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Abstract 

Parkinson’s disease (PD) is an age-related neurodegenerative disorder, 

characterised by progressive degeneration of dopaminergic neurons in the substantia 

nigra, with the formation of α-synuclein rich, intracytoplasmic Lewy bodies. Several 

genetic and environmental factors, including pesticides are linked with sporadic PD. 

The aim of this study was to investigate the effect of selected pesticides on 

dopaminergic neuroblastoma SH-SY5Y cells and differentiated human neural 

precursor cells. Several parameters of toxicity were successfully measured including 

cell-viability in SH-SY5Y cells and estimation of sub-cytotoxic doses which were 

used to study the effects of signalling inhibitors, measurement of mitochondrial 

transmembrane potential, reactive oxygen species formation, inhibitory activity 

towards mitochondrial complex I/II, protein expression after acute and chronic toxin 

treatment and changes in gene expression. Twenty nine commonly used pesticides 

were screened for potential PD involvement, using cell viability and Alamar Blue 

reduction assay in SH-SY5Y cells. Most chemicals showed low toxicity using this 

system. Chemicals known (MPTP or MPP+) or thought to be involved with PD (e.g. 

paraquat) showed significant toxicity at the highest chosen dose i.e. 1mM 

(MPTP/MPP+ caused 20-30% reduction in cell-viability at 1mM whereas paraquat 

caused 60-70% reduction at 1mM). Significant toxicity was observed at 

concentrations as low as 0.01mM (60-70% reduction in cell-viability after maneb and 

mancozeb exposure) and 0.1mM (60%, 50%, 80% and 40% reduction in cell-viability 

after diquat, epoxiconazole, fluroxypyr-ester and mecoprop-methyl ester treatment 

respectively). Toxin exposure of human midbrain neurones (hNPCs) derived from 

embryonic neural stem cells showed that hNPCs were more vulnerable at 0.01mM 

and 0.1mM than SH-SY5Y cells (except maneb, mancozeb and fluroxypyr ester). 

Pharmacological inhibition of apoptosis showed a marginal but insignificant reduction 

in toxicity for most chemicals whereas macroautophagy inhibition had no effect. The 

absence of any effect of caspase inhibitors, with the exception of diquat, may indicate 

caspase independent induction of cell death markers like PARP-1 suggesting that 

toxin treatment seems to cause caspase independent cell death involving RIP. This 

was shown by using Necrostatin-1, a RIP1 and necroptosis inhibitor, which 

significantly increased viability (greater than 90% recovery vs. untreated cells) in 

diquat (0.1mM), mancozeb (0.05mM) and maneb (0.05mM) treated cells. Other 

results suggested possible involvement of chaperone-mediated autophagy (CMA) 
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with diquat, maneb and mancozeb toxicity which showed increased lysosomal 

accumulation. Mitochondrial energetics were not affected after acute and chronic 

toxin exposure which did not affect the mitochondrial complex I or II activities. Co-

incidentally, cells exposed chronically to diquat appeared to down-regulate expression 

of autophagic and apoptotic response genes. It can be concluded that these 

agrochemicals exert their toxicity through distinct mechanisms including indirect 

energy depletion and direct damage to cell components and show significant toxicity 

possibly due to ROS generation causing necroptosis and CMA induction. 
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Introduction 
 
1.1 Pathogenesis of Parkinson’s disease 

1.1.1 Parkinson’s disease 

1.1.1.1 Clinical features of Parkinson’s disease: 
 
 Parkinson’s disease (PD) is an age-related neurodegenerative disorder. It affects 

1% of people over 60 years of age in the west and has an incidence rate of 18 per 100000 

per year (Twelves et al., 2003). Classic signs of idiopathic PD (iPD) are resting tremor, 

rigidity, bradykinesia and postural instability. Additional symptoms include flexed 

posture, loss of postural reflexes and freezing phenomenon (Jankovic, 2008). At least 

two features must be identified for successful diagnosis with one being either tremor or 

bradykinesia. 70% of PD patients show a resting tremor of 3-5 Hz frequency (Samii et al 

2004) but disease development does not follow a standard pattern and a variable 

deterioration rate is seen in early stages followed by severity in behavioural and 

cognitive disturbances like dementia. According to ‘UK Parkinson’s Disease Society 

Brain Bank’ clinical diagnostic criteria, three or more supportive criteria are required for 

diagnosis. These include excellent response to levodopa and it lasting more than 5 years, 

clinical disease course longer than 10 years, resting tremor and progressive pattern (Gibb 

and Lees, 1988). 

 
As the disease progresses, significant motor disability is seen in PD patients even 

when treated with symptomatic medications. Symptoms like hypomimia, dysphagia, 

sialorrhoea, microphagia, dystonia, are also noted.  A number of different non-motor 

symptoms are gaining attention. These include cognitive (dementia) (Aarsland et al., 

2001), neuropsychiatric (depression, apathy, psychosis, anxiety and fatigue), sleep 

dysfunction (rapid eye movement sleep behaviour disorder, sleep attacks, daytime 

sleepiness, advanced sleep phase syndrome and early morning awakenings) (Fenelon, 

2008), autonomic disturbances (constipation, nausea, orthostatic hypotension, urogenital 

problems) (Stacy, 2002) and sensory disturbances (restless legs syndrome, visual 

changes and decreased olfaction) (Park and Stacy, 2009).  Increased mortality risk has 

been linked with both motor and non-motor features in newly diagnosed PD patients, 

especially with features like postural instability, hallucinations and cognitive impairment 

(Fénelon et al., 2000).  
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Disease progression can be evaluated using a number of different rating scales. 

The ‘Columbia University Rating Scale’ (CURS), ‘Northwestern University Disability 

Scale’ (NUDS), and the ‘Unified Parkinson’s Disease Rating scale’ (UPDRS) are the 

most valid and reliable scales currently used (Ramakar et al., 2002). 

 

Full PD diagnosis requires clinical and neuropathological confirmation. Clinical 

symptoms of PD are thought to be present when 50% of SN neurons have been lost 

(Fearnley and Lees, 1991). It is the most common cause of parkinsonism, accounting for 

nearly 80% of cases (Dauer & Przedborski, 2003).  

1.1.1.2 Pathological features of Parkinson’s disease: 

 Pathologic hallmarks of iPD include progressive degeneration of dopaminergic 

(DA) neurons in the substantia nigra pars compacta (SNpc) together with the formation 

of α-synuclein rich, proteinaceous inclusions called Lewy bodies (LBs) (fig 1.1) in the 

cytoplasm of surviving nigral neurons (Spillantini et al., 1998). LBs have been observed 

in other regions like amygdala, cortex, vagal nucleus, locus coeruleus, and peripheral 

autonomic nervous system (Braak et al., 2003). LBs can either have a spherical dense 

core surrounded by a halo or fully composed of oval or circular fibrillar material (Shults, 

2006). Ultra-structural examination shows α-synuclein material in the periphery and 

central core (Arima et al., 1998).  In addition to α-synuclein, ubiquitin and 

neurofilaments make the majority of LB components along with other proteins. The 

widely reported morphology is obtained from end-stage PD patients but studies show 

that LB shape and structure changes with time and can have a variety of different shapes 

(Gómez-Tortosa et al., 2000; Sakamoto et al., 2002) 
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Fig 1.1: Pathological hallmarks of PD: Nerve cell with Lewy bodies double-stained 
for α-synuclein (positive core and halo staining) and ubiquitin (halo staining) (Taken 
from Spillantini et al., 1998). 
 

 
 
  

 

The loss of the pigmented cells in the SNpc in PD is not homogeneous and 

should be primarily assessed in the lateral and ventral regions of the SNpc to 

correlate with the level of motor symptoms (fig 1.2). Neurons with long, sparsely 

myelinated or unmyelinated axons are more likely to have α-synuclein inclusions. 

GABAergic, noradrenergic, serotonergic, histaminergic, cholinergic and 

glutamatergic cells may also be involved (Dickson et al., 2009).  
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Fig 1.2: Density of pigmented neurons in the SNpc: (A) Distribution of pigmented 
neurons in healthy controls,  (B) patients with mild PD, (C) moderate or (D) severe 
loss of pigmented neurons (×40 magnification, haematoxylin and eosin-stained 
sections, 3n=exiting 3rd nerve fibres, cp=cerebral peduncle, R=red nucleus) (Taken 
from Dickson et al., 2009). 
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1.1.2 Development of Parkinson’s disease: 
 

A neuropathological staging scheme based on abnormal α-synuclein/Lewy body 

distribution and immunostaining has been proposed by Braak et al (2003) (fig 1.3). This 

scheme shows the pathological evolution of the disease from the brainstem to neocortex. 

Patients are pre-symptomatic in stages 1-2 and only in stages 3-4 are the substantia nigra, 

midbrain and basal forebrain affected, followed by the archicortex with clinical 

symptoms of parkinsonism appearing (Burke et al., 2008). Stage 1 shows positive α-

synuclein in medulla oblongata/pontine tegmentum or the olfactory bulb/anterior 

olfactory nucleus and neuronal loss in SNpc. Stages 3-4 show changes in the substantia 

nigra and areas of midbrain and basal forebrain. During stages 5-6, disease progresses 

into the mature neocortex (medial temporal lobe and association cortex) and clinical 

manifestations become clear (Braak et al., 2004).  

 

Fig 1.3: The Braak staging of Parkinson’s disease: A) Disease progression involving 
Lewy body appearance to expansion into different brain regions. B) Disease sequence 
starting from the brainstem to other parts (Taken from Braak et al., 2004).  

 
Clinical features of PD can be followed using this scheme from the early loss of 

olfactory function to the late development of cognitive problems like dementia, from the 

intracerebral formation of Lewy bodies and neurites at defined induction sites to damage 

to components of the autonomic, limbic, and somatomotor systems (Braak et al., 2005).  

1.1.2.1 Mitochondrial Dysfunction in Parkinson’s disease: 

 Mitochondrial dysfunction has been linked with the pathogenesis of 

Parkinson's disease (Keeny et al., 2006; Schapira, 2006). Evidence from a high 

number of mitochondrial DNA (mtDNA) deletions in substantia nigra of PD patients 
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(Bender et al., 2006) and inhibition of complex I activity (Schapira et al., 1998) 

suggests a key role of mitochondrial function in the pathogenesis of PD. The first 

case of mitochondrial involvement in PD was noticed in 1980s when intravenous 

administration of synthetic heroin containing 1-methyl 4-phenyl 1,2,3,6-

tetrahydropyridine (MPTP) caused PD like symptoms. Further investigation showed 

that MPTP entered the brain and then converted into 1-methyl 4-phenylpyridimium 

ion (MPP+) by monoamine oxidase B in glial cells. MPP+ actively concentrated into 

the mitochondria where it inhibited complex I and caused mitochondrial dysfunction 

through increased oxidative stress and caused selective SN dopaminergic neuron 

death (Langston et al., 1983).  These findings led to more widespread use of MPTP 

in animal studies using mice and monkeys for investigating the neurophysiological 

and neuropathological aspects of PD. Accumulation of MPP+ has been observed in 

human platelets which also express DAT and high levels of MAO-B (Frankhauser et 

al., 2006). Evidence from several studies showed a reduced level of mitochondrial 

complex I activity in PD platelet mitochondria. However, the level of activity varied 

not just for complex I but for complex II (Haas et al., 1995), complex III (Benecke et 

al., 1993) and complex IV (Swerdlow et al., 2001). An equally high number of 

studies failed to find any ETC complex inhibition (Aomi et al., 2001; Blake et al., 

1997; Mann et al., 1992). Similarly, studies showing a selective decrease in the 

quantity of complex I subunits in PD brain have been reported by some groups 

(Mizuno et al., 1989) with others suggesting no such change (Schapira et al., 1990). 

 

Transgenic techniques involving knockout mice have shown that respiratory 

chain deficiency in DA neurons can lead to several symptoms of parkinsonism-like 

slow progressive degeneration of neurones, formation of (α-synuclein negative) 

intraneuronal inclusions and behavioural disturbances such as progressive 

impairment of motor function. These mice lacked mitochondrial transcription factor 

A (Tfam) in DA neurons and showed reduced mtDNA expression and the rate of cell 

death was higher in substantia nigra than in ventral tegmental area (Ekstrand et al., 

2007).  
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1.1.2.2 Oxidative stress and Parkinson’s disease: 

 
 Elevated oxidative stress has been linked with neuronal loss and may play a 

role in the pathogenesis of Parkinson’s disease (Halliwell, 1999). Increasingly the 

role of protein oxidation, reduced glutathione levels, generation of quinones through 

dopamine metabolism, lipid peroxidation and generation of reactive oxygen species 

(ROS) has been linked with oxidative damage (Alam et al., 1997; Sian et al., 1991; 

Yoritaka et al., 1996). NADPH oxidase metabolises molecular oxygen, generates 

superoxide and appears to be present in all cell types including glial cells and 

neurons (Infanger et al., 2006). Neurotoxic response to toxins like rotenone and 

MPTP is less in NADPH oxidase deficient mice (Sumimoto et al., 2004) and studies 

have shown that its expression is up-regulated in the substantia nigra of PD patients 

(Infanger et al., 2006).  

 

 Study of MPTP exposure shows generation of hydroxyl radicals in mice 

leading to oxidative stress (Chiueh et al., 1992). Furthermore, oxidative stress may 

cause caspase-activation and apoptosis (Friedlander, 2003). Nikam et al (2009) have 

shown that levels of ‘thiobarbituric acid reactive substances’ (indicators of lipid 

peroxidation) and the rate of dopamine metabolism is significantly elevated in PD. 

Mitochondrial contents of oxidation products like TBARS and protein carbonyls  are 

indicative of oxidative stress (Navarro et al., 2009). Excessive MAO activity which 

can cause elevated formation of hydrogen peroxide has also been noted (Cohen, 

1986). Increased nitric oxide synthase and reduction in superoxide dismutase (SOD) 

and glutathione peroxidase (GSHPx) activity, serum levels of vitamin E and C and 

selenium levels, have also been linked with PD (Nikam et al., 2009).   

 

Further support to the idea that oxidative stress may lead to PD comes from 

presence of mutations in DJ-1 which abolish its neuroprotective effect against 

hydrogen peroxide and complex I inhibitor induced damage (Canet-Aviles et al., 

2004).  Additionally, DJ-1 may play a role in preventing accumulation and 

misfolding of oxidised mitochondrial proteins in the same way it inhibits α-synuclein 

aggregation and toxicity (reviewed by Büeler, 2009).   
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1.1.2.3 Complex I deficiency: 

  The 13 proteins encoded by mitochondrial DNA act as the sub-units of 

various respiratory chain complexes of the oxidative phosphorylation system 

(OXPHOS) in the mitochondria (Wredenberg et al., 2002). Complex I is the largest of 

the OXPHOS complexes and its inhibition can lead to oxidative stress through free 

radical generation and ATP depletion (Fig 1.4) (Schapira, 2005). Excessive oxidative 

stress can in turn lead to the release of cytochrome c and induce caspase-mediated 

apoptosis (Stavrovskaya and Kristal, 2005).). Comparison of healthy and PD brain 

tissue has shown that several complex I subunits contain significantly higher protein 

carbonyl levels in PD which has been linked with complex I misassembly and 

dysfunction (Keeney et al., 2006). The substantia nigra is more vulnerable to changes 

in complex I activity than other brain regions, possibly due to increased ROS 

generation and intracellular mechanisms like dopamine metabolism and iron content 

(Chinta and Andersen, 2008). The idea that a complex I defect causes elevation in 

ROS levels comes in part from rotenone exposure experiments using isolated 

mitochondria which showed a significant increase in ROS generation after toxin 

insult (Kushnareva et al., 2002). Complex I activity has been reported to be reduced 

by up to 35% in PD SNpc region (Mann et al., 1994) and ~30% in muscle and 

platelets of sporadic PD patients (Schapira et al., 1990). Raised levels of 

malondialdehyde and 4-hydroxynonenal (lipid peroxidation marker) have been 

observed in SN and LBs in PD post-mortem brains (Andersen, 2004).   

 
Fig 1.4: Result of mitochondrial dysfunction: Oxidative stress, complex I 
inhibition, ATP depletion, excitotoxicity leading to cell death (Taken from Sherer et 
al., 2002).  
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1.1.2.4 Mitochondrial DNA mutations in Parkinson’s disease: 

 Deletions and mutations in nuclear encoded mitochondrial DNA can 

contribute to PD pathogenesis by causing mitochondrial dysfunction. mtDNA 

mutations, if accumulated over time, speed up the normal aging process with 

increased ROS production and oxidative damage (Petrozzi et al., 2007). Respiratory 

chain function relies on a balanced expression of both mtDNA and nuclear genes, 

which is essential for the assembly of respiratory chain enzyme complexes. If 

mtDNA expression is suppressed it can lead to excess production of nuclear-encoded 

respiratory chain subunits resulting in an increased burden on the mitochondrial 

proteolytic system to degrade them (Ekstrand et al., 2007). 

  

 Data from mtDNA haplotype studies suggests that some haplotypes can 

reduce PD risk and therefore mtDNA has a role in PD development (Pyle et al., 

2005). Mutations in the mtDNA polymerase γ (POLG) gene have been linked with 

parkinsonism associated with multiple mtDNA deletions. A significant cosegregation 

of POLG mutations and parkinsonism has been recorded with a reduction in 

dopaminergic neurons but without LB formation (Luoma et al., 2004).   

  

 High levels of sporadic mtDNA deletions in SN neurons in aging and PD have 

been observed. It is also suggested that the accumulation of mtDNA deletions in SN 

can result in respiratory chain deficiency (Bender et al., 2006). Large scale 

rearrangements (Chalmers, 2002) and point mutations have been found in some 

population groups (Petrozzi et al., 2007). Sixty-eight homoplasmic and high-

frequency heteroplasmic mtDNA mutations have been identified in PD but these fail 

to establish a link with the PD phenotype (Smigrodzki et al., 2004). Cybrid studies 

transferring mitochondria from affected cells into normal mitochondria-less cells 

have proved inconclusive and failed to introduce a defect into these cells.  

 

 Genetic epidemiological studies show that lower complex I activity, increased 

ROS enzyme activities and increased ROS production can be inherited matrilineally 

(Swerdlow et al., 1998) but the number of such documented cases is very limited. 

Case-control mutation studies have identified significant association of 

polymorphisms in several genes including N-acetyltransferase 2 (NAT2), monoamine 
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oxidase (MAO-B), glutathione transferase (GSTT1) and tRNAGlu with PD (Tan et al., 

2000) but a limitation of these studies is that they can easily give false positive or 

false negative results.  

 

 Haplogroup association studies, without identifying any specific mutations, 

have hinted that a relative excess of non-synonymous mutations in mtDNA encoded 

complex I genes may be linked with increased PD risk (Autere et al., 2004). Other 

studies show that single nucleotide polymorphisms in Haplotype J and K reduce PD 

risk by 50% when compared with the most common haplogroup H (van der Walt et 

al., 2003). Pyle et al (2005) have also reported a 22% reduction in population-

attributable risk for PD in haplotype cluster UKJT (Pyle et al. 2005). Autere et al 

(2004) have linked the higher frequency of super cluster JTIWX in a population 

group with an increased risk of developing PD and PD with dementia. These findings 

show that polymorphisms within mtDNA can contribute to PD expression but the 

evidence for causative and risk alleles is still to be found.  

 

1.1.3 Models of Parkinson’s disease  

 A primary goal of animal models is to successfully exhibit PD features and 

mimic different stages so that the underlying mechanism can be studied in detail. 

Most commonly used animal models employ toxins such as MPTP, rotenone, 

paraquat or 6-hydroxydopamine (6-OHDA) but increasingly knock-out and 

transgenic models are being used. Most toxin models focus on the nigrostriatal 

pathway and DA neuronal loss without producing full PD pathology. This gap is 

being filled with the use of novel genetic models with the aim of reproducing the 

distribution, nature and progressive course of PD neuropathology.  

1.1.3.1 Toxin models of Parkinson’s disease: 

Use of toxin models has filled major gaps in the understanding of cellular and 

molecular causes of PD. These models have not just provided invaluable information 

about the aetiology and pathogenesis of PD but also about the underlying biochemical 

processes in the cells. Use of neurotoxins is particularly favoured as they can produce 

both in vivo and in vitro selective neuronal death (Bove et al., 2005). 
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Most commonly and widely used toxins include 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP+), rotenone, 6-

OHDA) and paraquat.  These all have different mechanisms of actions, causing 

cytotoxic injury to the dopaminergic neurons (Przedborski & Ischiropoulos, 2005).  

Almost all neurotoxin induced models affect the mitochondria, some targeting 

specific targets such as complex I and III (Schober, 2004). 

1.1.3.1.1 6-OHDA: 

 6-Hydroxydopamine (6-OHDA) has been used as a catecholaminergic 

neurotoxin for more than 30 years. It is a hydroxylated analogue of the 

neurotransmitter dopamine (Blum, 2001) and due to this structural similarity exhibits 

a high affinity for catecholaminergic membrane transporters like dopamine (DAT) 

and norepinephrine (NET) transporters. This allows it to damage both noradrenergic 

and dopaminergic neurons.  

1.1.3.1.1a   Toxicity of 6-OHDA: 

 Once inside the cell 6-OHDA can accumulate in the cytosol, damage 

catecholaminergic structures by causing oxidative stress or destroy adrenergic nerve 

terminals (Jeon et al., 1995). It inhibits mitochondrial complex I and plays a part in 

the production of superoxide free radicals (Hasegawa et al., 1990). It easily oxidises 

producing para-quinone and hydrogen peroxide (fig 1.5) and can take part in 

reactions involving metabolic monoamine oxidation (Glinka, 1997). 

 

6-OHDA does not cross the blood-brain barrier (BBB) and its systemic 

administration does not produce nigrostriatal lesions. This problem can be solved 

with stereotaxic injections at various sites in the brain. Injections into the SN and the 

medial forebrain bundle can cause dopaminergic degeneration within 12-24 hours and 

if injected into striatum it takes 2-3 days (Przedborski et al., 1995). Intrastriatal 

injection of 6-OHDA causes a slow and progressive neuronal death which can last up 

to 2-3 weeks (Sauer & Oertel, 1994). 
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Fig 1.5: Oxidation of 6-OHDA producing hydrogen peroxide and para-quinone 

(Taken from Bove et al., 2005) 

 

 
 
 
 
 The majority of the 6-OHDA data comes from studies on rats, mice, and 

monkeys. The extent of lesion formation depends on the level of 6-OHDA, the site of 

injection and the species. The level of sensitivity to 6-OHDA varies in different parts 

of the brain. SN neurons are most sensitive, while tuberoinfundubular neurons are 

fully resistant (reviewed by Jonsson, 1980). 

 

 Most importantly, there is no convincing evidence of LB formation with 6-

OHDA treatment and it does not affect all brain regions affected in PD. Locus 

coeruleus, olfactory structures and the lower brain stem are not affected by its actions 

(Betarbet et al., 2002). It is not a potent inducer of motor abnormalities related to PD 

but occasional tremor, rigidity and akinesia have been reported (Cenci, 2002). Motor 

abnormalities observed after 6-OHDA treatment in both unilateral and bilateral-

lesioned rats can be improved by dopaminergic stimulation (Olsson et al., 1995) or 

drugs that stimulate dopaminergic receptors (Rodriguez et al., 2001). 

  

In summary, the 6-OHDA model induces acute and not the slowly progressive 

pathological and clinical features of PD. Nevertheless, it has proved to be a useful 

model of testing new transplantation and neuroprotective strategies (Bove et al., 

2002; Aebisher et al., 1991; Bal et al., 1993; Venero et al., 1994). The main 

limitation of this model is its limited penetration across the BBB and induction of 

more permanent nigral lesions than dopamine depletors. However, despite this 

restriction many molecular changes caused by 6-OHDA are similar to those seen in 

PD and may prove useful in exploring neurodegeneration mechanisms of PD. 

1.1.3.1.2   MPTP:  

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is an organic molecule 

(fig 1.6) that produces selective degeneration of the dopaminergic neurons of the 

substantia nigra in a variety of mammalian species (Burns et al., 1983; Heikkila et al., 
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1984). It is the most frequently used toxin in animal models of PD and has been 

extensively used to elucidate numerous mechanisms of dopaminergic cell-death 

(Beal, 2001). It is structurally similar to a number of commonly used herbicides (e.g. 

paraquat) and pesticides (rotenone) that have shown evidence of dopaminergic cell 

degeneration (Bove et al., 2005).  

 

Fig 1.6: Chemical structure of MPTP (Taken from Bove et al., 2005) 

 

 

 

 

 

MPTP administration successfully reproduces most PD symptoms like 

bradykinesia, tremor, rigidity and postural instability (Tetrud et al., 1986) and the 

sequence of degeneration that occurs after MPTP administration in animals produces 

pathologies similar to those seen in humans (Burns et al., 1985).  

1.1.3.1.2a   MPTP- mechanism of action: 

MPTP is routinely used in experimental models due to its ability to induce PD 

like symptoms when intravenously injected. It is a highly lipophilic molecule and 

easily crosses the BBB. Once across, it is converted to 1-methyl-4-phenyl-2, 3-

dihydropyridinium (MPDP+) by MAO-B in non-dopaminergic cells (serotonergic 

neurons and glial cells) (reviewed by Dauer & Przedborski, 2003) (fig 1.7). There it is 

converted into its active form MPP+ by an unknown mechanism. MPP+ is then 

released into the extracellular space where it is taken up into the dopaminergic 

neurons by DAT. Mice with DAT inhibitor or DAT genetic deletion have shown 

reduced toxicity of MPTP (Bezard et al., 1999) but it has been far more difficult to 

show this effect in primates (Kopin, 1992).  

1.1.3.1.2b   Cellular toxicity of MPP+: 

  Once accumulated within the mitochondria, MPP+ inhibits complex I, 

III and IV of the electron transport chain where it decreases ATP production which 

can lead to partial depolarisation of cell membrane ionic gradients (Kopin, 1992). It 

disturbs cytosolic calcium homeostasis since energy is required to maintain calcium 
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concentrations in balance, as abnormally elevated calcium can lead to cell death 

(Bondy, 1989). Vesicular monoamine transporter (VMAT) incorporates MPP+ into 

‘dopamine containing synaptic vesicles’ and can protect cells against toxic effects of 

MPP+ (Takahashi et al., 1997) although translocation of MPP+ into synaptic vesicles 

stimulates excess release of cytosolic dopamine which, after undergoing auto-

oxidation, generates ROS (Lotharius et al., 2000). 

 
Fig 1.7: MPTP/ MPP+ Intracellular Pathways: MPP+ either concentrates within 
mitochondria, sequesters into synaptic vesicles or interacts with cytosolic enzymes 
(Taken from Smeyne & Jackson-Lewis, 2005) 
 

 

 

 

 

 

 

 

 

 

  

 

  

   

 

 

1.1.3.1.2c   MPTP and Intracellular changes: 

 Acute MPTP exposure in mice significantly decreases intrastriatal levels of 

DA and its metabolites (DOPAC, HVA) as well as tyrosine hydroxylase (TH). 

Additionally, it significantly decreases the gene expression of DA, VMAT and TH 

(Xu et al., 2005). Inhibition of MAO activity and a decrease in DA and its 

metabolites have also been observed in SH-SY5Y neuroblastoma cells exposed to 

MPTP (Song & Ehrich, 1997).  
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 MPTP sensitivity levels are different for different species. Rodents are less 

sensitive than non-human primates. This may be due to differences in MAO-B 

localisation in the brain. In primates, highest MAO-B concentration is present in 

astrocytes in the substantia nigra and basal ganglia, whereas in rats, they are present 

in cells lining the blood vessels and ventricles (Kopin, 1992).   

 

 There is limited evidence of classical LB formation with the MPTP model. α-

synuclein positive aggregates have been identified in continuously administered 

MPTP mice (Fornai et al., 2004) and chronic treatment in baboons has produced α-

synuclein positive aggregates (Kowall et al., 2000) but post-mortem investigation of 

human drug users exposed to MPTP in the 1980s did not show any such inclusions 

(Langston et al., 1999). Przedborski et al (2001) have shown that sub-acute MPTP 

administration in mice and primates can up-regulate α-synuclein and accumulate it in 

cytosol. But such aggregates do not fully resemble LBs, as they are larger in size and 

lack a central core or filamentous halo (Kowall et al., 2000).  

1.1.3.1.3   Rotenone: 

 Rotenone is a commonly used cytotoxic retinoid extracted from some plants 

of Leguminosae family like Derris elliptica, Derris mallaccensis, Lonchocarpus 

urucu and Lonchocarpus utilis (fig 1.8) (Ray, 1991). It is widely used as an 

insecticide and to kill fish. Rotenone, being hydrophobic, can easily cross biological 

membranes without a transporter (Hatcher et al., 2008). Like MPTP, it is highly 

lipophilic and can easily cross the BBB followed by accumulation within organelles 

such as mitochondria, where it inhibits complex I of the ETC (Talpade et al., 2000; 

Uversky, 2004).  

 

Fig 1.8: Chemical structure of rotenone (Taken from Bove et al., 2005). 
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1.1.3.1.3a   Cellular toxicity of rotenone:  

Markers of Complex I inhibition, ROS production, acute ATP deficiency and 

oxidative stress have been observed in in vivo rotenone models (Bashkatova et al., 

2004). Indeed, oxidative damage has been shown in both in vivo and dissociated cell 

systems (Testa et al., 2005). Rotenone causes oxidative damage in a time and dose-

dependent manner with increased protein oxidation (Sherer et al., 2002). Similar to 

the oxidative damage in PD, DA loss due to rotenone exposure is accompanied by an 

increase in oxidative protein damage (Testa et al., 2005). Chronic rotenone toxicity 

causes a delayed depletion of glutathione accompanied by oxidative damage to 

proteins and DNA (Sherer et al., 2002).  

1.1.3.1.3b   Neurotoxicity of rotenone: 

 Rotenone induces changes in the rat brain including neurodegeneration of DA 

neurons, inhibition and up-regulation of ubiquitin proteasome system (UPS) in the 

ventral midbrain, α-synuclein aggregation in striatum and ventral midbrain, complex I 

inhibition and DJ-1 oxidation in all brain regions (Betarbet et al., 2006) (fig 1.9)  

 
Fig 1.9: Chronic rotenone exposure inhibits complex I, causing oxidative stress 
which leads to UPS dysfunction and α-synuclein aggregation (Taken from 
Betarbet et al., 2006).    
                                                   

 
Rotenone causes neurotoxicity in nigrostriatal pathway and reduces SN DA 

neuron number in rats by up to 30% of the vehicle controls without exhibiting effects 

on the mesolimbic dopaminergic neurons. It shows a marked decrease in 

Rotenone 

Complex-I Inhibition 
(Widespread & Uniform) 

Oxidative Stress 
(Widespread, Not Uniform) 

Proteasomal Dysfunction 
(Midbrain: lesioned rats only) 

α–synuclein accumulation 
Proteasomal Dys. - Midbrain only 
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dopaminergic fibres in striatum, as observed in PD. As with PD, rotenone damage is 

not limited to the dopaminergic system; it reduces the density of serotonin transporter 

up to 35%, cholinergic neurons up to 29% and noradrenergic neurons up to 26% 

(Hoglinger et al., 2003).  

 

Chronic systemic rotenone infusion in rats produces behavioural symptoms 

like flexed posture, bradykinesia and rigidity (Betarbet et al., 2000). Spontaneous 

motor activity can be reduced to more than 70% in rats infused with rotenone for up 

to 4 weeks (Hoglinger et al., 2003). However, this motor disability is not always 

accompanied with the formation of nigrostriatal dopaminergic lesions (Sherer et al., 

2003). 

