device spectral noise density SIB is amplified and measured by the 35670A dynamic 

signal analyzer. This instrument is ideal for analyzing signals with a low frequency power 

spectrum (such as 1/f noise) as opposed to a spectrum analyzer which is used at higher 

frequency bands.  

An verification of the system performance consists of measuring the noise of a 50 Ω 

resistors. This is can be accomplished by connecting the resistor to the input of the 35670 
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Dynamic Signal Analyzer. The noise value was found to be equal 10-14 A2/Hz. This value is 

higher than the theoritical thermal noise of a 50 Ω resistor (33∙10-26 A2/Hz). This noise is 

related to the thermal oscillation of electrons in a resistor, it is frequency independent and 

bias (current)-independent. The thermal noise is given by the following equation [14]:  

 
   

   

 
 

(5.4) 

Where k is Boltzmann constant, T is temperature in Kelvin and R is the value of the 

resistance. 

The above comparison between the thermal noise and the measured noise suggests that 

the value 10-14 A2/Hz, is the intrinsic noise of the Dynamic Signal Analyzer (DSA). The 

question which arises is how this DSA can measure a noise which is lower than its intrinsic 

noise. This can be accomplished by the LNA, which amplifies the transistor noise well above 

10-14 so that the DSA intrinsic noise does not contribute to the noise measurement. Figure 

5.5 illustrates the measured intrinsic noise of the DSA, the amplified transistor noise and the 

actual noise of the transistor. It is clear that the transistor noise is sufficiently amplified so 

that the intrinsic noise of the DSA does not contribute to the total noise.    

 

Figure 5.5: intrinsic noise of DSA, the amplified and the actual noise of the DUT 

These noise measurements are performed using a Cascade probe station, which reduces the 

risk of having DUT oscillations and also offers the possibility of using 3-level shielding. This is 

definitely a good asset in performing sensitive noise measurements.  
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The measurement is semi-automatically controlled by Integrated Circuit Characterization 

and Analysis Program (ICCAP). This is a device modeling program that provides 

characterization and analysis capabilities for a broad range of semiconductor modeling 

processes. 

The starting step for performing noise measurement is the DC characterisation; the DC 

current gain and output transconductance is obtained at this stage. The second step is 

running the noise program, which provides the collector voltage, current offset and the 

sensitivity. These values should be used to manually set the LNA configuration. In this work 

a RS232 port along with Matlab code has been used to configure the LNA. Then the dynamic 

signal analyzer starts performing the noise measurement.  The spectral noise density     is 

given by  

                       
  (5.5) 

where       is the noise measured by the analyzer expressed in V/ Hz and       is the 

sensitivity of the amplifier, while the actual spectral power density     of the base current 

noise source is given by: 

                
  (5.6) 

The measurement set up used in this work measures the noise in an indirect way through 

the collector current. However it is possible to measure low frequency noise directly at the 

base using a current amplifier connected in series with the base biasing network, as shown 

in Figure 5.6.  

 

Figure 5.6: Circuit used to directly measure low frequency noise using a current amplifier 
connected in series with the base biasing network. 
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A large bypass capacitance CB short-circuits the noise from the base biasing network, and 

creates a low impedance path for the spectral noise density SIB. As long as the input 

impedance of the current amplifier is much lower than the transistor input impedance, the 

entire base current noise spectrum SIB flows into the current amplifier. The spectral density 

of the current amplifier output voltage is proportional to the base noise current [15]. 

5.3 The base current dependence of low frequency noise  

In bipolar transistors there are different types of noise: Shot noise, thermal noise and low 

frequency noise (1/f). The current through the P-N junction of a diode is composed of many 

individual current impulses, due to the transport of individual charge carriers. This individual 

current impulse is random and leads to the so called shot noise. For bipolar transistor, two 

shot noise components should be considered. The first one is related to for the base-emitter 

junction, and the second is associated with the base-collector junction. Thermal noise is 

caused by the random thermally exited vibration of a charge carrier in a conductor [16]. In 

bipolar transistors, three resistances can be identified, base, collector and emitter resistance. 

Each one of these resistances produces a thermal noise. The low noise frequency is linked to 

the presence of the defect in the base-emitter region [17]. This is the most important noise 

mechanism in the bipolar transistor, not only because of its magnitude, but also because its 

impact on the performance of the electronic circuit. Figure 5.7 presents the conventional 

hybrid-π model of a bipolar transistor with the dominant noise sources [1]. 

 

Figure 5.7: Equivalent circuit of the transistor illustrating the noise sources in bipolar 
transistor. 

Irb: thermal noise associated with the base resistance.  

