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Abstract

As the Internet is increasingly being used by business companies to offer and

procure services, providers of networked system services are expected to as-

sure customers of specific Quality of Service (QoS) they could offer. This leads

to scenarios where users prefer to negotiate required QoS guarantees prior to

accepting a service, and service providers assess their ability to provide the

customer with the requested QoS on the basis of existing resource availability.

A system to be deployed in such scenarios should, in addition to providing

the services, (i) monitor resource availability, (ii) be able to assess whether

or not requested QoS can be met, and (iii) adapt to QoS perturbations (e.g.,

node failures) which undermine any assumptions made on continued resource

availability. This thesis focuses on building such a QoS-Supportive system for

reliably multicasting messages within a group of crash-prone nodes connected

by loss-prone networks.

System design involves developing a Reliable Multicast protocol and analyt-

ically estimating the multicast performance in terms of protocol parameters.

It considers two cases regarding message size: small messages that fit into a

single packet and large ones that need to be fragmented into multiple packets.
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Analytical estimations are obtained through stochastic modelling and approxi-

mation, and their accuracy is demonstrated using simulations. They allow the

affordability of the requested QoS to be numerically assessed for a given set of

performance metrics of the underlying network, and also indicate the values

to be used for the protocol parameters if the affordable QoS is to be achieved.

System implementation takes a modular approach and the major sub-systems

built include: the QoS negotiation component, the network monitoring com-

ponent and the reliable multicast protocol component. Two prototypes have

been built. The first one is built as a middleware system in itself to the extent

of testing our ideas over a group of geographically distant nodes using Plan-

etLab. The second prototype is developed as a part of the JGroups Reliable

Communication Toolkit and provides, besides an example of scenario directly

benefitting of such technology, an example integration of our subsystem into

an already-existing system.
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1

Chapter 1

Introduction

1.1 Background and motivation

The Internet is increasingly being used by organizations for offering and procur-

ing online services. Examples of this trend are business outsourcing and

applications service provisioning[88]. In this context, business organizations

outsource Internet-based services to Application Service Providers (or ASPs).

These build sophisticated services (e.g. e-auctions) which are then made avail-

able to e-business companies as e-services under payment of a certain amount

of money.

ASPs are required to guarantee and maintain Quality of Service (QoS) to fulfill

a range of needs which vary from client to client. Meeting this requirement is a

challenging task because the promised QoS guarantees have to be maintained

for the entire duration of service provision despite the occurrence of potentially

performance-degrading events. In other words, the service provisioning process

needs to account for variations such as, for instance, increased packet delay

due to network congestion. Moreover, it is becoming increasingly common for



2

e-services to be dynamically composed out of other e-services. This means

that the users will negotiate the required QoS guarantees as the need for a

service arises. This in turn means that the system should be able to decide

instantly whether or not a given QoS request can be met and, if so, offer the

service with the requested QoS. That is, the service provisioning is preceded

by a QoS negotiation process that involves estimation of appropriate system

performance metrics and making feasibility assessments on the requested QoS.

From the perspective of QoS negotiation, the system can be regarded to be

composed of several, hierarchically-structured subsystems. Therefore, the sys-

temwide QoS provided can be seen as an aggregation of the QoS provided

by all subsystems involved in providing a service. Putting it differently, the

QoS that can be offered while providing a service is an aggregation of the

QoS that each subsystem involved can be expected to offer while contributing

to the composite service. Therefore, each subsystem that makes up a ser-

vice should desirably have a predictable QoS behavior. At the lowest level of

the system hierarchy are subsystems directly handling resources. Among these,

the Communication Subsystem (CS), that supports message exchange between

processes implementing a distributed application, holds particular importance

as it provides facilities to communicate with the external.

Making behavior of the CS predictable is a challenging task when communi-

cating nodes are geographically distant and when data is sent on a best effort

basis. Moreover, in such scenarios communication data travels across the In-

ternet infrastructure, with its heterogeneous domain-wise traffic policies and
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bottlenecks, and therefore are subject to QoS variations.

There are two known approaches to obtaining a CS with predictable QoS

behavior. The first is to purchase the CS services from an Internet Service

Provider (ISP) such as AT&T. This approach however restricts the service

construction/composition to be ISP-centric: while each ISP offers attractive

QoS guarantees within its own domain, ISPs do not normally cooperate be-

tween themselves to offer such guarantees across their domains; consequently,

the CS of ’networked system’ is merely the domain of a single ISP. The sec-

ond approach is to build a Group Communication (GC) middleware which, in

addition to exporting sophisticated communication primitives for application

development, monitors and extrapolates the CS behavior for QoS assessment

and negotiation purposes.

1.2 Dissertation Focus

The work described in this thesis is the first step in the direction of building a

QoS-Negotiable Group Communication Middleware, and builds a basic Group

Communication primitive of Reliable Multicast (RMcast for short). By means

of these, a crash-prone process can multicast messages to named destination

sets. Reliability and timeliness of multicast delivery will be the two QoS at-

tributes considered for service level guarantees; on the latter, we consider two

forms of latency: the message delivery time for an operative destination that

received the message (absolute latency) and the differential delay within which



4

two operative processes can receive the message (relative latency).

The core of the system is a fault-tolerant Reliable Multicast[58] (RMcast) pro-

tocol capable of supporting QoS-sensitive communication. The protocol per-

forms runtime adaptations in order to fulfill specific (QoS) guarantees, which

are negotiated with the user application anticipately to service provision.

The system does not rely on any particular network support. For exam-

ple, it does not assume the use of any particular delivery model such as IP

multicast[32] for fulfillment of promised guarantees. Moreover, it has been

designed for the use on a network providing unreliable connectionless (i.e.

UDP-based[95]) communication.

Negotiation of QoS requirements is facilitated through a negotiation interface,

that allows the user application to request a customized QoS level prior to

service provision. The negotiation interface is based on a stochastic model of

the RMcast protocol. Its estimation aims to predict behavior of the system in

the near future. Prediction is done on a statistical basis, and as such is not

expected to change drastically soon thereafter.

The stochastic model estimates behavior of the RMcast protocol based on

current network conditions. This latter type of information is provided by a

network monitoring facility in the form of statistical data. Given the statistical

nature this information, data provided by the network monitoring facility is

not expected to be subject to drastic variations.

The protocol subject of this thesis is designed for the use among a group

of hosts communicating through the Internet regardless of the CS providing
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best-effort facilities or being managed by an ISP-centric environment.

1.3 Primary Contributions

The system presented in this thesis is novel in a way that it considers both

reliability and timeliness as equally important parameters for the overall suc-

cess of the multicast communication process. In addition, the protocol allows

reliability and timeliness attributes to be negotiated with the user-application

prior to service provision, In doing so, it makes a number of contributions.

The first contribution lies in designing a system which considers reliability

and latency as negotiable QoS attributes for reliable multicasting of messages

across the Internet. The communication process is performed in respect of

reliability and timeliness bounds through an anticipate negotiation between

the system and the user application. The system then provides guarantees

on fulfillment of the operation within performance levels complying with both

attributes.

The second contribution lies in the extension of the basic protocol to provide

likewise guarantees on messages of arbitrary size. Two extension approaches

are presented and studied. Each of them impacts the network differently and,

therefore suit a specific network environments. Together, these two approaches

cover a wide range of application environments.

The third contribution lies in providing an architecture and analytical expres-

sions for negotiating QoS metrics. The negotiation architecture provides facil-
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ities allowing the system to negotiate QoS metrics with the user application.

Negotiation takes place anticipately to start of the multicast operation, and

is performed by estimating a stochastic model of the core RMcast protocol.

This latter model is fully described, and its accuracy is studied by means of

simulations.

The fourth contribution lies in evaluating a protocol of adaptive design and

configurable parameters. The core RMcast protocol is designed so as to be

configurable around a set of parameters which allow to optimize its behavior

based on runtime network performances.

The fifth contribution lies in the description of a network measurement engine

capable of providing statistical QoS metrics on a regular basis. The engine

provides the basis upon which to estimate the stochastic model for negotia-

tion by describing average network packet loss, delay and jitter. Moreover,

it provides two ways of estimating conditional probabilities into numerically

tractable equations.

The sixth contribution lies in describing two prototype implementations of

the system. A first implementation suits middleware environments and is in-

cluded in a GC system including also a basic group management protocol.

This middleware suite can be used as basis for provision of more sophisticated

QoS-supportive services. A second prototype provides an example of integra-

tion of our system into a workable application, that can benefit from such

integration. It consists in a version of the JGroups Toolkit for Reliable Mul-

ticast Communication[13] tool, modified so as to utilize our RMcast system



7

in conjunction with a basic transport layer so as to bring support for QoS in

multicast communication.

1.4 Dissertation Overview

This thesis is structured as follows: in chapter 2 we relate our work with other

works in the same area. We introduce well known GC protocols and systems

found in literature, and describe the techniques there employed to guarantee

QoS in a multicast process, along with the correspondent type of QoS they are

concerned with.

In chapter 3 we describe the system model and architecture adopted in our

work. The former is defined formally and also compared to the traditional

system models to derive its applicability domain. The system architecture is

described in all fundamental components and interaction models.

Chapter 4 describes the design of the basic RMcast protocol for provision of

guarantees on messages of standard size, i.e. messages that fit into a single

packet. The stochastic model driving the negotiation process for the multicast

of such messages is also described, and its accuracy is discussed through sim-

ulations.

Chapter 5 describes two proposed approaches to the extension of the basic RM-

cast protocol described in chapter 4 to contexts where the same QoS guarantees

must be provided on the multicast of messages of arbitrary size, i.e. messages

that need to be fragmented into multiple packets. The original stochastic
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model is also extended according to characteristics of each of the extension ap-

proaches. The two stochastic models so obtained are then analyzed, through

simulations, in terms of negotiability and cost of the system. The former will

assess accuracy of the stochastic model, while the latter will give a measure of

the additional cost of usage of the system in terms of message overhead.

Chapter 6 describes in detail the network monitoring engine. Techniques used

to gather network information and measure QoS metrics are described. The

role and usefulness of this subsystem is described in contexts where the CS is

assumed to provide best-effort communication facilities and when this latter

is managed by an ISP.

Chapter 7 describes structure and paradigms used to develop the two pro-

totype implementations, while chapter 8 draws some conclusion and outlines

future developments research. Finally, in appendix A we give an example

of group management protocol that might be used in conjunction with the

RMcast protocol to form a GC system.
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Chapter 2

Group Communication and QoS

2.1 Introduction

Group communication (GC) is a well known and very important paradigm by

means of which several, possibly geographically distant, processes can engage

in a multiparty coordination to the extent of achieving a common goal. At the

base of this paradigm, a multicast communication protocol handles transmis-

sion of the desired data to all destinations.

The term multicast refers to a communication paradigm that allows transmis-

sion of a message to a selected group of destinations. It is long considered

to be a fundamental communication feature, due to importance of its topic

in distributed contexts. Moreover, protocols and GC systems are typically

enriched with functionalities that couple the multicast service with QoS guar-

antees. Among the possible QoS aspects, reliability and timeliness attributes

are retained to be fundamental building blocks for the provision of more com-

plete and sophisticated services. As such, they hold particular importance.

Reliability is intended as the ability to guarantee eventual reception of data
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transmitted by all destinations in a multicast operation. Timeliness, on the

other hand, refers to the ability to guarantee a time bound on message deliv-

ery.

In this chapter we investigate provision of reliability and timeliness with con-

cern to the multicast operation, relating relevant approaches found in literature

with our own and putting emphasis on the differences.

2.2 Reliability and Timeliness

Reliability is the most basic form of QoS, and its provision is a first step towards

the building of more complete services. Its utilization is mandatory for pro-

vision of sophisticated guarantees such as ordered delivery[16, 17]. Moreover,

many other QoS attributes, such as security, can benefit from the provision of

multicast reliability.

In recent years, the Internet has gained popularity as a mean for doing busi-

ness. One of the firsts consequences of this growth in consideration is that

the sole guarantee of eventual delivery of multicast information became insuf-

ficient to satisfy needs of business applications. A nice example of this trend

is the use of networked auctions in the financial market. There, auctions are

handled by trading agents which exploit the real-time nature of the Internet

by reducing duration of auctions[54]. Bidders are required to be able to take

actions in a timely way, and this has inevitably repercussions on the need for

timely, other than reliable, communication.
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Literature is rich of communication systems and protocols which can suit a

wide range of application contexts. However, to the best of our knowledge,

none of the approaches analyzed addresses reliability and timeliness issues in

the multicast process. That is, none of the approaches found in literature

considers reliability and timeliness as functional requirements for a multicast

system or protocol. For this reason, in the remainder of this section we describe

a selection of the most interesting and successful techniques used to provide

separate reliability and timeliness.

2.2.1 Reliability

Reliability of a protocol/system refers to the capability of guaranteeing delivery

of data transmitted in a communication operation to all intended destinations.

In particular, this guarantee does not have to involve any time constraint, i.e.

delivery is eventual.

Reliability is the most basic form of QoS a system can provide, and approaches

studied to achieve it can be divided into two broad categories. The first con-

tains protocols aiming to provide deterministic guarantees, while the second

contains approaches aiming to provide probabilistic guarantees.

2.2.1.1 Deterministic reliability

Protocols in this category provide guarantees on the eventual delivery of data

on a deterministic basis. Reliability is typically achieved by employing tech-

niques based on ACKnowledgements (ACKs) and/or Negative AcKnowledge-
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ments (NAKs) to notify the originator and/or the rest of the group of reception

and/or loss respectively, of messages. The use of ACK/NAK-based techniques

requires efforts to avoid implosion of packets at the source and exposure of

receivers to redundant packets.

An effective solution to these problems has been found in grouping receivers

hierarchically in tree-like structures. This solution has been exploited by dif-

ferent protocols in several variations. The Log-Based Receiver Reliable Mul-

ticast [68] (LBRRM), originally designed to support Distributed Interactive

Simulations (DIS), arranges its hierarchy in primary and secondary logging

servers, to handle retransmissions within a subgroup of the multicast group;

receivers request retransmissions from the secondary logging servers, which in

in turn request retransmission from the primary logging server. LBRRM uses

a variable heartbeat scheme to provide detection of lost packets. The scheme

implies transmission of heartbeat messages containing information such as the

sequence number of the sequence number of the most recently transmitted mes-

sage. Messages are sent at a higher frequency rate immediately after a data

transmission, while the frequency rate decreases as time from data transmis-

sion elapses. The variable heartbeat scheme is shown to allow sooner detection

of packet losses in scenarios where the transmission rate is expected to be low.

However, in contexts characterized by higher transmission rate, such as scenar-

ios where multiple senders broadcast at the same time, the use of the variable

heartbeat scheme by each of them results in a dramatic increase of the message

overhead.
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A somewhat similar approach, yet structured in a simpler hierarchy, is used by

the Reliable Multicast Transport Protocol [93] (RMTP). In this, receivers are

arranged into local regions with a Designated Router responsible for maintain-

ing group membership information and aggregating ACKs and NAKs. RMTP

solves the problem of exacerbating the message overhead in scenarios subject

to high transmission mentioned for LBRRM, but raises the new problem of

drastic control overhead. In fact, RMTP limits exposure of receivers to redun-

dant transmissions and feedback implosion at the source by forcing receivers

to be grouped into local regions based on their proximity in the network. The

grouping into local regions, whose management is expected to be handled by

end hosts, trades accuracy, and therefore effectiveness, with control overhead,

with the consequence of an accurate and efficient grouping requiring a dramatic

increase of the control overhead. This problem is not solved in Reliable Mul-

ticast Transport Protocol II [113] (RMTP-II), which represents the evolution

of RMTP. RMTP-II introduces graceful support for TCP-based congestion

control algorithms[8] by interacting with a trusted Top Node from which it

accepts configuration information. Also suffering from the same weakness are

the Tree-based Multicast Transport Protocol [117] (TMTP) and the Local Group

Concept [67] (LGC).

The well known Pragmatic General Multicast (PGM) approaches solution of

this problem by relying on network support, which also prevents feedback im-

plosion and receiver exposure. Active routers suppress redundant NAKs by

forwarding only the first NAK for a given packet sequence number towards
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the originator. Subsequent NAKs for the same sequence number are dropped,

but the downstream interfaces on which they arrive are marked. The scope

of retransmission from the originator is then limited to only those marked in-

terfaces. Receivers observe an exponential back-off prior to sending a NAK,

which allows upstream active routers to suppress redundant NAKs by multi-

casting a confirmation message on the interface of an arriving NAK.

The Scalable Reliable Multicast [48] (SRM), on the other hand, solves the prob-

lem of preventing implosion of control packets by allowing receivers to wait for

a certain time, calculated as a function of the distance of the requesting node

from the originator, before sending repair requests, i.e. NAKs, and retrans-

missions1. Implosion is reduced by allowing multicast of NAKs and retrans-

missions to the entire group. By doing so, in fact, hosts on the point of failing

on the same packet the NAK refers to will realize that another host has al-

ready requested retransmission and will therefore refrain from sending their

own NAK. This has the effect of limiting to one the number of NAKs needed

to ask retransmission of a packet regardless of the number of receiver request-

ing retransmission. Exposure of receivers to redundant packets is limited in

SRM by allowing any host having received the packet the NAK refers to to

retransmit the packet after expiration of a timeout similar to the one described

for the repair request.

1This technique is borrowed from the Xpress Transport Protocol [103] (XTP), with the
only difference that here the time to wait was randomly generated.
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2.2.1.2 Probabilistic reliability

Protocols offering probabilistic guarantees on the eventual delivery of data tra-

ditionally achieve so by making use of a technique based on gossiping, originally

invented at Xerox[34]. The basic idea is to gossip messages to a randomly cho-

sen subset of the group in order to achieve probabilistic reliability guarantees.

Protocols employing this technique are referred to as gossip-based or epidemic

protocols, this latter denomination coming from the protocol dissemination

patterns being similar to the one typical of epidemics. Reliability in this cate-

gory of protocols is achieved through a number of redundant transmissions, to

all or a faction of the group, carried out at regular times of specified length.

Reliability is guaranteed on a probabilistic basis, and therefore small chances

remain that guarantees are not fulfilled.

In the Ensemble[62] system, Birman et al. proposed a two-phase approach

named Bimodal Multicast [14]. In the first phase the message is sent to a group

by means of a dissemination protocol using unreliable communication primi-

tives (either via IP multicast[32] or a randomized dissemination protocol[63,

43]). Each destination is assumed to have a set of pseudorandomly generated

spanning trees, and the broadcast of a message to the entire group is carried

out through the use of one of these. The second phase uses an anti-entrophy

protocol which ensures reliability by allowing members to exchange summaries

of message histories and compensating for inconsistencies.

The Lightweight Probabilistic Broadcast [44] merges the two phases of the afore-
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mentioned Bimodal Multicast, also integrating notions of membership manage-

ment by means of which the gossip is shown to be made scalable. The protocol

assumes each host to know only a random subset of its neighbors. The actual

communication is carried out by gossiping to randomly selected subsets of

neighbors. Gossip messages contain several information, some of which aimed

to amend group view of the host receiving it.

The approach of including group membership information in the gossiped mes-

sages is further exploited by the Directional Gossip[82], which takes into ac-

count network topology when gossiping. The connectivity of each node is

labeled with a value named the weight. The larger the weight of a node, the

higher the possibility for it to receive a given packet from other nodes. Nodes

with a higher weight are then chosen with a smaller probability when gossip-

ing, reducing redundant transmissions. In particular, LANs are represented as

single nodes to distant LANs, and “long” routes between two such representa-

tives are seldom chosen.

The Randomized Reliable Multicast Protocol [116] (RRMP) combines techniques

described for deterministic protocols with probabilistic techniques. As for de-

terministic protocols, the RRMP arranges receivers in a tree-based structure

based on their geographical position. However, unlike deterministic protocols,

responsibility for error recovery lies on all members rather than on a single re-

pair server. In RRMP an error can be local, i.e. recoverable by asking retrans-

mission to some other member in the local region, or regional, i.e. recoverable

only by asking retransmission to a member from another region. The former
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error is fixed in a local recovery phase, while the latter can be fixed by a remote

recovery phase. Both phases are executed concurrently as part of the protocol.

2.2.2 Timeliness

Timeliness refers to the capability of terminating a communication process

within a predictable interval of time.

Resource reservation and dynamic routing are the best known techniques to

provide timely multicast communication, and their study led to development

of several protocols.

2.2.2.1 Resource Reservation

Resource reservation is a very well known technique to support timeliness. As

the name suggests, the idea behind this technique is to reserve the amount of

network resources needed anticipately to start of service provision.

The Internet Engineering Task Force (IETF)’s Integrated Services [115] (IntServ)

architecture represents the result of an effort aimed to define a standard model

for support of fine-grained QoS. In this architecture, an application that needs

a specific QoS asks for a reservation based on the type of traffic it will be

generating and the QoS guarantees it needs. In IntServ terminology, such de-

scription is called a Flow Spec.

The actual reservation if performed by the ReSource reserVation Protocol [21],

and works as follows: all machines on the network capable of supporting some
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QoS send a PATH message every 30 seconds, which spreads out through the

network. Those who want to listen to them send a corresponding RESV (short

for ”Reserve”) message which then traces the path backwards to the sender.

The RESV message contains the Flow Specs. The routers between parties en-

gaged in the reservation process have to decide whether the reservation being

requested can be supported or not, and in this latter case they send a reject

message to let the listener know about it. If the reservation can be supported,

it is accepted and routers are due to carry the traffic. The routers then store

the nature of the flow, and also apply a certain policy over it.

This reservation process is done in soft-state, so if nothing is heard for a certain

length of time, the reader will time out and the reservation will be cancelled.

The individual routers may, at their option, police the traffic to check that it

conforms to the flow specs.

An approach similar to RSVP is adopted by Wang and Schulzrinne in [110]; the

Resource Negotiaton And Pricing protocol[109, 110] (RNAP) is used to reserve

resources anticipately to service provision. Reservation is based on exchange

of messages at regular intervals. This technique allows to maintain soft-state

state information, and when the message chain is broken the reservation is

intended to expire. RNAP architecture is designed to work in a distributed

(RNAP-D) as well as a centralized (RNAP-C) fashion.

The Differentiated Services [18, 77] (DiffServ) architecture is the Internet En-

gineering Task Force’s solution to provision of coarse-grained QoS. In it, mul-

tiple flows with similar traffic characteristics and performance requirements
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are aggregated into a finite set of classes. This approach requires either end-

user applications, first hop routers or Ingress routers, i.e. interfaces where

packets enter an administrative domain, to mark individual packets so as to

indicate the service class they belong to. The backbone routers provide per-

hop differential treatments to different service classes as defined by the Per

Hop Behaviors[25] (PHBs) specification.

This architecture features two service models, namely assured service[64] and

premium service[71]. The former is intended for customers that need reli-

able services from service providers. Customers are themselves responsible

for deciding how their applications share the amount of bandwidth allocated.

The latter, on the other hand, provides low-delay and low-jitter service and

is suitable for applications such as Internet telephony, video conferencing and

creating virtual lease lines for Virtual Private Networks.

Although flow aggregation improves scalability, the level of statistical guaran-

tees provided by DiffServ, and the question whether such guarantees do exist

at all, is unclear. May et al. propose an analysis of DiffServ performance

service models in [85], and several studies [24, 91] examine the loss and delay

behaviors of the DiffServ architecture using a variety of models.

2.2.2.2 Dynamic Routing

Dynamic routing refers to the capability of determining the source-destination

path dynamically based on specific factors, which can be specified by the user.
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As an example, the routing protocol might be required to find a path which

does not exceed a specific number of hops between source and destination,

or a path where the average packet delay does not exceed a given threshold.

Different protocols use different techniques to find the routing path.

Deterministic approaches[10] find the path from the source to destination by

means of deterministic criteria. For example, an algorithm might choose the

shortest path towards a destination as best way to reach it[83, 111, 84], or

might choose the shortest-widest path, where width is given by the amount of

bandwidth in the path[57].

Randomized approaches[53, 55, 72, 73] allow discovery of the path from a

source to a destination in a probabilistic fashion. Once on a hop, the choice of

the next segment is taken based on a conditional probability. This latter, in

turn, is influenced by the QoS specification to respect. As an example, Gelenbe

proposes in [53] an approach where QoS metrics are defined mathematically

with respect to a corresponding unit of data (which usually is a packet). Then,

a sensible routing policy is defined as a probability distribution which selects a

path based on such QoS metrics. The routing policy influences determination

of the path from source to destination. This policy is in fact applied on each

hop, and the path is determined by selecting incrementally segments satisfying

the conditional probability (inherently) specified by the routing policy.
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2.3 Discussion

2.3.1 Considering both Reliability and Timeliness

Approaches described in section 2.2 are concerned with provision of either re-

liability or timeliness guarantees on the communication operation, and none

of them considers both QoS attributes as equally important guarantees to be

provided in the multicast operation. The ones there described represent a

selection of approaches that is possible to find in literature. However, as men-

tioned at the beginning of this chapter, to the best of our knowledge none of

the approaches found in literature address provision of reliability and timeli-

ness.

In some cases, provision of basic QoS guarantees is extended with functionali-

ties which make the service more sophisticated. As an example, reliability can

be extended with different ordering schemes to form the so called Service Com-

position Frameworks [108, 90, 99, 9]. These frameworks foresee the presence

of micro-protocols [66], which can be stacked so as to offer a more sophisti-

cated service on the whole. The outcome of the use of a service composition

framework is typically QoS-sensitive transport layer[114] which is executed on

top of the basic TCP[96] or UDP[95] layer. However, applicability of this

technique can be considered only when limited to addition of functionalities

to extend the completeness of guarantees on the actual QoS provided, such

as extending reliability with ordering schemes, rather than extending the ser-

vice to offer guarantees in terms of other QoS attributes. In fact, a widespread
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opinion in the international scientific community, also confirmed by experience

in provision of QoS, states that provision of QoS, as in our case reliability and

timeliness, must be directly addressed as requirement since the design phase

of a system. This comes from the consideration that QoS is a non-functional

system aspect, and as such it cannot be integrated at a second time. In other

words, when designing a communication system with QoS features in terms

of certain attributes, provision of QoS guarantees needs to be considered as a

functional requirement in the design phase. Otherwise, the non-functional na-

ture of QoS makes its integration impossible in systems not natively designed

for its support.

In protocols offering deterministic reliability guarantees, described in section

2.2.1.1, the ACK/NAK scheme employed is based on reception of ACK/NAK

packets by means of which receivers can inform the originator (or any other

process designed to handle recovery) about reception/loss of a packet respec-

tively. However, in a network prone to unpredictable failures and delays such as

the Internet, application of this scheme might result in ACK/NAK packets to

be lost or unduly delayed, with the effect of unduly prolonging the time needed

for error recovery and consequently prolonging execution of the protocol for an

unpredictable time. Thus, utilization of this error recovery scheme naturally

exacerbates the concept of eventual delivery guarantees, which contrasts with

the concept of timely delivery advocated in chapter 1 and a major goal of this

thesis. As a side remark, a further limitation for this category of protocols lies

in that the vast majority of them assumes network support, such as the IP
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multicast[32] datagram delivery model in the case of SRM and RMTP, or en-

abling special routers, as for PGM, to support provision of reliability. In small

and medium environments, the assumption of existence of this type of support

can hold. However, the same support cannot be assumed in communications

carried out on environments composed by highly heterogeneous means as the

Internet.

The problem of recovery scheme naturally excluding provision of timeliness

guarantees can be found also in protocols offering probabilistic reliability guar-

antees, described in section 2.2.1.2. In these protocols, in fact, recovery situa-

tions are handled through variations of receiver-side schemes on which loss of a

packet is realized after a non predictable amount of time. In detail, protocols

and systems in this category of protocols, imply processes to realize loss of

packets by unduly waiting. Consider for instance the Bimodal Multicast[14].

Receivers come acquainted of loss of a packet only when the anti-enthropy pro-

tocol allows exchange of message summaries with processes having received the

message eventually lost. Reception of such a summary cannot be predicted to

be bounded in time, and therefore usage of such scheme does not allow to

provide systematic guarantees on timely message delivery.

Introduction of the Internet as communication medium between nodes employ-

ing probabilistic reliability protocols implies introduction of potentially high

latency links between nodes. This has repercussions on timeliness issues on

this category of protocols regardless of utilization of topology information: in

protocols that do not use network topology information in the recovery mech-
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anism, such as Bimodal Multicast and Lightweight Probabilistic Broadcast,

introduction of the Internet as a communication mean might result in suffer-

ing unpredictably high delays in error recovery. On the other hand, in proto-

cols whose error recovery mechanism takes into account topology information,

might result in construction of static hierarchies with the consequence of intro-

ducing potential single point if failure weaknesses (as in the case of Directional

Gossip and RRMP) or, in the best case, considerable message overhead due to

adaptation to network instability.

The problem with all approaches mentioned seems to be in “recoverability”. In

fact, they all rely on recovery mechanisms whose activation cannot be bounded

in time. For this reason, we advocate the use of proactive recoverability as a fun-

damental concept to support timeliness in multicast communication: receiving

processes should be proactive in triggering a recovery mechanism when delays

or losses are detected to affect reception of information. Doing so, in fact, will

ensure that receiving processes maintain multicast time bounds.

Trying to add reliability to protocols natively offering timeliness guarantees

triggers different problems and mainly tied to application to a multicast con-

text. Consider for instance RSVP[21] described in section 2.2.2.1. The reser-

vation process requires each router on the path from a source to a destination

to store a set of states defining characteristics of the resources to reserve. The

number of states to be stored grows when the communication operation is a

multicast rather than a unicast. As a result, RSVP tend to suffer the multi-

plicity of states that must be stored in each router. This limits scalability, and
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for this reason its usage in multicast contexts is today very limited.

This is a well known limitation of the IntServ architecture and of RSVP in par-

ticular, and has been considered heterogeneously by the scientific community.