 

 Inhibition of microtubule formation from tubulin has also been reported after 

rotenone exposure (Marshall & Himes, 1978). Excess tubulin monomers can be toxic 

to cells and may provide a link with neurodegeneration. Indeed, parkin can bind to 

tubulin, boosting degradation of misfolded tubulins (Ren et al., 2003). Microglia 

protect against a number of insults but they may also release some cytotoxic 

substances causing neurodegeneration. Microglial activation has been observed in PD 

(McGreer et al., 1988) and rotenone treated rats show microglial activation in the 

nigrostriatal tract. The exact relationship between the two is not clearly known yet 

and it remains unclear whether rotenone itself causes microglial activation or the 

activated microglia clear the way for rotenone to exert its cytotoxic effects (Gao et 

al., 2002).  

 

Unlike 6-OHDA and MPTP, rotenone causes the formation of proteinaceous 

aggregates in surviving dopaminergic neurons. Its chronic administration in rodent 

models has successfully produced LB like cytoplasmic aggregates that are ubiquitin 

and α-synuclein positive (fig 1.10) accompanied with DA neuron loss (Betarbet et al., 

2000). There is also evidence of rotenone accelerating α-synuclein fibrillation 

(Uversky et al., 2001). Some studies have shown the formation of insoluble α-

synuclein in rotenone treated rats (Sherer et al., 2002). PD brains also show the 

presence of insoluble α-synuclein aggregates which are oxidatively modified. It is not 

clear whether the oxidative damage caused by rotenone leads to α-synuclein 

aggregation.  
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Fig 1.10: Electron micrograph of a cytoplasmic inclusion in the rotenone model 
(Taken from Meredith et al., 2004) 
 

 

 

 

 

 

 

1.1.3.1.3c   Advantages and disadvantages of rotenone: 

 Rotenone treatment produces α-synuclein positive inclusions and it kills 

nigrostriatal dopaminergic neurons in a highly variable manner in rats suggesting that 

genetic variability of individuals may be responsible for the difference in 

susceptibility observed (Betarbet et al. 2000). It causes systemic and chronic complex 

I inhibition decreasing UPS function and does not appear to possess a specific 

transport system to enter the cells (Drechsel & Patel, 2008). On the other hand, 

rotenone exposure leads to behavioural defects in rats without any nigrostriatal 

dopaminergic damage. It significantly reduces non-DAergic striatal neuronal 

populations (Hoglinger et al., 2003). Rotenone linked striatal dopaminergic 

deficiency is not improved after dopamine-agonist or L-dopa administration (Betarbet 

et al. 2000) 

1.1.3.1.4   Paraquat: 

 Paraquat (N, N'-Dimethyl-4,4'-bipyridinium dichloride) (PQ) is a widely used 

cationic non-selective herbicide that is consistently linked with PD. It has shown a 

dose-dependent effect with the incidence of PD (Liou et al., 1997). This strong 

correlation and the reason that it has a very similar structure to MPTP and MPP+ (fig 

1.11) has prompted researchers to label it as a risk factor for PD and therefore it is 

increasingly being used in cell-culture and animal studies. This coupled with the fact 

that rotenone and MPTP do not greatly contribute to the occurrence of PD as MPTP 

is not naturally present in the environment and rotenone has very limited uses and 

poor bioavailability (Richardson et al., 2005).  
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Fig 1.11: Structural similarity of paraquat with MPTP and MPP+ (Taken from 
Shimizu et al., 2001) 
 

 

 

 

 

 

 

 A PQ rat model has shown DA neuron death accompanied with α-synuclein 

aggregation (McCormack et al., 2002). Brain levels of α-synuclein also significantly 

increase after PQ exposure accompanied by α-synuclein-positive lesions in SNpc 

(Manning-Bog et al., 2002). However, the details of these mechanisms are not clear.  

  

 PQ does not efficiently cross the BBB (requires a neutral amino acid 

transporter; McCormack et al., 2003; Shimizu et al., 2001) but many cases of 

mortalities due to PQ toxicity have shown significant damage to the brain (Hughes et 

al. 1988). Although PQ and MPP+ have similar structures, their mechanisms of 

neurotoxicity are quite distinct. Unlike MPP+, PQ is not a substrate of DAT and its 

toxicity is independent of DAT expression. It is not actively accumulated in 

mitochondria and there is no direct evidence of PQ inhibition of complex I 

(Richardson et al., 2005). Contrary to earlier thinking PQ uses system L carrier 

(LAT-1) instead of DAT for transport through cells (Shimizu et al., 2001) but this 

uptake mechanism has not been fully proven yet.   

 

 One proposed mode of PQ toxicity is the generation of ROS and resulting 

oxidative stress. One such process of generating ROS through redox cycling 

involving nitric oxide synthase has been suggested (Day et al., 1999). It is thought 

that causing oxidative damage in the most vulnerable DA neurons in SN may be the 

prime source of its neurotoxicity rather than its action on mitochondria, complex I 

inhibition or uptake into DA neurons (Richardson et al., 2005).  
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1.1.3.2 Transgenic models of Parkinson’s disease: 

 Transgenic models of PD have used deletions and over-expression of PD 

related genes through conventional or virally mediated means (Kahle et al., 2000; Lo 

Bianco et al., 2002). Transgenic mice generated by Masliah et al (2000) have 

expressed wild-type human α-synuclein and show ubiquitin and α-synuclein positive 

inclusions in substantia nigra, hippocampus and neocortex (fig 1.12). Similarly, 

drosophila models expressing wild and mutant α-synuclein can produce certain PD 

features like DA cell degeneration, inclusion-body formation and mobility 

dysfunction (Feany and Bender, 2000) (fig 1.13).   

 

Deletion of genes required for neuronal maintenance and development has 

shown reduction in DA cell number e.g. Pitx3-deficient aphakia (ak) mice show L-

DOPA reversible motor deficits with a reduction in SN DA neurons (Hwang et al., 

2005). Pitx3 deletion has no effect on mesolimboic DA neurons like PD (Fuchs et al., 

2009). Homozygous null mice for developmental genes ‘homeobox transcription 

factors’ Engrailed 1/2 have shown progressive degeneration of dopaminergic neurons 

with cerebellar pathology (Sgado et al., 2006) but both models lack Lewy body 

formation and cell loss occurs much earlier than with sporadic PD pathology. 

 
Fig 1.12: α-synuclein immunoreactivity in transgenic mice: Comparison of non-
transgenic (A, D) and transgenic mice (B, E, G, J) showed positive reactivity with 
human (A-C) and murine α-synuclein antibodies (D-F). SN labelling showed that α-
synuclein positive inclusions were visible in the transgenic substantia nigra (H) and 
hippocampus (I).  (J= also ubiquitin-positive inclusions [green]; C, F = brain sections 
from a human Lewy body disease patient) (Taken from Masliah et al., 2000).  
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Fig 1.13: α-synuclein immunoreactivity in transgenic drosophila: A) α-synuclein 
positive inclusion in a 25-day-old α -synuclein transgenic fly. Punctate pattern of α -
synuclein staining (B) suggested aggregate formation. Number of tyrosine 
hydroxylase positive neuronal cluster was low in 30±60 day-old flies (D) compared 
with young adult flies (C) (Feany and Bender, 2000). 
 

 
 Over-expression of genes such as α-synuclein in mice has shown symptoms 

including reduced olfaction and deficits in motor skills as early as 2 months of age 

(Fleming et al., 2006) as well as accumulation of insoluble α-synuclein (Fleming et 

al., 2007) and widespread proteinase K resistant alpha-synuclein aggregates 

(Fernagut et al., 2007). Other factors such as synaptic dysfunction, lower levels of 

noradrenalin in the cerebral cortex and changes in gene expression of ion channels in 

DA neurons have also been observed (reviewed by Meredith et al., 2008). Several 

lines of mice over-expressing α-synuclein have been generated but issues regarding 

increased α-synuclein toxicity, abnormal motor deficits and production of LBs 

remain.  

 

Similarly parkin, PINK1 and DJ-1 knock-out mice show different features. 

Transgenic mice containing Q300X parkin mutation have shown DA loss in the later 

stages of development accompanied with motor dysfunction (Lu et al., 2006). PINK1 

KO mice exhibit reduced striatal DA release  and  DJ-1 mutations lower resistance to 

oxidative stress (Dodson, 2007) but DJ-1 KO mice do not show PD phenotype, DA 

cell loss or nigral degeneration (Yamaguchi & Shen, 2007).        

  

 To counter the lack of DA loss in most genetically engineered models, 

recombinant adeno-associated viral (rAAV) or lentiviral vectors have been used in 

targeting the nigral DA neurons both in the rodent and the primate brain. Their long-

term expression efficiency is very high in nigral DA neurons (Ulusoy et al., 2008) 

and they show behavioural deficits (Kirik et al., 2002).  Such studies have shown 

formation of α-synuclein positive inclusions and dystrophic neurites as well as 

  A B C D 
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phosphorylated α-synuclein at serine residue 129 (Fujiwara et al., 2002). Similar 

experiments have reproduced toxicity using parkin associated endothelin-receptor like 

receptor (Pael-R) or another parkin target protein CDCrel-1 (Dong et al., 2003; Kitao 

et al., 2007). CDCrel-1 over-expression in rats through rAAV injection caused a 

progressive DAergic neurodegeneration.  

 

1.1.3.3 Cell-models of Parkinson’s disease: 

The main advantages of cell-culture models are time-efficient experiments, 

quick screening of toxins, easy assessment of gene/protein expression, gene knock-

down, transfection for over-expression proteins etc. Changes that occur due to 

different cell-types in brain can be mimicked through co-cultures of different cell-

types like neurones and glial cell as observed in PD. Post-mitotic human 

dopaminergic neuronal cell lines can be ideal candidates for a PD model. Primary 

neuronal cultures from different transgenic mice can be readily immortalised by 

retroviral transduction to generate cell culture models to study PD-related proteins. A 

number of cell-lines have been extensively used to explore the neurotoxic potential of 

different toxins e.g. SH-SY5Y, MN9D, PC12, and NB41 cell lines as well as primary 

midbrain cultures (Onyango et al., 2008) but protein expression can vary from cell-

type to cell-type. A vast amount of data generated through cell studies has shown how 

PD related toxins affect different pathways. Such studies have been instrumental in 

explaining the role of protein aggregation, oxidative stress, the proteasome system 

and how toxins like MPP+ cause apoptotic cell death through caspase-3 activity, 

generate ROS, lead to LDH release and inhibit the electron transport chain (Orth and 

Tabrizi, 2003).  
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1.2 Biochemistry of Parkinson’s disease: 
 
 ROS associated damage; proteasomal inhibition and mitochondrial 

dysfunction have been identified as major biochemical processes linked with 

dopaminergic cell-death in PD. Discovery of mutations in various dominant and 

recessive genes that cause abnormalities in the above mentioned processes has greatly 

helped the understanding of the biochemistry of PD.  The heterogenous nature of PD 

suggests involvement of multiple genes rather than a single gene or mutation. 

Research into rare familial forms of PD has detected several gene mutations and 

chromosomal loci (Schapira, 2007; Belin & Westerlund, 2010) (fig 1.14). Their 

products, alpha-synuclein (SNCA), parkin (ubiquitin-conjugating enzyme; PARK2; 

UBCH7), PTEN induced kinase 1 (PINK1), DJ-1, ubiquitin C-terminal hydrolase L1 

(UCHL1), and leucine-rich repeat kinase 2 (LRRK2/dardarin) (Moran et al., 2007) 

have been extensively investigated and used in animal and cell-culture studies.  

 
Fig 1.14: Genetic mutations linked with neurodegeneration in PD (Taken from 
Hardy et al., 2006).  
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1.2.1: Genetic Mutations linked with Parkinson’s disease: 

1.2.1.1: α-synuclein: 

 α-synuclein, a natively unfolded protein, is the main constituent of Lewy 

bodies (fig 1.15). It is ubiquitously expressed in the brain. Its normal cellular 

functions are not well understood and studies suggest a variety of functions for α-

synuclein. It may bind to transport vesicles (Murphy et al., 2000) or vesicles with 

high phosphatidic acid content (Davidson et al., 1998), inhibit phospholipase D2 

(Jenco et al., 1998), may negatively regulate dopaminergic neurotransmission 

(Abeliovich et al (2000), act as molecular chaperone or interact with chaperones 

(Ostrerova et al., 1999) or cause deleterious effects through interaction with 

monoamines resulting in oxidative stress (Galvin, 2006).   

 
Fig 1.15: α-Synuclein-positive Lewy body (red arrows) in the substantia nigra of 
idiopathic PD brain (Taken from Goedert, 2001). 
 

 

 

 

 

 

 

 

1.2.1.1.1 Mutations in α-synuclein: 

 The α-synuclein gene (SNCA) is located at chromosome 4q21 (Hofer et al., 

2005). Mutations in its structure include A53T point substitution (Polymeropoulos et 

al., 1997), A30P missense mutation (Kruger et al., 1998), E46K missense mutation 

(Zarranz et al., 2004) and triplication of the wild-type gene (Singleton et al., 2003). 

Miller et al (2004) have reported that triplication of α-synuclein results in almost 

double the amount of the protein in the blood. This has been linked with a reduction 

in the onset age of PD to as low as 30-40 years (Singleton et al., 2003). Mutant 

proteins have different structural properties e.g. A53T mutant amasses at the plasma 

membrane, whereas A30P is largely found in the cytosol as it cannot bind strongly to 

the membrane (Willingham et al., 2003). 
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 α-synuclein protein has a central hydrophobic region that promotes 

aggregation (Giasson et al., 2001) whereas the C-terminal tail inhibits this (Park & 

Lansbury, 2003). A30P, E46K and A53T mutations are all identified in the imperfect 

KTKEGV repeat regions next to the hydrophobic region (fig 1.16). A53T and E46K 

are both considered to play a role in fibril formation leading to α-synuclein 

aggregation (Giasson et al., 1999; Wood et al., 1999) and it is this fibrillar form that 

is thought to be a major component of LBs (Crowther et al., 2000). All three 

mutations, A53T, E46K and A30P are involved in the formation of oligomeric forms 

of α-synuclein called protofibrils which may form pores and damage membranes 

(Volles & Lansbury, 2002). In a yeast model, α-synuclein over-expression and 

mutations of α-synuclein can cause endoplasmic reticulum (ER) stress by inhibiting 

vital proteins required in ER to golgi transport, thus causing ER stress (Chua & Tang, 

2006).  

 

Fig 1.16: α-synuclein protein motifs: The acidic part in the C-terminus decreases 
protein aggregation, whereas aggregation is promoted by the hydrophobic region near 
the KTKEGV repeats (Taken from Cookson, 2005). 

 
 A53T and A30P mutations do not always produce the required nigral 

degeneration (i.e. nigral cell loss) and do not exhibit similar phenotypes even when 

their level of expression is the same. Interestingly, the wild-type protein also damages 

SN neurons and some studies have shown that the level of damage caused is equal to 

that caused by mutant α-synuclein (Xu et al., 2002). Wild-type α-synuclein has a 

natural tendency to aggregate into oligomers and undergoes post-translational 

modifications which promotes aggregation. α-synuclein aggregates in all tissues but  
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symptoms only appear in certain neuronal cells (Miller et al., 2004). This is because 

the expression level of α-synuclein is higher in the brain and the brain has a higher 

concentration of molecules that encourage aggregation (Uéda et al., 1993). In spite of 

extensive research, the precise function of α-synuclein and its over-expressed form 

and how exactly it causes selective dopaminergic neuronal death in PD is still 

unclear. 

1.2.1.1.2 Transgenic models of α-synuclein: 

 α-synuclein is found in the presynaptic nerve terminal as well as in the 

cytoplasm. α-synuclein knockout mice have synaptic deficits, proposing a synaptic 

role for α-synuclein (Abeliovich et al., 2000). But knockout mice do not exhibit 

symptoms of PD suggesting that loss of protein function has no bearing on disease 

onset. This brings α-synuclein mutations into focus since when introduced into 

transgenic animals they do induce nigral degeneration in rats and primates (Lo Bianco 

et al., 2002 & Kirik et al., 2003). Song et al (2004) have shown that over-expression 

of α-synuclein in transgenic mice impairs mitochondrial function; causes oxidative 

stress and enhances MPTP toxicity. The latter could be due to the interaction of α-

synuclein with the dopamine transporter, potentially increasing MPP+ uptake and 

causing greater injury.  

1.2.1.2 Parkin:  

 The PARKIN gene is one of the largest genes in the human genome (1.53Mb) 

(Kitada et al., 1998) and PARKIN mutations account for up to 10-20% of all early-

onset parkinsonism (reviewed by Farrer, 2006). Mutations in PARKIN include exonic 

rearrangements, frameshift mutations, duplications, multiplications and point 

mutations. The latter being the most frequently occurring (Mata et al., 2004) and 

mostly found in the RING-IBR-RING domain in the C-terminal (von Coelln et al., 

2004).  

1.2.1.2 .1 Parkin function: 

  Several studies have identified various properties and functions of parkin. It 

encodes a ubiquitin E3 ligase that associates with the outer mitochondrial membrane 

(Darios et al., 2003). Zhang et al (2000b) have shown that parkin promotes its own 

degradation via its own ubiquitination and can act in concert with GTPase septin 



Chapter One                                                                                          Introduction 

 28

‘CDCrel-1’. It ubiquitinates synphilin-1 (Chung et al., 2001), dopamine transporter 

(Jiang et al., 2004) and the cytoskeletal proteins α- and β-tubulin (Ren et al., 2003).  

  

A number of different parkin substrates have been identified, including, parkin 

associated endothelin-like receptor (Pael-R or GPR37) (Imai et al., 2001), ataxin-3 

(Tsai et al., 2003), cyclin E (Staropoli et al., 2003), o-glycosylated α-synuclein 

(Shimura et al., 2004). Other than these, it interacts with DJ-1 (Moore et al., 2005), 

BAG5, (Kalia et al., 2004); E2 ubiquitin conjugating enzymes UbcH6/7/8 (Staropoli 

et al., 2003), structural proteins CASK/LIN2 (Fallon et al., 2002), actin filaments 

(Huynh et al., 2000) and 26S proteasome subunit ‘Rpn10’ (Sakata et al., 2003). 

 

Some other parkin properties have come to notice recently, including its 

neuroprotective effect against mutant α-synuclein (Petrucelli et al., 2002), kinase 

induced excitotoxicity (Staropoli et al., 2003), degradation of substrates localised in 

mitochondria, prevention of cytochrome c release and apoptosis (Darios et al., 2003). 

It is not clear how these are connected with dopaminergic cell death in PD.  

1.2.1.2.2 Mutations in PARKIN: 

 PARKIN encodes an E3-ligase, involved in the proteasomal protein 

degradation pathway (Farrer, 2006). It acts in concert with the ubiquitin conjugating 

enzyme UbcH7 (Shimura et al., 2000). It is also known to play a vital role in the 

poly-ubiquitination of proteins by transferring ubiquitin from the ‘ubiquitin 

conjugating E2 enzyme’ to the substrates targeted for degradation.  Mutations in the 

PARKIN gene can therefore reduce E3 activity. The R42P recessive mutation has 

been known to disrupt the interaction between the E3 ligase and the proteasome 

(Sakata et al., 2003). Indeed mutations in the PARK2 gene locus of parkin are linked 

with autosomal-recessive juvenile parkinsonism (von Coelln et al., 2004), where 

missense mutations are believed to impede protein degradation in vulnerable neurons, 

causing protein accumulation and eventual cell death. Yang et al (2003) have shown 

(using a drosophila model) that wild-type parkin protects against cell death caused by 

over-expression of Paelr1 (an E3 ligase substrate).  

 

 Ko et al (2005) have reported cell death in catecholaminergic neurons due to 

accumulation of another E3 substrate ‘aminoacyl-tRNA synthetase cofactor p38’ in 



Chapter One                                                                                          Introduction 

 29

the ventral midbrain/hindbrain of young and old parkin null mice. This confirms the 

findings of analysis of brain tissue samples from idiopathic and AR-JP patients, 

which has also showed an increased level of p38. Knockout mice have not confirmed 

nigral cell loss or motor disabilities but have shown abnormalities in dopamine 

metabolism and glutamate neurotransmission (von Coelln et al., 2004). Autopsies 

have shown pure nigral degeneration in patients with parkin mutations but the 

presence of Lewy bodies is not noticed in all cases (Farrer et al., 2001).   

1.2.1.3 DJ-1: 

 The DJ-1 gene is linked with autosomal recessive parkinsonism (Bonifati et 

al., 2003). Family based linkage studies have detected rare recessively inherited 

missense mutations and gene deletions (Lockhart et al., 2004).  DJ-1 is a highly 

conserved, ubiquitous and multifunctional protein dimer present in mitochondria, 

cytoplasm and extracellular space of mammalian cells (Herrera et al., 2007). It is 

widely expressed in both glia and neurons (Bader et al., 2005). Its known functions 

include co-regulation of tyrosine hydroxylase with its promoter, inhibition of α-

synuclein aggregation (Zhou et al., 2006), interaction with p54nrb, pyrimidine tract-

binding protein-associated splicing factor and Topors/ p53BP3 causing changes in 

transcriptional activity (Shinbo et al., 2005; Xu et al., 2005), providing protection 

against mitochondrial complex-I inhibitors (Yokota et al., 2003), acting as a ROS 

scavenger (Lockhart et al., 2004) and a probable redox-regulated chaperone of α-

synuclein (Zhou et al., 2006).  Its over-expression may protect against oxidative toxic 

injury, whereas mutations may result in it losing its ability to modulate gene 

expression under stress (Bonifati et al., 2003).  

 

A number of studies have suggested several ways of how DJ-1 may be 

associated with PD pathogenesis. Oxidation affects DJ-1 structure and function, 

resulting in reduced inhibition of α-synuclein fibrillation (Zhou et al., 2006). It is also 

suggested that DJ-1 is an oxidative stress sensor; it accumulates as an acidic isoform 

after oxidative stress limiting cellular toxicity (Gosal et al., 2006).  
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1.2.1.3.1   DJ-1 and Parkinson’s disease: 

Oxidised DJ-1 has been identified in post mortem PD brains (Choi et al., 

2006) but more research is necessary to show how it is linked with disease 

pathogenesis. Loss of DJ-1 leads to deficient antioxidant transcriptional responses 

through the loss of nuclear factor erythroid 2-related factor (Nrf2); which leads to a 

deficit in detoxifying enzyme [NAD(P)H quinone oxidoreductase 1] NQO1 

(Clements et al., 2006). DJ-1 stabilises the antioxidant transcription master Nrf2 and 

loss of DJ-1 may be related to PD aetiology.  

1.2.1.3.2   Mutations in DJ-1: 

Splice and frameshift mutations in DJ-1 have been identified (Hague et al., 

2003) as well as deletion of the promoter region of the gene (Abou-Sleiman et al., 

2003). Both are considered to be linked with young-onset PD. DJ-1 is thought to 

function as a dimer whereas its mutant forms do not or in some cases (M26I 

mutation) not to the same extent as the wild type (Herrera et al., 2007). L166P 

missense mutation causes a loss of function which has been associated with increased 

DJ-1 degradation which can lead to neurodegeneration (Zhou et al., 2006).  

 

1.2.1.4 UCHL1: 

 Ubiquitin C-terminal hydrolase-L1 (UCHL1) is an abundant neuron-specific 

protein (1-2% of total brain protein) (Lee & Liu, 2008). UCHL1 gene (9.5kb) encodes 

ubiquitin C-terminal hydrolase, which hydrolyses peptide-ubiquitin bonds and 

converts ubiquitin chains to monomeric ubiquitin (Liu et al., 2002).   

 

 Genetic variability in UCHL1 has been linked with PD through its reduced 

activity in the ubiquitin-proteasome pathway. UCHL1 has been identified in Lewy 

bodies and Alzheimer's neurofibrillary tangles (Lowe et al., 1990). A missense 

mutation I93M has been identified in a German family with PD (Leroy et al., 1998) 

but follow up studies have failed to identify this. Non-synonymous S18Y 

polymorphism in UCHL1 has been linked with reduced or increased ligase activity 

but several issues concerning its role in PD remain inconclusive (Healy et al., 2004). 

Liu et al (2002) have suggested that dual like ligase and hydrolase activities of 

UCHL1 may be involved in proteasomal degradation and lead to PD susceptibility. 
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1.2.1.5 PINK 1: 

 PTEN-induced kinase 1 (PINK1) is a nuclear-encoded kinase and after 

PARKIN mutations it is the most frequent mutation in parkinsonism (Hatano et al., 

2004). PINK1 is ubiquitously expressed in the human brain. It is localised in 

mitochondria with evidence of detection in the inner and outer-membranes (Valente 

et al. 2004a). About 10% of Lewy bodies identified in sporadic PD are PINK1 

positive. This may be due to its poor solubility and tendency to aggregate but they 

have only been detected in brainstem LBs and not the cortical LBs (Gandhi et al., 

2006). 

1.2.1.5.1   Mutations in PINK1: 

 Mutations in PINK1 have been associated with mitochondrial dysfunction 

related to autosomal recessive familial PD. A number of missense and nonsense 

truncating mutations have been reported in the PINK1 gene and point mutations 

rather than deletions are most likely to be responsible for the disease phenotype 

(Valente et al., 2004). Homozygous as well as single heterozygous mutations have 

been found in PD patients (reviewed by Wider & Wszolek, 2007). PINK1 mutations 

are distributed throughout the gene and have different effects ranging from reduction 

in protein accumulation to decreased kinase activity (reviewed by Abeliovich & Beal, 

2006).  

 
 PINK1 contains an N-terminal mitochondrial targeting, a serine/threonine-

directed protein kinase domain (Zhou et al., 2008) with significant homology to the 

calcium-calmodulin protein kinases and a C-terminal domain that is involved in the 

regulation of autophosphorylation activity (Silvestri et al., 2005; Sim et al., 

2006). This discovery suggests a possible link with cell-signalling processes.  

1.2.1.5.2   Protective effect of PINK1:  

PINK1 may also provide neuroprotection against oxidative stress and through 

a direct regulation of apoptosis (Valente et al., 2004a). Wild-type PINK1 protects 

dopaminergic neurons against stress-induced mitochondrial dysfunction (Deng et al., 

2005) and apoptosis induced by proteasomal inhibitors (Valente et al., 2004a). Over-

expressed wild-type PINK1 lowers caspase cleavage and cytochrome c release. This 

was reported by Petit et al (2005) who suggested that PINK1 plays a part in 
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mitochondrial dependent cell-death pathways by preventing cytochrome c 

translocation to the cytosol and reducing caspase-9 and -7 activation. Indeed, the 

kinase activity of this protein is reduced by G309D missense mutation (Muqit et al., 

2006). It may regulate HtrA2 phosphorylation, modulating its proteolytic activity, 

which may protect against mitochondrial stress (Plun-Favreau et al., 2007). PINK1 

loss of function has not been reported in mammalian in vivo studies. The majority of 

recent work suggesting a link with apoptosis and cell-signalling comes from D. 

melanogaster studies (Clark et al., 2006; Park et al., 2006).  

1.2.1.6 LRRK2:  

 Leucine-rich repeat kinase 2 (LRRK2) is a large gene located on chromosome 

12p11.2–q13.1 (144kb, consisting 7449 base pairs, 51 axons) (Mizuno et al, 2008; 

Lesage & Brice, 2009). LRRK2 protein contains different domains in its structure. 

Several functional domains are present in the carboxyl half of LRRK2, like ‘ROC’ 

domain (leucine rich repeat), COR (carboxy terminal of ROC) domain, ANK 

(ankyrin repeat domain), MAPKKK (mitogen activated protein kinase kinase kinase), 

putative tyrosine kinase catalytic domain and WD40 domain (Liu & Lee, 2008; 

Mizuno et al., 2008). These domains may be involved in the regulation of different 

cellular processes such as neurite maintenance, neuronal survival, protein and 

dopamine interactions (Galter et al., 2006).  

1.2.1. 6.1 Mutations in LRRK2: 

 LRRK2 mutations have been linked with both sporadic and familial PD. 10% 

of all autosomal dominant familial and 3.6% of sporadic PD cases have LRRK2 

mutations (Belin, 2008; Lesage & Brice, 2009). Several LRRK2 pathogenic mutations 

have been identified, including Y1699C, I2020T, R1441C⁄G⁄H, G2385R, of which the 

G2019S missense is the most common (fig 1.17).  A high G2019S mutation 

frequency has been noted in 6% of hereditary and 1-2% of idiopathic PD cases. Its 

frequency varies, with high rates in Ashkenazi Jews and North African Arabs (Farrer, 

2006). Other variants seem to be population specific. G2385R, a polymorphic 

mutation, is considered a PD risk factor in Asian populations (Di Fonzo et al., 2006), 

R1441G mutation in Basque region of Spain (Simon-Sanchez et al., 2006) and 

G2385R and R1628P in Chinese populations (Lesage et al., 2009).   
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Fig 1.17: LRRK2 Gene with its functional domains and sequence changes (Taken 
from Lesage & Brice, 2009).  
 
 
 

 

 

 

 

 

 

 

1.2.1.7 ATP13A2: 

 ATP13A2 is a predominantly neuronal P-type ATPase gene (Ramirez et al., 

2006) that codes for a lysosomal ATPase. It was mapped in a Chilean and Jordanian 

family with Kufor–Rakeb syndrome (KRS), a rare form of recessively inherited 

levodopa responsive juvenile onset parkinsonism with cognitive dysfunction and 

pyramidal degeneration (Lesage & Brice, 2009; Najim al-Din et al., 1994). These 

families had compound heterozygous (c.1305 þ 5G .A/1019GfsX1021) and 

homozygous (552LfsX788) mutations which resulted in failure of proteasomal 

degradation of proteins and subsequent retention in endoplasmic reticulum instead of 

insertion in lysosomal membranes (Ramirez et al., 2006). It is possible that failure of 

removal of α-synuclein aggregates due to failure of removal process caused by these 

mutations could contribute to PD development. Full function of ATP13A2 is not 

known and it is not clear how its loss of function causes lysosomal dysfunction.  
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Table 1.1: Summary of Genetic mutations in PD (Adapted from Belin & 
Westerlund, 2008; Farrer, 2006; Fahn & Sulzer, 2004; Haugarvoll et al., 2009; Satake  
et al., 2009; Strauss et al., 2005; Wider & Wszolek, 2007).  
 

Gene Locus Mutations Effects of Mutations 

 

SNCA 

PARK1 and 
PARK4 
(4q21) 

-Dominant Ala30Pro, Glu46Lys 
and Ala53Thr substitutions; 
genomic duplications and 

triplications 
-A53T and A30P may promote 

aggregation 

-Missense mutations and genomic 
multiplications increase the 

cytoplasmic accumulation of α-
synuclein monomer, promoting 

oligomerisation and toxicity. 

 

 

PARKIN 

 
 

PARK2 
(6q25.2–

q27) 

-Recessive homozygous and 
compound 

-Heterozygous missense (>57) 
andexonic deletion/ 

duplication/triplication 
mutations 

-Over 70 mutations identified; 
most likely loss of function 

mutations 

 
-Parkin is a part of UPS. Mutations 
can lead to protein build up due to 

impair in degradation process. 

Unknown PARK3 
(2p13) 

- Autosomal dominant, Its putative 
function is unknown. 

 

UCHL-1 

 
PARK5 
(4p14) 

-Linkage for the Ile93Met 
substitution is equivocal 

-Late onset: Susceptibility to 
sporadic PD linked with a 
Ser18Tyr polymorphism 

-Mutations in UCHL1 may prevent 
it from maintaining a pool of 

monoubiquitin for E3 ligase, hence 
disrupting the UPS. 

