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ABSTRACT 

 

The presence of Fe bearing minerals at the sediment-water interface (within marine 

settings) promotes a variety of biological and abiological redox reactions during early 

diagenesis. The highly reactive nature of a portion of these Fe bearing minerals, with 

respect to organic and inorganic species, influences both porewater chemistry and the 

biogeochemical cycling of trace metals. Of particular importance is the reaction 

between „reactive‟ Fe minerals and dissolved sulfide (which ultimately produces pyrite). 

This is a major process in the modern environment, but has also been prevalent 

throughout Earth‟s history and forms the basis for identifying different 

paleodepositional redox conditions in the ancient rock record. Initial experimental 

studies of the sulfidic reductive dissolution of pure synthetic Fe(III) oxides have 

provided detailed insight into the mechanism and rates at which different minerals 

release Fe(II)aq into anoxic waters; whilst also describing the formation of reduced 

sulfide products including FeS and elemental sulfur. However, it remains unclear how 

realistic laboratory studies of the sulfidation of pure Fe minerals are in relation to 

natural sediment assemblages containing different minerals. Comparison of natural 

sediments with the reactivity of pure minerals studied under laboratory conditions thus 

forms the basis for the first part of this study. 

Sediment cores were obtained from Aarhus Bay (Denmark) and the Umpqua River 

Shelf (North Pacific Basin, N. America), representing contrasting conditions in terms of 

the reactive Fe species present. Aarhus Bay sediment samples contain a high proportion 

of the most reactive Fe oxide minerals (e.g. ferrihydrite, lepidocrocite) at the surface, 

which decrease with depth throughout the core, leaving a near-constant concentration of 

slower reacting Fe oxide minerals (e.g. goethite, magnetite, hematite). These trends are 

reflected in decreased rates of reductive dissolution with depth in the core, as 

determined via sulfidation experiments of sediment sampled from different depth 

intervals. In contrast, the Fe oxide content of Umpqua River Shelf sediments is more 

homogeneously distributed, with the slower reacting Fe oxide species dominating the 

sediment assemblage. As such, rates of reaction with respect to dissolved sulfide do not 

differ vastly with depth. Based on the determination of rate constants during these 

experiments, this examination of the reactivity of Fe oxides suggests that the natural Fe 
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oxide assemblages react on a similar timescale (over the same order of magnitude) to 

that of synthetic minerals, suggesting that existing schemes for the reactivity of Fe 

oxide minerals towards dissolved sulfide provide a realistic framework for evaluating 

rates of reactivity in natural environments.  

In a range of similar experiments, the rate and mechanism of the sulfide-mediated 

dissolution of synthetic Fe carbonate (siderite) has also been assessed, in addition to a 

sample of natural crystalline siderite from the 1.88 billion year-old Biwabik Iron 

Formation, North America. These experiments have been performed as a consequence 

of the prevalence of siderite in ancient sediments. Siderite is commonly assumed to be 

highly reactive towards dissolved sulfide. However, despite the common occurrence of 

siderite in ancient sediments, its reactivity has not previously been determined, a fact 

which impacts upon the use of Fe speciation in ancient sediments as a paleodepositional 

redox indicator. Although carbonates follow a different mechanism of dissolution than 

Fe oxides, probably via the direct formation of FeS at the mineral surface, the 

experiments performed here show that synthetic Fe carbonate dissolution in the 

presence of dissolved sulfide is faster than for most Fe oxide minerals (including 

ferrihydrite and lepidocrocite). Furthermore, although the reactivity of the ancient 

crystalline siderite sample was slower than for the synthetic siderite, this mineral was 

also relatively reactive, suggesting that all Fe carbonate minerals can be considered 

„highly reactive‟ towards dissolved sulfide. 

The final part of this thesis concerns an examination of Fe isotope fractionations during 

the sulfide-promoted reductive dissolution of a variety of synthetic Fe oxide minerals. 

The isotopic composition of Fe in natural rocks and sediments is commonly used to 

infer the processes responsible for Fe cycling during deposition and diagenesis. In 

particular, experiments with Fe reducing bacteria have demonstrated that isotopic 

fractionations of up to -1.3‰ may occur between the original oxide mineral and Fe(II) 

released to solution, and thus light Fe isotope values in ancient sediments have been 

used to reconstruct the antiquity or occurrence of bacterial Fe reduction. However, in all 

of these cases, the potential for an isotopic fractionation during the sulfide-promoted 

reductive dissolution of Fe oxides has been ignored. Thus it is important to quantify 

potential fractionations associated with this process in order to better evaluate Fe 

isotope compositions observed in the rock record. During both the reductive and 

dissolution steps of this abiotic reaction, a significant isotopic fractionation is observed, 
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the magnitude of which is dependent on the mineral phase under reaction, and the 

specific experimental parameters. This detailed study represents the first time that an 

isotopic fractionation has been demonstrated with regard to the reductive step, in 

addition to the subsequent dissolution step of the overall reaction. Isotopic 

fractionations in the dissolved phase are not as large as those sometimes found in 

association with bacterial Fe reduction, but are in the same range (up to ~-0.8‰), 

suggesting that the influence of this reaction needs to be taken into careful consideration 

when evaluating Fe isotope compositions in modern and ancient sediments.  

Overall, this study builds upon existing experiments which have assessed the reactivity 

of individual Fe(III) oxide minerals towards dissolved sulfide, to provide new insight 

with regard to (bio)geochemical Fe mineral cycling. In particular, this study provides 

kinetic and isotopic constraints that have the potential to greatly enhance 

reconstructions of syngenetic and diagenetic reactions occurring in modern and ancient 

environments. 
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CHAPTER 1: INTRODUCTION aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

 

1.1 THE ROLE OF IRON IN THE NATURAL ENVIROMENT  

 

The presence of iron bearing minerals within aquatic settings may provide a robust 

indication of the environment in which they were deposited (Raiswell et al., 1988), 

from within both modern and ancient marine environments. The examination of iron 

minerals within natural sedimentary environments is extremely relevant to geochemical 

studies due to the varying reactivity of Fe carbonates, oxides and silicates in relation to 

a number of different solutes (Hering & Stumm, 1990), controlling diffusion into 

porewaters and the adjacent water column. Insoluble within oxic environments, 

abundant Fe(III) oxides are most commonly observed near the sediment surface in 

anoxic, organic-rich marine sediments (Berner, 1984). Here, subsequent changes in 

sediment oxygenation may take place during early diagenesis (including both biogenic 

and abiotic mechanisms; Froelich et al. 1979), allowing a series of redox reactions to 

occur below the sediment-water interface.  

A series of redox processes (including dissolution, precipitation and adsorption 

reactions) occurs between the reactive iron mineral surface and dissolved solutes either 

within porefluids or in bottom waters adjacent to the sediment surface (Stone & 

Morgan, 1987; Appelo & Postma, 2005); utilising key nutrients, organic acids and trace 

metals available within the near-surface sedimentary system. Importantly, the presence 

of iron minerals are considered to regulate the concentration of dissolved sulfide within 

porewaters and also the anoxic water column (Canfield, 1989). Where dissolved sulfide 

(i.e. H2S, HS
-
 and S

2-
) is produced via the bacterial reduction of sulfate (BSR; Sweeney 

& Kaplan, 1980), it may act as a catalyst to reduce Fe(III) oxides to Fe(II), subsequently 

releasing Fe(II) into the surrounding environment. During this reaction, reduced phase 
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sulfide may be re-oxidised to form S species such as elemental sulfur (Yao & Millero, 

1996) or (thio)sulfate; while sulfide remaining in solution will reacted with dissolved 

Fe(II) to precipitate a number of iron sulfide minerals (Rickard, 1995). The mechanism 

for the anoxic reductive dissolution of iron oxide minerals by sulfide is well 

characterised, as are the products of these reactants in the form of intermediate sulfur 

minerals (iron mono-sulfides, FeS(s)) and the subsequent formation of pyrite (FeS2(s); 

Dos Santos Afonso & Stumm, 1992; Wilkin & Barnes, 1996).  

Currently, a solid understanding of iron mineral reactivity within natural systems, 

concurrent with investigations of reaction kinetics under experimental laboratory 

conditions, has allowed a vast number of studies to detail the abiotic mechanisms of on-

going early diagenetic processes observed under different environmental settings (e.g. 

marine, sand aquifer, lake etc; Thamdrup et al., 1994). Alongside early field studies of 

sulfide mediated reductive dissolution (Canfield, 1989; Canfield et al., 1992), the 

examination of Fe(II) dissolution via microbial (dissimilatory) iron reduction (DIR; 

Lovely, 1991), the addition of organic acids (e.g. ascorbate; Postma, 1993) and the 

dissolution of Fe(II) mediated by siderophiles (Borer et al., 2005) are all considered 

important regulators of the Fe(III)-Fe(II) cycle in sedimentary  and soil systems, the 

mechanisms of which have been further investigated for sediments from a variety of 

different aquatic environments (lakes, shallow seas, continental shelves, deep ocean; 

Poulton & Raiswell, 2002; Raiswell, 2006). 

 Whilst the modern global marine system is predominantly oxic, there are notable 

exceptions in a very small number of continental basins which are characterised by 

Fe(II)-rich (ferruginous) waters (e.g. Lake Matano, Indonesia; Crowe et al., 2011),  or 

by the larger number of aquatic settings that are characterised by their euxinic (free 

water column sulfide) nature (e.g. the Black Sea; Canfield et al., 1996; Lyons & 
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Severmann, 2006). Within euxinic settings, sulfide-promoted reductive dissolution is 

widespread, and an important precursor to pyrite formation (Raiswell & Anderson, 

2005). This process also occurs close to the sediment water-interface in a great many 

environments, providing organic matter is abundant and bacterial sulfate reducers can 

flourish (Berner, 1985). 

Alongside standard laboratory determinations of reaction mechanism and rate equations, 

isotope systematic studies have been widely used to identify both biological and abiotic 

reactions within natural sediments (e.g. Beukes et al., 1990; Kaufmann et al., 1990). 

Early studies of Fe rich environments utilised the cycling of carbon, oxygen and sulfur 

and associated isotopic fractionation signatures to trace changes in the redox state, 

bacterial activity and oxygen content within both modern sediment and soil systems and 

more importantly, the ancient rock record. More recently the advance of non-traditional 

isotope systems has proved useful in understanding transition metal cycling within 

redox sensitive sediments, and of particular relevance to this study, the isotopic 

fractionation of δ
56

Fe isotopes to trace Fe(III) reduction and Fe(II) dissolution in both 

biological and abiological processes (reviewed extensively within Dauphas & Rouxel, 

2006; Anbar & Rouxel, 2007 and Johnson et al., 2008a).  

What can be concluded from an extensive study of current literature (as examined in 

Chapter 2) is that there are still many unanswered questions regarding the mechanism 

and rates of iron mineral reductive dissolution (as determined through laboratory 

experiments), and the relevance of experiments with synthetic minerals to adequately 

evaluate the reductive dissolution of naturally occurring Fe minerals during sediment 

diagenesis. By bringing together a study of the experimental determination of reaction 

mechanisms and kinetics for synthetic Fe minerals and natural mineral assemblages, 

with the determination of isotope systematics during the process, a more thorough 
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understanding of the influence of chemical processes on the cycling of Fe in anoxic 

environments may be achieved.  

 

1.2. THESIS AIMS 

The collective aim of this thesis is to build upon previous knowledge obtained during 

laboratory investigations of sulfide mediated reductive dissolution of Fe(III) oxides 

(Dos Santos Afonso & Stumm, 1992; Peiffer et al., 1992; Yao & Millero, 1996; 

Poulton, 2003; Poulton et al., 2004a). By expanding on the experimental rationale 

developed in previous studies which examine the reactivity of a variety of Fe(III) oxide 

minerals during sulfidation, a new understanding of the links between pure mineral 

experiments within the laboratory and the reactivity of natural sediment assemblages 

within the sedimentary profile may be achieved. The objectives of this study are:   

 

 To detail the rate and mechanism of sulfide mediated reductive dissolution of Fe(III) 

oxides within a natural sedimentary assemblage.  

Previous investigations of naturally occurring Fe(III) oxide reductive dissolution have 

focused on reactions mediated by organic acids which are not specifically abundant 

within marine sediments (Postma, 1993; Larsen & Postma, 2001). However, the kinetics 

by which these processes occur are concurrent with the reactive continuum process 

described by Boudreau & Riddick (1991) in changing sediment mineralogy throughout 

a near surface sediment core, with a decrease of oxygen associated with bacterial 

processes during early diagenesis. The approach taken within these studies shall be 

applied to near surface, sediment asseblages undergoing natural sulfidation to assess the 

changing reactivity of Fe(III) oxide minerals with depth close to the sediment-water 
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boundary. Two sediment cores from geographically different settings, and of different 

Fe mineralogy will be compared to studies of individual, synthetic Fe(III) mineral 

sulfidation rates, to characterise firstly the contents of each sediment sample in 

comparison to the results described by an iron phase sequential extraction process; and 

secondly to provide a greater connection between Fe(III) oxides rates determined 

experimentally and those observed in field experiments.  

 

 A study of the reactivity of Fe carbonates in the presence of dissolved sulfide.  

Although formation of Fe carbonate minerals in modern environments tends to be 

somewhat limited, and generally restricted to specific settings in the modern 

environment, studies of the ancient rock record have recently increasingly shown that 

such minerals were a prevalent feature during the extensive occurrence of anoxic water 

column conditions in the past (e.g. Reinhard et al., 2009; Poulton et al., 2010). Due to 

the nature of modern Fe carbonate formation under low sulfide conditions, the reactivity 

of minerals such as siderite with respect to dissolved sulfide has never been 

experimentally determined. However, the presence of iron-carbonate minerals in terms 

of reconstructing past redox conditions, and it is commonly assumed that Fe carbonate 

is highly reactive towards dissolved sulfide. Thus a major aim of this thesis is the 

determination of the reactivity of Fe carbonate minerals and comparison to the reactivity 

scheme for Fe oxides reported by Poulton et al. (2004). 
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 To evaluate Fe isotope fractionation during the sulfide promoted reductive 

dissolution of Fe(III) oxides. 

The Fe redox cycle through near surface sediments during early diagensis has been 

widely studied with respect to isotopic tracing of biological iron reduction and oxidation 

processes in both modern marine sediments and within the ancient rock record (Johnson 

& Beard, 2005; 2006). The abiotic reductive dissolution of Fe(III) oxides in marine 

sediments by highly abundant dissolved sulfide occurs from a multistep surface process 

(Dos Santos Afonso & Stumm, 1992) which is hypothesised to favourably allow the 

fractionation of δ
56

Fe isotopes during this reaction. A two step fractionation mechanism 

is proposed throughout this reaction, tracing the reduction of Fe(III)-Fe(II) via electron 

transfer beftween the formation of an adsorbed sulfide surface complex, and the highly 

reactive Fe(III) surface; and during the detachment of Fe(II)aq from the mineral surface 

during dissolution. The overall isotopic signature associated with the reaction of 

dissolved sulfide with a number of different reactive Fe(III) oxide minerals commonly 

observed within the modern sedimentary systems and those used as indicators of 

paleoenvironmental deposition, can therefore before be compared with isotopic values 

associated with so called „biosignatures‟ describing microbial respiration activity within 

similar environments.  
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1.3 THESIS OUTLINE 

Following on from this brief introduction to the biogeochemical and isotopic cycling of 

Fe in natural environments, Chapter 2 provides a literature review detailing Fe-mineral 

reduction and dissolution mechanism studies, and the rates at which these processes 

occur under both experimental and natural conditions. By focusing on the reaction 

between Fe minerals and dissolved sulfide during early diagenesis (primarily within 

marine sediments), studies which investigate the isotopic fractionation of such elements 

in nature are also discussed. The general experimental processes of both open and 

closed system iron sulfidation experiments used throughout this study are detailed in 

Chapter 3 (Methodology), along with methods of sample analysis and natural sediment 

sample characterisation.  

A comparison of the rates of sulfide mediated reductive dissolution between pure 

synthetic Fe oxide minerals and Fe oxide minerals found within natural sediment 

assemblages from Aarhus Bay, Denmark; and the Umpqua River shelf, N. Pacific, is 

investigated in Chapter 4. By investigating the iron sulfidation of Fe(III) rich sediment 

samples in comparison to pure synthetic minerals, a better understanding of the 

potential for studies of synthetic minerals to adequately reflect reaction kinetics in the 

environment is achieved. 

A study detailing the mechanism and rate of Fe(II) carbonate (siderite) dissolution with 

dissolved sulfide is examined in Chapter 5. Through a series of sulfidation 

experiments, the reactivity of siderite with respect to dissolved sulfide is incorporated 

into a commonly used reactivity scheme for Fe(III) oxides of different crystalline 

structures, providing the first detailed insight into whether Fe carbonate minerals can be 

considered to be reactive towards dissolved sulfide on diagenetic timescales.  
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The final data chapter of this study (Chapter 6) details the isotopic fractionation of Fe 

oxides by the mechanisms explored in Chapter 4. By investigating the magnitude of 

fractionation between different product Fe species a greater understanding of Fe isotope 

fractionations observed in nature is observed, with major implications for the 

recognition of bacterial Fe reduction in modern and ancient sedimentary systems.  

Finally, Chapter 7 provides an overall summary of the research covered in this thesis, 

and includes suggestions for potential future activities related to this research.  
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CHAPTER 2:  LITERATURE REVIEW aaaaaaaaaaaaaaaaaaaaaaa 

 

2.1. IRON  

Iron, a first row transition metal, is the fourth most abundant element within the Earths 

crust, and is found predominantly in the natural environment, incorporated into iron 

bearing minerals; most commonly as carbonates, oxides, silicates or sulfides (Haese, 

2006). Upon weathering, oxidation and precipitation within an oxic hydrous 

environment, iron oxides (hydroxides and (oxyhydr)oxides) are readily formed and 

classified depending on the ratio of Fe to O/OH present within individual structures 

(Cornell & Schwertmann, 2003). These oxidised minerals (generally termed as iron (III) 

oxides throughout this study) vary greatly in colour, crystal structure, solubility and 

surface area depending on the electron configuration of precipitated structures.  

Iron minerals are formed with either a divalent or trivalent (Fe
2+

 or Fe
3+

) oxidation state 

(Haese, 2006) depending upon the conditions or environment under which  minerals are 

precipitated, with greigite, magnetite and green rust minerals precipitate as mixtures of 

both Fe(II) and Fe(III) (Table 2.1; Cornell & Schwertmann, 2003).  Under modern oxic 

conditions, iron (III) oxide minerals are of low solubility (and hence, mobility) in a 

majority of aqueous environments; whereas under anoxic conditions (created by 

oxygen-scavenging bacterial reactions in near surface sediments or open water columns, 

where there is an abundance of organic matter; Lovely, 1991) iron oxides are easily 

reduced, becoming unstable and increasing their solubility (Stone & Morgan, 1987).  

Freshly precipitated iron oxides are characteristically poor in crystallinity, and highly 

reactive due to their large surface areas, being abundant within surface and/or near 

surface sedimentary environments. These structures are metastable and readily 
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transform into more highly crystalline, thermodynamically stable iron oxides under 

conditions of oxidation and temperature increase.  

Table 2.1 lists a number of the most commonly occurring iron oxide minerals which are 

characterised by their unique physical properties. The majority of compounds are 

octahedral (Fe(O)6 /FeO3(OH)3) or tetrahedral (Fe(O)4) in structure with an account of 

individual Fe morphologies described below. By studying each minerals unique 

physical properties and structure (as collated by Cornell & Schwertmann, 2003; 

Pedersen, 2006), an understanding of the solubility and reactivity of differing minerals 

may be recognized.  

 

Table 2.1: Common iron bearing minerals observed within natural environments 

(adapted from Cornell & Schwertmann, 2003) 

 

Carbonates Oxyhydroxides and hydroxides 

 

Oxides 

Siderite Fe
II
CO3 Goethite α-FeOOH Hematite α-Fe2O3 

 Lepidocrocite γ-FeOOH Magnetite Fe3O4  

 Ferrihydrite Fe5HO8.4H2O          (as Fe
II
Fe

III
2O4) 

 Green Rust  
Fe

III
xFe

II
y(OH)3x+2y-z(A-)z; 

           A-=Cl-;½ SO4
2-

 

 

 

 

Ferrihydrite (assumed formula 5Fe2O3.9H2O or Fe5HO8.4H2O) 

Due to its poorly crystalline nature, there are many interpretations associated to the 

characterisation of ferrihydrite. Forming in solution as iron oxyhydroxides (water 

containing molecules), XRD analysis differentiates two specific orders of ferrihydrite 

(2-line or 6-line) which develop depending on precipitation, pH and temperature 
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conditions during formation, and may easily transform from one to the other 

(Kukkadapu et al., 2003). Mineral synthesis of poorly structured ferrihydrite produces a 

red-brown precipitate, which is thermodynamically unstable, with a large surface area 

compared to more stable minerals (< 400 m
2
g

-1
; BET surface analysis). Ferrihydrite is 

important in surface environments due to its common occurrence, highly reactive nature 

under anoxic conditions, and its ability as a precursor to readily transform into more 

stable crystalline oxide minerals.   

 

Lepidocrocite (γ-FeOOH) / Goethite (α-FeOOH) 

Formed from the oxidation of Fe(II)aq from green rust in solution, lepidocrocite 

precipitates to form an orange powder which is highly crystalline, yet also reactive on a 

similar timescale to ferrihydrite, with a surface area < 250 m
2
g

-1
. Lepidocrocite readily 

transforms to more stable oxide assemblage, and is least likely to be found within the 

unaltered sediment profiles (Schwertmann & Taylor, 1972). In comparison, as the end 

product of many iron oxide transformations, goethite is a highly stable, highly ordered 

iron oxide which reacts on a slower timescale than ferrihydrite or lepidocrocite. Yellow 

in colour, goethite has a surface area of < 200 m
2
g

-1
.  

 

Magnetite (Fe3O4) 

The structure of magnetite represents a ferromagnetic mixture of Fe(II)/Fe(III) species, 

which are octahedral/tetrahedral layered within the mineral structure. Oxidation 

processes will transform magnetite to green rust overtime, with green rust also a 

prominent precursor mineral to magnetite formation (Sumoondur et al., 2088) With a 

low surface area (<100 m
2
g

-1
) magnetite is highly crystalline and slow to react.  
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Hematite (α-Fe2O3) 

Hematite, an ageing product of ferrihydrite, is a major component of ancient Banded 

Iron Formations, giving these rocks a characteristic red colour. Also abundant in soils 

and sediments, hematite is particularly crystalline and relatively slow to react, with a 

smaller surface area than the previously mentioned iron oxide minerals (<90 m
2
g

-1
).  

Of note, the individual colour of each mineral is dependent on the bond length and 

angle between Fe-Fe central atoms within each tetrahedral or octahedral structure 

(Cornell & Schwertmann, 2003); with the electronic configuration of Fe oxide minerals 

denoted by Fe
2+

 states (1s
2
, 2s

2
, 2p

6
, 3s

2
, 3p

6
, 3d

6
) and Fe

3+
 (1s

2
, 2s

2
, 2p

6
, 3s

2
, 3p

6
, 3d

5
) 

defining the physical properties associated with mineral stability and reactivity. Crobsy 

et al. (1983) first identified the surface area reported above for many individual 

naturally occurring Fe oxide minerals, in comparison to synthetically pure Fe forms. 

This study utilised X ray Diffraction to monitor the effect aging has on freshly 

precipitated Fe minerals, and the changing crystalline morphologies which change with 

time; concluding that indivudal end products and associated surface areas are influenced 

by the initial morphology of Fe(II) or Fe(III) species (Haese, 2006). Therefore due to 

their stable nature, goethite and hematite are the most readily observed Fe minerals in 

modern soil and sedimentary environments. 

Other mechanism of iron oxide formation include the hydrolysis of Fe(III) salts or 

transformation of unstable precursor oxides to thermodynamically stable goethite or 

hematite end members (Cornell & Schwertmann, 2003). This conversion of minerals 

includes changes in morphology, crystalline lattice order, surface area and porosity via 

dissolution and re-precipitation reactions; or solid phase structural transformations (Lui 

et al., 2007) occurring during both low temperature geochemical cycling and within 

high temperature/pressure systems over time, termed ageing. In order to catalyse these 
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reactions, conversions are often mediated by the adsorption of Fe(II)(aq) or H2O(aq) to an 

unstable iron oxyhydroxide mineral surface (i.e. ferrihydrite; Zhao et al., 1994, Lui et 

al., 2007), allowing an electron transfer between Fe(II)aq and the Fe(III) oxide surface to 

stabilise the mineral structure. This uptake allows the transformation and reorganisation 

of ferrihydrite mineral lattices to highly crystalline, stable lepidocrocite, goethite or 

hematite (Jeon et al., 2003; Williams & Scherer, 2004; Pedersen et al., 2005).  

All of the properties listed above influence the Fe- bearing minerals ability to react 

under changing redox conditions, and with biogeochemical cycling at the water-

sediment boundary in aquatic environments. Processes of reduction, dissolution, 

adsorption, oxidation, hydrolysis, precipitation and transformation of iron oxides are all 

commonly observed and highly investigated in natural aquatic systems (Stumm & 

Sulzberger, 1992), and it is important to constrain the conditions under which these 

reactions occur. 

 

2.1.1. The formation of iron minerals in nature: Sources 

Highly reactive iron minerals (FeHR; i.e. ferrihydrite, lepidocrocite) are a major 

constituent of modern soils and marine sediments (FeHR = ~ 45% of total iron 

abundance, where total Fe within sediments = 4-5% sediment weight; Poulton & 

Raiswell, 2002), and are also observed within the ancient rock record. Primarily formed 

as solid phase particulates during the oxidative weathering of terrestrial rocks 

(Krauskopf & Bird, 1995; Cornell & Schwertmann, 2003), Fe(III) minerals are readily 

transported to a variety of terrestrial and marine aqueous systems, via riverine, aeolian, 

glacial and coastal erosion systems (Figure 2.1; Haese, 2006, Poulton & Raiswell, 2002; 

2005 Raiswell, 2006). The mobility of these detrital particles along with other trace 
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metals (either dissolved or particulate, Poulton & Raiswell, (2000)), abundant from the 

chemical weathering of sedimentary rocks and the podzolisation of soils (Schwertmann, 

1991), create a flux of soluble Fe(III) particles to aqueous environments. Transport 

through fluvial riverine systems will deposited iron fractions into sinks such as 

freshwater or glacial originated lakes, shallow marine seas, continental shelves and deep 

ocean basins (Raiswell, 2006). On a much larger scale (alongside terrestrial fluxes of 

iron), other direct sources of Fe to marine systems (non-detrital) include iron associated 

with the weathering of crustal Fe-Mn nodules and deposits in the deep sea (Elderfield & 

Schultz, 1996; Cornell & Schwertmann, 2003); and hydrothermal fluids from vents 

emitting Fe(II), such as those along the Mid-Ocean Ridge to produce a wide variety of 

stable Fe oxides upon diffusion to the water column. These mechanisms are particularly 

important within the ancient rock record during times where the ancient ocean was 

recognised as anoxic or euxinic (Holland, 1984: Poulton et al., 2004b; Lyons et al., 

2009), and hydrothermal activity was ongoing.   

 

 

Figure 2.1: Major reactive iron sources and sinks (from Raiswell, 2006) where values 

in bold indicate influx of iron as Tg yr
-1

. 
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Figure 2.1 identifies the major sources of highly reactive iron, whilst quantifying the 

global flux of iron species (both dissolved and particulate) between recognised sources 

and sinks, as described by Raiswell (2006) in order to constrain the widespread cycling 

of highly reactive iron species.  

Once iron particulates are deposited at the sediment-water boundary, a number of 

diagenetic reactions (Froelich et al., 1979; Berner, 1980, Van der Weijden, 1992), both 

biological and abiological in nature, occur within near surface sediments, determining 

the fate of iron redox species available for biogeochemical cycling. Under anoxic 

conditions, soluble Fe(III) particles will reduce and dissolve to produce aqueous Fe(II) 

in pore-waters (Stone & Morgan, 1987, Hering & Stumm, 1990); and upon diffusion 

back to an oxic water column, will readily re-oxidise Fe(II) to precipitate Fe(III) 

oxyhydroxides, to be re-deposited to the sediment-water boundary. Hence, although 

maybe not predominant, Fe(III) and Fe(II) formed diagenetically after sedimentary 

deposition are an important contributors to the global Fe cycle (Raiswell, 2006),  with 

an authigenic flux contributing approximately 5 Tg/yr within marine and deep sea 

environments (Poulton & Raiswell, 2002; Elrod et al., 2004). 

 

2.1.2 Depositional Environments: Sinks  

The environment in which Fe minerals are ultimately deposited determines the end 

member structure and redox state of Fe mineral assemblages in sediments, contributing 

to the availability of Fe(II) or Fe(III) for further reaction. The localities of these settings 

(Fe sinks: Cornell & Schwertmann, 2003; Raiswell, 2006) may be represented by a 

number of sedimentary deposits in the ancient rock record, within carbonate, sandstone 

or claystone formations. Cornell & Schwertmann (2003) (Table 2.2) describe a number 
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of these features and the class of iron mineral associated with each sink, which is 

reflected by factors such as bottom water oxygenation, stratification, and both detrital 

and authigenic Fe inputs. A variety of environmental and biological factors regulate the 

oxygen content of aquatic basins; either large scale marine, or localised and terrestrial 

(Demaison & Moore, 1980).  

It is estimated that the Earths‟ atmosphere became increasingly oxygenated 

approximately 2.4 Gyr ago (Holland, 1984, 2006; Canfield, 2005), and has remained so 

since ~1.8 Ga. This had a major impact on the oxygen, sulfur and iron content of both 

ancient and modern oceans, which were, and are now, regulated by both the abundance 

of atmospheric oxygen saturating a given water mass; and subsequent bacterial 

photosynthetic processes (e.g. Croal et al., 2004a; Kappler & Newman, 2004; Canfield 

et al., 2006).  

 

Table 2.2: Geological sinks for iron minerals (Cornell & Schwertmann, 2003) 

Sink Fe minerals and features  

Lake Freshwater, glacial meltwaters, stream input, Fe flux dominated by 

weathering of magmatic rocks and podzolised soil. Fully oxic or 

stratified. Anoxic or Euxinic bottom waters: Highly reactive species 

readily available.  

Continental Shelf Detrital and Authigenic input, coastal erosion.  

Deep Sea Continental Crust and basaltic nodes, Mn Oxides associated with 

Fe-Mn crusts 

Hydrothermal Fe(II) aq rich plumes to oxic marine waters: lepidocrocite for 

transformation, Fe silicate rich.  
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Within modern aquatic enviornments, whether an entire water body is oxygenated is 

dependent upon the mixing of oxygen rich, eutrophic surface waters (which without 

influence, becomes anoxic with depth) and oxygenated, denser deep cold waters; via the 

physical mixing processes of upwelling and/or wind action (Tyson & Pearson, 1991). 

Within a sedimentary basin or silled continental margin, stratification may occur 

between periods of mixing (either seasonally, annually or only over geologic 

timescales) and controls the interface between oxic surface waters and denser anoxic 

water masses at depth. Open surface waters readily allow organic carbon in the form of 

deceased organic matter to fall through the water column, before being deposited on the 

sediment surface, fueling terminal electron acceptor processes (TEAPs; Lovely, 1991, 

Rullkotter, 2006) and microbial respiration in the upper sediment. Hence, without 

strong mixing of oxygenated waters, and without the production of oxygen at depth 

biologically, oxygen demand from aerobic microbial communities at the sediment-water 

interface may outstrip supply, allowing anoxic conditions to be developed in local 

marine systems (Calvert & Pedersen, 1993; Canfield et al., 2006). 

In comparison to modern oxic conditions, prior to the rise in atmospheric oxygen 2.4 

Ga, ancient marine systems were predominantly anoxic and sulfide levels permanently 

low (with the later exceptions of sporadic continental euxinia (Reinhard et al., 2009; 

Poulton et al., 2010)). These conditions were supportive of the precipitation Fe 

carbonate minerals; and of Fe oxide formation to a higher extent than observed today, as 

documented within the widespread formation of banded iron formations in a number of 

localities (Klein, 2005). Periodically above the sediment-water boundary where organic 

material was vastly abundant, and where rates of sulfate reduction were sufficiently 

higher than that of iron reduction, euxinic (sulfidic) conditions persisted within low 

oxygen water columns (Raiswell & Berner, 1985; Lyons & Berner, 1992; Canfield et 
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al., 1996). These environments were synonymous with the formation of pyrite with an 

H2S(aq) rich water column reacting with detrital Fe oxide minerals (Lyons & Severmann, 

2006), and where found today, are an important analogue (i.e. Black Sea; Canfield et 

al., 1996) of the ancient euxinic systems observed continually throughout the ancient 

rock record.  

 

2.1.3. Early Diagenesis and the redox cycling of Fe 

As modern marine systems are generally oxygenated throughout the water column, a 

high abundance of reactive Fe(III) oxides at the sediment-water interface (Raiswell & 

Canfield, 1998) are observed. Near surface sediments may only become anoxic after a 

few centimetres depth, as oxygen from bottom waters is consumed by aerobic bacterial 

respiration reactions (Froelich et al., 1979).  

The orders of which these processes take place are significant in determining the 

oxygenation state of sediments at depth (Berner, 1980, Figure 2.3); and the primary 

TEAP reactions which take place during this progression of early sediment diagensis 

are well characterised (Froelich et al., 1979; Sorensen et al., 1979). Summarised by 

Schulz (2006), the influencing factor which mediates anaerobic conditions is primarily 

the availability of organic matter (OM) produced in oxic surface waters, before falling 

through the water column to the sediment surface. 
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Figure 2.2: Metabolic mechanisms and terminal electron acceptor processes associated 

with early diagenesis (adapted from Froelich et al., 1979 and Canfield & Thamdrup, 

2009), where the composition of OM is defined by Redfield (1958). 

 

Deposited OM will be oxidised whilst undergoing a series of biological reactions which 

exploit oxygen consuming electron acceptors along the way (reducing O2, N, Mn, 

Fe(III), SO4
2-

, CO2  to O2/CO2, NO3
-
, Mn

2+
, Fe

2+
, H2S and CH4 respectively).  Figure 2.2 

shows that only within the very surface of the sediment column (where organic matter is 

abundant) will oxygen be recycled; via bacterial consumption and further respiration of 

dissolved O2. Below this oxic zone, oxygen is completely consumed and organic matter 

(along with an electron acceptor) is required for further oxidation (Herring & Stumm, 

1990) allowing the continuation of the anaerobic microbial reactions outlined in Figure 

2.2. In addition, the products of these reduction processes are available for further 

reaction. Iron which is biologically reduced to Fe
2+

 in porewaters, is easily reoxidised to 

FeOOH or magnetite in reaction with even low concentrations of oxygen (which has 

escaped consumption where both reactants diffuse through sediment; Lovely, 1993). 

Electron Acceptor Microbial Process Mechanism Product Zonation 

S O2 OXIC 

E

D

I NO2
- / NO3- Nitrate Reducing NITROGENOUS 

M

E

N MnO2 Mn2+ 
MANGANOUS

T

D Fe2O3 FeOOH Iron Reducing Fe2+ 
FERRUGINOUS

E

P

T SO4
2- Sulfate Reducing H2S SULFIDIC

H

(m) CO2 Methanogensis CH4 METHANIC

Manganese 

Reducing 

NO2
-  NO3

- 

(CH2O)106  (NH3)16  (H3PO4) + 236 MnO2 

→236 Mn2+ + 106 CO2

(CH2O)106  (NH3)16  (H3PO4) + 94.4 HNO3 

→ 55.2 N2 + 106 CO2 +H3PO4

(CH2O)106  (NH3)16  (H3PO4) + 212 Fe2O3/ 

424 FeOOH → 424 Fe2+ + 106 CO2 

+H3PO4+ 16 NH3 + 530/742 H20

(CH2O)106  (NH3)16  (H3PO4) + 53 SO4
2- → 

53 S2-+ 106 CO2 +H3PO4+ 16 NH3 + 106 H2O

(CH2O)106  (NH3)16  (H3PO4) →  53 CO2 + 

53 CH4+ H3PO4+ 16 NH3 

OXIC SEDIMENT SURFACE 

OXYGENATED BOTTOM WATERS + OM 

Aerobic 

Respiration

(CH2O)106  (NH3)16  (H3PO4) + 138 O2 

→106 CO2 +16 HNO3+ H3PO4+ 122 H20

O2/CO2            

(+ HNO3 + 

H3PO4)
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Therefore reactions at the boundary between both iron and sulfate reduction (via both 

biological and abiological means; Canfield & Thamdrup, 2009) may also overlap, and it 

is the premise of these reactions which are of great interest to this study.  

 

2.1.4. The reactivity of iron bearing minerals  

Within these diagenetically defined zones of reactivity, localised redox cycling of 

transition metals is primarily controlled by changes in O2 concentration (and hence 

oxidation state; Figure 2.3; Hering & Stumm, 1990). Under oxic conditions Fe(III) 

oxides are considered thermodynamically stable  (Stone & Morgan, 1987), but when 

reduced to a divalent state in an oxygen depleted environment, there is a significant 

increase in Fe mineral solubility and speciation. As the concentration of available 

Fe(III) as an electron acceptor for organic matter degradation often overwhelms the 

concentrations of other substrates (Lovely & Phillips, 1987), it is important to also 

carefully consider the effect of biologically reduced Fe alongside abiotic processes of 

reductive dissolution.  