Irc: thermal noise associated with the collector resistance. 
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Ire: thermal noise associated with the emitter resistance. 

iC: shot noise associated with the base-collector junction. 

iB: spectral noise density ( 1/f and shot noise associated with the emitter-base junction). 

flicker noise,  also called 1/f noise, is a signal with a frequency spectrum such that the power 

spectral density is proportional to the reciprocal of the frequency [18]. Previous studies of 

low-frequency noise in various semiconductor devices showed that there are two possible 

origins for flicker noise. The bulk mobility fluctuation model states that the normalized 

current noise power spectral density SI(f) for flicker noise is given by the following universal 

equation  

 
     

  
 

     

  
 

  

    
 (5.7) 

 

where N is the total number of carriers in the device and f is the frequency. It is assumed 

that the bulk mobility fluctuation arises from lattice scattering and the Hooge parameter αH, 

which varies as (μ/μ1)2, where μ is the carrier mobility and μ1 is the mobility due to lattice 

scattering alone. Later on, Hooge found that αH can vary between 10−7 and 10−2, which 

indicates that the value of αH is very sensitive to material quality and the relative noise level 

of material and devices [19].  

On the other hand, the trap model (carrier number fluctuation model) stipulates that 1/f 

noise arises from the capture and emission of carriers by localized states within the material 

[20, 21].  

To date most publications show that the main 1/f noise sources are located at the emitter-

base region in the intrinsic emitter-base  junction [22] and also, it is associated with the base 

current. The low noise frequency is found to be usually proportional to the square of the 

base current, that is SIB ~   
 , However there are also a few publications which report SIB  

proportional to IB and   
  [23]. The 1/f noise is given by equation (5.10) 

       
  
 

  
 (5.8) 
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where K is a constant, IB is base current, f is frequency, α is a constant. The constant K is 

known to be inversely proportional to the device area; therefore scaling down the device to 

improve the speed of the device results in higher 1/f noise [24, 25].  

Figure 5.8, Figure 5.9 and Figure 5.10 show the spectral noise density SIB, for Si BJTs, SiGe 

HBTs and sSi HBTs respectively. The SIB exhibits 1/f dependence, which also rises with the 

increase of the base current. This shows that it can be modelled by equation (5.10). 

 

Figure 5.8: SIB curves as function of the frequency for three values of IB at VCE= 1V. 

 

Figure 5.9: SIB curves as function of the frequency for three values of IB at VCE= 1V. 
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Figure 5.10: SIB curves as function of the frequency for three values of IB at VCE= 1V. 

α is found to be equal to 1.2, 1.6, and 1.3 for Si BJTs, SiGe HBTs and sSi HBTs, respectively. 

Several publications report that α is in the range of 0.8 to 1.2. However there are reports of 

α larger than 1.4 [26]. These measurements were performed while the devices are 

operating in the common-emitter configuration. The VCE was set to 1V, which is smaller than 

the VCEO for all devices to prevent any impact of avalanche multiplication on the noise 

measurements [27].   

 

Figure 5.11: Low frequency noise and shot noise intersect at corner frequency fC 

 

The corner frequency fC, defined as the frequency where the low frequency noise and the 

base current shot noise intersect in the frequency domain as shown in Figure 5.11. For 
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frequency higher than fC, low frequency noise becomes too small and therefore the base 

current shot noise is the dominant noise mechanism in the device. This noise, called also 

shot noise, is not shown in these measurements because 1/f is high and cannot be seen in 

this frequency range. In the case where the shot noise is visible in the measurement, 

equation (5.8) is not valid anymore and the term representing the shot noise needs to be 

added, as shown in the equation (5.9).  

       
  
 

  
      (5.9) 

Although fC is not shown in the measurements shown earlier, it is possible to calculate it, 

since at this frequency the low frequency noise is equal to the base current shot noise.  

     
    

 

  
      (5.10) 

Therefore 

    
    
  

 (5.11) 

Equation (5.11) shows that fC is proportional to IB and K, however if low frequency noise is 

proportional to the IB (and not to   
 ), fC would be constant for any base current value as 

illustrated in the equation (5.12). 

    
 

  
 (5.12) 

The corner frequency fC can be used as a parameter to compare the noise performance for 

different devices. A high value of fC corresponds to poor noise performance. The corner 

frequency fC is found to be equal to 1.8∙109 Hz, 5∙1010 Hz and 5∙1011 Hz for Si BJTs, SiGe HBTs 

and sSi HBTs, respectively. This means that the sSi HBTs should exhibit higher 1/f noise 

compared with the other two device types. Similarly SiGe HBTs should exhibit poor noise 

performance (high noise) compared to Si BJTs.  