PINK1 PARK 6 

(1p35-p36) 

 
Recessively inherited missense 

and exon-deletion mutations 

-Mutations in DJ-1 and PINK1 
impair the neuronal response to α-

synuclein aggregation and also 
disrupt the mitochondrial function 

leading to ATP depletion. 
 

 

DJ-1 

 

PARK7 

(1p36) 

-Recessively inherited; 
homozygous missense 

(Leu166Pro) and 
deletion(delEx1–5) mutations, 
and compound heterozygotes 

-Mutations in DJ-1 may alter its 
anti-oxidative properties. 

 

 

LRRK2 

 
PARK8 
(12p12) 

-Many dominant substitutions, 
notably Arg1441Cys/Gly/ His, 

Tyr1699Cys, Ile2012Thr, 
Gly2019Ser and Ile2020Thr 

-LRRK, just like PINK1, encodes 
protein kinases. Mutations in the 
gene may disrupt cell signalling. 

ATP13A2 PARK9 
(1p36) 

Homozygous and heterozygous 
ATP13A2 mutations, deletions 
(1-bp in exon 6) and splice site 

mutation recorded 

Kufor-Rakeb syndrome, a rare 
recessively inherited levodopa 

responsive juvenile onset 
parkinsonism caused by a loss of 
function mutation of ATP13A2 

Unknown PARK10 
(1p32) 

- Genetic variability in USP24 may 
be associated with PD 

Unknown PARK11 
(2q36-q37) 

 No consistent evidence that 
variation in the GIGYF2 gene 
significantly contributes to PD 

Unknown PARK12 
(Xq21-q25) 

- An X chromosome locus has been 
identified 

OMI/HTR

A2 

PARK13 
(2p12) 

A polymorphism (A141S) and 
heterozygous mutation (G399S) 
identified in the HTRA2 gene 

Both mutations cause defective 
activation of HTRA2 protease 

activity. 
Mutation causes mitochondrial 
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swelling, reduced membrane 
potential and reduced 

neuroprotection 
Unknown PARK14 

(18q11) 
- - 

FBXO7 PARK15 
(22q12-q13) 

Autosomal recessive mutation in 
the FBXO7 gene 

Recessive FBXO7 mutations 
cause early-onset parkinsonian-
pyramidal syndrome 

Unknown PARK16 
(1q32) 

Linked with single-nucleotide 
polymorphisms and contains 

multiple independent association 
signals 

- 
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1.3 Environmental factors and Parkinson’s disease: 

 The role of environmental factors in PD development remains unclear. 

Several studies, exploring the relationship between PD risk and rural living, have 

reported a positive association and highlighted the involvement of agricultural 

factors. A number of other PD risk factors are interrelated with rural living, e.g. well-

water drinking, farming, pesticide exposure, consumption of raw vegetables etc. 

Each of these has been investigated as an independent risk factor in the majority of 

the studies (Koller et al., 1990). 

1.3.1 Review of meta-analyses linking Parkinson’s disease and exposure to 
pesticides: 

1.3.1.1 Pesticide Exposure:  
 Meta-analysis carried out by Priyadarshi et al (2001) analysed 16 case-control 

studies and assessed demographic data including history of exposure to 

environmental factors, lifetime histories of places of residence, source of drinking 

water, and herbicide/pesticide exposure. They identified eleven studies with a 

positive association out of which statistically significant odds-ratio (OR) was 

reported for six studies. Three studies were negative and two reported no association. 

Only six studies provided information regarding duration of exposure/rural living, 

which ranged from 1 to >40 years. Cigarette smoking and caffeine/coffee use, 

considered to lower PD risk, were not considered in this metaanalysis. Evidence 

suggests a lower risk of PD in coffee drinkers and cigarette smokers (Hernan et al., 

2002). Indeed, a stronger inverse association between PD and cigarette smoking has 

been observed in workers handling pesticides regularly, compared with those who 

have never used pesticides (Galanaud et al., 2005). None of the analysed studies 

however, specifically identified any particular agrochemical as being associated with 

increased risk of PD. 

 

 The same research group had earlier reported a consistent increase in PD 

development with pesticide exposure (Priyadarshi et al., 2000). They used 19 out of 

34 comparable case–control studies, opening the possibility of influencing the overall 

risk estimate due to the limited nature of the dataset which is a recurring problem. 

The BfR report commissioned by the European Union identified 62 studies to 

examine the link between PD and environmental factors, but found only 38 studies 
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compliant with their selection criteria, which were then included in their analysis. 

Remaining studies were excluded because they failed to include ORs or sufficient 

information to calculate the ORs (BfR, 2006). Priyadarshi et al (2000) did not find 

any dose-dependent relation or identify any specific categories of pesticides but the 

OR they calculated (1.94, 95% CI 1.49-2.53) was consistent with the findings of Lai 

et al (2002), who had earlier suggested that an increased pesticide exposure is 

strongly linked with rural living, farming and well water drinking rather than each of 

these risk factors directly causing PD. e.g. contamination of drinking water by 

pesticides, after the chemicals have leached into the soil (Metzler et al., 1982).  

 

In a critical review published by the ‘Institute of Environment and Health’ 

(IEH), a majority of the 38 case-control studies reviewed showed a significantly 

increased risk associated with pesticide exposure with excess risk ranging from 1.01 

to 7.00. Even though some studies gave conflicting results, overall findings 

suggested a positive correlation between increased PD risk and pesticide exposure 

(IEH, 2005). Even some ecological studies have linked highest pesticide use with 

highest PD prevalence in heavily farmed areas (Dick, 2007) and mortality due to PD 

in some regions with higher pesticide use has been found to be greater than those 

with minimal pesticide use (Ritz & Yu, 2000). 

1.3.1.2 Paraquat exposure: 

 Liou et al (1997) have reported the results of a case-control study in Taiwan, 

where paraquat is still widely used. They noticed a dose-dependent effect and found 

evidence of a strong correlation between PD incidence and the level of paraquat 

exposure. Individuals with more than 20 years paraquat exposure had a six times 

higher risk of developing PD. This trend is more commonly seen in studies focusing 

on occupational exposure where the long duration of pesticide, whether it is low or 

high dose is critical e.g. occupational exposure to paraquat was associated with 

parkinsonism in 57 cases in a British Columbia study (Dinis-Oliveira et al., 2006). 

 

 Multiple exposures of paraquat and maneb, when administered together, have 

produced PD characteristics in mice; but no neurological changes were noted when 

administered separately (Thiruchelvam et al., 2000a). Paraquat has been shown to 
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interact synergistically with maneb in mouse models, and reduce motor activity and 

damage nigral cell bodies (Thiruchelvam et al., 2001a).  

 

 It has been suggested that the risk of PD significantly increases once the 

pesticide exposure has exceeded a threshold of greater than 10 or 20 years, as seen 

with paraquat (Liou et al., 1997). According to Vanacore et al (2002), who evaluated 

PD risk in licensed pesticide users, PD risk is almost twice as high in these subjects 

(OR=1.85; 95% CI, 1.31–2.60) than in the general public. Another study found a 

high prevalence ratio for parkinsonism in a cohort of orchardists exposed to 

pesticides for more than 50 years (Engel et al., 2001).   

 

 It is difficult to assess the effects of individual sub-groups like insecticides 

and herbicides because the majority of subjects can be exposed to herbicides as well 

as insecticides at the same time (up to 90% according to Gorell et al., 1998). This 

along with the failure of recalling the specific class of chemical and its duration of 

exposure complicates the problem even more. Chronic low-level pesticide exposure 

is harder to detect and acute exposure produces delayed symptoms e.g. as seen in 

MPTP studies (Greenamyre et al., 2003). Studies that have tried to categorise 

specific pesticide compounds have linked exposures to alkaline phosphates, 

organochlorines, carbamates, (Seidler et al., 1996) and paraquat (Hertzman et al., 

1990) with increased PD risk.  

1.3.1.3 Honolulu-Asia Aging Study: 

 The Honolulu-Asia Aging Study has also linked plantation work with PD 

risk, with longer pesticide exposure associated with increased risk (overall incidence 

7.1/10,000 person-years, PD observed in 137 men). These results were not 

statistically significant (p=0.101) although based on prospective ascertainment of 

exposures. Most results were based on self-reported cases with no solid information 

of extent and duration of pesticide exposure (Abbott et al., 2003). Factors such as 

coffee intake, cigarette smoking and polyunsaturated fat intake showed an inverse 

protective association with PD. Whereas carbohydrates increased the risk. A high PD 

risk (63.4/10,000 person-years) was noted in non-coffee drinkers exposed to 

pesticides (three times higher than coffee drinkers exposed to pesticides, 21.4/10,000 

person-years). A similar relationship was observed in smokers (11.8/10000) against 
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non-smokers (27.4/10,000). Different cohorts are likely to be exposed to different 

sets of chemicals. This exposure misclassification may be the reason for the 

heterogeneity observed between different studies. Indeed, this heterogeneity comes 

from different study designs, selection of controls, differences in geography, 

ethnicity and genetic patterns (Nuti et al., 2004). 

 

1.3.1.4 Rural living and well water drinking: 

 Rajput et al (1986) have reported on cases of PD diagnosed in 19 patients 

who had spent the first 15 years of their lives in a rural community of about 169 

people. When evaluating ‘well-water studies only’ Priyadarshi et al (2001) reported 

five studies with negative association, one with no association and eleven with 

positive association (combined OR of 1.26 (95% CI 0.96-1.64). Two studies were 

significant and five had statistically significant odds ratios. Furthermore, they 

identified five studies which assessed duration of well-water consumption and PD 

risk with the higher risk OR being 3.28 (95% CI, 0.93-11.51) after a minimum of 1 

year exposure. Other risk values varied across the scale e.g. one study showed an OR 

of 0.95 (95% CI, 0.31-2.88) with an estimated 45 years exposure but another showed 

OR of 1.24 (95% CI, 0.77-2.0) with an estimated 10 years exposure. Wright & 

Keller-Byrne (2005) examined the ‘well water use’ link in a case control study and 

reported that PD risk increases (OR = 2.1; 95% CI: 0.7-6.4) if the subjects used well 

water during the first 20 years of their life. Hancock et al (2008) used generalised 

estimating equations to study the relationship between well-water consumption, 

pesticide usage and farming occupations/dwelling with PD. Data gathered from 319 

cases and 296 relatives and other controls showed a positive association of broadly 

defined pesticide exposure with PD but showed no evidence of disease association 

with well-water consumption or working/living on a farm.  

 

There is a relative inconsistency present among various studies. For example, 

Semchuk et al (1991) investigated the link between the development of idiopathic 

PD and exposure to environmental factors. They did not notice a significant increase 

in PD risk during the first 45 years of life. Jiménez-Jiménez et al (1992) reported in 

their study that PD cases drank more well-water than controls over a period of more 

than 30 years (OR 1.76, 95% CI 1.09–2.84) but they did not observe any link with 
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rural living and PD (OR 1.07, 95% CI 0.70–1.63). Stern et al (1991), in their case 

control study of young-onset and old onset PD, have reported an association with PD 

for cases who lived in rural areas for less than 10 years. 

  

 The ORs from studies investigating the ‘PD link’ with well-water use, 

farming and rural living are usually of the same order and direction but their 

magnitude of effect is different. Evidence for a positive association between farming, 

pesticide exposure, rural living and well water drinking outweighs that of any 

negative association. The duration of exposure of these factors varies considerably. 

There is no detailed database of specific pesticides (e.g., carbamates, 

organophosphates), duration of their usage, any dose-response relation, mode of 

usage (whether it is manually applied or sprayed from an aircraft) or determination of 

potential impacts from spray drift. Such data may help to calculate chemical doses 

used during normal occupational administration of the pesticides. 

  

 Evidence from case-control studies and case reports suggests that the duration 

of exposure is vital in disease development and particular classes of pesticides 

increase this risk. Exposure could be prolonged as well as acute. Positive results from 

studies with comprehensive exposure assessment, coupled with animal studies, 

support this association. Increasing toxicological and epidemiological data support 

positive PD association with insecticide/herbicide exposure and rural residency at the 

time of diagnosis but more data is required for each categorised herbicide, insecticide 

and fungicide to reliably confirm a causal relationship. Further evaluation of dose-

response and understanding of relationship with other potentially confounding 

exposures is required. Most studies used idiopathic PD patients. It may be useful to 

consider the association between PD and subjects with familial forms of PD as it has 

been suggested that effects of pesticide/herbicide exposure may vary due to genetic 

heterogeneity among individuals.  

 

 Interpretability of studies is often hampered by the small study size and other 

methodological limitations. Recent well-designed prospective cohort studies are 

gaining insight into various risk-factors by gathering data on incident patients and 

person-years. Although recent findings are insufficient and some of the data 

equivocal, the current body of evidence suggests that exposure to pesticides and 
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other factors are closely linked and interrelated. PD risk does increase with rural-

living and well water use, regardless of the age of disease onset (although the precise 

nature of this association varies between different studies) and validation of these 

results is seriously undermined by the lack of major significant associations. The 

weight of the evidence suggests a relatively consistent, though non-significant, 

relationship between pesticide exposure and increased PD risk. Replication of 

clinical and pathological signs in animal models is required to prove a causal link 

between PD and pesticide exposure.  
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1.4 Molecular pathways of cell death in Parkinson’s disease 

A number of different mechanisms have been implicated in the pathogenesis 

of PD. Their mode of action or trigger is different but their pathways can be inter-

connected which eventually leads to neuronal death. Mitochondrial dysfunction, α-

synuclein aggregation, protein degradation, oxidative stress, aberrant kinase 

signalling and neuroinflammation are triggers which commonly lead to cell death in 

PD. They act through pathways involving p53 activation, JNK/bcl-2 signalling and 

cell cycle activation/inhibition (Levy et al., 2009).  

1.4.1 Apoptosis: 

 Apoptosis is a gene-directed programmed cell death mechanism 

morphologically characterised by chromatin condensation, cell/cytoplasmic 

shrinkage, blebbing and formation of apoptotic bodies. Its main biochemical features 

include caspase activation (caspases 3, 6 and 7), DNA fragmentation (Ferraro and 

Cecconi, 2007), degradation of chromosomal DNA, cleavage of a specific subset of 

cellular polypeptides by caspases (8, 9 and 10), and expression of cell surface 

markers (Lazebnik et al., 1994). Apoptosis is a wide ranging mechanism involving 

apoptosis-inducing or death receptors  (e.g. Apo-1/Fas), apoptosis-initiating factors 

(AIFs), proteins released from damaged mitochondria, caspases and calpains 

(Jellinger, 2001). It can be triggered by a number of different stimuli including 

oxidative stress, irradiation, viruses, heat, hypoxia, toxins or the withdrawal of 

neurotrophic support (Jellinger, 2001).  

1.4.1.1 Apoptosis and Parkinson's disease:  

 There are two main apoptotic pathways: the extrinsic (death receptor pathway 

involving FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/ DR4 and Apo2L/DR5) 

and the intrinsic (non-receptor-mediated mitochondrial pathway). Cells expressing 

Fas or TNF receptors cause apoptosis via ligand binding and protein cross-linking. 

Both pathways converge on the same terminal. i.e. caspase-3 cleavage leading to 

DNA fragmentation, protein degradation, protein cross-linking, formation of 

apoptotic bodies, ligand expression and phagocytic uptake (reviewed by Elmore, 

2007) (fig 1.18). Immunocytochemistry of PD post-mortem brain suggests two pre-

mitochondrial apoptosis pathways are involved in nigral neuronal cell-death i.e. p53–

GAPDH–BAX pathway and FAS or TNF–α receptor–FADD–caspase 8–BAX 
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pathway (Tatton et al., 2003).  Increase in signalling factors for apoptosis like Bax 

has been observed in PD. In their study, Hartmann et al (2001) reported that the 

percentage of Bax-positive melanised LB positive SNpc neurons was significantly 

higher than the overall percentage of Bax-positive neurons. These neurons were also 

immuno-positive for activated caspase-3.  

 
Fig 1.18: Signalling cascade in apoptotic cell death. Receptor-mediated activation 
of caspase-8 leads to caspase-3 activation in the extrinsic apoptosis pathway. In 
intrinsic pathway, apoptosome and cytochrome c release from mitochondria leads to 
caspase-3 activation (Taken from Kermer, 2004).  
 

 
 

 Evidence of apoptosis in PD autopsy material is conflicting. Some studies 

have shown apoptotic cells and DNA fragmentation in substantia nigra of PD 

patients (Mochizuki et al., 1996) with a role of caspase-3 in neuronal cell-death in 

the SN (Hartmann et al., 2000) but typical apoptotic features like nuclear 

condensation and pyknosis are not consistently seen. TUNEL labelling for DNA 

fragmentation has shown variable results (Tatton et al., 2003). The slow rate of DA 

cell loss in the SN and rapid clearance of apoptotic cells makes it difficult to detect 

these markers. Hartmann et al (2000) have reported a significantly higher number of 

activated caspase-3-positive DA neurons in PD patients. They also suggested that 

caspase-3 activation is not due to apoptosis in PD but it actually precedes its 
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initiation as noted through its activation before chromatin condensation and final cell 

breakdown. Some studies have shown negative results with no changes in the 

expression of activated caspase-3, Fas or Bcl2 proteins in PD samples (Jellinger, 

2000) whereas others have shown opposite results (Tatton, 2000;  Hartmann et al., 

2001).  

 

1.4.1.2 Experimental models and Apoptosis: 

 
 Experimental PD models using MPTP administration in mice has shown 

caspase-3 induction and DNA fragmentation with increased nigrostriatal activity of 

both c- Jun and c-Jun NH2-terminal kinases fragmentation (Tatton, 2000; Hartmann 

et al., 2000), and increased Bax expression (Eberhardt et al., 2000). Inhibition of the 

JNK pathway leads to a reduction in dopaminergic cell loss in the SN (Saporito et 

al., 2000). MPP+ initiates apoptosis via ROS production which disrupts the 

mitochondrial permeability pore leading to neuronal cell death (Tatton and Olanow, 

1999). In the 6-OHDA animal model of PD, both necrotic and apoptotic (caspase 

involved) features are seen in SN neurons (Choi et al., 1999).  

 

 Several animal or cell models as well as studies of PD post-mortem brains 

have shown the presence of activated caspases suggesting a possible role of caspases 

in the development of PD (Hartmann et al., 2000; Viswanath et al., 2001; Yamada et 

al., 2004). Experimental studies have shown an increase in caspase activity after 

treatment with high concentrations or over-expression of α-synuclein (Seo et al, 

2002), whereas DJ-1 appears to inhibit caspase activation (Fan et al., 2008).Increased 

expression of A53T α-synuclein in differentiated PC12 cells can lead to higher levels 

of caspase-9 and -3 activities, mitochondrial cytochrome C release, endoplasmic 

reticulum stress and elevated caspase-12 activity (Smith et al., 2005). Transgenic 

mice expressing A53T have shown nuclear condensation, eosinophilic Lewy body-

like inclusions in cortical and spinal motor neurons. Subsets of neurons in the 

neocortex and brainstem were positive for cleaved caspase-3 and p53 (Martin et al., 

2006). Over expression of wild-type PINK1 can lead to apoptosis and can reduce 

levels of cleaved caspase-3, caspase-7, caspase-9 and PARP in staurosporine-induced 

apoptosis (Petit et al., 2005). Similarly transient transfection of mutant LRRK2 
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shows apoptosis and can lead to neuronal death (Iaccarino et al., 2007). Over 

expression of Parkin can delay mitochondrial swelling, subsequent cytochrome c 

release and caspase-3 activation. Parkin promotes substrate degradation and any loss 

of function due to mutation may lead to degeneration of nigral dopaminergic neurons 

in patients carrying parkin mutations (Darios et al., 2003).  

1.4.2 Autophagy: 

 Autophagy is a non-selective degradation system (unlike ubiquitination) that 

involves induction of proteins, organelles or cellular debris into multi-membrane 

vesicles called autophagosomes which are then fused with and degraded by 

lysosomes, particularly in times of cellular stress such as nutrient deprivation where 

energy producing substrates may be required by the cell. Autophagic bodies are then 

broken down and recycled to provide the cell with a source of cellular energy 

(fig1.19) (Elmore, 2007). Depending on the mode of delivery to the lysosomes, 

autophagy is divided into sub-categories including microautophagy (cytoplasm 

directly sequestered at the lysosomal surface), macroautophagy and chaperone-

mediated autophagy (hsc70 complex binds to the lysosomal membrane receptor 

[lamp2a] and is then transported into lysosomes (Crotzer and Blum, 2005; Levine 

and Kroemer, 2008).  

 

Autophagy was studied further as a separate mechanism once it was noted 

that cells can undergo programmed cell-death without displaying apoptotic features 

and without undergoing caspase-independent gene-activated cell death (Cohen, 

1991). High number of autophagic vacuoles is thought to be responsible for neuronal 

cell death but an alternative theory suggests that autophagy removes abnormal 

proteins that could trigger apoptosis and hence protects neurons (Butler et al., 2006).  
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Fig 1.19:  Autophagic degradation of intracellular damaged and aberrant 
materials. Three main stages are involved: formation of the isolation membrane, 
elongation and completion of the mature autophagosome and fusion of the 
autophagosome with the lysosome (Taken from Vellai, 2009).   
 

 
 Autophagy can be induced through nutrient starvation, depletion of total 

amino acids, inhibition of mTOR (mammalian target of rapamycin) (Mizushima, 

2007) or through small-molecule enhancers of the cytostatic effects of rapamycin 

(SMERs) (Sarkar et al., 2007). A number of different factors can regulate autophagy 

including ROS, TNF-α induced increase in beclin-1 (Djavaheri-Mergny et al. 2006), 

free cytosolic calcium (Hoyer-Hansen et al. 2007), mTOR inhibition through 

adenosine monophosphate-activated protein kinase (AMPK ) activation (Meley et al. 

2006), kinases, phosphatases and guanosine triphosphatases (GTPases), TRAIL, 

BNIP3 and DRAM  (Mizushima, 2007).  

 
Autophagy is controlled by a number of different ‘autophagy-specific genes’ 

(ATG) (Kroemer and Jäättelä, 2005). 31 autophagy-related proteins have been 

identified in yeast out of which 18 (AP-Atg proteins) are involved in the formation of 

the autophagosome (Klionsky et al. 2003). Chemical inhibitors or gene knock-out 

can sensitise cells to autophagy. Knock-down of ATG5, ATG10 or ATG12 can 

prevent the formation of autophagic vacuoles. Experiments where ATG5 or ATG7 

genes were suppressed led to the presence of polyubiquitinated proteins in the CNS 
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of mice. This can also increase susceptibility to apoptosis. Selective deletion of 

ATG5 or ATG7 genes in mouse models has shown a high number of ubiquitin-

positive cytoplasmic bodies without neuronal loss in the SNpc (Hara et al., 2006).  

 

Indeed certain features of both autophagy and apoptotic processes propose a 

connection between these pathways (Piacentini et al., 2003). Onset of autophagy can 

precede apoptosis and may also delay it but apoptotic signals may also trigger 

autophagy (Bauvy et al., 2001). During caspase inhibition autophagy may cause 

neuronal cell death. Indeed, active autophagy has been noted in neurons when the 

pan-caspase inhibitor BAF is used. Autophagy markers such as autophagosome 

formation may appear before apoptotic markers but other data suggests that 

autophagy and apoptosis can overlap (Xue et al., 1999). Cells can be prevented from 

undergoing apoptosis by autophagy by keeping substrate level high in cells either 

during nutrient depletion or during lack of growth factors (Boya et al., 2005).  

1.4.2.1 Autophagic-Lysosomal Pathways and Parkinson’s disease: 

Accumulation of autophagosomes and a high number of autophagic vacuoles 

has been reported in the brains of Alzheimer’s and Parkinson's disease patients and 

in animal models of PD (Anglade et al., 1997; Oztap and Topal, 2003). This may 

occur due to a failure of lysosomal clearance of autophagosomes or due to 

pathogenic deterioration which cannot maintain the cellular balance and which leads 

to neuronal death (Levine and Kroemer, 2008). Experimental data shows that MPTP 

can cause high levels of autophagic degeneration in mice (~35% of DA neurons in 

SNpc) (Oztap and Topal, 2003). Macroautophagy is linked to PD through an 

unknown mechanism that may include DJ-1, Parkin and PINK1 in assisting the 

uptake and removal of damaged mitochondria. For example, Parkin can associate 

with dysfunctional mitochondria and enhance their uptake by lysosomes (Narendra et 

al., 2008) whereas DJ-1 may play a role in autophagic flux (Vasseur et al., 2009). 

 

Accumulation of wild-type α-synuclein is a common feature in PD and other 

than the ubiquitin-proteasome system; autophagy plays a part in α-synuclein removal 

(Webb et al., 2003) further suggesting that any defect in this pathway may play a role 

in neurodegeneration in PD. Wild type α-synuclein is degraded through chaperone 

mediated autophagy and despite a high affinity for the CMA receptor, A53T mutant 
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α-synuclein is not translocated to the lysosomes and instead can block uptake of 

other CMA substrates resulting in slow overall protein degradation and possibly 

causing cellular stress and neurotoxicity (Cuervo et al., 2004). Yang et al (2009) 

have proposed a mechanism where over-expression of either wild-type or mutant α-

synuclein disrupts degradation of the neuronal survival factor myocyte enhancer 

factor 2D (MEF2D) through CMA. They suggest that MEF2D is regulated through 

autophagy and blocking this pathway through a PD linked protein compromises cell 

survival. In culture, α-synuclein accumulation increases when acidic compartments 

are neutralised. Treatment with lysosomal inhibitors leads to accumulation of Triton 

soluble and insoluble aggregates in a dose-dependent manner (Lee et al., 2004).  

 
 Several features of age related neurodegenerative diseases like protein 

deposition, synaptic loss and neuronal cell-death have been linked with the inhibition 

of lysosomal enzymes leading to lysosomal dysfunction (Lee et al., 2004). There is 

increasing evidence for an important role of lysosomes in PD aetiology. Defective 

lysosomal function can lead to α-synuclein accumulation without showing any 

changes in gene expression in mice (Meredith et al., 2002) and mutation in ATP13A2 

leads to insufficient lysosomal protein removal. Kufor-Rakeb syndrome, a rare 

hereditary form of parkinsonism, develops due to mutations in ATP13A2 (Ramirez et 

al., 2006). Similarly, mutations in another PD linked gene lysosomal enzyme 

glucocerebrosidase (GBA) cause Gaucher’s disease. Indeed, heterozygosity for a 

GBA mutation can predispose to PD and PD patients have a significantly higher 

chance of being a Gaucher's disease carrier than Alzheimer's patients (Aharon-Peretz 

et al., 2004).   

1.4.3 Endoplasmic reticulum (ER) Stress and PD: 

The endoplasmic reticulum (ER) is the intracellular organelle where the 

correct folding and processing of newly formed membrane and secretory proteins 

takes place. Impairment of this function leads to the accumulation of unfolded 

proteins in the ER lumen leading to ER stress which can induce apoptosis (Kaufman, 

1999). Evidence for the involvement of ER stress in PD comes from the studies of 

certain neurotoxins used to mimic PD features in cell culture and in vivo (Holtz et al., 

2003; Ryu et al., 2002) and those involving a G-protein-coupled transmembrane 

protein called Pael receptor (Pael-R) which is ubiquitinated and degraded by Parkin 
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(Imai et al., 2001, Imai and Takahashi, 2004). Misfolded Pael-R and its aggregates 

have been found in Lewy bodies (Imai and Takahashi, 2004; Murakami et al., 2004). 

Parkin controlled ubiquitination and subsequent degradation of Pael-R protects 

dopaminergic neurons against various insults and therefore loss of function of 

PARKIN can lead to ER stress through increased protein aggregation (Imai and 

Takahashi, 2004). It has been suggested that neuronal cells over-expressing Parkin 

show resistance to ER stress (Imai et al., 2000).  

  

Studies have shown up-regulation of ER chaperone expression (e.g. protein 

disulfide isomerase) in the brain of PD patients as well as evidence of accumulation 

in Lewy bodies (Conn et al., 2004). Chemicals such as 6-OHDA and MPP+ can 

trigger ER stress in dopaminergic neurons and induce a number of genes (Holtz and 

O’Malley, 2003; Ryu et al., 2002). Results from 6-OHDA, MPP+ and rotenone 

treatment show up-regulation of ubiquitin proteasome system transcription factor 

CHOP/Gadd153 and phosphorylation of ER stress kinases (inositol requirement 

[IRE] and PRKR-like endoplasmic reticulum kinase [PERK]) in treated cells (Holtz 

and O’Malley, 2003; Ryu et al., 2002).  
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Hypothesis: 
Parkinson’s disease is a major cause of morbidity with a complex aetiology 

possibly involving environmental exposure to neurotoxic pesticides. Prolonged 

exposure to low level neurotoxic pesticides and other environmental contaminants 

causes mitochondrial dysfunction which leads to raised levels of iron and 

consequently mtDNA mutation. This then leads to mitochondrial respiratory chain 

deficiency and neuronal cell death.  We will test the hypothesis that 1) sub-lethal 

exposure to agrochemicals has an effect on proteins linked with PD and those 

involved in different cell death mechanisms, 2) toxin exposure causes mitochondrial 

dysfunction 3) and whether human central dopaminergic cell lines are more sensitive 

to agrochemicals than the human neuroblastoma cell line SH-SY5Y.  

 

Aims and Project outline: 
This project is divided into the following main objectives: 

• The association of pesticide exposure with Parkinson’s disease suggests a 

causative role and SH-SY5Y cells are routinely used to determine toxic 

potential of various chemicals in order to provide a better understanding of 

their mode of action. Keeping this scenario in mind, cytotoxicity screening of 

selected agrochemicals will be carried out using Alamar blue reduction assay 

and sub-cytotoxic doses will be administered over acute and chronic time 

periods to investigate protein expression using western blotting.  

 

• Different pharmacological inhibitors will be used to determine the type of cell 

death mechanism or cell-signalling pathway involved. This will be done to 

determine if these signalling pathways are relevant to the mode of toxicity of 

selected chemicals. 

 

• Low levels of agrochemicals will be administered in combination with 

application of siRNA to block the production of proteins linked with 

autophagosome formation to determine if it has any effect on cell viability 

after toxin treatment. 
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• Mitochondrial respiratory chain complexes will be measured in cells exposed 

to toxins because post-mortem biochemical studies (Hattori et al., 1991) 

coupled with the finding of a complex I defect in substantia nigra of PD 

patients (Schapira et al. 1990; Schapira 2006) suggest role of mitochondria in 

the pathogenesis of PD. 

 

• TaqMan low density arrays will be used for RT-PCR to verify differential 

gene expression against appropriate housekeeping genes in toxin treated cells. 

This will be done to identify genes that are responsive to toxic insult and may 

serve as markers for protein aggregation, oxidative stress or other 

mechanisms associated with PD.  

 

• Human dopaminergic cell line will be developed. This will involve use of 

embryonic brain samples, tissue extraction, neurosphere maintenance and 

growth followed by differentiation into cells exhibiting markers of 

dopaminergic neurones.   
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2.1 Cell Culture: 

2.1.1.1 Materials for Cell Culture: 

 The SH-SY5Y cell-line was purchased from the European Collection of Cell 

Cultures (Salisbury, UK). Dulbecco's modified Eagle's medium (DMEM), heat-

inactivated fetal bovine serum (FBS), glutamine/penicillin/streptomycin solution, 

sodium pyruvate, non-essential amino acids (NEAA) were all purchased from 

Invitrogen Ltd (Paisley, UK). Other supplements required for culture maintenance 

and cell differentiation were purchased from Sigma Aldrich Chemical Co. (Poole, 

UK).  