Among the solutions proposed to solve this problem, Baker et al. propose in

[12] a solution based on a multi-level approach: resource reservation is pro-

posed to take place on a per-microflow basis (i.e. on the basis of individual

users) at the edge network, while in the core network resources are reserved

for aggregate flows only. Moreover, routers in between these different levels

are proposed to adjust the amount of aggregate bandwidth reserved from the

core network. This will allow reservation requests for invididual flows from the

edge network to be better satisfied. However, although feasible, the proposed

solution requires a considerable amount of work in terms of restructuring of

RSVP and, at present, no mention of development or effectiveness of this ap-

proach can be found in literature.

On the other side of the scientific community, scientists question about useful-

ness of multicast support [51] against lightness in NSIS signaling protocols[75]

extensions, and open scenarios where multicast is no longer supported in

RSVP.

In addition to the problem described above, resource reservation protocols (and

in particular RSVP) often depend on routers enabled to deal with specifically

tagged traffic. In particular, the RNAP approach assumes each hop (in the

distributed architecture, RNAP-D) or each router (in the centralized architec-

ture, RNAP-C), along the path towards destinations, to execute the protocol.
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When applied to cross-Internet multicast communication, hosts in the source-

destination path belong to separate domains. Each of these will have diverse

security policy, and the assumption that all of them support such a proprietary

traffic format cannot hold.

Timeliness supported through dynamic routing might also suffer weaknesses.

Deterministic routing approaches are shown to perform well in networks pro-

viding accurate link state information[92]. However, this approach is inher-

ently insensitive to dynamic network changes, and therefore its performance

degrades in scenarios where link state information becomes inaccurate[100, 92,

98, 101]. As a consequence, hypothetical application on the context of geo-

graphically distant hosts communicating through the Internet would probably

result in communication processes offering unpredictable QoS service levels.

Randomized routing algorithms do not suffer insensibility problems described

for the deterministic ones, and are shown to perform well in presence of inaccu-

rate link-state information[72, 73]. However, as for others approaches, routing

approaches imply its architecture to be extensively installed on routers and/or

hops on the source-destination path. Therefore it might not suit best-effort

Internet-scale environments which suffer of frequent topological changes.

2.3.2 Negotiation

The lack of possibility to negotiate the QoS level with the user is another major

limitation of the vast majority of the approaches discussed in section 2.2. In

chapter 1, in fact, we advocate the need of negotiation services in the context
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of provision of e-services, where services to be provided are dynamic in nature

and provision consequently involves runtime negotiation of newly aggregated

services. Majority of systems and protocols described in section 2.2 provide

either of the QoS attributes under consideration with the inherent assumption

that the service level obtained is always the maximum possible. Hypothetical

application of such protocols in the context of e-services under consideration

would result in heavy scalability limitations in terms of possible concurrent

operations, as the service provided would soon start decreasing in quality.

Wherever handled, as in RNAP[110], negotiation is intended as a network

price billing followed by resource reservation. As such, negotiation takes place

between the entity providing the network service and the single customer who

chooses the service based on the price he is willing to pay. This type of ne-

gotiation, typical of unicast communication schemes, is followed by a resource

reservation in the path provider-customer, and suffers the same (scalability)

problems already mentioned for the approaches based on resource reservation.

In addition, application of the approach proposed by RNAP on a network of

hosts communicating through the internet through the decentralized architec-

ture approach (RNAP-D) assumes network support by requiring the protocol

to be installed on all routers on the path and this assumption, as already

mentioned, cannot hold on an Internet context.
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2.3.3 Our approach: reliable and timely multicast

The QoS-Supportive Reliable Multicast System subject of this thesis is rad-

ically different from all systems/protocols described in previous sections. Its

key features, in term of provision of QoS guarantees, can be enumerated in

two points:

(i) Provision of reliability and timeliness QoS attributes at the design level,

and

(ii) Provision for QoS negotiation.

As a consequence of (i), the protocol provides combined service guarantees on

both attributes. As a consequence of (ii), the protocol allows such guarantees

to be negotiated with the user anticipately to service provision. This latter

possibility, in particular, gives the application user the freedom to consider

the service level as guaranteed with respect of the communication. The two

features above make, to the best of our knowledge, our system unique in the

panorama of multicast protocols, as all systems/protocols previously described

are designed so as to provide either reliability or timeliness in the multicast

service.

2.4 Concluding Remarks

We have studied provision of QoS in point-to-point multicast communication,

putting emphasis on the choice of reliability and timeliness as fundamental
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attributes.

Reliability can be traditionally achieved by means of deterministic or proba-

bilistic approaches. Former approaches are driven by ACK/NAK-based tech-

niques on hierarchically structured receivers, while protocols using the latter

approach use gossip-based techniques on all or factions of the group.

Resource reservation and dynamic routing are the techniques traditionally em-

ployed to achieve timeliness. The former aims to reserve resources anticipately

to service provision, while the latter implies (deterministic or probabilistic)

routing techniques to find the optimal path towards destinations based on

specific QoS parameters.

We have discussed how the non-functional nature of QoS does not allow it to

be integrated at a second time, and identified the problems of adding support

for timeliness in systems/protocols offering reliability as caused by the “pas-

siveness” of their respective recovery mechanisms. Therefore, we advocated

the use of proactive recoverability as a fundamental concept to support timeli-

ness in multicast communication.

In protocols providing timeliness, we identified the problem as the support for

the multicast scenario. We discussed how approaches based on resource reser-

vation suffer the multiplicity of states that need to be stored. On the other

hand, protocols employing dynamic routing to provide timeliness guarantees

are shown to be ineffective in presence of inaccurate link state and are, con-

sequently, insensitive to dynamic network changes. Besides, both approaches

need to be self-supported by installation of own architecture on the whole net-
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work.

We also showed how QoS negotiation, whose need we advocated in chapter

1, is very limitedly supported in systems/protocols discussed and, whenever

supported, in protocols offering timeliness, suffers scalability problems due to

the lack of support for the multicast context.

Finally, we claimed the system subject of this thesis as unique in the panorama

of multicast systems/protocols. The assertion derives from the consideration

that, to the best of our knowledge, our system is the only system capable

of providing negotiable reliability and timeliness guarantees in the multicast

process.
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Chapter 3

System Model and Architecture

3.1 Introduction

Systems and protocols described in the previous chapter assume either the syn-

chronous or asynchronous system model as a conceptual basis. Both models

have proven to be effective in providing guarantees in terms of eventual delivery

on cross-Internet communications,. However, timeliness guarantees in cross-

Internet communications have probabilistic, rather than deterministic, nature

and therefore both models become inappropriate. In fact, QoS-supportive

communication on a cross-Internet environment implies acommunication de-

lays to be essentially finite and known.

The synchronous model allows delays to be known, but it does not assume

they are finite. On the other hand, the asynchronous model assumes delays to

be finite but no assumption on the bound can be made, i.e. they are assumed

not to be known.

Today’s Internet communication are characterized by fluctuations deriving

from the heterogeneity of infrastructures and traffic between source and des-
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tinations. In order to capture this nature, a different conceptual model is

needed.

The system subject of this thesis is based on a model, called Probabilistic

Asynchronous [45] (PA) model, that enhances QoS support by offering a prob-

abilistic approach. Components are assumed to meet their performance re-

quirements most of the time, adhering to the classical asynchronous model

only when such requirements are not met.

The PA model combines probabilistic design techniques with asynchronous

ones, and characterizes the context in which many practical and Internet-based

applications are built by allowing QoS guarantees which are probabilistic in

nature.

Use of the PA model is coupled with the use of a QoS-adaptive middleware

architecture[40] that enhances QoS-sensitive communications by providing a

QoS management interface to support the traditional service interface. The

QoS management interface exports performance information in terms of met-

rics such as packet delay, loss and jitter. The idea is that by providing runtime

performance information on a determinate subsystem, other system compo-

nents can retain behavior of that subsystem predictable in the long term.

The RMcast system subject of this dissertation is designed in a modular way

based on this architecture. The QoS management interface is implemented

by the Negotiation Component (NC), which provides QoS negotiation facili-

ties through performance evaluation algorithms. The service interface, on the

other hand, is implemented by the RMcast Component (RMC) through the
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use of a fault-tolerant protocol providing a configurable reliable multicast[58]

service. Furthermore, the middleware system is designed for the use on top of a

Communication Subsystem (CS) offering basic communication primitives. As

a basic resourceful subsystem, this latter does not usually export a QoS man-

agement interface, which contradicts with requirements of the QoS-adaptive

middleware architecture to be able to assess resources of low-level subsystems.

To this extent, the RMcast system features a Network Measurement Compo-

nent (NMC) capable of assessing network metrics, on a statistical basis, in

order to describe behavior of the CS.

3.2 System model

As mentioned in the previous section, all systems and protocols described in

chapter 2 are designed based on the synchronous or asynchronous model, or

variations of them.

The synchronous model assumes processing and communication delays to be

known but not necessarily finite, while the asynchronous model assumes de-

lays to be finite but no assumption on the ability to deduce delay bounds and

distribution, regardless of their accuracy, can be made. Systems designed on

the synchronous model require an accurate provisioning of system resources,

together with a complete knowledge of the user environment, to provide QoS

guarantees. Therefore, synchronous systems suit only a restricted set of appli-

cations. On the other hand, systems basing their design on the asynchronous
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model can provide eventual correctness only, and QoS issues are left as second

thoughts. However, experience has shown that QoS provisioning can only be

achieved by considering it a core objective in the design phase.

Today’s Internet is composed by infrastructures which are heterogeneous in

bandwidth availability and data-management policies. As such, performance

is subject to fluctuations which do not allow to make predictions in the long

term, with the obvious consequence that QoS provision becomes a complex

task.

The RMcast system subject of this thesis uses a different conceptual system

model, namely the Probabilistic Asynchronous (PA) model[45]. The model

characterizes the behaviour of Communication Subsystem (CS), which man-

ages the capacity to communicate information. This subsystem is denoted as

SR in Figure 3.2. This model regards that system components do meet their

performance requirements most of the time, and occasionally they may not.

Objective of the PA model is to allow systems to adaptively meet QoS obliga-

tions to the end users when system components meet their QoS guarantees or

violate them only marginally; eventual correctness is never compromised when

components fail in their QoS obligations.

The system is made up of nodes that communicate using the CS. A node or

any process hosted within it functions correctly until and unless it crashes. A

node (or a process) that does not crash is said to be correct. To present the

probabilistic model, we will assume a global clock which is not accessible to

processes.
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• Transmission Delays : If a correct process i sends a message m to another

correct process j at time t, then

– m is delivered to j (i.e., m arrives at the buffer of j) with some

probability 1 − q (m may be lost in transmission with probability

q).

– if m is not lost, it is delivered at t + δ where δ is a random variable

with some known distribution.

If the distribution of δ is uniform with some known mean and q = 0, then

the probabilistic model refers to the well-known synchronous model which per-

mits upper bounds on δ to be determined with certainty. The asynchronous

model considers the bounds on the delay δ to be finite; neither the bounds

nor the delay distributions can be known with certainty. For example, any

bound on delays, however judiciously deduced, is vulnerable to being violated

with unknown probabilities. The probabilistic model, on the other hand, as-

signs probabilities or coverage to quantification of delay bounds. Figure 3.1

shows a table comparing the PA model with the classical synchronous and

asynchronous models.

Note that the synchronous model is subsumed in, or is a special case of, the PA

model. This means that any PA protocol should run correctly (not necessarily

efficiently) in a synchronous system. Conversely, if a problem is unsolvable in

a synchronous system, then it cannot be solved in the PA model.
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Models
Parameters

Synchronous Asynchronous
Probabilistic
Asynchronous

Bound on
successive

transmission
losses, k

known
finite and

known
random variable

on [0,∞]

End-to-end
delay for
a “sent”

message, δ

has a known
bound

has a finite
and unknown

bound

random variable on
[0,∞] with known

distribution, if
message not lost

Figure 3.1: Comparison of models

3.3 QoS-Adaptive Middleware Architecture

For a QoS adaptive system to be feasible, resourceful subsystems, indicated

as SR in figure 3.2 must export a QoS management interface in addition to

the traditional service interface. Using this interface, the middleware system

SM can request SR whether a specified distribution for the delay variable δ

and a specified loss probability (q) can be supported; this in turn would help

determine whether a given set of requirements on bandwidth capacities addi-

tionally needed to support an end user requirement can be met. If the request

for a specified distribution for the delay variable cannot be supported, SR may

respond with the delay distributions which it can currently support.

The middleware system SM will have two components: a service component

(serviceM) and QoS management component (qosM):

• serviceM implements a specified service tolerating at most ϕ node crashes;

• qosM evaluates the delay distributions of serviceM as a function of such

distributions offered by serviceR. qosM will also take into account the
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Figure 3.2: QoS-Adaptive middleware architecture.

overhead that serviceM would incur given the size of input from the

higher level.

At the top of the stack are the application (A) and its QoS manager (qosA).

When a user submits a request with the required (probabilistic) delay and

throughput guarantees (interaction (i) in Figure 3.2), the application QoS

manager qosA computes and passes down the QoS guarantees expected of

SM to qosM . The QoS feasibility evaluation thus travels down to SR which

computes if it can maintain the necessary mean and the variance of delay

distributions for the overall resource requirement. If it is possible, then the

user request will be accepted; else, SR returns the mean and variance it can

sustain and the reverse computations are made by qosM upwards (interaction

(ii) in the figure). The user is then informed of the QoS guarantees the system
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can offer.

Suppose that a user request is accepted for a set of given QoS metrics.

qosM records the QoS requirements that serviceM needs to meet (interaction

(iii) in Figure 3.2). The service request is submitted to the application whose

execution invokes both serviceM and serviceR (interaction (iv) in Figure 3.2).

The (fault-tolerant) protocol that implements serviceM is designed with con-

figurable parameters; the choice of these parameter values will influence the

protocol behaviour and thus the QoS offered by serviceM . These parame-

ters can be regarded as QoS control knobs, and, in what follows, we will term

serviceM as (QoS) controllable protocol based serviceM , or simply as CPSM .

The responsibility for setting appropriate parameters is upon the QoS manage-

ment component, qosM , so that CPSM (or serviceM in Figure 3.2) can meet

its QoS obligations in providing its services to application A. This parame-

ter setting and the feasibility analyses carried out prior to accepting the user

request will require that qosM be equipped with algorithms to evaluate the

performance of CPSM in terms of these parameters. Specifically, qosM should

be able to evaluate the QoS metrics offered by CPSM for a given set of param-

eter values (e.g., latency for a given level of redundancy) and vice versa, and

also derive the parameter values from the QoS guarantees from serviceR below

(e.g., the level of redundancy for a given loss probability) and vice versa. The

module which contains these evaluation algorithms is called the (QoS) Negoti-

ation module and offers a set of services called the (QoS) Negotiation Services.

Developing algorithms for (QoS) Negotiation module involves stochastic mod-
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elling and performance evaluation. Tractable performance analyses generally

warrant approximations to be taken and in the system subject of this doc-

ument such approximations tend to underestimate the actual performance.

This means that serviceM tends to perform better than predicted by the Ne-

gotiation module, offering a better QoS to application A than promised. The

overall system thus has an inherent tendency not to fail on the end-to-end QoS

promised to the application.

When the CS is managed by an ISP, it is possible that the QoS guarantees

agreed by the ISP are violated for a prolonged period. These violations can

lead to the middleware system being unable to meet QoS obligations at run

time. So, a requirement for qosM is to monitor the QoS offered by serviceR

to CPSM , and attempt to re-adapt the protocol of CPSM so that CPSM still

maintains its QoS guarantees to application A. The monitoring and reporting

activities are carried out by the QoS Monitoring module within qosM , and its

services are collectively called the Monitoring Service.

3.4 QoS-Supportive Reliable Multicast System

Architecture

The RMcast system lies on top of the network and the kernel is below the ap-

plications to be hosted. As per the ISO OSI hierarchy, it is at level 5 (session)

with network (layer 4) providing a basic (unicast) communication support as



40

QoS-enabled 
Group Communication

System

User Application

ISO OSI Hierarchy

Level 4 
(Transport)

Levels 6-7 

Levels 1-3 

Level 5 
(Session) Reliable 

Multicast

Group
membership

Network

Figure 3.3: Position in the ISO OSI hierarchy.

can be seen in Figure 3.3. Referring to the figure, group membership service

provides a realistic view to the application as to which processes are deemed

to have crashed. For this view to be consistent, it needs to reach agreement

with processes regarded to be operative. Usually this service is provided by a

group management protocol. Appendix A describes and studies an example

group management protocol, which makes use of gossip-based techniques, that

might be used in conjunction with the RMcast system to form a GC system.

Architecture of the QoS-Supportive RMcast system is shown in figure 3.4. The

RMcast Component (RMC) contains a fault tolerant protocol which offers the

reliable multicast service. Reliability guarantees are “tailored” to specific QoS

requirements by means of configuration parameters. These influence behavior

of the protocol by allowing the protocol to adapt to fulfillment of those QoS

requirements.

Configuration parameters are generated by the Negotiation Component (NC)
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Figure 3.4: System architecture.

in the process of evaluating feasibility of QoS requirements by the user, as

part of the QoS negotiation. In addition, the Network Measurement Compo-

nent (NMC) provides an interface to monitor behavior of the CS. Monitoring

data, which has statistical nature and is calculated based on a configurable

slot of time, allows components of the system to retain behavior of the CS

predictable in that interval. This, in turn, allows the NC to base evaluation

of the stochastic model on such data, and the RMC to adapt behavior of the

RMcast protocol accordingly

Figure 3.4 shows composition of the system. The Network Measurement Com-

ponent gather network performance figures in terms of metrics which are made

statistical over an interval time. This latter is initially specified in advance and

configurable based on stability of the network.

Data so obtained is then exchanged among other system components (i.e.



42

Negotiation Component and RMCast Component) and used in the QoS nego-

tiation process and in the RMcast protocol.

The RMcast Component is in charge applying the RMcast protocol to the

data the user desires to multicast. Communication towards the user applica-

tion is realized through an interface exporting sophisticated communication

primitives. The application user can utilize these primitives to gain access the

RMcast service.

The Negotiation Component is in charge of allowing the application user to

negotiate QoS requirements with the system. To this end, it provides a negoti-

ation interface containing negotiation primitives. QoS negotiation implies, on

the system side, knowledge of the QoS the CS can support. This information

is obtained by evaluating a stochastic model of the RMcast protocol the Ne-

gotiation Component contains. The stochastic model is intended to be based

on current network conditions. This latter information is obtained through

statistical network metrics by coordinating with the Network Measurement

Component. If a QoS negotiation is retained to be successful, evaluation of

the stochastic model allows generation of parameters which allow the RMcast

protocol, in the RMcast Component, to adapt its behavior to fulfill the agreed

QoS requireements. Therefore, if a negotiation is successful the Negotiation

Component shares such parameters with the RMcast Component to the extent

of providing initial setup for the RMcast protocol there contained.
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3.4.1 Network Measurement Component

The Network Measurement Component performs a monitoring activity of net-

work behavior, aimed to estimate performance by calculating certain network

metrics on a statistical basis. Monitoring is performed with a technique based

on sampling of the CS at regular intervals to infer information about its be-

havior, and processing results in a statistical fashion to calculate metrics of

interest. Finally, the Network Measurement Component notifies other compo-

nents with corresponding relevant metrics as figure 3.5 shows.

The Network Measurement Component represents the QoS management inter-

face for the CS. Its presence allows to retain behavior of the CS predictable in

the long term by calculating statistical network metrics over specific intervals

of time, and is fundamental to the RMcast system regardless the of the way

the CS provides communication.

When the CS is managed by an ISP using resource management models for

the Internet[47] a Service Level Agreement (SLA) specifies commitment of the

ISP to provide a compliant service level throughout the entire provision time.

Service level is thereby specified in probabilistic terms, and network behavior

is guaranteed to comply to certain specifications agreed upon anticipately to

service provision. However, figures in the SLA do not reflect network fluc-

tuations and cannot be taken as values describing network performance in a

determinate moment. Therefore, even in case of an ISP managing the under-

lying CS, the need for measurement of network performance on a run-time
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basis still holds. In addition, the ISP does not usually provide tools to mon-

itor correct provision, and therefore the monitoring activity brings the added

value of proofing that the service is provided within the terms agreed, while

providing other components with accurate network metrics. To these extents,

data is monitored as in the case of the best effort CS described and, besides

updating other components, metrics are also matched with performance guar-

antees specified in the SLA, as shown in figure 3.6. If comparison terminates

with figures calculated to fall in the range of admissible service level, than

the service provision is taking place correctly. Otherwise, if they fall in an

inadmissible range or contrasts with SLAs in any other way, then the ISP is

violating the agreement. Violation is therefore reported, whereas a violation

detection system is foreseen, or the user is simply notified.

3.4.2 Negotiation Component

The Negotiation Component contains functionalities to allow negotiation of

specific QoS levels with the user application. Negotiation is based on algo-
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rithms capable of carrying out feasibility analyses for specific service levels.

These latter analyses aim to evaluate an analytical model of the (reliable mul-

ticast) service offered by the RMcast Component, in order to pursue a decision

on whether the service level requested can be supported or not. Evaluation

of the analytical model approximates reliability and timeliness properties of

the protocol and takes into account current environmental conditions (such as

group size and network performance and conditions).

The Negotiation Component obtains an assessment of the QoS currently sup-

ported by the CS, in the form of statistical metrics, from the Network Mea-

surement Component. Such an assessment is updated on a regular basis in

order to reflect network behavior, and the information is used in the process

of evaluation of the analytical model.

When a negotiation is retained successful, i.e. the system decides the QoS level

requested is achievable, evaluation of the stochastic model produces parame-

ters to allow configuration of the reliable multicast protocol in the RMcast

Component to achieve the QoS level requested. Setting of these constitutes

the configuration phase of the RMcast Component.

Interactions just described are depicted in Figure 3.7, where the Negotiation

Component sustains a successful negotiation, also by using metrics provided by

the Network Measurement Component, and provides the RMcast Component

with parameters. The circle in the middle of the component represents the

negotiation process, where data provided by the Network Measurement Com-

ponent is used in order to evaluate the analytical model and compare results
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Figure 3.7: Negotiation Component in presence of a best effort CS.

with user requests.

3.4.3 RMcast Component

The RMcast Component contains the service offered by the system, provided

through a fault-tolerant protocol. Its design is based on redundant transmis-

sions of data to be carried out at fixed intervals, and its structure is described

in detail in th next chapter.

Level of redundancy and interval time between subsequent retransmissions in-

fluence the behavior of the protocol, and are specified a priori as protocol

configuration parameters. Responsibility of the setting of these is upon the

Negotiation Component. Figure 3.8 shows the interaction model for the RM-

cast Component. Referring to this figure, setting of parameters represents the

configuration phase, and is the first step of the initialization phase. Other steps

in this latter phase involve creation of a communication down-stream (towards



47

the CS) and a communication up-stream (towards the user). Both streams are

bidirectional, and allow the system to handle incoming and outgoing traffic.

The first allows the system to access the basic CS communication primitives

by means of which incoming data will be received and outgoing data will be

transmitted. The second, on the other hand, will provide a communication

channel with the user, where outgoing data will be received and incoming

data will be delivered. In between these two streams, the RMcast protocol

will apply its logic to both types of traffic in such a way to achieve the agreed

QoS guarantees.

The protocol is adaptive in a way that its behavior accounts for current net-

work performance. However, adaptation is based on knowledge of current

network conditions. In detail, the proactive recovery mechanism is based on

timeouts whose length accounts for current network conditions. Detection of

the network changing its behavior consistently will be reflected in provision of

up-to-date network metrics, and the protocol will automatically adapt time-

outs so as to account for the new conditions by integrating updated network

metrics. To this extent, the RMcast Component coordinates with the Network

Measurement Component in order to obtain timely updated on network met-

rics.
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3.4.4 Sequential Interaction Model

The lifecycle of the system components is dominated by three principal oper-

ations, encapsulated into phases in figure 3.9:

• Phase 1 (Initialization). Starts when execution of the system starts,

and terminates when the system is ready to accept negotiation requests.

Components involved in this phase are essentially the ones performing

background operations which do not need to interact with the user ap-

plication. The Network Measurement Component and the Negotiation

Component are instantiated. The former starts measuring network per-

formances, while the latter idles for the user application to request a

negotiation while obtaining up-to-date network metrics from the Net-

work Measurement Component. This phase is depicted in the PHASE1

diagram of figure 3.9.
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• Phase 2 (Negotiation). Sometimes after termination of the initialization

phase, the user application requests a negotiation process. The system

then enters the negotiation phase, as shown in PHASE2 diagram of fig-

ure 3.9.

Negotiation is requested by asking for a multicast operation to be com-

pleted within specified reliability and timeliness performance bounds.

Invocation of the negotiation primitive conveys this information to the

Negotiation Component.

The analytical model is then evaluated and a decision on whether to ac-

cept the request or not is taken based on the comparison between values

generated in the evaluation and user application ones.

Successful negotiations generate parameters for configuration of the RM-

cast protocol. Such parameters are therefore used to setup the RMcast

Component for the service level to be achieved ((2a) in the PHASE2

diagram of figure 3.9). In case the negotiation fails, i.e. the system can-

not support the requested service level, the user is notified ((2b) in the

PHASE2 diagram of figure 3.9), eventually providing the service level it

can actually sustain.

• Phase 3: (Service Provision). Configuration of the RMcast Component

for achievement of the agreed service level starts this phase. Configura-

tion also involves setup of the inter-component communication with the

Network Measurement Component to the extent of obtaining up-to-date



50

RMcast
Component

Network
Measurement
Component

Negotiation 
Component

Communication Subsystem

NMC

Service 
Request

(1)

Request
Rejected

(2b)

(2a)

NC

RMC

NMC

Down
Stream

(3a)

(3b)

CS 
Up

Stream

(4a)

Up
Stream

CS 
Down

Stream

(4b)

Communication Subsystem Communication Subsystem

User ApplicationUser Application User Application

RMcast 
Component

Negotiation
Component

Phase 1 Phase 2 Phase 3

Figure 3.9: Sequential system logic base on main tasks: network monitoring
(phase 1), negotiation (phase 2) and service provision (phase 3)

network metrics of interest. The next initialization step is to create ap-

propriate streams for outgoing and incoming data flow ((3a) and (4a) in

the PHASE3 diagram of figure 3.9), which will be handled by the RM-

cast protocol based on its logic and delivered (incoming data, (3b) in the

PHASE3 diagram of figure 3.9) or transmitted (outgoing data, (4b) in

the PHASE3 diagram of figure 3.9). The basic CS communication prim-

itives are used by the RMcast Component based on the logic contained

in its protocol in order to be reliably multicast.

3.5 Concluding Remarks

In this chapter we have described the architecture of the RMcast system. We

have shown how the use of a QoS-Adaptive Middleware Architecture provides

support for negotiable QoS guarantees by combining the use of the traditional
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service interface with a QoS management interface. We have described how

in our system the former, which we named RMcast Component, offers a reli-

able multicast service through a fault-tolerant protocol, and the latter, named

Negotiation Component, provides QoS negotiation and evaluation analyses

through anticipate evaluation of an analytical model of the service protocol.

We have also showed how both components rely on up-to-date information

about current network conditions, putting emphasis how particularly impor-

tant this is to bring adaptation in the RMcast protocol. To this extent, we

described the interaction model of each component with the Network Mea-

surement Component, which monitors the CS on a constant basis to the end

of producing statistical metrics which describe the network behavior.

Finally, we have discussed the sequential interaction model that allows the

system to initialize, negotiate and provide the reliable multicast service.
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Chapter 4

Single Packet Protocol

4.1 Introduction

The system offers a multicast service whose reliability level can be negotiated

before start of the service provision. Its core is constituted by an RMcast

protocol providing probabilistic guarantees on multicast delivery. Guarantees

are provided in terms of reliability, by provision of agreement, and timeliness,

by ensuring respect of specified latency delay bounds.

Reliability and timeliness guarantees are agreed through a negotiation which

takes place before start of service provision. Negotiation involves evaluation of

an analytical model capable of approximating behavior of the protocol based

on current network conditions.

Accuracy of approximations and additional overhead, in terms of message traf-

fic, are discussed by comparing the approximated stochastic model with results

obtained by simulating the protocol on an environment identical to the one

assumed in approximations.
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4.2 System context

We consider a system of n, n > 1, distributed nodes that communicate using

an ISP supported communication subsystem (CS). Each node hosts a distinct

process pi, 0 ≤ i ≤ n − 1. These processes cooperate with each other as

a group G for supporting some distributed application. The group size is

known to members. Without loss of generality, the numbering of processes is

assumed to imply a ‘seniority’ ordering: process pi is said to be ‘more senior’

than process pj if i < j. A node (or the process hosted on it) functions

correctly until and unless it crashes (i.e., ceases to be operative). A process

that does not crash until the group G needs to exist, is said to be correct.

Each process has a primitive send(m) using which it can send a message m to

another process. The send(m) is said to be successful if m is deposited in the

receive buffer of the destination process. The message m is assumed to have

standard size, i.e. we assume that the message does not need to be fragmented

before being multicast.

We assume that the processes of G are over-provisioned with computational

capacity. That is, queueing delays, processing delays, and scheduling delays

can be assumed to be negligibly small compared to network delays. This means

that a process can instantaneously receive a message which the CS deposits

into its receive buffer, and the inter-process communication delay will be the

message transmission delay over the network. The CS ensures that when an

operative process invokes send(m) to send m to another operative process,
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then

• the send(m) operation is successful with a known probability 1− q, i.e.

m is lost with probability q; and,

• if send(m) is successful, the network transmission delay of m is an inde-

pendent random variable with some known distribution.

4.3 Design of the Reliable Multicast Protocol

The protocol exports two primitives: RMcast(m) and RMdeliver(). When

a process wishes to multicast a message reliably to processes in G, it invokes

the operation RMcast(m). This process will be called the originator of m. A

message m sent by an invocation of RMcast(m) is delivered to a destination

process by RMdeliver(). The protocol is designed with configurable parame-

ters using which QoS offered can be set to the desired level. The QoS guaran-

tees are probabilistic in nature and fall into two broad categories: reliability

and latency.