Figure 5.12 shows a comparison of the spectral noise density SIB for Si BJTs, SiGe HBTs and 

sSi HBTs. The latter exhibits a higher noise level as compared to both Si BJTs and SiGe HBTs 

devices whereas the noise level in SiGe HBTs is higher than in Si BJTs.  

The degradation of the noise performance in sSi HBTs is proposed to be caused by high Ge 

content in the strained-relaxed buffer (SRB), which causes larger density of defects and 
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dislocations [27, 28]. These defects can be propagated from the substrate and base region 

all the way to the emitter region which leads to a high noise level. A comparison between 

the noise performance of SiGe HBTs having 22% Ge content in the base and SiGe HBTs 

having 35 % Ge content shows that the latter exhibits a higher noise level (two decades at 

100Hz), this suggest that it is difficult to increase the Ge content in the base without 

introduction of dislocations [29].The correlation between the presence of Ge and low 

frequency noise performance has been also reported for strained Si MOSFETs, where an 

increase of noise level was related to the increase of the Ge content in the SRB [30].  

 

Figure 5.12: Comparison of SIB as function of the frequency for the three types of devices 
at IB= 2uA, VCE= 1V. 

The dependence of the spectral noise density SIB versus the base current at a given 

frequency (10Hz, 100Hz) for Si BJTs, SiGe and sSi HBTs is illustrated in Figure 5.13, Figure 

5.14 and Figure 5.15 respectively, which show that SIB is proportional to the square of the 

base current. This quadratic dependence agrees with carrier number fluctuation theory, but 

does not agree  with the mobility fluctuation theory which predicts a linear current 

dependence [18, 26]. Similarly, Kuo et al [31] report that the increase of the noise spectral 

density for MOSFETs Sid with   
  indicates that a carrier number fluctuation is the cause of 1/f 

noise. 
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Figure 5.13: SIB curves as function of the base current at fixed frequency (10, 100 Hz) for Si 
BJTs. 

 

Figure 5.14: SIB curves as function of the base current at fixed frequency (10, 100 Hz) for 
SiGe HBTs. 

 

Figure 5.15: SIB curves as function of the base current at fixed frequency (10, 100 Hz) for 
sSi HBTs. 
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5.4 Implication for circuit applications 

From a device physics point of view, a comparison of the noise at constant IB makes better 

sense, because it provides information on the rate of mobility or carrier number fluctuation. 

However, from an RF circuit point of view, a comparison at constant IC often provides more 

insight for circuit applications e.g., oscillators, since the amplitude of oscillators depend on IC. 

Furthermore many RF-figures of merit fundamentally depend on IC instead of IB  e.g; fT and 

fmax. Even NFmin, though dependent on IB, is often compared at the same IC as well [32, 33].  

Figure 5.16 shows SIB as a function of frequency for Si BJTs, SiGe HBTs, and sSi HBTs for a 

constant collector current (IC=1mA).  

 

Figure 5.16: Comparison of SIB as function of the frequency for the three types of devices 
at IC= 1mA. 

Presented in this way, the SIB of SiGe HBTs is approximately as the same as that of Si BJTs. 

However, the SIB of sSi HBTs is lower than SIB of Si BJTs and SiGe HBTs. This result can be 

explained by considering the high current gain of sSi HBTs, which lead to a lower DC base 

current for a given magnitude of collector current, thus low current noise. This can be 

explained further by considering the equation (5.13) 

       
  
 

  
 (5.13) 

Since 
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 (5.14) 

Then  

       
 

  
  

  
 
 
 

 (5.15) 

Equation (5.15) shows that SIB is proportional to IC and inversely proportional to β. For the 

same collector current, the current gain is very high for sSi HBTs compared to other devices, 

thus lower noise (better performance). 

A similar conclusion was reported by Bary et al [27, 34] for SiGe HBTs compared to Si BJTs. A 

comparison between two SiGe HBTs devices, with different Ge content in the base (14 %and 

18 %) was performed. It was found that SiGe HBTs (18 %) have a lower SIB at constant IC 

compared to SiGe HBTs which have 14 % Ge content in the base. This is because the devices 

featuring higher Ge exhibit a lower DC base current for the same collector current and thus 

a lower current noise magnitude. 

As was discussed earlier, at frequencies higher than fC, the base current shot noise 

dominates. This noise results from the flow of current in the EB junction. This current is 

composed of many individual current pulses which are random. For the same collector 

current, the sSi HBTs needs a small base current compared to SiGe HBTs and Si BJTs. This is 

because of the inherently high current gain of sSi HBTs. Given the equation of the base shot 

noise it is possible to calculate its value which corresponds to IC= 1mA.  