2.1.1.1 Cell culture Methods: 

 SH-SY5Y cells from passage number 18-30 were used for the whole project 

to allow consistency. They were maintained in a growth medium containing 90% 

DMEM, 10% FBS, 2 mm L-glutamine, 100 units/mL penicillin, 10 mg/mL 

streptomycin and 1% NEAA. Cells were subcultured to a fresh T75 flask when 

growth reached 80-90% confluence. Cells were incubated at 370C in a humidified 

atmosphere of 95% air/5% CO2.  

2.1.1.2 Differentiation of SH-SY5Y cells:   

SH-SY5Y cells were plated out at the required density in growth medium. 

Typical cell-densities used were: 10-20,000 cells/well in 6 well-plates for 

experiments lasting 2 weeks; 100,000 cells/well in 6 well-plates for 1 week and 

50,000-100,000 cells per T25 flask. Cells were incubated overnight to allow 

recovery. Growth media was removed and replaced with an equal volume of DMEM 

supplemented with 1% heat-inactivated FBS, 1% L-glutamine, 1% 

penicillin/streptomycin solution, 1% sodium pyruvate, 1% NEAA, 0.3mM dibutyryl 

cyclic AMP (dbcAMP) and 10mM Retinoic acid (RA) (Beck et al., 2006). Cells 

were re-incubated at 370C in a humidified atmosphere of 95% air/5% CO2. 

2.2.1 Cell Viability and Cytotoxicity Assessment:  

 For toxicity screening, SH-SY5Y cells were seeded at 100,000 cells per well 

in 24-well plates. An initial dose range of 1mM-0.00001mM was used for each 

chemical. Alamar Blue dye was added at 10% of total growth medium volume after 
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overnight exposure to agrochemicals or inhibitors and plates were incubated at 37 °C 

and 5% CO2 for 4 hours after which triplicates of media were taken from each well 

and Alamar Blue reduction measured at emission wavelength of 530nm and 

excitation wavelength of 590nm. 

2.1.2.1 Chemicals: 
Table 2.1: Properties and agricultural uses of selected chemicals to be used. 
 

Chemical Category Water 
Solubility 

Main Uses Cat-Number 

2,4-D Herbicide 900 mg/L (25 
°C) 

Broad leafed plants  Sigma 49083 

2,4-D metabolite - - - Sigma 35811 
2-

imidazolidinethione 
degradation 
product of 

ethylenebisdit
hiocarbamate 
(fungicide) 

- - Sigma 45531 

Chlorothalonil Herbicide  0.6 mg/L @ 
25°C 

Wheat, potatoes, 
pulses 

Sigma 36791 

Cypermethrin Insecticide   < 9 μg/L @ 
20°C (99.5% 

pure) 

Insect and arthropod 
pests in ornamental 

and agricultural crops 

Sigma 3612 

Diquat Herbicide  700 g/l water 
@ 20°C 

 

Broad leafed 
plants and grasses 

Sigma 45422 

Epoxiconazole Fungicide  Limited 
solubility 

Fruits, cereals Sigma 36848 

Fenpropimorph Fungicide  7.3 mg/l 
(20°C, pH 
4.4), 5.1 mg/l, 
4.3 mg/l 
(20°C, pH 7), 

3.5 mg/l 
(20°C, pH 9-

11) 

Cereals  Sigma 36772 

Fluroxypyr Herbicide 5.7 g/l, pH 5 Broad leaved weeds in 
cereals, maize, apple 
trees, olive trees and 

sorghum 

Sigma 45758 

Fluroxypyr 
methylheptyl ester 

Herbicide - - Sigma 36780 

Isoproturon Herbicide 70.2 mg/l Wheat, winter barley Sigma 36137 
λ-cyhalothrin Insecticide extremely 

low water 
solubility 

Insect and arthropod 
pests in ornamental 

and agricultural crops 

Sigma 34325 

Maneb Fungicide 0.5 ug/ml   Sigma 45554 
Data recorded from Extoxnet; Thomas & Wardman, 1986-1996; The Pesticide Manual, 

1994; US EPA Fact sheets).  
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Table 2.2: Properties and agricultural uses of selected chemicals to be used. 
 

Chemical Category Water 
Solubility 

Main Uses Cat-Number 

Mancozeb Fungicide 6 mg/L  Wheat, potatoes Sigma 45553 
Mecoprop-P Herbicide 860 mg/l @ 

20oC 
Cereals, weeds  Sigma 36773 

Mecoprop methyl 
ester 

Herbicide - - Sigma 36148 

Metsulfuron methyl Herbicide 270 mg/l @ 
25oC, pH 4.6 

Grass and broadleaf 
weeds 

Sigma 46432 

MPTP -   Sigma M1021 
MPP+ -   Sigma D048 
Nabam Fungicide 200000 g/L Cotton, capsicums, 

onions and rice crops 
Sigma 45593 

Paraquat Herbicide 700,000 mg/L 
@ 20°C 

 Sigma M2254 

Pendimethalin Herbicide 0.3 mg/L @ 
20°C 

Wheat, winter barley Sigma 36191 

Primicarb Insecticide - Controls aphids on 
vegetable, cereal and 

orchard crops 

Sigma 45627 

Rotenone Insecticide   Sigma R8875 
Trifluralin Herbicide Limited 

solubility 
Grasses and broadleaf 

weeds 
Sigma 45700 

(Data recorded from Extoxnet; Thomas & Wardman, 1986-1996; The Pesticide Manual, 

1994; US EPA Fact sheets).  

  

2.2.1.2 Trypan blue exclusion assay: 

 A small volume of cell suspension was diluted 1:1 with 0.5% trypan blue, 

thoroughly mixed and incubated at room temperature for 5 minutes. 50µl suspension 

was placed in a haemocytometer and cells counted under an inverted microscope. 

Percentage viable cells were counted as follows: 

% viable cells = no. of viable cells/ Total number of cells x 100 
 

2.3.1 Determination of cell viability in response to cell signalling/death 

inhibitors:   

 SH-SY5Y cells were incubated with Necrostatin-1 (Biomol), zVAD.fmk 

(Biomol), DEVD-CHO (Biomol), Ac-LEVD-CHO (Biomol), NAC (Sigma), 

Cyclosporin A (Sigma), Tunicamycin (Sigma), 3-Methyladenine (Sigma), 

Ammonium Chloride (Sigma), Tiron (Sigma), GW5074 (Biomol), H89 (Biomol), 

LY29002 (Biomol), PD98059 (Biomol), SQ22536 (Biomol), SP600125 (Biomol), 
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U0126 (Biomol) for 1h-3h prior to toxin administration. Agrochemical or toxin 

concentrations causing a 50-60% reduction in viability were used and cell viability 

assessed using Alamar Blue reduction assay.    

2.4.1 Determination of reactive oxygen species generation: 

 To measure cellular reactive oxygen species (ROS), SH-SY5Y cells were 

loaded with H2DCFDA molecular probe (0.01mM, Invitrogen) and treated with 

hydrogen peroxide (0.5mM), diquat, paraquat, rotenone, maneb, mancozeb, 

mecoprop-p and MPP+ (dose range 0.001-1mM) for 24 hours. Plates were incubated 

at 37 °C and 5% CO2 for 24 hours. After which triplicates were taken from each well 

and fluorescence measured at emission wavelength of 485nm and excitation 

wavelength of 520nm.  Alternatively, after toxin treatment SH-SY5Y cells were 

extracted in a buffer containing 0.1M Tris pH 7.4, 1% triton X-100 and fluorescence 

of cell lysates was measured at 485nm emission/520nm excitation.  

2.5.1 Analysis of mitochondrial membrane potential: 

 Changes in mitochondrial membrane potential (ΔΨm) were estimated using 

tetramethylrhodamine ethyl ester (TMRE) (Molecular Probes), a cationic dye that 

rapidly accumulates in energised mitochondria driven by the membrane potential. 

Damaged mitochondria cannot retain TMRE (Krohn et al., 1999). For estimation of 

ΔΨm, cells were incubated with 250 nM TMRE for 30-45 minutes at 37 °C and 

fluorescence was measured (excitation at 549 nm and emission at 574 nm). 

Protonophore carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP; 0.1μM, 

Sigma) was used as a positive control. It was added 15 min prior to the end of the 

treatment. FCCP depolarises mitochondria by abolishing the proton gradient across 

the inner mitochondrial membrane (Gunter and Pfeiffer, 1990). The fluorescence for 

each treatment was expressed as percent fluorescence change compared with control.  

 

2.6.1 Statistical analysis 

Data representative of at least three independent experiments each of 

triplicate determination. Statistical analysis of the data was performed using t-test 

using Minitab Statistical software (Minitab Inc) followed by appropriate post hoc 

non-parametric testing.  Error bars represented standard deviation (±SD). *P < 0.05 

and **P<0.01 were considered statistically significant. 
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2.1 Protein Expression: 

2.2.1 Acute and chronic toxin exposure: 

 SH-SY5Y cells were plated out at the required density as described before. 

Cells were exposed to sub-cytotoxic doses of selected toxins (diquat, epoxiconazole, 

fluroxypyr methylheptyl ester, maneb, mancozeb and mecoprop methyl ester for 24 

hours (acute exposure) and up to 4 weeks (chronic exposure). Cell lysates were 

prepared using native lysis buffer (50mM TRIS pH 7.4 (HCl), 0.27M Sucrose, 1% 

Triton X-100, 1x protease/phosphatase inhibitor cocktail). Protein concentration was 

determined by Coomassie Plus Protein Assay Kit (Pierce, Rockford, IL) or Bradford 

assay (Pierce, Rockford, IL). 

2.2.1.1 Western blotting:  

 Equal amounts of protein (i.e. 20µg), as determined by Coomassie Plus 

Protein Assay Kit (Pierce, Rockford, IL), were subjected to electrophoresis through 

12% Bis-Tris gels (Invitrogen) at 120V for 20 minutes and 180 minutes for 1 hour. 

After electrophoresis, the separated proteins were transferred at 35V for 3 hours onto 

nitrocellulose membranes (Amersham Biosciences). Membranes were blocked for 1 

hour with 5% non-fat dry milk in 1x TBS-Tween20 (0.05% v/v) and then probed 

overnight at 4°C with the relevant antibodies (table 2.2.1.2). Membranes were 

washed 3 times with TBS-T at room temperature for 10 min, followed by incubation 

with HRP conjugated secondary antibodies (Rabbit IgG ab6795 or Mouse IgG 

ab6728, Abcam) for 1 hour at room temperature. Membranes were thoroughly 

washed with TBS-T. An ECL detection kit (GE Healthcare) was used for protein 

band detection through a G:BOX Chemi XL camera (SYNGENE). ImageJ version 

1.38x (NIH, USA) was used to quantify each protein band of the western blots. 
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2.2.1.2 Primary antibodies: 

Table 2.3: Details of primar antibodies used. 
 

 Antibody Details Dilution 
α-synuclein Mouse IgG1, 610789, BD Biosciences 1:1000 

ATG5 Rabbit polyclonal, 2630, Cell Signaling 1:1000 
BECN1 Goat polyclonal, D-18: sc-10086, Santa Cruz 1:1000 

Cytochrome c Mouse monoclonal, (A-8) sc-13156, Santa Cruz  
Cleaved caspase-3 Rabbit monoclonal, Asp175, Cell Signaling 1:1000 
Cleaved PARP-1 Human specific, Asp 214, Cell Signaling 1:1000 

Dopamine β-hydroxylase Rabbit polyclonal, DZ1020, Biomol 1:1000 
GAD67 Rabbit polyclonal, ab52249, Abcam 1:1000 
LAMP1 Mouse monoclonal, ab13523, Abcam 1:1000 
LAMP2 Mouse monoclonal, ab13524, Abcam 1:1000 
LC3B Rabbit polyclonal, L7543, SIGMA 1:1500 

Neurofilaments Rabbit polyclonal antiserum cocktail, NA 1297, 
Enzo Life Sciences 

1:500 

p53 Mouse monoclonal IgG2b, (DO-7): sc-47698, 
Santa Cruz 

1:500 

Phospho p53 serine 15 Rabbit polyclonal, 9284, Cell Signaling 1:1000 
Phospho α-synuclein Mouse monoclonal, sc-12767, Santa Cruz 1:1000 

Poly-Ubiquitin Mouse monoclonal (clone FK1), PW8805, 
Biomol 

1:1500 

RIP Rabbit IgG, 3493, Cell Signalling 1:1000 
Tyrosine hydroxylase Purified mouse monoclonal IgG1. Clone TH-2, 

mAb1423, R&D Systems.  
1:1000 

 

2.2.2 Immunofluorescence: 

 SH-SY5Y cells were seeded onto 2-well or 8-well chamber slides (BD 

Falcon, BD Biosciences) and incubated with different toxin doses for the required 

period of time. After which cells were fixed with 4% paraformaldehyde (Sigma) for 

10 minutes and washed with PBS and permeabilised with 0.1% Triton-X-100 

(Sigma) for 10 minutes. Cells were blocked in 1% BSA or 10% goat serum for 30 

minutes. Cells were incubated overnight with primary antibodies at 4oC, washed with 

PBS and treated with Image-iT™ FX signal enhancer (Invitrogen) for 30 minutes at 

room temperature. Cells were washed with PBS and then incubated with secondary 

antibodies (conjugated with Alexa Fluor® 488 or 594) for 60 minutes with no light. 

Slides were washed with PBS and viewed under Zeiss Imager 21 microscope (Carl 

Zeiss Ltd). 
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2.3 ATG5 knockdown: 

2.3.1 ATG5 siRNA transfection and toxin treatment: 

  SH-SY5Y cells were plated at a cell density of 1 x 106 cells per well in 6 well 

plates. Human ATG5 siRNA (Dharmacon Accell SMARTpool siRNA A-004374-15, 

target sequence CUUCGAGAUGUGUGGUUU, final concentration 0.01mM) was 

applied to SH-ST5Y cells following the ‘Thermo Scientific Dharmacon® Accell TM 

siRNA Delivery protocol’. After 72 hour incubation with siRNA, cells were 

extracted in native lysis buffer and protein knockdown measured by western blotting. 

For toxin treatment, SH-SY5Y cells were plated and grown in 6 or 12 well plates. 

Different agrochemicals at required doses were added after 72 hour siRNA 

transfection and after overnight incubation cell-viability was measured using Alamar 

Blue reduction assay and cells extracted in native lysis buffer for protein analysis.  

 

2.3.2 ATG5 shRNA lentiviral particles transduction and toxin treatment:  

SH-SY5Y or HeLa cells were plated in 12 well-plates 24 hours prior to viral 

infection. 1ml complete optimum medium containing serum and antibiotics were 

added to cells and incubated overnight. Cells were infected with APG5 shRNA (h) 

Lentiviral Particles (Santa Cruz Biotechnology, Inc) and incubated at 370C (5% CO2) 

for 72 hours. Cells were extracted in native lysis buffer and protein knockdown 

measured by western blotting.  

 

2.3.3 Transfection of DJ-1, Parkin and wild-type α-synuclein plasmid DNA: 

  500ng plasmid DNA (pCDNA 3.1/Myc tagged DJ-1, Parkin and wild-type α-

synuclein) (provided by Dr. Mark Cookson, Cell and Gene Expression Unit, Lab of 

Neuronal Genetics, Bethesda, USA) was diluted in 100µl ‘Otpi-MEM® I Reduced 

Serum Medium’ (Invitrogen) and thoroughly mixed. 1.25µl lipofectamine reagent 

LTX (Invitrogen) was added directly to DNA, thoroughly mixed and incubated at 

room temperature for 30 minutes. 100µl lipofectamine-DNA complex was added to 

each well and incubated at 37oC for 48 hours after which cells were extracted in 

native lysis buffer and transfection efficiency measured by western blotting. For 

toxin treatment, transfected cells were incubated with selected agrochemical for 24 

hours after which cell-viability was measured using Alamar Blue reduction assay. 
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2.3.4 Immunofluorescence analysis of lysosomal aggregation: 

SH-SY5Y cells were seeded onto 2 or 8-well chamber slides (BD Falcon, BD 

Biosciences) and incubated with LysoTracker® Red DND-99 (Molecular Probes, 

Invitrogen) (0.001mM) for 30 minutes. Chemicals at required concentrations were 

added and incubated for 24 hours after which cells were fixed and viewed using a 

fluorescent microscope. 

 

2.4 Mitochondrial assays: 

2.4.1 Preparation of mitochondrial fraction from SH-SY5Y cells: 

 SH-SY5Y cell pellets were suspended in 1-2ml of ice-cold medium A 

(250mM sucrose, 2mM HEPES, 0.1mM EGTA, pH 7.4) and transferred to a 1-2ml 

capacity smooth-surfaced glass homogeniser. Cells were disrupted by 20 passes in 

the homogenizer with a tight-fitting power-driven Teflon plunger and homogenate 

were then centrifuged for 10 minutes at 600gav/ 4ºC. Mitochondria-rich supernatant 

was collected and cell debris pellet resuspended in 800μl medium A, homogenised 

and centrifuged as before. Two supernatants were pooled and centrifuged for 10 

minutes at 11,000gav at 4ºC.  The pellet (mitochondrial fraction) was suspended in 

400µl medium A and stored in aliquots at -80oC. All respiratory chain complex 

assays were performed in a final volume of 0.1ml using the Cary WinUV 

spectrophotometer. Pig heart mitochondrial fractions were used as internal control 

before each experiment to check normal function of assay. 

 

2.4.2 Buffer preparation: 

Stock buffers for complexes I and II contained 25mM potassium phosphate 

(Sigma) and 5mM magnesium chloride (Sigma) at pH 7.2. CI buffer (30ml) was 

supplemented with 2.5mg/ml BSA (Sigma), 2mM KCN (Sigma), 0.13mM NADH 

(Sigma), 2µg/ml antimycin A (Sigma) and 65µM ubiquinone1 (Sigma). CII working 

buffer did not include BSA. Citrate synthase buffer contained 0.1mM Tris-HCl at pH 

8.0.   
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2.4.3 Measurement of Complex I (NADH: ubiquinone oxidoreductase) Activity: 

Immediately prior to each assay, mitochondrial fractions were first rapidly 

freeze-thawed in liquid nitrogen three times and diluted 5-fold using CI assay buffer. 

Complex I specific activity was measured by following the decrease in absorbance 

due to the oxidation of NADH at 340nm with 425nm as the reference wavelength 

(extinction coefficient for NADH 6.22/cm/mM, to account for the contribution of 

ubiquinone1 to the absorbance at 340nm) (Watmough et al., 1989). 10μl 13mM 

NADH, 2.5μl 65mM ubiquinone1 and 2μl 1mg/ml antimycin A were added to the 

assay medium (CI buffer). The absorbance change was measured for 10-50 seconds 

using Cary WinUV spectrophotometer. Mitochondrial proteins (10μl) were added to 

the cuvette and NADH: ubiquinone oxidoreductase activity was measured for 4-5 

minutes. 2μl rotenone (1mg/ml) was added and activity measured for 3-4 minutes. 

Complex I activity was calculated as the rotenone-sensitive NADH: ubiquinone 

oxidoreductase activity using following formula: 

Reaction: 

NADH + H+ + Ubiquinone1 → NAD+ + Ubiquinone1.H2 

Complex I activity (µmols of NADH oxidised/min) = δ slope x dilution factor x 1000 

         6.22 x 1000 x mitoch. volume 

δ slope = slope 1 (absorbance/min) - slope 2 (absorbance/min) 

 

2.4.4 Measurement of mitochondrial complex II (succinate: ubiquinone 

oxidoreductase) activity: 

Complex II activity was measured by following the reduction of 2,6-

dichlorophenol-indo-phenol (DCPIP) at 600nm (E600=19.1/cm/mM) (Desnuelle et 

al., 1989). Mitochondrial proteins (20μl) were added to CII assay buffer and 

preincubated with 20μl 1M sodium succinate for 10 minutes at 30oC. 2μl 1mg/ml 

antimycin A, 2μl rotenone and 10μl 5mM DCPIP were added after 10 minutes and 

baseline absorbance measured for 10-50 seconds. 2.5μl 65mM ubiquinone1 was 

added to start the reaction and the enzyme catalysed DCPIP reduction was measured 

for 3-4 minutes. Complex II activity was measured as follows: 

 Complex II activity (nmols of DCPIP reduc/min) = δ slope x dilution factor x 1000 

       19.1 x 1000 x mitoch volume 
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2.4.5 Citrate synthase activity:  

Citrate synthase specific activity was measured by following the rate of 

production of coenzyme A from oxaloacetate by measuring free sulfhydryl groups 

using the thiol reagent 5.5’-dithio-bis-(2-nitrobenzoic acid) (DTNB). DTNB reaction 

with sulfhydryl groups produces free 5-thio-2-nitrobenzoate anions (E412=13.6/cm) 

which have a yellow colour and can be monitored at 412nm (Shepard and Garland, 

1969).  

Reactions: 

Oxaolacetate + acetyl coenzyme A → citrate + CoenzymeA.SH (CoA.SH) 
Citrate synthase 
CoA.SH + DTNB → CoA.S-S-nitrobenzoate + 5-thio-2-nitrobenzoate anion 
 

 3μl 5mM acetyl-CoA, 10μl 10mM DTNB, 10μl of 10% Triton X-100 and 

20μl mitochondrial protein were added in the assay medium and baseline absorbance 

measured for 10-50 seconds. 5μl 50mM oxaloacetate was added to reaction mixture 

to start the reaction. Reaction activity was measured as: 

 

Activity (nmols/min) = δ slope (Abs/min) x mitoch vol x dil. factor x 1000 

                                                            13.6 x 1000 

2.4.6 Immunofluorescence: 

SH-SY5Y cells were seeded onto 2-well or 8-well chamber slides (BD 

Falcon, BD Biosciences) and incubated with MitoTracker® Red CMXRos 

(Molecular Probes, Invitrogen) (0.001mM) for 30 minutes. Chemicals at required 

concentrations were added and incubated for 24 hours. After which cells were fixed 

and observed using a fluorescent microscope. 
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Polymerase Chain Reaction: 

2.5.1 RNA extraction: 

 RNA was isolated from SH-SY5Y using Ribopure RNA isolation kit 

(Ambion Inc) according to the manufacturer’s instructions. 

 

2.5.2 DNAse Treatment: 

 RNA sample (100µl) was split in 2 x 50µl aliquots. To each aliquot, 5µl 10x 

Turbo DNase buffer and 1µl Turbo DNase (TURBO DNA-free™, AM1907, Applied 

Biosystems) were added and mixed gently. Samples were incubated at 37oC for 30 

minutes. 5µl resuspended DNase Inactivation reagent was added to each sample and 

incubated at room temperature for 2 minutes with occasional mixing. Samples were 

spun at 10,000g for 90 seconds and supernatant transferred to fresh tubes and stored 

at -80oC.  

 

2.5.3 RNA concentration: 

 RNA concentration of above samples was measured using NanoDrop 2000.  

 

2.5.4 Reverse transcription: 

 To a nuclease-free 200µl PCR tube, 1µl Oligo(dT)12-18 primer (Invitrogen), 

total RNA (1µg) and 1µl 2.5mM dNTP mix (Invitrogen) were added and volume 

made up to 10µl with nuclease-free water. The mixture was heated in a thermal 

cycler at 65oC for 5 minutes and then at 4oC for 5 minutes to anneal the primer. A 

master mix of 4µl 5x First-strand buffer, 1µl  0.1M DTT, 1µl SuperRNase inhibitor 

(Ambion), 1µl Superscript III RT (Invitrogen) was prepared and the volume made up 

to 10µl and added to each RNA sample and heated at 50oC for 2 hours to allow RNA 

reverse-transcription into cDNA. Samples were stored at -80oC.   

 

2.5.5 RT-PCR: 

 Semi-quantitative RT-PCR was performed using a Taqman® Custom Low 

Density Array (Applied Biosystems) containing 384 wells. Sample preparation 

involved a mixture of sample cDNA (200ng per well), 207µl nuclease free water, 
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and 225µl Taqman® Universal PCR Master Mix (Applied Biosystems) in a 1.5ml 

microcentrifuge tube. 100µl sample was loaded into each well of the card and the 

card was centrifuged at 1200g for 1 minute, stopped and centrifuged for a further 

minute at 1200g. The card was sealed and run on 7900HT Fast Real-Time PCR 

System (Applied Biosystems).  

 

2.5.6 Statistical analysis: 

Data were from or representative of at least three independent experiments, 

each of duplicate determination. The Student’s t-test involving analysis of ΔcT 

values was used to identify genes having significant changes in expression levels. 

GAPDH was used as endogenous control gene and for data normalisation across 

samples. Normalisation of Ct values of each gene and determination of fold increase 

or decrease was measured by calculating the 2-∆∆Ct value (Relative Quantification 

Method, Applied Biosystems 2008). Significant genes were selected with a cut-off of 

p < 0.05 and fold change >1.5.   

 

2.6 Stem cell methods: 

2.6.1 Propagation of human neural precursor stem cell: 

Human neural precursor stem cell (hNPSC) lines were derived from two 

human embryos (CS18 and CS19) following ethical approval. Cells were grown as 

neurospheres according to previously described methods in proliferation medium: 

DMEM/F12 (Sigma D8062) supplemented with N-1 (1:100; sigma N6530), B27 

(1:100; Gibco 17504-044), epidermal growth factor (EGF; 20ng/ml; R& D Systems 

236-EG), basic fibroblast growth factor (FGF2; 20ng/ml; R& D Systems 4114-TC) 

and leukaemia inhibitor factor (LIF; 10ng/ml; Sigma L5283). Cells were incubated at 

37˚C in a 5% CO2, humidified incubator. Proliferation medium was replenished at 3-

4 days intervals by replacing 60-70% of the medium with fresh medium. If 

neurospheres became larger than 100µm in diameter, they were triturated to avoid 

cells at the centre of the sphere becoming hypoxic. Single cell suspensions were 

obtained by extensive trituration of cultures once every 6-8 weeks. Viable cells were 

counted using a haemocytometer (C-Chip, Digital Bio DHC-N01) and replated under 

the same conditions. Cell-line designated ‘N969’ was derived from the 
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mesencaphalon of 6-8 week post conception human embryo (CS18) and used for this 

study.  

2.6.2 Differentiation of hNPSC and toxin treatment: 

  N969 cells were plated at a density of 100,000 cells onto 2-well chamber 

slides (BD Falcon, BD Biosciences) or at 2500 cells/ml in 8 well chamber slides (BD 

Falcon) coated with either 0.25% gelatine or 0.1% poly-L-lysine and grown for 10 

days, at which point neurospheres had attached onto the surface. Growth medium 

was replaced with differentiating medium containing DMEM/F12 supplemented with 

1% FBS (Sigma F2442), N-1, B27 or N-2, brain derived neurotrophic factor (BDNF; 

0.01μg/ml; R&D Systems 248-BD), glial derived neurotrophic factor (GDNF; 

10ng/ml; R&D Systems 212-GD), interleukin-1α (IL-1α; 100pg/ml; R&D Systems 

200-LA), interleukin-11 (IL-11; 1ng/ml; R&D Systems 218-IL) and LIF. Conversion 

of neurospheres into cells resembling neuronal morphology took 2-3 days. Cells 

were allowed to grow for at least 14 days after which they were fixed and used for 

immunocytochemical examination. Cytotoxicity testing was undertaken in 8-

chamber slides and cells were exposed to given concentrations of chemical for 24 

hours. Cytotoxicity was measured using Alamar Blue reduction assay and stained for 

cellular antigens using standard immunofluorescence. 

 

2.6.3 Immunocytochemistry:  

 Storage solution was removed from the chamber slides and cells thoroughly 

washed in PBS. Cells were fixed in warm formaldehyde (3.7%, diluted in PBS), 

washed three times in PBS for 2 minutes and permeabilised for 5 minutes with 0.1% 

(v/V) triton X-100 in PBS at room temperature.  After PBS wash (3 x 2 min), 4 drops 

(~200ul) of Image-iT™ FX signal enhancer (Alexa Flour SFX kit, Invitrogen) or 

sufficient volume to cover each coverslip were added. Slides were incubated for 30 

minutes at room temperature and then thoroughly rinsed with PBS. To minimise 

background staining, cells were blocked with 1% BSA in TBS-T or 5% goat serum 

(Abcam Ab7481) for 30 minutes. Cells were washed thoroughly with PBS and 

incubated with primary antibodies overnight at 2-4˚C. The following day, cells were 

washed in PBS and incubated with secondary antibodies for 1 hr at room temperature 

or in dark. (Alexa Fluor 594-conjugated goat anti-mouse/goat anti-rabbit IgG, 
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2μg/mL; Invitrogen) or Alexa Fluor 488-conjugated goat anti-mouse/goat anti-rabbit 

IgG (2μg/mL; Invitrogen). Secondary antibodies were removed and slides rinsed 

with PBS. Where required, slides were counterstained with DAPI solution (1:50,000 

in PBS) for 30 seconds followed by submersion in PBS for a further 30 seconds. 

Slides were then rinsed with distilled water. Differentiated cells were analysed for 

class III β-tubulin (Tuj1, early neuronal marker) and tyrosine hydroxylase (TH, 

dopaminergic neuronal marker).  

 

2.7 General Statistics: 

Minitab Statistical software or Microsoft Excel were used for statistical 

analysis. Data on all graphs were expressed as ±SD. All absorbance readings were 

performed in triplicates and repeated at least three times. AONVA (one-way) or 

unpaired t-tests were used for statistical analysis of groups or within groups. 

*P < 0.05 and **P<0.01 were considered statistically significant. For densitometric 

analysis of western blots, ImageJ version 1.38x (NIH, USA) was used to quantify 

each protein band. T-test was used to asses significance which was set at *P < 0.05 

or **P<0.01.  
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3.1.1 Introduction: 
 Around 450 active ingredients are currently available to be used as 

pesticides in the UK (IEH, 2005). For this study, pesticide usage survey report 202 

(Garthwaite et al., 2004) was used. This report has clear summarised data on the 

number, extent and quantities of pesticides used in the UK. Chemicals selected for 

this study were chosen on the basis of their widespread application (as surveyed in 

2004) such as chlormequat (2703 tonnes), isoproturon (2279 tonnes), chlorothalonil 

(1512 tonnes), pendimethlin (1187 tonnes),  mancozeb (1045 tonnes), trifluralin (890 

tonnes), mecoprop-p (505 tonnes), fenpropimorph (348 tonnes), epoxiconazole (247 

tonnes), fluroxypyr (139 tonnes) and diquat (75 tonnes) as well as those which share 

structural similarity with other pesticides (paraquat, maneb) and chemicals which are 

active metabolites of other chemicals (2,4-D metabolite, mancozeb metabolite). 

Exposure to major chemicals derived from this list would represent those chemicals 

which an individual may come into contact with either through work or as a 

bystander through rural living.  

SH-SY5Y is a neuronal-like catecholaminergic human neuroblastoma cell-

line which has been cloned from SK-N-SH cell-line derived from malignant tumours 

of immature neurons. It maintains stem-cell characteristics, grows in monolayer, 

proliferates for long periods, expresses tyrosine hydroxylase and dopamine-β-

hydroxylase activity (Ross et al., 1983), expresses the dopamine transporter and 

receptors and forms storage vesicles (Colapinto et al., 2006). It is a routinely used as 

an experimental model of neuronal apoptosis and a variety of chemicals can induce 

these cells to differentiate into different phenotypes (Presgraves et al., 2004). These 

properties make this cell-line a useful model for dopaminergic neurons and therefore 

it has been extensively used in cytotoxicity assays and protein analysis experiments.   