Invocation of the RMcast(m) primitive is subject to a prior successful nego-

tiation. In fact, the Negotiation Component is responsible for the generation,

in the negotiation process, of configuration parameters to allow the RMcast

protocol to adapt so as to achieve the negotiated QoS level. A negotiation

will then be necessary each time the RMcast(m) will be invoked. This need

will be relaxted in the next chapter, where approaches to provision of likewise

guarantees on a set of packets, rather than a single message, will be introduced
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and studied.

4.3.1 Specification of Protocol Guarantees.

The protocol offers probabilistic guarantees concerning reliability.

• Validity. If the originator of m does not crash until its invocation of

RMcast(m) completes, then all correct destinations deliver m with a

probability which can be made arbitrarily close to 1.

• Agreement or Unanimity. The probability that if a multicast message

is delivered to a process, it is delivered to all correct destinations, is very

high and can be evaluated in advance.

Note that the agreement guarantee actually refers to what is known as the

uniform agreement property [59]: even if a process crashes shortly after deliv-

ering m, then all correct destinations are guaranteed to deliver m with a high

probability. This means that if a crashed process has invoked RMcast(m′)

soon after delivering m, then any correct process that delivers m′ is guaran-

teed to deliver m with a high probability.

The protocol offers the following guarantees on latency.

1. The interval between an originator invoking RMcast(m) and the first

instant thereafter when all correct destination processes have delivered

m, does not exceed a given bound, D, with a probability, rD, which can

be evaluated in advance.
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2. If, following an invocation of RMcast(m), the message arrives at a pro-

cess, then it will be delivered at all correct processes within a further

interval of a given length, S, with a probability, uS, which can be evalu-

ated in advance.

These properties will be referred to as latency bound and relative latency bound,

respectively (the latter is also known as tightness in the literature.). They

enable an application developer to reason about timeliness: a process that

invoked RMcast(m) at time t may assume that, by time t + D, m is delivered

to all correct destinations (with probability rD); a destination process that

has delivered m (through RMdeliver(m)) at time t may assume that, by time

t + S, all correct destinations have delivered m (with probability uS).

4.3.2 Design features

The RMcast protocol has three features which are designed to assure high

probability of success at tolerable cost in message traffic:

(a) The execution of RMcast(m) comprises more than one invocation of a

broadcast(m) operation. Each of these invocations sends the message m

to each destination in a concurrent fashion.

(b) The responsibility for invoking broadcast(m) initially rests with the orig-

inator of the message, but may devolve to another process, and then to

another, in consequence of crashes, message losses or excessive delays.
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(c) In the event of such a devolution, a decision procedure attempts to select

exactly one process to take over the broadcasting responsibilities.

These features can be described as Redundancy, Responsiveness and Selection,

respectively.

4.3.2.1 Redundancy

The redundancy of the protocol is controlled by two parameters:

(i) An integer, ρ, specifies the level of redundancy; the originator of a mes-

sage makes ρ + 1 attempts to broadcast it (if operative); these attempts

are numbered 0, 1, . . . , ρ; typically, ρ ≥ 1.

(ii) The interval between consecutive broadcasts is of fixed length, η; that

length is chosen to be as small as possible, but sufficiently large to make

any dependencies between consecutive broadcasts negligible.

One way of choosing η is to require that the transmission delay between a

source and a destination is less than η with a given probability, α (reasonably

close to 1). In the case of exponentially distributed delays with mean d, η is

given by

η = −d log(1− α) .

More conservatively, η can be chosen so that it exceeds the largest of n − 1

parallel transmission delays with probability α. In the exponential case, that

choice would imply

η = −d log(1− α
1

n−1 ) .
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4.3.2.2 Responsiveness

If the originator of a message crashes before its broadcast attempts are com-

pleted, the destination processes respond by taking over the broadcasting re-

sponsibility upon themselves. To facilitate this takeover, each copy of a mes-

sage, m, has fields m.copy, m.originator and m.broadcaster; these specify

the number of the current broadcast attempt (0, 1, . . . , ρ), the index of the

originating process, and the index of the process that actually broadcast the

message m, respectively. The values of m.originator and m.broadcaster will

be different if a destination process carries out the broadcasting of m. Ev-

ery process that receives a message, m, such that m.copy = k < ρ, must be

prepared to become a broadcaster of m if necessary. It does so by setting a

timeout interval of length η+ω, with some suitable value of ω (η is the interval

between consecutive broadcasts, while ω accounts for differences in transmis-

sion delays, or ‘jitter’). If copy k +1 of m arrives from the broadcaster of copy

k before the timeout expires, then all is well with that broadcaster; the receiver

process sets a new timeout of η + ω for the next copy (if there is one). Other-

wise, the receiver pessimistically assumes that the process m.broadcaster has

crashed while broadcasting copy k of m, and that it is the only process to have

received any copy of m. It therefore prepares to appoint itself as a broadcaster

of copies k, k + 1, . . . , ρ. However, the m.broadcaster may not in fact have

crashed; copy k +1 of m may just be delayed unduly or lost; moreover, even if

m.broadcaster has crashed, this receiver may not be the only process that has
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observed the crash. In order to avoid multiple receivers becoming broadcast-

ers unnecessarily, a further random wait, ζ, uniformly distributed on (0, η), is

added to the timeout interval η + ω. If a copy number k or higher is not re-

ceived before the expiration of ζ, this receiver appoints itself as a broadcaster.

Otherwise it sets a new timeout of η + ω.

4.3.2.3 Selection

The protocol guards against multiple self-appointed broadcasters. It requires

that any broadcaster with index i, whose latest broadcast has been of copy k

of the message, should relinquish its broadcasting role in any of the following

circumstances:

1. Process i receives m with m.copy = k and either m.broadcaster < i or

m.broadcaster = m.originator. That is, a more senior process has as-

sumed the duties of broadcaster, or the originator has not in fact crashed.

2. Process i receives m with m.copy > k, indicating that it has missed one

or more copies of m, and another broadcaster is closer to completing the

protocol.

Suppose that process i has abandoned its broadcasting role and has set a

timeout expecting a copy, say, k, from broadcaster j. It will have to reset

that timeout if either copy k is received later from a broadcaster more senior

than j or from the originator, or copy k + 1 or higher is received from any

broadcaster. This is necessary because when process j receives the message
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which process i has just received, it would relinquish its broadcasting role. The

purpose of these provisions is to minimise unnecessary broadcasts and hence

message traffic, while still making the best effort to ensure that ρ + 1 copies

of the message are broadcast. The idea is that when any broadcaster crashes,

all receivers that time out on η + ω + ζ will briefly become broadcasters, but

after that only one of them is likely to continue broadcasting, at intervals of

length η. That process will be a receiver process if the originator has crashed

or its messages suffer excessive delays.

4.4 Details of the protocol

A more detailed pseudo-code description of the reliable multicast protocol

executed by process i is presented in figures 4.1 and 4.2. An execution of

RMcast(m) starts by setting the field m.originator, and also a unique message

identifier called m.sequenceNo; then (ρ + 1) invocations of broadcast(m) are

performed, with m.copy = 0, 1, . . . , ρ. The primitive broadcast(m) sets the

m.broadcaster field and concurrently sends m to processes in G.

RMcast(m)

(1) m.originator ← i; m.broadcaster ← i; m.SequenceNo← seq number;
(2) m.copy ← 0;
(3) repeat(ρ + 1) times →
(4) {broadcast(m); wait(η); m.copy ← m.copy + 1;}

Figure 4.1: Pseudo-code for RMCast(m)
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RMdeliver()

begin
// message-handling part
cobegin

(5) receive(m);
(6) if new(m) →
(7) begin
(8) max recdi(m)← −1;
(9) leaderi(m)← −1;
(10) last own bcasti(m)← −1;
(11) deliver(m);
(12) end

(13) if (m.copy = ρ) → {max recdi(m)← maxInt;}

(14) if(m.copy > max recdi(m)) ∨
(15) (m.copy = max recdi(m) ∧

(m.broadcaster = m.originator ∨
m.broadcaster < leaderi(m))) →

(16) begin
(17) max recdi(m)← m.copy;
(18) leaderi(m)← m.broadcaster;
(19) set timeout for η + ω;
(20) end

coend
cobegin

// timeout-triggered, timer-driven part
timeout(m) ∧ (max recdi(m) < ρ) −→
begin

(21) leaderi(m)← maxInt;
(22) wait(ζ) ;
(23) if ((leaderi(m) = maxInt) ∧ (max recdi(m) < ρ)) →
(24) {leaderi(m)← i; create thread Broadcaster(m);}

end
coend

end

Figure 4.2: Pseudo-code for RMdeliver()

The protocol for delivering a reliable multicast message is RMdeliver(),

and is structured into two concurrently executed parts. The first part handles

a received message and the second part the expiry of timeout (η + ω). Three

integer variables are maintained for a received message m distinguished by

m.originator, m.sequenceNo:
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Broadcaster(m)

begin
(25) while((max recdi(m) < ρ) ∧ (leaderi(m) = i)) do
(26) m.copy ← max{last own bcasti(m) + 1, max recdi(m)};
(27) broadcast(m);
(28) max recdi(m)← m.copy;
(29) last own bcasti(m)← m.copy;
(30) wait(η)
(31) od
(32) die; // the thread dies.

end

Figure 4.3: Pseudo-code for Broadcaster(m)

• max recdi(m) has the largest copy number received for m.

• leaderi(m) has the index of the process from which m, with copy max recdi(m)+

1, is expected.

• last own bcasti(m) contains the copy number of m which process i broad-

cast when it last acted as a self-appointed broadcaster.

A received message calls for one or more of the following three actions:

• New m: The three variables defined earlier are initialized to −1, and m

is delivered (lines 6-12).

• m.copy = ρ: Blocks any future action, by setting max recdi(m) to ∞

(MaxInt) (line 13). Note that a new m can have m.copy = ρ if all

earlier copies are lost or excessively delayed.

• Change of leaderi(m): The received m indicates one of the circumstances

(described earlier) in which the process i needs to either relinquish its

broadcasting role or change the broadcaster from which the next copy
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is expected. A new timeout (η + ω) is set after max recdi(m) and

leaderi(m) are updated (lines 14-20).

When the timeout (η +ω) for m expires, an additional timeout ζ is set, during

which a message with appropriate copy number from any broadcaster is admis-

sible. So, leaderi(m) is set to MaxInt (line 21). If no such message is received,

process i appoints itself as a broadcaster and sets up a thread Broadcaster(m)

(lines 22-24). The thread Broadcaster(m) broadcasts m only if the process i

remains to be the broadcaster (i.e., leaderi(m) = i) as per selection rule and

if max recdi(m) < ρ; otherwise, it dies (lines 25-32).

4.5 Reliability and Latency Estimations

4.5.1 Reliability

If the originator of a message m does not crash, then the only reason why

some correct processes may not receive it, is losses in transmission. Since

each transmission is lost with probability q, a given correct process will fail to

receive all ρ+1 copies of m with probability qρ+1. Hence, the probability that

all correct processes receive at least one copy of m, i.e. the reliability of the

protocol, r, is given as:

r = (1− qρ+1)n−1 . (4.1)

Clearly, this probability can be made as close to 1 as desired, by increasing ρ.

Of course, the price paid for high reliability is higher message traffic.
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When crashes are taken into account, the possibility that the uniform agree-

ment property may be violated, is exacerbated. The following scenario may be

realized: the originator crashes in the middle of the first broadcast, after exe-

cuting only a few send(m) commands; one or more of the destinations deliver

m and act upon it (e.g., become originators of new message(s), m′), but then

they all crash before their timeouts expire and therefore fail to propagate m.

In those circumstances, correct processes fail to receive m, while crashed ones

had delivered it. Such a scenario may be termed a ‘uniform disagreement’.

Intuitively, the occurrence of a uniform disagreement is very unlikely, because

it involves the conjunction of more than one event, each of which is unlikely.

Nevertheless, it may be useful to estimate that small probability in terms of

the crash characteristics, as discussed below.

There may be two kinds of crashes. Let v be the probability that a process

crashes before its timeout expires. If the time-to-failure (TTF) is distributed

exponentially with mean 1/γ, then v is given by

v = 1− e−γ(ω+2η) (4.2)

(pessimistically, ζ is assumed to take its largest possible value, η). v is typically

a small number because γ is small (When mean TTF is very pessimistically

taken to be, say, 2.5 hours, 1/γ is 0.9× 107 milliseconds.).

Another crash mechanism operates while a process is broadcasting. Let β be

the probability that the process crashes just after a given send(m) operation,
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independently of the others. Then we can write a recurrence relation for the

probability, wn, that a disagreement will occur in a group of size n.

wn =
n−1∑
k=1

(1− β)k−1β
k∑

j=1

 k

j

(1− q)jqk−j[vj + jvj−1(1− v)wn−j]

 . (4.3)

This relation quantifies the probabilities in the scenario outlined above: the

originator crashes during the first broadcast, having executed k send(m) op-

erations; j of those messages are received at their destinations; then, either

all j destination processes crash before their timeout expires, or one survives,

becomes a broadcaster, but a disagreement occurs within the new group of

size n− j (the probability that more than one survive to become broadcasters,

and still a disagreement occurs, is considered negligible).

The initial condition for the recurrences (4.3) is w2 = 0, since a disagreement

cannot occur with less than 3 nodes. When v and β are both small, the right

hand side of (4.3) is on the order of vβ(1− q).

As an example, Figure 4.4 shows the protocol’s probability of failure for

β = 0.02 (probability to fail inside each broadcast to 2%), allowing a failure

every 100 hours on average (γ = 100 hours) and a timeout of ω + 2η = 5600

millis. In this case, probability that a process crashes before its timeout ex-

pires is v = 1.55× 10−5 and the overall probability of failure, increasing with

the group size, seems to stabilize around a scale of 10−7.

The RMcast protocol can be transformed to a uniform RMcast, by forcing a

process to deliver m after (ω+2η) time following the first reception of m. Then
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Figure 4.4: Protocol’s failure probability, for β = 0.02, γ = 100 hours

a uniform disagreement can be caused only by events (such as m being lost to

all correct processes even when broadcast(m) is completed) whose probability

is negligible.

4.5.2 Latency Estimations

The probability, rD, that all operative destinations receive at least one copy of

a multicast message within a given interval of time, D, can be approximated by

assuming that the originating process does not crash during the interval of (ρη)

time. This is a reasonable approximation for two reasons. First, the probability

of a crash during ρη is (1 − e−γρη) which is small as γ is small. Secondly, it
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will generally be a pessimistic approximation, since if the originator crashes at

some point after broadcast 0 but before broadcast ρ, some of the processes that

receive the last broadcast copy will make at least one broadcast themselves.

Thus, the number of senders and hence the probability of success will increase.

Of course it is possible that the originator crashes during broadcast 0, and

no operative process receives any message; we consider the probability of that

event to be negligible. Let ξ be the random variable representing the execution

time of a send(m) operation, i.e., the transmission time of a message from

a given source to a given destination. The probability, h(x), that such an

operation does not succeed within time x, is equal to

h(x) = q + (1− q)P(ξ > x) , (4.4)

where q is the probability that the message is lost. By definition, h(x) = 1 if

x ≤ 0. In the case of exponentially distributed transmission times (with mean

d), the above expression becomes

h(x) = q + (1− q)e−x/d , (4.5)

and h(x) = 1 for x ≤ 0. Since the originator makes its kth broadcast at time

kη (k = 0, 1, . . . , ρ), the probability, gD, that a given destination does not
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receive any of the ρ + 1 copies within time D, is given by

gD =
ρ∏

k=0

h(D − kη) . (4.6)

Hence, the probability, rD, that every destination receives at least one copy of

the message within an interval of length D is equal to

rD = (1− gD)n−1 . (4.7)

If some of the destinations have crashed, then (4.7) is an underestimate of

the probability that all operative destinations receive at least one copy within

time D. This is so because the term (1− gD) would then be raised to a lower

power, which would make the resulting probability larger. A user requirement,

stated in terms of a success probability R and latency D, is achievable if the

probability evaluated by (4.7) satisfies rD ≥ R; otherwise it is not achievable.

4.5.3 Relative Latency

Suppose now that at a given moment, t, a given process, pi (different from

the originator), receives copy number k of the message. Of interest is the

probability, uk(S), that all other processes will receive at least one copy of the

message with relative latency S, i.e., before time t + S.

The implication of pi receiving copy number k is that the originator has started

broadcasting no later than at time t− kη in the past, and has issued at least
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k broadcasts. Consider a given process, pj, different from the originator and

from pi. The probability, gk(S), that pj will not receive any of those k + 1

copies before time t + S is no greater than

gk(S) =
k∏

m=0

h(S + mη) , (4.8)

where h(x) is given by (4.4). In addition, if k < ρ, pj may receive copies

k, k + 1, . . . , ρ from pi, in the event of the originator crashing. Those latter

broadcasts would be issued at times t + η + ω + ζ, t + 2η + ω + ζ, . . ., t + (ρ−

k + 1)η + ω + ζ, assuming that no other process starts broadcasting. Since ζ

is uniformly distributed on (0, η), we can pessimistically replace ζ by η. The

probability, g̃k(S), that pj will not receive any of the messages from pi before

time t + S is thus approximated by

g̃k(S) =
ρ−k+1∏
m=1

h(S − (m + 1)η − ω) , (4.9)

where g̃ρ(S) = 1 by definition; also, h(x) = 1 if x ≤ 0. Thus, a pessimistic

estimate for the conditional probability, uk(S), that all other processes will

receive at least one copy of the message with relative latency S, given that a

given process has received copy number k, is given by

uk(S) = [1− gk(S)g̃k(S)]n−2 . (4.10)

A pessimistic estimate for the conditional probability, uS, that all other
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processes will receive at least one copy of the message with relative latency

S, given that a given process has received any copy, is obtained by taking the

smallest of the above probabilities:

uS = min[u0(S), u1(S), . . . , uρ(S)] . (4.11)

This quantity may be used in deciding whether a user requirement, stated

in terms of a success probability U and relative latency S, is achievable or

not: the requirement is achievable if uS ≥ U . Intuitively, one would expect

the minimum in the right-hand side of (4.11) to occur for k = 0, so that

uS = u0(S). Indeed, this has been the case in all examples evaluated.

4.6 Simulation Results

Performance of the protocol is simulated for a variety of parameter values, and

the results are compared with results obtained by evaluating the analytical

approximations described in the previous section. Each experiment consists of

100 independent runs, using the same parameter values but different random

number streams.

The probability rD is estimated as the fraction of the 100 runs for which all

destinations receive m within time D. Similarly, uS is estimated as the fraction

of the 100 runs for which all remaining operative destinations receive m within

time S after its arrival at a given operative process. Latencies are expressed
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Figure 4.5: Results of group 1 experiments

in units of milliseconds (ms). The following scenarios were considered.

1. No crashes. All processes remain operative throughout.

2. Originator crashes. The originator crashes after completing the broad-

cast of copy number 0. Due to message losses, some receivers may not

receive m directly from the originator.

3. Originator crashes with a small set of direct receivers. The originator

crashes while broadcasting copy number 0, such that only a small set of

processes directly receive m. This set is called the direct receivers and

its size is varied.
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Figure 4.6: Results of group 2 experiments

In all simulations, message transfer times are distributed exponentially with

mean d = 1 ms; the message loss probability is q = 5%; the group size is

n = 50; the level of certainty is α = 99%, resulting in η = 4.6 ms. In addition,

the simulations count the total number of broadcasts performed during each

run; these counts, averaged over the 100 runs, is denoted as bcasts in graphs.

Its value should ideally be (ρ + 1) .

Four groups of experiments were performed: In group 1, scenarios 1 and 2

were implemented, with ω = 1 ms and ρ = 1. In group 2, scenario 3 holds,

again with ω = 1 ms and ρ = 1; the number of direct receivers was: 1, 2, and

5. Groups 3 and 4 are the same as 1 and 2 respectively, except that ρ = 2.

The results obtained are displayed in Figures 4.5, 4.6, 4.7 and 4.8.

Figure 4.5 shows the estimated and observed probability of success, rD, as a
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Figure 4.7: Results on group 3 experiments

function of D, for group 1. The estimated probability of success, showed as a

straight line in the graph, reflects injection of the ρ redundant transmissions.

The first transmission, at time 0, allows an increase in the probability of suc-

cess, which is further exacerbated by injection of the other message at time 4.6

(η). It is worth noting that in this scenario the value ρ = 1 is not sufficient to

allow the probability of success to reach values close to 1.

In the no crashes scenario, showed in figure 4.5 with a dashed line, simulations

follow estimations over-estimating this latter throughout. However, while the

two lines are initially very close, the over-estimation becomes more consistent

as latency increases. The reason for this lies in the fact that the approximation

ignores the possibility that receivers may time out and become broadcasters;

the latter is not unlikely, since ω = 1 ms (in fact, an average of 7.14 broadcasts
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Figure 4.8: Results on group 4 experiments

were observed, instead of the ideal value 2).

Simulations for the originator crash scenario, showed as a line with mixed

dash-dot pattern in the graph, can be seen to under-estimate approximations

for small latency delays. This is due to the originator crashing after comple-

tion of the first broadcast. In fact, this will leave the scenario without a source

of messages until those processes having previously received copy 0 from the

originator will timeout and start broadcasting. This will happen after η+ω+ζ

from reception from the originator, and in this interval of time the probability

of success is prevented from growing. As mentioned above, approximations ig-

nore the possibility that originator crashes (and, consequently, the possibility

that receiving processes start to broadcast), and this is the cause of under-

estimation in figure 4.5. However, when receiving processes time out, injection
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of new messages increases the probability of delivery which, in turn, allows a

sudden growth of the probability of success.

Figure 4.6 illustrates the results for group 2, where the originator crashes while

attempting to broadcast copy number 0, and the number of direct receivers is

quite small. The probability of success, uS, is plotted against the relative delay,

S (relative to the first receiver). As mentioned above, the number of direct re-

ceivers is fixed at 1 (showed by the dashed line in the graph), 3 (dashed-dotted

line) and 5 (dotted line), and results of such simulations are compared with

the straight line representing the approximated relative latency.

As it can be seen from the graph, all lines exploit a similar behavior, which re-

flects the occurrence of the originator crashing. The approximation line shows

the original message being received by a certain number of processes, which

increases the probability of success. This number remains constant until those

same processes time out and start broadcasting increasing the probability of

success. As for the previous case, the graph clearly shows that the level of

redundancy ρ = 1 is not statistically sufficient to reach the maximum proba-

bility of success.

As expected, the larger the number of direct receivers in simulations, the bet-

ter the performance. When the direct receiver is one sole process, simulations

clearly under-estimate approximations for nearly the whole latency interval

considered. This is due to the fact that, in simulations, all processes but

the direct receiver are prevented to receive the message from the originator,

whereas this does not happen in approximations. However, as in simulations
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Figure 4.9: Relative error on Latency bounds

the direct receiver starts the recovery phase by broadcasting, more processes

deliver the message and this results in the probability of success in simulations

to grow faster than in approximations.

The initial under-estimation is reduced when the direct receivers are 3, and

disappears when are 5 due to the higher number of processes delivering the

message. Moreover, the corresponding simulation lines exploit a faster growth

due to the increasing number of direct receivers timing out and broadcasting.

Figures 4.7 and 4.8 represent groups 3 and 4 respectively, with ρ = 2. In 4.7,

the probability of success, rD, is plotted against the absolute latency, D. The

increased value of ρ improves the approximated probability of success consid-

erably.

In figure 4.8, the probability of success, uS, is plotted against the relative delay,
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S (relative to the first receiver), when the originator crashes while attempting

to broadcast copy number 0. Because the few direct receivers now make 3

broadcasts, uS is closer to 1 for large values of S. The approximation is again

an over-estimation initially when the number of direct receivers is 1 or 3, for

the reasons mentioned above, but becomes an under-estimation as more pro-

cesses broadcast after timing out.

Consider the observed message traffic. When ρ = 1 and the originator remains

operative, ideally there would be 2 broadcasts in total, whereas the observed

average is 7.14; when the originator crashes after making 1 broadcast, the

ideal figure is 3 and the observed one is 47.38 (figure 4.5). The reason for

this dramatic increase lies in the originator crash leaving the vast majority of

processes (95% on average, given the 5% of loss probability) to time out and

start broadcasting. However, the Selection feature allows a quick selection of

the new broadcaster. Similar ratios of ideal/observed number of broadcasts

hold when ρ = 2 (figure 4.7).

Figures 4.9 and 4.10 show the relative error of the analytical estimations with

respect to the simulations. Three probabilities of success are chosen (80%,

90% and 99%). For each of these, the maximum estimated latency/relative

latency and the maximum latency/relative latency observed through simula-

tions were found. The relative error was computed as: (observed - estimated)

/ observed. Positive errors mean that the approximations under-estimate the

achievable performance, while negative errors mean that the approximations
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Figure 4.10: Relative error on Relative Latency

over-estimate the real service offered.

Positive errors are desirable because the Negotiation Component vets a QoS

request based on the estimated values and the request will not be accepted if

the Negotiation Component judges it to be infeasible. Therefore, when the ap-

proximations underestimate what the protocol can indeed offer, any admitted

QoS request is guaranteed to be met when the protocol is executed with the

parameters determined by the Negotiation Component.

Figure 4.9 shows the relative errors on the latency, while figure 4.10 shows

the one in relative latencies. The relative error is evaluated for various group

sizes. The simulations have been carried out with the same set of parameters

as group 3 explained at the beginning of this section.

The maximum negative error observed is -0.05%, while in most cases the er-
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ror is positive meaning that simulations over-estimate approximations. Over-

estimation is shown to increase as the group size increases. In both cases, this

is likely to be the effect of broadcasts carried out by receiving processes timing

out.

4.7 Concluding Remarks

In this chapter we have studied the RMcast protocol contained in the RMcast

component of the QoS-Supportive Reliable Multicast system subject of this

thesis. The protocol guarantees delivery of a message to all or none of the

correct destinations, despite sender or receiver crashes and message losses,

within a time bound which is negotiated and guarantees anticipately to start

of the multicast operation.

We have described the stochastic model used in the QoS negotiations, and

showed how it has deliberately been designed to be conservative and act as

under-estimate.

It has been shown by experimentation that QoS negotiations do indeed under-

estimate the performance of the protocol, except in extreme cases which are

very unlikely to occur in practice. In addition, simulations performed confirm

that the additional overhead, in terms of message traffic, is not large when the

originator does not crash. On the other hand, when the originator crashes the

proactive recoverability increases the price to pay for the QoS guarantees.

The logic from the described protocol has been implemented in two distinct



81

prototypes, described in [40] and [35]. Full description of both prototypes will

however be provided in chapter 7 of this same document.
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Chapter 5

Multicasting Messages of
Arbitrary Size

5.1 Introduction

The protocol described in the previous chapter assumes that the messages

transmitted to have standard size, i.e. they do not need to be fragmented.

This assumption does not always hold in the real world, as it may well hap-

pen that messages to multicast have arbitrary size. As an example, consider

the online streaming scenario: information flow is continuous over a prolonged

time and needs indeed to be fragmented into several packets in order to be

multicast.

When the multicast operation implies provision of guarantees for a specific

QoS level on messages of arbitrary size, the protocol described in the previ-

ous chapter is not capable of supporting QoS on the whole information flow.

This motivates the need to extend the basic protocol presented in the previ-

ous chapter in such a way to extend coverage of QoS guarantees to messages
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formed by more than one packet.

This chapter describes and studies approaches to allow the QoS-Supportive

Reliable Multicast System to multicast messages of arbitrary size maintaining

the same reliability and timeliness features.

In particular, two distinct approaches are presented. The first considers the

arbitrarily-sized message as a single logical packet, while the second considers

the message as a sequence of physical packets. The two approaches are named

Per-Message and Per-Packet respectively. Each of these is described here and

also analytical estimations of performance metrics are established. In addition,

accuracy of estimations is shown through a simulation study.

The chapter is organized as follows: the Per-Message and Per-Packet ap-

proaches are introduced and described in section 5.2. The analytical model for

each of them is derived in section 5.3. Accuracy of these latter is evaluated

through simulations in section 5.4. From results there obtained, we infer ideal

applicability domains for each approach in section 5.5, while in section 5.6 we

finally draw some conclusions.

5.2 From single-packet to multi-packet mes-

sages

The protocol described in chapter 4 offers a robust service for an originator

to multicast messages in a predictably reliable and timely manner. However,

messages are assumed to have standard size, and therefore are assumed to fit
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into a single transmission packet. That protocol, termed here as the single-

packet RMcast protocol, is now extended in order to deal with messages m that

need to be divided into several packets before transmission and reassembled

at the receiving end.

For the sake of exposition, we assume that a message m is fragmented into

π packets denoted as {pkt1, . . . , pktπ} and call the protocol dealing with such

packets as the multiple-packet RMcast protocol.

The remainder of this section will provide a description of the two studied

extensions: the Per-Message approach in subsection 5.2.1, and the Per-Packet

approach in subsection 5.2.2.

5.2.1 Per-Message approach.

In this approach, π packets of a given m are considered as a single logical

packet (even though each packet is treated independently at low level). The

single-packet RMcast protocol is applied on the logical packet.

The originator broadcasts all π packets (ρ+1) times, with successive broadcasts

separated by η interval. A destination process receiving all π packets of a given

kth broadcast, 0 ≤ k ≤ ρ, is equivalent to that process receiving copy k in the

single-packet RMcast protocol. Figure 5.1 depicts a scenario for ρ = 1 and

π = 3.

In this figure, the originator broadcasts π = 3 packets at two timing in-

stants separated by η interval. If a destination receives all packets of the first
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Figure 5.1: Per-Message when ρ = 1 and π = 3

broadcast, it is able to reassemble copy 0 of m (indicated as m0 in Figure 5.1),

and initiates the single-packet RMcast treating m0 as the packet; even if one of

the π = 3 packets is missed, m0 cannot obviously be formed. This is equivalent

to copy 0 not being received in the single-packet protocol. Similarly, receiving

or not receiving all π = 3 packets of the next broadcast will be treated as copy

1 of m (indicated as m1 in Figure 5.1) having been received or not received

respectively. Now, four cases arise:

(i) m1 is not received and m0 is also not;

(ii) m1 is received but m0 is not;

(iii) m1 is not received but m0 has been;

(iv) both m1 and m0 are received.