 

Figure 2.3: The localised redox cycling of Fe(III)-Fe(II) within near surface 

sedimentary environment (adapted from Hering & Stumm, 1990).  
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2.1.4.1. Biological Iron reduction 

During the deposition of organic matter and particulate iron minerals, the microbially 

mediated iron reduction process outlined in Section 2.1.3 supports the biogeochemical 

cycles of carbon, oxygen and iron in near surface sediments (Lovely & Phillips, 1986). 

Dissimilatory iron reduction (DIR; Lovely, 1991) uses Fe(III) oxide minerals within 

anoxic sedimentary environments as terminal electron acceptors, reducing Fe(III) is to 

Fe(II) and allowing subsequent dissolution of Fe(II) into anoxic systems. Many studies 

of this biological reaction have been performed (e.g. as reviewed in Lovely, 1991) with 

Fe(III) acting as a terminal electron acceptor for many dissimilatory reactions involving 

anaerobic bacterial strains, for example Shewanella Alga (Roden & Zachara, 1996) or 

Shewanella Putrefacians (Roden, 2003; Bonneville et al., 2006). An example of 

biological iron reduction (also in Figure 2.2) will oxidise organic carbon via acetate to 

carbon dioxide in the reaction described in Equation 2.1. The rate at which biological 

iron reduction and Fe(II) dissolution occurs, is a function of the accumulation of 

biogenically produced Fe(II) upon the residual Fe(III) oxide surface (Roden, 2004).   

 

4FeOOH + CH2O + 8H
+
 → 4Fe

2+
 + CO2 + 7H2O    (Eq. 2.1) 

 

2.1.4.2 Iron Dissolution: Reductive and non-reductive processes 

In contrast to the reductive dissolution processes Fe(III) oxides are subjected to in 

biological systems, the abiotic (or chemical) dissolution of Fe(III) oxides may occur in a 

variety of ways. It is well recognised that minerals undergoing a reductive process from 

Fe(III) to Fe(II) will dissolve more readily than solid phase Fe(III) to Fe(III)aq, as Fe(III) 

is thermodynamically stable in most natural systems (Stone & Morgan, 1987; Wehrli et 
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al., 1989). This, in turn, demonstrates the ability of Fe minerals in reduced 

environments to dissolve more readily than those in oxic aqueous conditions.  

Only when considering the weathering of Fe(III) minerals and their presence in 

oxygenated surface waters, may particulate Fe(III) species be readily dissolved by either 

photochemical reductive dissolution (Sulzberger & Laubscher, 1995; Borer et al., 2005) 

or the action of soluble organic siderophores, described as organic ligands (i.e. 

desferrioxamine, DFO; Kraemer, 2004) produced biologically to scavenge and bind to 

Fe in Fe-limited environments (Hersman et al., 1999). Zinder et al. (1986) outline the 

mechanism by which Fe(III) may also dissolve without undergoing a reductive reaction 

(i.e. in the presence of oxalate under acidic conditions) compared to proton catalysed 

reductive dissolution (which quickly weakens the Fe-O bond, before electron transfer 

and detachment of the central Fe atom) which although not important for the reaction of 

Fe(III) oxides under sulfidic conditions, may be a prominent catalyst of Fe(II) 

dissolution in other anoxic aqueous environments.  

The dissolution of Fe(III) oxide species in anoxic environments occurs as a multistep, 

surface controlled reaction (Zinder et al., 1986; Hering & Stumm, 1990). The 

hydroxylated nature of an oxide mineral surface (FeOH
-
 or FeOH2

+
) may be either 

protonated or deprotonated in solution, depending on the nature of the solute reacting at 

the solid oxide surface. The reactivity of functional groups on the oxide surface 

(OH/H2O) defines the rate and mechanism by which dissolution occurs. The zero point 

of charge (ZPC) for FeOOH minerals (Schindler & Stumm, 1987) indicates that the 

surface mineral charge when neutral is zero. When in reaction with an acidic solution, 

protons attracted to the mineral surface create a positive charge (H
+
). Below the PZC, 

(or in reaction with hydroxide ions, OH
-
) a negative charge is observed. Of interest to 

this study, the reductive dissolution of Fe(III) oxides promoted by ligands (either acids 
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or anions) begins with the formation of adsorbed surface complexes on the active outer 

electron shell of the oxide mineral. Hydrated surface sites (or functional groups) will be 

displaced by solutes within aqueous environments which may contain organic acids 

(including chelators or binding ligands) such as EDTA or ascorbate (Banwart et al., 

1989 Dos Santos Afonso et al., 1990), biologically produced reductants which adsorb 

onto the oxide surface (e.g. H2S; Pyzik & Sommer, 1981), or metal ion species in 

solution (e.g. Fe
2+

aq; Zinder et al., 1986; Wehrli et al., 1989; Suter et al., 1991).   

These species will adsorb (or bind) onto the central Fe-metal atom to create a 

precursory, inner sphere surface complex (Morgan & Stumm, 1987; Schindler & 

Stumm, 1987) which mediates an electron transfer between the bound surface complex 

and bulk oxide mineral to reduce Fe(III) to Fe(II). Of note, reaction processes are 

further catalysed in the presence of both a surface complex solute and reducer, with 

previous studies concentrating on the proton promoted reductive dissolution of a variety 

of Fe(III) minerals with organic acids such as ascorbate with oxalate or citrate (Banwart 

et al., 1989; Suter et al., 1991; and more recently Hyacinthe et al., 2006). During this 

process of electron transfer, reductants adsorb to form a surface bridging complex,and  

will oxidise before releasing from the mineral surface. Weakening of the Fe-O bond will 

also occur during this process, allowing the energetically favourable detachment of Fe 

into solution as Fe(II)aq.  

Weiland et al, (1988) describe a correlation between the rate of Fe(II) dissolution and 

surface interactions occurring between the reactive oxide mineral and a given solute 

(containing H+, OH-, weak acids or anions) in reaction, specifically that the dissolution 

rate associated with Fe(II)aq moving into solution is a function of the concentration of 

surface species adsorbed from solution. With continual Fe(II) dissolution, changes in 

the surface charge are reflected in the rate at which Fe(II) is removed from the mineral 
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surface, which in general rate equations is assumed to have a homogeneous distribution 

of surface functional groups for reaction (Stone & Morgan, 1987).  The mechanistic 

step which controls these rates of reaction may vary however, with a rate limiting step 

occurring at the slowest point of reaction (Stumm & Sulzberger, 1992), during either the 

adsorption of the reductant solute (generally a fast reaction), the inner sphere electron 

transfer or the detachment of Fe(II) from the mineral surface. This typically is the 

slowest reaction of the mechanism due to the dependence of reaction conditions under 

which reactions are set (i.e. under acidic or circum-neutral conditions, allowing the 

protonation or hydrolysis of a labile Fe(II) complex). Figure 2.4 refers to a simplified 

mechanism of ligand promoted reductive dissolution (also see Zinder et al., 1986), 

which indicates the rate at which each step proceeds.  

 

1. Adsorption of reductant, R 

Fe
III

OH + R → fast→ Fe
III

- R     (Eq. 2.2) 

2. Electron transfer (reduced surface species and oxidised reducing agent; radical) 

Fe
III

-R ↔ e-   → Fe(II) + Rox      (Eq. 2.3)  

3. Detachment of labile Fe(II)  

Fe
II
 → slow → Fe(II)aq      (Eq. 2.4) 

 

Figure 2.4: General mechanism of Fe(III) reductive dissolution within anoxic aqueous 

environments (adapted from Stumm & Sulzberger, 1992). 
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2.1.5 The reactivity of iron bearing minerals within natural environments 

Of the many experimental papers which describe the rates and mechanisms of Fe(III) 

oxide reactivity during reductive dissolution, there are few which have linked laboratory 

studies which define reactivity of pure Fe-minerals, to studies of the reactivity of a 

mixture of different Fe oxides observed within natural sediment assemblages. Previous 

studies which aim to evaluate the rates and mechanism of Fe(III) oxide reductive 

dissolution, do so under laboratory conditions examining the reaction between 

synthetic, individual Fe(III) mineral and a naturally occurring reducing agent, e.g. 

ascorbate (Banwart et al., 1989; Dos Santos Afonso et al., 1990; Suter et al., 1991; 

Deng, 1997), a reducing organic acid associated with the degradation of humic and 

fulvic acids (but is not found prominently in marine systems). Whilst following the 

mechanism of ligand promoted reductive dissolution, examinations of ascorbic acid 

induced Fe(II) dissolution agree that in addition to a reducing agent, a surface 

complexing agent (e.g. oxalate; Banwart et al., 1989) is required to further catalyse 

Fe(II) dissolution in natural environments, especially under conditions of low pH (< 3). 

Whilst the rates and reactive mechanisms of individual Fe(III) minerals are widely 

agreed upon as dependent on a number of physical aspects of Fe(III) structural 

organisation (e.g. mineralogy, crystallinity, surface area), the rate at which these 

reactions occurs also relies on the concentration of the reducing agent in reaction.  

Postma (1993) provides the first detailed study of iron reactivity measured within a suite 

of natural sediment samples. Analogous to a reactive continuum process (Boudreau & 

Ruddick, 1991) which describes the continuous oxidation of organic matter during early 

diagenesis (mediated by the abundance of heterogeneously mixed minerals with 

differing reactive properties), the reaction of a sediment assemblage with ascorbic acid 

traces the concentration of dissolved Fe(II) as a fraction of the bulk unreacted mineral. 
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Comparable rates of reaction were observed for sediments of characterised Fe 

morphologies with models of pure synthetic Fe(III) minerals (Postma, 1993; Larsen & 

Postma, 2001; Larsen et al., 2006), allowing for the first time an abiotic model of iron 

reactivity throughout a sediment core which contains a heterogeneous mix of highly, 

poorly and unreactive Fe(III) minerals. What has never been reported, however, is a 

model which represents the reactivity of Fe mineral assemblages under analogous 

conditions to those in marine environments (i.e under anoxic or sulfidic systems). 

 

2.2 THE REACTIVITY OF IRON MINERALS UNDER SULFIDIC 

CONDITIONS 

2.2.1 Iron and the Sulfur cycle 

The biogeochemical cycling of Fe within sedimentary systems is closely linked to redox 

cycles of other highly reactive elements, such as manganese and sulfur (Canfield et al., 

1993; Thamdrup et al., 1994; Van Cappellen & Wang, 1996).  As a predominant source, 

approximately 1.3 x10
9
 Tg yr

-1
 (Jorgensen & Kasten, 2006) of sulfate is introduced into 

seawater from the chemical and oxidative weathering of continental rocks (Berner, 

1985; 1991), with minor sources originating from volcanic emissions of sulfur dioxide 

into the atmosphere and hydrothermal inputs (see Canfield & Farquhar, 2009). 

Sulfur species within modern oxygenated marine environments are dominated by 

seawater sulfate (SO4
2-

; Joergensen & Kasten, 2006), undergoing a +6 to -2 change in 

oxidation state in reduced environments. Marine sediments represent a significant sink 

for both organic matter and seawater sulfate deposition (Berner, 1964), incorporated 

into near surface sediments during early diagenesis, and initiating a series of biological 

and abiotic reactions representing the sedimentary sulfur cycle (e.g. Jorgensesn, 1977; 
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Figure 2.5).  These reactions represent 1) the biological reduction of sulfate to produce 

hydrogen sulfide in anoxic sediments 2) the oxidation of hydrogen sulfide (to elemental 

S, polysulfide or (thio)-sulfate species) 3) precipitation of metal sulfide species and 4) 

bacterially disproportionation of elemental S to hydrogen sulfide and sulfate (Jorgensen 

& Kasten, 2006). 

 

Figure 2.5: The S cycle in near surface sediments (Jorgensesn & Kasten, 2006). 

 

2.2.2 Bacterial Sulfate Reduction  

Oxygen consuming chemical and biological processes associated with early diagenesis 

have been discussed in Section 2.1.3. Bacterial sulfate reduction (BSR) within near 

surface sediments (<10 cm) takes place at depth where all O2 has been consumed or 

diffused by migration to surface environments (Berner, 1985). Bacteria (e.g. 

Desulfovibrio; Joergensen, 1977) utilise sulfate as a terminal electron acceptor during 

the anaerobic respiration of organic matter, producing hydrogen sulfide as a by-product 

(Equation 2.6): 
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2[CH2O] + SO4
2-

 →2HCO3
-
 + H2S     (Eq. 2.6)  

Dissolved hydrogen sulfide may then either migrate to the sediment surface where it 

will be oxidised to form re-cycled sulfate within at the sediment- water interface; or will 

react with adjacent iron minerals or dissolved Fe(II), where it will either be oxidised (in 

the case of reaction with iron minerals) or will precipitate as solid iron mono-sulfide, 

and eventually pyrite (Berner, 1969; 1985).  

 

2.2.2.1 Sulfur oxidation  

After the bacterial reduction of sulfate to sulfide, H2S in pore waters continues to react; 

either in the presence of iron bearing minerals to form FeS and pyrite, or to produce 

oxidised sulfur species such as elemental S or (thio)sulfate (Dos Santos Afonso & 

Stumm, 1992; Yao & Millero, 1996; Poulton, 2003). 

As BSR takes place within anoxic sediments, the oxidation of dissolved sulfide in 

solution does not necessarily take place utilising O2 (as observed in Millero et al., 1987) 

and the presence of other oxidants within the near surface, such as Fe(III) or Mn oxides, 

become important for biogeochemical S cycling (Aller & Rude, 1988; Yao & Millero, 

1996; Schippers, 2004; Jorgensen & Kasten, 2006). An example of the formation of 

oxidised S species is reported in Equation 2.7 and 2.8. Experimental studies of 

oxidation of hydrogen sulfide mediated by Fe(III) reduction (Yao & Millero, 1996) 

examine the importance of Fe(III)-Fe(II) reduction mediated by dissolved sulfide in the 

formation of elemental sulfur (Poulton, 2003; Equation 2.7 and 2.8): 

Fe
II

S + H2O ↔ Fe
II

OH
+

2 + S
•-

    (Eq. 2.7)
  

 

 

8FeOH + 8S
•-

 →S
0

8 + 8Fe
2+

     (Eq. 2.8) 
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Additional field investigations of marine sediments also measure the oxidised product 

of BSR produced sulfide as elemental S (Equation 2.8), suggesting that the oxidation of 

precipitated iron mono-sulfides (FeS) energetically favours the production of elemental 

S (shown experimentally in Poulton, 2003), compared to the oxidation of pyrite, which 

tends towards sulfate formation which only occurs in normal, oxic marine environments 

(Schippers & Jorgensen, 1994; 2001; Equation 2.9).  

 

FeS2 + 7.5 MnO2 + 11 H+ →Fe(OH)3 + 2SO4
2-

 + 7.5 Mn
2+

 + 4 H2O (Eq. 2.9) 

 

Finally, further to this reaction, bacteria may also utilise elemental S (or thiosulfate) 

during disproportionation (Thiobacillus; Thamdrup et al., 1993) to produce both a 

reduced state sulfur species and an oxidised sulfate phase (Equation 2.10), completing 

the biogeochemical cycling of sulfur in sedimentary environments (Canfield & 

Thamdrup, 1996; Joergensen & Kasten, 2006). 

4S
0
 + 4 H2O → 3 H2S + SO4

2-
 + 2H

+ 
   (Eq 2.10) 

  

 
 
 

2.2.3 The formation of iron mono-sulfides and pyrite  

Precipitating as a black solid (Berner, 1964), the formation of iron mono-sulfide (FeS) 

species in both marine and limnic environments naturally occurs as a reaction between 

dissolved Fe(II) (in pore-water or a ferruginous water column) and BSR produced 

hydrogen sulfide. The mechanisms which support the secondary reaction to pyrite 

formation (Berner, 1970), have however been debated in a number of field and 

laboratory studies. The presence of both FeS and FeS2 in marine sediments act as 

excellent indicators of the environmental conditions (including organic matter 
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abundance, oxygenation and sulfidation processes) encountered at the time of formation 

and deposition (Raiswell et al., 1988).   

The precipitation of solid phase FeS is a pH dependant reaction, influenced by both the 

concentration and speciation of dissolved sulfide in solution. Rickard (1995) proposed 

two mechanisms of formation, defined in Equation 2.11 and 2.12:  

 

Fe
2+

 + H2S → FeS(s) + 2H
+
       (Eq. 2.11) 

Fe
2+

 + 2HS
-
 → Fe(HS)2 → FeS(s) + H2S    (Eq. 2.12) 

 

The form of hydrogen sulfide species is controlled by the pH range within which BSR 

reactions take place (generally under circumneutral conditions; Rickard, 1997; 2006), 

and is important in studies of iron reactivity in anoxic sedimentary environments 

(Equation 2.11). Experimental studies of synthetic FeS formation (Rickard, 1995) 

determine the effect of pH over both sulfide rich (bisulfide, 2HS
-
) and sulfide poor 

(H2S) pathways; where neutral-alkaline environments utilise hydrogen sulfide at a faster 

rate than in sediments < pH 7.  

Structurally, FeS forms are differentiated by their crystalline properties, which propose 

different mechanisms of pyrite formation. Freshly precipitated FeS is unstable and 

poorly crystalline, compared to complexes such as greigite (Fe3S4) or mackinawite 

(Fe1+xS), which are defined as metastable and tetragonal or framboidal in structure 

(Raiswell, 1982).  

 Solubility studies of iron mono-sulfide species have been performed in terms of pH 

dependence (pH 3 – 10; Rickard, 2006), producing dissolution of FeS which occurs 
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relatively easily as shown in Equations 2.13 and 2.14 respectively; where both 

equations indicate a return of hydrogen sulfide to the S cycle (as H2S and HS
-
). 

FeS + 2H
+
 → Fe

2+
 + H2S           (Eq. 2.13) 

FeS + H
+
 → Fe

2+
 + HS

-
           (Eq. 2.14)

     

Rickard, 2006 also indicates that a pH independent reaction may occur due to the 

formation of dissolved, aqueous FeS (FeSaq), observed specifically under neutral-

alkaline anoxic environments. At pH >8, in highly sulfidic environments (1 x 10
-5.7

 M; 

Rickard, 2006), FeSaq clusters dominate the total dissolved sulfide profile (Equation 

2.15), instead of assumed products H2S and HS
-
:  

 

ΣS = [H2S] + [HS
-
] + [FeSaq]      (Eq. 2.15) 

  

Sedimentary pyrite (FeS2) observed in anoxic organic rich, sedimentary systems 

requires the super-saturation of precursor FeS with dissolved hydrogen sulfide to form; 

which acts as a stable end product of Fe and S reactivity (Wang & Morse, 1996; 

Raiswell, 1997). The formation of pyrite is represented generally in Equation 2.16, 

however metastable FeS may interact with a number of sulfide species under different 

conditions of oxygenation, which all ultimately form pyrite. However, in some cases an 

oxidising agent is required to catalyse pyrite formation (Figure 2.6; Wilkin & Barnes, 

1996; Wang & Morse, 1996; Rickard, 1997; Rickard & Luther, 1997; Benning et al., 

2000):   
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FeS + H2S → FeS2 + H2      (Eq. 2.16) 

 

HS- pathway:  

FeS + HS
-
 + H

+
 → FeS2 + H2      (Eq. 2.17) 

Polysulfide pathway:  

FeS + S
ο
 → FeS2       (Eq. 2.18) 

Greigite Intermediate pathway:  

Fe3O4 + 4FeS → Fe3S4 + 4FeO
- 
(unstable): 

3FeS + S
2- →Fe3S4 + 2S

2-
 → 3FeS2 (excess sulfide) 

Fe3S4 → 2FeS2 + Fe
2+

 + 2e
; 
      (Eq. 2.19) 

Zero valent sulfur pathway:  

FeS + 1/8S8 → FeS2        (Eq. 2.20) 

Figure 2.6:  Additional pathways of pyrite formation 

 

Irrespective of reaction stoichiometry and reagents, there are two recognised 

mechanisms of pyrite crystallisation from an oxidised FeS: 1) The dissolution of FeS(s) 

to FeS(aq) and subsequent precipitation of FeS2 nuclei upon the surface of solid phase 

FeS; or 2) The transformation of the FeS surface to form a transitional layer of pyrite 

nucleation between the FeS bulk solid and sulfide in solution (Wang & Morse, 1996). 

The morphology and structure of pyrite observed within marine sediments are defined 

by the mechanism and rate by which pyritisation occurs, and also by the structural 

properties of precursor FeS. Framboidal pyrite (Raiswell, 1982; Butler & Rickard, 

2000; Hunger & Benning, 2007) is observed as the product of the fast dissolution and 

poly-nucleation of sulfidised FeS (i.e. either utilising mackinawite or greigite; Wilkin & 
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Barnes, 1997; Benning et al., 2000) to form FeS2; and is important as a marker of 

depositional environment (i.e. marsh or coastal sediments) due to its unique structure.  

In comparison, a crystalline euhedral pyrite is expected from the slow precipitation of 

pyrite nuclei on a FeS surface (Wilkin & Barnes, 1996). Although most studies referred 

to in this Thesis focus on the reactivity of FeS and FeS2 in anoxic environments, studies 

of mackinwite in comparison (Benning et al., 2000) will only form pyrite in an oxidised 

environment (via greigite). Hence in the absence of oxygen below the sediment – water 

boundary, the presence of oxidising agents are vital in determining a pyritic structure.   

To classify the extent of pyrite formation from an environment rich in these reactive 

iron minerals, the Degree of Pyritization (DOP: derived within Raiswell & Berner, 

1985; Canfield et al., 1996; Raiswell & Canfield, 1998) is calculated to account for the 

concentration of FeS or pyrite associated Fe within a natural sediment.  Equation 2.21 

describes the concentration of Fe of HCl extractable Fe and Fe bound to sulfur in pyrite. 

 

Degree of Pyritization = [Fepyrite]/ [Fepyrite +HCL soluble Fe]  (Eq. 2.21) 

 

 Canfield et al., 1996 characterise DOP ratios between 0- 0.45 indicative of normal, 

oxygenated marine sediments, 0.45 - 0.75 representing a low oxygen/anoxic 

environment, and values between 0.75 - 1 (complete sulfidation of iron minerals) 

indicative of euxinic deposition environments.  
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2.2.4 The reductive dissolution of iron minerals within sulfidic environments 

Via the study of FeS and FeS2 formation, the rates and mechanisms which regulate Fe
2+

 

and S
2-

 availability in sedimentary pore water systems can be evaluated.  The reductive 

dissolution of Fe(III) oxide minerals by dissolved sulfide in solution has been 

thoroughly investigated in previous laboratory studies, describing a surface controlled 

reaction dependent upon the initial sulfide concentration and mineral surface area 

available for reaction (Pyzik & Sommer, 1981).  

 

The recognised mechanism of sulfide promoted reductive dissolution (Dos Santos 

Afonso & Stumm, 1992) is described in Figure 2.7. As discussed in Section 2.1.4.2, the 

formation of surface complexes occurs via the adsorption of a reductant species in 

solution (i.e. dissolved sulfide) to hydroxyl groups on the reactive surface of an oxide 

mineral, creating an inner sphere complex. An electron transfer between the negatively 

charged sulfur species and central Fe atom of surface complex, reduces Fe(III)-Fe(II) 

before releasing adsorbed sulfur in an oxidised form (generally determined by electron 

mass balance as elemental S, Yao & Millero, (1996);  however some studies report 

sulfate as an end product associated with the catalysis of  Fe(III) reduction). The 

protonated reduced state Fe (II) complex on the mineral surface is then detached into 

solution, bearing a new reactive Fe(III) site for reaction. As a secondary reaction, 

dissolved Fe
2+

 in solution can then react with additional dissolved sulfide to form FeS 

(Rickard, 1974).  
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Surface complex formation on reactive mineral surface: 

 Fe
III

OH + HS
-
 ↔ Fe

III
S

-
 + H2O     (Eq. 2.22) 

Electron Transfer between bulk and reactive Fe:  

 Fe
III

S
-
 ↔ Fe

II
S       (Eq. 2.23) 

Oxidation of adsorbed reagent: 

 Fe
II

S + H2O ↔ Fe
II

OH2
+
 + S

•-     
(Eq. 2.24) 

Fe(II)aq dissolution (deprotonation of the mineral surface) and production of               

new surface site available for reaction 

 Fe
II

OH2
+
 → Fe(II)aq + H

+
   →  Fe

III
OH    (Eq. 2.25) 

Formation of elemental S 

 8FeOH + 8S
•-
 → S8

0
 + Fe(II)aq     (Eq. 2.26) 

 

Figure 2.7: Reaction pathway of sulfide mediated reductive dissolution (Dos Santos 

Afonso & Stumm, 1992) occurring on the reactive surface of Fe(III) oxide minerals 

 

The rate at which dissolution of Fe(II) occurs follows first order kinetics in relation to 

the initial concentration of Fe(III) oxide species, determined experimentally by Pyzik & 

Sommer, (Goethite; 1981), Berner & Canfield (Magntite; 1987), Dos Santos Afonso & 

Stumm (Hematite; 1992), Peiffer et al., (Lepidocrocite; 1992) Yao & Millero (Hydrous 

Ferric Oxide; 1996) and Poulton (2-line Ferrihydrite, 2003). As the slowest step within 

the reaction mechanism (Hering & Stumm, 1990), the dissolution of Fe(II) is therefore 

the rate determining step, and highly influenced by the pH (and therefore protons 

available for reaction) at which the reaction occurs (Dos Santos Afonso & Stumm, 

1992; Poulton, 2003; Peiffer & Gade, 2007); further catalysing the reaction under acidic 

conditions, but inhibiting dissolution to a much slower rate at pH >7.   
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Whilst it is widely agreed that the mineral surface area available for reactivity possesses 

a reaction order of 1 (i.e. first order rate law; Pyzik & Sommer, 1981; Poulton, 2003), 

the significance of dissolved sulfide concentrations is debated, with values ranging 

between 0.5 (Pyzik & Sommer, 1981) and 1.5 (Rickard, 1974). In order to verify these 

differences in dissolved sulfide influence, Poulton (2003) and Poulton et al., (2004) 

analysed the sulfidation rates experimentally for a variety of Fe(III) oxide minerals 

including ferrihydrite, lepidocrocite, goethite, magnetite and hematite. The results 

obtained were shown to produce a fractional reaction order of 0.5 dependent upon the 

initial concentration of dissolved sulfide in solution for all Fe(III) minerals. These 

studies also directly compared for the first time the rate of S oxidation relative to Fe (II) 

dissolution, with the former being 15 times faster than that of Fe(II) dissolution at 

circumneutral pH, inferring reduced phase Fe(II) may require a further catalysis (from 

the next protonated complex site; Pyzik & Sommer, 1981; Zinder et al., 1986, Poulton, 

2003) in order to be released into solution, and for the reaction to continue. From the 

observations, an empirical rate equation can be derived; describing the rate of sulfide 

mediated reductive dissolution (defined by Poulton, 2003):  

 

RFe = KFe (H2S)
0.5

t=0 A      (Eq. 2.27) 

 

where RFe defines the rate of Fe(II) dissolution (M min
-1

), KFe represents the rate 

constant measured for individual reactions (mol
0.5 

l
0.5

m
-2

min
-1

), (H2S)t=0, the initial 

sulfide concentration in solution (M), and A is the Fe(III) mineral surface area (m
2
g

-1
).  

 

 



55 

 

2.2.5 The classification of iron mineral reactivity  

The bacterial reduction of sulfate generally occurs rapidly within the top few cm of 

organic-rich sediments (Raiswell, 1993). However, according to field observations, pore 

water profiles within these sections are often dominated by dissolved Fe(II), and not the 

accumulation of dissolved sulfide as expected (Berner, 1984); leading early studies of 

pyrite formation to deduce that the presence of iron (III) oxides, and the formation of 

FeS acts as a buffer to regulate dissolved sulfide concentrations in sedimentary pore 

waters (Berner, 1969). This hypothesis was first derived after the examination of sulfur 

species in Gulf of California marine sediments (Berner, 1964; 1969) which report a 

general conclusion that a decrease in down-core sulfate concentrations will be reflected 

by increasing dissolved sulfide with depth.  

In examining the influence of iron availability on pyrite formation, boundaries of iron 

presence within core sediments (high, medium and low) were defined as a ratio of iron 

concentration with respect to dissolved sulfide measured with a core section (Berner, 

1969). These primary studies introduced the concept of „reactive iron‟ (Berner, 1969; 

1984; Rickard, 1974; Raiswell, 1982) defined as detrital iron particles deposited within 

an organic rich layer (e.g. iron oxyhydroxides) which react quickly with dissolved 

sulfide. It was concluded that only once these minerals had undergone reductive 

dissolution processes, and the formation of FeS had titrated dissolved Fe(II) from 

porewater, dissolved sulfide could then begin to accumulate in pore water. In order to 

quantify the fraction of reactive iron available for pyrite formation within sediment 

assemblages, the iron content of pyrite which was extractable with boiling hydrochloric 

acid (Berner, 1970) was used to characterise the reactive iron phase, potentially 

determining goethite, hematite, fine grained oxyhydroxide minerals and some species of 

Fe-silicates (Raiswell, 1982; 1993) as a mixture within sediments. Fe-species which 
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were not extractable after this time were classed as unreactive towards dissolved sulfide 

(e.g. bulk silicate minerals; Raiswell & Canfield, 1998).  

Subsequent studies of Fe and S cycling during diagenetic reactions, and in the formation 

of pyrite specify that both iron abundance and reactivity will limit pyrite formation in 

near surface sedimentary systems (Berner, 1984; Canfield, 1989), with fine grained iron 

oxyhydroxide minerals such as hydrous ferric oxide (HFO) or ferrihydrite, reacting 

fastest with dissolved sulfide (Canfield et al., 1992). In order to constrain the rates of 

reactivity between individual Fe(III) minerals, kinetic experiments reflecting the rate of 

sulfidation of reactive iron minerals which are generally observed within marine 

sediments were devised (Canfield, 1989), measuring the concentration of dissolved 

sulfide in solution in reaction with iron oxide minerals including ferrihydrite, 

lepidocrocite, goethite and hematite over a set time period. These experiments were 

used to differentiate easily extractable, highly reactive, poorly crystalline iron minerals 

such as ferrihydrite and lepidocrocite, from stable, crystalline minerals including 

goethite and hematite which reacted at a slower rate with dissolved sulfide. Canfield et 

al., (1992) collates all published data relevant to the rates of sulfidation, and hence 

reactivity, of Fe-bearing minerals reported at that time (Table 2.3), defining these 

minerals using the calculated rate constant K, associated with Fe(II) dissolution. Once 

this highest reactive iron oxide phase has been consumed, slower reacting minerals will 

continue to react with dissolved sulfide to release Fe(II)aq, and hence throughout a near 

surface sediment profile, the sacrifice of easily extractable iron oxyhydroxide minerals 

contributes to the rapid formation of FeS and FeS2 from ferruginously dominated pore 

waters (Canfield, 1989; Raiswell, 1993).  
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Table 2.3: The reaction order of Fe bearing minerals, with respect to the rate of 

iron reductive dissolution (Canfield et al., 1992) 

 

Iron mineral Rate constant K, (yr
-1

) Reference 

Ferrihydrite 2200 Pyzik & Sommer, 1981 

Canfield, 1989 

Lepidocrocite >85 Canfield, 1989 

Goethite 22 Pyzik & Sommer, 1981 

Hematite 12 Canfield et al., 1992 

Magnetite (uncoated/coated) 6.6x10
-3

 / 1.3 x 10
-3

 Berner & Canfield, 1987 

Reactive Silicates 3 x10-3 Canfield et al., 1992 

Sheet Silicates 8.2 x 10-6 Canfield et al., 1992 

 

 

Most recently, Poulton (2003) and Poulton et al., (2004) produced a set of data 

examining the rates of iron sulfidation for similar key Fe minerals referred to within the 

classical reactivity schemes represented by Canfield 1989 and Canfield et al., 1992.  

The importance of this study represents a set of experimental data used in determining 

the reactivity of Fe bearing minerals in terms of mineral half-life under one set of 

kinetic calculations, relative to data compiled from a variety of studies (Table 2.3). 

Poulton et al., 2004 observed a similar order of Fe-mineral reactivity to previous 

schemes, but with a range of sulfidation rates (Table 2.4) between 5 minutes (freshly 

precipitated HYO) to 182 days (hematite), reflecting the change in structural 

morphology and energetic stability of these minerals whilst undergoing sulfidation 

processes. As the rate equations derived to measure the concentration of Fe(II)aq in 

solution over time differ between the studies of Canfield vs. Poulton, a comparison of 

half-life, or rate constant measurements cannot be made directly, however all studies 

which have contributed to the formation of these reactivity schemes agree on the order 



58 

 

of iron mineral reactivity, and the general order of magnitude over which they react, be 

it over a period of hours, days or years.  

 

Table 2.4 Rate constant and half-life of iron mineral reactivity associated with 

sulfide mediated reductive dissolution (Poulton et al., 2004) 

 

Iron Mineral K (mol
-0.5

 l 
0.5

 m
-2

 min
-1

) Half Life (τ1/2 ) 

Freshly precipitated HFO 4.3-8.6 x 10
-6

 5.0 mins 

2-line Ferrihydrite 1.1 x 10
-6

 12.3 hours 

Lepidocrocite 6.1 x 10
-6

 10.9 hours 

Goethite 7.3 x 10
-8

 63 days 

Magnetite 1.0 x 10
-6

 72 days 

Hematite 4.2 x 10
-7

 182 days 

 

 

In addition to determining the rate of individual synthetic minerals in reaction with 

dissolved sulfide, the studies of Pyzik & Sommer (1981), Canfield (1989) and Canfield 

et al., (1992) also measured the rate of sulfide mediated reductive dissolution in a 

variety of anoxic and oxygenated near surface sediments, in order to determine the half 

life of iron mineral reactivity within a natural setting. However, as it is difficult to 

extract individual mineral structures from a heterogeneous sediment assemblage, an 

improvisation to the original boiling HCl-extraction of reactive iron (Berner, 1970) has 

been developed which initiates a multi-step sequential extraction procedure in order to 

extract individual Fe-minerals phases, reflecting the order of reactivity with dissolved 

sulfide in natural systems. The extraction sequence devised by Poulton & Canfield 

(2005) defines:  
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1. Fe carbonates (siderite, Fe-carb);  

2. Easily extractable, highly reactive minerals (ferrihydrite, lepidocrocite; 

FeOx1);  

3. Reducible crystalline Fe minerals (goethite, hematite; (FeOx2);  

4 Magnetite (Fe mag);  

5. Poorly reactive (some reactive Fe-silicates; Fe-PRS); and  

6. Unreactive Fe (unreactive silicates FeU).  

 

Whilst methods of extraction for iron-sulfide species are well constrained (HCl 

extraction: Berner, 1970; Chromium reduction: Canfield et al., 1986), tests of iron 

speciation from natural sediment assemblages using the extraction method of Poulton & 

Canfield, (2005) infer that the extraction of highly reactive (FeHR) phases (Fecarb, 

FeOx1, FeOx2, Fe-mag and Fe-pyrite) are distinguishable from each other within a 

sediment core, allowing a greater correlation to studies which determine the reactivity 

of individual Fe minerals. Overall Fe(III) morphology defines the reactivity of minerals 

within these environments termed highly reactive (including ferrihydrite, lepidocrocite, 

goethite, hematite, magnetite, pyrite), poorly reactive (Fe silicates) or unreactive with 

respect to dissolved sulfide, as classed within Canfield et al., (1992). 
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2.3 Fe ISOTOPES  

 

Traditionally, stable isotope systems have been used to trace the biogeochemical cycling 

of carbon, nitrogen, oxygen and sulfur in a variety of biological and abiotic reactions 

within modern marine systems and the ancient rock record. The pathways by which 

some of these isotopes fractionate with regards to iron mineral reactivity and FeS 

formation (as reviewed in Johnson et al., 2004), have been useful in determining the 

reaction pathway of biological iron reduction and Fe(II) dissolution, the systematics of 

oxidised sulfur, and formation of iron monosulfide products in near surface sediment 

systems. 

 Recently, the emergence of techniques to measure the isotopic fractionation associated 

with redox transition metal reactivity (Fe, Mo, Cr; Anbar & Rouxel, 2007), has allowed 

a significant amount of data to be gathered with regards to answering important 

questions of early earth and seawater oxygenation; and widespread iron formation 

deposition and cessation between approximately 2.4 and 1.8 Ga (Rouxel et al., 2005; 

Johnson et al., 2008a); and hence are of interest to geochemical and paleo-

oceanography studies.  