  
 The underlying mechanisms of Parkinson’s disease remain partly unknown. 

Several hypotheses implicate different molecular pathways involving protein 

misfolding, oxidative stress, mitochondrial and ubiquitin-proteasome dysfunction, 

apoptosis, infectious agents and exposure to environmental toxins. More than 80,000 

chemicals are commercially used and almost 2000 new ones are introduced annually 

(Congress of the United States Office of Technology Assessment, 1995). Few of 
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these, especially pesticides have been tested for their effects on development of 

neurological disorders.  

3.1.1.1 Aims: 

The aim of this study was to develop an in vitro model of dopaminergic 

neurones. Since SH-SY5Y cell-line shows a dopaminergic phenotype, it was used to 

screen commonly used selected agrochemicals through cell-viability assays. Once a 

basic cytotoxicity profile for SH-SY5Y cells was prepared, sub-cytotoxic doses for 

selected chemicals were used to investigate the effects of different cell-signalling/cell 

death inhibitors on cell-viability. Different cell-death inhibitors were used to 

determine the underlying mechanisms of toxicity of specific agrochemicals. Certain 

chemicals target mitochondria and lead to oxidative stress. Therefore, mitochondrial 

transmembrane potential and reactive oxygen species production was also measured. 

 

3.1.2 Methods: 

   Refer to materials and methods (section 2.1). 
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3.1.3 Results: 

3.1.3.1 Effect of Toxin treatment on cell viability and cytotoxicity: 

 SH-SY5Y cells were treated with different toxin concentrations (0.001, 0.01, 

0.1, 1mM) for 24 hours. Alamar blue reduction assay, which provides an index of 

cell-viability as well as a measure of active mitochondrial functioning of the cell, 

was used to assess cytotoxicity. Inability of dying cells to reduce the blue dye to pink 

was used as a marker for cellular toxicity. Based on Alamar blue reduction data, 

chemicals were classed in three different groups. First category chemicals showed 

minor or no toxicity. These included 2,4-D, 2,4-D metabolite, 2-imidazolidinethione 

(mancozeb metabolite), cypermethrin, fenpropimorph, fluroxypyr, λ-cyhalothrin and 

mecoprop-P. SH-SY5Y cells showed no signs of toxicity after 24 hours (fig 3.1). 

Morphologically, cells appeared healthy. There was no evidence of dose response 

effect. Trypan blue cell counts showed no overall reduction in cell number in treated 

cells compared with untreated controls (trypan blue data not shown).  

 

Second group included chemicals showing toxicity at the highest toxic dose 

used i.e. 1mM. These included chlorothalonil, isoproturon, MPTP, MPP+, nabam, 

paraquat, primicarb and trifluralin (fig 3.2). Significant toxicity was observed at 

higher doses but potency of each chemical varied. This was represented in viable cell 

counts. Isoproturon caused 90% cell death at 1mM, compared with chlorothalonil 

(80%), paraquat (60-70%), trifluralin (60-70%), nabam (40%), primicarb (20-40%), 

MPTP (20%) and MPP+ (20-30%). 

 

Third category included chemicals showing toxicity below and including 

0.1mM. Minimal level at which these chemicals elicited a significant loss of cell 

viability differed for each chemical. Diquat, epoxiconazole, mecoprop methyl ester, 

metsulfuron methyl and pendimethlin showed significant cell death from 1mM-

0.1mM. whereas significant toxicity was observed at 0.01mM with fluroxypyr 

methylheptyl ester, maneb, mancozeb and rotenone (fig 3.3). Cell viability decreased 

in a concentration-dependent manner. In particular, 0.1mM and 1mM concentrations 

significantly decreased viability to 10% of control. Cell viability measured at 

different time points also showed a time dependent decrease. No toxic effects, in the 

form of reduction in cell-viability or structural damage, were observed in first 2 
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hours. A reduction of nearly 20% (of untreated control) was measured after 4 hours 

with maneb and mancozeb, followed by a drop in viability to 50% and down to 5-

10% after 6 and 24 hours respectively. Cell counts determined by trypan blue 

exclusion showed similar proportional reduction in cell number for 0.1mM and 1mM 

(fig 3.4, 3.5, 3.6). 
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Fig 3.1: Effect of toxin treatment for 24 hours on viability in SH-SY5Y cells: Each graph is representative of three independent 
experiments. Viable cell counts are shown as percentage of untreated control. For each treatment group, the difference from control was 
tested for statistical significance using one-way analysis of variance and p values <0.05 were accepted as significant Error bars represent 
mean standard deviation (±SD).  
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Fig 3.2: Effect of toxin treatment for 24 hours on viability in SH-SY5Y cells: Each graph is representative of three independent 
experiments. Viable cell counts are shown as percentage of untreated control. For each treatment group, the difference from control was 
tested for statistical significance using one-way analysis of variance and p values <0.05 were accepted as significant. Error bars 
represent mean standard deviation (±SD). 
 

 
 
 

0

20

40

60

80

100

120

0 0.001 0.01 0.1 1

Conc. (mM)

%
 o

f c
on

tr
ol

Chlorothalonil

Isoproturon
MPTP

MPP+
Nabam

Paraquat
Primicarb

Trifluralin

*

 

* 

* 
* 

*
*

* 

* 



Chapter Three                                                  Cytoxicity Screening of Agrochemicals 

 73 

Fig 3.3: Effect of toxin treatment for 24 hours on viability in SH-SY5Y cells: Each graph is representative of three independent 
experiments. Viable cell counts are shown as percentage of untreated control. For each treatment group, the difference from control was 
tested for statistical significance using one-way analysis of variance and p values <0.05 were accepted as significant. Error bars 
represent mean standard deviation (±SD). 
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Fig 3.4: Trypan blue cell counts: Viable cell count from A) diquat, B) 
epoxiconazole and C) fluroxypyr methyl heptyl ester are shown as a percentage of 
cell viability (n=3, data expressed as 100% x viable count/ viable plus dead counts. * 
p values <0.05 or ** p values <0.01 were accepted as significant. Error bars 
represent mean standard deviation ±SD). 
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Fig 3.5: Trypan blue cell counts: Viable cell count from A) maneb, B) mancozeb, 
and C) MPP+ are shown as a percentage of cell viability (n=3, data expressed as 
100% x viable count/ viable plus dead counts. * p values <0.05 or ** p values <0.01 
were accepted as significant. Error bars represent mean standard deviation ±SD). 
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Fig 3.6: Trypan blue cell counts: Viable cell count from A) mecoprop methyl ester 
and B) rotenone are shown as a percentage of cell viability (n=3, data expressed as 
100% x viable count/ viable plus dead counts. * p values <0.05 or ** p values <0.01 
were accepted as significant. Error bars represent mean standard deviation ±SD). 
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A summary of chemical toxicity is shown in table 3.1 with an estimation of 

percentage cell death as determined by data gathered from trypan test for each 

chemical.  This study did not set out to calculate precise LD50 doses and an attempt 

to measure it was unsuccessful because set values like 0.001mM, 0.01mM, 0.1mM, 

0.5mM and 1mM were used and these ranges were not expanded to determine the 

exact LD50 dose (see table 3.2).  

 

Table 3.1: Summary of cytotoxicity of selected toxins to neuroblastoma SH-
SY5Y cells (24 hour exposure) assessed using Alamar blue reduction assay. 

* Percentage of untreated control 

 
 
 
 
 
 

Active substance 1mM 0.1mM 0.01mM 
 Toxic Cell 

death* 
Toxic Cell 

death* 
Toxic Cell 

death* 
Mancozeb  90%  90%  60-70% 

Maneb  90%  90%  60-70% 
Rotenone - 30%  30%  30% 

Diquat  80-90%  60%  - 
Epoxiconazole  80-90%  40-50%  - 

Fluroxypyr-ester  90-95%  80-90%  - 
Mecoprop methyl ester  40-50%  30-40%  - 

Pendimethlin  60-70%  50%  - 
Zineb  90-95%  60-70%  - 

Chlorothalonil  80%  -  - 
Metsulfuron-methyl  90%  -  - 

Isoproturon  50%  -  - 
MPTP  20%  -  - 
MPP+  20-30%  -  - 
Nabam  40-50%  -  - 

Paraquat  60-70%  -  - 
Primicarb  20-40%  -  - 
Trifluralin  60-70%  -  - 

2,4-D  -  -  - 

2,4-D metabolite  -  -  - 

2-imidazolidinethione 
(Mancozeb metabolite) 

 -  -  - 

Chlormequat  -  -  - 

Cypermethrin  -  -  - 
Glyphosate  -  -  - 
Mecoprop-P  -  -  - 

Fenpropimorph  -  -  - 

Fluroxypyr  -  -  - 



Chapter Three                                                  Cytoxicity Screening of Agrochemicals 

 78

Table 3.2: Estimation of LD50 values of SH-SY5Y cells (24 hour exposure).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Active substance LD50 Estimation  
2,4-D Exact LD50 dose not measured. Minor (non-significant) toxicity at 1mM 

2,4-D metabolite Exact LD50 dose not measured. Minor (non-significant) toxicity at 1mM 

2-imidazolidinethione 

(Mancozeb metabolite) 

Exact LD50 dose not measured. Minor (non-significant) toxicity at 1mM 

Chlorothalonil Exact LD50 dose not measured. It was estimated to be within the 0.1mM-
1mM range. 

Cypermethrin No toxicity at 1mM 
Diquat LD50 dose estimated to be around 0.1mM 

Epoxiconazole LD50 dose estimated to be around 0.1mM 
Fenpropimorph No toxicity at 1mM 

Fluroxypyr Exact LD50 dose not measured. Minor (non-significant) toxicity at 1mM 
Fluroxypyr-ester LD50 dose estimated to be  around 0.1mM 

Isoproturon LD50 dose estimated to be  around 1mM 
Λ-cyhalothrin No toxicity at 1mM 

Mancozeb LD50 dose estimated to be around 0.01mM 
Maneb LD50 dose estimated to be around 0.01mM 

Mecoprop-P Exact LD50 dose not measured. Minor (non-significant) toxicity at 1mM 
Mecoprop methyl ester LD50 dose estimated to be around 0.1mM 

Metsulfuron-methyl Exact LD50 dose not measured. It was estimated to be within the 0.1mM-
0.01 range 

MPTP Significant toxicity at 1mM but  LD50 cannot be estimated from the chosen 
dose range 

MPP+ Significant toxicity at 1mM but  LD50 cannot be estimated from the chosen 
dose range 

Nabam LD50 dose estimated to be  around 1mM 
Paraquat Exact LD50 dose not measured. It was estimated to be within the 0.1mM-

1mM range 
Pendimethlin No toxicity at 1mM 

Primicarb Significant toxicity at 1mM but  LD50 cannot be estimated from the chosen 
dose range 

Rotenone Exact LD50 dose not measured. It was estimated to be less than 0.001mM 
Trifluralin Exact LD50 dose not measured. It was estimated to be within the 0.1mM-

1mM range 
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3.1.3.2 Contribution of the organic, manganese-metal and zinc-metal 

components of EBDC fungicides to neuronal toxicity: 

  It is estimated that 1.36 million kilograms of maneb and 3.76 million 

kilograms of mancozeb are annually applied in the USA (Zhou et al., 2004). Chronic 

maneb exposure has been linked with parkinsonism (Meco et al., 1994) and results 

from this study indicate maneb toxicity at doses as low as 0.01mM (60-70% 

reduction in viability vs. untreated control). Its major active component is manganese 

ethylene-bis-dithiocarbamate (Mn-EBDC) (fig 3.7). Identical results were seen with 

mancozeb exposure (which contains a mixture of Mn and Zn-EBDC). To identify the 

component contributing to toxicity, zineb (containing Zn-EBDC) was used to see if 

substituting zinc for manganese would reduce toxicity in SH-SY5Y cells. Indeed, it 

was less potent and showed significant reduction (* p<0.05) in toxicity (60-70% 

reduction in viability at 0.1mM vs. untreated control) (fig 3.8). Toxicity was less 

evident when the organic component Nabam (Na-EBDC) was used alone (40-45% 

reduction in viability at 1mM vs. untreated control) suggesting that manganese may 

be the principle component causing toxicity. These findings are consistent with 

recent reports showing significant toxicity with maneb and mancozeb in 

dopaminergic and GABAergic neurons accompanied with a decrease in TH positive 

neuritic processes, but not with nabam (Domico et al., 2006).    

 
Fig 3.7: Chemical composition of dithiocarbamate fungicides: A) mancozeb, B) 
maneb, C) zineb and D) nabam. 

 

A

B C

D 
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Fig 3.8: Dose–response effect of acute mancozeb, maneb, nabam and zineb on 
SH-SY5Y cell-viability:  Each graph is representative of three independent 
experiments. Viable cell counts are shown as percentage of untreated control. For 
each treatment group, the difference from control was tested for statistical 
significance using one-way analysis of variance and p values <0.05 were accepted as 
significant. Error bars represent mean standard deviation ±SD). 
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3.1.3.3 Differentiation of SH-SY5Y cells with 0.3mM dibutyryl cyclic AMP 

(dbcAMP) and 10mM Retinoic acid (RA): 

Undifferentiated SH-SY5Y cell morphology shows short, rounded cell bodies 

and short processes (fig 3.9A). Morphological changes became noticeable after 2-3 

days of incubation with growth medium containing 10mM RA and 0.3mM dbcAMP. 

By day 3, neurite-length was on average twice the size of undifferentiated cells (fig 

3.9B). Structure transformation started with elongation of neurites, enhanced 

branching of neuronal processes and condensation of the cell body; in keeping with 

cell differentiation into a dopaminergic phenotype. By day 7, cells grew in small 

clusters with neurite length three to four times the length of undifferentiated cells 

(visual observation) (fig 3.9C, D) and appeared to have developed well-established 

cell-to-cell networks.  Differentiated SH-SY5Y cells have been noticed to become 

growth inhibited as cells enter a late phase of neuronal differentiation (Pahlman et 

al., 1990); this was confirmed during these experiments, as the proliferation rate had 

significantly decreased by day 7.   

 
Fig 3.9: Time-course of SH-SYSY cell morphology changes: A) Undifferentiated cells,  
(B) Day 5, (C-D) Day 7.  
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confirmed by immunostaining with tyrosine hydroxylase (TH) and dopamine 

transporter (DAT). Images showed punctuate staining in the cell body and processes 

(fig 3.10). 

Fig 3.10: Microscopic images of immunohistochemical staining of 
undifferentiated SH-SY5Y neural cells: A) Pan Neurofilaments staining (NF), B) 
Dopamine transporter (DAT), C) Tyrosine hydroxylase (TH), D) Neuronal Class III 
β-Tubulin (Tuj1). (Magnification = x10. Each image representative of 3 independent 
fields). 

 
 
 In order to investigate whether differentiated cells behave differently to toxic 

insults, differentiated SH-SY5Y cells were exposed to selected chemicals for 24 

hours and then assayed for Alamar blue reduction. There was no overall reduction or 

increase in toxicity pattern when compared with undifferentiated cells, suggesting no 

extra sensitivity to these chemicals (fig 3.11, 3.12). 
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Fig 3.11: Toxin treatment of differentiated SH-SY5Y cells: Alamar blue reduction 
showed a dose dependent effect in A) diquat, B) maneb and C) mancozeb. n=3, * p 
values <0.05 or ** p values <0.01 were accepted as significant. Error bars represent 
mean standard deviation ±SD). 
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Fig 3.12: Toxin treatment of differentiated SH-SY5Y cells: Alamar blue reduction 
showed a dose dependent effect in A) epoxiconazole and B) fluroxypyr methyl 
heptyl ester. n=3, * p values <0.05 or ** p values <0.01 were accepted as significant. 
Error bars represent mean standard deviation ±SD). 
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3.1.3.4 Effect of Dopamine Transporter inhibition on cell viability: 

 To determine if the cytotoxicity of toxins required mediation by dopamine 

transporter (DAT), SH-SY5Y cells were co-incubated with specific dopamine 

transporter inhibitors GBR12909 and N-[1-(Benzo[b]thien-2-yl-

cyclohexyl)]piperidine hydrochloride (BTCP hydrochloride) for 1-2 hours before 

doses were added to give 50-60% toxicity. It has been suggested that differentiated 

cells show greater sensitivity than undifferentiated because DAT is highly expressed 

in differentiated cells. Therefore, both undifferentiated and differentiated SH-SY5Y 

cells were used. Western blotting analysis showed that SH-SY5Y cell-line expressed 

DAT and there was no significant difference in protein levels after 5 day 

differentiation (fig 3.13). It cannot be determined from these results that their 

enzyme activity also remains unchanged. Cell viability measured after 24 hours 

showed that these inhibitors did not protect cells against cytotoxicity or affected the 

degree or pattern of cell-death in undifferentiated (fig 3.14, 3.15) or differentiated 

cells (fig 3.16). Different concentrations of DAT inhibitors were used and all of these 

failed to show any reduction in cytotoxicity.  

 
 
Fig 3.13: Western blot analyses of DAT in undifferentiated and differentiated 
SH-SY5Y cells. Overall expression of dopamine transporter (DAT), tyrosine 
hydroxylase (TH) and dopamine beta hydroxylase (DβH) did not change after 5 day 
differentiation with retinoic acid (Images representative of three independent 
experiments). 
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Fig 3.14: Effect of DAT inhibitor GBR 12909 cytotoxicity: Co-incubation with 
GBR12909 (A-C) failed to reduce toxicity in treated cells. Results from Alamar blue 
reduction assay. n=3, * p values <0.05 were accepted as significant. Error bars 
represent mean standard deviation ±SD). 
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Fig 3.15: Effect of DAT inhibitor BTCP on cytotoxicity: Co-incubation with 
BTCP (A-C) failed to reduce toxicity in treated cells. Results from Alamar blue 
reduction assay. n=3, * p values <0.05 were accepted as significant. Error bars 
represent mean standard deviation ±SD). 
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Fig 3.16: Effect of GBR 12909 on cytotoxicity in differentiated SH-SY5Y cells: 
Selected chemicals are shown below. Incubation of DAT inhibitor with diquat 
(0.05mM), MPP+ (1mM) and mancozeb (0.05mM) did not show any reduction in 
toxicity. n=3, * p values <0.05 were accepted as significant. Error bars represent 
mean standard deviation ±SD). 
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Fig 3.17: Effect on DAT inhibitors on dopamine hydrochloride induced toxicity: 
Co-incubation with A) GBR12909 (0.001mM) (B) BTCP (0.001mM) failed to 
reduce dopamine hydrochloride toxicity in SH-SY5Y cells. n=3, * p values <0.05 
were accepted as significant. Error bars represent mean standard deviation ±SD). 
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3.1.3.5 Effect of cell-death inhibitors on cytotoxicity: 

 During apoptosis, cytochrome c release from the mitochondria activates 

caspase-9, which leads to caspase-3 activation. Caspase-3 cleaves specific substrates 

required for downstream apoptosis signalling. SH-SY5Y cells were treated with 

toxins or vehicle (DMSO) in the presence or absence of the caspase-3 and 9 

inhibitors (DEVD-CHO and Ac-LEVD-CHO respectively) and zVAD.fmk, a cell-

permeable broad-spectrum caspase inhibitor that irreversibly binds to the catalytic 

site of caspase proteases and can inhibit apoptosis induction (Amstad et al., 2001). 

zVAD.fmk treatment showed a slight reduction in toxicity of diquat (0.1mM), 

epoxiconazole (0.1mM), fluroxypyr ester (0.1mM), maneb (0.04mM), mancozeb  

(0.04mM) and mecoprop methyl ester  (0.2mM) which was not statistically 

significant (fig 3.18). Similarly, treatment with caspase-3 inhibitor (DEVD-CHO) 

and caspase-9 inhibitor (Ac-LEVD-CHO) also failed to affect toxicity (fig 3.19, 

3.20). 
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Fig 3.18: Effect of zVAD.fmk on cell viability in toxin-induced cytotoxicity: Cells 
were pre-incubated with zVAD.fmk (0.1mM) for 1-2 hours before toxin addition. 
After 24 h incubation, cell viability was evaluated by Alamar blue reduction assay. 
Each experiment was performed in triplicate. Data expressed as mean±SD; (* p 
values <0.05 were accepted as significant).  
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Fig 3.19: Effect of caspase-3 inhibitor on cell viability after toxin treatment: 
Cells were pre-incubated with (a-c) DEVD-CHO (0.001mM) for 1-2 hours before 
toxin addition. After 24 h incubation, cell viability was evaluated by Alamar blue 
reduction assay (n=3, data expressed as mean±SD; (* p values <0.05 were accepted 
as significant).   
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Fig 3.20: Effect of caspase-9 inhibitor on cell viability after toxin treatment: 
Cells were pre-incubated with (a-c) Ac-LEVD-CHO (0.001mM) for 1-2 hours before 
toxin addition. After 24 h incubation, cell viability was evaluated by Alamar blue 
reduction assay (n=3, data expressed as mean±SD; (* p values <0.05 were accepted 
as significant).   
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Previous studies have shown that caspase inhibition does not always protect 

against apoptosis and alternative cell-death mechanisms may be involved (McCarthy 

et al., 1997; Villa et al., 1998). Furthermore, autophagy may be responsible for cell-

death caused by chemical insult which can be prevented by using autophagy 

inhibitors (Shimizu et al., 2004). To identify alternative cell-death pathways involved 

necrostatin-1 (Nec-1) a programmed necrosis inhibitor and 3-methyl adenine (3-MA) 

a macroautophagy inhibitor were used.  

 

 Pre-treatment with 3-MA (1.5mM, 2.5mM and 5mM) failed to prevent cell-

death. Nec-1 (0.1mM) however showed significant increase in viability when treated 

with diquat (0.1mM), epoxiconazole (0.1mM), fluroxypyr-ester (0.1mM), maneb 

(0.04mM), mancozeb (0.04mM), MPP+ (1mM) and mecoprop methyl ester (0.2mM) 

(fig 3.21, 3.23). This was accompanied by an increase in cell number suggesting 

Nec-1 enhanced cell-proliferation or reduced endogenous cell death. Calculation of 

average increase/reduction in cell viability from three different experiments showed 

that necrostatin-1 caused 74.2% recovery in diquat (0.1mM), 35% in epoxiconazole 

(0.08mM), 70.5% in fluroxypyr methyl ester (0.1mM), 43.4% in maneb (0.025mM), 

20.2% in MPP+ (1mM), 40.2% in mecoprop methyl ester (0.1mM) and 37.2% in 

mancozeb (0.04mM) treated cells. 
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Fig 3.21: Effect of Necrostatin-1 on cell viability in toxin-induced cytotoxicity: 
Cells were pre-incubated with necrostatin-1 (0.1mM) for 1-2 hours before toxin 
addition. After 24 h incubation, cell viability was evaluated by Alamar blue 
reduction assay. Each experiment was done in triplicate. Data expressed as 
mean±SD; (* p values <0.05 were accepted as significant).  
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 Staurosporine is an alkaloid widely used as a protein kinase C (PKC) 

inhibitor. It induces morphological changes typical of apoptosis, induces JNK1 

activation (Chae et al., 2000) and inhibits cell-cycle (Abe et al., 1991). Pre-

incubation with Nec-1 (0.1mM) showed a significant prevention of cell death in 

staurosporine (0.001M) treated cells (greater than 80% difference) whereas 

zVAD.fmk (0.1mM) treatment showed no effect (fig 3.22).   

 
Fig 3.22: Effect of necrostatin-1 and zVAD.fmk on cell viability in staurosporine 
treated cells: Cells were pre-incubated with necrostatin-1 (0.1mM) zVAD.fmk 
(0.1mM) for 1-2 hours before toxin addition. After 24 h incubation, cell viability was 
evaluated by Alamar blue reduction assay. Each experiment was done in triplicate. 
Data expressed as mean±SD; (* p values <0.05 and **p < 0.01 were accepted as 
significant). 
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Fig 3.23: Visual presentation of Nec-1 treated cells after toxin treatment: A 
significantly higher number of DAPI stained cells after diquat (0.1mM), mancozeb 
(0.04mM) and MPP+ (1mM) treatment after 24 hours (Magnification = x40, each 
image is representative of three independent fields). 
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3.1.3.6 Effect of cell-signalling inhibitors on cytotoxicity: 

 In response to toxin insult, signalling pathways either alone or in conjunction 

with others, influence the final fate of the cell. A number of different signalling 

cascades can play a role in mediating cytotoxicity. To identify specific 

intracellular signalling pathways involved, a range of different cell-signalling 

inhibitors were used including H89 (protein kinase A inhibitor), U0126 (MEK 

inhibitor), PD-98059 (MEK inhibitor), LY294002 (PI3K inhibitor), GW5074 (ERK 

inhibitor), SQ22536 (adenylyl cyclase inhibitor), SP600125 (JNK 1, 2, and 3 

inhibitor) and cycloheximide (protein biosynthesis inhibitor). Each experiment was 

repeated at least three times and average increase/reduction in cell viability 

calculated (shown below). Positive numbers indicate protection; negative numbers 

indicate exacerbation of toxicity. For positive results, difference from control was 

tested for statistical significance using t-test and p values <0.05 were accepted as 

significant (* indicates statistically significant). The extent of cell death was not 

significantly modified with different inhibitors (except SQ22536 after diquat 

treatment), most appeared to significantly potentiate toxicity (shown below) whereas 

other showed modest insignificant protection (tiron).  

 
Table 3.3: Percentage increase/reduction in toxin treated cells after cell-
signalling inhibition: 
 

Inhibitor Diquat Maneb Mancozeb MPP+ 
Nec-1 +49.6*±17 +19.5*±18.7 +35.6*±4.5 +35.2*±0 

zVAD.fmk +5.7±7.8 +0.56±4.9 +4.1±8.7 -10.2*±0 
NAC +24.6*±5.2 +30*±8.6 53*±16.9 -25*±0 

Cyclosporin A +4.25±6.6 -14±7.7 -1±1 -11*±0 
Tunicamycin 9.84*±16.0 -4.5±2.3 -5.08±1.3 -1.49±0 

3-Methyladenine 1.12±12.3 -4.5±2.2 -5±2.3 -1.5±0 
Ammonium 

Chloride 
 

0.13±9.0 
 

+3.35±.0.07 
 

0.6±1.97 
 

-6±0 
Tiron -14.4*±12.0 +4.26±0.6 +6.97±10.6 0 

GW5074 -7±0 +1.1±1.1 -0.5±2.3 -9.6*±0 
H89 +2.3±0 +1.1±02 +2.7±2.3 3.7±0 

LY29002 -10*±0 -2.1±3.6 -3.9±4.4 -24.8*±0 
PD98059 2.6±0 -29.0*±5.6 +4.5± 2.3 -22.9*±0 

U0126 4.3±0 -12.4±4.4 -3.1±1.2 -33.4*±0 
SQ22536 +17.1*±5.15 -10.4*±5.3  -8.9*±2.6 -18.9*±0 
SP600125 -15.6*±3.18 -24*± 13.7 -11.53±4.04 -18.5*±6.3 
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Table 3.4: Percentage increase/reduction in toxin treated cells after cell-
signalling inhibition: 
 
 

Inhibitor Mecoprop 
methyl ester 

Epoxiconazole FMH 

Nec-1 +44.2*±0 30.6*± +72*±1.25 
zVAD.fmk +8.2±5.3 +7.1±0.3 +6.15±4.45 

NAC -17*±2.3 -22±0  +2.5±0.7 
Cyclosporin A -6 -11±0 -2.3±1.8 
Tunicamycin -27.4*±1.3 -24±0 -12*±6.08 

3-Methyladenine -15*±2.5 -- -8±2.82 
Ammonium 

Chloride 
+3.7±0 -- +6.2 

Tiron -4.45±2.3 -- +6.5±10.5 
GW5074  -2±0 -22.18*±0 

H89 -8.4*±2.3 -9*±0 -20.2*±0 
Ly29002 -- -32.35*±0 -13.06*±0 
PD98059 -- -26.4*±0 -22.61*±0 

U0126 -27.5*±3.6 -28.4*±0 -19.4*±0 
SQ22536 -13.7*±1.1 -- +6.2*±0 
SP600125 -34.125±5.6 -- -18.6±1.2 

 
 

3.1.3.7 Measurement of reactive oxygen species (ROS) in toxin treated cells: 

 2',7'-dichlorofluorescein diacetate (DCFDA) detects a number of ROS 

species, including H2O2, superoxide anions and hydroxyl radical (Gomes et al., 

2005). It diffuses through the cell membrane and is cleaved to 2',7'-

dichlorofluorescein (DCF). DCF reacts with H2O2 to form the green fluorescent dye 

dichlorofluorescein. It is generally accepted that DCF fluorescence is proportional to 

H2O2 concentration. Dichlorofluorescein can either be measured at 485/520nm or 

viewed under a fluorescent microscope.  Hydrogen peroxide (0.5mM) was used a 

positive control for these experiments. It caused a significant increase in fluorescence 

after 2 hours and measurements recorded after 3 and 4 hours showed an equally 

higher percentage of DCF fluorescence. After 24 hours, cell viability had reduced to 

less than 10% of untreated control and this was reflected in significantly lower 

fluorescence (fig 3.24). Rotenone can induce the production of superoxide and other 

ROS (Molina-Jimenez et al., 2005). 24 hour incubation with different doses showed 

significantly higher DCF fluorescence with 0.001mM, 0.01mM and 0.05mM doses 

(fig 3.24). 0.1mM dose caused significant cell death and a very low number of cells 

were present in the cell lysates resulting in a low level of fluorescence. Diquat, 
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maneb and mancozeb, showed a similar trend with dose range (0.001mM-0.5mM) 

showing a significant increase in ROS production (fig 3.25). Paraquat is a potent pro-

oxidant and generates ROS through cytochrome P-450-mediated redox cycling 

reaction (Suntres, 2002). Cytotoxicity experiments have shown that paraquat does 

not cause significant cell death at lower doses and indeed a similar pattern of ROS 

generation was observed with MPP+ and mecoprop-p where 0.001mM, 0.01mM and 

0.5mM doses did not affect cell-viability nor induced any changes in DCF 

fluorescence. Only 1mM dose of these chemicals caused a significant change in 

fluorescence (fig 3.26).  

 
Fig 3.24: Toxin induced ROS production in SH-SY5Y cells: A) Hydrogen 
peroxide (0.5mM) induced a time dependent increase in ROS production as 
determined by DCF-DA assay. A dose-dependent increase in ROS production was 
noted with rotenone (B) (n=3, results are mean ± SD, *p values <0.05 or **p<0.01 
were accepted as significant).  
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Fig 3.25: Toxin induced ROS production in SH-SY5Y cells: A dose-dependent 
increase in ROS production was noted with diquat (A), maneb (B) and mancozeb (C) 
(n=3, results are mean ± SD, *p values <0.05 or **p<0.01 were accepted as 
significant).  
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Fig 3.26: Toxin induced ROS production in SH-SY5Y cells: A dose-dependent 
increase in ROS production was noted with paraquat (A), mecoprop-p (B) and MPP+ 
(C) (n=3, results are mean ± SD, *p values <0.05 or **p<0.01 were accepted as 
significant).  
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 For visual confirmation of ROS production, cells were grown in chamber 

slides, incubated with the dye and treated with sub-cytotoxic doses of toxins for 6-8 

hours. A large increase in the level of ROS was evident when cells were exposed to 

H2O2 in contrast to cells exposed to diquat (0.05mM) and mancozeb (0.04mM), 

paraquat (0.2mM) and rotenone (0.1mM). Paraquat and rotenone caused significant 

cell detachment and fluorescence was only visible from viable stressed cells (fig 

3.27).  
 