Each case can be treated exactly as in the single-packet protocol:
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(i) both message copies are missed, and the protocol does not start;

(ii) the protocol starts execution with the reception of m1. Missed reception

of m0 is ignored, and m2 . . . mρ are awaited.

(iii) the protocol starts normally with the reception of m0 but fails to receive

m1. The η + ω timeout on reception of m1 expires and the consequent

attempt to appoint the local host as new broadcaster for the remainder

of the multicast operation takes place;

(iv) both copies are received correctly, execution continues smoothly by wait-

ing for m2, . . . ,mρ (if ρ > 1).

This straightforward extension of the single-packet protocol tends to inflate

the probability of a message not being received during a given broadcast. If

any of the packets of a given mk is not received, mk is considered not being

received, even though the missing packet may have been received in an earlier

broadcast (i.e. m0, . . . ,mk−1). So, two optimizations are identified:

• Retention: Each destination process retains the first received copy of

each packet, except for the πth one for which the last received copy is

retained.

• Composition: Once all π packets are available, m is assembled; the as-

sembled m is copy mk if k is the copy number of the πth packet used.

These two properties together make the Per-Message approach less vulner-

able to packet losses. For example, let ρ = 2; if any of the 1, . . . , π− 1 packets
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that were received in the first broadcast got lost in the second, m1 can still be

composed so long as the πth packet of the second broadcast is not lost.

The use of Composition and Retention allows to narrow the range of events for

which a message copy mk cannot be rebuild, causing the RMcast operation to

fail. In fact, packet j (1 ≤ j < π) of copy k is retained and used in combination

with packets from other copies whenever needed to reassemble a message copy

mk, which will be delivered if and only if packet pktkπ is received. However, mk

can be delivered under two conditions:

(i) collective reception of packets pkt1, . . . pktπ−1 from broadcasts of m0, . . . ,mk−1,

and

(ii) reception of packet pktkπ.

Condition (i) can be breached only if packets pkt1, . . . pktπ−1 are not collectively

received in broadcasts m0, . . . ,mk−1, while condition (ii) is breached by the

missed reception of the relevant packet. As an example, suppose π = 2 and

ρ = 1. A process pi cannot reassemble copy mk if:

- misses packets pkt01 and pkt11, or

- misses pakets pkt01 and pkt12.

In both cases, the RMcast operation terminates unsuccessfully. The proba-

bility of each of these occurrencies to happen depends mainly on the network

failure rate and, on a lesser extent, on the size of π. Besides this probability

must be taken into account, current network tecnologies allow the failure rate



89

to be very small even on very wide area networks, as we shall show in section

5.5.1. Therefore, without loss of generality we claim that the probability of one

of the two aforementioned conditions to happen can be considered negligible.

Figure 5.2 shows the process of multicasting and receiving the message with

the Per-Message approach. Invocation of the RMcast(m) primitive starts

with the original message m fragmented into π packets. These are then

passed to a RMcast pkt(pkt1, . . . , pktπ). This primitive applies the RMcast

protocol exactly as in the single-packet case, by considering all π packets

as a single logical packet, and delegates the actual broadcast operation to

a broadcast pkt(pkt1, . . . , pktπ) primitive, that is invoked ρ + 1 times with

an η interval time between subsequent invokations. Implementation of the

broadcast pkt(pkt1, . . . , pktπ) primitive involves concurrent invocations of the

broadcast(pkti) primitive, as shown in figure 5.3. The broadcast(pkti) primi-

tive is also used in the single-packet RMcast protocol, and is in charge of carry-

ing out the actual broadcast of a single packet. The broadcast pkt(pkt1, . . . , pktπ)

primitive uses thus the broadcast(pkti) primitive to broadcast all π packets in-

dependently. Packets so broadcast are forwarded to the CS which sends them

with standard lower level communication facilities.

At destination, reception of packets is realized through a receive pkt(pkti)

primitive, shown in figure 5.3. This primitive is also used in the single-packet

RMcast protocol, and receives packets by means of independent instances.

Packets received are then forwarded to a reassembler which composes the orig-



90

RMcast_pkt(pkt1,...pktπ)
ρ=... η=...

RMdeliver(m)

receive(m)
ω=...

m={pkt1,...pktπ}
Fragmenter

mRMcast(m)

broadcast_pkt π (pkt1,...pktπ)
...

broadcast_pkt 0(pkt1,...pktπ)

packet level transmission receive, retain and reassemble

m0 m1 mρ

m

Figure 5.2: Per-Message multicast process.

inal message by exploiting the use of Retention and Composition.

The newly composed message is then passed to a receive(m) primitive, shown

in figure 5.2, which forwards it to the RMdeliver(m) primitive for delivery

to the user. The RMdeliver(m) primitive also applies the reception side of

the single-packet RMcast protocol, and therefore sets up the timeout within

which to expect the next message copy. Expiration of such timeout triggers

the receiving process to attempt to appoint itself as new broadcaster, and the

first step towards appointment is the broadcast of the π packets with the latest

copy number received. It is worth noting that in the context of the multiple-

packets RMcast protocol this is possible only if the process has received all π

packets al least once.
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Figure 5.3: Usage of the broadcast primitive in the Per-Message approach.

5.2.2 Per-Packet approach.

In the Per-Packet approach, packets of a given m are treated independently

and each one is sent using a dedicated instance of the single-packet RMcast

protocol.

Figure 5.4 shows the Per-Packet multicast process. Referring to this figure, af-

ter fragmentation of the message, the single-packet RMcast protocol is applied

concurrently on each of the π packets obtained. The primitive used to apply the

RMcast protocol on each packet is the the RMcast pkt(pkti) primitive. This

is at all effects the primitive used to RMcast messages in the single-packet

protocol, described in chapter 4 under the name of RMcast(m). As such, its

implementaion involves ρ+1 invocations of the the broadcast pkt(pkti) (named

broadcast(m) in the single-packet RMcast protocol) to send packet copies.

Similarities with the single-packet RMcast protocol are also at destination,
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Figure 5.4: Per-Packet multicast process.

where packets are first received by concurrent receive pkt(pkti) primitives,

which are governed by as many instances of RMdeliver pkt(pkti) that reliably

deliver packets. These two latter primitives are also used in the single-packet

RMcast protocol, under the name receive(m) and RMdeliver(m) respectively.

Instances of the RMdeliver pkt(pkti) primitive deposit the RMdelivered pack-

ets in a buffer from which they are reassembled in the original message m, once

all π are delivered.

The RMdeliver pkt(pkti) primitive is also in charge of setting the timeouts

within which to expect subsequent copies of a packet upon reception of a copy.

5.2.2.1 Remarks

Packets delivery and recovery mechanism: expiration of the aforemen-

tioned timeouts is handled in the Per-Packet approach locally by the instance
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if the single-packet protocol which is RMcasting the packet. As a consequence,

a process using the Per-Packet approach is not required to have delivered at

least a full set of π packets in order to try to appoint itself as new broadcaster.

Load distribution towards termination: the Per-Packet approach inher-

ently admits scenarios where RMcast operations are terminated by more than

one group member concurrently. Consider for example an RMcast operation

where the originator process pi needs to RMcast a message m fragmented into

π = 5 packets {pkt1 . . . pkt5}. Suppose pi transmits correctly the ρ + 1 copies

for pkt1 (pkt01 . . . pktρ1) which are received by pj and pk among others. Suppose

that some problems arise in the RMcast of other packets in the following way.

Copy 0 of pkt2 (pkt02) and pkt4 (pkt04) are received by pj and pk; pkt12 is re-

ceived by pj but not pk, while pkt14 is received by pk but not pj. In this case,

pj would timeout on pkt14, while pk would timeout on pkt12. pj and pk would

then attempt to become new broadcasters for the remainder of the RMcast of

pkt14 and pkt12 respectively, eventually maintaining leadership of the respective

single-packet RMcast instance.

Thread considerations: the presentation of the Per-Packet approach made

in this section inherently assumes the use of multiple threads working concur-

rently, each of which handles a separate instance of the single-packet RMcast

protocol. This, of course, implies that the hosting machine has availability of

enough resources to allow all the needed threads to operate correctly within the

expected times. In other words, the Per-Packet approach inherently assumes
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Figure 5.5: Single-threaded Per-Packet approach

that the hosting node is overprovisioned of hardware and software resources.

In reality, in contexts where hardware and/or software overprovision is not

possible, a single thread can handle all instances. This management model is

shown in Figure 5.5.

In this figure, an originator already committed in the RMcast of pkt1 starts

to RMcast remaining packets sequentially while idle for the RMcast operation

of pkt1.

Limitations in the applicability of this technique are obviously proportional

to the size of π and the the duration of η. In fact, albeit the time needed

to broadcast a message can be considered negligible, it must be taken into

account and for a fixed η time, there will exist a value for π for which this

approach is not feasible.

The management model just described, that we can name single-threaded,

has been assumed as the reference management model throughout simulations
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whose results will be presented in section 5.4.

5.3 Analytical estimations

5.3.1 Reliability.

Let q denote the probability that a packet is lost during transmission, n the

group size, m the message to be multicast, and π the number of packets m

gets fragmented into. To start with, let us assume that m to be multicast is

a single-packet message (π = 1), thus eliminating the distinction between the

Per-Message and Per-Packet approaches.

A destination process will fail to receive all ρ + 1 copies of m with probability

qρ+1. Thus, if the packets are lost independent of each other, the reliability r

of the protocols is equal to

r = (1− qρ+1)n−1. (5.1)

5.3.2 Latencies for a single-packet message

For estimating the absolute latency only, we pessimistically assume that the

originator does not crash during protocol execution. In fact, originator’s crash

can only speed up message delivery as there will be many receiver processes

attempting to complete the multicast. Let ξ be the random variable rep-

resenting the transmission time of a packet from a given source to a given
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destination, then the probability that such operation does not succeed within

time x, denoted as h(x), is:

h(x) = q + (1− q)P(ξ > x), (5.2)

with h(x) = 1 if x ≤ 0 by definition. Since the originator makes its

kth transmission at time kη (k = 0, 1 . . . ρ) the probability gD that a given

destination does not receive any of the ρ + 1 transmissions within time D is:

gD =
ρ∏

k=0

h(D − kη). (5.3)

From this, the probability rD that every destination will receive at least

one copy of the packet within time D is:

rD = (1− gD)n−1. (5.4)

Relative Latency estimation is concerned with the following metric: once a

process pi receives copy k of m at time t, then all other correct destinations will

receive at least one copy of the message before time t + S with probability uS.

The worst case scenario would occur when the originator crashes before it can

transmit m to all destinations and consequently some destinations receive m

while others do not[38]. Given that pi receives copy k of m from the originator

at time t, the probability that another pj will not receive any of the k + 1

copies before time t + S is bounded by:
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gk(S) =
k∏

l=0

h(S + lη), (5.5)

where h(x) is given by (5.2). In addition, if originator crashes and k < ρ,

pj may receive copies k, k + 1, . . . , ρ from pi, assuming the worst case that no

other process starts broadcasting. The probability that pj will not receive any

of these copies broadcast from pi within time (t + s) is then:

g̃k(S) =
ρ−k+1∏

l=1

h(S − (l + 1)η − ω), (5.6)

where g̃ρ(S) = 1 by definition, and h(x) = 1 if x ≤ 0. A pessimistic

estimate for the probability that all other processes will receive at least one

copy of the message within S, uk(S), given that a given process has received

copy number k, is given by:

uk(S) = [1− gk(S)g̃k(S)]n−2. (5.7)

Since k can be 0 . . . ρ, a pessimistic estimate for uS will be the minimum

of the above probabilities:

uS = min[u0(S), u1(S), . . . , uρ(S)]. (5.8)

In the subsequent sub sections, we remove the simplifying assumption that

π = 1
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5.3.3 Estimations for the Per-Message approach.

5.3.3.1 Reliability estimations

When the copy 0 of m is first transmitted, a destination must receive all π

packets to compose copy 0. However, the destination’s subsequent attempt

at composing any copy k, k > 0, can take advantage of having retained the

packets received in the earlier transmissions (as stated earlier, a destination

retains any received packet - other than the πth one - until the end of the

protocol execution). Therefore, it may not require all π packets of copy k of

m for composition. More precisely, copy k can be composed if the destination

receives (i) the πth packet of copy k, and (ii) only those amongst the first (π−1)

packets which did not reach the destination in any of the earlier transmissions

of 0, . . . , (k − 1). Since the latter are lost in all k transmissions, they will be

(π − 1)qk .Thus, if ck denotes the expected number of packets in category (ii)

that need to be received during transmission k so that copy k (mk) can be

completed, then for all k, 0 ≤ k ≤ ρ:

ck = (π − 1)qk + 1 (5.9)

where 1 accounts for the πth packet of mk (category (i) above).

Let Qk denote the probability that an operative destination is unable to com-

pose copy k, i.e., the probability that one or more of the ck expected packets

would be lost. When packets transmitted are lost independent of each other,
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Qk = 1− (1− q)ck . (5.10)

The reliability rPM achievable in Per-Message approach is:

rPM = [1−QPM ]n−1 (5.11)

where,

QPM =
ρ∏

k=0

Qk. (5.12)

Observe that the retaining of received packets (except the πth one) results

in Q0 ≥ Q1 ≥ Q2 . . . ≥ Qρ. As a consequence, when ρ increases QPM decreases

and rPM increases.

5.3.3.2 Latency estimations

In estimating absolute and relative latencies, we take the approximation that

whenever a copy of m is to be transmitted, all packets of copy of m are trans-

mitted in parallel. (In reality, packets are transmitted sequentially, with the

πth packet being the last). Let Ξk be the random variable representing the

interval between the moment a given source transmits copy k of m and the

moment a destination is able to compose that copy. Given that a destination

needs to receive ck packets for composing copy k and assuming that only those

ck packets get transmitted to any destination,
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Ξk = max[Ξk
1, Ξ

k
2, . . . , Ξ

k
ck

]. (5.13)

where Ξk
i represents the transmission time experienced by ith, 1 ≤ i ≤ ck,

arriving packet. Since packets of a given copy are assumed to be transmitted

in parallel,

P(Ξk ≤ x) = P(Ξk
1 ≤ x)× . . .× P(Ξk

ck
≤ x) =

= [P(ξ ≤ x)]ck (5.14)

Therefore,

P(Ξk > x) = 1− [P(ξ ≤ x)]ck (5.15)

The probability hk(x) that copy k of m is not composed at a destination

within time x after being transmitted will be:

hk(x) = Qk + (1−Qk)P(Ξk > x), (5.16)

and consequently the probability gPM
D that a given destination does not

compose m in any of the ρ + 1 transmissions within time D is:

gPM
D =

ρ∏
k=0

hk(D − kη). (5.17)
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The probability uPM
S that two operative destinations will receive the mes-

sage within S time of each other can be estimated using (5.7) as:

uPM
S = min[uPM

0 (S), uPM
1 (S), . . . , uPM

ρ (S)] (5.18)

with

uPM
k (S) = [1− gPM

k (S)g̃PM
k (S)]n−2. (5.19)

gPM
k (S) and g̃PM

k (S) can be obtained from equations (5.5) and (5.6) re-

spectively, accounting for the fact that h(x) is different for different k (copy

number):

gPM
k (S) =

k∏
l=0

hl(S + lη). (5.20)

g̃PM
k (S) =

ρ−k+1∏
l=1

hk+l(S − (l + 1)η − ω). (5.21)

5.3.3.3 Reliability in the Per-Packet approach.

A single-packet RMcast is invoked for each of the π packets of a given m and

these invocations operate independent of each other. Consequently, (5.1) leads

to:

rPP = rπ = (1− qρ+1)π(n−1). (5.22)
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It is worth noting that both rPM and rPP can be made arbitrarily close to

1 by choosing large values for ρ.

5.3.3.4 Latency in the Per-Packet approach.

Individual packets are multicast through distinct invocations of the reliable

multicast primitive itself. When these invocations are assumed to operate

independent of each other, both latency and relative latency probabilities turn

out to be an aggregation of the probabilities for the single-packet message. So,

rPP
D = (rD)π = (1− gD)π(n−1). (5.23)

uPP
S = (uS)π = [min[u0(S), u1(S), . . . , uρ(S)]]π. (5.24)

5.4 Simulation experiments

Experiments have been conducted by means of simulations to assess the effec-

tiveness of analytical approximations. In analyzing results of such experiments,

we shall focus on two main aspects:

(i) negotiability;

(ii) cost of the system;

Negotiability aims to prove the accuracy (or lack of it) of analytical approxima-

tions against simulated real scenarios. In the ideal case, approximation results
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Figure 5.6: Performance of the Per-Message approach when π = 3 and ω = 1

should underestimate simulation ones as this would mean that the system per-

forms better than what negotiated. By evaluating the cost of the system, on

the other hand, we want to evaluate the additional cost, in terms of message

overhead, of usage of the system.

Simulation environment is identical to the one described for simulations in

section 4.6; the group size is n = 50 processes, network packet delays are ex-

ponentially distributed with mean d = 1 ms, network packet loss is 5%, and

the transmission average jitter ω = 1 ms. In such an environment, we fixed

the level of redundancy as ρ = 3 and the interval time between subsequent

redundat transmissions is calculated as η = 4.6 ms. Finally, in all simulations

we fixed the level of certainty to α = 99%.

Simulations are grouped in sessions composed by 100 runs each. For each



104

0 10 20

Latency (ms)
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f 
su

cc
es

s

Estimated AL
SIm. AL [no crash, bcasts=13.4]
Sim. AL [crash, bcasts=41.07]

Per-Message Latency
pi=7, omega=1

Figure 5.7: Performance of the Per-Message approach when π = 7 and ω = 1

session we count, as in section 4.6, the number of total broadcasts carried out,

which we average to calculate the (average) overhead, indicated as bcasts in

graphs. Ideally, this should be (ρ + 1).

Simulations whose results are shown in the graphs to follow consider the same

range of scenarios as for section 4.6:

(i) No crashes. All processes remain operative throughout the protocol ex-

ecution time.

(ii) Originator crashes. The originator crashes just after completing the first

broadcast (copy no. 0). Due to message losses, some of the receivers

might not receive some or all of the packets from the originator.

(iii) Originator crashes with a small set of direct receivers. The originator
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Figure 5.8: Performance of the Per-Message approach when π = 10 and ω = 1

crashes while broadcasting copy no. 0 of the message. Then, a small set

of receivers, called the direct receivers, is foreseen to receive the message

broadcast. Size of this set is let vary as 1, 3 and 5.

In the Per-Message approach, the originator broadcasts the first copy

of the complete set of π packets to the direct receivers, as this is the

minimum requirement for these latter processes to start the protocol.

On the other hand, in the Per-Packet approach the originator starts π

independent instances of the single-packet protocol, and each of them is

interrupted in the middle of the first broadcast after having transmitted

the the number of random direct receivers. As a consequence, there is no

guarantee that the identity of the processes in the set of direct receivers
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Figure 5.9: Performance of the Per-Message approach when π = 3 and ω = 0

is the same for each of the π packets.

5.4.1 Negotiability

5.4.1.1 Negotiability in the Per-Message approach

Negotiability of the Per-Message approach is assessed through analysis of

graphs in figures 5.6-5.8. Observing these figures we can note that the in-

crease of the value of π causes the probability of success in approximations

to require higher latency delays to grow. This is normal, if we consider that

delivery of a message implies now collecting π (π > 1) packets and those pack-

ets are subject to network losses and delays. However, this effect decreases as

new redundant copies of packets are injected in the network, due to the use of
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Figure 5.10: Performance of the Per-Message approach when π = 7 and ω = 0

Retention and Composition.

In the no crash scenario of figure 5.6, simulations initially underestimate ap-

proximations, until the first process times out. This triggers broadcast of a

message and, in turn, suddenly increases the delivery probability. The prob-

ability of success thus increases until over-estimating approximations. This

trend seems to be confirmed for bigger values of π grows, as figures 5.7 and

5.8 witness.

Under-estimation is limited to small probabilities of success (which are un-

likely to be requested in a real-world scenario), but this occurrence is nonethe-

less undesirable and can be avoided by considering what follows. Under-

estimation of the simulations over the approximations can be seen as the
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Figure 5.11: Performance of the Per-Message approach when π = 10 and ω = 0

consequence of the timeliness (or lack of it) in the activation of the recov-

ery mechanism. This parameter, in turn, is based on the length of the timeout

set by receiving processes, which account for the interval of time between sub-

sequent broadcasts (η), and the differences in transmission times (i.e. the

jitter, ω). The reason for the apparent lack of timeliness is that in approxi-

mations this timeout is ignored, as the originator is pessimistically assumed

not to crash. Therefore, longer timeouts in simulations will delay activation

of the recovery mechanism when packets are lost or delayed unduly (whose

occurrence is more likely to happen when π grows), while shorter timeouts

will allow timely recovery from packet losses and delays.

Given that the the value of η is fixed throughout an RMcast operation, what
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Figure 5.12: Performance of the Per-Message approach in the direct receivers
scenario when π = 3 and ω = 1

causes simulation to under-estimate approximations in figures 5.6-5.8 is the

chosen value of ω = 1. The undesirable under-estimation can therefore be

avoided by enhancing timeliness in the recovery mechanism. This, in turn,

can ve achieved by choosing smaller values for ω in simulations.

In order to confirm our assertion above, we executed a set of experiments on

an environment where ll parameters are set to be identical to the one in figures

5.6-5.8, with the only difference of the jitter set to ω = 0 ms (i.e. no jitter

present).

Results of these experiments are shown in figures 5.9-5.11, and confirm our

thoughts. The initial under-estimation is highly reduced regardless of the value

of π. Simulations over-estimate approximations throughout, with a tendency
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Figure 5.13: Performance of the Per-Message approach in the direct receivers
scenario when π = 7 and ω = 1

to increase for higher probabilities of success.

A similar initial period of under-estimation can be noted in simulations for

the originator crash scenario of figures 5.6-5.8, where simulations appear to

under-estimate approximations to a more consistent extent then the no crash

scenario. At the basis of this phenomenon, as also mentioned in the case of the

single-packet protocol in section 4.6, lies the originator crash. In fact, when

this latter crashes, receiving processes having started the protocol with recep-

tion of the first copy are left waiting for the subsequent copy. This eventually

causes the timeout to expire, allowing them to broadcast. In the corresponding

simulations, this process results in a low probability of success until the instant

when the first receiving process times out and broadcasts the message, which

causes a sudden increase of the probability of success. As a side remark, the
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Figure 5.14: Performance of the Per-Message approach in the direct receivers
scenario when π = 10 and ω = 1

initial under-estimation observed in this scenario is observed to reduce in the

set of experiments carried out for ω = 0.

Graphs 5.12-5.14 assess negotiability of the Per-Message approach in terms

of relative latency in the direct receivers scenario. The effect of increasing the

value of π is still clearly visible, as approximations appear to be shifted in time

as π grows. The same factor influences the probability of success at the time

of the injection of redundant copies of the message.

As for the case of the single-packet protocol presented in chapter 4, the effect of

the originator crash is clearly dominant in this scenario: the probability of suc-

cess starts and grows proportionally to the number of direct receivers receiving

the message from the originator. This is followed by a period of apparent inac-
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Figure 5.15: Performance of the Per-Packet approach when π = 3 and ω = 1

tivity, that terminates when those same processes timeout and broadcast. This

has the effect of allowing all other processes to start the protocol and progress

normally. The effect of varying the number of direct receivers is clearly vis-

ible in graphs 5.12-5.14, and the probability of success can be seen growing

faster as more processes are allowed to receive the message from the originator.

Simulations over-estimate approximations throughout in figures 5.12-5.14. When

π = 3, and the direct receiver is one process, there is an imperceptible under-

estimation. However, this is minimal and is quickly compensated. When the

number of direct receivers grows, over-estimation of simulations on approxi-

mations becomes more consistent. This is normal, considering that approxi-

mations are obtained under pessimistic assumptions.
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Figure 5.16: Performance of the Per-Packet approach when π = 7 and ω = 1

5.4.1.2 Negotiability in the Per-Packet approach

Results of experiments on the Per-Packet approach are shown in figures 5.15-

5.17. Both approximations and simulations exploit a behavior similar to the

Per-Message approach. However, small differences can be noted.

In the no crash scenario of the Per-Packet simulations, the initial period of

under-estimation of simulations over approximations is less consistent than the

likewise simulations for the Per-Message approach. The reason for this differ-

ence can be found recalling that the Per-Packet approach realizes the RMcast

operation by means of π concurrent instantiations of the single-packet proto-

col, while the Per-Message approach employs a single instance where packets

are sent sequentially.
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Figure 5.17: Performance of the Per-Packet approach when π = 10 and ω = 1

This means that the protocol is applied on a per-packet basis in the Per-Packet

approach, rather than on a per-message basis in the Per-Message approach.

This this has repercussions on timeouts. In fact, application on a single-packet

basis implies timeouts to be effective in reacting to losses of packets, whereas

application on a per-message basis implies timeouts to be effective in detecting

loss of messages. Losses detected on a per-message basis result then to be more

shifted in time, as π grows, than losses detected on a per-packet basis. This

phenomenon can also be noted by comparing simulations for the Per-Message

approach, in figures 5.6-5.8, with simulations for the Per-Packet approach, in

figures 5.15-5.17.

Reduction of the initial period of under-estimation can also be noted in
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Figure 5.18: Performance of the Per-Packet approach when π = 3 and ω = 2

the originator crash scenario, with the result that when π = 10 the under-

estimation disappears.

Observing Per-Packet graphs we can note that as π grows, simulations increas-

ingly overestimate approximations. This is still an effect of the length of the

timeouts set by receiving processes and, bearing in mind what we said when

describing the Per-Message approach, to the value of ω. When used in an

environment suffering a jitter delay of ω = 1 ms, simulations show a behavior

that tend to over-estimate approximations to an extent that increases as π

increases. Consequently, for higher values of π the Per-Packet approach might

loose accuracy, undermining negotiability features.

This problem is similar (but opposite) to the one noticed and described

above for the Per-Message approach (which was suffering of underestimation
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Figure 5.19: Performance of the Per-Packet approach when π = 7 and ω = 2

problems) and, as well as in that case, it gives us a good indication of the

environment where the approach would be more effective.

In the Per-Message approach, under-estimation led us to the consideration that

the approach would naturally suit environments where the transmission jitter

is reduced or even absent (as figures 5.9-5.11 show). The Per-Packet case, on

the other hand, tends to loose accuracy, in negotiations, by over-estimating ap-

proximations as π grows. This characteristic seems to suggest that Per-Packet

negotiability would be enhanced in environments with higher transmission jit-

ter.

To this extent, we have simulated the Per-Packet approach on an environ-

ment that assumes the jitter to be ω = 2 ms while leaving all other parameters

similar to experiments in figures 5.15-5.17. Results of these simulations are
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Figure 5.20: Performance of the Per-Packet approach when π = 10 and ω = 2

shown in figures 5.18-5.20.

These graphs confirm our assertion above; simulations for the non-crash

scenario enhance negotiability by reducing the over-estimation excess on ap-

proximations. Compared to the likewise graphs in figures 5.15-5.17, we note

that simulations over-estimate approximations to a lesser extent, showing thus

better negotiability. When π = 10, in figure 5.20, we still note a tendency to

excess in over-estimation. However, results of this set of experiments let us

argue that this tendency would decrease as the value of ω increases.

In the direct receivers scenario when the direct receiver is one sole process,

the simulation line follows the approximation line closely, over-estimating this

latter throughout. A negligible under-estimation can be seen for high probabil-
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Figure 5.21: Performance of the Per-Packet approach in the direct receiver
scenario when π = 3 and ω = 1

ities of success and, the fact that this seems to be less negligible when π = 10

in figure 5.23 let us argue that for higher values of π this might become a

problem. However, the scenario refers to the one where the originator crashes

in the middle of broadcast operation and its message is received by one process

only, and we claim that occurrence of such event can be considered unlikely.

As in all other similar cases, the overestimation becomes predictably more

consistent as the number of direct receivers increases to 3 and 5 processes, due

to the increased number of broadcasts carried out by the direct receivers upon

expiration of the timeout.
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Figure 5.22: Performance of the Per-Packet approach in the direct receiver
scenario when π = 7 and ω = 1

5.4.2 Cost of the system

5.4.2.1 Cost of the Per-Message approach

Referring to results of the Per-Message approach in figures 5.6-5.8, it is inter-

esting to note how the average number of broadcasts changes when π increases.

When π = 3 and the originator does not crash, 14.95 broadcasts are carried

out on average. Besides the expected ρ + 1, this number is influenced by the

Responsiveness property, needed to compensate the network packet loss and

delay to provide multicast delivery of π packets. However, when π becomes

bigger this number is seen to reduce to 13.4, when π = 7, and 11.67, when

π = 10. This finds explanation in the fact that when π increases, fewer pro-

cesses find themselves in the position of reassembling and delivering a message,



120

0 5 10 15 20

Latency
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

s
Estimated RL
Sim. RL [DR=1, bcasts=66.88]
Sim. RL [DR=3, bcasts=91.8]
Sim. RL [DR=5, bcasts=110.28]

Per-Packet Relative Latency
pi=10, omega=1

Figure 5.23: Performance of the Per-Packet approach in the direct receiver
scenario when π = 10 and ω = 1

due to packets lost or unduly delayed. Therefore, fewer processes will be in

the condition of timing out and broadcasting. This behavior also reflects the

influence of employing Composition and, especially, Retention. This latter

causes, in fact, last broadcasts to be virtually not affected by packet loss, since

all needed packets (but the πth) are expected to be received in the firsts broad-

casts. This eventuality is not unlikely, since the packet loss rate is 5%.

When originator crashes, the number of broadcasts carried out increases con-

sistently. This is predictable, as originator crash causes those processes having

received the first copy of the message to time out and broadcast. However,

this number is seen to decrease as π increases, for reasons explained for the no

crash scenario.

The cost of the system is seen to increase when the recovery mechanism is
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made more timely by decreasing the value of ω, as figures 5.9-5.11 witness.