             
  
 
  (5.16) 

The base shot noise is found to be equal to 6∙10-20 (A2/Hz), 4∙10-19 (A2/Hz) and 2∙10-18 (A2/Hz), 

for sSi HBTs, SiGe HBTs and Si BJTs respectively. It is clear that the sSi HBTs exhibit the 

lowest base current shot noise. 

An important issue for integrated transceiver design is to minimize voltage-controlled 

oscillator (VCO) phase noise. Ideally, a purely sinusoidal output is required, the spectrum of 

which is a perfect delta function in the frequency domain. In reality, transistor noise causes 

random variations of both amplitude and phase. The amplitude noise is suppressed by the 

oscillator built-in amplitude limiting mechanisms and is negligible. The phase noise, however, 

shows up as a random variation in oscillation period or deviation of the zero crossings from 
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their ideal positions along the time axis. The exact mechanism of phase noise is complicated 

and is still an active area of research. However it is possible to understand the basic 

behaviour of up-conversion of physical transistor noise to phase noise Sø by considering the 

equation.  

 
   

   

      
 (5.17) 

This demonstrates that the phase noise is proportional to the SIB noise and inversely 

proportional to f2
. For noise with frequency independent also known as shot noise (white 

noise), SIB is frequency independent and thus Sø is proportional to 1/f2. For 1/f noise SIB is 

proportional to 1/f, therefore Sø is proportional to1/f3. If this simple theory is applied to the 

transistor base current noise, the phase noise will look similar to the dependencies shown in 

Figure 5.17 [27]. 

 

Figure 5.17: Simplified time domain model for upconversion of transistor physical noise to 
oscillator phase noise. 

 

Considering a phase noise comparison for all devices at fixed collector current, it can be 

concluded that sSi HBTs will exhibit lower phase noise compared to SiGe HBTs and Si BJTs, 

and this is for two reasons. Figure 5.16 shows that sSi HBTs exhibit lower SIB at IC=1mA, 

which will be reflected in the phase noise, since the latter is proportional to SIB. Similarly, 

the sSi HBTs exhibit a low base current shot noise at given collector current, which will also 

affect the phase noise directly, resulting in lower phase noise for sSi HBTs. Considering the 

explanation above the phase noise of all devices can be predicted. The aim of this prediction 
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is not to give exact values of the phase noise, it is rather a comparative study. This 

comparison is illustrated in Figure 5.18.  

 

Figure 5.18: Comparison of the phase noise between Si BJTs, SiGe HBTs and sSi HBTs. 

A similar methodology was used by Niu at al [33], where a comparison of 1/f noise for Si 

BJTs and different SiGe HBTs was conducted. This was followed by the simulation of phase 

noise of a single-transistor amplifier. A calibrated vertical bipolar inter-company model was 

used. The VBIC model is known fpr its capability to include different types of noise: shot 

noise, thermal noise and low frequency noise. The model parameters were extracted from 

the measured dc data, S-parameters, and low frequency noise data. Higher-order effects 

including self-heating and avalanche multiplication were taken into account in the VBIC 

model. The simulation shows that the device with lower SIB at given collector current, also 

exhibits a low phase noise for fixed collector current. 

5.5 Defect characterisation 

The key idea in the fabrication of the sSi HBTs has been the usage of the strain-relaxed 

buffer (SRB) to boost the amount of the Ge content in the base [35]. The strain-relaxed 

buffer, often referred to as virtual substrate (VS), consists of growing a thick SiGe layer, in 

which the Ge concentration is increased from 0% to 15% in smooth way (10%-Ge µm-1). 

This layer is topped with a SiGe layer with fixed Ge content. Relaxation in the SiGe layer can 

be induced by promoting the formation of misfit dislocations during early stages of the 

growth, these defects are known to degrade the device performance and act as noise 

generators.  
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In order to investigate the impact of the strain-relaxed buffer in terms of defect density on 

the degradation of the noise performance, defect characterization was performed on 

blanket material grown simultaneously with the processed wafers. A modified Schimmel 

etch [36] was used to reveal defects. The impact of strain-relaxed buffer on strained Si 

MOSFETs noise performance is reported in many publications. Hua et al [37] presents a 

comparison between the Si MOSFETs and strained Si MOSFETs devices. This study shows that 

strained Si MOSFETs exhibit high noise magnitude compared to Si control devices. This 

degradation in the noise performance was linked to the presence of high defect density in 

strained Si MOSFETs caused by strain-relaxed buffer.   

Similar study was reported in [30, 38], which compares the noise performance of strained Si 

MOSFETs with different Ge content in strained-relaxed buffer (15%, 20% and 28 %). This 

work confirms a clear trend in noise magnitude with respect to Ge concentration in the 

virtual substrate: the higher the Ge concentration, the higher the level of the low frequency 

noise. The increase of the noise as a function of increased Ge concentration in the strained-

relaxed buffer is associated with an increase in trap density in the gate oxide. 