Fig 3.27:  Visual determination of ROS level in SH-SY5Y cells following toxin 
insult: SH-SY5Y cells were plated out in chamber slides and treated with toxins for 
8 hours. Untreated cells showed a low background whereas H2O2 (0.5mM), diquat 
(0.05mM) and mancozeb (0.04mM) showed higher fluorescence. Paraquat and 
rotenone caused significant reduction in cell-viability at 0.2mM and 0.5mM 
respectively but viable stressed cells showed clear increase in fluorescence. 
(Magnification = x10, each image is representative of three independent fields). 
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3.1.3.8 Effect of Antioxidants on toxin induced SH-SY5Y cell death: 

 Antioxidant molecules N-acetyl-L-cysteine (NAC), tiron, MnTBAP and 

MnTMPyP were tested for their ability to inhibit SH-SY5Y cell death. NAC is a free 

radical scavenger due to its thiol group and indirectly enhances the glutathione 

synthesis, which in turn reduces oxidative stress (Martinez et al., 1999). Co-

incubation of NAC (5mM) caused a significant recovery in diquat (0.1mM) 

(+24.6±5), maneb (0.04mM) (+24.6±19.6) and mancozeb (0.04mM) (+48.6±14.1) 

treated cells. A minor statistically insignificant increase in viability was observed in 

fluroxypyr methyl ester (0.1mM). No NAC related recovery was recorded in 

epoxiconazole (0.08mM), MPP+ (1mM), or mecoprop methyl ester (0.1mM) treated 

cells. Tiron, (4,5-dihydroxy-1,3-benzene disulfonic acid) is an antioxidant and 

protects against ROS-induced cell death where it can act as a non-toxic chelator of 

intracellular iron to alleviate an acute metal overload. Tiron failed to reduce toxicity 

in diquat (0.1mM), MPP+ (1mM), mecoprop methyl ester (0.1mM) and mancozeb 

(0.04mM) treated cells and showed a marginal increase in viability (not statistically 

significant) in fluroxypyr methyl ester (0.1mM) and maneb (0.025mM) treated cells, 

however replication of assay failed to repeat this. When co-incubated with diquat 

(0.1mM), it significantly potentiated its toxicity. Both MnTBAP and MnTMPyP 

(SOD mimetics) act as antioxidants. Co-incubation with these chemicals showed no 

significant increase in cell viability.  

  

3.1.3.9 Measurement of mitochondrial transmembrane potential: 

 Pathological conditions like ATP depletion, oxidative stress and Ca2+ can 

disrupt mitochondrial transmembrane potential (ΔΨm, MTP; Škárka & Oštadál, 

2002). It is conceivable that some of these toxins can decrease MTP, given that an 

increase in ROS generation has been observed.  Experiments designed to measure 

MTP at different time points showed that diquat (0.15mM) significantly depolarised 

MTP in a time dependent manner (up to 50% of control after 4 hours) (fig 3.28). This 

is consistent with data gathered from Alamar blue reduction assay where a colour 

change implicating reduced mitochondrial activity can be observed within 6 hours of 

diquat treatment (reduction down to almost 50% after 6 hours). Chemicals known to 

affect MTP such as rotenone and MPP+ (Isenberg and Klaunig, 2000; Lee et al., 

2005) when used at 0.0125mM and 1mM respectively, caused a significant gradual 
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reduction in TMRE fluorescence after 4 hours (fig 3.29). Carbonyl cyanide-

(trifluoromethoxy) phenylhydrazone (FCCP) (0.05mM), a mitochondrial 

protonophore, was used as a positive control for each experiment where it 

successfully dissipated MTP. Similar results were seen with H2O2 (0.5mM). Other 

toxins including MPTP (1mM) (fig 3.29), paraquat (0.1mM), maneb (0.05mM), 

mancozeb (0.05mM) (fig 3.30), fluroxypyr methyl ester (0.1mM) and epoxiconazole 

(0.1mM) (fig 3.31) had no significant effect on MTP.  

 
Fig 3.28: Toxin-induced changes of mitochondrial membrane potential (ΔΨm) in 
SH-SY5Y cells: TMRE fluorescence in cells exposed to H2O2 (0.5mM) and diquat 
(0.15mM) (A-B) for 24 hours. (n=3, data expressed as mean % of untreated control ± 
SD (* P<0.05 accepted as significant). 
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Fig 3.29: Toxin-induced changes of mitochondrial membrane potential (ΔΨm) in 
SH-SY5Y cells: TMRE (250nM) fluorescence in cells exposed to rotenone 
(0.0125mM), MPP+ (1mM) and MPTP (1mM) (A-C) for 24 hours. (n=3, data 
expressed as mean % of untreated control ± SD (* P<0.05 accepted as significant). 
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Fig 3.30: Toxin-induced changes of mitochondrial membrane potential (ΔΨm) in 
SH-SY5Y cells: TMRE fluorescence in cells exposed to paraquat (0.1mM), maneb 
(0.05mM) and mancozeb (0.05mM) (A-C) for 24 hours. (n=3, data expressed as 
mean % of untreated control ± SD (* P<0.05 accepted as significant). 
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Fig 3.29: Toxin-induced changes of mitochondrial membrane potential (ΔΨm) in 
SH-SY5Y cells: TMRE (250nM) fluorescence in cells exposed to fluroxypyr methyl 
ester (0.1mM) and epoxiconazole (0.1mM) (A-B) for 24 hours. (n=3, data expressed 
as mean % of untreated control ± SD (* P<0.05 accepted as significant). 
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3.1.4 Discussion: 

  The first goal of this study was to determine the optimised conditions i.e. 

culture medium, cell-density and total dosage of toxins for evaluation of cytotoxicity 

in SH-SY5Y cells. Cell viability data, gathered from 24 hour exposure, showed a 

dose-dependent response. Most chemicals were of low toxicity using the SH-SY5Y 

system. However, significant toxicity was observed at concentrations as low as 

0.01mM (Maneb, Mancozeb) and 0.1mM (diquat, epoxiconazole, fluroxypyr-ester, 

mecoprop-methyl ester and zineb). Chemicals known (MPTP or MPP+) or thought to 

be involved with PD (paraquat) showed modest toxicity. This investigation has 

allowed us to establish sub-cytotoxic concentrations for each chemical. These doses 

were used to examine toxin effects at the cellular level, their mode of action, 

involvement of cell-signalling and cell-death pathways (i.e. apoptosis, necrosis, 

necroptosis), mediation of intracellular signalling processes, loss of mitochondrial 

membrane potential, activation of caspases and if they have any possible role in PD.  

 

 Previous studies have shown that expression of dopamine D2 receptor (D2R), 

tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine β-

hydroxylase (DβH) can be higher in differentiated cells. Such change in protein 

expression was not observed in cells differentiated for 7 days (see fig 3.13). It was 

noticed that once induced to differentiate; cell number increased in a linear manner 

for the first 4-5 days and then reached a plateau. After 7 days cell division rate 

decreased and cells had more rounded cell bodies and neuritic extensions emanating 

from cells were almost double that of undifferentiated cells. It has been reported that 

differentiated cells show much stronger resistance against drug treatment than 

undifferentiated SH-SY5Y cells (Presgraves et al., 2004). Considering dopaminergic 

neurons are fully differentiated in adult humans, these toxins might be less toxic in 

differentiated SH-SY5Y cells than in undifferentiated SH-SY5Y cells but results 

from this study showed no significant difference in toxicity in differentiated or 

undifferentiated SH-SY5Y cells (see fig 3.11, 3.12). 

 

Previous studies have shown that DAT and DA receptors are expressed in 

SH-SY5Y cells (Presgraves et al., 2004) and DAT facilitates dopamine uptake into 

the presynaptic neurons (Lee et al., 2000). Experiments aiming to block this transport 
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pathway to reduce the loss of cell-viability failed to show that inhibition of dopamine 

transporter alleviates toxicity of these chemicals (see fig 3.14, 3.15). This included 

MPP+ and dopamine which are selectively uptaken by DAT (Gainetdinov et al., 

1997; Javitch et al., 1985). Immunohistochemical staining and western blotting has 

shown DAT expression in these cells (fig 3.10, 3.13). Lower DAT expression could 

be one reason why its inhibition cannot prevent toxicity and toxicity could be 

mediated through non-DAT mechanisms. For instance, previous studies have 

suggested that a neutral amino acid transporter, most likely the system L carrier 

(LAT-1) may specifically transport paraquat into the brain (Shimizu et al., 2001) and 

pre-treatment of mice with a LAT-1 substrate (L-valine) prevented the dopaminergic 

toxicity of paraquat (McCormack and Di Monte, 2003). 

 
 Pharmacological inhibition of apoptosis showed a marginal but insignificant 

reduction in toxicity for most chemicals (see fig 3.18, 3.19, 3.20) whereas a 

macroautophagy inhibitor had no effect at all. An overlap between these two 

processes has been proposed (Zakeri et al., 1995) and 3-methyladenine (3-MA) has 

been used to block drug-induced apoptosis and autophagy (Kundu & Thompson, 

2005). In primary dopaminergic neurons or cell lines, caspase inhibitors have shown 

protection against MPP+ toxicity but such effects could be temporary and can switch 

from apoptosis to necrosis (Choi et al., 1999). Indeed toxicity caused by 

staurosporine, an apoptosis initiator under certain conditions, can be blocked by 

caspase-independent inhibition (Zhang et al., 2004). Staurosporine can activate Bax 

and act through the mitochondrial caspase-dependent apoptotic pathway. The 

caspase-dependent apoptotic pathway is activated soon after staurosporine exposure 

and leads to the release of cytochrome c and Smac/DIABLO from mitochondria and 

cleavage of poly (ADP-ribose) polymerase (Zhang et al., 2004). Previous studies 

have shown that this pathway can be inhibited by broad caspase inhibitors. Results 

from this study failed to show this. However, involvement of caspase-independent 

mechanisms associated with staurosporine suggests that multiple mechanisms may 

be involved. Reduced staurosporine induced cytotoxicity by Nec-1 therefore suggests 

protection through non-apoptotic mechanism. Indeed, previous studies have shown 

that apoptotic stimuli such as CD95-L or TNF cause necrotic cell-death (Edinger and 

Thompson, 2004; Festjens et al., 2006). Alternatively, morphological changes 

associated with apoptosis may occur during caspase-independent cell death 
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(Lockshin and Zakeri, 2004a) suggesting some kind of inter-connection. 

Furthermore, caspase-3 and 9 inhibitors failed to reduce toxicity suggesting 

involvement of non-mitochondrial directed pathway since caspase-3 is a downstream 

target of caspase-9 which is involved in the mitochondria-initiated pathway of 

apoptotic cell death. 

 
 Involvement of non-apoptotic mechanisms sheds light on necrostatins which 

act through a regulated cellular necrosis mechanism different from apoptosis. 

Activity of RIP1 kinase, a death-domain-containing kinase, is needed for necroptosis 

activation (Holler et al., 2000) and Nec-1 is an allosteric inhibitor of RIP1 kinase 

(Degterev et al., 2008). RIP1 is required for the initiation of necrotic cell death and is 

proposed to have a role in caspase-independent necrotic cell death (Lin et al., 2004). 

RIP1 is part of a signalling complex comprised of TNF-R1-associated death domain 

protein (TRADD), small GTPase Rac1 and Nox1 (NADPH oxidase). RIP1 recruits 

Nox1 to the signalling complex when necrosis is initiated. RIP1 deficient cells do not 

form this complex (Kim et al., 2007). NADPH oxidase enzymes actively play a role 

in the production of ROS (Lambeth, 2004). RIP interacts with TNF receptor-

associated factor 2 (TRAF2) which can recruit IKK (IkB kinase). Presence of RIP is 

required for the activation of IKKs (Devin et al., 2000). Down-stream effects of 

these interactions lead to the activation of MAP kinase and NF-kB pathways (Chen 

and Goeddel, 2002; Wajant et al., 2003). In this study, most toxins responded to Nec-

1 suggesting the unique nature of Nec-1 activity and regulation of necroptosis. 

Although the mechanism(s) underlying the protective action of Nec-1 is currently 

unknown, it is likely that it directly interacts with cellular events leading to cell death 

after oxidative stress. 

 

 A range of different cell-signalling inhibitors were used to evaluate the 

contribution of adenylate cyclase, protein kinase C, phosphatidylinositol- 3 kinase 

(PI3K), mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinases 

(JNK) to the toxin induced cell-death. Inhibitors like GW5074, LY29002, PD98059, 

SQ22536, SP600125 and U0126 further potentiated toxicity. A number of signal 

transduction pathways converge on MEK/ERK. Therefore, to determine whether 

toxins interacted with the MEK/ERK signalling pathway, we tested the involvement 

of signalling kinases Ras and Raf by using specific inhibitors for these kinases 



Chapter Three                                                  Cytoxicity Screening of Agrochemicals 

 112

(GW5074 for Raf inhibition and PD98059/U0126 for MEK Inhibition). Inhibition of 

these pathways did not reduce toxicity and in some cases made it significantly worse 

(e.g. PD98059 potentiated epoxiconazole, FMH, maneb and MPP+ toxicity; 

GW5074 increased toxicity of diquat, epoxiconazole, FMH, MPP+ and mancozeb; 

U0126 increased toxicity of epoxiconazole, FMH, maneb, mancozeb, MPP+ and 

mecoprop methyl ester). Using two inhibitors of MEK activity show that MEK 

activity is not required for toxin-potentiated cell-death but may be involved in 

protective mechanisms. 

  

  Tunicamycin has been used to study pathways involved in the 

endoplasmic reticulum stress-induced cell death in SH-SY5Y cells (Oda et al., 

2008). ER triggers cell apoptosis when cell comes under stress leading to excessive 

protein misfolding (Patil and Walter, 2001). Results from this study show that 

tunicamycin pre-treatment causes significant reduction in diquat treated cells but it 

potentiates toxicity for all other chemicals. Some chemicals cause apoptosis or 

necrosis by rupturing lysosomes in a time and dose-dependent way (Li et al., 2003). 

It is suggested lysosomal rupture may set off a cascade of events activating pro-

apoptotic proteins, releasing cytochrome c and inducing oxidative stress. These 

factors can rupture lysosomes, damage mitochondria and activate caspase (Roberg 

2001; Roberg et al., 1999). Treatment with ammonium chloride can raise lysosomal 

pH and can prevent chemical uptake by proton trapping. When pre-treated with 

ammonium chloride and treated with selected chemicals, a slight reduction in 

toxicity was noticed (not significant). 

 

The role of oxidative stress in toxin-induced cell death was evaluated by the 

use of different antioxidants including N-acetyl-L-cysteine (NAC), tiron, MnTBAP 

and MnTMPyP. Antioxidant NAC prevented the loss of cell viability caused by 

diquat, maneb and mancozeb and caused marginal increase in viability in fluroxypyr 

ester treated cells. NAC enhances glutathione synthesis and if glutathione 

metabolism is compromised hydrogen peroxide is converted to toxic hydroxyl 

radicals (Niesink et al., 1996). Indeed, glutathione depletion potentiates MPTP and 

MPP+ toxicity in nigral dopaminergic neurones (Wullner et al., 1996). SOD 

mimetics MnTBAP and MnTMPyP on the other hand, prevent the formation of the 

more toxic peroxynitrite together with nitric oxide by detoxifying superoxide. SOD 



Chapter Three                                                  Cytoxicity Screening of Agrochemicals 

 113

can alleviate chemical induced toxicity and over-expression of SOD in transgenic 

mice provides resistance to MPTP toxicity (Przedborski et al., 1992). This study 

suggests that these selected agrochemicals act by increasing oxidative stress as anti-

oxidant NAC prevented toxin-mediated cell-death. Mitochondrial dysfunction also 

plays a part as observed through dissipation of mitochondrial transmembrane 

potential and Alamar blue reduction. It remains to be determined if mitochondrial 

dysfunction and oxidative stress interact in a pathologically reinforcing cycle or if 

one is a result or cause of the other. Neurotoxic effects by different toxins are 

mediated partly through intracellular events. Determination of free radical species 

that are generated by these toxins delineating the cell-signalling pathways 

responsible for DA cell death would be significant aspects in future studies. 

 

Oxidative damage has been identified as contributing to dopaminergic cell 

death in MPTP model and PD. Increases in markers of oxidative stress have been 

noted in PD substantia nigra and other brain regions (Jenner, 1998). Mitochondrial 

damage and oxidative stress are inter-related. Impairment of oxidative 

phosphorylation in mitochondria contributes to the production of oxygen radicals. 

Toxins such as MPP+ and rotenone contribute to oxidative stress and various radical-

scavenging agents such as dihydrolipoic acid and nicotinamide can counter MPP+ 

toxicity in cell culture or of MPTP in vivo (Seaton et al., 1997). ROS generation is 

involved in the mechanism of toxicity of various chemicals and these experiments 

have successfully shown a rapid increase in ROS production which is proportional to 

the cell-viability data gathered from Alamar blue reduction assays. These results 

when taken with the measurement of mitochondrial transmembrane potential suggest 

that ROS generation occurs before complete mitochondrial dissipation. It has been 

suggested that the opening of mitochondrial transition pore (MTP) is one of the 

initiating events in cellular apoptosis (Zamzami et al., 1996) and the 

immunosuppressant cyclosporin A (CSA) can inhibit this opening through binding to 

mitochondrial matrix cyclophilin (Zoratti and Szabo, 1995) therefore interfering with 

apoptosis and the reducing the mitochondrial permeability dissipation that precedes 

apoptosis. Pre-treatment of SH-SY5Y cells did not show any protective effect and in 

fact potentiated the toxicity. This effect has been observed by Fall et al (1998) who 

noticed that CSA potentiated MPP+ induced apoptosis. Hydrogen peroxide, 

rotenone, diquat and MPP+ results from both experiments showed a directly 
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proportional relationship between ROS generation and disruption of the MTP 

whereas a lack of dissipation of MTP is seen with maneb, mancozeb, epoxiconazole 

and fluroxypyr methyl ester at shorter exposure. Mitochondrial dysfunction has been 

linked with cytochrome c release which in turn leads to the activation of caspase-3 

and caspase-9, which are associated with neuronal apoptosis during brain 

development and in delayed neuronal cell-death after brain injury in the developing 

and adult brains (Krajewski et al., 1999). Lack of change in MTP and failure to block 

cell death by caspase inhibitors suggests a mode of death not involving 

mitochondrial pathway.  

 

Diquat 

Among tested compounds, diquat (a potent redox cycler and ROS generator) 

was most responsive to different inhibitors. Nec-1, NAC, tunicamycin and SQ22536 

significantly prevented the loss of cell-viability. These patterns could be due to 

necroptosis inhibition, abolition of ROS generation capacity or early scavenging of 

ROS. Given that ROS-mediated oxidative damage is a prominent feature of 

dopaminergic pathogenesis (Cohen, 1986); current data suggest that diquat may 

induce oxidative stress in dopaminergic neurons through the production of ROS. 

Intracellularly, diquat undergoes redox cycling, producing superoxide anions. This 

reaction takes place in the presence of NADPH and cytochrome P450 reductase and 

the resultant highly unstable diquat radical transfers an electron to molecular oxygen 

to form a superoxide anion radical (Saeed et al., 2001).  This continuous oxidation 

and reduction of diquat results in superoxide anion radicals reacting with each other 

and producing molecular oxygen and hydrogen peroxide. This reaction may be 

facilitated by superoxide dismutase or may occur spontaneously (Jones & Vale, 

2000). Under normal circumstances, glutathione peroxidase and catalase detoxify 

hydrogen peroxide, but if these are compromised or overwhelmed then they may lead 

to the formation of highly reactive hydroxyl radical which can attack the lipid chains 

of biological membranes causing lipid peroxidation and cell death (Niesink et al., 

1996). NADPH depletion may also play a role in toxicity, as hydrogen peroxide 

detoxification and redox cycling are NADPH dependent (Saeed et al., 2001).  

 

SQ22536 (adenylyl cyclase inhibitor) prevented the loss of cell viability 

caused by diquat. Since SQ22536 is used as an inhibitor of the cAMP pathway and 
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successfully used in studies to inhibit increases in cAMP (Gao and Raj, 2001), it may 

provide useful insight into cAMP-dependent signalling, which has been linked with 

the control of cellular cascades in mammalian cells. It is involved not just with 

adenylyl cyclase but with other signalling pathway components including G proteins 

and protein kinase A (Fabbri and Capuzzo, 2010). There is evidence that Parkinson’s 

disease course also affects the DA-dependent cAMP system (Cash et al., 1987) and 

an imbalance in cAMP may play a part in changes of levodopa/dopamine signal 

transduction. This may have an effect on PD pathology as dysregulation of DA 

receptors has been linked with levodopa-induced dyskinesias in experimental PD 

models (Giorgi et al., 2008).  

 

Mancozeb/Maneb 

Dithiocarbamates (DTCs) have been linked with several extrapyramidal 

syndromes (Meco et al., 1994) and a variety of neurobehavioral abnormalities (hind 

limb paralysis, convulsions, ataxia, hemiparesis) (Vaccari et al., 1999), affecting 

both glutamate and DA systems (Barlow et al., 2005). DTCs are believed to exert 

their toxicity through dopamine catalysation and oxidative stress caused after metal 

chelation (Drechsel & Patel, 2008). Details about maneb’s mode of neurotoxicity are 

though unclear. It can inhibit glutamate transport, interfere with DA uptake and 

release (Vaccari et al., 1998) and potently inhibit complex III of the electron 

transport chain (activity reduced to 20% of controls) in a dose dependent manner in 

rats. 1 hour maneb exposure can also cause a 50% reduction in ATP levels 

suggesting a possible inhibition of energy metabolism and mitochondrial respiration 

(Domico et al., 2006). Like MPP+, maneb causes striatal dopamine influx (Zhang et 

al., 2003). Similarly, mancozeb affects energy metabolism and inhibits ATP at 

exposure times that precede toxicity. Both are toxic to in vitro DAergic and 

GABAergic cell populations, act as inhibitory uncouplers, uncouple and inhibit 

respiration at low doses, completely inhibit respiration at high doses (30mM) and 

cause a dose-dependent reduction in TH-positive cell number along with decrease in 

neurite length  (Domico et al., 2006). 

  

Several in vivo and in vitro studies have documented toxic effects caused by 

mancozeb. Baligar and Kaliwal (2004) investigated the effects of mancozeb 

treatment on ovarian follicular development and found organ-specific biochemical 
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changes and disruption of oestrous cycle. Shukla et al (2004) evaluated the 

mutagenic potential of mancozeb and noticed a dose-dependent rise in revertant 

number. While investigating genotoxic and pro-apoptotic effects of mancozeb in 

isolated peripheral blood mononucleated cells and cultured fibroblasts of rats, 

Calviello et al (2006) observed dose-dependent strand breaks and increased ROS 

production. Pre-treatment with an antioxidant reduced formation of DNA adducts 

and ROS production. Mills et al (2005) reported a statistically significant increase in 

leukaemia in workers exposed to agricultural mancozeb.  

 

Results from this study are consistent with previous studies investigating the 

toxic potential of organic and metal components of mancozeb and maneb. EBDC 

fungicides share a common backbone and only the addition of a metal ion gives it a 

characteristic identity (Domico et al., 2006). Mancozeb contains manganese and zinc 

ions and it is slightly more toxic than maneb suggesting that the organic moiety and 

the ionic components produce its toxic effects. Zineb’s structure is identical to maneb 

except it has a zinc ion instead of manganese but it is significantly less toxic than 

maneb causing 40% cell death at 0.1mM compared with 90% caused by maneb with 

same dose. Nabam, containing the organic backbone is only toxic at 1mM dose and 

caused no cell death at 0.1mM. This suggests that manganese component of 

mancozeb acts as ‘cytotoxicity inducing portion’ of the chemical. Vaccari et al 

(1999) have shown that mancozeb inhibits glutamate uptake more potently than zinc 

containing ethylene bis-dithiocarbamate zineb. The true extent of the involvement of 

either component cannot be determined from these data. For instance it is not clear if 

the metal ions are detached from the organic backbone to cause toxicity or they 

remain attached. This may be worth investigating as manganese itself is a 

neurotoxin, causing oxidative stress which leads to cell death in glial and neuronal 

cell-lines (Dukhande et al., 2006) and can contribute to an extrapyramidal syndrome 

that shows some PD features (Calne, 1994). High level manganese exposure may 

lead to manganism with features similar to PD but it mainly damages the pallidum 

and striatum rather than SN as seen in PD (Dobson et al., 2004; Levy and Nassetta, 

2003). Although the molecular and cellular mechanisms of manganese toxicity are 

not clear, it is suggested that it exerts its effects through ROS generation (either 

direct or indirect) (Ali et al., 1995), disrupts iron and Ca+2 homeostasis (Gavin et al., 

1990; Zheng and Zhao, 2001), causes direct oxidation of biological molecules like 
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dopamine (Archibald and Tyree, 1987), accumulates in mitochondria and generates 

ROS through disruption of oxidative phosphorylation (Gunter et al., 2006). Results 

from this study suggest that maneb and mancozeb lead to the formation of ROS 

without primarily targeting mitochondria and do not exhibit signs of causing cell 

death through apoptosis as noted through caspase-inhibition.  

 

Epoxiconazole 

Epoxiconazole, a triazole fungicide widely used in different fruit crops and 

cereals (Grote et al., 2008), has a very high rate of absorption, metabolism and 

excretion. Its single low dose has a plasma half life of 5 hours compared with 30 

hours for its single high dose. Its metabolites, about 30 of which have been 

identified, can be detected in bile, urine and faeces, whereas epoxiconazole itself has 

only been detected in faeces when used at a high single dose. Epoxiconazole caused 

40-50% reduction in cytotoxicity at 0.1mM but showed no evidence of mitochondrial 

transmembrane potential dissipation. Caspase inhibition with zVAD.fmk caused 

marginal but insignificant reduction in toxicity but pre-incubation with cell-

signalling inhibitors like GW5074, LY29002 and SQ22536 failed to significantly 

attenuate or potentiate its toxicity. Nec-1 treatment as with other toxins successfully 

inhibited cell death and cell-viability measured after 24 hours was at the same level 

as untreated cells suggesting that epoxiconazole causes programmed necrosis 

possibly by glutathione depletion.  

 

Epoxiconazole inhibits ergosterol biosynthesis and disrupts fungal cell 

membrane synthesis but shows no mutagenic potential. Acute and subchronic studies 

have shown no evidence of significant neurotoxicity (EPA, 2006). Studies 

investigating endocrine disrupting activities of epoxiconazole in rats have suggested 

that epoxiconazole exerted its effect by disrupting enzymes involved in steroid 

hormone synthesis (Taxvig et al., 2007). They noticed elevation in progesterone and 

17a-hydroxyprogesterone levels suggesting that this class of fungicides may target 

lyase function of CYP17. Indeed, in vitro studies in cultured human, rat and pig cells 

have shown that epoxiconazole inhibited aromatase and 17-hydroxylase activity, thus 

inhibiting androstenedione to estrogen conversion and cortisol production, 
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respectively. Testosterone imbalance can be induced in rats after epoxiconazole 

dosage (Goetz et al., 2007). 

 

Fluroxypyr methylheptyl ester: 

 Fluroxypyr methylheptyl ester (FPMH), a pyridinecarboxylic acid herbicide, 

is manufactured from fluroxypyr methyl ester (FPM) (Hewitt et al., 2000). It is 

highly lipophilic and once inside the target crop, it is non-enzymatically hydrolysed 

into fluroxypyr (Lehmann et al., 1993). Lehmann et al (1991) have shown that 

fluroxypyr is degraded in soil. They observed a reduction of 60% of applied 

chemical after 60 days and only its metabolite methoxypyridine remained after 366 

days. Methoxypyridine was not uptaken by the plants and showed no adverse effects 

in the soil. Hewitt et al (2000) have shown complete metabolism of both FPM and 

FPMH when passed through human and rat skin in vitro. Other in vivo studies have 

reported FP in faeces and urine after intravenous FPMH administration. FPMH 

caused 80-90% reduction in cytotoxicity at 0.1mM but showed no evidence of 

mitochondrial transmembrane potential dissipation. Like epoxiconazole, caspase 

inhibition with zVAD.fmk caused marginal but insignificant reduction in toxicity but 

pre-incubation with cell-signalling inhibitors like GW5074, LY29002 and SQ22536 

did not attenuate or potentiate its toxicity. Nec-1 treatment as with other toxins 

successfully inhibited cell-death. Evidence of FPMH toxicity is limited  as shown by 

Carney et al (1995) who assessed the maternal and developmental toxicity potential 

of FPMH in rats and found no evidence of developmental toxicity at 100-

300mg/kg/day dose, though higher doses in foetuses showed skeletal variations.  

 

 In summary, results from this study suggest that these agrochemicals (except 

diquat) lead to the formation of ROS without primarily targeting mitochondria and 

do not exhibit signs of cell death through apoptosis as noted through caspase-

inhibition. Prevention of cell death with Nec-1 suggests involvement of necroptosis 

through non-caspase related mechanism but shows features of both necrosis and 

apoptosis primarily involving the Fas/TNFα receptors and activation of RIP1. Diquat 

successfully responded to Nec-1 and zVAD.fmk (statistically insignificant), 

generated ROS and caused a reduction in mitochondrial transmembrane permeability 

suggesting its acts through mitochondria and involves both necrosis and apoptosis. 
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4.1.1 Introduction: 

 Understanding the molecular mechanisms of cell-death continues to be an 

important area of investigation in PD pathology. Extensive evidence indicates that 

apoptosis is associated with neurodegenerative diseases such as Alzheimer’s disease, 

Parkinson’s disease and Huntington’s disease (Honig & Rosenberg, 2000; Mattson, 

2006). Biomarkers of apoptosis such as p53 up-regulation, p53 and Bax activation 

(de la Monte et al., 1998; Tatton, 2000), caspase 3 and 9 activation (Andersen, 2001) 

and DNA fragmentation (Mochizuki et al., 1997; Tatton et al., 1998) have been 

reported in dopaminergic neurons of PD patients but the overall mechanisms causing 

dopaminergic cell-death are poorly understood. 

 

 Although several PD features in animal and cell culture models have been 

reproduced by using PD linked toxins such as rotenone, paraquat and MPTP. Their 

molecular mechanisms of action are well known e.g. paraquat does not act through 

DAT or inhibit complex I (Richardson et al., 2005) and activates caspase-3 whereas 

rotenone and MPP+ do not activate caspase-3 (Ramachandiran et al., 2007). 

Rotenone induces cell-death through caspase-independent pathway in 

undifferentiated cells but through caspase-dependent pathway in differentiated cells 

(Li et al., 2005). Paraquat can cause oxidative stress in dopaminergic neurons of 

mice (McCormack et al., 2005) through mitochondria-linked apoptosis, p53 

induction (Ueda et al., 2002) and by causing an increase in p53 levels (Takeyama et 

al., 2004).  

4.1.1.1 Aims: 

 The level of protein expression and therefore the mode of cell-death depends 

on the nature of neurotoxic insult. The aim of this study was to investigate changes in 

the levels of protein expression and distribution after acute and chronic toxin 

treatment in SH-SY5Y cells. In order to investigate the mechanism underlying 

agrochemical-induced toxicity, protein expression of PARP-1, caspase-3, 

cytochrome c, RIP, p53, α-synuclein, DJ-1 and tyrosine hydroxylase amongst others 

was examined. Immunocytochemical techniques were used to view changes in 
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nuclear structure and distribution of PARP-1, RIP, α-synuclein, DJ-1, tyrosine 

hydroxylase and neurofilaments. 