This additional cost can be explained by considering that smaller timeouts re-

duce the tolerance to losses and delays. Therefore, the probability of processes

suspecting of having lost packets which are in reality unduly delayed increases.

Concluding, the use of Retention and Composition reduces the cost of the Per-

Message approach. Given the initial redundancy level ρ = 3, the price to pay

for reliability in the contexts under examination is a 3 to 4-fold increase in

message traffic when no crashes are assumed. This ratio grows when crashes

are taken into account, as a price to pay for proactive recoverability. However,

the cost of the system can be traded with negotiability features.

5.4.2.2 Cost of the Per-Packet approach

In the Per-Packet approach, a broadcast transmits one packet to (n−1) desti-

nations. Therefore, the average number of broadcasts calculated by the bcasts

parameter refers to the actual average number of packets broadcast. Since

these are carried out by means of independent instances of the single-packet

protocol, the average number is expected to grow when π grows. In the Per-

Message approach, on the other hand, a broadcast transmits π packets to

(n− 1) destinations. The bcasts parameter refers thus to the average number

of messages broadcast. This explains the difference in the value of the bcasts

parameter for the two approaches.

The bcasts parameter can be made homogeneous in the two approaches by

dividing the value for bcasts in the Per-Packet approach by the value of the
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corresponding π. The rationale for this conversion is that packets are trans-

mitted by means of independent operations and therefore they are lost (and

retransmitted) with an equal probability.

When π = 3 and the originator does not crash in the Per-Packet approach,

figure 5.15 shows that 36.74 broadcasts are needed on average to fulfill QoS

guarantees. Considering that a message is composed by π = 3 packets, we

can calculate an average of 12.24 messages needed. On the other hand, in the

originator crash scenario of the same simulation set, the Per-Packet approach

needs 143.01 packets to be broadcast. This leads to an average of 47.67 mes-

sages broadcast. These results are in line with the results for the Per-Message

approach, although showing a slightly lower cost.

When π = 7 and π = 10, in figures 5.16 and 5.17 respectively, the average

broadcasts increase to 83.76 and 113.9 respectively in the no crash scenario

(330.83 and 528.52 respectively in the originator crash scenario). Considering

the corresponding value of π, these equal to an average 11.96 messages (47.26

in the originator crash scenario), when π = 7, and 11.39 (52.85 in the origina-

tor crash scenario) when π = 10. As it can be seen, in the no crash scenario

the number of broadcasts decreases as the size of the message, i.e. π increases

in a pattern similar to the Per-Message approach

In the Per-Message approach, this was due to the use of Retention and Compo-

sition. In the Per-Packet approach, who cannot make use of these properties,

the decrease is due to the fact that the π packets are RMcast by means of in-

dependent instances of the single-packet protocol. Thus, when a packet is not
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received within the timeout, the Per-Packet approach foresees retransmission

of that packet whereas the Per-Message approach foresees retransmission of

the entire π packets, when the message copy cannot be reassembled within the

timeout.

This allows the Per-Packet approach to exploit a more sensitive recovery mech-

anism, compared to the one in the Per-Message approach, and the decrease in

the average number of messages broadcast is a consequence of such sensitivity.

The same phenomenon is not observed, on the other hand, in the originator

crash scenario. In fact, unlike the likewise scenario in the Per-Message ap-

proach where the use of Retention and Composition allowed a reduction in the

average number of broadcasts carried out, in the Per-Packet approach the av-

erage number of broadcasts is observed to grow as the value of π grows. This

is due to the fact that the aforementioned sensitivity is not effective in the

originator scenario. In fact, originator’s crash inevitably causes all destination

processes having previously received copy 0 to time out and broadcast.

Summarizing what said above, and given the originally planned (ρ + 1) trans-

missions, the cost of the Per-Packet approach is a 3 to 4-fold increase in mes-

sage traffic when the originator does not crash. On the other hand, when the

originator crashes the the price to pay for reliability and timeliness with the

Per-Packet approach increases consistently.



124

Newcastle
Upon Tyne

Hong Kong
Bangalore

Seattle

Rio de
Janeiro

Figure 5.24: PlanetLab slice

5.5 Limitations and applicability domains

Per-Message and Per-Packet are conceptually different approaches, each mak-

ing use of different network characteristics. The obvious observation is that in

particular circumstances or environments the use of either of the approaches

might experience limitations. This, in turn, leads to considering specific do-

mains where application of an approach would be particularly effective. These

applicability domains are derived by binding limitations to network properties,

and considering environments where such (limiting) characteristics have minor

impact, whereas do not impact at all.

5.5.1 Per-Message extension

Principal limitations of the Per-Message approach relate to the message loss

rate. In fact, unreliably multicasting π packets, each one equally important to

rebuild an original message m, causes an increase in the loss rate experienced

to receive an entire message. We shall refer to this latter as the message loss
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rate, while we shall refer to the packet loss rate intending the rate with at

which packets can be lost, fixed in both simulations and approximations to

5%.

Table 5.25 shows how the message loss rate in the Per-Message approach (QPM

in the table) changes based on the packet loss rate. When this latter is small,

the Per-Message approach seems to experience small message loss rates due

to the use of Retention and Composition. However, as the former increases

the two optimizations seem to loose effectiveness and the message loss rate

becomes subject to higher increases. This is obvious if we consider that an

increased packet loss rate allows reception of less packets in a single broadcast.

The time needed to reassemble a message copy will be longer, thus increasing

the probability that a packet is suspected to be lost (and consequently the

number of broadcasts) reducing so the effectiveness of the Composition prop-

erty. Assuming high values for the jitter would limit the increase in broadcasts

carried out, but the risk would be to jeopardize negotiability according to what

we said in section 5.4.1.1.

The ideal applicability domain for application of the Per-Message approach

can therefore be bound to environments subject to small loss rates and where

the jitter is low. Today’s technologies allow construction of such networks.

The PlanetLab testbed[2] is an example of such a technology.

PlanetLab is a wide-scale infrastructure, formed by several hundreds of ma-

chines that member institutions distributed geographically place at users’ avail-
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Packet loss rate (q) PM loss rate (QPM)
0.01 0.001
0.03 0.009
0.05 0.029
0.07 0.057
0.1 0.118
0.13 0.196
0.15 0.255
0.17 0.318
0.2 0.415
0.22 0.479
0.25 0.573
0.27 0.632
0.3 0.821
0.4 0.899

Figure 5.25: Growth of QPM compared to q.

ability. Its purpose is to provide a distributed testbed for execution of widely

distributed applications.

In PlanetLab, users create a so called slice, which provides the abstraction

of virtual accessible domain. Slices are then populated with nodes, i.e. ma-

chines. These can be manually selected from the list of member institution,

and users can therefore easily exploit geographical distribution. PlanetLab

provides classical TCP[96] and UDP[95] communication facilities which work

on a best effort basis, and the infrastructure connecting distant nodes is the

Internet.

To the extent of our example, we built a slice and populated it with five nodes

chosen from member institutions geographically disperse as shown in Figure

5.24. On each node of the so-formed group we ran a mini-application, con-

sisting of the Network Measurement Component only, with the purpose of
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Figure 5.26: Loss rate in the PlanetLab slice

measuring the worst group-wide network loss rate and jitter. Results from

these experiments are shown in figures 5.26 and 5.27 respectively.

The graph in figure 5.26 shows the loss percentage, in the vertical axis, as

a function of time, on the horizontal axis. Probing sessions were 60 minutes

long. The loss rate has been calculated as (lost pkts ∗ 100)/total pkts, where

lost pkts represents the number of packets lost and total pkts is the total num-

ber of packets sent.

The graph reports the loss rate experienced in the second half of the probing

session only, i.e. the last 30 minutes. The reason for omitting the first half of

the probing session lies in the fact that the behavior is initially transient, and

therefore not meaningful for our purposes.

The graph shows that over time, the group-wide loss rate tends to stabilize
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Figure 5.27: Average jitter in the PlanetLab slice

around 4%, which confirms our thoughts about loss rate in best-effort networks

also validating our choice in simulations and approximations.

The graph in figure 5.27 shows results of another probing session, where

the group-wide worst average jitter is measured. The average jitter in terms

of milliseconds, in the vertical axis, is shown as a function of time, in the hor-

izontal axis, expressed in 10 minutes-long sessions.

The graph clearly shows that variations for the average jitter are very small,

with peaks contained within 1 millisecond. This confirms, as well, our asser-

tion on existence of best-effort networks subject to small changes in jitter. In

addition, results of this graph also validate our choice of jitter ω = 1 ms in

simulations and approximations.
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Together, graphs in figures 5.26 and 5.27 show that best-effort networks sub-

ject to small packet loss rates and reduced average jitter do exist, and provide

an example of network ideally suitable for application of the Per-Message ap-

proach.

5.5.2 Per-Packet extension

The Per-Packet approach consists in all π packets to be RMcast concurrently.

Its execution has, therefore, calls for message overhead. However, it has the

benefit of offering good negotiability in environments where the average jitter

is high as figures 5.18-5.20 show. Besides improving negotiability, higher values

for the jitter allow also a reduction of the message overhead (when originator

does not crash).

This seems to suggest the ideal domain for the Per-Packet approach as to be

bounded to environments where communications are subject to high differences

in transmission times. However, another factor needs to be considered.

In standard environments, i.e. in environments where software/hardware over-

provision cannot be assumed, a single thread will handle the π instances of

RMcast. Being subject to a Round Robin CPU management policy, it will have

to coordinate among operations and can take advantage of the gap (η) between

successive redundant transmissions as described in figure 5.5. In this situation,

the time needed to multicast a packet copy, albeit considered negligible, need

to be taken into consideration and for some high values of π this approach

would not be effective, generating another limitation on the use of the Per-
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Packet extension approach. The value for such a threshold is proportional to

factors such as host workload, network availability and obviously on the value

of η which, in turn, increases with the packet loss rate.

Considering what we said so far, we can therefore derive the applicability

domain for the Per-Packet extension approach as to environments with a good

balance between workload and resources. In practical terms, its execution suits

a range of environments varying from high capacity networks[1] (regardless of

the workload) to lightly loaded environments with standard resources.

5.6 Concluding remarks

We have developed core protocols for building a QoS negotiable middleware

system for reliably multicasting messages of arbitrary size. Their performance

was analytically estimated using approximations whose effectiveness are shown

to underestimate the performance most of the time - a very desirable scenario

for QoS negotiation.

The protocol development involved extending the existing single-packet pro-

tocol described in chapter 4 using two approaches, namely Per-Message and

Per-Packet. Performance of the resulting protocol, named multi-packet proto-

col, is also compared. In the Per-Message approach, all π packets of a given

message are treated as a single logical packet. Its optimal usage is on environ-

ments with low packet loss rate and low jitter, as shown by simulation results.

Experiments conducted on the PlanetLab testbed showed that such networks
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do exist and the assumption of optimality on low-lossy and low-jitter networks

is not unreasonable.

The Per-Packet approach, on the other hand, treats each of the π packets inde-

pendently, with π concurrent instances of the single-packet multicast protocol.

Simulations show that this approach finds its optimality in environments where

difference in transmission times can be high, although a threshold for the value

of π needs to be accounted when independent instances of the single-packet

protocol are handled by a single thread in a pseudo-concurrent way. For this

reason, the per-packet protocol suits high capacity networks or, alternatively,

lightly-loaded applications.

Together the Per-Message and Per-Packet approaches provide a solution appli-

cable to a wide range of environments, and make the QoS-Supportive Reliable

Multicast System suitable for real-time contexts.
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Chapter 6

Network Performance
Measurement

6.1 Introduction

The Network Measurement Component (figure 3.3) is the authoritative source

of information on behavior of the CS. Its task is to monitor the network to

the extent of producing statistical performance metrics. These are then shared

among other components of the system, which interpret that information as

an estimation of the behavior of the CS in the near future. This operation is

carred out on aregular basis, so that metrics can reflect any change in network

behavior.

This chapter provides a detailed description of the Network Measurement Com-

ponent. The type of information and the techniques used to gather such infor-

mation will be described. The description will also focus on how information

so obtained is processed in order to build the relevant statistical metrics, be-

sides describing in detail the metrics retained to be relevant.
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The Network Measurement Component realizes the QoS management interface

to comply with specifications of the QoS-Adaptive middleware architecture de-

scribed in chapter 3. Its role and activity will be discussed in contexts where

the CS provides communication facilities on a best effort basis as well as in

contexts where it is managed by an Internet Service Provider (ISP) using

resource management models for the Internet.

6.2 Monitoring the Communication Subsystem

By monitoring the CS, the Network Measurement Component can measure

certain metrics concerning performance characteristics of the network. This

information is calculated on a regular basis to account for changes likely to

occur in the behavior of the CS. The extent of this activity is to provide rea-

sonably accurate information concerning behavior of the CS in such a way to

make QoS predictable. Other components in the system will then use this

information to account for behavior of the CS in the next future, to be traded

against user QoS requirements in negotiation phase.

In certain application contexts, the CS might be managed by an ISP. In these

scenarios, the ISP provides guarantees about availability of resoruces in the CS

by managing the network based on specific resource management models[47].

Behavior of the CS is therefore guaranteed for the entire period of provision

by granting access to a dedicated network environment which makes resources

available anticipately to service provision, as shown in figure 6.2. The types and
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amount of resources to be provided is specified into one or more agreements,

usually encapsulated in what the industry calls Service Level Agreements[65]

(SLAs).

Agreements establish terms and conditions for the provision, along with penal-

ties to pay in case of violation. Service levels guarantees in SLAs are usually

expressed as average figures calculated over a period of arbitrary size, or the

entire provision period. As an example, the AT&T Managed Services offers

99.99% average network availability, a network monthly average latency of 60

milliseconds within the US, and an average packet loss rate of less than 0.7%.

Albeit having statistical nature, performance figures in SLAs typically refer to

a prolonged period of time, as for instance the latency in the example above,

which is guaranteed on a monthly basis. The time considered for provision of

guarantees allows tolerance to fluctuations that might eventually decrease the

service level in the short period. The agreement might eventually specify a tol-

erance threshold, and inherently requires the service provider to compensate to

such slowdown in such a way to let the service fall in the range of agreed service

with respect to the period considered in the agreement. For instance, consider

a situation in the AT& T example above where the (ISP-managed) network

experiences an average latency of 90 milliseconds for the first three days of the

week. Suppose then that the latency decreases to 30 milliseconds for the rest

of the week. Calculated on a monthly basis this would still make the monthly

latency fall within the guaranteed 60 milliseconds. However, eventual negotia-

tions performed throughout all the week would account for an average latency
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which is not the actual latency experienced. For this reason, such guarantees

cannot be considered reliable in the short term. As a consequence, in order to

reflect and account for such fluctuations the networked system should consider

the network latency performance in the moment the QoS negotiation is being

performed.

SLAs also inherently establish terms and conditions for which the agreement

can be considered violated with the corresponding penalty to pay. In the above

example relative to the AT&T Managed Services, for instance, a monthly aver-

age latency of 100 milliseconds (within the US) would be enough to retain the

terms soecified on the SLA violated by the service provider. ISPs do not usu-

ally provide tools to control that service provision effectively falls in the range

of agreed levels. Consequently, where the presence of a Trusted Third Party

(and/or relative Violation Detection Service[40]) is not foreseen, the customer

who wants to monitor effective service provision is required to employ external

tools.

From what said so far, the monitoring activity is fundamental to sustaining

QoS negotiability regardless of the way CS services are provided. For this rea-

son, the Network Measurement component is positioned on top of the CS to

so as to abstract the way the CS is managed with respect to the monitoring

activity. This can be seen in figures 6.1 and 6.2. These figures depict the mon-

itoring in contexts where the CS works on a best effort basis and is managed

by an ISP respectively. In both scenarios, the monitoring activity allows the
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Figure 6.1: Monitoring of a best effort CS.

gathering of up-to-date information about network performance in the form of

relevant statistical metrics.

When an ISP manages the CS, the monitoring activity has a twofold purpose.

While measuring network metrics and updating other components as in the

case of the CS working on a best effort basis, it also ensures that service pro-

vision is taking place in a way compliant to the SLA.

Service violations are detected by processing gathered information in a way

compliant to terms specified in the SLA, and comparing the so calculated

averages with the likewise levels specified in the SLA. In case a violation is de-

tected, the Network Measurement Component might take some action, from

simply report the violation to the user application to reporting the violation

to a Violation Detection Service, if present.
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Figure 6.2: Network monitoring over an ISP-managed CS.

6.3 Sampling and Probing Technique

The monitoring strategy employs a technique based on concurrent sampling

of each destination. At regular intervals, the channel towards one destination

is uniformly chosen and sampled. Sampling is carried out by probing channel

connectivity, and involves calculation of the Round Trip Time (RTT) towards

that destination. This latter is then halved to stimate single way delay time.

The RTT is calculated by means of a three-way ping algorithm, as shown in

figure 6.3. The figure shows a probe session between two processes pi and pj.

The former is the probe originator, and starts its probing session by sending

pj a PROBE packet. The time at which the packet is sent is recorded as t0.

The packet is received by pj at time t1. Upon reception, pj sends pi back a

PROBE ACK packet as to acknowledge reception. In addition, this operation

is taken as start of a probing session towards pi, and therefore pj records time



139

pi

PROBEt0

t1

PROBE_ACK

t2

RTT (pj)=t2 -t0

delay=RTT/2

RECV_ACK

pj

X

t1+δ

Figure 6.3: Three-way ping probing technique.

t1. The PROBE ACK packet is received by pi at time t2. At this point, its

probing session is complete and pi can calculate the RTT towards pj as t2− t0.

This time is then halved so as to have the delay time towards pj. In addition,

pi allows for completion of pj’s probing session by sending a RECV ACK

packet. Reception of this latter by pj would complete its probing session by

allowing pj to perform delay time calculations in the same way as described

for pi. However, the network is prone to failures and a packet might be lost.

This situation happens in figure 6.3 when the last packet from pi to pj is lost.

The possibility of loosing a message is accounted by setting a timeout upon

start of own probing session. Expiration is interpreted as the corresponding

packet to be lost, and the counter for lost packets is increased. Referring to

figure 6.3, missed reception of the RECV ACK packet triggers the timeout

set by pj to expire, indicated as t1 +δ, and the packet to be lost. The length of

the timeout, i.e. the value of δ, is proportional to the delay time as by previous

samples on the same destination, plus the jitter to allow slowdowns.
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The Network Measurement Component needs to handle situations where a

packet is considered to be lost while in reality it is only unduly delayed. For

this purpose, probing packets contain a unique id number and each time a

packet is suspected to be lost, its id number is stored in a list along with the

sending time. If a packet arrives after expiration of its loss timeout, its id is

retrieved in the list, the loss counter is decreased and the probing session con-

tinues by calculating the RTT. The list is sorted in descending order based on

the sending time so as to improve retrieval by having more recent lost packets

at the head, and is periodically pruned to delete entries relative to less recent

packets.

The three-way ping technique allows reduction of probing times towards mem-

bers in a group by combining probe of both members in a single session. In

addition, it reduces message overhead by requiring exchange of three packets

in a combined session, in opposition to the four packets needed in two distinct

traditional ping sessions.

The outcome of the sampling activity is finally stored and, upon expiration

of a slot of time, samples are statistically processed in order to calculate the

reliability, timeliness and stability performance metrics. The length of the slot

of time used to process data influences accuracy of the statistical evaluation

and its value is a customizable parameter.



141

6.4 Metrics of Interest

Behavior of the CS is expressed by reporting reliability, timeliness and sta-

bility features. Reliability is expressed through calculation of the packet loss.

Timeliness is expressed by the packet delay and the (approximated) statistical

pattern such delay follows. Stability, on the other hand, is expressed by the

difference in transmission times, i.e. the jitter.

Calculation of each of the aforementioned characteristics allows to infer a net-

work performance figure, and is useful to at least one of the other system

components. In detail:

• Average packet loss : packet loss provides information about robustness

of the network environment. On an Internet scale, packet loss can be en-

hanced by factors such as network workload and cross-boundaries traffic

management policies.

In our system the average packet loss is needed by the Negotiation Com-

ponent in negotiation phase. Its value accounts for the percentage of

packets lost in the considered slot of time, and is calculated by expressing

as percentage the ratio between the number of probe packets considered

lost, i.e. whose loss timeout is expired, and the total number of probe

packets sent.

The average packet loss value is used by the system to calculate the level

of redundancy needed by the RMcast component to achieve negotiated

service level, i.e. ρ. In addition, its estimation is also needed when ne-
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gotiating latencies.

• Average packet delay : packet delay provides information about timeli-

ness of the network. On an Internet context, its value is influenced by

the quality of the infrastructure information travels on and service times

due to workload of this latter.

Calculation of the average packet delay allows to estimate the average

time needed to reach destination of a probe packet. Together with the

jitter next to be presented, is the metrics expected to change more fre-

quently. Samples are stored in a table from which the average value is

periodically calculated. Once the average value is calculated, the table

is then emptied.

In our system, the value for the average packet delay is required when

calculating the amount of time between subsequent broadcasts, i.e. η,

in negotiation phase. In addition, its value is needed when estimating

conditional delay probabilities whose process is described in next section.

• Statistical packet delay pattern: this metric allows to associate the packet

delay samples gatehred in the last relevant slot of time to a well known

statistical pattern and is a further indicator of the timeliness properties

of the network.

Approximation of the packet delay pattern to a statistical pattern allows

to resolve the analytical model contained in the Negotiation Component
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into a well known arithmetically tractable set of equations when the sys-

tem is configured to use this as a way to convert conditional probabilities.

A detailed description of how such metric is calculated is provided in the

next section.

• Average Packet jitter : accounts for the average difference in transmission

delays towards a destination over time. The value of the jitter describes

stability characteristics of the network. Its value is calculated as the

average difference of packet delays within a slot of time. If we consider

two delay samples Si and Sj, take on the same destination at time Ti

and Tj respectively, with Ti < Tj, then the value j = Si−Sj is the jitter.

Then:

- If j < 0, then Sj was slower than Si. The network has suffered a

negative instability, i.e. an instability tending to degrade network

performance;

- If j = 0, both samples took the same time to reach the destination,

which denotes network stability;

- if j > 0, then Sj was faster than Si. The network has suffered a

positive instability, i.e. an instability tending to increase network

performance.

The value for the jitter is accounted in the timeout for reception of subse-

quent message copies. Inclusion of this factor in the timeout for reception
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of subsequent message copies allows destination processes to account for

network fluctuations, thus offering a primitive form of QoS adaptation.

6.5 Delay Probabilities Calculation

The negotiation process involves evaluation of a stochastic model which con-

tains equations depending on conditional probabilities. In order for the model

to be evaluated, the system needs to have a way to translate these occurrences

into deterministic equations. As an example, consider equation 4.4 in chapter

4. There, the probability that an operation does not succeed within a certain

time x is modeled as h(x) = q + (1 − q)P(ξ > x). In order for this equation

to be numerically tractable, the system must be able to convert the condi-

tional probability of the equation. To this extent, the Network Measurement

Component offers two ways of evaluating delay probabilities:

• Statistical evaluation: the set of samples is approximated to a statistical

pattern, and the corresponding density function is evaluated in order to

calculate the actual conditional probability;

• Experimental calculation: the conditional probability is calculated di-

rectly from the table containing the set of samples as the ratio between

the number of samples actually satisfying the condition and the total

number of samples.

The choice of the right method to use can be made based on limits and guar-

antees of each one, with respect of the network environment samples are taken
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from. Following subsections provide a detailed description of both methods,

with their limits and applicability domains.

6.5.1 Statistical Evaluation

Statistical calculation of delay probabilities aims to associate samples in the

table to a well known statistical pattern. This information is interpreted by

the Negotiation Component as the authoritative source for evaluating condi-

tional probabilities according to the Probability Distribution Function (PDF)

of the corresponding statistical distribution. In the example of equation (4.4),

supposing that the Network Measurement Component detects packet delays

to follow an exponential distribution, the equation would be numerically eval-

uated as h(x) = q = (1 − q)e−x/d, where d is the distribution mean which

is provided by the average packet delay. If at a later time the component

detects packet delays to follow another, different, distribution, then equation

(4.4) would be numerically evaluated according to the PDF of that specific

distribution.

The actual calculation of the right statistical distribution requires a goodness

of fit (gof) test to determine how good a set of data fits a specific distribution.

Among the possible ones, we chose to use the χ2-test, given its simplicity and

wide use. A full description of this test can be found in [61], and a brief de-

scription is produced here for reasons of exposition.

A specific statistical distribution is hypothesized to fit the set of samples in

the table, and the χ2-test is applied for estimating the degrees of confidence in
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accepting this hypothesis. To this end, the table is divided into k buckets each

one referring to a certain delay time. Each of these expects a certain number

Ei of samples, calculated as Ei = N(F (Ui)−F (Li)), where F is the cumulative

distribution function for the distribution being tested, Ui and Li are the upper

and lower limits respectively. Then, the observed frequency is calculated, by

counting the number of samples actually falling into each bucket, as Oi, and

the following test statistic is executed:

χ2 =
k∑

i=0

(Oi − Ei)
2/Ei (6.1)

This calculation will generate a χ2 value for the set of samples, which will need

to be matched with a critical value of χ2 to be found in a sampling distribution

table. The right position to look at, in the sampling distribution table, is given

by the degrees of freedom and the error threshold. The former is a measure of

how precise estimation of variability is, and is calculated based on the num-

ber of buckets the original table has been divided into. The former, on the

other hand, states the maximum tolerable error. In the Network Measurement

Component is a system parameter that can be dynamically configured.

The gof test is successful if and only if the χ2 value for the set of samples being

considered is larger than the critical value found, which means that the sam-

ples table presents a statistically significant relationship between the variables

in it.

In this case, the set of samples in the table is assumed to follow the hypoth-
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esized distribution, and conditional probabilities in the stochastic model are

evaluated according the referring distribution’s PDF.

6.5.2 Experimental Calculation

Experimental calculation of delay probabilities is performed by evaluating con-

ditional probabilities experimentally from the set of samples to the extent of

satisfying the probability condition. Referring to the example of equation (4.4),

experimental evaluation of h(x) = q+(1−q)P(ξ > x) implies calculation of the

percentage of samples in the table that actually satisfies the condition ξ > x,

where x is fixed and ξ is the sample delay currently being considered.

This evaluation is required during the negotiation phase, and is therefore pro-

vided on-demand. The Negotiation Component asks, during negotiation, cal-

culation of a certain conditional probability; the Network Measurement Com-

ponent calculates such a value from the table and returns the value, which is

used by the Negotiation Component to terminate estimation of the stochastic

model.

6.5.3 Criticisms

Both ways of calculating conditional delay probabilities are meant to provide

reasonably accurate information about timeliness properties of the network.

However, they can suffer accuracy weaknesses.
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The statistical evaluation of packet delays is based on data contained in the

sample table. Samples are hypothesized to fit a statistical pattern, and the gof

test evaluates accuracy of such hypothesis. However, the nature of samples

in the table might not allow approximation to any known statistical pattern,

in which case the error threshold should be relaxed with a consequent loss in

accuracy. For this reason, application of this method suits environments where

the network is not subject to considerable stability variations.

The same loss of accuracy might happen in the experimental calculation method.

In occasions where the network changes its behavior in a way the table does

not capture, for instance when a fluctuation is entirely captured into samples of

the same slot of time, the table would be partitioned into a first part contain-

ing short delays and a second part containing huge delays. As a consequence,

conditional probabilities evaluated on such a sample table would not capture

the real behavior of the network. In this case, keeping the same sampling

rate would cause a loss of accuracy in calculating the delay probabilities, while

increasing it to sample the network at shorter times would keep the accuracy

stable but increasing the workload of the system.

6.6 Concluding Remarks

We have described the Network Measurement Component together with its

techniques to monitor the network and produce average performance metrics

in the context of the QoS-Supportive Reliable Multicast System. We have
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described its application to a CS that provides best-effort communication fa-

cilities, where its task is to act as source of information about network behavior

with respect to other components of the system. We have also described how

application of the component to a context where the CS offers communication

facilities through an ISP brings the added value of verifying that service provi-

sion is realized in a way compliant to an agreement specified a priori, besides

the classical role of source of network-related information.

We have described the three-way ping algorithm at the basis of the monitoring

technique, putting emphasis on the how data gathered is processed in order

to produce a statistical evaluation of network metrics in terms of reliability,

timeliness and stability characteristics by calculation of packet loss, packet

delay and jitter respectively. We have also described the two ways, named

statistical evaluation and experimental calculation, the Network Measurement

Component provides to convert probabilistic equations, present in the analyt-

ical model, into deterministic equations to the extent of being automatically

evaluated. We have put emphasis on the fact that accuracy of the statisti-

cal evaluation method is proportional to the proximity of the jitter to the

zero-value, while the experimental calculation method is capable of converting

conditional probabilities into deterministic equations with a higher accuracy

in environments where the loss rate is slow.
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Chapter 7

Prototype Implementations

7.1 Introduction

This section presents and describes two prototype implementations of the

single-packet protocol of chapter 4. The first is a middleware suite named

alipes. The name is taken from the herald of the Olympian gods (also named

Mercury and Hermes), messenger of the gods and known for his cunning and

shrewdness. In this, the architecture of the RMcast system is supported by a

set of facilities to form a basic GC system. Throughout this chapter, we shall

refer to those objects, classes and packages being part of the architecture of

the RMcast system as core objects, classes and packages. On the other hand,

objects, classes and packages being part of the supportive facilities will be re-

ferred to as non-core objects, classes and packages.

The second prototype implementation has been developed by extracting the

core structure from alipes, i.e. the single-packet RMcast system, and integrat-

ing it into the JGroups Reliable Communication Toolkit [13]. Besides providing

an example of how to integrate the protocol into a working system, giving birth
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to a QoS-supportive version of JGroups that we named QoS-JGroups, this pro-

cess brought advantages to the TAPAS (Trusted and QoS-Aware Provision of

Application Services) EU-IST project[3] as the QoS-JGroups system suited

perfectly TAPAS needs for a QoS-supportive communication system for clus-

tered application services.