Using the strain-relaxed buffer in MOSFET technology leads to global biaxial strained Si and 

in the channel region in particular. However it is possible to use uniaxial strained Si, which 

uses process induced stress locally to enhance the device performance. Kuo et al [31]report 

that Uniaxial Strained PMOSFETs show similar noise performance compared to a Si 

MOSFETs control, The number of occupied traps were extracted by the charge pumping 

method which shows that the trap density are only 9% larger than its control counterpart. 

A study was reported by Van Haaren et al showing that SiGe HBTs having 22% Ge content 

exhibit lower noise magnitude ( better noise performance) compared to SiGe HBTs having 

35% Ge content (tow decade at 100Hz). This suggests that it is difficult to increase the Ge 

content to improve the current gain without introducing defects and therefore degrading 

the noise performance [29]. 

Figure 5.19 shows an optical image of the sSi HBTs material following Schimmel etching. The 

solid lines correspond to the misfit dislocations and the dots correspond to threading 

dislocations. This figure shows the defects in both interfaces: strained Si / SiGe interface and 

the SiGe / strain-relaxed buffer interface. This is because the lattice constant is different in 
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the SiGe and strained-relaxed buffer (due to the different Ge content 15 %, 30%), similarly 

the lattice constants of strained Si and SiGe are different which leads to the presence of 

defects. Figure 5.20 shows an optical image of the SiGe HBTs material following the same 

Schimmel etch treatment. This image is for Si (Collector) / SiGe interface. In contrast with 

the strained Si HBTs, the SiGe HBTs exhibits a much lower threading dislocation density 

(TDD) and no misfit dislocations. It is also important to note that no defects are expected in 

the SiGe (base) / Si (emitter) interface, because the SiGe (base) is compressed and therefore 

it has the same lattice constant as Si. 

  

 

Figure 5.19: Surface morphology at the strained Si/SiGe interface and SiGe / SRB interface. 
The black points are the threading dislocations and the black lines are misfit dislocation. 

 

Figure 5.20: Surface morphology at the strained Si / SiGe interface (SiGe HBT).The black 
points are the threading dislocations. 

Table 5.1 and Table 5.2 summarize the TDD and misfit dislocation density (MDD) values 

found in both HBT materials. They show that there is a moderate MDD at the strained Si / 

strained SiGe interface but much higher at the strained SiGe / SRB (virtual substrate) 

interface in sSi HBTs. In contrast no misfit dislocations were observed in Si / strained SiGe 

interface in SiGe HBTs. TDD is nearly two orders of magnitude higher in strained Si HBTs 
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compared with SiGe HBTs. TDD (1.7×106 cm-2) in the sSi HBTs is considered to high 

compared to the value reported by Hartmann et al which is 1.06±0.36×105 cm-2 [39].This 

high density of defects explains the degradation of the noise performance in sSi HBTs 

compared with SiGe HBTs. 

Misfit Dislocation Density 
Strained Silicon HBTs SiGe HBTs 

Strained Si/ Strained 
SiGe interface 

Strained 
SiGe/SRB 
interface 

Si/ Strained 
SiGe 

interface 

190 cm-1 800 cm-1 0 cm-1 

Table 5.1: Density of misfit dislocation. 

Threading Dislocation Density 

Strained Silicon HBTs SiGe HBTs 
1.7×10

6
 cm

-2
 3.5×10

4
 cm

-2
 

Table 5.2: Density of threading dislocation 

5.6 Generation-recombination noise 

Many defects that exist in semiconductor devices are unintentional. Elements such as 

carbon, oxygen and various metals may be introduced to the wafer during fabrication, and 

then become carrier trap centres that affect device performance and produce generation–

recombination (g-r) noise. This noise is due to random fluctuations in the trapping and 

detrapping rates in the defect trap centres in the forbidden energy band gap. This in turn 

causes the current, or the voltage, to fluctuate as well [28, 40].  

A deviation from the 1/fα spectrum with α=1 to a spectrum with α<1 followed by a change 

to an 1/f2 dependence and then back to 1/f, is characteristic of g-r noise [41], as shown in 

Figure 5.21.  
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Figure 5.21: Generation-recombination noise. 

This noise has been reported in other semiconductor devices e.g. MOSFET [42]. Generation 

recombination noise is found to exhibits a Lorentzian spectrum 1/f2, and the noise spectrum 

can be expressed as [42] 

        
 

         
 (5.18) 

Where αr is the amplitude and τ is the characteristic time constant. The noise spectrum is 

flat at low frequency and decrease as 1/f2 at high frequency, as illustrated in Figure 5.22. 