4.1.2 Methods: 

Refer to materials and methods (section 2.2). 

4.1.3 Results: 

4.1.3.1 Changes in protein expression after acute toxin exposure: 

4.1.3.1.1 PARP-1, Cytochrome c: 

  Certain features of neurones including their longevity, post-mitotic 

phenotype, structure and synapses make them vulnerable to toxic insult. Since 

neurones have a limited regenerative capacity, they are at increased risk to toxicants 

which gradually accumulate in the cells. Neurons are frequently larger than other 

cells and depend on synapses for information transfer between neighbouring cells 

therefore agents interfering with protein or organelle transport or synaptic function 

can lead to neuronal apoptosis (Gibson, 1999).  

 

A range of different apoptotic markers can be detected after toxin treatment. 

Their absence, presence or cleavage hints towards the mode of cell-death.  For 

example, poly (ADP-ribose) polymerase (PARP-1, 116 kDa) is a nuclear enzyme 

involved in DNA repair in response to cellular stress (Satoh  and Lindahl, 1992). 

ICE-like caspases (Interleukin 1b-converting enzyme) especially caspase-3 cleave 

PARP-1 (Lazebnik et al., 1994) which occurs between Asp214 and Gly215 in 

humans forming a carboxy-terminal catalytic domain (89 kDa) and amino-terminal 

DNA binding domain (24 kDa) (Nicholson et al., 1995). By using an antibody which 

recognised the 89 kDa cleaved fragment and not the full-length or other isoforms, 

toxic treatment with maneb (at 0.01mM, 0.1mM and 0.001mM) and mancozeb (at 

0.001mM, and 0.1mM) showed PARP-1 cleavage (fig 4.1, 4.3 A-C. 4.4 A-C). 

Nuclear condensation, chromatin condensation, DNA cleavage and nuclear 

fragmentation are commonly observed during apoptosis (Buja et al., 1993). Nuclear 

chromatin was uniformly dispersed throughout control cells whereas hyper-intense 

chromatin staining of treated cells was suggestive of apoptotic features. A higher 

number of condensed inter-nuclear fragments were visualised after 24 hour H2O2 
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(0.1mM), rotenone (0.05mM), mancozeb (0.05mM), maneb (0.05mM) and diquat 

(0.05mM) treatment (fig 4.2). A relatively lower number of condensed inter-nuclear 

fragments were visualised after fluroxypyr methyl ester (0.05mM) and 

epoxiconazole (0.05mM) (data not shown). 
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Fig 4.1: Visual presentation of cleaved PARP-1 in toxin treated cells: A significantly higher number of cleaved-PARP-1 positive cells 
(green) were visualised after 24 hour diquat (0.05mM), rotenone (0.05mM), mancozeb (0.05mM), maneb (0.05mM) and MPP+ (1mM) 
treatment (Each image representative of 3 different fields. Magnification is x40 for untreated, diquat and maneb treated cells, x10 for rotenone, 
mancozeb and MPP+). 
 

 

  

 MPP+ (1mM)

Untreated Diquat (0.05mM) Rotenone (0.05mM) 

Maneb (0.05mM) Mancozeb (0.05mM) 
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Fig 4.2: Changes in nuclear morphology after toxin treatment: A significantly higher number of condensed inter-nuclear fragments were visualised using 
DAPI staining after 24 hour treatment with H2O2 (0.1mM), rotenone (0.05mM), mancozeb (0.05mM), maneb (0.05mM) and diquat (0.05mM). (Each image 
representative of 3 different fields, Magnification = x 60). 

 

 

Untreated Rotenone (0.05mM)
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Previous studies have shown that rotenone induces PARP-1 cleavage during 

apoptotic cell-death in SH-SY5Y cells (Nakamura et al., 2004). 24 hour rotenone 

treatment at 0.001mM, 0.01mM and 0.1mM showed PARP-1 cleavage and 

densitometric analysis showed that the band intensities were similar to the hydrogen 

peroxide control (fig 4.4 D-F). MPP+ treatment showed no evidence of caspase-3 

cleavage but caused PARP-1 cleavage at 1mM, consistent with the cytotoxicity data 

which showed significant MPP+ toxicity at this dose (fig 4.5 A-B).  

  

 Similarly maneb and mancozeb induced a significant increase in the levels of 

cytochrome c which is a highly conserved protein normally localised to the 

mitochondrial intermembrane but translocates from the mitochondrial membrane to 

the cytosol during apoptosis, where it is required for caspase-3 activation (Gonzales 

et al., 1990). Cytochrome c release from the mitochondria is thought to trigger an 

apoptotic cascade (Kluck et al., 1997). A significant increase in cytochrome c levels 

was observed with maneb (0.001mM, 0.01mM, 0.1mM) (fig 4.3 A, C) mancozeb 

(0.001mM and 0.1mM) (fig 4.4 A, C) and rotenone (0.01mM) (fig 4.4 D, F) 

compared with untreated controls and hydrogen peroxide (*p<0.05). No such change 

was observed after MPP+ or diquat treatment (fig 4.5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter Four                                                    Protein Expression and Toxin treatment 

 126

Fig 4.3: Effect of toxin treatment on the expression of apoptotic markers: 
Expression of cleaved-PARP-1 and cytochrome c by Western blot analysis after 24 
hour maneb treatment (A-C) (Values are presented as mean±SD, n=3, *p<0.05 
accepted as significant).  
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Fig 4.4: Effect of toxin treatment on the expression of apoptotic markers: Expression of cleaved-PARP-1 and cytochrome c by Western blot analysis 
after 24 hour mancozeb (A-C) and rotenone (D-F) treatment (Values are presented as mean±SD, n=3, *p<0.05 accepted as significant).  
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Fig 4.5: Effect of toxin treatment on the expression of apoptotic markers: 
Expression of cleaved-PARP-1 and cytochrome c by Western blot analysis after 24 
hour MPP+ (A, B) and diquat (C) treatment (Values are presented as mean±SD, n=3, 
*p<0.05 accepted as significant).  
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Treatment with different doses of diquat showed a significant increase in 

cleaved-PARP-1 and LC3 (16kDa) expression at 0.1mM (fig 4.6) after 24 hours. To 

determine the time-course of PARP-1 cleavage, SH-SY5Y cells were treated with 

0.1mM diquat and protein expression quantified at different time points. Results 

showed significant increase in protein levels after 24 hour exposure followed by a 

decrease which complements the data gathered from cytotoxicity screening 

suggesting maximum toxicity at 24 hours after which cell-number tails off due to 

high toxicity.  

 
Fig 4.6:  Effect of diquat treatment on PARP-1 expression: A) Expression of 
cleaved PARP-1 by Western blot analysis after A): 24 hour 0.001mM, 0.01mM and 
0.1mM and (B) 48 hour treatment at 0.1mM. (Values are presented as mean ± SD, 
n=3, *p<0.05).  
 

 
 Given that a slight reduction in toxicity of diquat (0.1mM) was noted with 

zVAD.fmk in previous experiments (see chapter 3, fig 3.18). SH-SY5Y cells were 

pre-incubated with caspase-3, -9 inhibitors, NAC and tunicamycin to investigate 

whether these could have an effect on PARP-1 cleavage. Results showed no change 

in cleaved PARP-1 expression after 24hrs with caspase-3, and -9 inhibitors. NAC 
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2005) and can be toxic itself caused PARP-1 cleavage at a lower 0.01mM dose (fig 

4.7).  

 

 

 

 
Cleaved 
PARP 

LC3 

 

 H2O2        Untreated               0.001M              0.01mM                 0.1mM    

H2O2   Untreated        2H             4H             6H                 24H           48H 

 

Cleaved 
PARP

LC3 

A: 

B: 

89 kDa 

18, 16 
kDa 

18, 16 
kDa 

89 kDa 



Chapter Four                                                    Protein Expression and Toxin treatment 

 130

Fig 4.7:  Effect of diquat treatment on PARP-1 expression: Expression of cleaved 
PARP-1 (89 kDa) after 24 hour treatment with diquat co-incubated with caspase-3 
inhibitor, caspase-9 inhibitor, NAC and tunicamycin (n=3). 
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 For chronic exposure lasting 4 weeks, SH-SY5Y cells were grown in medium 

supplemented with rotenone (5nM), MPP+ (0.01mM), diquat (0.001mM), maneb 

(0.001mM), mancozeb (0.001mM) and epoxiconazole (0.01mM). Etoposide 

(0.5mM) was used as a positive control. Lower chronic doses of agrochemical failed 

to show any evidence of PARP-1 cleavage (fig 4.8). 

 
Fig 4.8: Effect of chronic toxin treatment on the cleaved-PARP-1 expression: 
Expression of cleaved-PARP-1 after 4 week exposure of (A) rotenone (5nM), (B) 
MPP+ (0.01mM), (C) diquat (0.001mM), (D) maneb (0.001mM), (E) mancozeb 
(0.001mM) and (F) epoxiconazole (0.01mM) (n=3). 
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activated caspase-3 which results from cleavage adjacent to Asp175 (data not 

shown).   

 

4.1.3.1.3 p53: 

Free radical generation has an effect in causing DNA damage and affecting a 

DNA-damage response in cells. Protein levels of p53 can be elevated through 

accumulation of DNA strand breaks which can also activate p53-mediated signalling 

pathways (Morrison RS and Kinoshita, 2000). This has prompted research into the 

role of p53 in regulating neuronal cell death. Protein expression in SH-SY5Y cells 

after 24 hour toxin treatment showed significant change in the level of total p53 

protein (*p<0.05) after mancozeb (0.075mM) and maneb (0.01mM, 0.1mM) (fig 

4.9). Similarly, 0.05mM diquat caused a significant increase in p53 levels.  

 

To determine the time-course of p53 expression, SH-SY5Y cells were treated 

with 0.05mM diquat and protein expression quantified at different time points. 

Results showed significant increase in protein level only 24 hour exposure followed 

by a significant decrease suggesting maximum p53 expression when cell is under 

most stress, an effect which was similar to that of PARP-1 expression.  MPP+ 

(0.01mM-1mM), epoxiconazole (0.001mM-0.5mM) and fluroxypyr-ester (0.001mM-

0.5mM) had no effect on p53 levels (data not shown). However, significantly higher 

levels were noted after rotenone treatment at 0.001mM and 0.01mM but not at 

0.1mM (fig 4.9 E-F).  
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Fig 4.9: Toxin induced changes in p53 levels: SH-SY5Y cells were treated with different toxins i.e. A-B) mancozeb, C-D) maneb and E-F) 
rotenone for 24 hours after which cell extracts were probed for p53 (n=3, mean ± SD, *p<0.05). 
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Treatment with different doses of diquat showed a significant increase in p53 

expression at 0.05mM (fig 4.10 A, B). To determine the time-course of its 

expression, SH-SY5Y cells were treated with 0.05mM diquat and protein levels 

quantified at different time points. Results showed time-dependent significant 

increase in protein levels only 24 hour exposure (fig 4.10 C, D). 

 
Fig 4.10:  Effect of diquat treatment on p53 expression: Western blot analysis 
showing p53 expression after 24 hour treatment with 0.01mM, 0.05mM and 0.1mM. 
C-D show p53 levels at different time points after 0.05mM treatment (n=3, mean ± 
SD, *p<0.05).  
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 To investigate whether caspase inhibition or the use of antioxidants affects 

protein levels of total p53, SH-SY5Y cells were pre-incubated with caspase-3, -9 

inhibitors, NAC and tunicamycin but results failed to show any change in p53 

protein expression (fig 4.11).  

 
Fig 4.11:  Effect of diquat treatment on p53 expression: Expression of p53 in SH-
SY5Y cells preincubated with capase-3 inhibitor, caspase-9 inhibitor, NAC and 
tunicamycin after diquat treatment. (n=3, mean±SD, *p<0.05). 
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4.1.3.1.4 RIP: 

 Use of Nec-1 in previous experiments caused a significant reduction in cell-

death. Over-expression of RIP can induce both NF-κB activation and apoptosis (Hsu 

et al., 1996). Therefore, to investigate if Nec-1 affects protein expression, the 

endogenous levels of total and cleaved RIP protein were measured after toxin 

treatment.  

Results showed a significant change in the levels of full length RIP  in 

mancozeb (0.01mM and 0.1mM) (fig 4.12 A-B), maneb (0.001mM-0.1mM), 

rotenone (0.001mM-0.1mM) and MPP+ (0.001mM-1mM) treated cells (fig 4.13, 

densitometric analysis not shown) compared with untreated cells. Diquat (0.01mM-

0.075mM) showed no change in protein levels. There was no difference in cleaved 

RIP (~35-45kDa) in untreated and treated cells (data shown for mancozeb, fig 4.12 

C). Fig 4.13 C, D and E show reduction in cleaved RIP band (~35-45kDa) at 

0.05mM and 0.075mM after diquat treatment, at 0.1mM after rotenone treatment and 

at 0.001mM and 1mM after MPP+ treatment, however replication of these 

experiments failed to repeat this effect. RIP expression in cells pre-incubated with 

Nec-1 failed to show any significant change in RIP levels (densitometric data not 

shown). 
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Fig 4.12: Toxin induced changes in RIP levels: SH-SY5Y cells (±Nec-1) were 
treated with a-c) mancozeb, d) maneb, e) diquat, f) rotenone and g) MPP+ for 24 
hours after which cell extracts were probed for RIP  (n=3, mean ± SD, *p<0.05). 
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Fig 4.13: Toxin induced changes in RIP levels: SH-SY5Y cells (±Nec-1) were 
treated with A) maneb, B) diquat, C) rotenone and D) MPP+ for 24 hours after which 
cell extracts were probed for RIP  (n=3, mean ± SD, *p<0.05). 
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 Immunostaining of RIP clearly showed extra-nuclear distribution of RIP in 

SH-SY5Y cells. No significant change in its localisation was observed between 

untreated cells and those exposed to diquat (0.05mM), rotenone (0.05mM), 

mancozeb 0.05mM), maneb (0.05mM) and MPP+ (1mM) (fig 4.14). 

 
Fig 4.14: Visual presentation of RIP in toxin treated cells: Cellular distribution of 
RIP in untreated and toxin treated SH-SY5Y cells (Magnification = x40, each image 
is representative of three independent fields). 
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 Similar experiments where SH-SY5Y cells were preincubated with Nec-1, 

treated with different chemicals and then probed for p53, phosho p53, LAMP1, 

LAMP2 and LC3 failed to show any significant difference in protein levels 

compared with untreated cells (data not shown).  

4.1.3.1.5 α-synuclein: 

 To determine whether α-synuclein may be involved in the deleterious 

cascade of events induced by toxin treatment, α-synuclein protein expression levels 

(wild-type and α-synuclein phosphorylated at Ser129) were assessed after 24 hour 

treatment. α-synuclein can undergo several post-translational modifications with 

serine 129 phosphorylation being the most important. Up to 90% of α-synuclein in 

Lewy bodies have this modification and it is linked with aggregate formation in cell 

models (Fujiwara et al., 2002; Smith et al., 2005). Immunoblots showed a single 

19kDa wild-type band and heavy bands between 40-55kDa with anti-α-synuclein and 

anti-phosphorylated α-synuclein antibodies respectively. Results showed a marginal 

but insignificant change in the level of α-synuclein (both wild-type and 

phosphorylated) after rotenone treatment (fig 4.15 A-C). Treatment with MPP+ (fig 

4.15 D-F) had no effect on their expression. Similarly treatment with maneb, 

mancozeb and diquat showed no change in protein levels (fig 4.16 A-C).  
 

 
 Immunohistochemical analysis from previous studies have shown that 

rotenone treatment increases the amount of cellular α-synuclein in apoptotic cells 

(Watabe and Nakaki, 2004) and chronic treatment with 50nM rotenone can form 

neuritic swellings morphologically resembling the α-synuclein immunoreactive 

Lewy neurites seen in PD brain samples (Borland et al., 2008). As shown above, 

acute toxin exposure failed to change α-synuclein levels. Therefore, cells were grown 

in medium containing lower doses of different toxins i.e. rotenone (5nM), maneb 

(0.001mM), diquat (0.001mM), mancozeb (0.001mM) and epoxiconazole 

(0.001mM) for 4 weeks but analysis of their protein expression through western 

blotting and immunocytochemistry showed no significant change in protein levels 

(fig 4.17, 4.18).  

 



Chapter Four                                                    Protein Expression and Toxin treatment 

 142 

Fig 4.15: Expression of α-synuclein in toxin treated cells: SH-SY5Y cells were treated with different toxins i.e. A-C) rotenone and D-
F) MPP+ for 24 hours after which cell extracts were probed for α-synuclein and phosphorylated α-synuclein (n=3, mean±SD, *p<0.05). 
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Fig 4.16: Expression of α-synuclein in toxin treated cells: SH-SY5Y cells were 
treated with different toxins i.e. a) maneb, b) mancozeb and c) diquat for 24 hours 
after which cell extracts were probed for α-synuclein and phosphorylated α-synuclein 
(n=3, mean±SD, *p<0.05). 
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Fig 4.17: Visual presentation of α-synuclein in toxin treated cells: Cellular distribution of α-synuclein in untreated and toxin treated 
SH-SY5Y cells after 4 weeks exposure (Magnification = x40, each image is representative of three independent fields). 
 

 
 

Mancozeb (0.001mM)  

Rotenone (5nM)  Untreated  
 

 

Maneb (0.001mM)

Epoxiconazole (0.001mM)Diquat (0.001mM) 



Chapter Four                                                    Protein Expression and Toxin treatment 

 145

Fig 4.18: Chronic toxin induced changes in α-synuclein levels: SH-SY5Y cells 
were grown in medium containing rotenone, MPP+, maneb, mancozeb and diquat for 
4 weeks after which cell extracts were probed for α-synuclein (19 kDa) (n=3). 

 

4.1.3.1.6 DJ-1: 

 DJ-1 plays a role in anti-oxidative stress, inhibition of α-synuclein 

aggregation and transcriptional regulation. Therefore, its loss of function sensitises 
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may cause onset of PD (Inden et al., 2006; Shendelman et al., 2004). Oxidative stress 
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 Effect of DJ-1 over-expression on toxin treatment is discussed in chapter 4. 

However, protein expression in SH-SY5Y cells after toxin exposure failed to show 

any changes in protein levels (fig 4.19). Densitometric analysis of DJ-1 bands 

normalised against GAPDH showed that protein levels neither increased nor 

decreased after 24 hour exposure (data not shown). Analysis of oxidised DJ-1 was 

not performed. These findings were backed up by visual observation of DJ-1 where 

SH-SY5Y cell exposure to toxins did not markedly alter DJ-1 distribution. There was 

no significant change in the staining pattern. DJ-1 immunoreactivity was observed in 

all cell bodies and highly branched and thinner processes (fig 4.20).  
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Fig 4.19: Toxin induced changes in DJ-1 levels: SH-SY5Y cells were treated with 
different toxins i.e. a) maneb, b) mancozeb, c) rotenone, d) MPP+ and e) diquat for 
24 hours after which cell extracts were probed for DJ-1 (n=3, mean±SD, *p<0.05) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   H2O2           Untr      0.001mM   0.01mM         0.1mM    

 

H2O2            Untr    0.001mM   0.01mM          0.1mM    C: 

 

 

 

H2O2         Untr        0.001mM     0.01mM       0.1mM    B: 

 

H2O2            Untr       0.001mM    0.01mM     0.1mM    A: 

 

DJ-1 

GAPDH 

DJ-1 

GAPDH 

DJ-1 

GAPDH 35 kDa 

20 kDa 

35 kDa 

20 kDa 

 

H2O2       Untr      0.001mM   0.01mM     0.1mM    E: 

 

DJ-1 

GAPDH 
35 kDa 

20 kDa 

 

 
DJ-1 

GAPDH 

D: 

35 kDa 

20 kDa 

35 kDa 

20 kDa 



Chapter Four                                                    Protein Expression and Toxin treatment 

 147

Fig 4.20: DJ-1 immunoreactivity following treatment with different toxins: 
Cellular distribution of DJ-1 in untreated and toxin treated SH-SY5Y cells after 4 
weeks exposure (Magnification = x40, each image is representative of three 
independent fields). 
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4.1.3.1.7 Tyrosine hydroxylase (TH):  

Studies have shown that SH-SY5Y cells express tyrosine hydroxylase, the 

rate-limiting enzyme in dopamine synthesis. SH-SY5Y cells are capable of 

producing and transporting dopamine making it an ideal in vitro system to examine 

the effects of toxin treatment on dopaminergic markers such as TH (Presgraves et al., 

2004). 

 
Cells treated with rotenone, diquat, MPP+, maneb and mancozeb for 24 hours 

showed no change in TH levels, as measured through western blotting (fig 4.21). 

Similarly, chronic 4 week exposure had no effect on TH levels (data not shown). To 

examine morphology and TH immunocytochemistry in chronically treated cells, anti-

mouse TH antibody was used. Examples of TH immunoreactivity in untreated and 

treated cells are shown in fig 4.22. All cells, treated and untreated showed smooth 

cytosolic localisation of tyrosine hydroxylase evenly distributed with no evidence of 

aggregation.  

 
Fig 4.21: Effect of 24-h toxin treatment on TH expression in SH-SY5Y cells: 
Western blot detection of TH expression (62 kDa) against GAPDH (35kDa) in A) 
rotenone, B) MPP+, C) maneb, D) mancozeb and E) diquat treated cells (n=3). 
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Fig 4.22: SH-SY5Y cell morphology and tyrosine hydroxylase immunoreactivity following treatment with different toxins: 
Cellular distribution of tyrosine hydroxylase in untreated and toxin treated SH-SY5Y cells after 4 weeks exposure (Magnification = x40, 
each image is representative of three independent fields). 
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4.1.3.1.8 Neurofilaments: 

Neurons degenerate during ageing and neurodegenerative disorders contain 

neurons with disrupted cytoskeleton as observed in dopaminergic neurons in PD and 

hippocampal neurons in Alzheimer’s disease (Mattson and Magnus, 2006). 

Cytoskeleton containing microtubules, intermediate filaments and microfilaments 

help to maintain neuronal morphology with long neurofilament-rich axons and 

dendrites. Previous studies have shown that sub-cytotoxic concentrations of MPTP 

can induce neurotoxic changes in neuronal cells by inhibiting axon outgrowth at 

exposure times  lower than those causing highly significant cell-death (De Girolamo 

et al., 2000).  

 

In order to investigate if agrochemical mediated damage can disrupt 

cytoskeletal structure; a pan-neurofilament antibody was used for 

immunocytochemical staining of SH-SY5Y cells. Distinct morphological features of 

dopaminergic phenotype including neurites and enhanced branching of neuronal 

processes were observed in untreated cells. Treated cells however showed disrupted 

cytoskeletal integrity with maximum immunoreactivity in the cell-body (fig 4.23). 

Overall, the proportion of neurite staining was very low in treated cells. This relates 

with the visual observation that stressed cells under high toxicity have a 

morphological transformation from long neuronal structure to spherical shape. This 

could explain minimal neurite staining.  Future studies using antibodies specific for 

microtubules, intermediate filaments and microfilaments can provide a better 

understanding of the structure more susceptible to toxicity.   
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Fig 4.23: Representative images showing neurofilament staining after toxin treatment: Representative immunofluorescence images of 
SH-SY5Y cells treated with diquat (0.05mM), rotenone (0.05mM), maneb (0.05mM), MPP+ (1mM) and mancozeb (0.05mM) for 24 hours. 
Green staining = pan-neurofilament staining (Magnification = x60, each image is representative of three independent 
fields).
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4.1.4 Discussion: 

In general, induction of PARP-1 was seen as a late event in agrochemical 

treated cells and treatment seems to cause caspase independent cell death processes 

involving RIP. Experimental data from different studies points towards the 

involvement of apoptotic processes in toxin-induced in vitro cell-death but specific 

mechanisms are not extensively described. In order to differentiate apoptosis from 

other forms of cell-death, cleavage of PARP-1, cytochrome c and cleaved caspase-3 

levels were measured following exposure to a range of different doses of selected 

agrochemicals. A dual role for PD-inducing agents including rotenone has been put 

forward which suggests that other than causing oxidative stress they may be involved 

in apoptotic pathways. Rotenone can dephosphorylate the BAD protein in SH-SY5Y 

cells which blocks Bcl-2 which has role in preventing Fas cell-death receptor 

mediated apoptosis (Watabe and Nakaki, 2004).  

 

 In response to internal and external stimuli, cells protect their genomic 

information through DNA repair and DNA damage signalling pathways. PARPs are 

vital for repair of single- and double-strand breaks and control the integrity of the 

chromosomal ends (Beneke and Burkle, 2007). Genotoxic exposure results in PARP-

1 over-activation (Berger et al., 1983) which leads to a reduction in cellular NAD+ 

levels and greater ATP consumption which can push cells towards necrotic cell 

death. However, caspase-independent apoptosis can be induced by PARP-1 activity 

leading to AIF dependent apoptosis involving high-molecular weight DNA 

fragmentation (Cregan et al., 2004). Cleavage of PARP-1 and PARP-2 occurs in 

classical apoptosis to preserve energy by preventing PARP-1 activation and thus 

NAD+ consumption (Beneke and Burkle, 2007). To confirm the apoptotic changes 

caused by selected chemicals on SH-SY5Y cells, PARP cleavage was used as an 

index of apoptosis. Results showed a dose-dependent increase in cleaved PARP-1 

(89kDa) fragment. PARP cleavage became apparent in cells incubated with 

mancozeb, maneb and diquat for 24 h at concentrations of 0.01mM-0.1mM and was 

more obvious at 0.1mM (fig 4.3-4.6). It was highly expressed after 24 hours (data 

shown for diquat, fig 4.6), a time-point where toxicity was at its maximum. The 

absence of any effect of caspase inhibitors on this process for most agrochemicals 

with the exception of diquat, may suggest caspase independent induction of PARP-1. 
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 The release of cytochrome c from the inner mitochondrial membrane 

provides a crucial checkpoint on apoptosis via the Bcl-2 gene family (reviewed by 

Gross et al., 1999). Activation of Bax (a Bcl-2 subfamily member) induces 

permeabilisation of outer mitochondrial membrane resulting in cytochrome c release 

leading to initiation of apoptosis (Ventimiglia et al., 2001). Results from this study 

showed a significant increase in overall cellular cytochrome c levels after maneb, 

mancozeb and rotenone treatment. The loss of mitochondrial transmembrane 

potential causes cytochrome c release into the cytosol and initiates a cascade 

involving caspase activation (Kluck et al., 1997) but there is no evidence of the 

dissipation of mitochondrial transmembrane potential accompanied by cytochrome c 

release in PD patients. The activated caspase 3 cleaves its substrates including 

PARP, which is a substrate of multiple caspases (Ventimiglia et al, 2001). Elevated 

activities of caspase-1 and -3 have been detected in the substantia nigra of post-

mortem PD brain (Mogi et al., 2000). Other studies have suggested a link between 

the numbers of caspase-3 immunoreactive neurons in midbrain of control brains and 

the amount of loss of these neurons in PD brain (Hartmann et al., 2000). Previous 

studies using caspase inhibitors to determine the role of toxins like rotenone in 

apoptosis have shown significant attenuation of apoptosis (Newhouse et al., 2004). 

Same authors used caspase-3 inhibitor to inhibit PARP cleavage in SH-SY5Y cells 

and observed a reduction in number of apoptotic cells. This is in contrast with results 

from this study which failed to detect any change in total (data not shown) or cleaved 

caspase-3 levels suggesting a presence of a caspase-independent mechanism. 

 

 Observation of changes in cell/nuclear morphology, enzymatic activity and 

ATP concentration helps in assessing the mode of cell-death (Fawthrop et al., 1991). 

Both morphological and biochemical methods for evaluating cell death were utilised 

in this study because different characters ascribed to either necrosis or apoptosis can 

be induced by different toxins. Nuclear condensation has been observed in 

dopaminergic neurons of PD patients (Anglade et al., 1997) and gross nuclear 

changes observed after toxin treatment in this study suggested involvement of either 

apoptosis or necrosis as fluorescence staining clearly showed nuclear condensation 

and partition into fragments visible as discrete clusters of nuclear material (fig 4.2). 

These alterations in nuclear morphology were visible after maneb, mancozeb, diquat, 
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rotenone and epoxiconazole treatment. Similar nuclear changes have been reported 

by Newhouse et al (2004) who observed condensed cell-bodies and fragmented and 

condensed nuclei into discrete dense chromatin clumps after rotenone treatment.  

 

 Several acute injuries can cause p53 activation. Neuronal stimulation by 

excitatory amino acids or receptor agonists can lead to accumulation of p53. p53 

expression can be induced in neurons with neurotoxins like kainic acid (Sakhi et al., 

1996). Studies using transgenic p53 knock-out mice have shown protection against 

MPTP toxicity (Trimmer et al., 1996). p53 regulates expression of select target genes 

and thus promotes apoptosis. It can either repress transcription or act as a site-

specific transactivator (Asker et al., 1999). Results investigating the effects of 

selected chemicals on p53 expression showed a dose-dependent increase in active 

p53 levels. It was highly expressed in cells treated with mancozeb, maneb and 

rotenone at concentrations between 0.01mM-0.1mM (fig 4.9).The amount of p53 

increased in a time-dependent manner. After a 24-hour treatment, it reached a 

plateau, and no further increase was observed (data shown for diquat, fig 4.10). 

There is a shortage of studies supporting the hypothesis that diquat may produce 

apoptosis in SH-SY5Y cells but studies using the structurally similar chemical 

paraquat suggest that it acts through a mechanism involving p53 and mitochondria 

(Yang and Tiffany-Castiglioni, 2008). Other studies have shown evidence of 

paraquat induced apoptosis in rat primary neurons (Kim et al., 2004b) and increased 

p53 levels in human lung epithelial-cells (Takeyama et al., 2004). It has been 

reported that p53 may promote cell death by regulating the expression of enzymes 

involved in controlling the redox state of cells (Polyak et al., 1997). In order to check 

if p53-induced changes arise from changes in free radical metabolism and altered 

mitochondrial function, cells were pre-incubated with NAC and tunicamycin before 

diquat treatment. But analysis of results showed no change in p53 expression level 

(fig 4.11). Studies examining the relationship between p53 and caspase activation 

have shown that caspases may be a component of the p53-induced cell death 

pathway and during genotoxic stress, p53 is needed for caspase activation (Cregan et 

al., 1999). These findings propose the presence of a common pathway involving p53, 

caspase activation, mitochondrial dysfunction and cytochrome c release (Morrison 

and Kinoshita, 2000). Results from this study have shown that pre-incubation with 

capase-3 and -9 inhibitors  has no bearing on p53 expression levels (fig 4.11) 
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suggesting that caspase activation can thus be regulated by both p53-dependent and 

independent pathways.  

 

 Similarly, there was no change in the levels of phospo-Chk1 and phospo-

Chk2 (data not shown), the cell-cycle check-points which are activated after DNA 

single strand breaks/bulky lesions and DNA double strand breaks, respectively 

(Reinhardt and Yaffe, 2009). Chk1 and CHk-2 mediated phosphorylation inhibits 

Cdc25 which is a positive regulator of cell cycle progression. Genotoxic stress causes 

phosphorylation of Chk-1 at Ser317 and Ser345 (Zhao et al., 2001) whereas DNA 

damage causes Chk-2 phosphorylation at Thr68 (Lee and Chung, 2001). Data from 

this study failed to detect changes in the levels of Chk1 (phosphorylated at serine 

345) or endogenous levels of Chk2 when phosphorylated at threonine 68 (data not 

shown).   