The two prototypes differ essentially in the fact that while alipes is a prototype

developed ex novo, QoS-JGroups is a derivation obtained by extracting core

functionalities from the former and integrating them as a new object into the

already-existing JGroups toolkit. Consequently, alipes required considerable

efforts in both design and implementation phase as compared to QoS-JGroups.

While describing both prototypes in detail, this chapter will therefore give

higher emphasis to the description of the alipes prototype.

The structure of alipes is described in detail together with interaction schemes

driving the inter- and intra-component coordination. Moreover, results of test-

ing focusing on verification of the capability to maintain agreed guarantees are

shown. Such testing has been conducted in a real world scenario by means of

the Planet Lab[2] testbed.

Results obtained in the testing of alipes are assumed to hold for QoS-JGroups

as well, as they share the same structure and software architecture. Therefore,

in describing the latter we shall focus on commenting the phases of integration

into the original JGroups.

Both prototypes have been implemented using Object Oriented (OO) tools.

In particular, the Unified Modeling Language (UML)[49] has been used for the
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design phase, and its diagrams will be used throughout this chapter to accom-

pany description of concepts.

7.2 Design and implementation tools

Middleware systems are traditionally Object Oriented (OO) in nature. OO

tools and techniques provide a systematic approach to middleware design which

alipes takes full advantage of. For example, its structure has been designed by

using the Unified Modeling Language (UML)[49], and its prototype has been

developed by means of the Java c©[27] programming language.

The choice of Java and UML has been mainly driven by the well known excel-

lent UML-Java interoperability, which made it easy to switch from the design

phase to the implementation phase by taking advantage of the possibility to

create Java code skeletons from the UML diagrams. Besides this, a variety of

other reasons also motivate the choice of UML and Java singularly as modeling

and implementation instruments respectively. These reasons are stated below.

UML is becoming a de-facto standard tool for designing OO systems. It pro-

vides a vast set of diagrams with which it is possible to put emphasis on every

functional aspect of the system to be designed. Its diagrams and notations are

widely understood and accepted in the Software Engineering community, and

its use is regarded to lead to optimal design. However, UML was originally

created for design and modeling of large industrial systems, and to this extent
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it provides an overwhelming set of diagrams each with customized notation.

alipes, on the other hand, is a first, basic, prototype and therefore only a subset

of UML diagrams, described in the following subsection, has been used in this

design.

The choice of Java as the programming language for the implementation has

been dictated by the consideration that majority of middleware systems are

implemented in Java, and eventual integration would surely take advantage

of this. An example of this is offered by the second prototype, which ben-

efits from being implemented in Java since JGroups is implemented in Java

itself. Moreover, the possibility of eventual integration of subsystems imple-

mented in other programming languages, to extend alipes capabilities, is never

compromised thanks to the possibility of integrating through the Java Native

Interface[80] (JNI).

7.2.1 UML Notation

As mentioned above, UML provides an overwhelming variety of diagram types

and notations only a subset of which are of interest for our work. In particu-

lar, we decided to use UML 2 [49] notation, rather than the original one, as it

is regarded as to have more expressive power than the original version. The

remainder of this subsection provides a description of the UML diagram types

involved in the design phase of the alipes prototype, along with description of

the notation used.
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Degree

Arts Law

Figure 7.1: Example of UML Package Diagram

For the sake of clarity, throughout this chapter we shall refer to components

forming the RMcast system as system components, in order to avoid confusion

with the UML notion of functional component.

7.2.1.1 Package Diagrams

This type of diagram aims to show structure and dependencies of a hierar-

chically arranged set of packages. Figure 7.1 shows an example. A Package

is indicated as a box with a rectangle on the top left corner, with its name

specified in the center of the box. Hierarchy is graphically represented in UML

package diagrams by arranging boxes on multiple “levels”, as in a in a tree-like

structure, with the root package at the top.

Referring to figure 7.1, the Degree package is the root package. The Arts and

Law packages are specializations of the Degree package, to indicate that “arts”

and “law” are distinct types of the same “degree” object. This relationship
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is graphically represented by an arrow starting from each of the specializing

packages and terminating in the super-package.

7.2.1.2 Component Diagrams

UML Component diagrams are used to highlight the technical aspect of the

software architecture. In particular, they lay emphasis on the structure of

the components and detail the component-to-component and component-to-

interface dependencies.

In these diagrams, components are modeled as simple rectangles. A symbol (a

rectangle with two smaller rectangles jutting out from the left-hand side) on

the top right corner is used as a visual stereotype to indicate that the rectan-

gle represents a component. Alternatively, a “<<component>>” inscription

is also widely accepted as indication of the nature of the box. This inscription

can be replaced with a more precise indication of the nature of the component,

whereas this is known in advance. Figure 7.2, which will shortly be described,

provides an example of four components whose nature is known and indicated

as <<GUI>>, <<Infrastructure>> and <<Database>>.

Components may require and provide interfaces. An interface is a definition of

a collection of one or more methods, and zero or more attributes, that define

a cohesive set of behaviors. A provided interface is modeled using a lollipop

notation, i.e. a straight line ending with a circle, while a required interface is

modeled using the socket notation, i.e. a straight line ending with an open half

circle. Interfaces are tied to the component which provides them (for provided
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interfaces) or requires them (for required ones) through ports.

A port is a feature of a component that specifies a distinct interaction point

between the component and its environment. Ports can be named, and can

provide unidirectional or bi-directional communication. In a diagram, ports

are typically shown whenever necessary, while are omitted when not visually

influent to the component. When visualized in a component, a port is shown

as a square box from which interfaces start. An example of component dia-

gram with ports can be found in figure 7.9.

Interaction relationships between named interfaces and components are graph-

ically represented as connecting arrows, and presence of an arrow connecting

two boxes imply a message exchange across connectors. When the nature of

the relationship is known in advance, the arrow relationship can be stereo-

typed. In the context of this work we have modeled relationships between

ports and internal classes, when known in advance, in the following ways:

• delegation relationship: represented as a line with an open arrowhead,

indicates that the object the arrow starts from delegates a task to the

object the arrow points to;

• realization relationship: represented as a dashed arrow with a closed

arrowhead, indicates that the pointed port realizes a service needed by

the class the arrow starts from

Figure 7.2 shows an example of UML Component Diagram where four com-

ponents, namely Web Browser, Credit Check, Shopping Cart and MySQL are
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Web Browser

<<GUI>>
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<<Infrasructure>>
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Credit Check

<<Infrastructure>>

<<Uses>>

Figure 7.2: Example of UML Component Diagram

engaged in an interaction. The components are self-describing by their names,

and allow a user to use an online shopping cart. The web browser is a compo-

nent, of type GUI, which interacts with the shopping cart, of type Infrastruc-

ture. Storing of purchased items into the shopping cart is made secure through

the use of the Secure Socket Layer [50] (SSL) protocol, and the dashed arrow

connecting the web browser to the SSL interface exported by the shopping

cart indicates that the former component realizes the latter service (i.e. the

shopping cart) through the use of an SSL socket. The shopping cart, in turn,

uses a credit check engine to verify the financial credits of the user when this

latter uses a credit card as payment. This interaction is emphasized by the

stereotyped delegation relationship between the shopping cart and the credit

check engine.

Items in the shopping cart are stored into a database. Figure 7.2 shows

this by the shopping cart component requiring a JDBC (Java DataBase Con-

nectivity [87]) interface, which is provided by the MySQL component of type
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Database.

7.2.1.3 Sequence Diagrams

Sequence Diagrams show interactions between objects based on the timing

and order they occur. In this type of diagram, each class is represented with

a box containing the object name and type in the traditional name : type

UML format. Underneath boxes, a life line, denoted by a dashed line, de-

scribes the object life cycle in time, and is traditionally interpreted in a top-

down way. Interactions, which might be method invocation, RPCs or simple

data exchange, are represented as arrows from the requesting object’s the life

line to the requested object’s life line. The shape of the arrow denotes the

synchronous/asynchronous nature of the interaction: solid arrowheads denote

synchronous interactions, while open arrowheads denote asynchronous inter-

actions. Dashed arrows with open arrowheads denote return messages, while

arrows starting and terminating at the same object denote a processing activ-

ity which takes place internally to the object. When an interaction request

is received, a vertical rectangular box starting just after the request, i.e. the

terminating arrow, and overlapping the life line, indicates the object activation

time, i.e. the time at which an object is activated with respect to the scenario

under examination.

Figure 7.3 shows an example, where a sequence diagram is used to describe the

interaction of objects involved in a remote system for students enrollment to

exams. The example shows a student named J. Smith enrolling for the CSC822
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JSmith : Student CSC822 : Exam SDIA : Course

enrollStudent(JSmith)
isStudentEligible(JSmith)

eligibilityStatus
enrollmentStatus

Figure 7.3: Example of UML Sequence Diagram

exam of the SDIA course. The scenario is modeled by the UML sequence di-

agram in figure 7.3 as follows. Each of the entities involved is represented

by a class, whose name and type is specified inside the box representing the

class. The class representing the student in the system asks for enrollment

via invocation of an enrollStudent(JSmith) method. Note the synchronous

nature of the interaction. Invocation implies interaction with the CSC822 ob-

ject of type Exam. Before granting enrollment, CS822 checks whether the

student is admitted to the exam or not. To this extent, CSC822 interacts

(asynchronously, as specified by the arrow type) with the SDIA class. This

latter, of type Course, checks whether the student belongs to the SDIA course

or not. The actual interaction is not showed in the figure for the sake of space.

After completion of the check, some time after the request, the SDIA class re-

turns an eligibilityStatus stating whether the student is eligible for the exam

or not. This object is received by CSC822 which, based on its value, returns

an enrollmentStatus data. Please note that the activation time of CSC822
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Figure 7.4: Package structure for the alipes prototype

and SDIA objects is limited to the time when interactions trigger processing.

7.3 alipes

The alipes system is designed around the three main system components de-

scribed in previous chapters. Its logic is contained in a hierarchically arranged

set of packages, whose structure is shown in Figure 7.4. The root package

alipes contains the Negotiation, RMcast, NetworkMeasurement, and Util

packages. The first three packages contain objects and classes for the corre-

sponding system component, while the last package provides objects which

setup the environment and execution of the system. More precisely, the Util

package contains the following sub-packages:

• XML: XML data parsing subsystem, to allow utilization of alipes as plugin

in systems using XML data format.
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• RMIGroupMembership: dynamic GM protocol subsystem, based on RMI[94].

• TimeService: subsystem to notify processes of timeout expiration.

• NetworkUpdateService: subsystem to notify processes of network met-

rics updates.

All above subsystems have been separated from the main protocol, although

essential for the execution, to the extent of decoupling their actual implemen-

tation from the core components. These are therefore used, in alipes, as plugin

systems.

7.3.1 Core Components

The system contains a front object named Container. Its purpose is to ab-

stract system’s logic away by allowing access to the communication primitives

in a transparent and safe way, while optimizing coordination among system

components by easing the user from direct handling of components. The con-

tainer prevents misuse of the communication primitives by checking that sen-

sitive communication primitives are not invoked before termination of a suc-

cessful negotiation. Figure 7.5 shows the interaction scheme of the container

with the main system components.

The container has a reference to each system component through one or more

interfaces defining the service provided. Functionalities exported in each in-

terface are as follows: the Negotiation Component exports primitives to access
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Figure 7.5: System components interaction scheme

negotiation facilities and obtain results; the RMcast component exports prim-

itives concerning the RMcast and RMdeliver operations, while the Network

Measurement Component provides primitives for measuring network metrics.

System components make use of services provided by subsystems in the Util

package mentioned above, which add specific capabilities needed for their cor-

rect execution. Figure 7.5 shows components providing the services in question;

the TimeService component brings the logic for handling timeout expiration

asynchronously; the GroupMembership component handles GM updates, while

the NetworkMetricsUpdate component handles reception of updates concern-

ing network metrics. These components will be described in detail in subsec-

tion 7.3.2.2.

XMLParser and Communication infrastructures represent components abstract-

ing subsystems providing capabilities totally external to the framework. In par-
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public class Container{

public void requestNegotiation(double lat,

double reliab,

String lat_type){...}

public boolean getNegotiationResult() {...}

public void RMcast(Object obj) {...}

public Object RMdeliver(){...}

public void killMe(){...}

}

Figure 7.6: Structure of the Container class.

ticular, the XMLParser infrastructure abstracts the use of an XML parser to al-

low the user to submit negotiation requests in XML format. The Communication

infrastructure, on the other hand, abstracts the use of a lower level Commu-

nication Subsystem with which messages are sent to the Internet.

7.3.1.1 Container

The Container object is a convenient way to encapsulate main system func-

tionalities. Encapsulation provides a single-object abstraction in alipes. This

eases the user from having to deal with system components directly, also pre-

venting misuse by monitoring access to sensitive primitives (for example check-

ing whether the user has successfully negotiated the service level every time it

accesses the RMcast primitive).

The structure of the Container class is shown in Figure 7.6. Referring to this

figure, purpose of each primitive is described as follows:

• requestNegotiation(double lat, double reliab, String lat type):
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is used by the user to request a negotiation. In the invocation, the lat,

reliab and lat type input parameters represent user’s QoS level re-

quirements in terms of latency amount, reliability percentage, and la-

tency type respectively. Timeliness-related input parameters, i.e. lat

and lat type, can remain unspecified in case the user is interested in

negotiating reliability only.

• getNegotiationResult(): provides the user with the result of a nego-

tiation. This latter primitive is blocking in a way that invocation while

the negotiation is still being performed blocks the user until termination.

• RMcast(Object obj) and RMdeliver(): are invoked by the user to start

execution of the RMcast and RMdeliver operation respectively. Invoca-

tion of the RMcast(Object obj) is subject to a check on a prior success-

ful negotiation. In case of negative answer, the container denies access

to the primitive throwing an exception.

The RMdeliver() primitive, on the other hand, allows the user to have

delivered messages RMcast from other members of the group, and does

not need to undergo through the same check.

• killMe(): its invocation causes the system to die by starting a proce-

dure that recursively stops threads and deletes objects in all components.

Once all components are stopped, the container (and therefore the sys-

tem) becomes empty. Invocation of this method has also implications in

terms of group management, and equals to user leaving the group.
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Note that the RMdeliver() primitive does not give direct access to the real

message reception primitive, but rather allows the user to have delivered mes-

sages eventually arrived from other members’ RMcasts in the interval time

between instantiation of the container and invocation of the RMdeliver prim-

itive. While, in fact, this time can be retained negligible in the wide majority

of cases, under certain conditions such as extremely high workload, it might be

prolonged. alipes manages these cases by instantiating the lower level recep-

tion subsystem, part of the RMcast component, in the container instantiation

phase.

The lower level reception primitive, described later in this chapter, handles

the receiving-side of the protocol and stores messages from other members’

RMcast operations in a storage buffer, which the container object accesses in

order to deliver messages to the user.

The rationale behind the choice of separating semantics of the two described

reception primitives is that instantiation of the container allows the system

to be retained an operative member of the group, and as such it is expected

to be able to receive messages. However, once the message has been received

user delivery might be delayed for many reasons. Consider an example where

the system is used to provide information reliably and timely in an online

pay-per-view live streaming service, where the client is charged based on the

service level requested. The client, i.e. the user, negotiates the QoS level de-

sired with the alipes-based server before starting reception of the broadcast.

After successful negotiation, the server might need to wait, before starting the
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actual provision, for an online check of client financial credentials. Technically

speaking, the client is eligible of receiving information, i.e. would become op-

erative, after successful negotiation but online check of financial credentials

might delay the user receiving the actual information.

Instantiation of the container leads to instantiation of the whole system, code

in figure 7.7 shows. Objects interested by the instantiation are the ones whose

functionalities do not depend on the negotiation process, such as the Network

Measurement Component (named nmc in figure). In addition, the Container

object partly instantiates the architecture of the Negotiation and RMcast com-

ponents (indicated as nc and rmc respectively in the figure). Objects from

the former component are instantiated to allow prompt initialization steps for

setting up negotiation facilities, while objects from the latter component are

instantiated to the extent of applying the RMcast protocol to incoming traffic,

as mentioned earlier. In particular, this step implies invocation of the primi-

tive to access the receiving logic of the protocol. Finally, a Group Management

Update Receiver is instantiated to allow update of information concerning the

group membership.

7.3.1.2 Negotiation Component

The architecture of the Negotiation Component is split into two main parts.

The first contains the structures needed to setup the negotiation process, and

its instantiation is included in the instantiation of the container. The second
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public Container(int recvPort) {
// Instantiation of the Network Measurement Component
nmc = new NetworkMeasurement.ComponentImpl();
nmc.measure();

// Instantiation of the Network Update Service
static Service nus = new ServiceImpl();
nus.startMe();

//Partial instantiation of the Negotiation Component
nc = new Negotiation.ComponentImpl((ServiceImpl) nus);

//Partial instantiation of the RMcast Component
rmc = new ComponentImpl(receive_port, (ServiceImpl) nus);

// Instantiation of the GM Update Receiver
GMUpdateReceiver groupUpdater = new GMUpdateReceiver(this);
groupUpdater.startMe();

}

Figure 7.7: Initialization of the Container object.

part, on the other hand, contains the objects by means of which the stochas-

tic model can actually be estimated. Instantiation of this part takes place

on-demand upon request of a negotiation by the user, which can access the

negotiation primitive, along with other primitives, through the negotiation in-

terface exported.

The structure of the negotiation interface is shown in Figure 7.8. More de-

tailedly:

• negotiate(): invoked by the container when the user requests a negoti-

ation, allows the user to request a negotiation process. Invocation of this

primitive causes instantiation of objects and components, needed for the
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public interface Component {

public void negotiate();

public boolean getNegotiationResult();

public int getRho();

public double getEta();

}

Figure 7.8: Structure of the Negotiation Component interface.

negotiation, instantiated on-demand.

• getNegotiationResult(): returns the negotiation result as a boolean

value. A true return value indicates that the negotiation is successful

(and therefore the requested QoS level can be achieved), while a false

return value indicates that negotiation did not succeed, and consequently

the user requested QoS level cannot be achieved. This primitive is block-

ing in a way that blocks the invoker if the negotiation process is not yet

terminated. In case this primitive is invoked before a negotiation request,

the Negotiation Component replies by throwing an exception. Conditions

leading to successful negotiation are discussed later in this section.

• GetRho(): returns the value for the level of redundancy (i.e. ρ), gener-

ated during negotiation. Its invocation is subject to a prior successful

negotiation, and invocation before termination of a negotiation or after

a non-successful negotiation causes the Negotiation component to throw

an exception.

• getEta(): returns the value for the interval time between retransmis-
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sions (i.e. η). As for the GetRho() primitive above, its invocation is

subject to prior successful negotiation, and invocation before termina-

tion of a negotiation or after a non-successful negotiation is replied with

the Negotiation Component throwing an exception.

The architecture of the Negotiation Component is described in Figure 7.9. The

NCFacade object has the task of providing a façade for the component. Ne-

gotiation requests are received by this class and delegated to the Negotiator

class. This latter is instantiated together with the container and allows co-

ordination among eventual multiple negotiation processes. Negotiations are

carried out by instantiating Negotiation objects on a per-request basis and

delegating negotiation estimations.

Negotiation objects perform the actual analytical estimations and provide

the Negotiator with return values specifying latency delay and reliability val-

ues. The Negotiator thus compares these values with the user-requested ones

in order to carry out feasibility analysis as stated in section 4.5.2. As part of

the negotiation process, the component needs to ask conversion of conditional

probabilities into numerically tractable equations. To this extent, the Network

Measurement Component is contacted through the Statistical Delay inter-

face and asked for the conversion.

The negotiation process requires knowledge of the size of the group and

current network conditions. This information needs to be provided on a reg-
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Figure 7.9: Component diagram for the Negotiation Component

ular basis in such a way to be accounted at any time a negotiation request is

made. In the Negotiation Component this task is achieved by the GM Update

and the Network Metrics Update interfaces respectively.

The GM Update interface allows interaction with the GM subsystem. This lat-

ter sends group views whenever an event modifying the group size, such as

joins and/or leaves, takes place, and will be described in section 7.3.2. This

information is then received and handled by the GMUpdater object, to which

the Negotiator delegates the task of amending the local group view according

to updates received.

On the other hand, the Network Metrics Update interface allows interaction

with the Network Measurement Component to the extent of receiving up-to-

date network metrics. This information is received by the NetworkMetricsUpdater,

to which the Negotiator delegates reception and management of updates.

Once all the above information becomes available, the negotiation process can

start and the analytical model evaluated.

The negotiation fails if at least one of the estimated QoS metrics values is
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smaller than the required ones. On the other hand, generation of values which

are larger than (or equal to) or equal to values required by the user is taken as

a guarantee that the corresponding service level can be achieved. Negotiation

is thus considered successful and the system accepts multicast responsibilities.

Figure 7.10 shows a UML sequence diagram depicting a negotiation request sce-

nario. Referring to this figure, the container (represented by the MyContainer

object) invokes the negotiate() method to start the negotiation process.

This request is then received by the NCGate object and forwarded to the

UserNegotiator class that spans a Negotiation i class specifically for the

ith operation. Once negotiation terminates the Negotiation i class returns

the result, which travels back to MyContainer.

Knowledge of certain network metrics allows the analytical model to take into

account present network conditions when estimating behavior of the protocol

in the next future. In the context of the Negotiation Component, metrics used

are:

• average packet delay;

• average packet loss;

• average jitter;

All these parameters are directly involved in the process of analytically esti-

mating protocol performance. In addition, the Negotiation Component can

demand the Network Measurement Component an evaluation of conditional
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MyContainer : 
Container

UserNegotiator : 
Negotiator

Negotiation_i : 
Negotiationnegotiate()

new Negotiation()

negotiationResult
negotiationResults

NCGate: 
NCFacade

negotiate()

negotiationResults

Figure 7.10: Sequence diagram for the negotiation process

delay probabilities. This process is described in more detail in chapter 6.

7.3.1.3 RMcast Component

The RMcast Component offers the QoS-supportive RMcast service through a

configurable protocol. Its structure is divided into sending and receiving part,

which are well separated.

The sending part of the protocol is offered through the RMcast primitive upon

user’s request, and only after successful negotiation. As a consequence, its

architecture is instantiated dynamically upon user request.

The RMdeliver operation, on the other hand, needs to handle reception of

messages from other members from the very first moment when the local host

becomes operative, with respect to the multicast responsibilities. The object

handling this part is invoked exactly once at the very beginning of the system

lifecycle. Instantiation of the handler for the RMdeliver operation is therefore
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public interface Component {

public void RMcast(Object obj);

public void RMreceive();

public void initRMcast(int rho, double eta);

}

Figure 7.11: Structure of the RMcast Component interface.

part of the instantiation of the container.

The structure of the interface exported by the RMcast Component is shown

in Figure 7.11, and methods there defined have the following purpose:

• RMcast(Object obj): applies the sending part of the protocol to the

input parameter obj, as described in figure 4.1. As mentioned earlier,

its usage depends on a successful anticipate negotiation to be performed

before invocation. In case this dependency is not satisfied, any attempt

to access it will result in the container throwing an exception.

• RMreceive():allows the system to apply the receiving side of the protocol

to incoming relevant traffic as described in figure 4.2.

• initRMcast(int rho, double eta, double jitter): used to setup

the initial environment for the RMcast operation. Invocation of this

primitive triggers parameters generated in the negotiation phase, i.e.

level of redundancy ρ and interval time between subsequent retransmis-

sions η, to be established as global protocol parameters and therefore

assumed in the RMcast environment. The above data is provided as
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input parameter upon invocation.

The software architecture of the RMcast Component is shown in the diagram

in Figure 7.12. The RMdeliver and RMcast interfaces are interaction points

belonging to the same interface provided by the RMcast Component, and al-

low the container to interact with objects handling the RMdeliver and RMcast

operations respectively.

The RMdeliver operation is handled by the RMreceiver object, shown in fig-

ure 7.12, in the following way. The Receiver object receives message copies

through the Communication interface. These are forwarded to the RMreceiver

object which applies the receiving part of the RMcast protocol. The message

is then delivered to the user by this latter object through the RMdeliver in-

terface. Both the RMreceiver and the Receiver objects are a single-instance

object in the local system. Whatever the number of concurrent RMcast oper-

ations taking place among the group in a certain moment in time, all message

copies are received by the same objects.

The RMreceiver object needs an interface to handle expiration of timeouts in

an asynchronous fashion. In alipes, this is provided by delegating such duties

to the the TimeService component through the Timeout interface. The latter

component is external to the RMcast Component, and is described in detail

in section 7.3.2.3.

Expiration of a timeout triggers the RMcast Component to try to appoint

the local host as new broadcaster for the remainder of the current RMcast
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Figure 7.12: Component diagram for the RMcast Component

operation. This operation, in turn, involves broadcast to the group of the

last received message copy as per protocol specification in chapter 4. In order

to perform this operation asynchronously, the RMReceiver object delegates a

Broadcaster object which, in turn, delegates the actual broadcast operation

to a Multicaster object, which will be described shortly in the context of the

RMcast operation.

The structure of the object handling the RMcast operation, which can be seen

in figure 7.12, is slightly more complex than the receiving side. Requests of

RMcast operations pass through the RMCInitializer object. This has the

task of initializing the component upon instantiation and making sure that

the environment is properly configured whenever an RMcast operation is re-

quested. Activity of the RMCInitializer involves knowledge of up-to-date

network conditions as part of the setting of the RMcast execution environment.

As a consequence, it handles network metrics and group management updates
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through the Network Metrics Update and GM Update interfaces respectively.

As for the case of the Negotiation Component, this information is provided

by the Network Metrics Update and the GM subsystems. When a message is

forwarded, through the RMcast interface, the RMCInitializer checks in par-

ticular that global parameters are correctly set and, once all checks terminate

successfully, delegates the RMcaster object for the actual RMcast operation.

Data to be RMcast is handled by the RMcaster object through the RMcast

interface. This object is in charge of making sure that the multicast operation

complies to the RMcast specifications (described in chapter 4), and delegates

the actual transmission to the broadcasting primitive. The RMcaster invokes

ρ + 1 times the broadcasting primitive, making sure that each transmission is

made after η time.

The actual broadcast operation is performed by the Multicaster object, which

carries out the unreliable broadcasts by concurrent (unreliable) unicast trans-

missions of UDP datagrams. The transmission is carried out through the

Communication interface, which delegates the communication to the corre-

sponding infrastructure.

The sequence diagram in figure 7.13 shows how the RMcast operation is per-

formed. The Initializer object forwards the request of RMcast operation

to the RMcaster object which reliably multicasts the message based on the

RMcast protocol specifications. This implies using a Multicaster object to

perform the ρ + 1 through the Communication infrastructure.
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Initializer : 
RMCInitializer

Mcaster : 
Multicaster
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RMcast(obj)
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(0)

( )ρ

Figure 7.13: Sequence diagram for the RMcaster

7.3.1.4 Network Measurement Component

The Network Measurement Component measures the following:

• average packet delay;

• average packet loss;

• average packet jitter;

• packet delay statistical pattern;

• experimental evaluation of conditional probabilities.

As explained in the previous chapter, the Network Measurement Component

considers the path towards each destination as a channel. The component

probes each of these by means of the three-way ping algorithm in order to

obtain the RTT, which is then halved to have the packet delay towards that

particular destination. The value obtained is considered an estimation of the

packet delay towards that particular destination, and is stored on a table of
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Figure 7.14: component diagram for the Network Measurement Component.

samples. Every (configurable) fixed amount of time, information on the table

is processed in order to obtain average metrics.

The Network Measurement Component exports two interfaces, as shown in

the component diagram of Figure 7.14. The first, identified in the figure as

MetricsMeasurement, exports a single method to be invoked in order to start

monitoring the network. The second, named MetricsUpdate in the figure,

provides methods to share updates of network metrics.

The fundamental object in the structure of the Network Measurement Com-

ponent is the Metric Meter object, which provides network behavioral infor-

mation on a per-packet basis.

The Metrics Meter delegates the 3-way ping probing sessions described in

chapter 6 to Prober and Receiver objects. To this end, it provides both with
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the list of destinations whose connecting channel is to be monitored. The list

is kept consistent by updates through the GMUpdater component. This inter-

action is realized through the GroupManagement interface, as depicted by the

interaction point with the same name in figure 7.14.

The Prober simply selects a channel from the list and targets a unicast probe

packet (PHASE1 in the description on chapter 6). The actual transmission relies

on the lower level communication facilities, indicated by the Communication

infrastructure in figure 7.14 and realized in alipes by means of UDP[95] data-

grams. Transmission of the probe packet starts the probing session, which

triggers recording of the sending time and setup of the loss timeout mentioned

in chapter 6. Similarly to the RMcast Component, the Network Measure-

ment Component makes use of a TimeService subsystem to handle expiration

of timeouts asynchronously, and is shown in figure 7.14 by the interaction

through the Timeout interface.

The receiving side of the probing session is handled by a Receiver object, in-

stantiated along with the Prober, which is in charge of receiving probe packets

and acknowledging them when needed. When the packet received is a probe

packet (PHASE1), the Receiver simply acknowledges with a PHASE2 packet and

records sending time of this latter packet. This action triggers start of probing

session of the host acknowledging the PHASE1 packet, with the setup of the

corresponding loss timeout. When the packet received is a PHASE2 packet, on

the other hand, the Receiver records reception time (as this concludes own

probing session), and further acknowledges with a PHASE3 packet, allowing the
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destination process to complete its own probing session.

Once a session on a channel is completed, the Receiver delegates a Dispatcher

the processing of gathered data. This has the task of selecting the Worker for

the coresponding channel and forwarding the data for the processing.

Workers are in charge of performing the actual calculation of the RTT from

data gathered on a probing session and, to this end, are instantiated on a per-

channel basis. A worker calculates the average delay time towards the other

end of the channel it has been instantiated for and, once calculated, forwards

them to a Collector which, as the name suggests, collects data for each chan-

nel and selects local worst values for the relevant metrics.