 

2.3.1. The role of Fe isotopes in examining early diagenetic sediment processes 

The first experimental investigations of Fe isotope fractionation were conducted in 

order to obtain a biosignature value for dissimilatory iron reduction within sedimentary 

systems (Beard et al., 1999), important in order to constrain evidence of early microbial 

respiration within the ancient rock record (Johnson et al., 2003; Beard & Johnson, 2004; 

Johnson & Beard, 2006).  However, these investigations were quickly countered with 

arguments of smaller, but significant isotope fractionations associated with non-
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biological mineral reactivity within similar environments (Anbar et al., 2000; Bullen et 

al., 2001; Roe et al., 2003), questioning whether signatures observed in sediment 

samples are solely of a biological nature. Alongside studies of naturally occurring Fe 

carbonates (Wiesli et al., 2004; Johnson et al., 2005) and sulfides (Butler et al., 2005; 

Severmann et al., 2006), an array of experimental and theoretical investigations 

(Polyakov & Mineev, 2000; Schauble et al., 2001) have been instigated to trace the 

mechanism of Fe isotope fractionation of Fe(III) oxides under different conditions, 

constraining individual Fe isotope signatures representing redox reactions of Fe(III)-

Fe(II) cycling at the sediment-water interface. Beard et al., (2003) measured the Earths 

bulk crust as homogenous (with a δ56
Fe composition of 0‰), which is comparable to 

the composition of igneous rocks and also of oxygenic weathering products (Fantle & 

DePaolo, 2004), due to low solubility within modern oxygenated marine systems. 

Therefore, when Fe isotope fractionations are observed in natural systems, they tend to 

be produced by a change in redox state (whether biological or chemical, oxidative or 

reductive) of Fe(III)-Fe(II); or a change in bonding environment (Roe et al., 2003; 

Johnson et al., 2004). A summary of these fractionations and associated reactions are 

listed in Table 2.5. These pathways of isotopic fractionation are all common in the 

biogeochemical cycling of iron in near surface, marine sediments; and are primarily 

controlled by the availability of oxygen or anaerobic bacteria within pore waters or an 

adjacent water column (Bullen et al., 2001; Croal et al., 2004a). Both biologically and 

chemically mediated redox processes associated with transition metal cycling produce 

larger isotope fractionation signatures than those which are mediated by speciation 

alone (Hill & Schauble, 2008).  
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Table 2.5 Summary of Fe isotopic reactions (collated in Dauphas & Rouxel, 2006) 

Reaction   

 

  δ
56

Fe   References 

Fe(II)aq-Fe(III) oxides 

 

DIR 

 

-1.3 

 

Beard et al., 1999 

Fe(II)aq-Fe(III) oxides 

 

Abiotic precipitation 

 

-0.9 

 

Bullen et al., 2001 

Fe(II)aq-Fe2O3  

 

Abiotic precipitation 

 

0.1 

 

Skulan et al., 2002 

Fe(II)aq-Fe(III)aq 

 

Abiotic Oxidation 

 

-2.9 

 

Welch et al., 2003 

Fe(II)aq-Fe(II)> Fe(III) oxides Abiotic Adsorption 

 

-2.1 

 

Icopini et al., 2004 

Fe(II)aq-Fe(III) oxides 

 

Photosynthetic Fe oxidation -1.5 

 

Croal et al., 2004 

Fe(II)aq-Fe(II)>Fe(III) oxides Experimental Adsorption in DIR -0.9 

 

Crosby et al., 2005 

Fe(II)aq- Fe3O4   DIR   -1.3   Johnson et al, 2005 

 

 

In oxygenated modern marine environments, the formation of insoluble hydrous Fe 

oxyhydroxide minerals from weathered Fe(III) particulates, undergo bacterially 

mediated reduction to produce dissolved Fe(II) in near surface environments; after 

which oxidation (via O2 diffusion or bacterially mediated), precipitation and adsorption 

processes (Icopini et al., 2004) can all potentially be identified by unique isotopic 

signatures. Until now, isotopic fractionations have never been measured on abiotic 

reductive dissolution processes involving sulfide mediators. This is suprising due to the 

well characterised redox reactions occurring during this process (as described by Dos 

Santos Afonso & Stumm, 1992); and hence further investigations (involving 

experimental and field studies) are required in order to determine the influence such 

fractionations would have in associated with those well defined for biological processes 

of iron reduction. 

 

2.3.2 Basic concepts  

An advance in analytical methods and instrumentation in the past decade has presented 

novel ways in which transition metal isotopes are measured, via the development of 

Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MCICP-MS) 
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(Albarede & Beard, 2004; Arnold et al., 2004). Iron is the fourth most abundant element 

on Earth, with four stable isotopes - 
54

Fe (5.84%); 
56

Fe (91.76%); 
57

Fe (2.12 %) and 

58
Fe (0.28%), which are reported as isotopic ratios of delta notation (δ), per mil (as 

56
Fe/

54
Fe are the most abundant isotopes, this ratio is commonly reported, ‰), derived 

from raw data as shown in Equation 2.28. Values are presented relative to the 

internationally recognised IRMM-14 standard or a calibrated igneous rock sample (with 

an isotopic value of approximately 0‰). The fractionation factor between 2 isotopic 

species (A and B) is described in Equation 2.29, and generally maintains a value close 

to 1.  

δ
56

Fe = ((
56

Fe/
54

Fe sample)/ (
56

Fe/
54

Fe standard) – 1) x 10
3
        (Eq. 2.28) 

Fractionation factor αA-B = (δ
56

FeA + 1000) / (δ
56

FeB+1000) (Eq. 2.29) 

 Enrichment Factor ɛA-B = (αA-B -1) x 10
3
    (Eq. 2.30) 

 

Equation 2.30 describes the enrichment factor associated with unidirectional isotopic 

processes which increase the concentration of an isotope value in reaction. Values of 

isotopic fractionation analysed by MC-ICP-MS are measured to a precision of 0.05‰ ± 

0.15‰ based on multi-laboratory studies of replicate measurements, with a number of 

known internal and bracketing standards (Albarede & Beard, 2004). The isotopic 

difference of δ
56

Fe isotopes between two constituents is described by a ∆ (Equation 

2.31), with a maximum isotopic range of approximately 4-5‰ (Beard et al., 2003) 

dependent upon biological or abiotic reactions occurring within low temperature, 

sedimentary or aqueous environments (Anbar & Rouxel, 2007).  

∆A-B = δ
56

FeA - δ
56

FeB       (Eq. 2.31) 
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2.3.3 Dissimilatory iron reduction (DIR) Vs Abiotic mineral dissolution: Fe isotope 

signatures 

In order to fully assess the influence of both biological and abiotic redox reactions 

within natural systems, with regards to Fe isotope fractionation, detailed experimental 

studies are required to understand the often multistep mechanisms which promote 

fractionation of Fe species within sediments, (Butler et al., 2005; Severmann et al., 

2006; Staubwasser et al., 2006). 

Beard et al., (1999) is recognised as the first experimental paper showing that reductive 

dissolution of ferrihydrite by Shewanella Algae produces δ56
Fe(II)aq species 

approximately 1.3‰ lighter than the ferrihydrite substrate it originated from. 

Subsequent laboratory studies (Icopini et al., 2004; Crosby et al., 2004; 2007) have 

argued that bacterial reduction of Fe(III) oxides require an isotopic equilibrium effect 

caused by electron exchange between naturally sorbed Fe(II) onto the reactive Fe(III) 

oxide surface, playing an important role in determining the magnitude of the 

isotopically light Fe(II)aq signature observed in solution. As sorption occurs naturally to 

Fe(III) reactive oxide surfaces (Williams & Scherer, 2004), this process effects the 

isotopic variability of  dissimilatory iron reduction (DIR) produced Fe(II)aq, and reflects 

an abiotic influence over the use of biosignatures, creating uncertainty over the robust 

nature of biological isotope tracers.  

In contrast, abiotic methods of reduction and dissolution associated with Fe(III) oxides 

and the production of Fe(II)aq, have utilised anion exchange chromatography in order to 

investigate the importance of equilibrium effects which occur during the formation of 

Fe-ligand species in solution during Fe(II) dissolution (Anbar et al., 2000; Bullen et al., 

2001; Roe et al., 2003). The differences in bonding environment promote an isotopic 

fractionation, which although smaller in magnitude than corresponding biological redox 
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reactions (Rouxel et al., 2005), still contribute to the δ56
Fe record in modern 

sedimentary systems. Experimental studies of iron isotope fractionation during abiotic 

dissolution processes (Brantley et al., 2001; 2004; Skulan et al., 2002; Weiderhold et 

al., 2006) have focused on a number of well characterised mechanisms are significant to 

Fe
2+

(aq) production. Proton promoted methods of dissolution (Pyzik & Sommer, 1981) 

give no fractionation (or a slightly heavy isotopic signature) when pure Fe(III) minerals 

are dissolved in HCl (Skulan et al., 2002; Brantley et al., 2004; Weiderhold et al., 

2006). However, in comparison, processes including the use of siderophores and 

organic ligand reducing agents (oxalate; Borer et al., 2005) produce isotopically light 

Fe
2+

(aq) signatures of between δ57
Fe = - 0.5 to -2.6‰. Features which constrain the 

variability of these isotopic fractionations are associated with the mineral surface, which 

if reflected as homogeneous, will not produce an isotopic fractionation between mineral 

surface and pore fluid (Skulan et al., 2002), with the reacting ligands affinity towards Fe 

on the mineral surface (allowing either kinetic of equilibrium effects to occur) also 

exerting an importance influence on fractionations (Brantley et al., 2001; 2004).  

 

2.3.4 Fe isotopes in sedimentary systems: modern marine environments  

Redox cycling of Fe(III) and Fe(II) between oxic and anoxic environments at the 

sediment-water boundary supports the fractionation of δ56
Fe isotopes, via a number of 

biological and abiological diagenetic reactions. Within marine sediments, separate 

processes of dissimilatory iron reduction and the dissolution of Fe(II) mediated by 

bacterial sulfate reduction both produce isotopically light δ
56

Fe values of Fe
2+

(aq), 

partially distinguishable depending upon the environments under which they were 

formed. Severmann et al., (2006) and Staubwasser et al., (2006) both describe the 

isotopic fractionation of δ56
Fe isotopes within near surface, anoxic sediments and 
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porewaters which are conducive to either promoting dissimilatory iron reduction 

(Lovely, 1991), and hence an abundance of Fe
2+

(aq); or bacterial sulfate reduction which 

provides a supply of dissolved sulfide in porewater for further reaction (Canfield, 1989) 

to iron mono-sulfides and eventually pyrite. 

In continental margin sediments which support the dissimilatory iron reduction of 

reactive Fe(III) minerals (Berquist & Boyle, 2006; Severmann et al., 2006), the 

abundance of freely available, isotopically light  Fe
2+

(aq) (δ
56

Fe < -3 ‰; Beard et al., 

1999) may readily diffuse back into near surface oxic pore waters (or oxygenated 

bottom waters at the sediment surface) and precipitate into an iron oxyhdroxide mineral 

which carries the isotopically light signature from which it was formed (Beard et al., 

2003; Beard & Johnson, 2004). This recycling of reactive Fe(III) instigates an important 

isotopic signature which maybe imparted further into Fe(III) minerals which are 

transported into deep waters or basin floors, from shelf settings. Severmann et al., 

(2008) traced recycled isotopically light Fe(III) minerals from an oxic shelf within the 

Black Sea as it was transported to the euxinic basin floor. The sediments analysed, 

which contained abundant concentrations of highly reactive Fe minerals and pyrite were 

consistently isotopically light, as scavenged from the settling recycled Fe(III) mineral 

flux, in comparison to the bulk sediment measured on the oxic Black Sea shelf. 

The influence of dissimilatory iron reduction is not only observed within marine 

sediments, but within both natural and artificial lake systems (Teutsch et al., 2009; Song 

et al., 2011). Interestingly, although few studies have characterised the redox cycling of 

δ
56

Fe isotopes at the oxic - anoxic boundary in lake environemnts. These systems are 

driven by dissimilatory iron reduction, also producing isotopically light signatures 

(δ
56

Fe
2+ 

= < -1.88 ‰ Lake Nyos, Teutsch et al., 2009); but becoming increasingly 



67 

 

heavier (δ
56

Fe = +0.83 ‰) with depth, corresponding to isotopically heavy bottom 

waters below the redox interface.  

In contrast to these low sulfide systems, marine environments which permit extensive 

bacterial sulfate reduction will also produce isotopically light δ56
Fe

2+
(aq). However, due 

to the presence of dissolved sulfide in pore water, very little Fe
2+

 will be diffused back 

to the oxygenated sediment surface, and instead will contribute to the formation of solid 

iron mono-sulfide species in sediments (Severmann et al, 2006; Staubwasser et al., 

2006). Butler et al., (2005) report an isotopic fractionation of between -0.3 to -0.85 ‰ 

during the experimental precipitation of FeS from isotopically light δ56
Fe

2+
. However, 

although the composition of FeS reflects the reduced porewater Fe
2+

 from which it 

came, it is understood that the isotopic signature associated with FeS formation is not 

that which subsequently influences pyrite formation, even though FeS is the dominant 

precursor for sedimentary pyrite (Severmann et al., 2008). Further investigation is 

required into the isotope fractionations associated with experimental FeS formation in 

natural sediments, and subsequent pyrite formation, due to the importance with which 

both species presence in modern sediments and the ancient rock record is regarded. 

Aside, whilst pyrite formation measured within modern sediments (Beard et al., 2003; 

Severmann et al., 2006; reviewed in Dauphas & Rouxel, 2006) produces relatively 

small fractionations (between δ56
Fe = 0 and - 1‰); pyrite samples from the ancient rock 

record (Johnson et al., 2003; Rouxel et al., 2005; Yamaguchi et al., 2005; Johnson & 

Beard, 2006; <2.4Ga) is associated with much larger fractionations, between 1 and -

3.5‰ (See Dauphas & Rouxel, 2006; Figure 14). Studies by Rouxel et al., 2005 

hypothesise the vast difference to these δ56
Fe values to be associated with the increase 

in atmospheric oxygen at this time (Barley et al., 2005), increasing the production of 

bacterially procduced sulfate and hydrogen sulfide in ancient oceans, and altering the 
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abundance of reactive iron observed (via the precipitation of FeS and FeS2), regulating 

the iron redox cycle at this time.  

In modern oceans, in comparison to continental shelf sediment studies (Berquist & 

Boyle, 2006; Severmann et al, 2006; Staubwasser et al., 2006) which undergo extensive 

Fe(III)-Fe(II) reduction during dissimilatory iron reduction, and subsequent re-oxidation 

at the sediment surface to produce a benthic Fe(II) flux of light δ56
Fe isotopes, Homoky 

et al., (2009) provide the first data of possible Fe isotope fractionation within deep sea 

environments (Crozet Plateau, 4000m). No fractionation is associated with pore waters 

from these deep sea sediments, which was thought to reflect the low reactivity and 

organic matter contents, compared to the highly reactive nature of Fe(III) minerals 

observed within continental shelf sediments (also Homoky et al., 2009).  

From the extensive investigation of iron isotope fractionations which occur during 

experimental and natural sediment studies of Fe(III) mineral biogeochemical cycling, it 

is suprising that possible isotopic fractionation during sulfide mediated reductive 

dissolution of Fe(III) oxides has not yet been evaluated. An examination of mechanisms 

which may mediate fractionation would be highly beneficial to isotopic studies of 

modern and ancient sediments, in comparison to well characterised signatures 

associated with both biological activity and the precipitation of FeS provoking isotopic 

fractionations. 
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CHAPTER 3: METHODS AND MATERIALS AAAAAAAAAAAA 

 

3.1 INTRODUCTION  

All materials within this study were prepared from Analytical Grade chemical reagents 

using de-ionised water (DIW; 18M Ω H2O; trace metal content parts per billion). 

Glassware was washed in a 10% (v/v) nitric acid bath for 24 hours; and repeated rinsing 

with laboratory tap water, followed by DIW in triplicate. Glassware in contact with 

iron, sulfur or sediment samples was cleaned with concentrated aqua regia (3 parts 12N 

hydrochloric acid: 1 part concentrated nitric acid). Experiments requiring anoxic 

aqueous conditions were subjected to a de-oxygenation by passing ultra-pure nitrogen 

gas (UPN2(g); 99.999% N2(g)) through an Agilent Technology oxygen trap and indicator 

for at least one hour after induction of UPN2(g) to the reaction vessel. 

 

3.1.1 Fe-mineral synthesis  

Iron-bearing minerals (including 2-line ferrihydrite, goethite, magnetite, hematite and 

siderite; Figure 3.1) were synthesised via the methods described by Cornell & 

Schwertmann (2003). Poorly crystalline 2-line ferrihydrite (formula unknown, reported 

as Fe5HO8.4H2O or 5Fe2O3.9H2O) was synthesised by adjusting the pH of 500 mL 0.1 

M Fe(NO3)3.9H2O solution to pH 7.5 via the slow addition of  approximately 330 mL of 

1 M KOH. The sample was then washed thoroughly with DIW to remove nitrate 

contaminants, and dried at room temperature. Goethite (α-FeOOH) was synthesised 

from a solution containing 50 mL 1 M Fe(NO3)3 and  90 mL 5 M KOH, which was 

heated at 70
o
C for 60 hours to produce a yellow precipitate. Hematite (Fe2O3) was 

produced by heating a solution of 0.02 M Fe (NO3)3.9H20 (dissolved in preheated 0.002 

M HCl) for 7 days at 98
o
C to give an orange-red precipitate.  
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Samples of synthetic lepidocrocite and magnetite were provided by Dr S. Poulton, and 

prepared using the methods described in Schwertmann & Cornell (1991). Lepidocrocite 

(γ-FeOOH) was prepared by adjusting the pH of a 0.06 M FeCl2 solution to pH 7 with 

NaOH, while slowly oxidising Fe(II) via the addition of O2(g). To obtain magnetite 

(Fe3O4), an anoxic solution of 3.33 M KOH and 0.27 M KNO3 (240 mL) was slowly 

added to a preheated 0.3 M Fe(II)SO4.7H2O solution (560 mL) at 90 °C to allow 

precipitation of synthetic magnetite under a constant flow of N2(g). After constant 

stirring for one hour, the black powdered mineral was washed thoroughly with DIW and 

dried.  

 

 

 

Figure 3.1: Examples of synthesised Fe(III) oxide minerals (pre-drying) 

Siderite (Fe
II
CO3) was prepared under completely anoxic conditions within an anaerobic 

chamber according to the sysnthetic procdure of Poulton & Canfield (2005). A 

deoxygenated solution of 0.5 M Na2HCO3 was added drop-wise into a solution of 0.5 M 

2-line Ferrihydrite 

Hematite 

Goethite 

Magnetite 
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FeCl2.4H2O under constant flow of N2(g) to precipitate a light green mineral (Jensen et 

al., 2002), which was transferred to sealed tubes and centrifuged for 3 minutes at 3000 

rpm. After repeated washing with deoxygenated DIW, the solution was vacuum filtered 

to dry and stored frozen at -80°C to avoid significant sample oxidation.  

 

Before characterisation, all Fe-minerals were ground using an agate mortar and pestle to 

a fine, homogenously sized powder (< 63 µm). Iron mineralogy was determined using 

X-ray diffraction (XRD) with the intention of recognising impurities within the 

synthesised samples. Powders were analysed using a PANalytical X‟Pert 

ProDiffractometer with Cu Kα radiation (λ = 1.54 Å), with all minerals giving 

characteristic peaks compared to XRD-internal library traces. The surface area of each 

mineral was determined using multi-point BET (Brunauer, Emmett & Teller) Surface 

Area analysis (Gemini 2375 V4.02) by Dr Karen Wicks at AFESS, University of 

Reading, producing measurements of 183.60 m
2
/g, 128.30 m

2
/g, 35.23 m

2
/g, 2.47 m

2
/g 

and 11.6 m
2
/g for ferrihydrite, lepidocrocite, goethite, hematite and siderite respectively. 

 

3.2 SEDIMENT CHARACTERISATION  

Two sediment cores from a) Aarhus Bay, Denmark (courtesy of Dr Bo Thamdrup, 

NORDCEE, University of Southern Denmark); and b) Umpqua River shelf, N. Pacific 

Basin (courtesy of Dr Silke Severmann, Rutgers University, NJ) were obtained for 

experimental study between September 2007- January 2009. Upon sampling, cores were 

immediately stored under a N2(g) saturated atmosphere and frozen to avoid oxidation of 

reactive Fe mineral phases. An air-tight glove-box was deoxygenated with UPN2(g) for 2 

hours prior to use, and kept under positive pressure throughout the sectioning process.  
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Cores were introduced into the glove box via an airtight septum and winch. Samples 

were sectioned at intervals of a) 2cm from core surface (Aarhus Bay sediment) and b) 1 

cm between the core surface and 10 cm depth, after which samples were taken every 2 

cm between 10 cm – 36 cm (Umpqua River shelf sediments).  Samples were stored in 

individual 50 mL centrifuge tubes, sealed then defrosted under a substantial flow of 

N2(g). After which, sample tubes were centrifuged at 3000rpm for 3 minutes to separate 

sediment from pore-water fluid samples, with 1 mL aliquots removed for individual 

pore-water analysis (see later Methodology Section 3.4). Centrifuge tubes were 

immediately re-sealed and stored frozen under N2(g) atmosphere to avoid sample 

oxidation before use. 

 

3.2.1 Fe phase characterisation  

3.2.1.1 The reactivity of iron bearing minerals  

To characterise Fe mineral phases associated with natural sediment assemblages, an 

operationally defined sequential extraction procedure (Raiswell et al., 1994; Poulton & 

Canfield, 2005) was applied to define the range of reactive Fe species and the total Fe 

content throughout individual core sections. This speciation method characterises highly 

reactive Fe mineral phases and poorly reactive Fe-bearing silicates within sediments 

(Poulton & Raiswell, 2002; Raiswell et al., 2006), based on early studies of iron mineral 

reactivity with respect to dissolved sulfide  (Canfield 1989; Canfield et al., 1992; 

Raiswell & Canfield, 1996; Poulton et al., 2004). Fe bearing minerals are classified 

according to distinguished differences in highly reactive iron minerals such as 

ferrihydrite, goethite, hematite and magnetite (which react with sulfide over a matter of 

minutes/hours/days) with those which react poorly, over a much longer timescale (Fe-

silicates, 10
5
 – 10

6
 years). These phases are defined as:  
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Reactive Fe (FeHR) = Fecarb + FeOx1 + FeOx2 + Femag + FeAVS + Fepy (Eq. 3.1) 

Poorly reactive Fe (FePR) = Feprs      (Eq. 3.2) 

Unreactive Fe (FeU) = FeT – (FeHR + FePR)      (Eq. 3.3) 

 

Poulton et al., (2004) and Poulton & Canfield, 2005 define highly reactive iron phases 

as iron carbonate minerals (e.g. siderite; Fecarb), Fe(III) oxides which react quickly with 

dissolved sulfide such as ferrihydrite or lepidocrocite (FeOx1), and those which react 

slightly slower (goethite, hematite; FeOx2). The FeHR phase also includes magnetite 

(Femag) and Fe in reaction with sulfur species, for example acid volatile extractant iron 

mono-sulfides and pyrite (FeS and FeS2), due to the significant abundance of iron-sulfur 

end members within the natural environment. Poorly reactive iron species (FePRS) 

includes Fe associated with sheet clay silicate minerals, with FeU phases being residual 

minerals completely unreactive towards dissolved sulfide and non-extractable during 

the sequential extraction procedure (non-reactive silicate minerals). The total Fe (FeT) 

within the sediment was also measured on a separate sample, and in turn used to 

calculate the fraction of unreactive Fe within each section. 

 

3.2.1.2 Fe sequential extraction procedure  

Extractions were performed in 10 mL Sarstedt screw top vials, with all extractions 

taking place at room temperature and initial sediment sample sizes between 100-200 

mg. In order to assess the error associated with the extraction procedure, one sediment 

sample was chosen to be analysed in replicate (Umpqua River sediment, 9-10cm depth; 

n = 7). In order to reduce any error produced by over-extraction or by leaching of one 
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phase into another, the minimum amount of sequential steps were performed, with 

extraction times chosen to reflect the speciation of high reactive Fe phases from the 

modern sediment core analysed in this study. 

 

Step 1. Easily reducible Fe oxides (FeOx1) 

In order to extract highly reactive, easily reducible Fe(III) oxides, a hydroxylamine HCl 

extraction was carried out. 34.75g hydroxylamine-hydrochloride (NH2OH.HCl) was 

washed into a 500 mL volumetric flask with 125 mL of acetic acid (CH3COOH 25% v/v 

dilution), and then made to the volumetric mark of 500 mL with DIW. 10 mL of 

hydroxylamine reagent was added to each sediment sample vial and continually shaken 

at room temperature for 48 hours before being washed via centrifucation for three 

minutes at 4000 rpm. A 20x dilution was then prepared for FeOx1 analysis by atomic 

absorption spectrometry (AAS). 

 

Step 2. Reducible Fe oxides (FeOx2) 

A sodium dithionite reagent was prepared to extract stable, crystalline Fe oxides 

(goethite, hematite). As this solution naturally oxidises over a short period of time, and 

reagent was prepared immediately prior to use. A 500 mL solution containing 58.82 g 

tri-sodium citrate (C6H5Na5O7.2H2O) and 50 g sodium dithionite (Na2S2O4) were 

buffered to pH 4.8 by addition of 20 mL acetic acid.  10 mL of dithionite solution was 

added to each sample and placed on a shaker for 2 hours, after which a 20x dilution was 

prepared for analysis by AAS.  
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Step 3. Magnetite extraction (Femag) 

An ammonium oxalate reagent was prepared specifically for the extraction of magnetite.  

0.2M ammonium oxalate (NH4)2C2O4.H2O) was added to 0.17M oxalic acid 

((COOH)2.2H2O), with 10mL of oxalate solution added to individual samples, then 

shaken for 6 hours. After extraction of Femag, the remaining solid sediment sample was 

decanted into a glass test tube and oven dried before Step 4. 

 

Step 4. Poorly reactive silicate Fe ( Feprs)  

A boiling 12N HCl extraction (Raiswell et al., 1994) was used to extract poorly reactive 

silicate Fe from sediment samples. From the oven dried samples, 5 mL of cold 12N HCl 

was added to each sample and brought to the boil over 1 minute. The tube was held in 

the flame to vigorously boil for a further one minute, then immediately quenched with 

DIW to stop the reaction. The solution was poured into a 100 mL volumetric flask and 

made to mark with DIW. The solution was then diluted for AAS analysis as before. 

 

Step 5. Total Fe extraction (FeT)  

The procedure for determining total Fe concentration within a sediment assemblage was 

adapted from a HNO3/HF/HClO4 extraction procedure described by both Walsh (1980) 

and Poulton & Canfield (2005). 100 mg of homogenised sediment was furnace ashed 

overnight at 570 °C, before being transferred to a clean Teflon flask.  To the sediment 

sample, 5 mL concentrated nitric acid followed by 5 mL 37% hydrofluoric acid (HF) 

was added, with 1 mL 60% perchloric acid (HClO4)  to oxidise residual organic matter. 

Samples were left to evaporate overnight at 130 °C until dry, leaving a light yellow-

white coloured precipitate in the Teflon flask. 2.5 mL boric acid (50 g/L; H3BO3) was 

added to the solid and heated again at 130°C overnight, converting insoluble Al 
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hexafluorates to soluble Al-salts.  Once cooled, the sample was re-dissolved in 50% 

(v/v) HCl acid with gentle heating, then washed into a 100 mL flask with D.I.W. The 

sample was then subsequently diluted for AAS analysis. 

 

 

 

Figure 3.2: AAS calibration curve determined from known concentration standards of 

Fe(III) 

 

Figure 3.2 represents the AAS calibration for the extractants of each step of the 

sequential extraction procedure with a known concentration of Fe stock standard 

(1,3,5,7,10 ppm). The error associated with each step was determined by analysing a 

number of replicates of one sediment sample, under the same conditions as the main 

batch of extractions. Table 3.1 indicates that there is little variance during the sequential 

extraction step, with an RSD (relative standard deviation around the mean) of less that 

4% (n=8 samples).  
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Table 3.1: Calculated error per sequential extraction step 

 

   

 
Hydrox.HCl Na.Dith Am.Oxa HCl HCl 

 
FeOx1 FeOx2 Femag Fepr FeT 

Average (Wt %) 0.384 0.432 0.276 0.077 4.517 

± Std. Dev 0.007 0.007 0.006 0.003 0.048 

RSD (%) 1.72 1.71 2.13 3.75 1.06 

 

 

In addition to the traditional sequential extraction procedure described for individual Fe 

mineral phases, samples chosen for use in Chapter 4 were subjected to an initial 0.5 M 

HCl extraction to determine the magnitude of surface bound iron which had been 

diagenetically reduced prior to sampling (Fe(II)surf; Thamdrup et al, 1994). After 

samples were acid washed for approximately 12 hours in 6M HCl , samples were 

centrifuged and diluted for AAS analysis as described above, with a 1 mL aliquot of 

supernatant added to an Fe-specific UV-Spectrometry reagent (Ferrozine) for instant 

analysis. Further details on this method are described in Section 3.4.1. Taking into 

account the degree of reduced iron which has previously undergone reaction within 

sediment, the true fraction of highly reactive minerals characterised by FeOx1 minerals 

may be determined.  

 

3.2.2 Sulfur species extraction 

A uniform experimental procedure was set-up for the extraction of acid volatile sulfides 

(AVS) and pyrite from both Aarhus Bay and Umpqua River shelf sediments (Section 

4.1). During the reaction, samples were heated along with a reducing agent (either HCl 

or CrCl2), trapping hydrogen sulfide gas with silver nitrate (AgNO3) to form silver 

sulfide (Ag2S) for further analysis (Figure 3.3). The reported recovery of FeS and pyrite 

from this extraction was determined by replicate measurements of pure mineral phases 
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as 95 ± 2.6% (Canfield et al., 1986), validating this procedure as a highly effective 

method of sulfide determination. Replicate measurements of Umpqua River sediment 

samples at depth 9-10cm produces a sample mean of 0.155 ± 0.005 Wt (%), RSD = 

3.2%. 

 

3.2.2.1 Acid Soluble Sulfur  

Boiling HCL extractions were used to separate acid soluble sulfur species (e.g. FeS) 

from sediments (according to the method of Berner, 1970). For the extraction of easily 

reducible sulfur species (e.g. AVS; Acid Volitile Sulfur as FeS), an individual freeze 

dried sediment sample (100-150mg) was placed into 3-arm round bottom flask, 

evacuated of oxygen using a constant flow of N2(g) (to avoid sulfide oxidation) and 

secured on a heating mantle. Flasks were connected to a cold water condenser, which in 

turn was attached to sulfide traps containing 250µl 1M AgNO3 solution in DIW. The 

apparatus was deoxygenated for approximately 15 minutes, before 8 mL 50% v/v HCl 

was added to the flask, and the temperature increased to boiling point. If no sulfide was 

precipitated within the trap after 15 minutes, it was assumed no AVS was present in the 

sample and the next extraction step (Pyrite extraction via chromium chloride reduction) 

could commence. Otherwise, if sulfide was present precipitating into solution (as a 

brown solid), the extraction continued for 1 hour.  
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Figure 3.3: Sulfur species extraction line 

 

 

3.2.2.2. Chromium Reduction    

Chromium chloride solution (as 2 mol/L CrCl2 ) was prepared by reacting 533 g/L 

CrCl3.6H2O dissolved in 1 L 10% v/v HCl acid under a constant flow of N2(g) in the 

presence of an activated zinc catalyst for twelve hours (Canfield et al., 1986; Fossing & 

Jørgensen, 1989) . During this time, the reagent changed from dark green (oxidized Cr) 

to blue (reduced Cr). CrCl2 was then stored in airtight 60 mL syringes ready for use. 

Where no AVS was present in the previous HCl extraction step, the same AgNO3 trap 

used previously could be used to trap pyrite-S in the form of Ag2S. However, a new trap 

was introduced if AVS was present in the first extraction. As the sample boiled under 

N2(g), 16 mL CrCl2 solution was injected quickly into the round bottom flask via 
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syringe and the system closed.  The pyrite sample was extracted for 1 hour before the 

trap was removed, and the precipitate washed with DIW and dried on filter paper, 

before weighing to determine the final FeS and/or pyrite content.  

 

3.3. SULFIDATION EXPERIMENTS  

3.3.1. Closed system iron sulfidation 

Experimental sulfidation apparatus (Figure 3.4) consisted of a 1 L Pyrex reaction vessel 

with five gas-tight inlet ports to accommodate a pH electrode, a sample inlet/outlet 

valve, a glass pipette for HCl addition, and a glass de-oxygenation tube. As the 

sulfidation reaction consumes protons (e.g. Dos Santos Afonso & Stumm, 1992), 

deoxygenated HCl (0.001-0.1 M) was added via a Titra-lab TIM856 Titration Manager 

to maintain the required pH. Reaction temperature was held at 25°C using a 10 L water 

bath.  

 

A 100 mM sulfide stock solution was prepared by dissolving Na2S.9H2O in DIW under 

N2(g). Before addition, Na2S(s) crystals were washed quickly with DIW to remove any 

oxidised surfaces from the solid.  Experiments were performed via addition of a known 

volume of stock sulfide solution to 1 L of deoxygenated 0.1 M NaCl, and the solution 

stirred rapidly. Prior to starting the reaction, the initial concentration of dissolved 

sulfide in the reaction vessel was measured in triplicate.  
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Figure 3.4: Experimental iron sulfidation equipment 

A known weight of the Fe (oxyhydr)oxide mineral (0.01<1 g) was then de-oxygenated 

in a 5 mL solution containing DIW or buffer (Figure 3.4). The flow of N2(g) was then 

switched off  and the input valve opened to force the de-oxygenated sample solution 

rapidly into the vessel. This process took less than 5 seconds and all ports remained 

closed, thus allowing the Fe (oxyhydr)oxide to be added to the reaction vessel under 

anoxic conditions (see Poulton, 2003; Poulton et al., 2004).  
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3.3.2 H2S sediment incubation  

Both synthetic mineral and natural sediment experiments were also carried out using a 

continuous flow of H2S gas (based on the studies of Wilkin & Barnes 1996; Benning et 

al., 2000; 0.5% H2S(g): 99.5% oxygen-free N2(g); Scientific and Technical Gases) in 

order to conduct open system experiments rmodel sediments undergoing a reactive 

continuum process. Before entering into the 5-port reaction vessel containing 1 L DIW 

(deoxygenated for at least one hour prior use), H2S gas was passed through a dilute 

(0.01 mol/L) sodium hydroxide (NaOH) trap, removing contaminants, and allowing 

saturation of deionised water with H2S(g) to a known concentration. From the gas 

outlet, excess and headspace H2S(g) passed from the reaction vessel through two 1M 

NaOH sulfide traps and then a 0.1 mol/L potassium permangenate (KMnO4) indicating 

trap (turning from purple to brown with H2S(g) saturation) in order to neutralise 

remaining toxic gases. An initially high flow rate of H2S(g) allowed saturation of DIW 

for at least 1 hour, characterised by a decrease in pH which eventually became stable. 

After this, the rate of flow of H2S(g) was decreased to approximately 10 cm
3
/ L (a „few‟ 

bubbles per second) to maintain saturation. 1 mL samples were taken in triplicate to 

measure the concentration of the initial dissolved sulfide (Methylene Blue Method, 

Section 3.4.3). Experiments at high pH (7.5- 8) were buffered with sodium tetra-borate 

(0.1M Na2B4O7.10H2O) in both the dilute NaOH trap (5 mL) and reaction vessel (10 

mL) to maintain solution pH throughout the reaction. In order to accommodate a larger 

volume of sediment, a larger induction syringe for the de-oxygenation and induction of 

sample was used (Figure 3.5). 

 



83 

 

 

Figure 3.5: Laboratory sealed deoxygenating syringes for sample injection of a)pure 

synthetic minerals (small syringe) b) sediment slurries (large syringe). 

 

3.4. CHEMICAL ANALYSIS  

Samples for analysis of solid and dissolved phases were taken at timed intervals by an 

air tight 10 mL or 50 mL syringe, fixed with a colorimetric reagent and analysed 

immediately via UV-Visible spectrophotometry using a Thermo-Genesys 6 UV-

spectrophotometer (UV-Spec) to avoid sample oxidation. UV-Spec was used to analyse 

Fe species in solution (compared to other analysis techniques such as Flame Atomic 

Absorption Spectrometry or Inductively Coupled Plasma Atomic Emission 

Spectrometry) due to the efficient and immediate sample run and analysis time, 
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accuracy and ease of sample preparation, vital in avoiding sample oxidation of reduced 

Fe and S species.  

 

3.4.1 Determination of Fe(III)/Fe(II)  

The Ferrozine method (Stookey, 1970) was used to measure solubilised iron species in 

natural waters, using a colorimetric reagent (a monosodium salt hydrate of 3-(2-

pyridyl)-5,6-diphenyl-1,2,4-triazine-p-p‟-disulfonic acid; „Ferrozine‟). Voillier et al. 