The superposition of a large number of Lorentzian spectra with 1/τ distribution results in 1/f  

noise.      

 

Figure 5.22: 1/f noise as a superposition of Lorentzians. 
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5.7 Impact of processing on low frequency noise 

Low frequency noise is known to be very sensitive to the fabrication process. Epitaxial 

growth is now one of the necessary steps in semiconductor fabrication, especially for 

devices where different materials with similar lattice constant are used (heterostructure 

devices) e.g. [Si/SiGe], [AlGaAs/GaAs]. However, care must be taken in growing material so 

not to introduce defects, which will have a destructive impact on the device performance. 

Implantation is also an important process which is used in the doping of semiconductors. 

This process is preferred by designers since it is more controllable than doping using 

diffusion techniques. Implantation is known to introduce defects (damage), which are 

expected to be removed after annealing. However a low temperature and short time 

thermal treatment is needed to maintain the junction depth after ion implantation, which 

may not be sufficient to remove the implantation-induced defects. These defects cannot be 

a source of leakage current only but also of low noise frequency [43]. Another source of 

defects which is linked very well to the low frequency noise is the oxide in the polysilicon-

silicon interface in the emitter region. The oxide is reported to increase the current gain in 

bipolar devices by presenting a barrier to the diffusion of holes in the emitter [44]. However, 

it is responsible for the presence of defects.   

Siabi-Shahrivar et al [45, 46] have studied the effects of processing on the noise 

characteristics of polysilicon emitter Si BJTs. It was found that the surface treatment of the 

emitter has a fundamental impact on the noise level as well as the DC performance of the 

devices. Since the introduction of the polysilicon in bipolar technology, there have been 

many surface treatment methods: 

 HF etch: this method consists of using hydrofluoric acid to treat the emitter surface 

prior to the deposition of the polysilicon. This method results in a thin nonuniform 

interfacial oxide with 0.4 nm thickness. The thickness can vary from 0 to 0.8 nm.     

 RCA clean. This is a popular wet chemical clean which results in a 1-1.4 nm thick 

interfacial oxide that is relatively uniform. 

 High-temperature anneal (1000°C) after the polysilicon deposition but before 

emitter implantation results in ‘balling’ of the oxide layer in which the diameter of 

the sphere is approximately 8nm. 
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 For sufficiently high temperatures (1050°C), there is epitaxial regrowth of the 

polysilicon layer. 

These surface treatments have a significant impact on the current gain as well as the noise 

level in the device. A summary of the noise voltage and the current gain as well as the 

cleaning procedure is presented in Table 5.3. The first striking result to emerge from these 

data is that the surface treatment method which gives low noise level also results in high 

current gain. This proves the correlation between the oxide and low frequency noise as well 

as between the oxide and the current gain. It is also important to mention that the RCA 

cleaning method, which results in high current gain and low noise performance, is the 

method used in the fabrication process for all devices presented in this work. Therefore, it is 

possible to optimize the fabrication process of the sSi HBTs for RF application by trading off 

the high current gain (of sSi HBTs) to the noise performance. This is can be accomplished 

using a different surface treatment. 

 RCA clean 
RCA 

fluorinated 
HF clean Balled oxide 

Epitaxial 

alignment 

SV (nV / Hz) 50 16 14 8.5 7 

Current gain 1300 1100 75 45 20 

Table 5.3: Comparison of noise voltage at 10 Hz and current gain in polysilicon emitter BJTs 

with different surface treatment. 

Deen et al [47] present the effect of rapid thermal annealing on the noise. RTA is a 

technique commonly used to activate implanted species and remove the damage. This 

annealing is accomplished with little redistribution of the dopant atoms when compared to 

conventional thermal annealing procedures which are much longer, and RTA is therefore 

essential for devices of very small dimensions. 

The impact of the thermal budget is summarized in Figure 5.23, which shows that increasing 

the temperature or the time (or both) improve the noise performance of the device. This 

proves that a high temperature (on the  order of 1000 ºC) can anneal defects.  



Chapter 5. Low frequency noise in sSi HBTs  
 

138 
 

 

Figure 5.23: impact of time and temperature on low frequency noise 

As was stated in chapter 3, a batch split was included, with either 900 ºC or 925 ºC anneal 

for 10 s. This step was considered to optimize the fabrication process of sSi HBTs. It was 

found that 925 ºC is more suitable for sSi HBTs, however this is not the case for Si BJTs 

which show higher current when annealed at 900 ºC. Similarly, low frequency noise 

measurements were performed for all devices annealed at 925 ºC and compared to those 

annealed at 900 ºC. The results are shown in Figure 5.24, Figure 5.25 and Figure 5.26. 