The stochastic model contained in the Negotiation Component is evaluated un-

der pessimistic assumptions as specified in 4.5, and therefore the group-wide

worst values need to be considered. Local worst values are then disseminated

among other group members in order to select the group-wide worst. This

task is performed by the Remote Gather, which achieves this by using the

Communication infrastructure. Group-wide worst values are determined by

comparing, upon reception, other members’ worst values with own local ones

and taking the worst. This update process is concluded, soon after determina-

tion of the current group-wide worst values, by the notification to all other local

system components. This last task is delegated to the LocalMetricsUpdate

object, which realizes the service offered through the MetricsUpdate interface

to provide the Network Metrics Update component the metrics to be spread

out among other local system components.
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7.3.2 Non-core components

The Util package contains subsystems providing a set of functionalities which,

albeit necessary to the correct execution of the RMcast system, are intended

to the use as “plugin” subsystems. As mentioned previously, this choice is

motivated by the need to decouple definition of these object from their ac-

tual implementation. The remainder of this section provides a more detailed

description of each of these components.

7.3.2.1 XML parser

The XML package contains objects and classes which allow alipes to engage ex-

change of data structured based on the XML[23] specification. In particular,

the package contains an XML parser capable of extracting the logical structure

of data in a Document Object Model [11] (DOM) format. Information can then

be easily extracted from the DOM object and used by the RMcast system.

The XML format foresees data to be structured based on a hierarchy of XML

tags which in turn, needs to be defined in a Data Type Document [23] or

XMLSchema[46] against which the parser validates the structure of the XML

file. Obviously, alipes provides a basic (XML-based) mini language that can

be used to communicate with the system when XML is the method chosen.
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Figure 7.15: Group Management protocol

7.3.2.2 Group Membership Protocol

The RMIGroupMembership package implements a basic Group Membership

(GM) protocol. Its aim is to build updated group views each time an event

such as joins/leaves modifies the structure of the group, and to share these

new group views among other group members so as to keep them consistent.

Figure 7.15 shows the dynamics allowing the GM protocol to keep each mem-

ber’s group view consistent.

The GM protocol is composed of a Group Manager and Group Membership

Updater (indicated as GMUpdaterin figure 7.15). The former object governs

a centralized RMI[94] registry, which allows persistent storage of information
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on group. Information stored includes members’ identity and location. In

addition, the Group manager is also in charge of building group views to be

shared among group members. Such group views are built each time an event

outdates the previous view (such as new joins, leaves, etc.).

Up-to-date group views are shared among group members through the Group

Membership Updater. The updater is instantiated by the container of each

group member, and has the role of receiving new group views and passing them

to the container for update of the local system components.

Instantiation of alipes on a host involves, in first instance, joining a group as

new member. This action can be seen performed, in figure 7.15, by Member

5. The action of joining a group is performed by notifying presence to the

Group Manager, whose address is made available a priori. This operation

typically implies the new member to register a unique id in the registry, and

the canonical IPAddr : port format is used. Every time a new host joins, the

Group Manager stores this information in the RMI registry and updates its

group view. The new group view formed in this way is then shared among

other group members by transmitting the view itself to each member’s Group

Membership Updater.

Similar dynamics is employed when a member leaves the group voluntar-

ily: a leave notification is automatically sent to the Group Manager by the

Container object when the user invokes the killMe() method on a node. As

in the case of a new member joining, this action triggers a modification of the

group structure. A new group view is then created and sent to the Group
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Membership Updater of each member.

The Group Manager periodically pings the GMUpdater of each member for

liveness, and this allows to detect members leaving the group due to failures.

At destination, views are received by the local instance of the GMUpdater. In-

stantiation of this latter object on a member is part of the instantiation of

the Container. Its structure is composed by a UDP[95] socket listening on a

specific, globally known, port. Reception of a new group view triggers this

latter to be shared among all local components by propagating invocation of

the group update primitive locally.

The Group Membership protocol is an external facility, and is designed to be

executed by means of a separate Java Virtual Machine. Obviously, the Group

Manager needs to be executed before each member for an execution to be cor-

rect, and in alipes a text client provides a usable example on how initialization

of the whole system should be done.

7.3.2.3 Time and Network Update Metrics Update subsystems

The Time Service and Network Metrics Update subsystems share many struc-

tural concepts. Their structure is based on an event-driven, publish/subscribe[42]

paradigm and implies clients interested in the occurrence of a specific event

to deposit a listener in a list. In the case of the Time Service, the event of

interest is expiration of a timeout, while in the case of the Network Metrics

Update is production of a new set of (up-to-date) network metrics.

The listener required by the Time Service to provide notification of timeout
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expiration is called Timeout Listener. Besides the timeout to be notified ex-

piration of, timeout listeners specify owner, creation timestamp and a method

to call in case the timeout expires. When a client wants to be notified of expi-

ration of a timeout, it creates a Timeout Listener and asks the Time Service

to insert it into the list of active listeners.

In the Time Service, listeners are received by a thread that stores them in

the list. Every (configurable) fixed amount of time, typically in the order of

milliseconds, another thread wakes up and compares the current time with the

time the timeout is due to expire. If the current time is bigger or equal to the

expiration time, the timeout is retained to expire. Upon this occurrence, the

owner is notified through the method specified, and the listener is discarded.

The Time Service is designed as a logical separate auxiliary subsystem instan-

tiated locally by each member. This choice eases the system from having to

compensate for differences in local clocks, which might arise in scenarios where

a similar system is offered through a remote centralized or distributed solution.

The Network Metrics Update component, on the other hand, provides updates

on network metrics to system components previously notifying their interest

in this type of event. Unlike the previous service, the Network Metrics Update

foresees the use of persistent listeners, which are deposited in the listeners list

once and never deleted. As a consequence, subscription to the use of this ser-

vice is required only once. In addition, listeners are limited in number, as they

represent components awaiting for notification.

As different components need to be notified of variation in different metrics,
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the Negotiation Component and the RMcast Component use different listen-

ers, namely the Negotiation Metrics Listener and the RMcast Metrics Listener.

They fundamentally differ only in the type of information they ask to be noti-

fied of, and in the destination notification must be directed to. The Network

Measurement Component, on the other hand, provides the Network Update

Service with the information which will be notified to other components. The

component therefore uses the Network Update Service differently, and foresees

invocation of a method to update values in the Network Update subsystem,

which will realize the change in values and notify other local system compo-

nents.

7.3.3 Testing in a Real Scenario

The alipes prototype has been tested in a real world scenario for its capabilities

to maintain the negotiated guarantees. This testing phase has been conducted

on the PlanetLab[2] (PL) platform, already briefly introduce in chapter 6.

In the next subsections we provide a more complete description of PlanetLab

and, after, a description of the testing phase.

7.3.3.1 Environment and methodology

Planet Lab[2] (PL) is world-wide testbed and has worldwide industrial and

academic affiliations. Each of the member institutions provides two or more

hosts for PL users. Hosts are connected via the Internet on a best effort ba-

sis, and the Linux operating system on top of each host provides only basic
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No. Affiliation and Location
1 Motorola Inc., Seattle, USA
2 Newcastle University, Newcastle, UK
3 Indian Institute of Information Technology, Bangalore, India
4 University of Bologna, Italy
5 University of Technology at Sidney, Australia
6 RNP, Rio de Janeiro, Brazil
7 Cornell University, Itaha, USA
8 The University of Hong Kong, Hong Kong

Figure 7.16: Nodes affiliations and numbering.

communication primitives. Utilization of PL implies creation of a slice, which

needs to be later populated with nodes. Slices are pseudo-domain abstractions

similar to Virtual LAN s which are populated with nodes hosted on machines

geographically distant. PL provided an excellent testbed platform for our pur-

poses, as geographical distance among nodes allows a network behavior that

is hard predict and failures can happen at any time without notice.

To the end of testing alipes, we have created a slice and populated it with

eight nodes belonging to member affiliations. Enumeration of the participat-

ing nodes is shown in table 7.16, and corresponding geographical location of

machines hosting the nodes is shown in figure 7.17.

All the nodes in our slice were included in a group by installing alipes on each

of them and allowing the GM protocol there included to handle GM-related

aspects.

Throughout testing, node number 4, in Bologna, Italy, hosted the Group Man-

ager; besides the standard communication duties, its tasks were thus to receive

joining notifications from new members, build group views and provide other
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members with such views. All members were engaged in a one-to-many com-

munication by means of alipes-based facilities. In each operation, we allowed

the originator to change based on a round-robin policy.

Tests consisted of sessions whose results are collected on a per-message basis.

Any node can act as a message originator. An automated client simulated the

user requesting a negotiation every minute and sessions were formed by a total

of 100 requests.

All negotiation requests had reliability fixed as 99.99% and a randomly cho-

sen latency type (either absolute or relative) and delay. Note that the above

reliability level refers to the precision the user asks the protocol to maintain

on the provision of the specified timeliness bounds, rather than the delivery

guarantee level which the protocol natively offers in the multicast operation.

Successful negotiations allowed the host to act as originator in the consequent

multicast operation. Values for user latency requests are uniformly generated

in a realistic interval time, which takes into account geographical distance of

the hosts.

In table 7.18 we report a sample set of requests performed for a simulated

user, with corresponding results. The table shows a numbered itemization of

15 requests, and for each of these it shows:

Run Run number. Simple count for the showed requests;

Neg Lat Latency amount. Randomly generated amount of user-requested latency;

Type Latency type. Randomly generated type of user-requested latency. Its
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value can either be ABS, indicating absolute latency, or REL, indicating

relative latency. In case of absolute latency, the user is requesting delivery

to all operative destinations within a latency bound from the the moment

when the originator invokes the RMcasting primitive. On the other hand,

a relative latency type indicates the user requesting delivery to all correct

destinations within a specific latency bound from the moment when the

first destination receives the message;

Accepted Negotiation result. States whether the negotiation is successful or not

(i.e. whether user requests have been accepted or not). Values in this

column can be either YES, for successful negotiations, or NO, for non-

successful ones;

Success RMcast operation result. States whether the resulting RMcast operation

has been successful in maintaining the agreed QoS guarantees or not.

Values in this columns can be either YES, to indicate that the RMcast

operation terminated successfully, or NO, to indicate that the RMcast

operation has not been successful. The RMcast operation is retained
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to be successful when the protocol delivers the message to all correct

destinations within the specified timeliness bound. On the other hand,

an operation is not successful when the protocol fails to either deliver

the message to all correct destinations or fails to maintain the timeliness

bound;

Perf Lat Performance time. Shows the interval time between the originator in-

voking the RMcasting primitive to the first moment thereafter when all

destinations delivered the message. In the ideal case, this column should

contain values smaller than or equal to values in the Neg Lat column. In

fact, this would confirm underestimation of real protocol’s performance

in negotiation phase. Note how values in this column represent an upper

bound to the absolute and relative latencies experienced in the actual

real-world execution, and how comparison with values in the Neg Lat is

possible;

Error Relative error. Displays a percentage representing the underestimation

of the latency time negotiated with respect of the latency actually ex-

perienced in the real execution. This value is calculated as (Neg Lat -

Perf Lat)/Neg Lat. Ideally it should contain positive percentage figures,

meaning that the actual performance is faster than what predicted in ne-

gotiation phase. However, too large positive values would indicate that

the negotiation is not accurate;

ρ Calculated level of redundancy. Whenever the negotiation is successful,
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this column displays the level of redundancy needed to achieve the agreed

QoS level;

Bcasts Total number of broadcasts carried out. Whenever the negotiation is suc-

cessful, the column displays the number of broadcasts totally carried out

in the correspondent RMcast operation. The value includes broadcasts

carried out due to protocol specifications and are therefore expected not

to fall beyond the correspondent ρ + 1 transmission;

Together with the reliability request, fixed at 99.99% as mentioned earlier, the

Neg Lat and Type columns define the user-requested QoS level. For instance,

run number 1 in the table specifies a user requesting a multicast operation to

be completed within 779 milliseconds of relative latency with 99.99% reliability

guarantee. In this case, the relative nature of the latency guarantee implies

evaluation of the US probability (equation 4.11), and the successful negotiation

in the table indicates that evaluation of the analytical model confirmed at least

99.99% confidence on the delivery of the message to all correct destinations

within 779 milliseconds can be guaranteed. On the other hand, in run number

7 a user requests a guarantee of 116 milliseconds in terms of absolute latency,

together with the fixed 99.99% reliability guarantee. In this case, the abso-

lute nature of the requested latency triggers calculation of the rD probability

(equation 4.7), and the NO value in the Accepted column indicates that the

system has been unable to guarantee message delivery to all correct destina-

tions within 116 milliseconds with 99.99% confidence. However, note that the
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classic multicast delivery guarantee, which implies delivery of a message to all

or none of the correct destinations, is natively taken into account.

A first look at the table clearly shows that all RMcast operations performed

have terminated successfully maintaing the promised guarantees. In addition,

on a total of 15 runs, in 11 occasions alipes has been able to accept the re-

quested QoS level. In other words, the table shows that in 74% of the total

runs alipes has performed successful negotiations, and in each of these it has

been able to maintain the negotiated guarantees. The remainder of this section

will describe results of test runs reported in table 7.18 in detail, focusing on

alipes ’ capability to maintain QoS levels.

7.3.3.2 Latency

alipes capabilities of maintaining latency guarantees have been measured in

the following way. After a successful negotiation, the time needed to complete

the RMcast operation is calculated and compared with the latency amount

originally negotiated. The time needed to complete the communication pro-

cess is calculated as the interval time between originator’s invocation of the

RMcasting primitive and the last destination delivering the message. The la-

tency so obtained is thus compared with the negotiated latency regardless of

this latter being absolute or relative.

The rationale behind this technique is based on the considerations that (i)

the latency so calculated is the absolute latency, and (ii) the absolute latency

represents an upper bound on evaluation of protocol performance by latency.
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In fact, consider definitions of absolute and relative latencies given in section

4.3.1:

Absolute Latency the interval time between the originator invoking the RMcast(m) primi-

tive and the first instant thereafter when all operative destinations deliver

the message m;

Relative Latency the interval time between the first destination delivering the message

and the first instant thereafter when all destinations deliver the same

message.

Consideration (i) can be clearly seen by comparing the above definition of ab-

solute latency with the way we calculate the latency in execution of alipes on

the PL slice. Consideration (ii), on the other hand, derives directly from the

definitions above. In fact, the absolute latency refers to the interval time be-

tween the originator invoking the RMcast primitive and the instant when the

last destination delivers the message. On the other hand, calculation of the

relative latency starts when the first destination delivers the message, which

obviously is at a later time than the originator invoking the RMcast primitive,

and finishes, as well as for the absolute latency, when the last destination de-

livers the message.

Showing that the calculated latency is still smaller than the negotiated la-

tency, regardless of this latter being absolute or relative, allows to calculate

the relative error with which the negotiation underestimates the real protocol

performance, and establishes goodness of the protocol performance. As a side
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remark, when the calculated latency is compared with a negotiated latency

which is relative, the comparison establishes a lower bound on the relative

error. In other words, the value for the relative error showed in table can be

considered to be the minimum relative error.

In the table, rows referring to communications performed, i.e. those ones

exploiting a successful negotiation, clearly show that alipes terminates the

RMcast successfully within a latency interval smaller than the negotiated one

regardless this latter having absolute or relative nature. The Error column

shows a quantification of this, with values varying from 4% to 14.1%. Al-

though these figures might look quite small, they can be relevant if related to

the size of the group. Besides, the small values indicate that negotiation pro-

vides accurate estimations of protocol real performance. Fluctuations in these

percentages are due to unforeseen events degrading network performances dur-

ing the correspondent RMcast operation, and the fact that alipes maintains

agreed guarantees show effectiveness of its adaptation mechanisms.

7.4 QoS-JGroups

QoS-JGroups refers to the core system of alipes adapted and formatted based

on protocol integration guidelines specified for the JGroups Reliable Commu-

nication Toolkit [13].

The purpose of integrating the single-packet RMcast protocol into JGroups is

twofold. On one side, it provides an example of integration of the RMcast
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Run Neg Lat Type Accepted Success Perf Lat Error ρ Bcasts
1 779 REL YES YES 701 10% 2 3
2 1361 ABS YES YES 1340 1.5% 2 3
3 828 ABS YES YES 815 1.5% 2 5
4 1060 REL YES YES 1052 7% 2 4
5 190 REL NO
6 774 ABS YES YES 678 1.24% 2 4
7 116 ABS NO
8 987 REL YES YES 947 4% 2 3
9 679 REL YES YES 644 5.1% 2 4
10 1149 ABS YES YES 1124 2.1% 2 4
11 750 ABS YES YES 722 3.7% 2 5
12 290 ABS NO
13 568 REL YES YES 550 3.2% 2 3
14 1150 ABS YES YES 1020 1.13% 2 4
15 298 REL NO

Figure 7.18: Results from tests on the Planet Lab slice

system into an already-existing system, where this latter can start benefitting

of the new service straightaway and in a way completely transparent to the

original system.

As second reason, integration of the RMcast system into JGroups suited ex-

cellently the needs of the TAPAS (Trusted and QoS-Aware Provision of Ap-

plication Services)[3] EU-IST project.

The overall contribution of the TAPAS project was to develop novel methods,

tools, algorithms and protocols that support the construction and provision-

ing of Internet application services. The project achieved the overall objective

by developing QoS-enabled middleware services capable of meeting SLAs be-

tween application services and enhance component based middleware technolo-

gies such that components can be deployed and interact across organisational

boundaries.

Partners of the project selected the JBoss [105] application server as referring
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platform, and focused on enriching its architecture with a set of components

to enhance trust and QoS-awareness.

This section is structured as follows: after a brief description of the archi-

tecture of JBoss an JGroups, in subsections 7.4.1 and 7.4.2 respectively, we

shall describe the steps that led to integration of the RMcast system into

JGroups, also describing the architecture of the QoS-JGroups so obtained and

the changes to the original JGroups.

7.4.1 The JBoss application server

JBoss [105] is a well-known open source platform for developing and deploying

enterprise Java applications, web applications, and portals. Developed entirely

in Java, it offers the full range of Java Enterprise Edition[20] (J2EE) features as

well as extended enterprise services such as clustering, caching and persistence.

Its architecture can be divided into four primary layers:

• Microkernel layer. The core of the application server is a microkernel-

based server. Its purpose is to provide a component model offering de-

ployment, class-loading and full lifecycle management.

• Services layer. On top of the microkernel, an extensible Service Oriented

Architecture[41] (SOA) offers a set of services. Standard services offered

by this layer include transaction, messaging, mail, security and clustered

services.

• Aspect layer. This layer offers an Aspect Oriented Programming [86]
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(AOP) architecture, which allows behavior provided by the services to

be included into any object by means of interceptors.

• Application layer. This topmost layer is the residing place of applications

to be supported.

Among the services offered by JBoss, clustering is one of the most useful and

widely used. This service allows a server to be replicated within a cluster of

identical application servers enhancing scalability (by letting administrators

to include custom load-balancing techniques with which to handle a higher

number of server requests) and fault-tolerance (by redirecting requests to other

servers in case the one chosen to handle the request becomes faulty).

In order for clustering to be fault-tolerant, it is fundamental to be able to keep

consistency among replicated servers. In JBoss this task is handled by the

JGroups Reliable Communication Toolkit [13] through provision of a reliable

group communication service. The use of JGroups in the JBoss allows a

reliable communication between replicated servers by including them in a group

and broadcasting information relevant to cluster management to all members

in the group. However, timeliness issues are not considered when keeping the

cluster consistent (as well as in the rest of JBoss) and therefore the TAPAS

project required to amend the JGroups in such a way to couple reliability with

timeliness features.
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Figure 7.19: Architecture of JGroups

7.4.2 The JGroups Reliable Communication Toolkit

JGroups [13] is a toolkit for reliable multicast communication created by Bela

Ban. Its architecture is based on the abstraction of channel, which connects

the owner to the rest of the group. Architecture of JGroups, shown in Figure

7.19, relies on three main components, described in the following subsections.

7.4.2.1 Channel API

The channel API provides a set of libraries to allow creation, control and dele-

tion of channels between the application on the local node and the rest of the

group. The first step towards construction of a JGroups-enabled system is

creating a channel. Creation is done by specifying a list of properties the user

wants the channel to exploit. Properties on a channel are brought by protocols

acting on that channel, and the user specifies the list of protocols the channel
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is required to exploit. These are specified by means of a definition string, and

figure 7.20, explained later in this section, shows the one instantiated for the

default channel.

After creation, the channel needs to be connected to a group. An id for the

group is passed as input parameter to the channel at instantiation phase. Suc-

cessful joining to the specified group, together with the correct instantiation of

the corresponding channel (i.e. instantiation of a channel owning all properties

listed in the definition string), denotes successful connection of the channel it-

self.

When the channel is no longer needed, a disconnection procedure is started.

The procedure finalizes and disposes all resources, such as protocols instanti-

ated, and closes the channel. Closure of a channel, in particular, implies the

host to voluntarily leave the group.

7.4.2.2 Building Blocks

Building blocks are layered on top of channels, and provide a set of more so-

phisticated APIs to give a higher abstraction of channels. Effectively, they do

not act on channels, but rather on any transport interface. This allows to ab-

stract the concept of channel away, allowing introduction of design patterns[52]

to handle (and avoid) common architectural problems.

APIs in this component aim principally to provide more sophisticated com-

munication entities, such as adapters and dispatchers[69], and data structures,

such as distributed and replicated hash tables and distributed trees[30], while
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providing distributed management for mutual exclusion.

7.4.2.3 protocol stack

The protocol stack contains definition of a set of properties to be used in chan-

nel creation phase. Each property is offered through a protocol object1.

The standard set of properties covers a wide range of services, including trans-

port (TCP[96] and UDP[95]), membership discovery, (NAK-based) reliable

transmission, ordering (causal and total) and group membership. Properties,

i.e. protocol objects, are specified in the channel definition phase through the

definition string, which is passed as an input parameter to the successful creat-

ing the channel. The definition string effectively specifies a stack of protocols

to be used in the channel, and both incoming and outgoing traffic will be

handled by all protocols in this stack. Figure 7.20 shows the definition string

for instantiation of the default channel. Referring to this figure, protocols are

specified sequentially from the bottom-most to the top-most position in the

stack. This implies, among other things, creation of dependencies between

protocols in the stack.

At the bottom the user will need to specify a transport protocol, and for in-

stance in figure 7.20 where the use of UDP[95] is specified. On top of this, the

user will typically specify all other properties, all of which will rely on the spec-

ified transport protocol to carrie out external communication. In particular,

1The concept of protocol object is very similar to what described in chapter 2 for service
composition frameworks, where it is sometimes called micro-protocol.
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String props="UDP(mcast_addr=228.8.8.8;"+
mcast_port=45566;ip_ttl=32;mcast_send_buf_size=64000;"+
"mcast_recv_buf_size=64000):" +
"PING(timeout=2000;num_initial_members=3):" +
"MERGE2(min_interval=5000;max_interval=10000):" +
"FD_SOCK:" + "VERIFY_SUSPECT(timeout=1500):" +
"pbcast.NAKACK(max_xmit_size=8096;"+
"gc_lag=50 retransmit_timeout=600,1200,2400,4800):" +
"UNICAST(timeout=600,1200,2400,4800):" +
"pbcast.STABLE(desired_avg_gossip=20000):" +
"FRAG(frag_size=8096;down_thread=false;up_thread=false):" +
"pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;"+
"shun=false;print_local_addr=true)";

Figure 7.20: Definition string for the default protocol stack

the string in figure 7.20 instantiates a channel employing a NAK-based prob-

abilistic reliable message transmission (specified by the pbcast.NAKACK). The

channel can fragment messages if needed, as specified by the FRAG protocol,

and exploits fault tolerance by the use of a failure detector (specified by the

FD SOCK property). Finally, group membership is handled by a probabilistic

GM protocol (specified as pbcast.GMS).

As mentioned earlier, instantiation of the stack has rigid constraints on the

logical order with which protocol objects are defined, and therefore introduces

inter-protocol dependencies whose satisfaction if mandatory for creation and

connection of the channel. For example, the definition string will necessarily

have to contain instantiation of the chosen communication protocol at the bot-

tom of the stack, while the ordering protocol on top of it.

Any inconsistency in fulfilling dependencies and/or respecting constraints in

the definition string results in the failure to instantiate the corresponding chan-
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nel, and consequently a fatal error which prevents execution of the system.

Integration of our system into JGroups has required modification of a subset

of protocols in the protocol stack, in particular:

UDP : offers a connectionless communication service based on datagrams[95].

Its configuration implies setting the size of buffers for incoming and outgoing

traffic and, more importantly, the choice of the delivery model.

The user can choose between IP multicast [32] (the default method) and the

multicast realized by means of multiple unicasts. In the former, messages are

multicast by sending them to an a priori specified multicast IP address, which

needs to be specified along with the port, while in the latter messages are

delivered through simple unicast communications. The choice of the delivery

model in this protocol also influences the PING protocol, which will soon be

described.

GMS : handles group management. In a group, the oldest member becomes the

group coordinator, and as such it is in charge of handling group management.

On the group coordinator, the GMS protocol object is in charge of producing up-

to-date group views. To this extent, it records members’ joins and leaves, and

verifies crash suspicions. Other group members localize the group coordinator

through the use of the PING protocol object, next to be described. Every time

an event modifies the structure of the group, the coordinator emits a new

group view which is sent to all other members.

On the other hand, on a non-coordinator member the GMS protocol object
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simply notifies its liveness and receives updated group views.

PING : retrieves the initial group membership by multicasting PING requests.

The method used to perform this action depends on the delivery method chosen

in UDP, as mentioned earlier. When the latter chooses to realize the multicast

by means of IP multicast, PING requests are sent out to the group through the

same multicast address. On the other hand, when UDP specifies the multicast

operation to be realized through multiple unicasts, PING realizes the initial

discovery of membership references through the use of a Gossip Server, whose

purpose is to provide a central group-wide reference point for group member-

ship. By sending PING requests to the Gossip Server, whose location needs

to be passed as input parameters, the sender inherently asks to be included in

the group view. The Gossip Server then typically accepts such requests and

produces a new group view which is received by all members including the new

one.

7.4.3 Integration: the RMCAST protocol object

The core of alipes, i.e. the implementation objects for the container, Negotia-

tion, RMcast and Network Measurement components, has been extracted and

integrated in the original JGroups as QoS-supportive reliable transport layer

under the name RMCAST.

The RMCAST protocol object is positioned just above the transport protocol, as

shown in figure 7.21. Consequently, in the definition string its usage needs to
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Figure 7.21: JGroups protocol stack with integration of the RMCAST protocol
object

be declared just after the transport protocol. The usage of RMCAST introduces

some dependencies that need to be satisfied. In detail:

• Transport Protocol: RMCAST requires the presence, in the system, of a

protocol object offering a transport service. Given alipes ’ original orien-

tation towards connectionless communication, the dependency requires

the presence of UDP, that needs to be configured so as to realize the mul-

ticast operation by means of concurrent unicasts rather than through the

use of IP multicast.

• Group Management: information about group is needed in RMCAST due

to its involvement in more then one phase in the life cycle, as showed in

figure 3.9. The dependency is satisfied by the presence of the GMS and

PING protocol objects. Both these are required because of the depen-
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dency of the former on the latter. In detail, RMCAST needs information

concerning the size of the group and address of each member. The GMS

protocol object is capable of providing both types of information. How-

ever, provision of the address of each member can be provided only by

requiring the PING protocol object to use a Gossip Server-based group

management. As a side remark, it is worth noting how this latter re-

quirement also depends on the UDP protocol object to avoid the use of

IP multicast.

Unsatisfying one of the aforementioned dependencies in the definition string

triggers RMCAST to “vanish” from the protocol stack, i.e. to act by simply for-

warding data without applying any logic.

RMCAST maintains a group view that is kept consistent with the group view

maintained by the GMS. The group view is used internally to RMCAST in order

to provide all group information needed for the RMcast protocol. Utilization

of this view, rather than the one maintained by the GMS protocol object, allows

to minimize the message traffic internal to the stack and draws its feasibility

from the fact that the position of RMCAST in the protocol stack allows all GM

information to be received.

In the new definition string, shown in figure 7.22, RMCAST is specifies the fol-

lowing parameters as fundamental for configuration:

• reliability: specifies the reliability QoS requirement. Its value can be

any number r such that 0 < r < 1.
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• latency: specifies the latency delay QoS requirement. Its value is typ-

ically expressed in milliseconds, and any value u such that u > 0 is

admitted.

• type: specifies the type the latency refers to. Its value can be either

absolute or relative. The former refers to the latency bound guarantee

defined in 4.3.1, while the latter refers to the relative latency bound,

always defined in 4.3.1.

• net refresh: specifies the interval time for refresh of data referring to

monitoring of the network. Its value is expressed in milliseconds, and

defines the slot of time within which data gathered from the sampling

activity needs to be processes in order to calculate average metrics.

After instantiation, RMCAST starts execution by performing a negotiation that

takes as parameters the values specified in the definition string. In case the ne-

gotiation results to fail, the user is notified about the impossibility to guarantee

the specified QoS level on the multicast operation, and RMCAST, once again,

becomes transparent to the execution of the system. On the other hand, in

case the negotiation is successful, RMCAST’s architecture is instantiated as al-

ready described for alipes.

Execution of RMCAST implies a filtering activity in order to determine traf-

fic that is relevant to its task. This filtering activity is realized as follows.

Protocol objects at upper positions in the stack forward outgoing traffic to

RMCAST, which checks the type of the traffic. When the type is detected to be
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String props= "UDP(ip_mcast=true;mcast_addr=228.8.8.8;
mcast_port=45566;ip_ttl=32;mcast_send_buf_size=64000;"+
"mcast_recv_buf_size=64000):"+
"RMCAST(reliability=0.99;latency=300;type=absolute;"+
"confidence=0.99;net_refresh=120000):"+
"PING(gossip_host=localhost;gossip_port=5555;
gossip_refresh=1000;"+
"timeout=2000;num_initial_members=2):"+
[...]

Figure 7.22: New default definition string, with RMCAST integrated

of interest, it is processed internally and, once completed, forwarded to UDP

for transmission. The same filtering is applied on the incoming traffic: UDP

forwards RMCAST received packets. These are filtered based on their type, and

processed internally based on the relevance with RMCAST’s activity.