(2000) proposed a revised method of this procedure in which both Fe(III) and Fe(II) 

species found in natural and pore waters could be distinguished with the use of a 

reducing agent and buffer. Ferrozine reagent (0.01mol/L) was prepared in 0.1 mol/L 

ammonium acetate (CH3COONH4). A reducing agent of 1.4 mol/L hydroxylamine 

hydrochloride (H2NOH.HCl) was prepared in 2M HCl. A buffer of 10 mol/L 

CH3COONH4 was prepared with adjustment to pH 9.5 drop-wise with ammonium 

hydroxide solution (NH3(aq)).  

 

Dissolved Fe 

Dissolved Fe(II) in solution was measured via the addition of 500µL Ferrozine to 1mL 

sample (filtered through 0.2µm PTFE syringe filters) and shaken well. After ten 

minutes, the solution was analysed spectrophotometrically at 562nm. Dissolved Fe(III) 

species in the sample was measured by adding 188 µL hydroxylamine hydrochloride 

reducing agent to 1mL of the sample, and allowing to react for ten minutes. After this 

time, 63 µL of ammonium acetate buffer was added to the solution and shaken 

thoroughly before being analysed at 562nm.  
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Surface reduced Fe 

To measure the concentration of reduced iron (Fe(II)) associated with the surface of the 

Fe(III) oxide, 1 mL unfiltered sample was digested in 1 mL 10% v/v 12N HCl under an 

atmosphere of N2(g) to dispel H2S(g) from the sample. 100 µL digested sample was 

then added to 2mL DIW with 400 µL Ferrozine reagent and 200 µL ammonium acetate 

buffer, shaken well, then analysed at 562nm after 10 minutes. The concentration of 

surface reduced Fe(II) also incorporates dissolved Fe(II), therefore in order to calculate 

true surface concentration, dissolved Fe(II) was subtracted from the total. To analyse for 

surface Fe(III) species, a separate 100 µL sample of digested iron was added to 4 mL 

DIW, with 500 µL hydroxylamine hydrochloride reducing agent and 400 µL Ferrozine 

reagent. After ten minutes, 400 µL of ammonium acetate buffer was added, and the 

sample analysed spectrophotometrically at 562nm.  

 

Standardisation and calibration of Ferrozine for UV Spectrophotometry 

Using known concentrations of Fe(II) and Fe(III) stock standards (i: 1, 5, 10, 25, 50, 

100, 250 μM and ii: 10, 50, 100, 250, 500, 750, 1000 μM), calibration curves were 

produced for individual dissolved and surface bound Fe(II) and Fe(III) species (Figure 

3.x), using the methods described in 3.4.1.  
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Figure 3.6: The linear relationship observed between Fe(II) or Fe(III) concentration 

and absobance plots, measuring dilute, known, concentrations of a stock standard Fe 

solution (1000μM).  

The values denoting the linear slopes in Figure 3.x (i.e. Dissolved Fe(II) : y= 54.01x; 

constant = 54.01) are representative of the constants used in the calculation of Fe 

concentration from absorbance measurements during UV Spectrophotometry. 

 

Total Fe 

In order to calculate the total amount of Fe(II) and Fe(III), 1 mL unfiltered samples 

were digested in 1 mL 50% v/v 12N HCl under a flow of N2(g). 100µL of digested 

sample was added to 3mL DIW with 400µL Ferrozine solution, allowed to react for ten 

minutes before the addition of 400µL ammonium acetate buffer and spectrophotometric 

analysis. The total Fe(III) in solution was measured by analysing a fresh 100µL digested 

sample, added to 4 mL DIW, 500 µL hydroxylamine hydrochloride reducing solution 
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and 400 µL Ferrozine reagent. After 10 minutes, 400 µL ammonium acetate buffer was 

added and the sample shaken, and measured by UV-Spec 562nm. 

 

Measurement of diagenetic Fe(II) associated with sediment assemblage surface 

The measurement of solid phase Fe minerals within natural sediments must take into 

consideration any diagenetic reactions that have influenced the assemblage at the near 

sediment surface. This includes the previous reduction of Fe(III) oxide mineral phases 

to produce surface bound Fe(II) which has yet to detach into porewaters. After a 0.5N 

HCl extraction, 7μL of supernantent was added to 1 mL of Ferrozine diluted with 18 μL  

DIW, and analysed as before after ten minutes. This value which constituetes surface 

bound Fe(II) in a natural sediment assemblage could then be subtracted from the total 

Fe(III) measurement to provide a measurement of unreacted FeOx minerals during solid 

phase sediment analysis.  

 

3.4.2 Non-reductive dissolution of Fe(III) oxides 

By measuring the dissolution of Fe(III) minerals in DIW only (i.e. non-reductive 

dissolution in the absence of sulfide), the rate at which Fe(III) dissolves can be taken 

into consideration when calculating the rate of dissolution mediated by sulfide. An 

example for ferrihydrite is given in Figure 3.7. This shows that at pH 7.5, dissolution of 

Fe(III) into solution is low and constant (<5 µM/L), whereas at pH 4, a gradual increase 

of <100µM/L Fe(III) was measured (possibly due to interaction with weak (0.01M) HCl 

required to lower solution pH). Whether this increase in concentration is related to 

continual dissolution of Fe(III) from the mineral surface, or is the result of Fe(III) 

concentrations in equilibrium in solution, it is important to consider how a 
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“background” concentration of Fe in solution effects the interpretation of iron 

concentrations measured during Fe mineral reductive dissolutions.   Nevertheless, H2S-

mediated dissolution is shown to completely overwhelm that of non-reductive 

dissolution (Poulton, 2003); and only under more acidic conditions will the effects of Fe 

dissolution without sulfide reaction, be required to be considered (and subtracted) from 

total concentrations measured during sulfide mediated reductive dissolution of Fe 

minerals.  

 

 

Figure 3.7: Comparison of non-reductive Fe(III) dissolution and H2S catalysed 

dissolution of 0.1g ferrihydrite, initial sulfide = 1000μM.  
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3.4.3 Determination of sulfur products: Methylene Blue method  

3.4.3.1 Standardisation of stock sulfide solution  

Stock solutions of 0.1M postassium iodate, 0.1M sodium thiosulfate (Convol), 0.1M 

iodine and freshly dissolved starch solution were prepared for the iodometric 

determination of stock sulfide concentration:  

 

Preparation of working solutions 

 

1) 25mL potassium iodate, 1g of potassium iodine and 3mL of 1M sulphuric acid 

were added to a 250 mL conical flask. Sodium thiosulfate solution was titrated 

into the flask until a pale yellow colour was achieved, and 2-3mL starch could 

be added. The titration was continued slowly until the solution in the flask turn 

clear. (Working solution = 0.05N sodium thiosulfate) 

2) 20 mL iodine was pipetted into 250 mL conical flasks and titrated with sodium 

thiosulfate until pale yellow. As before, 2-3 mL of starch solution was added to 

the flask and the titration continued until clear. (Working solution = 0.005N 

iodine).  

Preparation of stock standard: 

Immediately after the preparation of 1mM stock solution (See 3.3.1) a 200 mL 

volumetric flask was filled to level with DIW and deoxygenated with UPN2(g) for one 

hour. After the addition of ~1-5 mg of anhydrous sodium carbonate (to acts as a buffer), 

250 μL of stock sulfide was added to the flask, which was then filled with deoxygenated 

water.  
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Procedure:  

Triplicate standards and blacks were prepared by adding 10 mL of DIW and 1-2 g 

potassium iodide to 150 mL conical flasks, alongside 20 mL 0.005N iodine solution and 

2 drops of sulphuric acid. Into three flasks, 25 mL of stock sulfide standard was added; 

whilst 25 mL of DIW was added to the last three. Solutions were titrated with sodium 

thiosulfate until pale yellow, before starch indicator was added and the titration 

completed. The volumes of thiosulfate added to each vial was recorded and the 

concentration of stock sulfide calculated in μM/L.   

 

3.4.3.2. Methylene Blue analysis 

At the same time as stock sulfide iodometic titration, the calibration of UV 

spectrophotometer for Methylene Blue reagent could be obtained; and n=8 replicates 

aliquots set aside for analysis (containing 1000 μM of stock per sample). 

 

To measure dissolved sulfide and FeS in solution, the Methylene Blue Method (Fogo & 

Popowsky, 1949; Cline, 1968) was used. Methylene Blue reagent (C16H18N5SCl) was 

prepared from dilutions of N, N-dimethyl-p-phenylenediamine sulfate and ferric 

chloride (FeCl3. 6H2O) in 500mL cooled 50% (v/v) HCl (Table 3.2).  

Dissolved sulfide samples were measured on 1 mL filtered (0.2 μm PTFE filters) 

aqueous samples, shaken with 100µL Methyl-Blue solution and analysed 

spectrophotometrically at a wavelength of 670nm. Solid phase sulfide (as FeS) was also 

measured via this technique due to the dissolution of FeS in Methylene Blue (e.g. 

Poulton, 2003), on unfiltered 1mL samples, with the concentration of FeS determined 

after subtraction of dissolved sulfide.  
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Table 3.2: Reactant concentrations for Diamine reagent strengths 

Sulfide  

Concentration 

(µM/L) 

Diamine 

concentration 

(g /500 mL) 

Ferric 

Concentration 

(g /500 mL) 

Dilution 

Factor 

 

 

Strong: 250-1000 20 30 1:50   

Mild: 50-250 8 12 2:25   

Weak: 5-50 2 3 1:1   

 

Therefore, once the sulfide concentration is determined, and the absorbance of samples 

are measured using UV spectrophotometry, the F factor for individual Methylene Blue 

reagents can be calculated, which represents a constant measured in a known mixed 

diamine reagent.  

Total oxidised sulfur was calculated as the difference between the initial sulfide 

concentration in each experiment and the total sulfide concentration as the reaction 

progresses (calculated as solid phase plus dissolved sulfide) due to difficulty in 

measuring elemental sulfur spectrophotometrically using acetone or cyanide fixing 

reagents.  In order to measure the sulfur products associated with the sulfidation of Fe-

bearing minerals, UV-Visible Spectrophotometry was used to measure species such as 

dissolved sulfide in solution and the formation of iron monosulfide (FeS). Figure 3.8 

indcates the concentration of dissolved sulfide over a realistic experimental timescale in 

order to determine the likelihood of natural sulfide oxidation, without the aid of an iron 
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(III) catalyst. Results indicate that from the sulfide blank, an average concentration of 

485μM ± 7 μM (RSD = 1.4%) is measured, and hence approximately only 10μM of 

sulfide is naturally oxidised within this sytem, over an experimental period.  

 

 

Figure 3.8: Oxidation of sulfide in deoxygenated DIW, pH 7.5, Initial Sulfide = 494 μM. 

 

3.5 Fe ISOTOPE ANALYSIS 

3.5.1 Isotope Sampling 

At specified time intervals, a 10 mL air-tight syringe was filled for the isotopic analysis 

of dissolved Fe(II), surface-reduced Fe(II) and un-reacted Fe(III) in solution. Dissolved 

Fe(II) was collected through a 0.2 µm PTFE syringe filter in an LPDE Naglene bottle 

containing 100 µL 10% (v/v) HCl. The filter was then immediately washed with 2-3 

drops of deoxygenated DIW and 10 mL 1% HCl passed through the filter into a second 

bottle to dissolve and collect surface-reduced Fe(II) and FeS. This rapid, weak acid 

procedure left remaining unreacted Fe(III) unaffected (see Poulton, 2003) and hence, 

the filter was washed with deoxygenated DIW and 10 mL concentrated HCl slowly 
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passed through into a third bottle to dissolve the remaining unreacted Fe(III) for bulk 

mineral analysis. 

 

3.5.2 Multi Collector Inductively Coupled Plasma-Mass Spectrometry  

Iron isotope analyses were performed on a suit of dissolved Fe(II)aq, surface bound 

Fe(II) and unreacted Fe(III) oxide samples by Dr S. Severmann (Rutgers University; 

Severmann et al., 2006) at the University of California, Santa Cruz and at the Woods 

Hole Oceanographic Institute. Samples were analysed by a Thermo-Finnigan High 

Resolution multi collector-inductively coupled mass spectrometer (Neptune), via the 

methods of Beard et al., (2003) (for sample purification using anion exchange 

chromatography) and of Arnold et al., (2004) (for a description of instrumental 

parameters). Standards including an international Fe isotope standard (IRMM-014), and 

a digest of the initial Fe(III) oxide phase were analysed . Isotope ratios of 
57/54

Fe and 

56/54
Fe, normalized to starting material were measured, with an instrumental error of ± 

0.05‰ commonly reported within a suite of analytical and instrumental papers 

(including Albarede & Johnson, 2004; Arnold et al., 2004).  
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CHAPTER 4:  EXPERIMENTAL SULFIDATION OF Fe-RICH 

SEDIMENT CORES; Umpqua River, N. California and Aarhus Bay, 

Denmark 

 

4. 1. INTRODUCTION 

 

4.1.1. The reductive dissolution of iron oxide minerals mediated by dissolved sulfide  

Where Fe(II)aq is released to anoxic bottom waters during the (bio)geochemical 

reduction of Fe oxides, it‟s presence may place major constraints on pore-water sulfide 

concentrations, the formation of iron sulfide species and the release of (potentially 

toxic) trace metals adsorbed on the oxide surface (Canfield, 1989; Canfield et al., 1992). 

Defining the rate of Fe(III) mineral reactivity during early diagenetic reductive 

dissolution has been the focus of a variety of studies involved in understanding the 

biogeochemical cycling of iron at the sediment-water interface (Berner,1980; 1984: 

Raiswell et al., 1996; Canfield, 1989; Canfield et al., 1992), where the most commonly 

observed iron oxides include: highly reactive hydrous ferric oxides (such as 

ferrihydrite), lepidocrocite, goethite, magnetite and hematite (Raiswell & Canfield, 

1998; Schwertmann & Cornell, 1991). 

In order to understand the role of Fe redox cycling in near surface sediments, numerous 

experimental papers have investigated mechanisms, and reported rates, of reductive 

dissolution processes for different Fe(III) oxide minerals. Pyzik & Sommer (1981) 

report the first multi-step pathway of sulfide mediated reductive dissolution of goethite 

under experimental conditions. In order to reduce Fe(III), it was proposed that goethite 

must undergo surface protonation, sulfide adsorption to the oxide surface and electron 

transfer to reduce Fe(III) to Fe(II). The paper defines a rate equation (Equation 4.1) 

associated with the rate at which sulfidation of iron oxide minerals is influenced by 
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initial sulfide concentration, H
+
 activity and surface area of the mineral. To determine 

the rate at which these reactions occur, initial rate theory was used to assess the rate of 

Fe(III) reduction for multiple iron oxide minerals. The rate of reaction was defined as:  

d(reduction Fe)/dt = kSt
0.5 

(H
+
)
0.5

A
1
FeOOH  (Eq. 4.1)            

 

Where St is the total initial sulfide concentration (mol L
-1

), H
+
 represents the hydrogen 

ion activity (mol L
-1

), A represents the initial surface area of the iron oxide in the 

reaction vessel (m
2
 L

-1
), and k defines the rate constant (m

2
 L

-1
).  Table 4.1 indicates the 

parameters determined experimentally for this rate equation by Pyzik & Sommer 

(1981), implying that the total sulfide concentration exerts a fractional order (0.5) of 

reaction dependence, as does proton activity with a first order dependency on the 

mineral surface area.   

 

Table 4.1 Details of the rate equation for sulfide mediated reductive dissolution of 

Goethite, as determined by Pyzik & Sommer (1981). 

Sample Mineral Reducing agent Rate Equation, R k' 
Rate order 

coefficient 

Goethite Synthetic Hydrogen Sulfide R = kSt
a(H+)bAc 0.017 

a= 0.5 / b= 0.5 / 

c = 1.0 

 

 

Dos Santos Afonso & Stumm (1992) built upon the study of Pyzik & Sommer (1981) 

and revised the mechanism for the reductive dissolution of hematite by sulfide (Figure 

4.1), which has subsequently been widely applied in a number of experimental studies 

investigating the reactivity of different Fe(III) oxide minerals (Peiffer et al., 1992; Yao 

& Millero, 1996; Poulton 2003, Poulton et al., 2004). The model presented by Dos 
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Santos Afonso & Stumm (1992) is representative for all Fe(III) oxides studied within 

this thesis, as it has been shown to be consistent with studies of sulfidation of a number 

of Fe oxide minerals, including ferrihydrite (Poulton, 2003), lepidocrocite (Peiffer et al., 

1992; Poulton et al., 2004), goethite (Poulton et al., 2004), magnetite (Raiswell & 

Canfield, 1998; Poulton et al., 2004) and hematite (Poulton et al., 2004). The 

mechanism details an adsorbing reductant HS
-
 species which is the catalyst for forming 

an inner sphere surface sulfide complex on the reactive outer electron layer of the oxide 

surface.  

 

a) Surface complex formation                            

-Fe(III)OH + HS
-
 ↔ -Fe(III)S

-
 + H2O 

b) Electron transfer                        

-Fe(III)S
-
 ↔ -Fe(II)S 

c)  Release of oxidised S                         

-Fe(II)S + H2O ↔ -Fe(II)OH2
+
 + S

●-
 

d)  Detachment of Fe(II)                       

-Fe(II)OH2
+
 → free surface site + Fe

2+ 

e) Formation of Elemental S 

8* FeOH + 8S → Sº8 + 8Fe
2+

 

f) Formation of FeS              

Fe
2+

 + HS
-
 ↔ FeS + H

+
 

 

Figure 4.1: Sulfide mediated reductive dissolution of Fe(III) oxide minerals and the 

formation of elemental sulfur and iron mono-sulfides (Dos Santos Afonso & Stumm,  

1992) 
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The substitution of the surface hydroxyl group after surface complex formation 

mediates an electron transfer from surface-associated Fe(III) to Fe(II), and the release of 

an oxidised sulfur radical from the reactive oxide surface. In solution, the hydroxylated 

reduced iron surface will undergo protonation, weakening the metal bond and allowing 

the detachment of Fe(II) into pore-waters, leaving behind a newly created reactive 

surface site, freely available for reaction. 

This reaction is a multi-step, surface-controlled process, the rate of which is influenced 

by factors including pH, initial sulfide concentration and the initial quantity of iron 

oxide (and hence the available surface area) of mineral available for reaction. Where 

Fe(II) is released into anoxic aqueous environments, the aqueous ferrous species will 

continue to react with free HS
-
 to produce solid phase iron monosulfide (FeS(s)), which 

is a precursor to pyrite formation during diagenesis (Rickard, 1974; Berner 1984). The 

dominant S oxidation product observed in the reaction of hematite with dissolved 

sulfide by Dos Santos Afonso & Stumm (1992) was reported as dissolved sulfate, with a 

minor to negligible percentage of poly-sulfides and thio-sulfates measured in solution. 

However, in later experimental papers regarding many other Fe(III) oxide minerals, the 

formation of sulfate was determined to be a minor oxidation product, with elemental S 

identified as the major product of reductive dissolution (Pyzik & Sommer, 1981; Yao & 

Millero, 1996; Poulton, 2003; Poulton et al., 2004).  

The kinetics with which these reactions occur have commonly been based either on the 

rate of sulfide oxidation, the overall rate of Fe(III) reduction (assuming a 2:1 ratio of 

reduced Fe(II) to oxidised S product, in accordance with the mechanism of electron 

transfer described by Dos Santos Afonso & Stumm (1992)), and the rate of dissolution 

of Fe(II)aq from the oxide surface. Previous experimental studies of sulfide mediated 

reductive dissolution reactions generally focus on one of these phases, with the 
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exception of Poulton (2003) and Poulton et al., (2004) who compared the rates of all 

three iron and sulfur reactions in order to evaluate the differences in reactivity in terms 

of sulfide oxidation, Fe(III) reduction and an overall reductive-dissolution mechanism. 

The general rate equation derived by Poulton (2003) was defined for closed system, 

batch experiments using synthetic iron minerals, with a known starting concentration of 

dissolved sulfide at constant pH (7.5): 

 

 Ri = ki (H2S) t=0
0.5

A       (Eq 4.2) 

 

Where Ri is either the rate of sulfide oxidation (Rs) or Fe dissolution (RFe) in mol L
-1

 

min 
-1

, ki is the calculated rate constant for sulfide oxidation (ks) or Fe(II) dissolution 

(kFe) in mol
0.5 

L
0.5

m
-1

min
-1

, (H2S)t=0 is the initial sulfide concentration (mol L
-1

) 

dependent on a rate order of 0.5, and A represents the initial ferrihydrite surface area 

(m
2 

L
-1

), which is first order dependent. Using these rate equations, Poulton (2003) 

determined that sulfide oxidation occurs approximately 15 times faster than that of 

Fe(II) dissolution at circumneutral pH, due to the lack of protons available to promote 

release of Fe(II) to solution.  

The results obtained using Equation 4.2 were also used to propose a scheme of 

reactivity (Poulton et al., 2004) classifying different Fe minerals with regard to 

individual rates of reaction. Table 4.2 compares the rate constants of iron dissolution 

(calculated via a series of iron sulfidation experiments) for a number of reactive Fe(III) 

oxides derived from Poulton (2003) and Poulton et al., (2004). For each experiment, a 

fractional rate order dependency (0.5) was observed for initial sulfide concentration, 

with the initial surface area of Fe mineral being first order. Due to the varying 
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crystalline morphology of these minerals, the differences in reactivity with respect to 

dissolved sulfide classifies a scheme of iron mineral reactivity, with the majority of iron 

oxide minerals ranging in reactivity from minutes to tens of days (Poulton et al., 2004). 

 

Table 4.2. Kinetic determination of the rate of sulfide mediated reductive 

dissolution of synthetic Fe oxide minerals (Poulton, 2003; Poulton et al., 2004). 

Sample Mineral Reducing agent  Rate Equation, R kFe'  

Rate order 

coefficient 

Ferrihydrite Synthetic Sulfide R = kfe/s (H2S)
a
t=0A

b
 8.4x10 

-6
 a =0.5 / b= 1.0 

Hydrous Ferric 

Oxide 
Synthetic  Sulfide R = kfe/s (H2S)a

t=0A
b 6.0x10-6(a) a =0.5 / b= 1.0 

Lepidocrocite Synthetic  Sulfide R = kfe/s (H2S)a
t=0A

b 6.1x10-6 a =0.5 / b= 1.0 

Goethite Synthetic  Sulfide R = kfe/s (H2S)a
t=0A

b 7.3x10-8 a =0.5 / b= 1.0 

Magnetite Synthetic  Sulfide R = kfe/s (H2S)a
t=0A

b 1.0x10-6 a =0.5 / b= 1.0 

Hematite Synthetic  Sulfide R = kfe/s (H2S)a
t=0A

b 4.2x10-7 a =0.5 / b= 1.0 

 

(a) Represents the average value of k’Fe for HFO sulfidation. Experiments conducted at pH 7.5 

 

4.1.2. Fe oxide minerals in a reactive continuum 

The aforementioned studies describe the reactivity of synthetic, pure Fe minerals under 

highly controlled conditions. However, in nature, mixtures of Fe oxide minerals within 

sediment assemblages occur, with changes in morphology and crystallinity with depth 

within a sediment core (Larsen & Postma, 2001). In experimental studies of reductive 

dissolution implied within natural settings (as opposed to the experiments described 

above using synthetic minerals), the first studies of Fe-rich natural sediment samples in 

reaction with an ascorbic acid reductant (Banwart, 1989;  Dos Santos Afonso et al., 

1990; Suter et al, 1991; Postma, 1993; Roden, 2003; 2004; Hyacinthe et al., 2006) 

followed a rate equation which is more appropriate to consider gradual changes in 
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reactivity with depth in the sediment profile. The rate at which reductive dissolution 

occurred was defined for pure synthetic minerals as (Postma, 1993): 

 

J/M0 = k’ (m/M0) 
γ
       (Eq. 4.3) 

 

Where J defines the overall rate of dissolution (moles s
-1

), M0 is the initial mass of 

Fe(III) oxide, m/M0 is the fraction of Fe(II) in solution in relation to initial mass of the 

undissolved mineral, k‟ is the rate constant (s
-1

) and γ is the rate order related to changes 

in the crystalline structure and mineralogy over time.  

 

Reductive dissolution experiments carried out by Postma (1993) with synthetically 

derived Fe(III) oxides (ferrihydrite, goethite and hematite; pH 3) reveal a first order 

dependency with respect to m/M0  whilst utilising ascorbic acid as a reductant, with the 

initial rate at which increasing amounts of Fe(II) measured in solution increasing 

sharply from t=0 mins, but slowing as M0 decreased with progressive Fe(III) reduction. 

Postma (1993), Larsen & Postma (2001) and Larsen et al., (2006) built upon the 

synthetic mineral studies to determine the rates of reductive dissolution for natural 

Fe(III) oxide assemblages, describing the changing mineral characteristics throughout 

Fe rich sediment cores in terms of a reactive continuum process (Boudreau & Riddick, 

1991). 

 

The results of these ascorbate mediated experiments highlight that changing 

mineralogy, Fe oxide crystallinity and surface area all influence the rate of abiotic 

reductive dissolution in natural Fe oxide assemblages. When comparing a suite of 

synthetic Fe(III) oxides (and then subsequently synthetic Fe-bearing minerals and 

Fe(III) oxide assemblages from natural sediments), the values of individual rate 



101 

 

constant (kFe) were calculated to cover a range of 2 orders of magnitude between 

different Fe oxide minerals (i.e.ferrihydrite and goethite ~10
-4 

to 10
-6

), a scale which is 

similarly reflected in the rate constant caluated from known changing mineralogy 

throughout sediment sample depths of the Rømø aquifer, albeit at a faster rate (10
-3

 to 

10
-5

, Larsen et al., 2006). Table 4.3 also indicates that the rate order coefficients in 

natural sediments are higher than observed for synthetic minerals, highlighting a greater 

degree of mineral heterogeneity for natural samples. 

 

 

Table 4.3. Kinetic rate determination of ascorbic-mediated reductive dissolution  

Sample Mineral Reducing agent  Rate Equation k'  γ Ref. 

Ferrihydrite Synthetic Ascorbic Acid J/m0 = k'(m/m0)
γ 4.0x10-4 1.1 

Postma, 

1993 

Bight of Aarhus Marine sediment Ascorbic Acid J/m0 = k'(m/m0)
γ 7.3x10-3 4.7 

Rømø Sand 
Oxidised Aquifer 

Sediment 
Ascorbic Acid J/m0 = k'(m/m0)

γ 5.3x10-5 2.8 

2L-Ferrihydrite Synthetic Ascorbic Acid J/m0 = k'(m/m0)
γ 7.6x10-4 2.3 

Larsen 

& 

Postma, 

2001 

6L-Ferrihydrite Synthetic Ascorbic Acid J/m0 = k'(m/m0)
γ 7.4x10-4 2.5 

Goethite Synthetic Ascorbic Acid J/m0 = k'(m/m0)
γ 5.4x10-6 1.0 

Lepidocrocite Synthetic Ascorbic Acid J/m0 = k'(m/m0)
γ 3.9x10-5 1.6 
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4.2. RESEARCH AIMS 

A comparison between the reactivity of synthetic Fe(III) oxides and Fe(III) oxide 

assemblages in natural sediments has never been reported for sulfide mediated reductive 

dissolution. However, the studies of Postma (1993), Larsen & Postma (2001) and 

Larsen et al. (2006) investigating the reduction of natural Fe oxides by ascorbate (which 

is generally not a significant reductant of Fe oxides during marine sediment diagenesis), 

suggest that this is required to evaluate whether studies of sulfidation rates of synthetic 

Fe minerals are valid for use in models of marine sediment diagenesis. The focus of this 

chapter is thus to investigate rates of Fe oxide reductive dissolution mediated by 

dissolved sulfide in natural sediment assemblages, utilizing a reactive continuum 

approach, initially derived in Postma (1993).  

The reactivity of a number of synthetic Fe(III) oxides, including ferrihydrite, goethite 

and magnetite, which are commonly found within anoxic, near surface sediments will 

initially be evaluated. These oxides differ in individual rates of reactivity with respect to 

sulfide mediated reductive dissolution (i.e. minutes and hours to days), allowing 

determination of the rates of total Fe reduction and the rate coefficient for the specific 

rate equation derived within this chapter. Once rates of reductive dissolution for the 

pure Fe oxide minerals have been defined, the rates of iron sulfidation of natural iron 

oxide assemblages will be determined and compared. Two marine sediment cores have 

been chosen to exemplify changes in iron oxide morphology with depth, and by 

subjecting sediments from different depths to conditions of excess sulfide, the rate of 

reductive dissolution can be determined to evaluate how rates change during diagenesis 

due to the changing morphology and availability of iron oxides with depth. 
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The primary objectives of this chapter are: 

1) Determine the rates of reductive dissolution of pure Fe (III) oxide minerals under 

constant concentrations of dissolved sulfide (which has never before been performed for 

most of the major Fe oxides). 

2) Derive a rate equation for use in the measurement of the rates of reactivity of Fe 

oxides in natural sediments. 

3) Compare the rates obtained via synthetic experiments with those for two different Fe 

rich sediment cores, which are characterised as having differing iron mineral 

morphologies.
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4.3 GEOGRAPHICAL SETTING 

4.3.1 Aarhus Bay, Denmark  

Figure 4.2 illustrates the site of the Aarhus Bay sediment core, sampled at a water depth 

of 16 m, approximately 5 km from the Jutland coast, with the site lying transitionally 

between the Baltic and North Sea at 56°09‟‟10‟N, 10°19‟‟20‟E (Thamdrup et al., 1994; 

Thamdrup et al., 1996). Core samples were collected by Dr Bo Thamdrup (NORDCEE, 

University of Southern Denmark) in January 2009 using a box-corer, and immediately 

sub-cored (25 cm) in Plexiglas tubes and frozen until analysis.  

 

Figure 4.2: Aarhus Bay sample site (Thamdrup et al., 1996) 

 

4.3.2 Umpqua River Shelf, Oregon, N. Pacific Basin  

A 50 cm sediment core was collected by Dr Silke Severmann during a scientific cruise 

on the RV Wecoma, (September 2007), near the North Western coast of the United 

States. The site lies at 42°N, 124°W at a water depth of 192 m on a continental shelf 

margin in the Northern Pacific Ocean, close to the border of southern Oregon and 
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northern California. The sediment was immediately frozen upon sampling to avoid 

oxidation of Fe sulfides, and the transformation of unstable highly reactive Fe 

oxyhydroxides to more stable crystalline, slower reacting species. The geographical 

setting of the sampling site is shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Umpqua River Shelf sample site (supplied by Dr Silke Severmann) 

 

 

4.4 METHODS 

4.4.1 Sediment characterization 

4.4.1.1Aarhus Bay 

Marine sediment samples from Aarhus Bay, Denmark were characterised by the 

sequential extraction procedure of Poulton & Canfield (2005) by Dr Tanya Goldberg. 

Instead of traditional centrifuge methods of pore water extraction from each core 

section, a Rhizon syringe sampler was used to extract porewaters for analysis of 
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dissolved iron and sulfide. The use of Rhizon samplers in a N2 filled glove bag allowed 

the sampling of pore waters to be performed anoxically.  

 

As a method of determining the solid phase iron content of natural sediment 

assemblages, a refined version of the sequential iron extraction method of Poulton & 

Canfield (2005) was used. Carbonate-associated Fe (not considered to be significant in 

these low carbonate sediments) and FeOx1 phases were initially extracted with 0.5 M 

HCl, a technique commonly used in modern sediment studies (Thamdrup et al., 1994; 

Methodology Section 3.2.1.1 and 3.4.1). This allowed the determination of Fe(III) 

associated with poorly crystalline Fe oxides such as ferrihydrite to be measured, along 

with any unsulfidized solid phase Fe(II) which formed diagenetically by the reduction 

of original Fe(III) oxides. Therefore, in order to calculate the true concentration of 

unreacted FeOx1 minerals within sediment assemblages, the value of surface reduced 

Fe(II) was subtracted from the total value of 0.5 M HCl  extractable FeOx1.  The FeOx2 

pool was then extracted by dithionite, followed by an oxalate extraction to determine 

magnetite associated Fe (Section 3.2.1.1).  

 

4.4.1.2 Umpqua River shelf sediments 

Solid phase characterisation of Umpqua River shelf sediments was also undertaken by 

the iron sequential extraction scheme of Poulton & Canfield (2005). Immediately after 

sectioning of the core to 1-2 cm sections, samples were placed in centrifuge tubes under 

a continuous flow of nitrogen, and centrifuged to separate porewaters from sediment 

prior to analysis. A full method rationale of the sequential extraction procedure is 

presented in Section 3.2.1.1. 
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4.4.2 Sulfidation experiments 

The initial conditions for each experiment are shown in Table 4.4. Batch experiments 

were performed (as described in Methodology Chapter Section 3.3.2; Benning et al., 

2000; Poulton (2003) and Poulton et al., (2004)) within a 1L air-tight glass vessel with 

individual inlets for sampling, pH probe and gas induction/removal. The vessel 

contained 1L of continuously stirred deoxygenated, deionised water, and H2S(g) was 

continuously flushed through the vessel for 1 h to achieve saturation (observed after a 

constant pH was obtained).  

 

Table 4.4: Experimental parameters for iron sulfidation experiments  

Experiment Mineral pH 

Initial 

sample 

wt (g) 

Initial FeHR 

(µM) 

 Initial* 

H2S 

(µM) 

   

 

 

  

Synthetic 1 Ferrihydrite 6.9 0.13 1346  944 

Synthetic 2 Ferrihydrite 6.7 0.45 4461  693 

Synthetic 3 Ferrihydrite 6.5 0.70 7250  361 

Synthetic 4 Goethite 6.8 0.30 3375  1054 

Synthetic 5 Magnetite 6.7 1.00 12857  1054 

Umpqua River 0-1cm 7.1 9.67 1715  1238 

Umpqua River 3-4cm 7.3 18.07 3717  1189 

Umpqua River 8-9cm 7.5 24.88 4932  1176 

Umpqua River 10-12cm 7.4 25.00 4567  876 

Umpqua River 14-16cm 7.3 25.00 4808  1011 

Aarhus Bay 0-1cm 7.0 1.50 193  1156 

Aarhus Bay 17-19cm 6.9 5.15 255  1098 

*Cumulative standard deviation of all experiments (where t=0 sample is taken in triplicate) = ± 77μM, 

RSD = ± 6.9%. 

 

To help maintain a constant pH during the reaction itself, a borate buffer (~ pH 6.5- 7.5) 

was added to the reaction solution. Synthesised Fe(III) oxide minerals and natural 

sediment samples were deoxygenated in DIW for at least 30 minutes and then injected 
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directly into the vessel. Samples were taken to measure total iron reduction, iron 

monosulfide formation and sulfide oxidation periodically from the first minute of 

reaction. During experiments of natural sediment sulfidation, some interference 

(probably from natural dissolved organic matter released by reaction with the acid in the 

reagents) occurred during measurement of FeS (which is performed on unfiltered 

samples with Methylene Blue). Thus it was not possible to determine solid phase FeS in 

the experiments with natural sediments.  
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4.5 RESULTS 

4.5.1 Fe characterisation of sediment cores 

4.5.1.1 Aarhus Bay, Denmark  

Pore-water measurements from Aarhus Bay sediments (Figure 4.4) indicate that anoxic 

conditions are achieved close to the sediment-water interface, allowing 150-200 µM of 

Fe
2+

aq to accumulate within the first 2 cm of the core, before decreasing with depth. As 

Fe
2+

aq is removed (via pyrite formation, Figure 4.5b), and the more highly reactive Fe 

oxides are consumed (Figure 4.5a), HS
-
(aq) begins to accumulate in pore waters below 

5cm depth.   

 

 

Figure 4.4: Pore water distribution of dissolved Fe
2+

 (aq) and HS
-
(aq) in Aarhus Bay core 

sections. 
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Tables 4.5 and 4.6 report data collated from the sequential extraction of solid phase Fe 

minerals from Aarhus Bay sediments. Solid phase analyses used to characterise iron 

oxide phases within Aarhus Bay sediment (Figure 4.5a) show that between 0-9 cm 

depth, unreacted FeOx1 (determined from the removal of 0.5M HCl derived surface 

bound Fe(II) from total 0.5M HCl Fe) dominates the iron oxide phases (~0.6 – 0.2 

wt.%), with a lower concentration of FeOx2 over this depth (0.2 – 0.11 wt.%). Both of 

these iron oxide pools decrease with depth as sulfide in pore waters reduces reactive 

iron oxide minerals (with an additional contribution from dissimilatory Fe reduction). 

FeOx2 is shown to decrease at a slower rate in keeping with the slower rate of reaction 

of dissolved sulfide with regard to FeOx2 oxides such as goethite and hematite. Figure 

4.5b illustrates the fraction of surface bound Fe(II), which initially increases to a depth 

of ~5 cm, followed by a subsequent decrease as Fe
2+

(aq) is eventually released from the 

mineral surfaces. Below 2 cm depth, an increase in pyrite is observed as highly reactive 

Fe oxides are consumed and dissolved sulfide begins to accumulate in pore-waters, 

readily available for further reaction and to convert free Fe
2+

(aq) to pyrite.  