According to these data, rapid thermal annealing (RTA) has no clear impact on spectral noise 

density SIB, suggesting that the increase of the temperature from 900 ºC to 925 ºC does not 

reduce the defect in the bulk material and also in the thin interfacial oxide in the 

polysilicon/silicon interface. This suggests also that low temperature and short time thermal 

treatment cannot reduce defects. The result reported in Figure 5.23, where a high 

temperature has been used in the thermal treatment (1050 ºC) concerns Si BJTs with very 

large base width. This is a very important observation, since it is difficult to use high 

temperature in the fabrication process for small feature devices, because high temperature 

will cause more dopant diffusion. This difficulty is even more serious for Si/SiGe 

heterostructure devices. Due to the metastable property of strained SiGe/Si heterostructure, 

SiGe layers can only grow commensurately to a critical thickness on Si substrates (for SiGe 

HBTs, the same thing apply to sSi HBTs). A high temperature anneal can create further 

dislocations if critical thickness is exceeded [48]. This means that for small sSi HBTs, 

increasing the thermal budget to reduce the defect density and improves the noise 
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performance is not valid method. However using the right surface treatment and improving 

the epitaxy is a better solution.  

 

Figure 5.24: Impact of RTA on low frequency noise in Si BJTs. 

 

 

Figure 5.25: Impact of RTA on low frequency noise in SiGe HBTs. 
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Figure 5.26: Impact of RTA on low frequency noise in sSi HBTs. 

5.8 Conclusion 

This chapter reports the first study of the noise performance of sSi HBTs.  The strained-

relaxed buffer, which has been used to increase the Ge content in the base, improves the 

current gain of devices. However, it results in high levels of defects in sSi HBTs devices. This 

results in degradation of the noise performance for constant base current. A defect 

characterisation was performed to prove the correlation between defect density and the 

noise level in the devices, showing that high defect density results in high noise level.   

The strained Si HBTs exhibit a higher current gain compared to control devices. If the noise 

comparison is performed at a fixed collector current, the sSi HBTs offers lower noise levels 

than either co-processed SiGe HBTs or Si BJTs. The low noise level in sSi HBTs (at fixed 

collector current) will result in low phase noise in circuit application. This result is of great 

importance for circuit designers.  

The fabrication process has a fundamental impact on the noise level in the devices. 

Optimizing the fabrication process of the sSi HBTs will enhance their capability to be used in 

RF circuits. Improving the epitaxy to prevent defects from moving from the SRB to the 

intrinsic device would have a great impact on the noise performance of the device, but 

more importantly, the surface treatment of the emitter prior to the polysilicon deposition 

should be optimal. Literatures show that the surface treatment which gives highest current 
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gain results in low noise performance. It is possible therefore to trade-off the high current 

gain (of sSi HBTs) against the noise performance. 
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Chapter 6. Summary & Future work 

6.1 Summary 

This project presents the first experimental demonstration of sSi HBTs. The electrical 

characterisation shows that this novel device exhibits a high current gain compared to co-

processed SiGe HBTs and Si BJTs. A simulation study showed that the high Ge content in the 

base is the key factor that has lead to this enhancement. Another important outcome is that 

it is possible to model the performance of this novel device using the same tools that is used 

for Si BJTs and SiGe HBTs. The new improvements that have been achieved in the 

fabrication of MOSFETs based on high mobility material such as Ge and GaAs have shown 

the importance of these materials in the future of the bipolar semiconductor technology. 

MEDICI simulator was used to investigate the potential of the bipolar based on Ge and GaAs. 

The results show that such devices might have good current gain, however the band 

discontinuity and more precisely the valence band discontinuity is a key factor in limiting 

this device from reaching its full potential. 

The bipolar technology is known to be the first choice in the RF market due to its high noise 

performance and high speed. This work has shown that sSi HBTs exhibits high noise level 

compared with the co-processed SiGe HBTs and Si BJTs. This was linked to the high defects 

density in ssi HBTs that is caused by the implementation of the Strain Relaxed Buffer. This 

result was confirmed using defect characterisation. The sSi HBTs exhibits a higher current 

gain compared to other devices. Therefore, the base current can be reduced in a circuit 

while maintaining the collector current constant. If the noise comparison is performed at a 

fixed collector current, the sSi HBT offers lower noise levels than either co-processed SiGe 

HBTs or Si BJTs. The low noise level in sSi HBTs (at fixed collector current) will result in low 

phase noise in circuit application. This result is of great importance for circuit designers.  

Using a strain-relaxed buffer to grow strained Si in the channel has led to significant 

improvement of the performance of MOSFET technology. However this is the first time that 

a SRB has been used to improve the bipolar technology. This is has opened the door widely 

to the possibility to integrate the novel sSi HBTs with strained Si MOSFETs in one ship. The 
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material characterisation of sSi HBTs has actually favourite this possibility, since the Raman 

spectroscopy has shown that that the strain in the emitter of the sSi HBTs was fully 

maintained following processing.  