Data that relevant to RMCAST can essentially be divided into the two broad cat-

egories of RMcast data and GM data. The first refers to data upon which the

RMcast protocol needs to be applied, while the second refers to data aiming

to amend the local group view (and therefore needs to be take into account).

The filtering activity has consequences which are different for each of the above

categories. On the RMcast data, in fact, the filtering implies forwarding of the

data based on the times and modes of the RMcast protocol. Therefore, a

packet being forwarded from upper protocols in the stack and detected to be

RMcast data is forwarded to the UDP protocol object exactly (ρ+1) times each

after η time, while a likewise packet being forwarded from the UDP protocol

object is treated by being delivered (to the above protocol in the stack) and

by being setup a timeout on reception of the next copy.
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The filtering on the GM data, on the other hand, simply implies updating

RMCAST’s internal group view. To this extent, packets containing GM data are

cloned and stored to an internal buffer for processing. As a side remark, this

allows not to jeopardize the original system’s performance.

7.4.4 A word on testing

The RMCAST protocol object has been obtained by simply extracting the core

protocol of alipes in its complete structure and formatting this latter in a

way compliant to guidelines given in JGroups. This process did not require

any change in the original structure of the architecture of alipes, and only

involved small changes in the way the system is instantiated and primitives

invoked. In other words, RMCAST and the core of alipes have an identical

structure, with the only difference that alipes is encapsulated into an outer

middleware suite, while RMCAST is encapsulated into a format that complies to

the implementation guidelines specified in JGroups.

All characteristics, functionalities and structures found and described for alipes

are present in RMCAST, and we therefore claim that, without loss of generality,

results showed and commented in 7.3.3 for alipes can be considered valid for

RMCAST.
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7.5 Criticisms

Although both prototypes are effective in providing the service they are ex-

pected to, criticisms can be made to both implementations. Generally speak-

ing, implementations presented here have been developed with the only pur-

pose of testing the protocol suite on a real world scenario, in the case of alipes,

and providing an example of integration on an already-working system. There-

fore, both can be improved in many directions:

Architectural structure: the main structure, designed for alipes and “in-

herited” by RMCAST, is thought to be as simple as possible. The size of each

component’s architecture might therefore result cumbersome with the many

objects to instantiate and execute, especially for what concerns the Network

Measurement Component. The consequence of this is essentially that both

prototypes are not optimized for reducing consumption of resources.

Communication: many of the intra-component interactions are performed,

in both implementations, via message-passing paradigm through the use of

synchronized queues. Besides this type of communication behaves excellently

in normal conditions, queues have limited capacity, and when traffic reaches

extremely high levels this might cause abnormal behavior.

This problem might be prevented by substituting synchronized queues with

more sophisticated, dynamic in size, data structures for temporary storage.
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7.6 Concluding Remarks

The protocol described in chapter 4 has been implemented in two separate pro-

totypes. The first is a middleware solution released in a system named alipes.

The second, which derives from the first, complies to the protocol format of

the JGroups Reliable Communication Toolkit.

alipes handles inter-component coordination by means of a Container object,

which allows transparent user-access to sensitive primitives also preventing

misuse of the RMcasting and RMdelivering primitives based on the negotia-

tion response. Intra-component communication is realized through message

passing paradigm via synchronized queues, while inter-component communi-

cation is achieved by a combined use of the Container and a set of event-driven

subsystems. alipes also provides a basic group management facility which dy-

namically provides information about group size and identity of members, and

can be used as plugin by means of interfacing with several technologies such

as XML.

Testing, conducted geographically distant through the PlantLab testbed, showed

that alipes is actually capable of providing and maintaining reliability and

timeliness guarantees negotiated in advance.

In the second prototype, the system has been integrated as protocol object

in the stack of the JGroups Reliable Communication Toolkit, under the name

RMCAST. Albeit the core structure and architecture remains unchanged, inte-

gration of this latter in JGroups implied slight changes to the protocol core of
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the alipes system, mainly aimed to use JGroups native facilities such as group

membership. This prototype is awaiting for a proper exhaustive testing, and

the use of RMCAST is expected to bring a certain number of benefits such as:

• timely and reliable communication over (best-effort) wide area networks

without the need of connection-oriented protocols such as TCP with a

significant save in terms of network resources, as testing of the alipes

suggests,.

• ease of use, as native management of reliability, timeliness and network

adaptation allows reduction of the number of protocol objects to instan-

tiate in the definition string, and consequently reduction in terms of

dependencies to be satisfied.

As an important consequence of all the aforementioned reasons, the JGroups

development team is currently considering a permanent integration of RMCAST

in the JGroups suite.
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Chapter 8

Conclusions

8.1 Discussion

In this dissertation we have presented our research in design and development

of a QoS-Negotiable Reliable Multicast protocol, which represents a first step

towards construction of a QoS-Supportive Group Communication System of-

fering more sophisticated services. In particular, the system here presented

offers a multicast operation capable of providing negotiable QoS performance

guarantees. QoS attributes here considered are reliability (intended as of all-

or-nothing delivery guarantee) and timeliness (intended as delay bounds on

the successful termination of the operation).

Providing reliable and timely communication is a complex task, especially

when lower level unreliable communication primitives are used and communi-

cation is conducted across the Internet infrastructure. In chapter 2 we have

shown that timeliness and reliability have never been considered as equally

important attributes in the design of a multicast protocol. We have seen

how systems offering reliability guarantees are designed to achieve so through
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deterministic techniques[6, 102], probabilistic techniques[14, 31, 44] or a com-

bination of the two[74, 93]. We have also described how timeliness is usually

provided in a variety of ways and forms[21, 60, 5, 79, 77]. However, we have put

emphasis on the fact that, to the best of our knowledge, none of the systems

currently developed considers both reliability and timeliness as equally impor-

tant QoS attributes to be provided in the communication process. This, to the

author’s opinion, makes the system subject of this thesis novel and unique.

In chapter 3 we have described the theoretical model our system refers to, along

with its architecture. We have highlighted how the classical synchronous and

asynchronous models do not capture the inherent probabilistic nature of the

QoS-support in communications performed across (best-effort) Internet bound-

aries. We have then advocated the use of a Probabilistic Asynchronous [45] (PA)

model as theoretical design model for our RMcast system. We have described

how this latter model satisfies the needs of providing probabilistic guarantees

in the communication context.

We then described the system architecture. We advocated the use of a QoS

management interface as a way to allow lower level subsystems, such as the

Communication Subsystem (CS), to export a behavior that can be retained

predictable in the long term by other subsystems. We described how this led

to designing the structure of our QoS-Supportive Reliable Multicast System as

composed by three components named Negotiation Component, RMcast Com-

ponent and Network Measurement Component.

We have identified each component’s primary task as negotiating QoS levels
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with the user for the first, providing an adaptive RMcast configurable protocol

for the second, and measuring performance metrics of the underlying CS for

the third, while also describing the inter-component interaction model.

We have described how the negotiation process involves evaluation of a stochas-

tic model of the RMcast protocol contained in the RMcast Component, and

how such evaluation generates configuration parameters to adapt execution of

the RMcast protocol,to the achievement of the QoS to be offered. We have

described how the model is based on pessimistic assumptions so as to ensure

that the system will provide a service level which is higher than the one nego-

tiated.

We have showed how both the stochastic model and the RMcast protocol

assume knowledge of current network conditions, and how the Network Mea-

surement Component provides such information in form of average metrics

describing network reliability, stability and timeliness characteristics.

In chapter 4 we provided a formal description of the RMcast protocol under

the assumption that messages do not require fragmentation in order to be mul-

ticast. We defined the protocol’s main features as Redundancy, which implies

the originator to carry out ρ redundant transmissions, each separated by η

time, Responsiveness, which implies receivers to take over responsibility for

completion of the RMcast operation in case of originator crash, and Selection,

that designates exactly one process to take over the broadcasting responsibil-

ities in case of such devolution. We described how the design based on such

features allows the RMcast protocol to provide guarantees on the delivery of
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a message to all operative destinations with a probability which can be made

arbitrarily close to 1 if the originator does not crash, while guaranteeing that

multicast message delivery can be predicted with a probability that is very

high and can be evaluated in advance when the originator crashes. We named

these Validity and Agreement respectively.

We also formally described, in chapter 4, the analytical model used for negoti-

ation purposes, and showed its accuracy through comparison with simulations

in same environmental conditions.

In chapter 5 we have relaxed the “non-fragmentation” assumption taken in

chapter 4 and proposed two approaches to extend QoS guarantees to the

RMcast of messages who need to be fragmented into an arbitrary number

of packets. In particular, we have assumed the message m to be divided into π

packets, and proposed two ways to provide the same QoS guarantees described

in chapter 4 on the multicast of the entire set of packets. We named the two

extension approaches as Per-Message and Per-Packet. The first implies pack-

ets to be considered as a single logical one over which the logic of the protocol

in chapter 4 is applied. The second, on the other hand, implies the π packets

to be considered singularly and being transmitted by means of independent

instances of the protocol described in chapter 4.

We have described both approaches, putting emphasis on each one’s pros and

cons and, whereas possible providing optimizations. In doing so, we amended

the Per-Message approach with two properties, named Retention and Compo-

sition, to the extent of reducing the loss rate exacerbated by the use of this
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approach.

Amendments involved also the Per-Packet approach: we suggested indepen-

dent instances to be handled by a single thread in a pseudo-concurrent way,

in contexts where the machine hosting the system cannot support instances to

be handled by dedicated threads.

We derived each approach’s stochastic model starting from the one described

in chapter 4, and assessed accuracy and additional cost aspects through sim-

ulations.

In chapter 6 we described the monitoring and measurement techniques em-

ployed by the Network Measurement Component to provide information de-

scribing current network conditions. This information is provided through

statistical metrics describing reliability, stability and timeliness characteristics

of the network.

We described the role of this component in scenarios where the CS works on a

best-effort basis, and commented the added value of the use of the component

in scenarios where the CS it is assumed to be controlled by an Internet Service

Provider (ISP).

We have described how the three-way ping algorithm used to calculate the RTT

towards destinations allows to reduce the additional overhead of this operation,

and how from this information the component calculates the QoS metrics of

interest. Besides, in this chapter we describe the two techniques the Network

Measurement component employs for converting conditional probabilities in

the stochastic model into numerically tractable equations. We named these
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ways as experimental and statistical, and described how the former calculates

conditional probabilities by calculating the percentage of samples actually sat-

isfying the probability, while the latter performs a χ − square test to obtain

a statistical pattern for the samples, to the extent of converting conditional

probabilities in equations corresponding to the calculated pattern.

In chapter 7 we have described two prototype implementations for the concepts

described in chapter 4. We have described the main prototype, developed as

a middleware suite named alipes. We have advocated the choice of a model

coordinated by a Container object, to allow transparent access to sensitive

primitives and, at the same time, to prevent their misuse.

We have described testing of alipes in a real scenario by means of the Planet

Lab[2] worldwide testbed, and shown results proofing that alipes is effective in

providing real QoS support for Internet-scale GC over best effort networks.

Through the second prototype implementation, we provided an example of

how the core of alipes can be extrapolated and integrated into an already-

existing system, such as the JGroups Reliable Communication Toolkit [13]. We

have described the integration process and the way integration can be made

seamless to the original JGroups system. Finally, we mentioned the benefits

of the QoS-JGroups system, obtained by integration of the core of alipes into

the original JGroups. We described how QoS-JGroups has been of advan-

tage to the TAPAS EU-IST project, where this system provided the basis for

QoS-supportive clustered services, and mentioned the interest of the JGroups

development team considering QoS-JGroups for a stable release. Both these
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interests provide a further example of real-world usage of our QoS-Supportive

Reliable Multicast System.

8.2 Take-home Message

Analysis of a reliable multicast system becomes more complex when the main

protocol has probabilistic behavior. Its non-deterministic nature requires care-

ful analysis of every aspect of the protocol dynamics, while however providing

some unexpected results that is definitely interesting and worth studying and

analyzing.

On the simulation side, a solid theoretical model for the simulator to be im-

plemented is fundamental. The model needs to be “tailored” to the actual

protocol to be simulated. Nonetheless, it has to guarantee a certain degree of

extensibility and modularity. The former guarantees the possibility to change

global parameters in a way transparent to the actual algorithm simulated, while

the latter allows variation in the main algorithm to remain circumscribed to

the context of small modules.

Once designed, stochastically defined and simulated, implementation and ex-

ecution on a real-world scenario provides a unique chance to find out how

accurate the previous work has been. The choice of standard design and im-

plementation tools ease the development and deployment on already-esisting

systems. In the specific case of the design and development tools used for

implementation of the two approaches here presented, the perfect UML-Java
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interoperability eased development of the architecture, leaving the main focus

on the development of components’ internals and inter-process communication.

Finally, comparison of results obtained from testing with results obtained from

simulations is fundamental to determine faults and bugs in either of the me-

chanics. However, the environment used for testing needs to be reflected in

the slightest detail in simulations as well, and even small differences might

influence the final results consistently.

8.3 Directions of Further Research

The RMcast system described in this dissertation provides a robust communi-

cation service. However, as already mentioned, it needs to be seen under the

light of a first step towards construction of systems offering more sophisticated

QoS guarantees for group communication. As such, further research on the

system and its architecture can focus on a variety of directions:

• Architectural extensions : the system architecture can be extended so as

to allow provision of more sophisticated services. In fact, following the

idea of service composition frameworks mentioned in chapter 2, more

sophisticated QoS guarantees can be provided by adding corresponding

protocols on top of the base layer represented by our system. Possible ex-

tensions might target provision of more sophisticated guarantees such as

multicast ordering schemes (causal, FIFO or total). However, according

to what said in chapter 3, in order for this to be feasible each extension
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Figure 8.1: Architectural extension of the QoS-Adaptive middleware architec-
ture.

layer must export a QoS management interface. As an example, figure 8.1

shows integration of a protocol offering a uniform FIFO ordering service.

In this figure, each subsystem is composed by a QoS management and a

service interface, indicated as qosM and serviceM respectively, according

to the architecture structure described in chapter 3. The middleware

subsystem would provide the uniform FIFO reliable multicast service by

allowing the unordered reliable multicast service, offered by the layer

containing the qosRMCAST and serviceRMCAST interfaces, as transport

layer, upon which the logic for FIFO ordering is applied by means of the

layer containing the the qosFIFO and serviceFIFO interfaces. Ordering is

then extended to uniform FIFO by application of a further layer, shown

in the figure as containing the qosUNIFORM and serviceUNIFORM inter-

faces, which applies the uniformity logic to the FIFO-ordered messages
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and delivers them to the user.

As described in chapter 3, the service interface of each middleware sub-

system would be implemented by a fault-tolerant protocol designed to

be configurable with parameters whose setting will allow it to achieve a

desired QoS level. The QoS management interface of each layer would

evaluate the QoS offered by the corresponding service interface and de-

rive parameters also considering the QoS offered by the lower subsystem.

In addition to such type of extensions, the QoS-Supportive middleware

architecture can be extended in such a way to make behavior of subsys-

tems directly handling resources predictable in the long term. In fact,

as described in chapter 3 the system subject of this thesis provides a

QoS management interface for the CS only. Providing other resourceful

subsystems, such as the Storage Subsystem (SS), with a similar manage-

ment interface would allow the system to make predictions on the delay

times due to handling of the information at both source and destination,

enhancing accuracy of guarantees provided.

• Enhancement of the negotiation process : The negotiation process could

be enhanced in more than one way. Support for a wider set of QoS at-

tributes is the most appealing way to do so, and might be done by con-

sidering negotiable attributes such as, for example, available bandwidth

or security level. When new negotiation parameters refer to network

characteristics, this would obviously affect the structure of the Network
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Measurement service, which would have to provide network information

in terms of relevant QoS metrics.

The negotiation process might also be enhanced to introduce mecha-

nisms that account for traffic shaping techniques to allow more flexible

allocation of concurrent QoS requests. In fact, at present the Negotiation

component always considers the total amount of available resources as

the basis upon which to negotiate QoS levels with the user application.

This inevitably leads to a degradation of negotiable levels in situations

where it is needed to handle more than one negotiation sequentially.

Another interesting way to enhance the negotiation process would be to

consider internal resources. In fact, resources such as machine average

load or computational power available locally are not currently not con-

sidered in the negotiation process, albeit they might influence execution

of the multicast operation and, in some case, undermine achievement

of the negotiated QoS levels. Inclusion of these factors in the negotia-

tion process would allow more accurate negotiations, and is very tight to

the provision of resourceful subsystems with QoS management interfaces

mentioned in the architectural extensions above.

• Integration with IP Multicast : the use of IP Multicast[32] requires sup-

port in terms of network infrastructure and therefore, as mentioned in

chapter 2, its use cannot be assumed in communications across Internet

boundaries. However, whereas such support is present, an interesting di-
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rection for future research focus would be to adapt the system so as to use

the IP Multicast delivery scheme. The system would benefit from low-

level handling of information multiplexing, which would improve system

performance also easing the middleware level from related issues such as

synchronization.

• Implementation and testing of extensions : prototypes described in chap-

ter 7 only implement the single-packet protocol described in chapter 4,

and therefore are capable of sending messages of standard size.

Next step towards development of a fully usable system would be im-

plementation and testing of extensions allowing the system to deal with

messages of arbitrary size described in chapter 5. In particular, it would

be interesting to conduct the testing phase by using the RMcast system

in soft real-time contexts such as multimedia applications.

8.4 Concluding Remarks

In this thesis we have presented and studied a QoS-Supportive RMcast system.

Its novelty lies in the design aimed to consider both reliability and timeliness

as equally important QoS attributes in the communication. In addition, the

system provides negotiation facilities based on an stochastic model by means of

which system performance can be estimated anticipately to service provision.

This results in QoS attributes to be provided in a negotiable form, giving the

user application practical guarantees about maximum achievable QoS levels.
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The system offers a Reliable Multicast operation through a fault-tolerant pro-

tocol of adaptive design, configurable around a set of parameters which influ-

ence execution in order to achieve the desired QoS level and whose values are

generated in the negotiation phase. Support for messages of arbitrary size is

provided through two extensions to the original model, which treat messages

differently and consequently are shown to be more effective in different con-

texts. Together, they cover a wide range of possible contexts.

The system also features a Network Measurement Component, which provides

network QoS information to the extent of allowing estimation of service be-

havior to be based on up-to-date network performance levels.

Experiments carried out on implementations show that utilization of the sys-

tem is effective in providing a fast and timely transport layer, while simulations

carried out allow to infer a wide range of application which might benefit from

usage of the system.

Main contributions of the system subject of this thesis can be summarized as

follows:

• design of a Reliable Multicast system which considers reliability and

timeliness as equally important QoS attributes in the multicast operation

(chapter 3);

• design of a protocol of adaptive logic and configurable parameters, and

extension for usage with messages of arbitrary size (chapters 4 and 5);

• derivation of analytical expressions for negotiating QoS metrics whose
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effectiveness is validated through simulations (chapters 4 and 5);

• design of a distributed network monitoring and measurement subsystem

(chapter 6);

• development and testing of two workinh prototypes of the system (chap-

ter 7).
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Appendix A

A Gossip-based Group
Management Protocol

A.1 Introduction

In this appendix we describe a Group Management (GM) protocol that can

be used in conjunction with the RMcast system described in this dissertation

to provide each process with up-to-date group views.

In the protocol, at regular interval of times each process disseminates a token

containing its own id. If the token is not lost, each process receiving the token

adds the sender to its own group view, if not already included. If the token

is not received, on the contrary, the process interprets the missed reception as

the sender having left the group and, consequently, removes it from its group

view, if previously included. Over time, each operative process will receive

tokens from all other operative processes and build a group view.

Dissemination of tokens is done through a gossip protocol, and accuracy of

group views depends directly on the coverage capability of the gossip protocol.
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For this reason, in this appendix we shall describe the gossip protocol and

study its coverage capabilities.

The gossip protocol here presented is based on the encounter-based broadcast

protocol[29] by Cooper et al.. This protocol was originally designed as reliable

multicast protocol on Mobile Ad Hoc network (MANET) environments, and

what we shall describe and study in the remainder of this appendix is an

adaptation of its original design to the use as GM protocol in WAN wired

networks.

A.2 Design features

The gossip protocol has features to maximize the probabilities of covering the

group entirely while minimizing the cost of message and storage overhead.

In this protocol, each process gossips a previously generated token with a

bounded number (at least τ) of randomly selected processes and τ is a protocol

parameter. A process i maintains view Vi on the group G as the set of all

operative nodes in G. A process’ view may not be accurate: it may contain a

process that may have left G or crashed. We assume that Vi contains at least

f operative processes of G. The protocol exports a SendToken(tok) primitive.

Invocation of this primitive is made by the originator (of tok) while processes

receiving the token are called the destinations (of tok). Tokens are assigned

an identifier tok.id, that uniquely identifies that specific token and is assigned

by the originator just before being gossiped.



229

A.2.1 Gossip

The originator gossips the token tok with dτ(1 − q)−1e destination processes

selected randomly from its V , where q is the transmission loss probability.

The protocol makes gossiping effective in two ways. First, gossip targets are

chosen judiciously, excluding those that are known to have received tok: a

process maintains a set Received(tok.id) containing all destination processes

which it knows to have received tok. Obviously, Received(tok.id) is initialized

to {tok.sender} ∪ {own id} ∪ {tok.originator}, when the process receives

tok for the first time. Processes for gossiping are randomly selected from

V −Received(tok.id).

Secondly, each process gossips in τ rounds with each round separated by time-

out intervals which are exponentially distributed with mean ξ. In each round,

a process gossips with d(1−q)−1e processes selected from V −Received(tok.id).

Staggering of gossips into multiple rounds permits Received(tok.id) to increase

between rounds, avoiding gossip with destinations that are already known to

have tok. When V − Received(tok.id) = �, the originator has gossiped to all

known destinations in its view: the gossip thus terminates, and the originator

simply waits to receive tokens from all other processes in the group.

At destination, each process receiving tok includes the sender in its own view,

if not already included, and sends the received token to dτ(1− q)−1e destina-

tion processes, selected randomly as described above.

Achievement of the maximum coverage in the gossiping is heavily influenced by
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the value of parameter τ . Experiments conducted by Cooper et al., described

in [29], show that the encounter-based protocol does indeed achieve coverages

close to 1 on MANET environments subject to variable density, with particu-

larly good performance in environments where simple flooding performs poorly.

In addition, they also show that the propagation time, i.e. the time needed to

achieve maximum coverage, is decreased in high density environments.

A.3 Analytical approximations

Consider an “idealized” system with n processes which never cease to propa-

gate the messages they receive (τ =∞). Let T be the random variable repre-

senting a message propagation time, i.e., the interval between the SendToken(tok)

primitive is invoked by some node, and the first instant thereafter at which all

operative nodes have received it. When τ =∞, T is finite with probability 1.

It is then of interest to estimate its average value, E(T ). That quantity will

also be used in choosing a suitable value for τ , when designing a practicable

τ -gossip protocol.

An estimate for E(T ) will be obtained under the following simplifying assump-

tions:

(a) Each node executes gossip rounds separated intervals which are expo-

nentially distributed with mean ξ.

(b) At each gossip round, one other process receives the gossip.
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(c) The process that receives a gossip in a given round is equally likely to

be any of the other processes; that is, the probability that process i will

next choose process j, j 6= i, is equal to 1/(n − 1), regardless of past

history.

Assumption (a) is enforced by the protocol. Assumption (b) is optimistic.

Recall that a process chooses d(1 − q)−1e gossip targets at each round, and

all the chosen targets may already be crashed. A remedy will be to choose

d(1 − q)−1(f)e gossip targets, and this would ensure that not all the chosen

ones are inoperative. Assumption (c) is loosely based on the fact that all

processes are statistically identical. If the initial contents of the processes’ V

are uniformly distributed, the assumption is justifiable at the first gossip round,

although it may well be violated in subsequent ones. However, this assumption

provides the simplification necessary for analytical tractability. Its effect on

the performance measures will be evaluated in the simulation experiments.

Let X = {X(t) ; t ≥ 0} be the Markov process whose state at any given time

is the number of processes that have already received the message. The initial

state of X is X(0) = 1 (only the originator has ’received’ m). The random

variable T is the first passage time of X from state 1 to state n. Suppose that

X is in state k, i.e. k processes have received the message and n− k have not.

If any of the former k processes gossips with any of the latter n−k, the Markov

process will jump to state k + 1. Since each process gossips at rate 1/ξ, and

the probability of gossiping successfully with any other process is 1/(n − 1),
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the transition rate of X from state k to state k + 1, rk,k+1, is equal to

rk =

[
k

ξ

] [
n− k

n− 1

]
. (A.1)

In other words, the average time that X remains in state k is

1

rk

=
(n− 1)ξ

k(n− k)
. (A.2)

Hence, the average first passage time from state 1 to state n is given by

E(T ) = (n− 1)ξ
n−1∑
k=1

1

k(n− k)
. (A.3)

This last expression can be simplified by rewriting the terms under the sum-

mation sign in the form

1

k(n− k)
=

1

n

[
1

k
+

1

n− k

]
.

The two resulting sums are in fact identical. Therefore,

E(T ) =
2(n− 1)ξ

n

n−1∑
k=1

1

k
=

2(n− 1)ξHn−1

n
, (A.4)

where Hn is the nth harmonic number. When n is large, the latter is approx-

imately equal to

Hn ≈ ln n + γ ,
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where γ = 0.5772... is Euler-Mascheroni’s number. Also, when n is large,

(n − 1)/n ≈ 1 and ln(n − 1) ≈ ln n. We have thus arrived at the following

estimate, valid under assumptions (a), (b) and (c):

Theorem A.3.1 In a large network where messages are not discarded, the

average propagation period for a message is approximately equal to

E(T ) ≈ 2ξ(ln n + γ) . (A.5)

An immediate corollary of Proposition 1 is that, during the propagation

period T , the originator performs an average of 2(ln n + γ) gossip rounds.

Other processes, who receive the message later on, tend to make fewer gossip

rounds. Thus, choosing the encounter threshold, τ , to have the value

τ = 2dln n + γe , (A.6)

should ensure that, when the protocol terminates, most nodes will have re-

ceived the message. This suggestion will be tested experimentally.

Note 1. An attractive aspect of equation (A.6) is that the only parameter

appearing in it is the number of processes, n. The value of ξ does not matter, as

long as assumptions (a), (b) and (c) are satisfied reasonably well. In fact, the

value of ξ serves as basis for determining the interval time between subsequent

gossip rounds. As a consequence, it affects the message propagation time and

not the coverage rate.
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Figure A.1: Coverage time for the gossip protocol when ξ = 2.5 ms and τ is
variable with the group size

Note 2. Since, under τ -propagation, every process that receives a message

broadcasts it τ times, the total number of broadcasts per message is on the

order of O(nτ). Hence, if τ is chosen according to (A.6), the total number of

broadcasts per message is on the order of O(n ln n).

A.4 Simulation Experiments

The GM protocol here presented has been simulated to the extent of estimat-

ing its effectiveness in covering the group. Results obtained from experiments

have been divided into two sets. In the first one, the scalability of the protocol

is observed by studying how the coverage time, intended as the time needed

by the protocol to reach all group members, changes with respect of the group

size. In fact, although the protocol might theoretically not achieve coverage
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of all members, in all simulations whose results will be shown here it achieved

100% coverage. In the second set, on the other hand, we study how the length

of the ξ timeout affects the coverage.

Figure A.1 shows results from the first set of experiments. The graph shows the

coverage time, in the vertical axis, matched with the group size in the horizon-

tal axis. In all experiments of this set we have fixed the value for the timeout

at ξ = 2.5 milliseconds. The coverage time is expressed in milliseconds, while

the group size varies between 25 and 1000 nodes. Note that experiments with

different number of nodes required different values of τ , as explained in Note

1 and showed in equation A.6. Table A.2 shows the values of τ used for each

group size chosen for conducting experiments.

The graph shows that for groups of size smaller than 200 nodes, the coverage

time increases with the size of the group in a way approximately exponential.

However, this behavior changes for groups of bigger size, where at sensitive

increases of group size correspond smaller and smaller increases in coverage

times. This behavior finds explanation by considering the effect of concurrency
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Figure A.3: Performance with various values of ξ, when τ = 8 and gossip
targets=2.

in gossips, where processes receiving the token from the originator increase the

distribution speed of the token. The obvious conclusion we can draw from what

the graph shows is that the protocol performs better with large groups, where

concurrency can be better exploited.

Figure A.3 shows results from the second set of experiments, that we use to

show how the length of the interval time between subsequent gossip rounds,

i.e. ξ, influences the coverage time. In this set we performed essentially the

same tests as for the previous set except for the value of ξ, which is let vary as

2.5 ms, 5 ms, 7.5 ms and 10 ms. For each of this values, the protocol has been

executed on a group whose size is made growing from 25 to 1000 as for the

first set of experiments. In this set of graphs, as well as in the set of graphs

previously described, the coverage time, in the vertical axis, is matched with
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a variable group size, in the horizontal axis.

The first observation is that the coverage time decreases with the value of

ξ. However, a closer look to the graph allows some interesting considerations

about these variations. Smaller values of ξ trigger smaller differences in varia-

tions of the coverage time when size of the group grows. In fact, when ξ = 2.5

milliseconds and the size of the group grows from 25 to 50 members, the cor-

responding coverage times differs of less then 2 milliseconds. On the contrary,

when ξ = 10 milliseconds, a similar group growth causes the corresponding

coverage times to differ of more than 5 milliseconds. In addition, it is possi-

ble to note from the graph how the coverage time stabilizes faster for smaller

values of ξ. When this latter parameter is set to 2.5 milliseconds, in fact, the

coverage time seems to experience a growth less than proportional to the group

size, whereas in the case of ξ being 10 milliseconds the same line seems to suffer

more for growth of the group. All these factors lead to the consideration that

the protocol seems to sustain better group growth when gossips are carried

out faster, and by allowing this there is a clear advantage in scalability.
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