Figure 4.6a and 4.6b normalises data with respect to total concentrations of FeHR 

minerals within the sediment assemblage, allowing a comparison of recognised, fast 

reacting mineral classes for sulfidation. Figure 4.6a shows that unreacted FeOx1 (which 

has not undergone previous diagenetic processes, i.e. bacterial reduction) dominates the 

highly reactive phase between 0-5cm depths within the core (~ 40%). In comparison, 

FeOx2 minerals contribute approximately 20% of highly reactive iron in the sediment. 

Below 5 cm, this value decreases following natural reduction processes, which are 

reflected in the increase of pyrite in Figure 4.6b. Throughout the core, very little surface 

reduced Fe(II) is observed, indicating a fast reaction of mineral dissolution. From the 

results of these solid phase iron analyses, two core sections were chosen to study 
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experimentally (0-1 cm, 17-19 cm). These sections show significant differences in iron 

oxide concentrations and morphologies, and therefore are expected to show major 

differences in the rates of reactivity of Fe(III) oxides towards dissolved sulfide. 

 

 

Table 4.5: Extractable Fe speciation data for Aarhus Bay sediments (dry weight 

%)  

Sample 

Depth 

(cm) 

0.5N HCl-

Fe(III)Ox1 

Wt (%) 

0.5N HCl 

Fe(II) 

Wt(%) 

Na. Dith. 

FeOx2 

Wt(%) 

Am. Oxa. 

Femag 

Wt(%) 

Fepyrite 

Wt 

(%) 

FeT 

Wt(%) 

0-1 0.40 0.02 0.23 0.09 0.30 2.66 

17-19 0.13 0.01 0.07 0.08 0.66 2.43 

 

 

Table 4.6: Characterisation of Aarhus Bay sediment in terms of reactive Fe species 

 

Depth 

(cm) 

Fe 

HR 

Fe(II) 

/FeHR 

FeOx1

/FeHR 

FeOx2

/FeHR 

Femag 

/FeHR 

Py      

/FeHR 

Fe(II) 

/FeT 

FeOx1

/FeT 

FeOx2

/ FeT 

Femag 

/FeT 

FeHR 

/FeT 

0-1 1.04 0.02 0.38 0.22 0.09 0.29 0.01 0.15 0.09 0.11 0.40 

            

17-19 0.95 0.01 0.14 0.07 0.08 0.70 0.004 0.05 0.03 0.03 0.40 
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Figure 4.5(a +b): Concentration of Fe species (based on reactivity scheme 

classification) as a percentage of Fe within the total Aarhus Bay sediment sample. 

 

Figure 4.6(a +b): Aarhus Bay solid phase sediment characterisation, normalized to 

concentration of highly reactive Fe species (FeHR). 
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4.5.1.2 Umpqua River Shelf, N. Pacific Basin 

 

Figure 4.7: Pore water distribution of dissolved Fe
2+

 (aq) and HS
-
(aq) in Umpqua River 

sediment sections. 
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throughout the core.  In contrast to the Aarhus sediments, rates of Fe
2+

(aq) generation are 

0

5

10

15

20

25

30

0 20 40 60 80

D
e
p

th
 (

c
m

) 

Porewater Concentration (μM/L) 

Fe2+(aq)

HS-(aq)



114 

 

sufficient to buffer dissolved sulfide to minimal levels throughout the core, although 

Fe
2+

(aq) concentrations decrease with depth as the most reactive Fe oxides are gradually 

consumed. In order to classify the raw data presented in Table 4.7 with regards to iron 

mineral reactivity (as defined in Raiswell et al., 1998; Poulton and Raiswell, 2002), iron 

pools were categorized as highly reactive, poorly reactive or unreactive with respect to 

rates of reaction with dissolved sulfide (Table 4.8). Highlighted rows represent samples 

which were chosen for experimental purposes.  

The concentrations of individual mineral phases are compared in Figure 4.8a and Figure 

4.8b. Highly reactive mineral phase FeOx1 (largely representing ferrihydrite) has been 

corrected for surface reduced Fe(II) within the sediment assemblage, resulting from 

previous diagenetic (i.e. organic) or biological reduction processes within the natural 

environment. This unreacted FeOx1 is of a low concentration at depth, as a consequence 

of high quantities of surface reduced Fe(II) present on the mineral surface. 

Concentrations of FeOx2 and Femag are higher than unreacted FeOx1 and appear 

relatively constant to 15 cm depth, implying that very little change in morphology, and 

hence reactive processes, have occurred with regard to these mineral pools over this 

depth interval (i.e. it is the FeOx1 pool that has dominantly been reduced). Below 15 cm 

depth, a gradual decrease in FeOx2 is observed as reduction of this less reactive pool 

starts to occur. Figure 4.8b represents an almost constant constant low concentration of 

surface reduced Fe(II) measured on the sediment surface (fluctuating ~ 0.2 wt %), 

compared to an more significant increase in pyrite formation with depth (0.05 – 0.25 wt 

%).  

In Figure 4.9a, the total FeOx1 pool is divided into unreacted FeOx1 and total FeOx1, 

with the data plotted in terms of normalization to FeHR, to clearly show the relative 

proportions of the different Fe pools that together make up the FeHR fraction. FeOx2 
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minerals dominate the highly reactive Fe fraction within the upper core section, but with 

a gradual decrease with depth after 8 cm. The percentage of magnetite which 

contributes to the total iron measurement is relatively constant (~20%), suggesting that 

this Fe pool is not reactive during early diagenesis at this site. The observed downcore 

increase in the proportion of FeHR which is present as pyrite (Figure 4.9b) matches the 

total reduction in the FeOx1 (unreacted Fe(III) + surface-reduced Fe (II)) plus FeOx2 

pools with depth. The concentration of organic carbon varies from 1.5-1.8% wt., with 

the highest values tending to be at depth.  

 

 

Figure 4.8: a) Comparison of Fe(III) species concentrations measured as a wt% of Fe in 

individual sediment samples and b) characterisation of Fe reactivity with respect to FeT 

describing overall mineralogy of Umpqua River sediments 
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Downcore decreases in unsulfidized reactive Fe minerals (III) are not as extreme at the 

Umpqua River site, relative to the Aarhus Bay site (c.f. Figures 4.6a and 4.9a). This 

allows an evaluation of potential differences in depth changes in sediment reactivity at 

the two contrasting sites. Samples were taken from depths of 0-1 cm, 3-4 cm, 8-9 cm, 

10-12 cm and 14-16 cm to undergo sulfidation experiments, in order to represent the 

observed relatively minor mineralogical changes with depth at the Umpqua River site 

(Table 4.8).  

 

 

Figure 4.9: a) Speciation of highly reactive Fe Oxide minerals, with respect to FeHR 

(Canfield et al., 1992) b) Surface reduced Fe(II) present on mineral surfaces compared to 

pyrite formation within Umpqua River sediment (w.r.t. FeHR phases) 
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Table 4.7: Extractable Fe -speciation data for Umpqua River sediments 

 

Sample 

Depth 

0.5N HCl  

Fe(III)Ox1 

Wt (%) 

0.5N HCl 

Fe(II) 

Wt(%) 

Na.Dith 

FeOx2 Wt(%) 

Am.Oxa 

Femag Wt(%) 

Fepyrite 

Wt(%) 

HCl 

FePrs 

Wt(%) 

FeT 

Wt(%) 

        0-1cm 0.17 0.21 0.39 0.22 0.06 0.05 4.68 

1-2cm 0.14 0.19 0.46 0.28 0.12 0.05 4.50 

2-3cm 0.20 0.19 0.30 0.21 0.11 0.04 4.54 

3-4cm 0.19 0.23 0.44 0.30 0.09 0.05 4.45 

4-5cm 0.20 0.17 0.91 0.58 0.13 0.10 4.60 

5-6cm 0.19 0.19 0.47 0.30 0.15 0.06 4.59 

7-8cm 0.17 0.18 0.40 0.24 0.13 0.04 4.54 

8-9cm 0.11 0.19 0.40 0.29 0.15 0.04 4.51 

9-10cm 0.16 0.18 0.42 0.33 0.16 0.05 4.59 

10-12cm 0.09 0.2 0.38 0.26 0.20 0.05 4.59 

14-16cm 0.11 0.18 0.39 0.28 0.25 0.06 4.45 
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Table 4.8: Characterisation of Umpqua river sediment in terms of reactive Fe species. 

 

Sample 

Depth 

Fe 

HR 

 

Fe(II) 

/FeHR 

FeOx1 

/FeHR 

FeOx2 

/FeHR 

Femag 

/FeHR 

Pyrite 

/FeHR 

Fe(II) 

/FeT 

FeOx1 

/FeT 

FeOx2 

/FeT 

Femag 

/FeT 

FeHR 

/FeT 

            0-1cm 1.05 0.20 0.16 0.37 0.21 0.06 0.04 0.04 0.08 0.05 0.22 

1-2cm 1.19 0.16 0.12 0.38 0.24 0.10 0.04 0.03 0.10 0.06 0.27 

2-3cm 1.02 0.19 0.20 0.30 0.21 0.11 0.04 0.04 0.07 0.05 0.22 

3-4cm 1.24 0.18 0.15 0.35 0.24 0.07 0.05 0.04 0.10 0.07 0.28 

4-5cm 1.99 0.09 0.10 0.46 0.29 0.06 0.04 0.04 0.20 0.13 0.43 

5-6cm 1.30 0.15 0.15 0.36 0.23 0.12 0.04 0.04 0.10 0.06 0.28 

7-8cm 1.12 0.16 0.15 0.35 0.21 0.12 0.04 0.04 0.09 0.05 0.25 

8-9cm 1.13 0.17 0.10 0.35 0.25 0.13 0.04 0.02 0.09 0.06 0.25 

9-10cm 1.25 0.14 0.13 0.34 0.26 0.12 0.04 0.03 0.09 0.07 0.27 

10-12cm 1.14 0.18 0.08 0.34 0.23 0.18 0.04 0.02 0.08 0.06 0.25 

14-16cm 1.21 0.15 0.09 0.32 0.23 0.21 0.04 0.02 0.09 0.06 0.27 
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4.5.2. Experimental sulfidation of iron oxide mineral assemblages 

4.5.2.1 Synthetic Fe(III) oxide mineral 

Speciation data for iron sulfidation experiments for a variety of synthetic iron oxide 

minerals are shown in Figure 4.10. During experiments with goethite, hematite, and for 

the experiment with the lowest concentration of ferrihydrite, dissolved sulfide was 

maintained at a near constant level throughout the course of each experiment. During 

the reductive dissolution of ferrihydrite at higher concentrations, the rapid nature of the 

initial reaction maintained dissolved sulfide at a low level, but sulfide subsequently 

began to slowly rise as the reaction progressed since H2S gas was continuously purged 

through the reaction vessel as the reaction progressed (i.e. as the rate of sulfide removal 

decreased with time).  

 

Thus, initial sulfide concentrations (Table 4.4) were estimated by regression analysis of 

the dissolved sulfide data for all experiments.  A linear relationship was estabilished 

between dissolved sulfide concentrations sampled over t =1-10mins, and the line 

extrapolated back to the y-axis (t =0 mins), representing the true initial sulfide 

concentration prior to addition of synthetic iron or sediment sample. The relatively 

minor rise in dissolved sulfide observed for experiments performed at higher 

concentrations of ferrihydrite (Figure 4.10) does not appreciably affect any subsequent 

determination of reaction rates, since much of the reaction occurs rapidly, prior to a 

significant increase in dissolved sulfide. The plots in Figure 4.10 show similar patterns 

of Fe and S speciation to those reported in Poulton (2003) and Poulton et al., (2004) at 

pH 6.5-6.8. As experiments were performed at near neutral pH, very little dissolved iron 

was released from the mineral surface, which is reflected in all plots of Figure 4.10, 

which instead show an increase in surface reduced Fe(II) instead. During the reductive 
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dissolution of all minerals examined, any Fe(II)aq that was released into solution, mostly 

reacted rapidly to form FeS.  

 

During the sulfidation of natural marine sediments, it was not possible to determine 

solid phase FeS in natural samples due to an unknown interference (presumably by 

organic matter) when trying to measure total sulfide by spectrophotometer (i.e. 

dissolved plus FeS). However, it was possible to measure the total amount of Fe 

reduced during the experiments, since colour development during the Fe(II) 

spectrophotometric measurements was not affected. Thus, the concentrations of Fe(II) 

reduced were determined following a total Fe(II) measurement, as discussed in Section 

3.2.1.1 and Sectin 3.4.1. Dissolved Fe(II) was then subtracted to give surface-reduced 

Fe(II) plus FeS(s) (e.g. as observed in Figure 4.11 + Figure 4.12). 
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4.5.2.2 Sediment sulfidation experiments 

 

 
 

            

 
 

           

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            Figure 4.10: Speciation plots of Fe(III) oxide minerals. 
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4.5.2.3 Aarhus Bay sediment core 

Iron sulfidation experiments (Methodology Section 3.3.2) were performed on two core 

sections from Aarhus Bay, Denmark. The first sample from the upper core section (0-1 

cm) contains high concentrations of unreduced FeOx1 and an appreciable concentration 

of FeOx2, also present (Table 4.5). The second core sample (17-19 cm) has lower 

concentrations of Fe in both the pools of FeOx1 and FeOx2 (Table 4.5). In both cases, 

concentrations of surface reduced Fe(II) are low and similar in concentration (Figure 

4.5b and also Figure 4.11) and thus possible release of this already reduced Fe to 

solution is unlikely to have a significant impact on the relative reactivities of each 

sample.  

Resultant speciation profiles (Figure 4.11) indicate that the sample from 17-19 cm 

(Figure 4.11b) maintains a relatively constant dissolved sulfide concentration (average 

sulfide concentration = 1117 ± 24 μM, RSD = 2%) but with a minor increase over time. 

However, the more rapidly reacting sample at 0-1 cm (Figure 4.11a) shows a clear 

increase in dissolved sulfide (between 1000-1400 μM), which is above the sulfur 

concentration achieved during reaction preparation where the system was saturated with 

dissolved sulfide. As pH was consistently maintained throughout this experiment, this 

increase does not relate to an increased ability to accommodate more sulfide at lower 

pH. Instead, this increase likely relates to the formation of aqueous FeS complexes, 

which would be expected to be more significant as more Fe
2+

(aq) is released to solution 

(i.e. for the more reactive sediment split; see discussion below). In Figure 4.11 

concentrations of dissolved Fe
2+

(aq) are minimal, consistent with the high concentrations 

of dissolved sulfide, which would maintain dissolved Fe
2+

(aq) at a low level via the 

formation of FeS. The concentration of surface-reduced Fe(II) is also relatively low, but 

shows a gradual increase over time. 
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a)  

b)  

Figure 4.11: Iron speciation and sulfide concentration profiles from iron sulfidation of 

Aarhus Bay sediments.  
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speciation profiles during the sulfidation of Umpqua River shelf sediments, for samples 

between 0-16 cm depth. These experiments indicate an increase in dissolved sulfide 

concentration, as with the most rapidly reacting Aarhus Bay sediment sample, the extent 

of which appears to be related to the initial concentration of FeHR. These profiles also 

measure a low concentration of Fe
2+

(aq) in solution, which is expected over the 

experimental pH range 7.4-7.6 (Table 4.4). Hence, the general speciation profile 

observed during the sulfidation of Fe(III) mineral assemblages compares well to those 

observed by Poulton (2003) and Poulton et al. (2004) for a variety of synthetic Fe oxide 

minerals under similar experimental conditions. 
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Figure 4.12: Iron speciation and sulfide concentration iron sulfidation experiments of 

Umpqua River shelf sediments. 
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4.6 DISCUSSION 

4.6.1. Pore-water and sedimentary analysis 

The gradual decrease in pore water Fe
2+

(aq)
 

indicates that the rate of reductive 

dissolution slows throughout the both sediment core profiles, related to a change in 

Fe(III) oxide morphology from the most highly reactive, poorly crystalline ferrihydrite 

minerals found in near surface sediments (FeOx1), to more crystalline, slower reacting 

Fe(III) species (Canfield et al., 1992). Pyrite increases with depth in both cores (Figures 

4.5 and 4.8) and is present in the shallowest samples, suggesting that sulfate reduction is 

occurring close to the sediment-water interface and throughout the deeper parts of the 

cores producing dissolved sulfide for reactions. For the Aarhus Bay core, concentrations 

of porewater Fe
2+

aq buffers dissolved sulfide to very low levels over the upper 7 cm 

(Figure 4.4), and then dissolved sulfide increases with depth as a significant fraction of 

the most reactive Fe minerals (FeOx1) have been reduced (Figure 4.5). In comparison to 

the Umpqua core dissolved sulfide concentrations which are buffered < 10μM HS
-
 

throughout (Figure 4.7), the zone of Fe-rich porewaters extracted from Aarhus bay 

sediments extends much deeper. Pyrite contents are also lower in the Umpqua core (c.f. 

Figures 4.5b and 4.8b), suggesting overall that reduction of Fe oxides by sulfide is a 

significant process within the Aarhus Bay core; whereas dissimilatory Fe oxide 

reduction, or  reductive dissolution of Fe(III) oxides mediated by organic processes, 

may have been of greater significance for the Umpqua River core.  

 

In terms of different reactive Fe pools, Figure 4.6 shows that the Aarhus Bay sediment 

changes significantly from being dominated by unreacted FeOx1 type minerals (e.g. 

ferrihydrite; < 40%) in the upper core section, to having similar concentrations of 

extractable FeOx1 and FeOx2 phases between 10 and 20 cm, which is reflected in the 

accumulation of dissolved sulfide in pore-waters over the same interval. The sediment 
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section from the Umpqua River shelf differs from Aarhus Bay as both the FeOx1 and 

FeOx2 pools show relatively constant profiles with depth (Figure 4.8 and Figure 4.9), 

with the FeOx2 pool being significantly greater than the unreacted FeOx1 pool. These 

differences in Fe oxide morphology between the two cores provide an ideal opportunity 

to compare the reactivity of the Fe oxides remaining in these two contrasting 

environments.  

 

4.6.2. FeS formation 

Figure 4.13 represents the rate of formation of FeS from differing initial Fe(III) starting 

concentrations for experiments with synthetic ferrihydrite. The trend observed is similar 

to that for total Fe(III) reduction, where the largest concentrations of Fe(III) (0.7g) 

produce solid FeS at a faster rate than 0.45 and 0.13g respectively, which is expected as 

FeS is a major component of the total Fe(III) reduction phase in synthetic mineral 

experiments (Figure 4.13).  

 

 

Figure 4.13: FeS formation under experimental conditions: Synthetic minerals 
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Poulton et al. (2004) suggest that solid phase FeS will be the overwhelming Fe sulfide 

species formed during experiments at circumneutral pH with synthetic Fe oxides, with 

aqueous FeS species (see Luther et al., 1996) only being a very minor component due to 

extensive dissolution at experimental pH (Luther et al., 1996). This is supported by high 

concentrations of solid FeS formed in the experiments with synthetic Fe oxides (Figure 

4.13). However, these findings are in contrasts to those obtained during sulfidation 

experiments performed with natural sediments. Here, it was not possible to measure 

solid phase FeS, and a marked increase in measured dissolved sulfide above the 

saturation point (~1000μM) was measured as the experiments progressed (Figures 4.11 

and 4.12). Figure 4.14 shows the increase in measured „dissolved‟ sulfide above the 

initial concentration (t = 0 mins) during the course of the sulfidation experiments with 

Umpqua River sediment.  

Additional sulfide is shown to increase with both increasing FeHR and depth within the 

Umpqua River core (Table 4.4), suggesting that the „dissolved‟ sulfide is a product of 

the reductive dissolution reaction. A likely explanation for this increase in dissolved 

sulfide is that it represents the formation of aqueous FeS species.  Hence, it appears that 

in contrast to experiments with pure Fe oxides, aqueous FeS species are a major product 

during sulfidation of natural sediments. It is speculated here that this may occur due to 

stabilization of the aqueous FeS, potentially as a result of the action of organic matter 

solubilised during the reaction, or the presence of organic sulfides reacting with OM 

(e.g. thiols; Vairavmurthy & Mopper, 1987) dissolved in porefluids, which may also be 

implicated in the fact that solid phase FeS was not measurable in the natural sediment 

experiments. The Fe present as the aqueous FeS was not detectable by the Ferrozine 

spectrophotometric technique used to determine dissolved Fe
2+

 (aq), as indicated by the 

very low dissolved Fe
2+

(aq) measured in all experiments. However, the pH of the 
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reagents used to determine dissolved Fe
2+

(aq) was > 8, and at this pH aqueous FeS 

complexes do not dissociate (Luther et al., 1996). Assuming that solid phase FeS is not 

a major constituent of the natural sediment experiments, the determination of sulfide 

present as aqueous FeS during the experiments allows an estimation of the total amount 

of Fe(II) that has been solubilised during the reaction (i.e. Fe(II) as aqueous FeS plus 

dissolved Fe
2+

(aq)). Thus, from these experiments, both the total rate of Fe reduction and 

the total rate of Fe(II) dissolution can be calculated. 

 

 

Figure 4.14: Additional sulfide measured above the average starting sulfide 

concentration for sulfidation experiments with Umpqua River sediment (>1000μM) 
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reflecting the variable crystalline and mineralogical properties of an assemblage of 

Fe(III) oxides. Thus, for this study the reactive continuum approach of Postma (1993, 

Equation 4.3) is adopted (rather than initial rate theory described by Poulton, 2003) to 

ultimately characterise the rates at which Fe(III) reduction and Fe(II) dissolution occur 

for natural assemblages of Fe oxides, repeated below for reference. 

 

J/M0 = k’ (m/M0) 
γ
       (Eq. 4.3) 

 

Where J defines the overall rate of dissolution (moles s
-1

), M0 is the initial mass of 

Fe(III) oxide, m/M0 is the fraction of Fe(II) in solution in relation to initial mass of the 

undissolved mineral, k‟ is the rate constant (s
-1

) and γ is the rate order related to changes 

in the crystalline structure and mineralogy over time, within a heterogeneous system. 

 

Equation 4.3, however, relates to a reducing agent which exerts the same influence on 

the reaction regardless of concentration (i.e. for a reductant which is in excess; Postma, 

1993). From the derivation of the empirical rate formula reported by Poulton (2003: 

Equation 4.2), it is clear that sulfidation reaction rates are highly dependent on the 

concentration of the reductant dissolved sulfide, which has been extensively determined 

as exerting a fractional (0.5) order influence on reaction rates (Pyzik & Sommer, 1981; 

Canfield & Berner, 1987; Poulton, 2003). To confirm this for the present experiments, 

the initial rates of Fe(II) dissolution (FeS plus dissolved Fe
2+

(aq)) were determined for 

the three experiments performed with ferrihydrite. This gives Fe
2+

(aq)  dissolution rates 

of 1.2, 3.7 and 4.1 µM min
-1

 for experiments with 0.13, 0.45 and 0.7 g of ferrihydrite, 

respectively (Table 4.9). However, the initial starting concentration of a particular Fe 

oxide is well known to exert a first order effect on reaction rates (Pyzik & Sommer, 
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1981; Dos Santos Afonso et al., 1992; Peiffer et al., 1992; Yao & Millero, 1996; 

Poulton, 2003; Poulton et al., 2004), and so these reaction rates were normalized to a 

starting concentration of 0.7 g ferrihydrite, assuming a first order dependency on 

ferrihydrite concentration (Table 4.10). The logs of these normalized reaction rates are 

then plotted against a function of the logs of the initial sulfide concentrations in Figure 

4.15. The slope of the regression through these data points confirm a 0.5 reaction order 

with respect to dissolved sulfide concentration, and although only three data points are 

presented,  Figure 4.15 conforms to previously predicted models of fractional reaction 

orders described by Pyzik & Sommer (1981); Canfield & Berner (1987) and Poulton, 

(2003).  

 

 

Figure 4.15: Determination of a fractional order (0.5) with respect to the initial sulfide 

concentration required for reductive dissolution 
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data was performed to calculate rates that would occur with a dissolved sulfide 

concentration of 1000 μM. This is a somewhat arbitrary figure, but was chosen as it is a 

typical porewater concentration during anoxic diagenesis of organic-rich sediments, and 

is also in the middle of the range over which the experiments were performed, and 

hence potential errors in calculated reaction rates introduced through this normalization 

procedure are kept to a minimum (e.g. Canfield et al., 1992). 

Table 4.9: Parameters derived for reaction order determination (with respect to initial 

sulfide concentration) 

Ferrihydrite 

Sample 

Rate Fe(II) 

diss 

Rate 

corrected 

for initial 

Fe(III) 

Log R 

Initial 

S
2-

 

(µM) 

Log S
2-

 

Ferri 0.13 1.20 6.46 0.81 944 2.97 

Ferri 0.45 3.66 5.69 0.76 602 2.78 

Ferri 0.7 4.06 4.06 0.61 361 2.56 

 

As well as investigating the influence of initial reductant concentration on the rate of 

Fe(III) reductive dissolution, the mineral properties of individual Fe(III) oxides must be 

examined with respect to surface area available for interaction with dissolved sulfide 

and structural constraints which effect the reactivity of minerals. Figure 4.16a and 

Figure 4.16b show plots of Fe(II)/FeHR which overlap when the data are normalized to 

an initial sulfide concentration of 1000 µM, irrespective of the initial amount of 

ferrihydrite added to the reaction vessel (0.13-0.7g), confirming a first order 

dependency on Fe(III) concentration (and hence surface area) for individual minerals. 

These plots also show that within this system, the rate of Fe(III) reduction occurs almost 

twice as fast as Fe(II) dissolution from the mineral surface, over the initial period of 

sulfidation, highlighting that release of reduced Fe(II) from the oxide surface (i.e. 

dissolution) is a slow process relative to reduction (see also Pyzik & Sommer, 1981; 
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Poulton, 2003; Poulton et al., 2004). Figure 4.17 shows profiles of Fe(II)/FeHR for 

ferrihydrite, goethite and magnetite, which are known to react at different rates in the 

presence of dissolved sulfide. As described in Poulton et al., 2004; ferrihydrite reacts 

significantly faster than goethite and magnetite. 

a)  

b)  

Figure 4.16 Profile of Fe a) reduction of Fe(III) to Fe(II) and b) subsequent dissolution 

of Fe(II)aq for three synthetic ferrihydrite samples of different initial concentrations. 
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.  

 

 

a)  

b)  

Figure 4.17: Profile of Fe(III) oxide a) reduction of Fe(III)to Fe(II) and b) subsequent 

dissolution of Fe(II)aq of three synthetic Fe(III) oxide minerals varying in sulfide 

reactivity. 
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4.6.3.2 Determination of rate constant, K’ and γ 

A comparable model in which the rate of sulfide mediated reductive dissolution 

between pure synthetic minerals and natural Fe(III) oxides within sediment 

assemblages, is by the evaluation of the rate constant (k’) for each individual mineral. A 

evaluation of rate constants for synthetic minerals is compared with natural mineral 

assemblages to determine whether current reactivity schemes for synthetic minerals are 

in any way relevant in terms of the reactivity on natural mineral assemblages during 

diagenesis. The rate constant derived by Postma (1993) for Fe(III) oxide mineral 

reactivity within a sediment assemblage is related to an exponent (gamma, γ; Equation 

4.3) derived from measuring the rate of Fe reduction or dissolution of a mineral 

normalized to the initial Fe(III) concentration over the experimental timescale (-Log 

m/M0; Postma, 1993) After correcting for differences in sulfide concentration within 

solution (to 1000 μM), the ratio of Fe(II) reduced or dissolved in relation to the initial 

concentration of iron in solution was plotted as –Log R/M0 (an example of which is 

shown in Figure 4.18), allowing the determination of rate constant K‟ to be calculated 

from the negative log value of the slope of the regression line.  

 

Synthetic Fe(III) oxide minerals 

Table 4.10 details the rate equation parameters determined for sulfidation experiments 

with synthetic Fe(III) oxides. Data considered for goethite dissolution is not included in 

Table 4.10 as values were not considered robust under the current scheme of reactivity.  

In comparison with data reported by Postma (1993), Larsen & Postma, (2001) and 

Larsen et al., (2006), the values of gamma (γ) determined in Figures 4.18a and 4.18b 

are significantly higher than those previously reported. In determining the reactivity of 

Fe(III) oxides with ascorbic acid, gamma values reported by Postma et al. range 

between 1 and  2.5 for pure for synthetic minerals, and < 5 for Fe oxides observed 
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within natural sediment assemblages (also see Table 4.3). Table 4.10 derives gamma 

values during Fe-sulfidation experiments of between 27 and 98 during reduction; and 

remarkably, 19 to 242 during dissolution. These values increase with decreasing 

reactivity for both reductive and dissolution processes, only decreasing when surface 

area availability increases. The marked difference in gamma values during the reaction 

of synthetic Fe(III) oxides with sulfide, and those reported in reaction with ascorbate, is 

in large due to the mechanism and surface processes which occur after the reduction of 

Fe(III) oxides with dissolved sulfide. Reactive Fe(III) surface sites are inhibited by the 

slow detachment of Fe(II) during dissolution at near-neutral pH values (Poulton, 2003); 

and also by the precipitation of FeS species on the mineral surface. Determination of the 

rate constant K’ (observed in Figure 4.18a and 4.18b) indicates that in the reduction of 

Fe(III) to Fe(II) on a reactive mineral surface, k’ values for ferrihydrite decrease with 

increasing Fe(III) concentration, and also with decreasing reactivity. K‟ values for the 

reduction of Fe(III) in pure synthetic experiments decrease 4 orders of magnitude, from 

2 x 10
-1

 to 2.3 x 10
-5 

(s
-1

), with decreasing reactivity, in the order ferrihydrite > goethite 

> magnetite. The rate constant k‟ associated with the dissolution of Fe(II) from the 

reactive surface of synthetic Fe(III) minerals indicates that values determined for 

ferrihydrite  are similar for all concentrations (and hence, there is little influence on 

dissolution) with K values decreasing by two orders of magnitude with reactivity, 

between  2.1 x 10
-3

 to 1.2 x10
-5

 k
‟
. As expected, comparing reduction reactions with the 

process of Fe(II) dissolution shows rate constant k’ values for dissolution are at least 

two orders of magnitude lower than for reduction, with respect to the fastest reacting 

minerals (Table 4.10) which describes a faster process occurring on the mineral surface 

as Fe sites adsorb sulfide, inducing a change in redox state (Fe(III)-Fe(II)).  
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Using Minitab 15 to analyse the significance of a correlation (or fit) of 2 variables, 

thought to incur a linear relationship, Table 4.11 predicts for synthetic experiments a 

good linear correlation between –Log(R/M0) vs.-Log(m/M0) will be observed; and 

during reduction processes, all data produced from ferrihydrite, goethite and magnetite 

experiments is considered significant (at 95% confidence level), and a good fit of 

linearity using both Levenes Test of correlation and simplified F testing of 2 variables. 

During  dissolution processes however, statistically the data produced for ferrihydrite at 

higher surface areas (ferrihydrite 0.45g and 0.7g) are less likely to produce a  

statistically significant correlation as P values calculated with Levenes test are below 

the accepted level of confidence. This may be because when iron is released into 

solution from the mineral surface after reduction, it because readily available for further 

reactions (i.e. incorporation into FeS or oxidised) and therefore affects the 

concentrations of iron freely available in solution, especially from minerals with larger 

surface areas for reaction.  
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a)  

 

b)  

 

Figure 4.18: Derivation of rate constant K and gamma distribution (Postma, 1993) for 

synthetic Fe(III) minerals under experimental sulfidation during a) reductive processes 

b) dissolution 
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Table 4.10: Derivation of rate constant K for individual synthetic Fe(III) oxides 

  Reduction Dissolution 

Sample K’ (s
-1

) γ K’(s
-1

) γ 

Ferrihydrite 0.13g 2x10
-1

 37 2.1x10
-3

 54 

Ferrihydrite 0.45g 6x10
-2

 35 2.7 x10
-4

 29 

Ferrihydrite 0.7g 2x10
-2

 27 1.4x10
-4

 19 

Goethite 3.3x10
-4

 46 nd nd 

Magnetite 2.3x10
-5

 98 1.2x10
-5

 242 

 

 

Table 4.11: Collation of statistical data for synthetic mineral experiments: Comparison of linearity correlation F Test Vs Levenes Test 

Figure Name Slope  

R
2
 

Excel 

R
2
 

Minitab  Calculated P 

value (F test) 

Levenes Test of 

Correlation (P value) 

  Confidence   
Accept/Reject 

Null 

Hypothesis             (%)   

4.18a Ferri 0.13g y= 37x + 0.73 0.87 0.92 0.000 0.016 

 

98.4 

 

A 

 

 

Ferri 0.45g y= 35x + 1.35 0.88 0.88 0.000 0.030 

 

97 

 

A 

 

 

Ferri 0.7g y=27x + 2.33 0.69 0.56 0.000 0.052 

 

94.8 

 

A 

 

 

Goethite y=46x + 3.45 0.83 0.83 0.000 0.030 

 

97 

 

A 

 

 

Magnetite y=98x + 4.61 0.95 0.92 0.000 0.046 

 

95.4 

 

A 

 4.18b Ferri 0.13g y= 54x + 2.71 0.72 0.64 0.000 0.047 

 

95.3 

 

A 

 

 

Ferri 0.45g y= 29x + 3.76 0.41 0.21 0.000 0.099 

 

90.1 

 

R 

 

 

Ferri 0.7g y = 19x + 4.21 0.90 0.81 0.000 0.112 

 

88.8 

 

R 

   Magnetite y = 242x+ 4.89 0.92 0.91 0.000 0.012   98.8   A   
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Aarhus Bay 

Table 4.12 describes the values of K‟ and gamma derived from the iron sulfidation of 

two Aarhus Bay sediment sections. Figure 4.19a and 4.19b show γ values much closer 

to that reported by Postma et al, with values observed during reduction between 1-10, 

and 6-10 during dissolution.  

The rate constants calculated in the reduction of Fe(III) decrease down core  by  three 

orders of magnitude (1.2 x 10
-1

 to 2.3 x 10
-4

  s
-1

 between 0-1 cm and 17–19 cm 

respectively). This decrease is reflective of the changing Fe-mineralogy already 

characterised within Figure 4.5a, which describes a change in Fe oxide predominance in 

each sample, from FeOx1, highly reactive minerals within the uppermost core section to 

a consistent concentration of FeOx1 and FeOx2 sediments, heterogeneously mixed 

within the lower core section. This observation is reflected in the derived rate constant 

values of pure synthetic Fe(III) reactivity, which also propose ferrihydrite (an FeOx1 

mineral) to a significant contributor to the upper core section (comparing 1.2 x 10
-1

 0-1 

cm Aarhus Bay rate constant to ferrihydrite, 2x10
-1

). Within the lower core section, a 

comparison of the rate constant associated with Fe(III) reduction agree that a value of 

2.3x10
-4

 observed in Aarhus Bay sediments correlates to a value similar to highly 

crystalline, stable FeOx2 goethite (K‟red = 3.3x10
-4

), which was also characterised 

during solid phase speciation of the initial sediment sample (Figure 4.5a). The derived 

rate constant associated with dissolution processes in Aarhus Bay sediments reflect a 

two order of magnitude change in rate with depth (1.1x10
-3

 to 3.6x10
-5

; Table 4.12). In 

comparison with the rate constants of synthetic mineral Fe(II) dissolution, these values 

support the suggestion that ferrihydrite dominates the upper core as an FeOx1 mineral, 

with a slower reacting FeOx2 phase constraining reaction kinetics within the lower core 

section.  
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Umpqua River 

Table 4.12 also shows the calculated values of rate constant K‟ and gamma, associated 

with Fe(III) mineral reactivity in Umpqua River sediments. With respect to gamma 

values derived in Figures 4.20a and 4.20b, a value of 30 is reported for the uppermost 

sediment section (0-1 cm) before a sharp decline immediately with depth to give similar 

values of between 12-16 (ranging between 3-16cm depth). Gamma values reflecting 

dissolution processes in Umpqua River shelf sediments are consistent throughout the 

entire core section, between 7-10. The majority of these values are considered close to 

those which represent the reactivity of synthetic Fe(III) oxide kinetics, with very little 

influence from surface processes such as precipitated FeS.  

Rate constant values associated with sediment from Umpqua River shelf (Table 4.12) 

observe a sharp decrease in K value with depth during Fe(III) reduction (3.1 x 10
-1

 to 

1.8 x 10
-4

 between 0 - 16 cm respectively), becoming relatively constant in the lower 

section of the core (8-16 cm; Figure 4.20).  The minimal decrease of k‟ values at depth 

indicate only a slight change in mineralogy down core (characterised in Figure 4.8a), 

characterised predominatly by the slower reacting FeOx2 minerals. These values are 

associated with decreasing rate constant values of ferrihydrite > goethite > magnetite 

measured in Figure 4.18.  Rate constant values associated with dissolution slow 

marginally, between 1.6 x 10
-4

 and 4.1 x 10
-5 

s
-1

 over the entire core section. Values of 

this magnitude are associated with the dissolution of slower reacting minerals (goethite) 

(Table 4.12). The higher rate observed within the uppermost section (0-1 cm) may be 

due to the removal of highly abundant surface bound Fe(II)  (measured in Figure 4.8b) 

which detaches from the mineral surface upon sulfidation.  