6.2 Future work 

The integration of strain-relaxed buffer in bipolar technology has lead to the fabrication of 

the first sSi HBTs. This device offers very high current gain compared with both Si BJTs and 

SiGe HBTs. However, this project has highlighted the need for more work to improve and 

explore the potential of this novel device. Self-heating is one of the major problems that 

cause a degradation of the performance of this device. The MOSFETs devices that use SRB 

to produce biaxial strain also suffer from the self heating. The low thermal conductivity of 

SiGe that forms the strain relaxed buffer is the source of this problem. With the recent 

development in material growth, it has been possible to use a thin SRB in the fabrication of 

strained Si MOSFETs to reduce the self heating phenomena. Therefore, it is possible to apply 

this solution in the fabrication of sSi HBTs.  

The bipolar devices have mostly used in analogue application. This is mostly because of their 

high speed and high noise performance. The latter is directly linked to the defect density in 

the device. The defect characterisation that has been done in this work has proved the 

existence of high defects density in the sSi HBTs compared to Si BJTs and SiGe HBTs.  The 

SRB, which has been used to increase the Ge content in the base, improves the current gain 

of devices. However, it results in high levels of defects to be introduced in sSi HBTs devices. 

This results in degradation of the noise performance for constant base current. Therefore, 

improving the epitaxy growth of the SRB to prevent defects from moving to the intrinsic 

devices would have a great impact on the noise performance of the device. Another aspect 

to improve the noise performance is to focus on the surface treatment of the emitter prior 

to the polysilicon deposition that offers better noise performance.  

Since the fabrication of the first bipolar transistor, there have been many improvements of 

the design of this device. In many cases the device is designed in particular way depending 

on the application. The fabricated sSi HBTs devices are actually large area. Therefore, it is 

not possible to use them to assess the speed of this device. In the current world, there is 

always a need of faster device, hence the importance to fabricate a new sSi HBTs that is 



Chapter 6. Summary & future work  
 

148 
 

suitable for RF application.  The Mesa structure that is used in the current device form a 

large extrinsic parasitic element, which limits the device speed. Therefore, it is important to 

use planner design. 

The new improvements that have been achieved in the fabrication of MOSFETs based on 

high mobility material such as Ge and GaAs have shown the importance of these materials 

in the future of the bipolar semiconductor technology. Based on this study, a bipolar 

transistor based on these high mobility materials looks promising. However, the band 

discontinuity and more precisely the valence band discontinuity is blocking this device from 

reaching its full potential. 
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Appendix 

Densities of state and band-gap values for different layer 

 
 
Recombination constants 
AUGN The Auger coefficient for electrons. cm6/s 2.8e-31 

AUGP The Auger coefficient for holes. cm6/s 9.9e-32 

DN.AUGER The exponent of temperature for the Auger coefficient for electrons.  0 

DP.AUGER The exponent of temperature for the Auger coefficient for holes.  0 

AN The constant term in the concentration-dependent expression for 

electron lifetime. 

1 

BN The linear term coefficient in the concentration-dependent expression 

for electron lifetime. 

1 

CN The exponential term coefficient in the concentration-dependent 

expression for electron lifetime. 

0 

NRSHN The Shockley-Read-Hall concentration parameter for electrons. 5e16 cm-3 

EN The exponent in the concentration-dependent expression for electron 

lifetime. 

2  

AP The constant term in the concentration-dependent expression for hole 

lifetime. 

1 

BP The linear term coefficient in the concentration-dependent expression 

for hole lifetime. 

1 

CP The exponential term coefficient in the concentration-dependent 

expression for hole lifetime. 

0 

NRSHP The Shockley-Read-Hall concentration parameter for holes. 5e16 cm-3 

EP The exponent in the concentration-dependent expression for hole 

lifetime. 

2 

ETRAP The trap level (Et - Ei) used in determining the Shockley-Read- 

Hall recombination rate. 

0 eV 

TAUP0 The Shockley-Read-Hall hole lifetime. 1e-7 s 

TAUN0 The Shockley-Read-Hall electron lifetime. 1e-7 s 

Layer Density of state NC ( cm-3) Density of state NV ( cm-3) Band-gap (eV) 

Si NC=2.83E19 NV=2.5E19 1.17 

Strained Si NC=1.05E19 NV=0.8E19 1.10 

Si0.85Ge0.15 NC=1.9E19 NV=1.1E19 1.04 

Si0.7Ge0.3 NC=1.9E19 NV=1.1E19 0.94 