Using Levenes Test to measure the significance of linear correlation of data in Figure 

4.19 and Figure 4.20, it is clear that unlike for synthetic experiments (Table 4.11) which 
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generally expressed a good linear relationship between -Log (R/M0) Vs. -Log (m/M0) 

(at 95% confidence level), correlation of P values from these factors for natural 

sediments are less likely to be significant (Table 4.13). Whilst P values from F-test 

calculations appear to be highly significant in terms of correlating the difference in 2 

variances, this would give a false result when recalculated using Levenes Test for 

correlation (Minitab15). Furthermore, the data associated with the Aarhus Bay sample 

set only contains n=3 samples over the depth 0-1cm. With caution this data must be 

interpreted, as this number of samples is too low to obtain a significant result with 

respect to determining linearity.  

There are a number of possibilities why synthetic model experiments produce better 

correlations in terms of kinetic rate determinations. There are less likely to be 

influenced by competing surface reactions which would affect mineral assemblages in 

sediments greatly, i.e. the affect of organic acids and thiols on reduction rates. Further 

experimental work is required to increase the significance of natural sediment data to 

produce great correlations in linear relationships, by removing the processes which 

overhelm reductive dissolution in sediments.  
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a)  

 

b)  

 

 

Figure 4.19: Derivation of rate constant K and gamma distribution (derived from 

Postma, 1993) for Aarhus Bay sediments under experimental sulfidation during a) 

reductive processes b) dissolution 
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a)  

b)  

 

Figure 4.20: Derivation of rate constant K and gamma distribution (Postma, 1993) for 

Umpqua River sediments under experimental sulfidation during a) reductive processes 

b) dissolution 
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Table 4.12: Derivation of rate constant K for natural Fe sediment assemblages: Aarhus Bay (AB) and Umpqua River (UR) Shelf sediments 

 

Reduction Dissolution 

Sample K’ (s
-1

) γ K’(s
-1

) γ 

AB 0-1 cm 1.2x10-1 10.55 1.1x10-3 9.75 

AB 17-19 cm 2.3x10-4 1.1 3.6x10-5 6.39 

UR 0-1cm 3.1x10-1 30.78 1.6x10-4 7.25 

UR 3-4 cm 1.4x10-3 14.81 2.4x10-5 7.59 

UR 8-9 cm 5.6x10-4 16.09 1.7x10-5 8.72 

UR 10-12 cm 6.6x10-5 12.49 4.1x10-5 10.02 

UR 14-16 cm 1.8x10-4 16.24 3.1x10-5 7.01 

 

Table 4.13: Collation of statistical data for natural sediment experiments: Comparison of linearity correlation F Test Vs Levenes Test 

Figure Name Slope  

R
2
 

Excel 

R
2
 

Minitab  Calculated P 

value (F test) 

Levenes Test of Correlation 

(P value) 

  Confidence   Accept/Reject 

Null 

Hypothesis             (%)   

4.19a 0-1cm y=10.55 + 0.85 0.72 0.71 0.000 0.232 
 

76.8 
 

R 
 

 
17-19cm y=1.10x + 3.61 0.38 0.38 0.227 0.225 

 
77.5 

 
R 

 
4.19b 0-1cm y= 9.75x + 2.87 0.92 0.92 0.001 0.071 

 
92.9 

 
A 

 

 
17-19cm y =4.56x+ 4.55 0.50 0.50 0.003 0.105 

 
89.5 

 
R 

 
4.20a 0-1cm y = 30.8 + 0.33 0.93 0.93 0.000 0.167 

 
83.3 

 
R 

 

 
3-4cm y = 14.48+ 2.67 0.83 0.83 0.000 0.025 

 
97.5 

 
A 

 

 
8-9cm y =16.09x + 3.07 0.80 0.81 0.000 0.054 

 
94.6 

 
A 

 

 
10-12cm y= 12.49+ 3.94       0.87 0.87 0.011 0.138 

 
86.2 

 
R 

 

 
14-16cm y = 16.24+ 3.61 0.96 0.96 0.001 0.011 

 
98.9 

 
A 

 
4.20b 0-1cm y= 7.25+ 3.62 0.95 0.95 0.000 0.001 

 
99.9 

 
A 

 

 
2-4cm y= 7.59x+4.48 0.80 0.80 0.000 0.030 

 
97 

 
A 

 

 
8-9cm y=8.72x+4.6 0.62 0.62 0.002 0.129 

 
87.1 

 
R 

 

 
10-12cm y=10.02x+4.20 0.97 0.97 0.000 0.035 

 
96.5 

 
A 

 
  14-16cm y=7.01x+4.38 0.95 0.95 0.000 0.007   99.3   A   
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The approach taken within this study to derive rate constants for iron mineral sulfidation 

reactions appears to be valid, with respect to comparing rate constants derived from 

pure mineral sulfidation for a range of different reacting minerals, with sediment 

assemblages characterised for their highly reactive Fe content. In comparison to 

previously reported data of Postma et al, referred to in Table 4.3, these values are also 

of similar magnitudes with respect to the rate of Fe mineral reactivity by a reducing 

agent, especially when referring to slower reacting minerals such as goethite and 

magnetite. An important difference to these systems is the formation of metal sulfide 

species during iron-sulfur reactivity, which does not occur in the ascorbate reducing 

process, and imparts a significant influence on the dissolution of Fe
2+

(aq) from the 

mineral surface. The rate constant associated with ferrihydrite sulfidation is also 3 

orders of magnitude faster than that occurring by ascorbate reaction, attributed to the 

rapid mechanism by which sulfide reacts on the highly reactive mineral surface.  

Figures 4.21 and 4.22 summarize the initial K value of both pure mineral reactivity and 

that of natural sediments undergoing sulfidation, by comparing the logarithm of 

unreacted Fe (- log m/Mo) with the logarithmic value of initial rate, R, normalized to 

initial FeHR concentration. 

Where the slope intercepts the y-axis, values of initial rate K are represented, with the 

slope of the line describing the exponential gamma of individual reactions, in relation to 

Equation 4.3. These plots show a good correlation between the initial rate constant of 

highly reactive minerals (ferrihydrite, goethite and magnetite) during both reduction and 

dissolution processes, with individual sediment cores which have been characterised 

during sequential extraction of highly reactive Fe phases, as a correlation between the 

the presence of similarly reacting minerals within each assemblage. Thus, one can be 

confident that the approach taken initially by Postma (1993) in describing the changing 
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reactivity within a Fe-rich sediment core (mediating ascorbic acid reactions) is akin to a 

reactive continuum process; and therefore can be used to describe similar processes of 

Fe morphology changes in sediments undergoing reductive dissolution mediated by 

dissolved sulfide. 
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Figure 4.21 Comparison of synthetic Fe(III) oxide reduction rates with the reactivity of natural sediments 

from a) Aarhus Bay b) Umpqua River. Block colours on the y-axis represent initial K values of 

Ferrihydrite, Goethite and Magnetite, whilst coloured dashed lines indicate gamma distribution of 

natural sediments fallingbetween synthetic K values. Here, values are presentative of containing 

predominantly ferrihydrite and goethite minerals, as FeOx1and FeOx2 classes for both Aarhus Bay and 

Umpqua River sediments (during reduction of FeIII to FeII).  
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Figure 4.22 Comparison of synthetic Fe(III) oxide dissolution rates with the reactivity of natural 

sediments from a) Aarhus Bay b) Umpqua River. Block colours on the y-axis represent initial K values of 

synthetic ferrihydrite and magnetite, whilst coloured dashed lines indicate gamma distribution of natural 

sediments within the range of ferrihydrite as FeOx1 for both Aarhus Bay and Umpqua River sediments 

(during dissolution of Fe(II) from the reactive mineral surface). 
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4.7 SUMMARY  

 An experimental sulfdation approach was considered to determine the kinetics of 

Fe(III) mineral reductive dissolution within a sediment assemblage, and also provide 

a description of highly reactive Fe(III) minerals compared to that defined by a 

recognised sequential extraction procedure. 

 A suite of synthetic Fe(III) minerals including ferrihydrite, goethite and magnetite; 

and two Fe-rich marine sediments (Umpqua River shelf and Aarhus Bay), were 

chosen to assess the rate at which sulfide mediated reductive dissolution occurs 

within pure synthetic minerals compared to heterogeneous sediment samples where 

the composition has been characterised in terms of highly reactive minerals classes 

(FeOx1, FeOx2, Femag).  

 Umpqua River Shelf sediments are defined as FeOx2 (goethite/hematite) rich 

throughout the entire core, with little change in Fe mineralogy downcore. Aarhus 

Bay sediments in comparison change dramatically over the 20cm core section, from 

being dominated by poorly crystalline FeOx1 phases (HFO, ferrihydrite, 

lepidocrocite) within the first 0-1 cm of the core (at surface), becoming highly 

ordered with depth, to observed abundant FeOx2-type minerals.  

 Experimentally derived rates of Fe(III) reduction are at least two orders of 

magnitude faster than of Fe(II)aq dissolution during detachment from an Fe(III) 

mineral surface. 

 Individual rate constant values derived from synthetic mineral experiments agree 

well with characterised sediment samples known to contain either predominantly 

FeOx1 or FeOx2 Fe mineral phases.  

 Values of K inferred by Fe(III) reduction range between 2x10
-1

 and 2.3 x10 
-5

 (s
-1

) 

for minerals decreasing in reactivity (ferrihydrite > goethite> magnetite), whilst 
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Fe(II)aq dissolution occurs between 2.1 x 10
-3

 and 1.2 x 10
-5

 (s
-1

). In comparison the 

range of K values expressed from the kinetics of sediment assemblage sulfidation 

covers a range between 1.2 x 10
-1 

and 6.6 x 10
-5

 (s
-1

) during reductive processes, 

alongside rate contants of 1x 10
-3

 and 4 x 10
-5

 (s
-1

) during dissolution.   

 Statistically, synthetic mineral experiments are of a good fit to a linear relationship 

(at 95% confidence level; Levenes test of correlation) with regards to determining 

constant and gamma values during both reductive and dissolution processes. 

However, experiments containing the sulfidation of Fe mineral assemblages often 

are rejected on the basis of significance of fit with linearity. This may be due to a 

number of natural intereferences which affect the reductive dissolution process 

mentioned above, i.e. influence of organic acids and thiol species, the formation of 

aqueous FeS during reaction.  

 Rates of iron reductive dissolution by sulfidation processes are similar to those 

determined using an ascorbic acid reductant, reported in Postma (1993) and Larsen 

et al., (2006), validating this method of kinetic application, which may be used to 

infer the rate and composition of Fe (III) oxide minerals within natural sediments 

found within different depositional environments.  
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5. THE EXPERIMENTAL DISSOLUTION OF IRON CARBONATE 

MINERALS WITHIN SULFIDIC ENVIRONMENTS 

 

5.1 INTRODUCTION 

5.1.1. Fe(II) carbonate minerals 

Whilst the sulfide mediated reductive dissolution of Fe(III) oxide minerals within 

sedimentary environments is the main focus overall within this thesis (due to the high 

abundance and reactivity of assemblages in near surface sediments; Pyzik & Sommer, 

1981; Dos Santos Afonso & Stumm, 1992; Peiffer et al., 1992; Poulton et al., 2004), it 

is important to understand the reactivity of other Fe bearing minerals which commonly 

occur in diagenetic systems, and the role they play in contributing to the 

biogeochemical cycling of Fe under changing redox conditions. Carbonates such as 

siderite (Fe
II
CO3) are fine grained, authigenic minerals found within fresh water, lake 

and marine sedimentary systems, with their presence indicative of reduced aquatic 

conditions (Berner, 1971; Mozely & Wersin, 1992). Investigations of recent Fe 

carbonate formations (Pye, 1981; Postma, 1982; Pye, 1984; Pye et al., 1990), have 

reported that siderite concretions commonly occur within Fe(II)-rich freshwater, 

lacustrine and brackish systems, with little evidence of extensive formation in modern 

marine settings (Pye, 1981).  

 

The conditions under which siderite forms are well characterised from previous 

investigations, which indicate that iron carbonates require specific conditions for 

precipitation within an anoxic water column or in near surface sediments close to the 

sediment-water interface (Berner, 1971; Pye, 1981; Postma, 1982). At these boundaries, 

the rate of iron reduction is significantly higher compared to rate of bacterial sulfate 
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reduction, and organic matter is abundantly available (Froelich, 1979; Berner, 1981). 

From studies of siderite formation in modern environments, FeCO3 occurs as a product 

of bacterial iron oxide reduction during organic matter respiration (Pye et al., 1990; 

Mortimer & Coleman, 1997; Mortimer et al., 1997). Where low rates of sulfate 

reduction dominate, iron mono-sulfides (FeS) may co-exist with Fe carbonate minerals 

(Pye et al., 1990), however where sulfide concentrations are elevated due to an increase 

in the production of bacterially produced sulfide, pyrite is usually the dominant final 

stable reduced Fe mineral formed (Pye, 1981; Postma, 1982). During diagenesis of 

modern sediments, the formation of siderite will therefore occur either within reducing 

environments above the zone of sulfate reduction, or beneath the zone of BSR where 

high organic carbon contents persist (Curtis et al., 1986; Pye et al, 1990; Mozely & 

Wersin, 1992).  

 

The geochemistry and structural composition of siderite concretions may also be 

indicative of the aqueous system from which they were formed (Raiswell & Fisher; 

2000). For example, the composition of siderite in freshwater basins differs vastly from 

that in sediments from marine environments (Mozley, 1989). Cation substitutions occur 

readily at the mineral surface where Fe may be easily exchanged with Ca and Mg in 

oxygenated seawater to create an Fe-poor carbonate mineral (pure FeCO3 < 90 % Fe; 

Curtis et al., 1986; Mozley, 1989; Pye, 1984; Mortimer & Coleman, 1997). This typical 

marine composition contrasts with commonly characterised freshwater siderite formed 

under reducing conditions (Mozley, 1989), where little cation substitution occurs, and 

Fe/Mn are the main substituted components of the outer layer lattice. Hence, the purity 

of siderite mineral composition acts as an indicator of the aquatic environment within 

which it was deposited. 
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5.1.2. The formation of siderite in ancient environments  

As discussed, only small quantities of siderite are assumed to precipitate within modern, 

oceanic settings due to the present oxygenated state of marine systems (with the 

exception of discrete concretions which may be formed at depth, beneath the zone of 

sulfate reduction; Pye et al., 1990). Instead siderite will form in environments where 

high concentrations of Fe(II) accumulate within low sulfate lakes or localised marsh-

like or brackish waters. However, these settings contrast with many ancient anoxic 

marine environments.  

 

Within the early rock record, banded iron formations (BIFs) were deposited during 

intermittent periods of the Archean and early Proterozoic eras (Holland, 1984; Klein & 

Beukes, 1989; Beukes et al., 1990), with high concentrations of siderite commonly 

observed. These BIFs were precipitated under deep ocean conditions which were 

anoxic, and consequently Fe(II)-rich (ferruginous; Canfield & Thamdrup (2009)). The 

average measured oxidation state of these iron formations is Fe
2.4+

(Klein & Beukes, 

1992), but macro, meso and micro banding (on a scale of m, cm, and mm thickness) of 

iron carbonates, oxides and silicates are common (Veizer et al., 1989; Kaufman et al., 

1990) corresponding to varying redox conditions. These ancient BIFs are observed in 

many parts of the modern world, including Western Australia (e.g. Brockman Iron 

Formation, Hammersely; Kaufman et al., 1990), South Africa (e.g. Kuruman Iron 

formation, Transvaal Supergroup; Klein & Beukes, 1989; Veizer et al., 1989; Beukes et 

al., 1990; Johnson et al., 2003), Northern America and Canada (e.g. Gunflint and 

Biwabik Iron Formations; Superior Group; Morey & Southwick, 1995; McSwiggen & 

Morey, 2008; Poulton et al., 2010), suggesting widespread deposition over a substantial 

timescale from the early Archean up until about 1.8 billion years ago. 
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Figure 5.1: Equations of siderite formation and reaction (Equations derived from :1Curtis et 

al., (1986); Braun, (1991); Duckworth & Martin, (2004): 2Johnson et al., (2003; 2008): 3Curtis et al., 

(1986); Postma, (1982); Johnson et al., (2008)) 

From previous studies of these formations, it is hypothesised that within ancient marine 

environments, iron carbonates may have formed from either biological or abiological 

sources. Previously investigated pathways of siderite formation are compared in Figure 

5.1.  Primary siderite precipitation may have occurred following Fe(II)aq release from 

hydrothermal sources (MOR‟s, seafloor weathering of basaltic formations derived from 

underwater volcanoes; Bekker et al., 2009) into anoxic deep waters, allowing Fe(II)aq 

concentrations to accumulate to sufficient saturation to promote precipitation of siderite 

via reaction with bacterially respired CO2; in particular, following upwelling of deep 

water Fe(II) onto continental slopes beneath reasonably productive surface waters 

(Figure 5.2; Klein & Beukes, 1989; Beukes et al., 1990).  

Siderite formation reactions
1
 

a. Fe
2+

 +  CO3
2-

 → FeCO3 

b. Fe
2+

 + HCO3
-
 → FeCO3 + H

+
 

c. Fe
2+

 + OH
-
 + HCO3- →FeCO3 + H2O 

d. Fe
2+

 + CO2 + H2O → FeCO3 + 2H
+
 

 

Respiration of organic carbon and iron reduction involved in siderite formation
2
: 

e. 4FeOOH + CH2O + 3H2CO3 → 4FeCO3 + 6H2O 

f. 8Fe(OH)3 + CH3COO
-
 → 8Fe

2+
 + 2HCO3

-
 + 15OH

-
 + 5H2O 

g. 2Fe2O3 + CH2O + 3H2O → 4Fe
2+

 + HCO3
-
 + 7OH  

 

Diagenetic reactions of siderite
3
:  

h. FeCO3 + H2O → Fe3O4 + 3CO2 + H2 

i. FeCO3 + Fe2O3 → Fe3O4 + CO2 
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After the evolution of oxygenic photosynthesis, at least 2.7 billion years ago (Ga) 

(Canfield, 2005), atmospheric oxygen was available within shallow surface waters (at 

the photic zone as eutrophic). At this time, oceanic Fe cycling was controlled by the 

upwelling of anoxic, ferruginous deep waters into oxic surface waters, where Fe(II)aq 

could be oxidised to form Fe(III)aq and precipitated to a variety of Fe(III) containing 

minerals (Figure 5.2; Klein & Beukes, 1989) including ferrihydrite, hematite and 

magnetite. These minerals could then be further reduced, during diagenesis at the redox 

boundary, via the mechanisms outlined in Figure 5.1 to produce Fe(II) that was 

subsequently available for siderite formation.   

 

 

Figure 5.2: Model of iron formation deposition within a stratified ocean (Klein & 

Beukes, 1989). 

 

Until recently, BIFs were considered the predominant rock type for significant 

concentrations of siderite to accumulate. With the development of new extraction 
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techniques which specifically evaluate siderite concentrations in ancient anoxic shales 

(Poulton & Canfield, 2005), it has become increasingly apparent that siderite formed an 

important component of fine-grained marine rocks throughout the Precambrian, from 

the Archean (Reinhard et al., 2009; Kendall et al., 2010), through the Paleoproterozoic 

(Poulton et al., 2004; 2010), to the late Neoproterozoic (Canfield et al., 2008; Johnston 

et al., 2010). High concentrations of siderite in marine shales during this period were 

promoted by low marine sulfate concentrations (Habicht et al., 2002; Canfield, 2005),  

which created conditions favourable for freshly precipitated Fe (oxyhydr)oxide 

reduction compared to sulfate reduction during diagenesis. It remains to be seen 

whether Phanerozoic anoxic events also produced significant concentrations of siderite, 

with recent data (Maerz et al., 2008) suggesting that this may have be the case, caused 

by rapid redox cycling between euxinic and ferruginous conditions. 
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5.2 RESEARCH AIMS 

The above discussion highlights siderite as an important component of marine 

sediments throughout significant periods of Earth history. Studies utilizing Fe speciation 

have assumed that Fe carbonates are highly reactive towards dissolved sulfide during 

diagenesis, and hence have classed this mineral as part of the highly reactive Fe pool. 

This has major implications for the reconstruction of paleodepositional redox 

conditions, but to date, no study has evaluated the kinetics of this reaction to determine 

the reactivity of siderite. Thus the purpose of this chapter is to investigate the rate and 

mechanism of Fe(II) carbonate dissolution within sulfidic environments via iron 

sulfidation experiments using synthetic FeCO3 minerals, similar to those performed for 

Fe(III) oxide reductive dissolution.   

 

The main objectives of this chapter are to:  

1) Define a reaction mechanism for Fe(II) carbonate dissolution mediated by dissolved 

sulfide. 

2) Determine the rate of Fe(II) dissolution during the sulfidation of siderite. 

3) Compare the effects of pH on Fe(II) carbonate reactivity. 

4) Discuss the incorporation of Fe carbonate reactivity into the Fe reaction scheme of 

Poulton et al. (2004). 
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5.3 METHODS 

5.3.1 Materials 

In order to synthesise fully reduced siderite minerals, strictly anoxic experimental 

conditions were required to avoid surface oxidation of iron (II) carbonate species. 

Several measures were taken to ensure oxygen was fully evacuated from the reaction 

vessel within which mineral precipitation occurred. The air-tight 1L vessel was sealed 

with vacuum grease and filled to capacity to minimise headspace within which oxygen 

could be trapped or leaked. The vessel, which contained 0.5 M FeCl2.4H2O in 1.5L 

DIW was purged for a minimum of two hours with ultrapure-N2(g); with reagent 

solutions (0.5M Na2HCO3) deoxygenated for approximately one hour prior to being 

added dropwise into the vessel; synthesised according to the method of Poulton & 

Canfield (2005).  

 

Figure 5.3: XRD pattern for (a) synthetic crystalline siderite comparing peak 

positioning and abundance with (b) internal library minerals 
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A light green precipitate was formed, which is consistent with pure iron carbonate 

synthesised during previous investigations (Jensen et al., 2002). In order to avoid 

oxidation, samples were freeze-dried under vacuum, purged with N2(g) and then 

immediately stored at -80°C. Precipitation of crystalline siderite occurred over 

approximately 8 hours during which time all reagents were subjected to continuous 

deoxygenation. X-ray diffraction analysis (XRD) was used to characterise the siderite 

minerals, in reference to an internal library standard, with the observed plots shown in 

Figure 5.3. The XRD traces did not show any evidence of oxidation to other minerals, 

impurities within the crystalline structure or the formation of Fe(III)/Fe(II) mineral 

structures such as green rust. The surface area of crystalline synthetic samples was 

measured for 1g of siderite by multi-point BET surface analysis as 11.60 m
2
/g (See 

Methodology Chapter 3.1). During sulfidation experiments, due to the highly unstable 

nature of siderite under oxic conditions, any oxidised material on the reactive surface 

layer of the mineral would be instantaneously reduced to Fe(II) on the addition of 

dissolved sulfide within the vessel. In order to avoid this occurrence, siderite 

experiments were always conducted under a constant flow of UPN2. 

 

5.3.2 Natural crystalline siderite 

In addition to the experimental sulfidation of synthetic Fe carbonates, a sample of 

siderite from the 1.88 Ga Biwabik Iron Formation (Animikie Group, Minnesota, USA) 

was subjected to sulfidation under similar conditions. The sample was obtained by 

drilling a siderite-rich layer of the BIF and has previously been used to evaluate 

chemical extraction techniques for crystalline siderite (Poulton & Canfield, 2005). It is 

noted that this sample likely contains an oxidised surface mineral layer due to the 

sample being stored under normal oxygenated conditions.  
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5.3.3 Experimental Parameters 

Initial conditions for the iron sulfidation experiments described in this chapter are 

referred to in Table 5.1.  

 

Table 5.1 Initial conditions for iron sulfidation experiments 

Experiment 

Mineral 

Concentration 

(g L
-1

) 

Surface 

Area            

(m
2
 L

-1
) 

Initial 

S
2-

 

(µM) 

pH 

1 0.098 1.113 839 7.44 

2 0.101 1.172 401 7.35 

3 0.099 1.148 165 7.38 

4 0.100 1.160 637 7.45 

5 0.100 1.160 69 7.30 

6 0.100 1.160 268 7.40 

7 0.100 1.160 431 7.31 

8 0.100 1.160 575 7.48 

9 0.100 1.160 251 7.43 

10 0.195 2.262 401 7.40 

11 0.250 2.900 399 7.40 

12 0.050 0.580 346 7.31 

13 0.200 2.320 388 7.30 

14 0.350 4.060 397 7.25 

15 0.150 1.740 390 7.44 

16 0.075 0.870 455 7.50 

17 0.225 2.610 311 7.48 

18 0.100 1.160 451 6.50 

19 0.100 1.160 498 8.50 

20 0.100 - 1236 7.50 

     

* Experiments 18 and 19 represent sulfidation of synthetic FeCO3 under changing pH conditions; 

Experiment 20 indicates the use of a natural siderite sediment sample, total iron wt = 22.4% corrected for 

oxidised Fe via dithionite extraction (Poulton & Canfield, 2005) 
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In order to determine the influence of surface area associated with the initial 

concentration of mineral Fe(II), and also the initial concentration of dissolved sulfide in 

solution, a number of experiments were conducted which varied these conditions while 

maintaining other parameters constant, via the iron sulfidation procedure detailed in 

Methodology Chapter 3.3. As with Poulton (2003) and Poulton et al. (2004), the initial 

sulfide concentration was estimated via regression analysis of the initial linear phase of 

dissolved sulfide removal, to account for any oxidation of dissolved sulfide that may 

occur before and during addition of the siderite to the reaction vessel, and to account for 

any reaction of dissolved sulfide with minor amounts of oxidised surface Fe(III) 

potentially produced as the mineral was introduced to the reaction vessel. To maintain 

experimental pH either a borate buffer or known concentration of dilute NaOH was 

added to solution prior to sulfidation. 

  

5.3.4 Siderite blanks - the effect of varying pH 

To determine the magnitude of the synthetic siderite mineral dissolution under an 

aqueous, but non sulfidic system, an experiment was devised to measure Fe
2+

(aq) 

concentration over 60 minutes, with a known concentration of FeCO3 under anoxic 

DIW conditions. The results observed from this reaction indicate that < 15 μM of 

Fe
2+

(aq) are measured in solution over one hour, under neutral conditions (pH 7.5), as 

shown in Figure 5.4. From these measurements Fe
2+

(aq) is naturally released into an 

aquatic solution at 4 μM/min, without the aid of a catalyst such as dissolved sulfide. 

Figure 5.4 also compares the dissolution of Fe(II) from carbonate surfaces under more 

acidic (pH 6.5) and alkaline conditions (pH 8.5). Under neutral conditions, which the 

majority of experiments within this study were conducted, very little Fe(II) is naturally 

dissolved into anoxic, nonsulfidic solutions in comparison with both acidic and alkaline 
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aquatic environments. This interpretation reflects the results of previous studies which 

concentrated on the dissolution of carbonate species (including iron carbonates) within 

non sulfidic solutions (e.g. Bruno et al., 1992; Duckworth & Martin, 2005), which 

investigate the speciation of carbonate species from the mineral surface under 

conditions of varying pH. These studies investigate both proton promoted and water 

promoted dissolution of Fe and carbonate species under oxic and anoxic conditions. The 

concentration of Fe(II) under alkaline conditions produces a suprising result and the 

reasons behind these findings are unclear. Measuring the dissolved carbonate content of 

anoxic solutions may begin to answer why, at pH 8.5, an increased concentratrion of 

Fe(II) is measured (in comparison to in neutral solutions.) However, from these 

findings, proton-promoted dissolution of the siderite does not appreciably affect the 

calculation of the much faster dissolution rates observed in the presence of dissolved 

sulfide (see below). 

 

 

 

Figure 5.4: Dissolution of 0.1g siderite over pH range 6.5-8.5 in deionised water 
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5.4 RESULTS 

5.4.1 Chemical Speciation 

For the purposes of experimental analysis, total Fe(II) dissolution (Fe(II)t) includes the 

measurement of Fe(II) associated with FeS, plus dissolved Fe
2+

(aq). Figure 5.5 displays a 

variety of typical speciation plots for the sulfide-promoted dissolution of siderite under 

varying initial experimental conditions (Table 5.1). At circumneutral pH, at which these 

experiments were conducted (~ pH 7.3 - 7.5), very little Fe
2+

(aq) is observed in solution 

and the majority of Fe(II) released from the siderite mineral surface is present as FeS(s). 

During individual experiments (n = 17), total Fe(II) dissolution increases and FeS forms 

rapidly over the initial period of sulfidation, before slowing with time as dissolved 

sulfide is removed from solution. Plots for nine experiments with similar initial Fe(II) 

concentrations (~0.1g) were performed, whilst varying initial sulfide added to the vessel 

(69-839 μM). Within the first ten minutes of sulfidation, FeS accounts for between 80- 

100% of the total Fe(II) in solution, indicating that FeS is forming directly in solution. 

The proportion of dissolved Fe(II) increases after this point in experiments where 

dissolved sulfide is at low concentrations, potentially due to the lack of dissolved 

sulphide left to produce solid phase FeS (see reaction mechanism and discussion 

below). A second batch of experiments (n = 8) were conducted to compare the effects of 

changing FeCO3 surface area on the rate of Fe(II) dissolution, using an approximate 

initial dissolved sulfide concentration of 400 µM. In all cases, the amount of dissolved 

sulfide consumed during the reaction was close to the amount of FeS formed, but a 

slight overall loss of sulfide is observed, which may reflect oxidation of some of the 

dissolved sulfide during the reaction, potentially due to reaction with oxidised mineral 

surface (Fe(III)) produced during introduction of the siderite to the reaction vessel. 
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         Figure 5.5: Dissolution of Fe(II) via iron sulfidation. Initial conditions a) 0.098g FeCO3, 839 μM 

S
2-,

 pH 7.44 b) 0.101g FeCO3, 401 μM  S
2-

, pH 7.35, c) 0.195g FeCO3, 401 μM S
2-

, pH 7.4, d) 

0.150g FeCO3, 390 μM S
2-

, pH 7.4 

 

Alternatively, this may be a consequence of the difficulty in accurately extracting solid 

particles from the reaction vessel, a problem which becomes larger as the reaction 

progresses and bigger particles are formed which sink to the bottom of the reaction 

vessel. Nevertheless, this slight mass balance discrepency with regard to total S, the 
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differences are low and do not signficantly affect quantification of the overall reaction 

rates from the total Fe(II) profiles (see Figures 5.6 and 5.7). 

 

5.4.1.1 Fe(II) dissolution 

In order to determine the initial rates of reaction, the Fe(II) dissolution data are only 

considered over the initial linear phase of dissolution (see Poulton, 2003; Poulton et al., 

2004). The measurement of total Fe(II) released from the siderite (Fe
2+

(aq) + FeS) for 

0.1g synthetic siderite material at pH 7.5 is shown in Figure 5.6, which compares 

experiments with varying initial concentrations of dissolved
 
sulfide (mostly as HS

-
 

under experimental pH). For 17 experiments conducted, dissolved Fe(II) accounted for 

only 10 - 20% of total Fe(II) released from the siderite, indicating the majority of Fe(II) 

is present as FeS(s). The general trend observed in Figure 5.6 describes an initial linear 

relationship between Fe
2+

(aq) dissolution and time, the rate of which increases with 

increasing initial sulfide concentration in solution. This indicates a heterogeneous 

reaction, following a zero order rate law over the initial period of reaction, and can be 

used to classify the rate at which Fe(II) dissolution occurs. An increase in Fe(II) 

dissolution rate is also observed with increasing surface area (Figure 5.7), suggesting a 

surface area control on rates of Fe(II) dissolution (as discussed within Poulton, 2003; 

Poulton et al., 2004). Notably, a marked slowing of rate is observed with increasing 

concentrations of dissolved sulfide when concentrations appear to be in excess (> 500 

μM), an important consideration within natural systems. Table 5.2 indicates that 

statistically, all data represented by Figures 5.6 and 5.7 provide a good linear correlation 

between Fe(II) concentration and time (hence, above 95% confidence level). 
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Figure 5.6: Total Fe(II) dissolution of siderite pH 7.5; for iron sulfidation experiments 

conducted at vary initial sulfide concentration (µM) (n.b. corrected for Fe carbonate 

dissolution under non-sulfidic conditions). 

 

 

Figure 5.7: Total Fe(II) dissolution measured with varying initial FeCO3 
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5.4.2 Dissolution of BIF stable siderite: Bilbawik Formation 

In order to compare the experimental data collected for synthetic siderite dissolution 

with natural siderite, a sample of crystalline siderite from the Biwabik Iron Formation 

(N. America) was selected for iron sulfidation, the experimental conditions of which are 

described in Table 5.1 of this chapter. As with Chapter 4, a pronounced difficulty was 

observed in measuring FeS from natural samples, however, concentrations of total 

Fe(II) released from the mineral were measurable, allowing the rate of siderite 

dissolution to be determined (Figure 5.8). The rate of Fe(II) dissolution from the 

Biwabik iron carbonate samples is significantly lower than for synthetic minerals, at 

less than 1 μM min
-1

. Using Levenes Test of correlation (Table 5.2), the relationship 

between total Fe(II) and time for the sulfidation of Biwabik sediment sample can be 

determined highly significant, above 95% confidence level.  

 

Figure 5.8: Speciation plot for the sulfidation of a natural siderite sample 
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Table 5.2: Collation of statisitical data representing the dissolution rates of FeCO3 during sulfidation: Experimental and Natural sediment 

studies. 

Figure Name Slope  R
2
 Excel R

2
 Minitab  Calculated P 

value (F test) 

Levenes Test of 

Correlation (P value) 

  Confidence   Accept/Reject 

Null Hypothesis             (%)   

            5.6 69 y=2.85x+38.13 0.94 0.97 0.000 0.049 
 

95.1 
 

A 
 

 

401 y=10.78x +40.73 0.97 0.97 0.000 0.049 

 

95.1 

 

A 

 

 
839 y=11.42x+72.78 0.97 0.97 0.000 0.033 

 
96.7 

 
A 

 5.7 0.05 y=6.07X+20.21 0.88 89 0.090 0.005 
 

99.5 
 

A 
 

 

0.15 y=16.27X+17.39 0.95 95 0.000 0.01 

 

99 

 

A 

 

 
0.25 y=22.25X+57.23 0.82 0.93 0.001 0.065 

 
93.5 

 
A 

 5.8 Biwabik sediment  y=0.13x + 18.40 0.79 0.79 0.000 0.001   99.9   A   
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5.5 DISCUSSION 

5.5.1. Mechanism of siderite dissolution 

The exact reaction mechanism for the sulfidation of siderite can not be characterised 

experimentally, however, reduced sulfur species in solution are hypothesised to undergo 

a direct substitution reaction with carbonate at the mineral surface to form FeS(s). It is 

proposed that the surface controlled reaction may proceed via two steps:  

 

Fe
II

CO3 + HS
-
 ↔ >Fe

II
S + HCO3

-
      (Eq.5.1) 

Fe
II

S + H
+ ↔ Fe

2+
 + HS

-
       (Eq.5.2) 

       

Equations 5.1 - 5.2 reveal the bond between the reduced Fe atom and the carbonate is 

broken as substitution of FeS occurs, freeing a bicarbonate species into solution. The 

resulting product is energetically unstable with regards to the mineral surface, and 

allows detachment of Fe(II)
 
from the outer electron surface. FeS(s) formation then 

occurs (as described in Equation 5.2; Poulton 2003) as the dominant product of iron 

carbonate dissolution, providing dissolved sulfide remains available.  
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5.5.2 Determination of the Rate Equation 

The reactivity of siderite, defined by Fe(II) dissolution kinetics (i.e. FeS plus dissolved 

Fe
2+

), is dependent upon surface-controlled processes (as with the reductive dissolution 

of Fe(III) oxide minerals), the rate of which is influenced by pH, dissolved sulfide 

concentration and the mineral surface area available for reactivity. Within this study it is 

suggested that the rate of dissolution can be determined by applying initial rate kinetics, 

previously applied to other Fe minerals (e.g. Pyzik & Sommer, 1981; Poulton et al., 

2002, Poulton, 2003; Yao & Millero, 1996) via the rate equation:   

 

  RFediss = kFediss (H2St =0)
a
 A

b                         (Eq. 5.3) 

 

where R represents the rate of Fe(II) dissolution (d(Fe(II)diss/dt); in M min
-1

), (H2St=0) is 

the initial concentration of dissolved sulfide (M L
-1

) which is dependent on a reaction 

order (a); and A reflects the surface area of initial Fe(II) mineral in reaction (m
2
 g

-1
). 

KFediss defines the rate constant for siderite at pH 7.5.  

 

The rate equation (Equation 5.3) is based on experimental kinetic studies of reductive 

dissolution for a range of synthetic iron oxide minerals with dissolved sulfide (Pyzik & 

Sommer, 1981; Dos Santos Afonso & Stumm (1992); Poulton (2003); See Chapter 4). It 

is important to note that within these previous studies, there is some disagreement over 

the influence that the initial concentration of dissolved sulfide has on the rate of Fe(II) 

dissolution, corresponding to the reaction order a, in Equation 5.3 (i.e.Dos Santos 

Afonso & Stumm, 1992; Peiffer et al., 1992 and Yao &Millero 1996 maintain a 1
st
 

order relationship Vs. Pyzik & Sommer, 1981; Canfield & Berner, 1987; Poulton, 2003 

who describe a fractional order). Previous to this investigation, there have also been no 

experimental studies relating to the rate of FeCO3 mineral dissolution catalysed by 
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dissolved sulfide, and therefore the reaction co-efficients associated with a and b in 

Equation 5.4 are required to be determined experimentally.  

Reaction orders are measured for Fe carbonate minerals by calculating the logarithmic 

values associated with initial reaction rates determined at various initial sulfide and 

surface area concentrations. Table 5.3 shows the influence of varying inital sulfide 

concentrations on measured rates of Fe(II) dissolution. Figure 5.9 indicates a fractional 

order of 0.5 for coefficient a, with regard to the influence of dissolved sulfide 

concentration on siderite dissolution, for data obtained with constant initial siderite 

concentrations (approximately 0.1g).  

With reference to varying initial siderite concentrations (and therefore surface area 

measurements), coefficient b was determined via the regression on a logarithmic plot of 

data from experiments with varying initial surface areas (Table 5.4; initial sulfide 

average = 386 μM). Figure 5.10 indicates that a reaction order of 1 can be determined 

from the logarithmic plots of Fe(II) dissolution rate vs. surface area. After the 

determination of coefficients a and b (which for siderite are identical to those 

determined for the major Fe (oxyhydr)oxide minerals; Poulton, 2003; Poulton et al., 

2004), the value of rate constant KFediss can then be calculated for individual 

experiments (Table 5.4), with an average value of kFe diss = 3.6 x 10
-4

 ± 4.6 x 10
-5

 (in 

mol
0.5

 l
0.5

 m
2
 min

-1
). These values are consistent with values obtained for the sulfidation 

of Fe(III) oxides and are therefore valid for Fe(II) dissolution of FeCO3.
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Figure 5.9: Determination of a 0.5 reaction order from logarithmic plots of total dissolution rate and initial sulfide concentration. 

Figure 5.10: Logarithmic plot of total Fe(II) dissolution and surface area, observing a reaction order of 1 dependency on surface area. 
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Table 5.3: Values of logarithmic Fe(II) dissolution rate with varying initial 

dissolved sulfide and Fe(II) surface area (pH 7.3-7.5) 

Experiment 

Initial  H2S 

 (μM) 

Rate of Fe (II) 

dissolution 

(μM/min) 

Log initial 

H2S 

Log Fe(II) 

dissolution 

1 839 11.43 2.924 1.058 

2 401 9.24 2.603 0.966 

3 165 5.24 2.217 0.719 

4 637 10.87 2.804 1.036 

5 69 3.07 1.839 0.487 

6 268 6.94 2.428 0.841 

7 431 7.50 2.634 0.875 

8 575 9.68 2.760 0.986 

9 251 7.72 2.400 0.888 

 

Experiment 

Initial Surf. A 

(m
2
/g) 

Rate of Fe 

dissolution 

(μM/min) 

Log 

 Surf A. 

Log Fe(II) 

dissolution 

10 1.189 9.24 0.075 0.966 

11 2.262 16.99 0.354 1.230 

12 2.900 23.80 0.462 1.377 

13 0.580 2.99 -0.237 0.476 

14 4.060 25.62 0.609 1.409 

15 1.740 15.35 0.241 1.186 

16 0.870 6.59 -0.060 0.819 

17 2.610 16.97 0.417 1.230 
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Table 5.4: Determination of rate constant k Fe diss for individual experiments, associated with initial reactant parameters and rate of 

Fe(II) dissolution 

Experiment 

Initial  

H2S 

(μM) 

Inital 

Surf.A 

(m
2
 g

-1
) 

Rate Fe(II) 

dissolution 

(Mol min
-1

) 

KFediss Surf A 

(Mol
0.5 

L
0.5 

m
-2

 min
-1

) 

KFediss Fe(II) 

(Mol
0.5 

L
0.5 

min
-1

) 

1 839 1.131 11.43 0.000349 0.932 

2 401 1.189 9.24 0.000388 1.058 

3 165 1.143 5.24 0.000357 0.954 

4 637 1.160 10.87 0.000371 0.997 

5 69 1.160 3.07 0.000319 0.856 

6 268 1.160 6.94 0.000365 0.981 

7 431 1.160 7.50 0.000311 0.836 

8 575 1.160 9.68 0.000348 0.934 

9 251 1.160 7.72 0.000420 1.128 

10 401 2.260 9.24 0.000375 1.007 

11 399 2.900 16.99 0.000411 1.103 

12 346 0.580 23.80 0.000277 0.743 

13 388 2.320 2.99 0.000373 1.003 

14 397 4.060 25.62 0.000317 0.850 

15 390 1.740 15.35 0.000447 1.200 

16 455 0.870 6.59 0.000355 0.954 

17 311 2.610 16.97 0.000285 0.764 
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5.5.3 Effect of pH 

The rate of siderite dissolution is also dependent on pH. Figure 5.11 shows that the rate 

of Fe
2+

(aq) dissolution varies substantially with changing pH, due to the reaction of 

carbonate species under weakly acidic, neutral and alkaline conditions. Plots in Figure 

5.11 have been corrected for the effect of dissolution of Fe
2+

 as pH varies under non 

sulfidic conditions. It is important to note that the rate of reaction is calculated from t=1 

mins, as with sulfidic experiments. This will allow the pre-equilibirum reaction 

described by Poulton (2003) to be accounted for, meaning surface bound reactions not 

associated with the reductive dissolution process (and which are difficult to measure) 

can be excluded for the determination of rate. Under weakly acidic conditions (pH 6.5) 

the rate of dissolution of Fe(II) is fastest (Figure 5.11), due to the availability of H
+
 ions 

to protonate the mineral surface, weakening Fe-C-O bonds, and rapidly allowing the 

detachment of FeS from the outer surface into solution. Table 5.6 describes the 

confidence level at which the linear relationship of Fe(II) concentration Vs. time 

operates. Only dissolution at pH 7.5 is accepted in terms of linearity above the 95% 

confidence interval and would describe the fit of the linear line as significant. At pH 6, 

only three points of data are included in the statistical calucluation, a sample number too 

low to accuarate predict the significance of the linear fit. At pH 8,5 the assumption that 

a linear relationship  is observed is rejected as the observed P value corresponds to only 

11% correlation to the linear line.  
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Figure 5.11: Fe(II) dissolution; 0.1g, 500µM initial sulfide, values corrected for Fe(II) 

dissolution under non sulfidic conditions (see Figure 5.4)
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Table 5.5: Determination of rate constant k’ for siderite dissolution experiments over pH range 6.5-8.5 (in terms of both surface area and 

Fe mineral concentration) 

Experimental 

pH 

Initial  

H2S 

(μM) 

Initial  

Surf A. 

(m
2
 g

-1
) 

Rate of Fe 

dissolution 

(M min
-1

) 

KFediss Surf A 

(Mol
0.5 

L
0.5 

m
-2

 min
-1

) 

KFediss Fe(II) 

(Mol
0.5 

L
0.5 

min
-1

) 

6.5 336.52 1.189 11.24 0.000525 1.418 

7.5 431.00 1.189 7.52 0.000311 0.836 

8.5 498.10 1.189 0.87 0.000033 0.090 

 

Table 5.6: Collated statistical data of pH influencing Fe(II) dissolution experiments: F Test Vs Levenes Test 

Figure Name Slope  R
2
 Excel R

2
 Minitab  

Calculated P 

value (F test) 

Levenes Test of 

Correlation (P 

value) 

  Confidence   
Accept/Reject 

Null Hypothesis             (%)   

5.11 pH 6.5 y=13.60x+86.65 0.9993 0.999 0.011 0.14 
 

86 
 

R 
 

 

pH 7.5 y=6.3x+76.84 0.92 0.92 0.001 0.033 

 

96.7 

 

A 

   pH 8.5 y=0.51x+22.63 0.23 0.23 0.908 0.886   11.4   R   
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5.5.4. The Reactivity of Iron Minerals  

The reaction rates with which Fe(III) oxide minerals react with dissolved sulfide in 

solution have been characterised experimentally in a variety of studies (Canfield et al., 

1992; Postma, 1993; Raiswell et al., 1994; Poulton et al., 2004; Pedersen et al., 2006). 

Extrapolating the linear rate at which dissolution occurs between pH 6.5 to 8.5, the rate 

constant KFediss for each experiment can be determined (Table 5.5), and are found to 

increase with decreasing pH over similar experimental conditions (0.1g siderite, initial 

sulfide = 500μM). Thus pH has a significant effect on the reactivity of siderite towards 

dissolved sulfide.  

 

Table 5.7: Comparison of rate constant KFediss values: Iron Carbonates and Oxides 

Mineral 

 

KFediss 

(Initial solid phase 

Fe; μM) 

 

KFediss 

(SA;  m
2
g

-1
) 

   Siderite 9.6 x10
-1

 3.6 x10
-4

 

   

HFO 4.4 4.3-8.6 x 10
-6

 

Lepidocrocite 3.4 x10
-2

 6.1 x10
-6

 

Goethite 2.4x10
-4

 7.3 x 10
-8

 

Magnetite 3.2 x10
-4

 1.0 x10
-6

 

Hematite 8.9 x10
-5

 4.2 x 10
-7

 

 

 

These investigations are of good agreement with respect to the order of reactivity, from 

poorly crystalline minerals with unstable structures and large surface areas allowing 
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rapid reaction with dissolved sulfide (HFO, ferrihydrite, lepidocrocite), to highly 

crystalline, stable minerals such as goethite, magnetite and hematite with smaller 

surface areas for reaction. To compare the reactivity of Fe(II) carbonates with 

commonly observed Fe(III) oxide minerals, the rate constant KFe defined by the surface 

area of Fe mineral in solution was also converted to a rate constant KFe derived as a 

function of initial concentration of Fe(II) in the reaction (Table 5.7).  

 

The reactivity of siderite falls between hydrous ferric oxide and lepidocrocite, but due to 

the low surface area of siderite, it is actually the most reactive mineral when considered 

in terms of this parameter. It is also useful to determine the half lives of the Fe minerals 

towards dissolved sulfide (Equation 5.4): 

 

Half life (t1/2) : ln (2) / k      (Eq. 5.4) 

 

Using Equation 5.4, the values reported in Table 5.8 reveal that the half life of pure 

synthetic crystalline siderite is 22 minutes (where KFediss is determined using initial 

Fe(II) concentration values) which places the reactivity of iron carbonate between 

amorphous HFO and 2-line ferrihydrite in the reactivity scheme of Poulton et al. (2004). 

This order reflects iron carbonate minerals inclusion as a mineral of high reactivity with 

regard to dissolved sulfide.  It is important to note the difference in mineral structure, 

surface area and dissolution reaction compared to other iron oxides when placing 

siderite alongside HFO and ferrihydrite. Poulton et al., 2004 refer to HFO as a poorly 

crystalline or amorphous iron oxide mineral with a significantly larger surface area 
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(~300-600 m
2
g

-1
) than siderite (11.6 m

2
g

-1
), which is closer in terms of available surface 

area, to more highly crystalline, slower reacting Fe(III) minerals. 

 

Table 5.8: Reactivity of iron bearing minerals catalysed by 1000μM dissolved 

sulfide pH 7.5 

 

Mineral t
1/2

  

Freshly precipitated HFO 5.0 mins 

CRYSTALLINE SIDERITE 22.0 mins 

2-line ferrihydrite 12.3 h 

Lepidocrocite 10.9 h 

Goethite 63 days 

Magnetite 72 days 

Hematite 182 days 

Reactive silicates 10
5
-10

6
 yr 

 

 

5.5.5. Application to natural environments: Rate of sulfide-mediated dissolution of 

siderite from the Biwabik Iron Formation 

In order to infer the rate of dissolution of Fe(II)aq from siderite minerals within ancient 

anoxic environments, a sample of naturally precipitated FeCO3 from the Biwabik Iron 

Formation was subjected to dissolution mediated by sulfidation under the same 

conditions with which pure synthetic iron carbonate minerals were determined (with 

experimental parameters described in Table 5.1). A rate of dissolution of 0.14 μM min
-1

 



182 

 

was determined (Figure 5.8), which equtes to a rate constant of KFediss = 0.018 (mol
0.5 

l
0.5 

min
-1

) and a half life (τ ½) value of ~20 hours. Thus, this natural crystalline siderite is 

much less reactive than synthetic siderite, suggesting that in the environment the 

reactivity of siderite will vary greatly, dependent on ageing, impurities and surface area. 

Nevertheless, this ancient siderite still falls amongst the most reactive of the major Fe 

minerals occurring in the environment, supporting the inclusion of siderite as part of the 

„highly reactive‟ pool of Fe minerals (Poulton et al., 2004; 2010, Canfield et al., 2007; 

2008). 
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5.6 SUMMARY 

 In modern aquatic environments, Fe carbonate minerals precipitate in low sulfide 

environments. Recent studies of Fe-rich iron formations <1.8 Ga observes 

intermittent periods of euxinia coinciding with well characterised anoxic intervals. 

Currently, no experimental study has been proposed to defined the mechanism and 

kinetics of Fe(II) carbonate dissolution in ancient marine sediments.  

 Sulfidation experiments were devised to calculate the rate of Fe(II) carbonate 

dissolution using pure synthetic minerals and a natural sediment sample from the  

Bawabik iron formation (N. Minnesota).  

 The proposed mechanism of Fe(II) dissolution suggests the substitution of dissolved 

sulfide onto the carbonate mineral surface, and hence the direct formation of FeS in 

solution, followed by the release of Fe(II) and HS
-  

into a reduced environment.  

 The rate constant of Fe(II) carbonate dissolution under near neutral conditions 

ranges from K = 5.3 x 10
-4

 to 3 x 10
-5

  Mol
0.5 

L
0.5 

m
-2

 min
-1 

over pH range 6.5-8.5, 

indicating dissolution slows with increasing pH.  

 The reactivity of siderite at pH 7.5 as defined by rate constant K, is two orders of 

magnitude larger than the fastest reacting Fe(III) minerals (HFO, K= 4.3-8.6 x 10
-6

 

Mol
0.5 

L
0.5 

m
-2

 min
-1)

. Hence, Fe(II) carbonate dissolution is significantly faster than 

Fe(III) bearing minerals. This difference relates to the difference in dissolution 

mechanisms, i.e. FeS substitiution compared to multistep reductive dissolution 

processes.  

 The half life of synthetic siderite minerals is approximately 22 minutes, compared to 

20 hours for a sample from Bawabik natural (oxidised) siderite. Although the 

sediment sample is not representative of the reduced environment from which it was 

precipitated, the value derived is still inidicative of a a highly reactive Fe mineral. 
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CHAPTER 6:  IRON ISOTOPE FRACTIONATION DURING 

SULFIDE PROMOTED REDUCTIVE DISSOLUTION OF IRON 

(OXYHYR)OXIDE MINERALS  
 

6.1 INTRODUCTION 

 

6.1.1. Iron isotope fractionation during reductive dissolution 

Experimental investigations into the fractionation of iron isotopes in sedimentary and 

marine systems have provided an increasingly powerful tool for examining Fe cycling 

in modern and ancient environments. The biogeochemical processes associated with 

controlling the magnitude of Fe isotope fractionation in natural settings are debatable, 

however, with uncertainty surrounding the roles of an extensive number of biological 

and abiological reactions during early sediment diagenesis (Anbar, 2004; Czaja et al., 

2010; Heimnann et al., 2010; reviewed within Johnson et al., 2004; Dauphas & Rouxel, 

2006; Johnson & Beard, 2006; Anbar & Rouxel, 2007).  

The largest Fe isotope fractionations (measured in regard to Fe cycling in natural 

settings), occur in association with changes in redox state and bonding environment 

(Beard et al. 1999; Johnson et al., 2004; 2008), where the speciation and solubility of Fe 

(III) species effect the mobility and transformation of Fe within aqueous and 

sedimentary systems. Laboratory based studies of  biogeochemical reactions are 

required when comparing the magnitude of fractionations observed during a variety of 

biological and abiological reaction pathways occurring within near surface sedimentary 

environments.  

Experimental studies of both biological and abiotic mineral dissolution imply that larger 

fractionations between Fe isotopes are associated with dissimilatory iron reduction 

(DIR), with δ
56

Fe fractionations between -0.5 to -2.5‰ indicate that the dissolved Fe(II) 

species is isotopically lighter than the initial Fe oxyhydroxide mineral (Beard et al., 
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1999; 2003; Icopini et al., 2004; Johnson et al., 2005; Crosby et al., 2007). A large 

proportion of studies examining the fractionation associated with both experimental and 

studies of DIR in natural settings (Beard et al., 1999; 2003; Crosby et al., 2005; 2007; 

Johnson et al., 2005; Weiderhold et al., 2006) suggest that dissolved Fe
2+

(aq) is 

significantly lighter than that produced by corresponding inorganic methods of mineral 

reductive dissolution (for which experimental data is so far limited). Hence, there may 

be a significant overlap of fractionation values observed during biological and 

abiological mineral dissolution within diagenetic environments. Neverthless, previous 

studies observe that isotope fractionations associated with experimental DIR processes 

are significantly depleted in δ
56

Fe values of dissolved Fe(II)aq (Johnson et al., 2008); 

and have subsequently been applied to a number of studies examining the accumulation 

of Fe in porewaters and sediment assemblages from modern marine settings 

(Severmann et al., 2006; Staubwasser et al., 2006, Severmann et al., 2008; Homoky et 

al., 2009) and in the Fe isotope signatures in ancient marine rocks (Yamaguchi et al., 

2005; Archer & Vance 2006; Duan et al., 2010). 

Studies which have investigated experiments mediating dissolution with the addition of 

organic acids (e.g. oxalate: Wiederhold et al., 2006) are more suited to terrestrial 

weathering processes in soil and sediment environments than within marine settings. 

Inorganic experiments detailing processes of mineral dissolution have not presently 

focused on processes of mineral reductive dissolution applicable to marine sedimentary 

environments, with only tentative suggestions that BSR associated sulfide may also 

induce an isotopic fractionation during iron redox mineral processes (Archer & Vance, 

2006; Staubwasser et al., 2006). This important reaction utilises the generation of 

dissolved sulfide from bacterial sulfate reduction in the mechanism described by Dos 

Santos Afonso & Stumm (1992; Chapter 4). Sulfide mediated reductive dissolution 
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plays an important role in the formation of FeS and FeS2 with iron rich sediments 

(Berner, 1984; Rickard & Morse, 2005) and although there is little information 

regarding the isotopic fractionation associated with pyrite formation; experimental 

studies of FeS formation from Fe
2+

 (aq) and dissolved S
2-

 (Butler et al., 2005) report a 

fractionation of δ
56

Fe = 0.85 ± 0.3‰. 

Currently, the fractionation factor associated with Fe isotope fractionation during 

sulfide mediated reductive dissolution is unknown, although the reaction is 

acknowledged as being an important process affecting modern and ancient marine 

systems (Poulton, 2003), with Canfield (1989) concluding that this process maybe be 

significant in terms of dominance over DIR during diagenesis of many organic-rich 

continental margin sediments.  

 

6.1.2 Hypothesised mechanism of isotopic fractionation  

The mechanism of reductive dissolution reported by Dos Santos Afonso & Stumm 

(1992) proposes two significant steps where isotopic fractionation may occur. The first 

is an observed change in oxidation state during the exchangeable electron transfer 

between Fe(III)-Fe(II) after HS
-
 surface complexation formation on the reactive outer 

electron shell of the Fe oxide surface (the reduction step).  

I) Surface complex formation   

Fe
III

OH + HS 
-
 ↔ >Fe

III
S

-
 + H2O    (Eq. 6.1) 

II) Electron transfer 

  >Fe
III

S
-
 ↔ > Fe

II
S      (Eq. 6.2) 
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The second traces the detachment of the reduced Fe(II) complex during hydrolysis from 

the oxide surface (the dissolution step). 

III) Release of oxidised product:  

>Fe
II

S + H2O ↔ >Fe
II

OH2
+
 + S°

-
      (Eq. 6.3) 

IV) Detachment of Fe(II) 

>Fe
II

OH2
+
 → free surface site + Fe(II)aq    (Eq. 6.4) 
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6.2 RESEARCH AIMS 

This chapter aims to ascertain the significance of a kinetic Fe isotope fractionation 

associated with sulfide mediated reductive dissolution for a number of synthetic Fe(III) 

oxide minerals via a series of batch sulfidation experiments. These experiments will 

trace the changing isotopic Fe fractionation as a two-step process: 1) the reductive step 

and 2) the dissolution step; the extent of which is dependent on mineral crystallinity, 

pH, initial sulfide and Fe(III) concentration. By assigning an isotopic fractionation value 

to individual Fe(III) oxide minerals (which differ in their rates of reaction with 

dissolved sulfide), a model of isotopic fractionation associated with an abiotic reductive 

dissolution mechanism is built upon, allowing a comparison to values well characterised 

for Dissimilatory Iron Reduction in both modern sedimentary systems and the ancient 

rock record. The main objectives of this chapter:  

1) Design a series of closed system batch iron sulfidation experiments and derive a 

protocol for the sampling of different Fe isotope pools 

 

2)  Compare the Fe isotope signatures measured for individual Fe(III) oxides 

undergoing sulfide mediated reductive dissolution, which react with dissolved 

sulfide over a range of timescales.  

 

 

3) To investigate the mechanism by which Fe fractionation occurs by measuring 

individual Fe isotope pools with regard to Fe(III) reduction from the original 

Fe(III) oxide, and the dissolution of Fe(II)aq from the surface reduced Fe(II) 

species.  

 

4) To compare the measurement of Fe isotopic fractionation derived from abiotic 

processes with that of signatures associated with biological iron reduction 

reactions, which are regarded as the predominant diagenetic mechanism 

regulating the redox cycling of Fe in marine sediments.  
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6.3 METHODOLOGICAL CONSIDERATIONS 

Fe(III) oxide minerals (2-line ferrihydrite, goethite, hematite and lepidocrocite) were 

synthesised via the methods of Schwertmann & Cornell (1991), and characterised via 

XRD and BET surface analysis, with surface areas described in Chapter 3.  Anoxic 

batch experiments using a stock solution of Na2S.9H2O as a sulfidation reagent were 

conducted as described in Methodology Chapter 3.3.2. Experiments were performed 

with a known volume of stock solution in 1L of deoxygenated D.I.W. with samples to 

measure the concentrations of dissolved sulfide, FeS, and Fe(II)aq taken periodically 

after the introduction of individual oxide into the closed reaction vessel. Elemental 

sulfur was calculated as the difference between initial and total sulfide concentrations 

over time (where total S is the sum of solid phase plus dissolved S). Values of surface 

reduced Fe(II) were derived via mass balance calculation, as the amount of Fe(III) 

reduced to Fe(II) is double the concentration of elemental sulfur in solution at any point 

during the reaction (minus the concentrations of Fe(II)aq and FeS; Poulton, 2003). In 

order to minimise the isotopic influence of FeS formation on iron isotope fractionation 

produced by pure reductive dissolution, experimental conditions were manipulated to 

minimise FeS precipitation, although a tranisent amount was still measured from within 

the system. Table 6.1 represents the initial conditions set for the individual sulfidation 

experiments. 

10mL samples in an airtight syringe were taken for the isotopic analysis of dissolved 

Fe(II), surface reduced Fe(II) (which includes an FeS(s) phase) and unreacted Fe(III) as 

detailed in Methodology section 3.5). The isotopic composition of precipitated FeS 

could not be separated from the surface reduced Fe(II) phase as both species were 

dissolved in dilute acid (10% v/v).  
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Table 6.1: Experimental conditions for iron mineral sulfidation 

Experiment Synthetic Fe 

mineral 

pH Initial 

[S
2-

] 

(µM) 

Sample 

mass 

(g/L) 

1 2-line ferrihydrite 4 212 1.00 

2 2-line ferrihydrite 9.1 863 0.70 

3 lepidocrocite 4 872 0.25 

4 hematite 4 1092 0.50 

5 goethite 4 885 0.50 

6 lepidocrocite 8.5 963 0.30 

7 2-line ferrihydrite 8.5 219 0.50 

 

 

Isotopic analyses were performed at University of California, Santa Cruz and at the 

Woods Hole Oceanographic Institution by Dr Silke Severmann, using a Thermo 

Scientific Neptune Isoprobe MC-ICP-MS, relative to the original starting composition 

of the Fe(III) oxides. Data is reported using standard δ notation, per mil (‰), for 

56
Fe/

54
Fe ratios:  

 

δ
56

Fe = ((
56

Fe/
54

Fesample/
56

Fe/
54

Fe start.mat.) -1 ) x 10
3 

  (Eq. 6.5) 

 

Samples were introduced into the mass spectrometer as < 0.5 ppm Fe/Cu solutions, with 

bracketed standard of IRMM-14 internal isotopic standard, or a digest of the initial Fe 

(oxyhydr)oxide sample. Both black shale and basalt external standard reference 

materials were run alongside analyses, measuring an average analytical precision of 

δ
56

Fe (2-SD) 0.13‰ and 0.10‰ respectively.  

In order to evaluate the validity of the iron sulfidation experiments as a means of iron 

isotope fractionation, the mass balance of Fe throughout reduction, dissolution and un-
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reacted Fe(III) phases was calculated (Equation 6.6) for a selection of samples, the 

results of which are reported in Table 6.2. The average mass balance (0‰) indicates 

that the sampling rational devised to measure all fractions of Fe in reaction is 

quantitative.    

 

δ
56

FeMB = (δ
56

Fediss x [Fediss/FeT]) + (δ56
Fesur x [Fesur/FeT]) +(δ56

Fe
III

 x [Fe
III

/FeT]) 

          (Eq. 6.6) 

 

6.4. RESULTS 

6.4.1. Chemical Speciation 

All measured chemical and isotopic data are reported in Tables 6.2 and 6.3. As with 

similar closed system studies of iron (III) mineral sulfidation (Poulton, 2003; Poulton et 

al., 2004), an initial increase in surface reduced Fe(II) is observed whilst dissolved 

sulfide is removed from solution either by oxidation to elemental S (Eq. 6.3); or the 

formation of FeS, which was transient only under acidic conditions. Faster reacting 

minerals such as ferrihydrite, lepidocrocite and goethite undergo rapid dissolution at the 

reduced oxide surface at pH 4, increasing the pool of Fe(II)aq observed as the dominant 

Fe(II) phase over the timescale of each experiment. These minerals are characterised as 

highly reactive with respect to dissolved sulfide (Poulton et al., 2004) whereas hematite, 

which is of low reactivity and dissolution rate, is dominated by surface reduced Fe(II), 

even at low pH (Figure 6.1).  

Under circum-neutral to alkaline pH conditions (Figure 6.2), the rate of mineral 

dissolution significantly reduces as protonation of the nearest attached hydroxide ion is 

required to promote dissolution (Zinder et al., 1986). Hence, experiments performed at 
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higher pH values observe the majority of reduced Fe(II) is still associated with the 

reactive oxide surface, with very little Fe(II) released into solution, and consequently 

little FeS is formed. 

 

 

        

 

Figure 6.1: Chemical Speciation data for sulfidation experiment, pH 4. Data for 

surface-reduced Fe calculated from total Fe(II)mass balance  
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Figure 6.2: Chemical Speciation data for sulfidation experiments, circum-

neutral to alkaline pH. Data for surface-reduced Fe calculated from total 

Fe(II)mass balance 

0

100

200

300

400

500

0 10 20 30 40 50 60

C
o
n

c
e
n

tr
a
ti

o
n

 (
μ

M
) 

Time (mins) 

dissolved sulfide

FeS

dissolved Fe(II)

surface reduced

Fe(II)

Ferrihydrite pH 8.5 

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250
C

o
n

c
e
n

tr
a
ti

o
n

 (
μ

M
) 

 
Time (mins) 

Ferrihydrite pH 9.1 

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300

C
o
n

c
e
n

tr
a

ti
o
n

 (
μ

M
) 

Time (mins) 

Lepidocrocite pH 8.6 



194 

 

 

Table 6.2: Initial experimental results: Chemical and raw isotope data (pH 4) 

Chemical data Isotopic Composition 

Sample Time S
2-

(aq) FeS Fe
2+

(aq) Fe
2+

(surf) 

Total 

Fe(II) 

Dissolved 

Fe(II) 

error 

(‰) 

Surface 

Fe(II) 

error 

(‰) 

Unreacted 

Fe(III) 

error 

(‰) Mass Balance 

  (mins)  (μM/L)   (μM/L) (μM/L) (µM/L) 

 δ56
Fe 

(‰) ± δ56
Fe(‰) ± δ56

Fe(‰) ±  (‰) 

Ferrihydrite 0 212 

   

  

       1.0g/L; pH 4 1 34 26 157 112 304 -0.14 0.03 -0.20 0.03 

   

 

3 16 7 294 77 378 -0.23 0.05 -0.06 0.02 

   

 

5 12 9 372 1 382 -0.18 0.10 0.16 0.05 

   

 

7 9 4 366 28 398 -0.16 0.06 0.20 0.00 

   

 

10 5 4 382 20 406 -0.10 0.04 0.31 0.02 

   

 

14 2 3 ND ND 414 -0.08 0.10 0.30 0.01 

   

 

20 2 2 407 7 416 -0.13 0.05 0.28 0.07 

   

 

30 1 2 417 0 418 -0.16 0.03 0.25 0.07 

   

 

45 1 1 412 7 420 -0.10 0.04 0.31 0.02 

     60 1 3 429 0 416 -0.12 0.08 0.26 0.04       

Lepidocrocite 0 872 

   

  

       0.25g/L; pH 4 1 730 ND 38 246 284 0.34 0.02 0.28 0.08 0.02 0.04 0.05 

 

5 663 1 117 198 416 

       

 

10 497 79 218 295 592 0.24 0.02 0.16 0.01 

   

 

15 401 102 339 297 738 

       

 

20 330 95 443 356 894 0.18 0.03 0.03 0.08 -0.02 0.03 0.002 

 

30 258 118 627 247 992 

       

 

45 208 103 876 43 1122 0.06 0.04 0.03 0.08 

   

 

60 178 97 1050 47 1194 

       

 

90 149 63 ND ND 1320 0.05 0.05 0.07 0.05 

     180 105 4 1474 48 1526 0.11 0.03           

Goethite 0 885 

   

  

       0.5g/L; pH 4 1 747 ND 18 188 206 -0.05 0.03 0.16 0.05 -0.04 0.04 -0.03 

 

7 722 38 85 121 244 

       

 

15 642 5 185 286 476 0.115 0.05 0.4 0.08 

   

 

25 632 38 294 98 430 

       

 

45 571 50 443 35 528 0.29 0.08 0.53 0.08 -0.02 0.03 0.01 

 

75 510 56 580 2 638 

       

 

135 493 24 645 67 736 0.25 0.05 0.58 0.01 

     255 450 58 646 50 754 0.21 0 0.32 0.09 0.01 0.1 0.04 

Hematite 0 1092 

   

  

       0.5g/L; pH 4 1 1051 19 6 19 44 -0.33 0.03 0.27 0.05 0.03 0.01 0.03 

 

10 10115 19 18 79 116 

       

 

20 985 46 20 56 122 -0.51 0.03 0.20 0.05 0.00 0.07 0.00 

 

75 942 47 31 128 206 -0.49 0.05 0.29 0.05 

   

 

135 929 37 37 178 252 

       

 

195 913 31 41 224 296 -0.49 0.11 0.36 0.05 

   

 

255 888 61 44 181 286 

         315 854 66 47 231 344 -0.51 0.10           
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Table 6.3: Initial experimentalresults: Chemical and raw isotope data (alkaline pH) 

Chemical data Isotopic Composition 

Sample Time S
2-

(aq) FeS Fe
2+

(aq) Fe
2+

(surf) 

Total 

Fe(II) 

Dissolved 

Fe(II) 

error 

(‰) 

Surface 

Fe(II) 

error 

(‰) 

Unreacted 

Fe(III) 

error 

(‰) 

Mass 

Balance 

    (μM/L)   (μM/L) (μM/L) (µM/L) 

 δ56
Fe 

(‰) ± δ56
Fe(‰) ± δ56

Fe(‰) ±  (‰) 

Ferrihydrite 0 291 

   

  

       0.5g/L pH 8.5 1 160 2 4 108 114 -0.55 0.05 -0.63 ND 
   

 

3 124 20 3.9 126 150 -0.61 0.05 -0.52 0.01 

   

 

5 118 13 4.4 159 176 -0.69 0.13 -0.6 0.12 

   

 

10 91 13 4.6 212 230 

  

-0.58 0.16 

   

 

20 51 16 5.8 282 304 -0.59 0.05 -0.64 0.13 

   

 

30 21 12 5.9 354 372 -0.69 0.03 -0.63 0.05 

   

 

40 5 10 5.1 393 408 

         60 0 1 4.9 430 436               

Ferrihydrite 0 863 

   

  

       0.7g/L; pH 9.1 1 632 38 1.8 346 386 -0.73 0.05 -0.43 0.09 0.05 0.10 0.03 

 

5 520 53 2.3 525 580 

       

 

10 463 64 2.8 605 672 -0.67 0.04 -0.36 0.12 

   

 

20 400 53 3 764 820 

       
 

30 346 79 4.9 792 876 
  

-0.24 0.07 0.07 0.05 
 

 

45 279 83 6 913 1002 

       

 

60 235 41 5.8 1127 1174 -0.59 0.04 -0.23 0.12 

   

 

90 133 84 8 1200 1292 

       

 

120 102 88 10 1248 1346 -0.68 0.04 -0.15 0.00 

   

 

180 30 74 9 1435 1518 

         240 19 64 ND ND 1560 -0.77 0.01 -0.26 0.02 0.05 0.02   

Lepidocrocite 0 963 

   

  

       0.3g/L; pH 8.6 1 957 0 0.4 12 12 

  

0.12 0 -0.01 0.05 

 

 

5 911 5 0.1 89 94 

       

 

10 888 11 0.4 117 128 

  

0.14 0.07 

   

 

20 852 26 0.7 143 170 -0.37 0.09 

     
 

30 814 34 1.5 194 230 -0.14 0.02 0.16 0.05 -0.02 0.07 -0.02 

 

60 685 47 2.7 412 462 -0.09 0.02 0.21 0.09 

   

 

120 496 58 5 755 818 

       

 

180 330 74 7.4 1037 1118 0.02 0.02 0.17 0.06 

   

 

240 150 93 8 1339 1440 

         300 56 77 14 1569 1660 0.05 0.02 0.2 0.07 -0.02 0.07 0.08 
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6.4.2. Reaction Kinetics 

In order to consider assigning different Fe isotope fractionations to Fe (III) oxides with 

differin mineralogy; both the general orders of Fe mineral reactivity and absolute 

reaction rates of Fe sulfidation were determined with respect to reaction with dissolved 

sulfide. Poulton (2003) and Poulton et al., (2004) define a rate equation as:  

 

 6.7) (Eq.)(FeS)H( 0t

30.5

0t2FeFe                                                                   kR 



  

 

Where RFe represents the rate of Fe(II) dissolution (mol L
-1

 min
-1

), kFe is the rate 

constant (mol
-0.5

 L
0.5

min
-1

), (H2S)t=0 is the initial sulfide concentration (mol L
-1

) and 

(Fe
3+

)t=0 is the initial concentration of solid phase ferric Fe (mol L
-1

). 

 

 

Figure 6.3: Initial linear rates of Fe(II) dissolution for Fe (oxyhdr)oxide minerals (pH 

4) 
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The initial phase of total Fe(II) dissolution (dissolved Fe
2+

(aq) + FeS) is shown in Figure 

6.3 as linear, and hence the rate of dissolution was determined via simple linear 

regression. At pH 4, a comparison of calculated rate constants kFe (Table 6.4) using Eq. 

6.7 demonstrates that reactivity increases in the order hematite < goethite < 

lepidocrocite < ferrihydrite as previously reported in a reactivity scheme devised by 

Poulton et al., (2004) for experiments at pH 7.5, which also reports that ferrihydrite and 

lepidocrocite have an increased reactivity compared to the more highly crystalline 

minerals goethite and hematite, as also shown in Figures 6.1 - 6.3.  

 

Table 6.4. Comparison for rate constant KFe for Fe(III) oxide mineral reactivity 

Fe(III) oxide Rate, R (H2S) t=0 (Fe
3+

) t = 0 KFe 

  
(x10

-6
,                 

mol L
-1

 min
-1

) 

(x10
-6

,       

mol L
-1

) 

(x10
-6

,      

mol L
-1

) 

(x10
-2

,                            

mol 
-0.5

 L 
0.5

 min
-1

) 

Ferrihydrite 85.5 212 10386 56.5 

Lepidocrocite 27.9 872 2811 33.6 

Goethite 13.4 885 5622 8 

Hematite 3.4 1092 6267 1.6 

 

 

6.4.3  FeS Formation 

The formation of FeS during reductive dissolution is shown in Equation 6.8. After 

Fe(II) is detached from the reduced surface Fe-oxide, excess Fe(II)aq in solution rapidly 

reacts with free dissolved sulfide in solution to form solid phase FeS: 

 

 Fe
2+

 + HS
-
 ↔ FeS(s) + H

+
      (Eq. 6.8) 
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As also observed in Figure 6.1, FeS formation is transient in solution at pH 4. This is 

shown further in Figure 6.4 for the individual Fe minerals, where FeS(s) is being 

formed at different rates due to the differing starting conditions and Fe mineralogy. 

Peaks in concentration occur between 1-10 mins, followed by a gradual decrease in 

concentration as the low pH promotes FeS dissolution (at pH 4).  

  

 

Figure 6.4: FeS formation via iron sulfidation experiments for Fe(III) oxide minerals, 

pH 4 

 

 

6.4.4   Fe Isotope data 

Iron isotope compositions were determined for dissolved Fe(II), surface reduced Fe(II) 

(which from here forward includes FeS(s)) and unreacted Fe(III), as reported in Table 

6.2 and 6.3. The isotopic mass balance returns an average value close to zero (0.02 ± 

0.03‰: Eq. 6.6) for experiments which measured all three Fe pools, validating the 

experimental approach.  
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Isotopic data for dissolved Fe(II) and surface-reduced Fe(II) are shown for experiments 

performed at pH 4 in Figure 6.5. In most cases the dissolved Fe(II) pool is lighter than 

the solid phase Fe(II) pool, with the exception of the early stages of the reactions with 

lepidocrocite and ferrihydrite at low pH. The dissolved phase is also lighter than the 

starting material (δ
56

Fe = 0) for ferrihydrite and hematite, whilst for lepidocrocite and 

goethite the dissolved phases are isotopically heavier than the starting material (0‰), 

which is also the case at higher pH experiments (Figure 6.6). 

 

  

  

Figure 6.5: Raw data for dissolved δ
56

Fe and surface reduced δ
56

Fe isotopic 

composition calculated from experimental iron sulfidation 
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Figure 6.6: Raw data for dissolved δ
56

Fe and surface reduced δ
56

Fe isotopic 

composition calculated from experimental iron sulfidation 
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6.5. DISCUSSION 

 

Figures 6.5 and 6.6 suggest that the sulfide promoted reductive dissolution of Fe(III) 

oxide minerals results in a discernable unidirectional kinetic isotope fractionation, 

defined by the observation that experiments are still in progress with dissolved sulfide 

still in solution after the last sample has been taken from the vessel (with the exception 

of ferrihydrite, pH 4). It is important to consider specific experimental influences which 

may control the isotopic fractionation measured, and also to evaluate individual steps of 

the reaction mechanism for their influence on the overall fractionation determined.  

 

6.5.1. Mechanistic Controls on Isotopic Fractionation (I) 

 

6.5.1.1. Reduction Step 

The reduction of Fe(III) on the reactive oxide mineral surface to surface bound Fe(II) is 

the first step of the reaction presented by Dos Santos Afonso  & Stumm (1992), and is 

likely to initiate a significant isotopic fractionation. During the electron transfer process 

occurring during the reduction of Fe(III) to Fe(II), an isotopic fractionation will occur. 

As all Fe(II) measured within the system (either as dissolved, surface or via FeS 

formation) has undergone an electron transfer between Fe(III)-Fe(II), taking place on 

the oxide surface, mass balance calculations have been derived to evaluate whether an 

individual step produces a significant isotopic fractionation (Equation 6.9) 
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Where Fediss represents dissolved Fe(II) and Fesolid-phase represents surface-reduced Fe(II) 

plus FeS(s).  During the reduction of poorly crystalline ferrihydrite, the composition of 

surface bound Fe(II) is isotopically light, whereas with more crystalline minerals 

(lepidocrocite, goethite, hematite) the fractionation processes produce δ56
Fe values 

which are isotopically heavier than non crystalline species and the starting material. 

This observation is surprising as previous studies of both biological and abiological 

reductive dissolution of Fe oxide minerals (Icopini et al., 2004; Crosby et al., 2005; 

2007; Johnson et al., 2005; Wiederhold et al., 2006) suggest that lighter isotopes 

preferentially undergo Fe dissolution.  

It is likely that the preferential reduction of Fe(III) in forming heavier Fe isotopes 

relates to isotopic inhomogeneity of the more crystalline oxide minerals, compared to 

that of poorly crystalline ferrihydrite. Previous studies of partial dissolution of Fe oxides 

using HCl have tended to show that most Fe oxides are isotopically homogenous 

(Bullen et al., 2001; Brantly et al., 2004). However, it is unclear how sulfide behaves in 

terms of evenly reducing the outer most reactive mineral layers, and thus a comparison 

with reducing species other than sulfide (Skulan et al., 2002; Wiederhold et al., 2006; 

Crosby et al., 2007) is not appropriate. Therefore, with sulfide present as a reductant, it 

is possible that reduction Fe(III) to obtained heavy isotopes on the mineral surface 

occurs initially during this reaction.  

In contrast to lepidocrocite, goethite and hematite, the behaviour of ferrihydrite is 

consistent with the isotopically light Fe isotopes being favoured during the reductive 

step. Figure 6.7 shows the average d
56

Fe fractionations during the reductive step for 

ferrihydrite as a function of the initial reduction rate. For these experiments at different 

pH values, there is no consistent trend in the extent of fractionation as each reaction 
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progresses. Hence it is not simply the extent of reduction of surface layers that controls 

the magnitude of the reductive step fractionations. If this were the case, then for all 

experiments, the δ56
Fe value of surface bound isotopes would rapidly approach zero at 

an early stage of the reaction. An increase in magnitude of the reductive step 

fractionation is only observed for the experiment at pH 9.1, where a significant 

proportion of the mineral is reduced with only minor release of Fe(II) to solution. 

Therefore, it is clear that the lighter isotope is initially favoured during reduction but the 

retarded dissolution of the surface-reduced Fe(II) at high pH means that there are 

progressively fewer surface sites containing the lighter isotope available for reaction; 

hence, reduction of the heavier isotope becomes more significant with time.  

 

 

Figure 6.7: Surface reduced δ
56

Fe fractionation as a function of initial reduction rate 

 

 

Given these considerations, the relationship we observe in Figure 6.7, where the value 

of isotopic fractionations for the reductive step are plotted as a function of the initial 
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reduction rate for ferrihydrite, suggests that it is the rate at which the oxide surface is 

reduced that initially controls the extent of fractionation during the reductive step, with 

slower rates favouring larger fractionations. The magnitude of fractionation will thus be 

a function of the parameters that control reaction rates, including mineral surface area 

and concentration, sulfide concentration, and pH (Pyzik & Sommer, 1981; Dos Santos 

Afonso & Stumm, 1992; Peiffer, 1992; Yao & Millero, 1996; Poulton, 2003; Poulton et 

al., 2004).  

 

Previously, it has been assumed that only the dissolution step will become isotopically  

lighter than the surface reduced Fe(II) (and indeed, the starting material) during abiotic 

reductive dissolution of Fe (III) oxides (Wiederhold et al., 2006). It is possible that 

extensive dissolution of the light δ56
Fe isotope (in preference to the heavier isotope) 

would give an overall isotopically light composition, due to continual dissolution of the 

lighter isotope from the oxide surface (if this process preferentially exposes the lighter 

isotope for subsequent reaction at the mineral surface). However, we observe significant 

enrichment of the lighter isotope during the reductive step, even for experiments where 

the dissolved Fe(II) pool (Fediss plus FeS) represents a very minor proportion of the total 

Fe(II) pool (e.g. ferrihydrite at pH 8.5; Table 6.3). The overwhelming influence of the 

surface-reduced Fe(II) pool suggests that the reductive step favours the lighter isotope. 

These observations provide support for the suggestion that larger fractionations, 

producing heavier isotopes calculated for lepidocrocite, goethite and hematite are a 

likely consequence of isotopic inhomogeneity. The precise process responsible for the 

preferential reduction of the lighter isotope is currently unclear, but may relate to an 

increased propensity for electron transfer to occur between the lighter isotope and 

adsorbed sulfide (Equation 6.2), or to an increased prevalence for the lighter Fe isotope 

to occupy sulfide adsorption sites (Equation 6.1). 
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6.5.2 Dissolution and Effect of Adsorption 

 

When calculating isotopic fractionations during the dissolution step, it is important to 

consider co-occurring significant chemical processes which may influence dissolved 

and solid phase isotopic fractionations, for example the role of possible adsorption of 

dissolved Fe(II) at the oxide surface. This process has been suggested to result in 

δ
56

Fe(II)aq = < -2.6 ‰ in comparison to the starting oxide substrate in a natural 

circumneutral groundwater, attributable to preferential adsorption of isotopically 

heavier Fe(II) (Teutsch et al., 2005) to mineral surfaces. Experiments evaluating 

isotopic fractionations during adsorption of dissolved Fe(II) onto goethite support this 

observation and suggest that rapid isotopic exchange occurs between dissolved and 

adsorbed Fe(II), resulting in an isotopic fractionation whereby adsorbed Fe(II) is 

enriched by ~2.7-3.7‰ relative to dissolved Fe(II) at equilibrium (Icopini et al., 2004).  

However, adsorption of Fe(II) on to Fe (oxyhydr)oxide surfaces at pH 4 is negligible 

(Zhang et al., 1992; Silvester et al., 2005) and unlikely to exert an influence on our 

experiments at low pH. At higher pH, Poulton (2003) demonstrates that adsorption of 

Fe(II) would also not be significant, providing sulfide is still present in solution at time 

of sampling. For experiments undertaken within this study at alkaline pH, isotopic 

measurements were only made for samples taken while sulfide was still present in 

solution, as presented in Table 6.2. The occurrence of adsorption is minimised as under 

these conditions, FeS forms almost instantaneously (Rickard, 1995) and any dissolved 

Fe(II) that has detached from the outer sphere of the oxide surface is unlikely to be re-

adsorbed. The prevalence for surface-reduced Fe to remain associated with the oxide 

surface for considerable periods of time at alkaline pH (Poulton, 2003), itself prevents 

extensive re-adsorption of Fe(II) by blocking reactive Fe(III) adsorption sites. These 

observations find support in direct measurements of adsorbed Fe(II) during sulfidation 

reactions with ferrihydrite at alkaline pH (using CaCl2 as an extractant for adsorbed 
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Fe(II)), whereby even at the end of experiments when dissolved sulfide was completely 

reacted from solution, adsorbed Fe(II) accounted for <2% of the total Fe(II) pool 

(Poulton, 2003). After all dissolved sulfide has reacted from solution, Fe(II) associated 

with the oxide surface continues to decrease (due to the slow dissolution of surface-

reduced Fe(II)), rather than increase due to adsorption of dissolved Fe(II)). Therefore re-

adsorption of dissolved Fe(II) may be discounted as a significant factor in all of our 

experiments. 

 

6.5.3 FeS formation  

A further consideration includes the formation of solid phase FeS from experimental 

reagents. Although experiments were conducted with the aim of minimizing formation 

of FeS(s), this phase was present in all experiments, and in some cases represented a 

significant proportion of the total Fe(II) pool (Table 6.2/Table 6.3; Figure 6.4). 

Formation of FeS from dissolved Fe(II) (Equation 6.8) is associated with a large 

isotopic fractionation, with freshly precipitated FeS < 0.85 ± 0.30‰ lighter than the 

dissolved Fe(II) from which it was formed (Butler et al., 2005). Therefore, FeS 

formation has the potential to significantly overwhelm both dissolved Fe(II) and 

surface-reduced isotopic compositions. 

In order to assess fractionations associated with the dissolution of the Fe 

(oxyhydr)oxides, rather than introducing secondary fractionations associated with FeS 

formation, dissolved Fe(II) data for FeS formation (Table 6.3) has been corrected using 

the formulae derived in Equations 6.10 and 6.11, assuming an isotopic fractionation of 

δ56
Fe = -0.85 ‰ for freshly precipitated FeS (Butler et al., 2005).  
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Due to the low concentrations of FeS present, correcting data had little significant 

impact on dissolved Fe(II) fractionations, with the exception of lepidocrocite at pH 8.6 

(Figure 6.4). For lepidocrocite, high concentrations of FeS relative to dissolved Fe(II) 

resulted in the corrected data being δ56
Fe =~0.7- 0.8 ‰ lighter than the measured Fe(II) 

compositions in Tables 6.2 and 6.3. Thus, for the majority of experiments, minor 

variations in the isotopic composition of the precipitated FeS will not significantly alter 

either our calculations of absolute fractionations or our conclusions 

 

6.5.4 Mechanistic Controls on Isotopic Fractionation (II) 

From our corrected dissolved Fe(II) data (Table 6.5), fractionations associated with the 

dissolution step of the reaction can be calculated, by subtracting fractionations resulting 

from the initial reductive step: 
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∆56
Fe(II)diss-step = δ

56
Fe(II)diss – δ

56
Fe(II)reduction-step     

                                               (Eq. 6.12)                       

The resulting overall dissolution-step fractionations are reported in Table 6.5. In 

general, the magnitude of fractionations remain relatively constant during the course of 

each reaction, and in all cases the dissolution step results in the release of Fe which is 

isotopically-lighter than that produced during the reduction step. 

This is consistent with evidence suggesting that reductive dissolution releases 

isotopically-light Fe(II) to solution, in comparison to surface reduced Fe(II),  regardless 

of the precise reductive mechanism (Beard et al., 1999; 2003; Brantley et al., 2004; 

Icopini et al., 2004; Crosby et al., 2005; Johnson et al., 2005; Wiederhold et al., 2006; 

Crosby et al., 2007). By also quantifying isotopic fractionations associated with the 

initial reductive step, the magnitude of fractionations attributable to the dissolution step 

alone are rigorously determined. In understanding the controls on isotopic fractionations 

during this step, it is important to consider the influence of reaction rates. Figure 6.8 

demonstrated that for experiments performed at pH 4, the concentration of Fe(II) which 

had entered solution (i.e. dissolved Fe(II) plus FeS) produced a linear relationship with 

regard to the total reduced Fe(II) pool, allowing rates of dissolution of the reduced 

Fe(II) to be estimated by simple linear regression. Whilst the linear plots are not 

considered statistically significant (mostly below 95% confidence interval), the data 

points towards a general covariance between total Fe(II) and FeS+ Fe(II). When the 

resulting rates are considered in terms of isotopic fractionations determined for the 

dissolution step (Table 6.5), a general relationship is observed (Figure 6.9), although not 

statistically correlating (Table 6.6), possibly suggesting that dissolution-step 

fractionations are controlled by dissolution rates, regardless of the precise mineralogy of 

the (oxyhydr)oxide. 
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Dissolution rates are also strongly controlled by pH, with rates being faster at low pH 

(Pyzik &Sommer, 1981; Peiffer &., 1992; Yao & Millero, 1996; Poulton, 2003) due to 

increased surface protonation, which causes a polarization and weakening of the metal-

oxygen bonds (Zinder et al., 1986; Suter et al., 1991). Experiments for individual 

minerals at different pH values show that average fractionations for the dissolution step 

increase at higher pH for both ferrihydrite and lepidocrocite (Table 6.5), thus providing 

support for the dissolution rate control on isotopic fractionations proposed above. 
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Table 6.5: Corrected isotopic composition for reduction and dissolution during 

iron sulfidation 

 

Sample 

Time 

(mins) 

Reduced 

fraction 

(%) 

Fe(II)diss 

δ56
Fe        

(‰) 

Reduction 

step      

δ56
Fe (‰) 

Dissolution 

step      

δ56
Fe (‰) 

ΔFe(diss)-Fe(solid) 

(‰) 

Ferrihydrite 1 2.9 -0.25 -0.17 -0.08 -0.26 

1.0g/L; pH 4 3 3.6 -0.24 -0.19 -0.05 -0.25 

 

5 3.7 -0.2 -0.17 -0.03 -0.21 

 

7 3.8 -0.17 -0.13 -0.04 -0.18 

 

10 3.9 -0.11 -0.08 -0.03 -0.11 

 

20 4 -0.13 -0.12 -0.01 -0.14 

 

30 4 -0.16 -0.16 0 -0.17 

 

45 4 -0.1 -0.09 -0.01 -0.1 

  60 4 -0.13 -0.12 -0.01 -0.14 

Lepidocrocite 10 21 -0.05 0.29 -0.24 -0.06 

0.25g/L; pH 

4 20 32 0 0.19 -0.1 0 

 

45 40 -0.04 0.1 -0.09 -0.06 

  180 54 0.11 0.05 ND 0.23 

Goethite 1 3.7 ND 0.14 ND ND 

0.5g/L; pH 4 15 8.5 0.12 0.3 -0.18 0.12 

 

45 9.4 0.17 0.33 -0.16 0.19 

 

135 13 0.21 0.29 -0.08 0.24 

  255 13 0.12 0.23 -0.11 0.14 

Hematite 1 0.7 -0.72 0.19 -0.91 -0.72 

0.5g/L; pH 4 20 2 -0.75 0.08 -0.83 -0.76 

 

75 3.3 -0.71 0.17 -0.88 -0.72 

  195 4.7 -0.61 0.24 -0.85 -0.62 

Ferrihydrite 1 2.2 -0.65 -0.59 -0.06 -0.65 

0.5g/L pH 

8.5 3 2.9 -0.81 -0.52 -0.29 -0.81 

 

5 3.4 -0.81 -0.6 -0.21 -0.81 

 

20 5.8 -0.78 -0.64 -0.14 -0.78 

  30 7.2 -0.8 -0.63 -0.17 -0.8 

Ferrihydrite 1 5.3 -0.84 -0.43 -0.41 -0.85 

0.7g/L; pH 

9.1 10 9.2 -0.84 -0.36 -0.48 -0.85 

 

60 16 -0.82 -0.23 -0.59 -0.83 

  120 19 -0.83 -0.15 -0.69 -0.84 

Lepidocrocite 30 6.8 -0.81 0.16 -0.97 -0.82 

0.3g/L; pH 

8.6 6 15 -0.8 0.21 -1.01 -0.81 

 

180 33 -0.77 0.17 -0.94 -0.79 

  300 49 -0.71 0.2 -0.91 -0.73 
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                                       Figure 6.8: Rate of Fe(II) dissolution (pH 4)                            Figure 6.9: Linear relationship of dissolution-δ
56

Fe isotopic      

             fractionation as a function of Fe(II) dissolution rate (pH 4) 

Table 6.6: Collated statistical data representing correlation of linearity of synthetic mineral experiments: F Test Vs Levenes Test 

Figure Name Slope  

R
2
 

Excel R
2
 Minitab  Calculated P value 

(F test) 

Levenes Test of 

Correlation (P value) 

  Confidence   Accept/Reject 

Null Hypothesis             (%)   

6.8 Ferri y=2.02x -431 0.9216 0.93 0.085 0.357 
 

64.3 
 

R 
 

 

Lepi y= 1.26x - 429 0.9604 0.97 0.472 0.376 

 

62.4 

 

R 

 

 
Goethite y= 1.24x -226 0.9216 0.98 0.622 0.585 

 
41.5 

 
R 

   Hematite y= 0.26x + 18 0.7921 0.8 0.004 0.007   99.3   A   

y = 2.02x - 431 
R = 0.96 

y = 1.26x - 429 
R = 0.98 

y = 1.24x - 226 
R = 0.96 

y = 0.26x + 18 
R = 0.89 
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6.5.5 Applications to Natural Environments 

 

From this experimental work, it is important to evaluate the data reported in terms of 

applications to both modern sedimentary environments, and the ancient rock record. 

Firstly, the reaction of dissolved sulfide with Fe (oxyhydr)oxide minerals during marine 

sediment diagenesis may result in porewater dissolved Fe(II) isotopic compositions as 

light as δ56
Fe(II)aq = -0.8 ‰ (Table 6.5). Fractionations of this magnitude would be most 

likely to occur in the upper parts of organic-rich marine sediments, where despite 

sulfide production via sulfate reduction, concentrations of free sulfide are buffered by 

reaction with the most reactive Fe (oxyhydr)oxides (e.g. ferrihydrite; Canfield et al., 

1992; Poulton et al., 2004). In this ferruginous zone (Canfield & Thamdrup, 2009), the 

lack of dissolved sulfide in porewaters may prevent extensive FeS formation, which 

would not reflect the light isotopic compositions of the dissolved Fe(II) pool (Butler et 

al., 2005). Furthermore, our experiments at different pH values suggest that 

fractionations for individual minerals increase as pH increases (Table 6.5). Thus, with 

regard to the less reactive minerals such as hematite, the fractionations of around -0.7‰ 

observed at pH 4.0 (Table 6.5) may translate to significantly larger fractionations at the 

higher pH values characteristic of marine sediment porewaters. 

Considering that the isotopic compositions of Fe (oxyhydr)oxide minerals supplied to 

marine sediments are not well constrained, it is also helpful to evaluate fractionations 

between dissolved Fe(II) and solid phase Fe (which includes unreacted Fe and surface-

reduced Fe(II)), since these parameters are commonly measured or modelled in studies 

of modern marine sediments (Severmann et al., 2006; Staubwasser et al., 2006).  
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Fractionations between dissolved Fe(II) and solid phase Fe are presented as ∆56
FeFe(diss) – 

Fe(solid): 

∆56
FeFe(diss) – Fe(solid) = δ

56
Fe(II)diss ‒ δ

56
Fesolid     

                  (Eq. 6.13) 

where δ
56

Fe(II)diss is the dissolved Fe(II) isotopic composition corrected for FeS 

precipitation (Table 6.7) and δ
56

Fesolid is the solid phase Fe isotopic composition 

calculated by mass balance.  

 

Table 6.7: Fe isotope fractionation associated with sulfide mediate reductive 

dissolution 

 

Sample Reduction 

step      

δ56
Fe (‰) 

  Dissolution 

step      

δ56
Fe (‰) 

  ΔFe(diss)-

Fe(solid) 

(‰) 

  

 

error error error 

  ± ± ± 

Ferri pH 4 -0.14 0.04 -0.03 0.03 -0.17 0.06 

Lepi pH 4 0.16 0.11 -0.14 0.08 0.04 0.17 

Goe pH 4 0.26 0.08 -0.13 0.05 0.17 0.05 

Hem pH 4 0.17 0.07 -0.87 0.04 -0.71 0.06 

Ferri pH 8.5 -0.60 0.05 -0.17 0.09 -0.77 0.07 

Ferri pH 9.1 -0.29 0.13 -0.54 0.12 -0.84 0.01 

Lepi pH 8.6 0.19 0.02 -0.96 0.04 -0.79 0.04 

 

The resulting fractionations are reported in Table 6.7. However, since for the majority 

of experiments where a significant fractionation was evident, only a relatively minor 

proportion of the mineral was dissolved, the calculated δFe(diss) – Fe(solid) fractionations do 

not differ greatly from the dissolved Fe(II) compositions (Table 6.7). Thus, maximum 

∆56
FeFe(diss) – Fe(solid) fractionations of around -0.85‰ might be expected in marine 

sediments as a consequence of sulfide-promoted reductive dissolution of Fe(III) oxides. 
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6.6 SUMMARY  

 

 Tracing the isotopic fractionation of δ56
Fe isotopes during sulfide promoted 

reductive dissolution would offer a novel abiotic mechanism of Fe
2+

(aq) formation in 

sedimentary pore waters and ferruginous water columns; significant to both modern 

marine near surface sedimentary systems and within the ancient rock record. 

 The experimental sulfidation of synthetic ferrihydrite, lepidocrocite, goethite and 

hematite minerals under anoxic conditions produces an isotopic fractionation           

δ
56

Fe < -0.8‰. 

 The individual processes of Fe(III)-Fe(II) reduction on Fe(III) oxide surfaces; 

and the dissolution of Fe(OH)2
+
  as Fe(II)aq , create significant isotopic fractionations 

associated with changing redox state and bonding environment .  

 Factors likely to influence the magnitude of isotopic fractionation have been 

dismissed; primarily the isotopic effects of Fe(II)aq re-adsorption to the oxide mineral 

surface, discouraged by omnipresence of HS- in solution, allowing continual Fe(III) 

reduction and dissolution on the reactive surface site of the mineral; and the 

precipitation of FeS in solution,  measured as solid phase Fe(II), the presence of which 

has been determined to be isotopically insignificant to the magnitude of fractionation 

occurring during sulfide mediated reductive dissolution.  

 

 In comparison to the isotopic fractionation associated with well characterised,  

microbially derived Fe
2+

(aq), (DIR; δ56
Fe = -1.3‰), the measured fractionation 

associated with the abiotic dissolution of Fe
2+

aq from Fe(III) oxide minerals must be 

considered upon evaluating the redox cycling of Fe species in sedimentary systems 

upon early diagenesis.  
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7. CONCLUSIONS and FUTURE WORK 

 

7.1 OVERALL SUMMARY 

Previous laboratory based studies regarding sulfide mediated reductive dissolution have 

strived to represent a model Fe-bearing mineral reactivity within the natural 

environment, following either redox cycling within anoxic near-surface marine 

sediments, or in describing euxinic water columns. By defining the mechanisms with 

which individual Fe carbonate, oxide and silicate minerals react to reduce and dissolve 

in marine environments, it has been hoped that a simplistic view of continual iron 

recycling may be presented by the changing morphology of iron minerals within natural 

sediment assemblages. In order to do this, the rates at which iron within natural 

assemblages undergoes reductive dissolution with BSR produced dissolved sulfide 

occurs during periods of early sediment diagenesis were derived. The most widely 

recognised schemes of iron mineral reactivity (developed from Canfield, 1989; Canfield 

et al., 1992; Poulton et al., 2004) evaluate the rates of sulfidation for a variety of Fe(III) 

oxide and silicate minerals, classifying minerals based on their ability to react with 

dissolved sulfide present in porewaters or within an adjacent water column. However, 

early investigations of Fe(III) reductive dissolution within natural sedimentary 

assemblages (Postma, 1993; Larsen et al., 2006) was based on evaluating the reaction 

mediated by an organic ligand (ascorbate) which is not significantly observed within 

marine environments.  

Therefore, the main objective of this body of work was to contribute to the 

understanding of Fe redox cycles within marine environments by reproducing well 

validated sulfidation experiments using both individual synthetic Fe-bearing minerals 

and naturally Fe-rich sediments.  The results obtained describe a variety of mechanisms 
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relating to the reductive dissolution of both pure synthetic Fe-bearing minerals, and 

naturally Fe- abundant marine sediments from a variety of marine settings including: 

modern sediment cores from Aarhus Bay, Denmark and the Umpqua River continental 

shelf, N. Pacific; and ancient iron carbonate samples from Biwabik Iron Formation, N. 

America (~1.8Ga); and also give further insight into mechanisms of FeS formation 

under sulfidation conditions. 

 

i) Experimental sulfidation of Fe-rich sediment cores 

The kinetic results of batch sulfidation reactions were compared between a variety of 

individual synthetic, pure Fe(III) oxides (ferrihydrite, goethite, magnetite) known to 

react over different times scale with respect to dissolved sulfide reactivity (mins-hours-

days); with two sediment cores, the Fe-abundant content of which was characterised to 

define the class of Fe species as characterised within Poulton & Canfield, (2005). Using 

the rate equation defined by Postma (1993), rate constant values (K, s
-1

) were assigned 

for individual Fe(III) minerals  during both the reductive and dissolution stages of the 

reaction mechanism. The values obtain experimentally describe the decrease (or 

slowing) of rate constants alongside decreasing Fe(III) mineral reactivity with dissolved 

sulfide down core;  and are reflected in the reactivity of specific characterised sediment 

assemblages, with respect to both FeOx1 phases (ferrihydrite) and FeOx2 phases 

(goethite). Hence, a record of mineralogy throughout a near surface sediment core can 

be determined via sulfidation with respect to the rate of reactivity with dissolved 

sulfide, as seen in comparing to 1) a sediment with little change in morphology, and 

hence reactivity over time 2) a sediment core which changes significantly over time.  

 



217 

 

The results reported in Chapter 4 provide a robust data set in which (for the first time) 

rates of iron reductive dissolution within natural sediment assemblages can be measured 

using well constrained laboratory procedures. Sediments can also be partially 

characterised by identical experiments sulfidizing individual synthetic Fe(III) oxide 

minerals, the rate of which occurs over similar orders of magnitude and has not 

previously been achieved experimentally. On a larger scale, where these reactions occur 

within the marine environment, a greater understanding of the geochemical cycling of 

Fe and S (and their subsequent reaction to form pyrite) is obtained by identifying the 

rates at which these reactions occur, which in turn controls the the flux of highly 

reactive Fe(II) into adjacent bottom waters and porefluids, and further influencing the 

precipitation and abundance of FeS species at the sediment-water boundary.  

 

 

ii) Experimental dissolution of iron carbonate minerals within sulfidic 

environments 

The experimental data reported within this novel study of siderite dissolution (Chapter 

5) suggests that under sulfidic conditions, Fe carbonate species may significantly 

contribute to the availability of Fe(II)aq in natural aquatic settings , also forming FeS 

reduced waters which contain siderite. This reaction likely occurs due to a direct 

substitution of sulfide for carbonate in the siderite structure, with the rate of reactivity of 

both synthetic and naturally occurring siderite with dissolved sulfide rapid (half life = 

22 minutes and ~ 20 hours respectively) compared to the reactivity of the majority of 

commonly occurring Fe(III) oxide minerals. Hence, within ancient environments of 

transient euxinia, reaction with iron formations containing a high abundance of siderite 

would have enhanced Fe(II) cycling in ferruginous/euxinic waters. By utilising the same 
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sulfidation experimentation and rate equation associated with the reductive dissolution 

of Fe(III) oxides, a direct comparison between Fe carbonate and Fe oxide reactivity can 

be made, with regard to the reactivity scheme derived by Poulton et al. (2004), 

indicating that Fe carbonates dissolve at a faster rate than most crystalline Fe(III) oxide 

minerals, over a timescale of minutes. This indicates that Fe carbonates are suitable to 

be classed as „highly reactive‟, and this premise holds even for ancient, highly 

crystalline siderite.  

 

iii) Iron isotope fractionation during sulfide promoted reductive dissolution 

The experimental tracing of Fe isotopes associated with solid phase iron minerals, and 

Fe(II) dissolved from the mineral surface during the sulfide-promoted reductive 

dissolution of Fe (oxyhydr)oxide minerals, provides new detail on the mechanisms 

driving the abiotic isotopic fractionation of iron species. Significant fractionations are 

evident during both the reductive step and the dissolution step of the reaction, with the 

magnitude of fractionation dependent on the nature of the Fe mineral and the 

geochemical processes controlling reaction rates. During dissimilatory Fe reduction, 

isotopic measurements of Fe(II)aq tend to be -0.5 to -2.5‰ lighter than the starting Fe 

(oxyhydr)oxide mineral, but with the sum of all fractionation factors approximating -

1.3‰ (Beard et al., 1999; 2003; Icopini et al., 2004; Crosby et al., 2005; 2007; Johnson 

et al., 2005). The isotopic data presented in Chapter 6 implies that ∆56
Fe values > -0.8‰ 

between the surface reduced Fe mineral and Fe(II) dissociated from the surface into 

solution may be achieved through abiotic reductive dissolution mechanisms during 

marine sediment diagenesis. This implies that biological isotopic fractionations of 

around -1‰ are required to provide an upper limit for the robust identification of active 

dissimilatory Fe reduction in modern and ancient settings. 
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It is not only in comparison to biologically mediated fractionations that the data 

presented in Chapter 6 is relevant. New experimental studies of the isotopic 

fractionation associated with pyrite formation (precipitated from synthetic FeS; 

Guillbaud et al., 2010) require additional isotopic information of preceeding iron-sulfur 

interactions, as described within this study; along with do studies of FeS and pyrite 

formation observed within natural environments. 

 

7.2 FUTURE WORK 

A number of improvements to experimental design, and subsequent suggestions which 

utilise the iron sulfidation procedure of sediments to different environmental studies are 

noted within this section. Building upon the reported findings of the mineral reactivity 

compared in two sediment assemblages (Chapter 4: Umpqua River and Aarhus Bay), a 

further comparison between these normal marine sediments should be made with those 

taken from different environments (euxinic, lake, deep sea). This would provide an 

inclusive inventory of Fe mineral abundances under different depositional settings, 

taking into account rates of mineral sulfidation (and hence classification) not previously 

detailed in studies aiming to characterise sedimentary core and porewater profiles, 

which use lengthy extraction processes to determine Fe content of sediments.  In order 

to enhance this primary study, a method of extracting either solid phase or dissolved 

FeS from natural sediment assemblages must be developed in order to assess the true 

mass balance of Fe and S species cycling throughout the reductive dissolution 

processes. Further investigation is required to understand the organic acid and/or 

organic sulfur content of these sediments, which may be an important factor in 

controlling the unusual reactivity of these iron monosulfide species within these 

sediments.   
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It would also be useful to investigate if kinetic data obtained in Chapter 4, canbe 

manipulated to constrain the reactivity of natural sediment assemblages via previously 

reported sulfidation kinetic equations (reported in Poulton (2003) and Poulton et al., 

(2004)), which only rely upon parameters of initial sulfide concentration and either 

mineral surface area or concentration of initial reactive iron minerals to determine the 

rate constants associate with synthetic Fe(III) minerals. However, comparing these 

methods of rate determination may require additional components to incorporate the 

changing physical parameters associated with reactive, sediment assemblages (i.e. 

changing crystallinity, mineralogical structure and surface area); but are important to 

subsequent experimental studies of Fe rich minerals. To complete the natural sulfidation 

work of Chapter 4, an isotopic study tracing the reductive dissolution of characterised 

Fe(III) oxide minerals within natural sediment assemblages (during sulfide mediated 

reductive dissolution)  would allow further information to be collected with respect to 

early diagenetic processes effecting the cycling of Fe in near surface environments, 

which are known to significantly change with depth and oxygen content. This would 

allow a comprehensive comparison to the well characterised isotopic fractionation 

values associated with biologically iron reduction and Fe(II) dissolution. Isotopic 

measurements regarding the precipiration of FeS within this system would also provide 

the first experimental signatures of FeS formation during the sulfidation of natural 

sediments, in compliment to the study of synthetically precipitated FeS reported by 

Butler et al., (2005).  

 

In order to compare the reactivity of naturally occurring siderite in its reduced state 

(Chapter 5) with a synthesised pure Fe(II) carbonate mineral experimentally; a freshly 

obtained sample from a well characterised ancient iron formation (which has not been 
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subjected to weathering or oxidative processes) may provide a more accurate account of 

iron reactivity within a transitional ferruginous-euxinic ancient ocean, currently reported 

by Poulton et al., (2010), Kendall et  al.,(2010) etc.  In addition to the basic reactions 

which describe Fe(II) dissolution from iron carbonate minerals under sulfidic 

conditions, it is important to properly constrain the full reaction mechanism by which 

Fe(II) dissolution and FeS formation occurs, with further investigation required to 

obtain a solubility constant for siderite within sulfidic solutions, allowing the 

determination of prominent surface species observed upon the mineral surface. 

 With the emergence of euxinic conditions sporadically formed throughout periods of 

ocean anoxia between 2.4-1.8 Ga, it would be interesting and beneficial to trace the 

δ56
Fe isotope record associated with the formation and dissolution of siderite in 

analogous experiments, also measuring the formation of FeS within this reduced 

system. Although compared to the sulfide mediated reductive dissolution associated 

with iron oxides, there is no change in oxidation state to catalyse an isotopic 

fractionation, it would be interesting to observe a carbonate dissolution reaction in terms 

of kinetics with respect to FeS formation, in comparison to the previous study of Butler 

et al., 2005, those of Fe carbonate formations (Wehrli et al., 2003; Johnson et al., 2004; 

2005) and studies which hypothesis Fe reactivity (as DIR) within sulfidic environments 

(Archer & Vance, 2006). 

Finally, to constrain and validate the experimental methods used to obtain dissolved and 

solid phase iron samples for Fe isotope analysis (Chapter 6), a number of changes 

should be made towards experimental design. Additional effort should be made to limit 

FeS formation by increasing the concentration of the initial Fe mineral in reaction, 

therefore avoiding the need to correct raw data for the possible influence, and hence 

uncertainity in results, of isotopic fractionations measured during reduction and 
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dissolution processes. Additional samples for unreacted Fe(III) should be collected for 

all experiments to assess isotopic mass balance associated with Fe(II) surface and 

dissolved phases measured, and each experiment should be allowed to run to 

completion (via the removal of all sulfide from solution) to allow the determination of 

isotopic fractionation over the initial period of reactivity (which is kinetically faster than 

the bulk dissolution of Fe oxide minerals). A further examination of the effects of 

mineral surface inhomogeneity is also required, as it is believed that in following the 

acid catalysed dissolution of several of the synthetic minerals over time shows similar 

heavy isotope effects as measured during dissolution, and an adjustment would be 

required in order to correct for these results.  As mentioned in relation to Chapter 4, an 

isotopic study of Fe mineral reactivity within a characterised sediment core would be an 

ideal next step in firstly correlating the isotopic fractionation observed during Fe(III) 

mineral abiotic reductive dissolution to a natural system; and also providing a novel 

study of sulfide mediated reductive dissolution within diagenetic sediments, in 

comparison to reactions which have already been widely characterised in terms of 

bacterially mediated isotopic systems.  
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