 
 Other than apoptosis, necrosis may also occur in diseases like PD and 

Alzheimer’s disease (Kitanaka and Kuchnio, 1999) but the involvement of RIP 

which is a serine-threonine kinase involved in NF-κB activation remains 

undetermined (Kelliher et al., 1998). RIP has been implicated in caspase-independent 

pathways and undergoes cleavage by caspase-8 forming two fragments, one smaller 

fragment and the other containing the entire kinase domain. Inhibition of the TNF-

induced and NF-κB pathways is a result of RIP cleavage which also increases TNF-

R1-associated death domain (TRADD) and FADD interactions, enhancing cell-death 

along the way (reviewed by Bárcia et al., 2003). FLICE-inhibitory protein (FLIP) 

mediates the recruitment and/or stabilisation of RIP (Kataoka et al., 2000) and blocks 

apoptosis by competing with caspase 8 (Thome et al., 1997). Therefore any 

imbalance in caspase 8, FLIP and RIP may regulate the levels of uncleaved RIP 

(Bárcia et al., 2003). To confirm RIP expression and cleavage, untreated and toxin 

treated SH-SY5Y cells were lysed for Western blot analysis. Results showed RIP 

expression (total, ~74kDa and cleaved 42kDa) in both control and treated cells. 

Densitometric analysis showed a dose-dependent increase in total RIP fragment in 

mancozeb treated cells but not in cleaved fragments. No change was observed after 

treatment with other chemicals.  
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 Over expression of free α-synuclein can cause cytotoxicity in neuronal cell 

types like sympathetic neurons, dopaminergic neurons and human neuroblastoma 

cells (Li et al., 2009). It has been suggested that mutant and post-translationally 

modified α-synuclein may have a role in the degeneration of SN dopaminergic 

neurons in PD. Oxidatively damaged wild-type α-synuclein can mimic certain 

features of mutant α-synuclein (Hashimoto et al., 1999). Therefore, to gain better 

understanding about the relationship between α-synuclein and SH-SY5Y cells, the 

expression and distribution of α-synuclein was investigated. No significant changes 

in α-synuclein protein levels (both wild-type and phosphorylated) were detected after 

acute or chronic toxin exposure. A marginal but insignificant change in the level of 

α-synuclein was noticed after rotenone treatment but replication of these results 

failed. There was no evidence of α -synuclein up-regulation, which has been noticed 

after MPTP-induced apoptotic death in SNpc dopaminergic neurons (Vila et al, 

2000). There is shortage of studies exploring the effects of pesticides like maneb and 

mancozeb on α-synuclein expression. However, studies using manganese (a 

component of both maneb and mancozeb) have shown induction of α-synuclein 

expression (Giltler et al., 2009) which can promote apoptosis in SH-SY5Y cells. α-

synuclein is initially produced in the cell-body but as it is a synaptic-associated 

protein, it is rapidly transported to the nerve terminals (Withers et al., 1997). α-

synuclein immunostaining was distributed diffusely with greater immunoreactivity in 

the cytoplasm which extended to neuronal processes. α-synuclein has a significant 

propensity to aggregate and PD-linked mutations or post-translational modifications 

caused by oxidative stress can enhance such aggregation (Conway et al., 1998; El-

Agnaf et al., 1998). Chronic toxin treatment lasting 4 weeks failed to alter the levels 

of α-synuclein-positive staining. Most of α-synuclein-positive neurons had a healthy 

morphological appearance with no evidence of aggregation in the cell bodies. 

 
 In vivo PD animal studies show that DJ-1 has a neuroprotective effect in 

disease process (Inden et al., 2006) but  the mechanism and signalling pathways that 

are central to its function have not been fully identified as it is implicated in a 

number of different biological processes ranging from being involved in the 

oxidative stress response, ROS quenching (Mitsumoto and Nakagawa, 2001), 

transcription modulation (Niki et al., 2003), functioning as a regulatory subunit of an 

RNA-binding protein (Hod et al., 1999) and having a possible role as a molecular 
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chaperone preventing α-synuclein aggregation (Shendelman et al., 2004). Previous 

studies show that DJ-1 can play a part in suppressing ROS-mediated neuronal 

apoptosis pathway after 6-OHDA exposure (Inden et al., 2006) but results from this 

study showed no change in DJ-1 protein levels after toxin exposure and its cellular 

localisation after chronic treatment remained unaltered (fig 4.19, 4.20). 

 A reduction in DA levels has been observed in Parkinson’s disease (PD) 

patients. This makes tyrosine hydroxylase, the rate-limiting enzyme in dopamine 

synthesis, a critical player in dopamine control. As well as acting as a dopaminergic 

cell-marker it plays a role in regulating the production of dopamine, which if over-

produced can elevate the levels of ROS leading to degeneration of dopaminergic 

neurons (Miyazaki and Asanuma, 2008). To detect the TH protein following toxin 

treatment, a similar procedure was used. SH-SY5Y cells transfected with human 

tyrosine hydroxylase isoform 1 have proven to be more resistant to cell death 

induced by hydrogen peroxide and 6-OHDA. This may suggest an increased 

antioxidant activity if its levels are increased in the cell (Franco et al., 2010). Results 

from western blotting showed no change in TH levels after 24 hour treatment. 

Similarly, no morphological changes were observed in chronically treated cells. 

These cells exhibited distinct neuronal morphological features including increased 

neurite length and enhanced branching of neuronal processes, in keeping with their 

dopaminergic phenotype. 

 Neurofilaments (NFs) are part of the cytoskeleton and provide stability and 

help maintain neuronal structure. Newly formed unphosphorylated NFs are 

transported to the axons, a process which causes their phosphorylation (Nixon et al., 

1987).  Any change in NF structure disrupts axonal transport, conduction speed or 

cause degeneration (Pant and Veeranna., 1995; Schlaepfer et al., 1987). Such effects 

have been observed after traumatic brain injury which results in reduced NF 

immunoreactivity and/or loss of neuronal cytoskeletal proteins (Posmantur et al., 

1994; Saatman et al., 1998). Neuronal cytoskeletal alterations are visible in many 

neurodegenerative disorders. Accumulation of phosphorylated neurofilaments in the 

perikarya has been observed in Alzheimer’s disease (Cork et al., 1986) and 

Parkinson’s disease (Forno et al., 1986). In order to investigate if acute toxin 

treatment alters NF architecture and adversely affects survival of SH-SY5Y cells, a 

pan-neurofilament antibody which reacted with NF-low, NF-medium and NF-high 
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molecular weight sub-unit was used. Antibody predominantly stained the cytoplasm 

and cell-processes (fig 4.23). Overall NF immunoreactivity was lower in treated cells 

which mostly showed staining around the nucleus in the cell-body with very minimal 

staining in neurites. Neurofilament subunits have been detected in Lewy bodies 

(Galvin et al., 1999) but results from this study showed no evidence of aggregated 

bodies in cells. 
 

In summary, results from this study suggest that agrochemical treatment 

causes cell death through caspase independent mechanisms which also involve RIP. 

Induction of cell-death marker such as PARP-1 occurred independent of caspase 

involvement as observed through absence of any effect of caspase inhibitors and can 

be a late event in agrochemical treated cells. Examination of nuclear morphology 

after maneb, mancozeb, diquat, rotenone and epoxiconazole treatment showed 

nuclear condensation and therefore suggests involvement of either apoptosis or 

necrosis. Levels of proteins associated with PD such as α-synuclein and DJ-1 

remained unchanged after agrochemical treatment. Although a change in 

neurofilament staining was observed after acute toxin treatment, SH-SY5Y cells 

labelled with tyrosine hydroxylase, DJ-1 and α-synuclein showed normal staining 

after 4 week exposure, cells appeared in healthy condition suggesting that long term 

low dose exposure does not affect cell-structure or function.  
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5.1.1 Introduction:  

 Autophagy is a cellular protective mechanism which degrades organelles and 

molecules and produces energy and amino acids for protein synthesis (Bresden et al., 

2006). It involves degradation of biological macromolecules through different 

mechanism such as i) microautophagy which directly fuses small amounts of cytosol 

or specific proteins with the lysosomes, ii) macroautophagy (generally referred to as 

autophagy) which involves vesicle formation which results in subsequent 

degradation of proteins and entire organelles by lysosomes and iii) chaperone-

mediated autophagy (CMA) which involves direct import of target proteins across 

the lysosomal membrane (Wang and Levine, 2010). A number of different signalling 

pathways involving tyrosine kinase receptors, casein kinase II ( Holen et al., 1993), 

MAP kinases ( Häussinger et al., 1999) and calcium ( Gordon et al., 1993) control 

autophagy. Nutrient starvation, depletion of total amino acids and inhibition of the 

mammalian target of rapamycin (mTOR) are among several stimuli which can 

induce macroautophagy. Autophagy is active at a low level and is markedly up-

regulated by starvation and nutrient or growth factor deprivation. Once nutrients are 

withdrawn, mTOR is inactivated which in turn activates the ATG complex. The 

autophagic process involves the formation of an isolation membrane from a pre-

autophagosomal structure which encloses and sequesters different cytoplasmic 

materials such as endoplasmic reticulum, ribosomes, mitochondria, membrane lipids 

and proteins to form an autophagosome. The fusion of the autophagosome with a 

lysosome leads to the formation of an autolysosome which degrades the sequestered 

material to generate energy (Levine and Yuan, 2005). Nutrient deprivation triggers a 

response in starvation-induced autophagy and upstream signals like VPS34 (a class 

III PI3K) complexed with Atg6 (beclin-1) regulate bulk phase starvation (Tassa et 

al., 2003). Genetic screening of Saccharomyces cerevisiae and other fungi has led to 

the discovery of nearly 17 ATG (autophagy-related) genes which are actively 

involved in this catabolic process (Klionsky et al., 2003; Reggiori and Klionsky, 

2002). The discovery of their homologues in eukaryotic organisms has provided 

information on the function of their gene products such as the conjugation of 

Atg5/Atg12 proteins which plays a part in autophagy initiation, and Atg8 (ubiquitin-

like protein) which is involved in the formation of the autophagosome membrane 

(Zhu et al., 2007).   
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 Autophagic pathways are implicated in neurodegenerative diseases like 

Parkinson's disease (Cheung, 2009), Huntington’s disease (Qin et al., 2008) and 

Alzheimer’s disease (Nixon et al., 2003). Autophagolysosomal alterations such as 

up-regulation of lysosomal enzymes and granulovacuolar degeneration have been 

observed in Alzheimer’s disease (Stadelmann et al., 1999) and studies of PD/Lewy 

body disease cases reveal increased nigral autophagic vacuoles (AV) (Anglade et al., 

1997). Indeed, analysis of PD brain shows deregulation of autophagy (Levy et al., 

2009). The first evidence in support of autophagy in PD came from the 

macroautophagic and chaperone-mediated autophagic degradation of α-synuclein 

(Webb et al., 2003; Cuervo et al., 2004). Inhibition of chaperone-mediated 

autophagy (CMA) forms detergent-insoluble and high molecular-weight species of 

α-synuclein (Vogiatzi et al., 2008). The pathogenic A53T and A30P α-synuclein 

mutants act as uptake blockers and bind to CMA receptor (LAMP2A) on the 

lysosomal membrane  and inhibit their own degradation and that of other cytosolic 

proteins destined for CMA which may further contribute to cellular stress (Cuervo et 

al., 2004). Kabuta et al (2008) have demonstrated that UCH-L1 physically interacts 

with LAMP-2A and other components of the CMA pathway including Hsc70 and 

Hsp90. The mutant UCH-L1 containing I93M mutation showed enhanced affinity for 

LAMP-2A and Hsc70 and induced a CMA inhibition-associated increase in the level 

of α-synuclein.  
 

 Neurodegeneration can be caused by the knock down of ATG genes or 

molecules required for the induction and execution of macroautophagy (Komatsu et 

al., 2006; Hara et al., 2006). Loss of autophagy in the CNS or the suppression of 

basal autophagy in neural cells fail to clear protein aggregates and cytoplasmic 

inclusions which causes cell-death. This is evident in animal models where ATG7 

conditionally null mice show ubiquitin-positive aggregates and damaged 

mitochondria (Komatsu et al., 2005). Similarly, beclin-1 null mice deficient in 

autophagy die early in embryogenesis (Yue et al., 2003).  
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5.1.1.1 Aims:  

Limited data are available showing how chemical exposure is linked with 

autophagy but some studies have shown that an autophagic response can be 

generated using MPP+ exposure in primary dopaminergic neurons and SH-SY5Y 

cells (Zhu et al., 2007). The autophagy gene ATG5 is a critical protein needed at the 

stage of autophagosome-precursor synthesis. Previous studies have shown that its 

deletion in yeast or mammalian cells/mice effectively blocks autophagy (Kametaka 

et al., 1996; Kuma et al., 2004). Similarly, its down-regulation in HeLa cells can 

reduce cell death and vacuole formation induced by IFN-γ (Pyo et al., 2005). 

Therefore, the aim of this study was to investigate the effect of the selected 

chemicals on SH-SY5Y cells after siRNA knockdown of ATG5, expression of 

lysosomal aggregation after acute 24 hour toxin exposure and cell-viability of toxin 

treated SH-SY5Y cells after transfection of plasmid DNA.  

 

5.1.2 Methods: 

  Refer to materials and methods (section 2.3).   
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5.1.3. Results:  

5.1.3.1 ATG5 siRNA transfection/Lentiviral Particles Transduction: 

 Previous studies indicate that autophagy can be abolished by complete 

knockout of ATG5 and formation of autophagic vacuoles can be reduced through 

lower Atg protein expression (Hosokawa et al., 2006). Autophagy proteins play a 

vital role in stress-induced cell-death and ATG gene knock down can regulate 

autophagy to a certain extent. ATG5 siRNA knockdown using ‘Dharmacon® Accell 
TM delivery protocol’ significantly reduced Atg5 protein expression to 40% of 

untransfected control (fig 5.1a, b) and completely blocked LC3-II expression (fig 

5.1c). Lentiviral transduction was not successful and knockdown of RAD51 protein 

(used as a positive control for siRNA knockdown) in SH-SY5Y and HeLa cells 

failed to alter its expression (fig 5.1d). Therefore, Dharmacon® protocol was 

preferred as a method of choice. 

 
 
Fig 5.1: ATG5 knockdown efficiency in SH-SY5Y cells: A-B) ATG5 protein 
levels were measured using western blotting and ATG5/GAPDH ratio showed a 
decrease of ~40% in ATG5 levels in siRNA transfected cells after 72 hours. C) LC3 
(16kDa) bands were only visible in H2O2 (0.5mM) treated cells (positive control). D) 
Lentiviral transduction for RAD51 in SH-SY5Y and HeLa cells was unsuccessful.  
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A significant decrease (*p<0.05) in Alamar Blue reduction was noticed in 

siRNA transfected cells (74.4%±2.5 of untreated controls) after 24 hours (fig 5.2a) 

but western blotting showed no decrease in Atg5 protein level at this stage (fig 5.2b). 

After 48 hours cell-viability of siRNA treated cells was still significantly lower than 

controls (67.2%±3.2 of controls) but a significant reduction in protein levels was 

evident, showing that at least 48 hours are required for knockdown to take effect. At 

the 72 hour time point, there was no further decrease in Alamar Blue reduction 

(75%±2.2 of controls) but further significant reduction in Atg5 levels.  

 
Fig 5.2: Alamar Blue reducing capacity of ATG5 KO SH-SY5Y cells: A) 
Percentage Alamar Blue reduction in mock vs. siRNA treated cells calculated at 24, 
48 and 72 hours after transfection. B) Cells were extracted in native lysis buffer and 
ATG5/GAPDH protein ratios measured after western blotting.  
 
 

 

*
*

*

0

20

40

60

80

100

120

24 48 72
Time (Hours)

%
 o

f C
on

tr
ol

A: 
p = 0.042 p = 0.032 

p = 0.036 

 
RAD51 
 

                  Ctrl    RAD51 siRNA             Ctrl    RAD51 siRNA 

GAPDH 

HeLaSH-SY5Y  

 

D: 

43 kDa 

35 kDa 

 

Untreated ATG5 siRNA/ 
H2O2 

LC3-I (18kDa)  

GAPDH  

LC3-II (16kDa)  

H2O2 C: 

18 kDa 
16 kDa

35 kDa 

■ Untreated  
□ ATG5 siRNA



Chapter Five                                                                   Toxin treatment & Autophagy 

 165

 

5.1.3.2 ATG5 knockdown and toxin treatment: 

 In order to investigate if toxin treatment has an effect on Atg5 protein levels, 

selected chemicals were added to SH-SY5Y cells 72 hours after siRNA transfection. 

Cell viability was measured after 24 hours (96hrs total) and overall results indicated 

no significant increase or reduction (*p<0.05) in cell-viability or Atg5 levels in cells 

treated with diquat, rotenone, MPP+, epoxiconazole, maneb and mancozeb. Alamar 

Blue reduction assay showed that ATG5 siRNA knockdown was unable to attenuate 

the toxicity by selected chemicals (fig 5.4, 5.5). Successful ATG5 knockdown was 

not achieved in all experiments and this remained a recurring problem. In 

experiments where ATG5 was successfully knocked down (fig 5.3) protein levels 

remained unchanged after toxin treatment (data shown for diquat (0.1mM) and 

rotenone (0.05mM).  
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Fig 5.3: ATG5 knockdown and toxin treatment: A-D: Cell extracts from siRNA (72 hours) and toxin treated cells (diquat at 0.1mM and 
rotenone at 0.05mM) for 24 hours were probed for ATG5 knockdown. Densitometric analyses of untreated and ATG5 knockdown bands were 
calculated using ImageJ 1.38x software and data are shown as arbitrary units (mean±SD; n=3;*P<0.05). 
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Fig 5.4: ATG5 siRNA treatment and cell-viability in toxin treated cells: Alamar 
Blue reduction assay showed that ATG5 siRNA knockdown was unable to attenuate 
toxicity by A) diquat, B) rotenone and C) MPP+ (n = 3, ±SD, *p<0.05).  
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Fig 5.5: ATG5 siRNA treatment and cell-viability in toxin treated cells: Alamar 
Blue reduction assay showed that ATG5 siRNA knockdown was unable to attenuate 
toxicity by A) epoxiconazole, B) maneb and C) mancozeb (n = 3, ±SD, *p<0.05).  
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5.1.3.3 Changes in protein expression after acute toxin exposure: 

 Protein expression using western blotting of SH-SY5Y cells after 24 hour 

toxin treatment  showed no significant change in the level of Atg5 protein or LC3 

level (data not shown, *P<0.05) (fig 5.6 A-E) except diquat which showed a highly 

expressed LC3 (16kDa) band at 0.1mM dose (fig5.6C).  

 

Fig 5.6: Toxin induced changes in Atg5 levels: SH-SY5Y cells were treated with 
different toxins i.e. A) maneb, B) mancozeb, C) diquat, D) MPP+ and E) rotenone 
for 24 hours after which cell extracts were probed for Atg5 protein (Each image is 
representative of 3 experiments).  
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 Similarly, beclin-1 levels were measured after 24 hour toxin exposure and 

results showed a significant increase (*P<0.05) in beclin-1 levels with maneb 

0.001mM, 0.01mM (fig 5.7 A-B) and reduction with mancozeb at 0.01mM (fig 5.8 

C-D). A dose and time related increase in beclin-1 was observed with diquat 

treatment. 0.1mM dose showed a significantly increased beclin-1 band (fig 5.9 A-B). 

Beclin-1 expression in SH-SY5Y cells treated with 0.1mM diquat and examined at 

different time points showed a significant increase (p<0.05) after 4 hours (fig 5.9 C-

D). Different doses of MPP+ (0.01mM-1mM) (fig 5.8A) and rotenone (0.001mM-

0.1mM) (fig 5.8 B) did not have any effect on beclin-1 levels.  

 

Fig 5.7: Toxin induced changes in beclin-1 levels: SH-SY5Y cells were treated 
with different doses of maneb (A, B) for 24 hours after which cell extracts were 
probed for beclin-1 protein (* = p < 0.05 compared with untreated control).  
 
 

 
 

 
 
 

B: 

0

0.8

1.6

2.4

3.2

4

4.8

Hydrogen
Peroxide (0.5)

Untr. 0.001 0.01 0.1

Maneb - Conc. (mM)

R
at

io
 (B

ec
lin

-1
/G

A
PD

H
)

*
* *

 

               Maneb    

 Beclin-1 

0.001mM   0.01mM   0.1mM     Ctrl          H2O2 

 GAPDH 

A: 

35 kDa

60 kDa



Chapter Five                                                                   Toxin treatment & Autophagy 

 171

Fig 5.8: Toxin induced changes in beclin-1 levels: SH-SY5Y cells were treated 
with different doses of MPP+ (A), rotenone (B) and mancozeb (C, D) for 24 hours 
after which cell extracts were probed for beclin-1 protein (* = p < 0.05 compared 
with untreated control).  
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Fig 5.9: Toxin induced changes in beclin-1 levels: SH-SY5Y cells were treated 
with diquat (A-D) for 24 hours after which cell extracts were probed for beclin-1 
protein (* = p < 0.05 compared with untreated control).  
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 Lysosome-associated membrane proteins-1 and -2 (LAMP1, LAMP2) are 

lysosome specific transmembrane proteins required for autophagolysosome 

formation (González-Polo et al., 2005). It has been suggested that down-regulation 

of LAMP1/2 can increase sensitivity to lysosome mediated cell death (Fehrenbacher 

et al., 2008). LAMP1 levels were measured after 24 hour toxin exposure and results 

showed a significant increase (p<0.05) in LAMP1 levels after maneb (0.001mM, 

0.01mM and 0.1mM) (fig 5.10 A-B) and mancozeb (0.01mM, 0.05mM and 

0.075mM) treatment (fig 5.11 A-B). No such effect was observed after diquat 

(0.001mM, 0.01mM and 0.1mM) (fig 5.11 C), MPP+ (0.01mM, 0.1mM and 1mM) 

(fig 5.11 D) and rotenone treatment (0.001mM, 0.01mM and 0.1mM) (fig 5.12). 

 

Fig 5.10: Toxin induced changes in LAMP-1 levels: SH-SY5Y cells were treated 
with different doses of maneb (A-B) for 24 hours after which cell extracts were 
probed for LAMP-1 protein (* = p < 0.05 compared with untreated control).  
.  
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Fig 5.11: Toxin induced changes in LAMP-1 levels: SH-SY5Y cells were treated 
with different doses of mancozeb (A-B), diquat (C) and MPP+ (D) for 24 hours after 
which cell extracts were probed for LAMP-1 protein (* = p < 0.05 compared with 
untreated control).  
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Fig 5.12: Toxin induced changes in LAMP-1 levels: SH-SY5Y cells were treated 
with different doses of rotenone for 24 hours after which cell extracts were probed 
for LAMP-1 protein (* = p < 0.05 compared with untreated control).  
 

LAMP2 levels measured after 24 hour toxin exposure showed a significant 
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(fig 5.14 D) and rotenone treatment (0.001mM, 0.01mM and 0.1mM) (fig 5.15). 

 
Fig 5.13: Toxin induced changes in LAMP-2 levels: SH-SY5Y cells were treated 
with different doses of maneb (A-B) for 24 hours after which cell extracts were 
probed for LAMP-2 protein (* = p < 0.05 compared with untreated control).  
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Fig 5.14: Toxin induced changes in LAMP-2 levels: SH-SY5Y cells were treated 
with different doses of mancozeb (A-B), diquat (C) and MPP+ (D) for 24 hours after 
which cell extracts were probed for LAMP-2 protein (* = p < 0.05 compared with 
untreated control).  
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Fig 5.15: Toxin induced changes in LAMP-2 levels: SH-SY5Y cells were treated 
with different doses of rotenone for 24 hours after which cell extracts were probed 
for LAMP-2 protein (* = p < 0.05 compared with untreated control).  
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Fig 5.16A: Localisation of lysosomal aggregates after toxin treatment: Treatment 
with diquat (0.1mM),  maneb (0.05mM) and rotenone (0.05mM) for 24hrs resulted in 
the formation of lysosomal aggregates which were stained with LysoTracker® red 
DND-99 and viewed under fluorescent microscope (magnification = x40; each image 
is representative of three independent fields. Selected cells magnified to show 
aggregation pattern). 
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Fig 5.16B: Localisation of lysosomal aggregates after toxin treatment: Treatment 
with hydrogen peroxide (0.1mM), paraquat (0.1mM), mancozeb (0.05mM) and 
MPP+ (0.5mM) for 24hrs. LysoTracker® red DND-99 staining viewed under 
fluorescent microscope (magnification = x40; each image is representative of three 
independent fields. Selected cells magnified to show aggregation pattern). 
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Fig 5.17: Dose dependent increase in lysosomal aggregates after toxin 
treatment: Large lysosomal aggregates were observed after SH-SY5Y cells 
treatment with diquat and maneb at 0.1mM after 24 hours, compared with 0.001mM 
treatment (magnification = x60; each image is representative of three independent 
fields. Selected cells magnified to show aggregation pattern). 
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Fig 5.18: Time dependent increase in lysosomal aggregates after toxin 
treatment: High numbers of large lysosomal aggregates were observed after SH-
SY5Y treatment with diquat and rotenone at 0.1mM and 0.05mM respectively after 
24 hours, compared with shorter exposure lasting 4 and 6 hours (magnification = 
x40, each image is representative of three independent fields). 
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5.1.3.5 Transfection of DJ-1, Parkin and wild-type α-synuclein plasmid DNA: 

To study the physiological function of DJ-1, Parkin and wild-type α-

synuclein in cells, these proteins were over-expressed using plasmid DNA 

transfection. Results showed successful transfection of DJ-1 through c-myc tagged 

antibody (fig 5.19A) but failed to show Parkin or α-synuclein in transfected cells. 

Therefore, DJ-1 transfected cells were used for toxin treatment. Cell viability 

measured after 24 hours toxin treatment indicated no significant increase or reduction 

(*p<0.05) in cell-viability in transfected and non-transfected cells treated with 

epoxiconazole (0.15mM), rotenone (0.01mM), mancozeb (0.04mM), maneb 

(0.04mM) B) diquat (0.15mM), mecoprop methyl ester (0.15mM), fluroxypyr ester 

(0.1mM) and MPP+ (2mM) (fig 5.19 B, C). 
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Fig 5.19: DJ-1 Transfection and cell-viability in toxin treated cells: A) SH-SY5Y cells were transfected with c-myc tagged DJ-1 
plasmid DNA for 48 hours and then treated with B) epoxiconazole (0.15mM), rotenone (0.01mM), mancozeb (0.04mM), maneb 
(0.04mM) C) diquat (0.15mM), mecoprop methyl ester (0.15mM), fluroxypyr ester (0.1mM) and MPP+ (2mM) for 24 hours. (n = 3, 
±SD, *p<0.05).  
 
 
 

 
 
 
 
 
 
 
 

GAPDH 

 
     Ctrl        Mock    Parkin    DJ-1    α-syn       A53T 

A: 

15-20 
 kDa 

35 kDa

B: 

C: 

-  

20 

40 

60 

80 

100 

120 

Ctrl Ctrl +
Reagent 

DJ-1 Epox
(0.15)

DJ-1 +
Epox

Rotenone
(0.01)

DJ-1 +
Rotenone

Mancozeb
(0.04)

DJ-1 +
Mancozeb

Maneb
(0.04)

DJ-1 +
Maneb

Treatment (mM)

C
el

l V
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

 

-  

20 

40 

60 

80 

100 

120 

Ctrl Ctrl +
Reagent 

DJ-1 DQ (0.15) DJ-1 + DQ Mecoprop
m .e . (0.15)

DJ-1 +
Mecoprop

m .e .

Flur. (0.1) DJ-1 +
Flur.

MPP+ (2) DJ-1 +
MPP+

Sam ples

C
el

l V
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

 



Chapter Five                                                                   Toxin treatment & Autophagy 

 184

5.1.4 Discussion: 

Previous studies have suggested that melanised neurones in PD brain show 

evidence of autophagic degeneration (Anglade et al., 1997). In this study the 

induction of autophagy was evaluated by detecting changes in the levels of Atg5 

protein, beclin-1, a Bcl-2-interacting protein and LC3, an autophagosomal membrane 

form of microtubule-associated protein 1 light chain 3. Suppression of Atg5 or Atg7 

genes has been linked with neurodegeneration in mice accompanied with an 

accumulation of polyubiquitinated proteins (Hara et al., 2006). These studies 

demonstrated a functional involvement of autophagy in neurodegeneration by 

showing motor deficits and progressive accumulation of ubiquitin-containing 

aggregates (Hara et al., 2006; Komatsu et al., 2006). Additionally, α-synuclein 

degradation also depends on macroautophagy and CMA (Webb et al., 2003). 

Previous studies have shown that RNAi knockdown of genes linked with autophagy 

confers protection from cell death. Zhu et al (2007) have shown that RNAi 

knockdown of ATG5, ATG7 or LC3 protects against cell death. Similarly, siRNA 

targeting LC3 prevented neurite shortening in differentiated SH-SY5Y cells (Plowey 

et al., 2008) whereas ATG5 and beclin-1 knockdown protected 661W cells from 

hydrogen peroxide induced injury (Kunchithapautham and Rohrer, 2007). Inhibition 

of specific Atg proteins linked with autophagy regulation can change the 

morphological appearance of cell-death to necrosis. In the current study successful 

ATG5 knockdown occurred in SH-SY5Y cells 72 hours after transfection.  Alamar 

Blue reduction assay showed that ATG5 knockdown had no effect on the toxicity of 

selected chemicals as there was no significant change (p<0.05) in the viability of 

toxin treated and siRNA transfected cells exposed to toxins (fig 5.4, 5.5). When Atg5 

levels were visualised using western blotting and band intensities measured, no 

significant change was noticed (fig 5.3). SH-SY5Y cells treated with different doses 

of agrochemicals following 72hrs siRNA treatment for 24 hours also failed to show 

any change in Atg5 levels (fig 5.6) suggesting that knockdown was not consistent.   

 
Levels of beclin-1, which can stimulate autophagy when over-expressed in 

mammalian cells (Liang et al., 1999), were significantly higher in maneb, mancozeb 

and diquat treated cells (see fig 5.8) but showed no change in MPP+ and rotenone 

treated cells. Indeed, constitutive activation of beclin-1 in mice can activate 
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autophagy causing cerebellar Purkinje cell-death (Yue et al., 2002) but shows 

reduced aggregate formation when it is over-expressed (Pickford et al., 2008). It is 

possible therefore that mancozeb, maneb and diquat cause induction of autophagy 

which is mediated in part by beclin-1 induction. Beclin-1 has more complicated 

functions as Atg5 and -7 knockout mice survive until birth (Kuma et al. 2004), 

whereas beclin-1 knockout mice die at about embryonic day 7.5 (Yue et al. 2003). 

Bcl-2, an anti-apoptotic protein (Liang et al., 1998) that inhibits starvation-induced 

autophagy by binding to beclin-1, blocks beclin-1 mediated autophagy in 

mammalian, yeast and in vivo models. Bcl-2 mutants which cannot bind to beclin-1 

do not inhibit autophagy (Luo S and Rubinsztein, 2007). Starvation reduces Bcl-2–

beclin-1 interaction and frees beclin-1 to activate autophagy. Inexplicably, 

endoplasmic reticulum-targeted Bcl-2 but not mitochondria-targeted Bcl-2 inhibits 

autophagy (Pattingre et al., 2005). Class III phosphoinositide (PI-3) kinase activity 

has been linked with the regulation and control of macroautophagy.  In 

Saccharomyces cerevisiae class III PI-3 kinase activity required for autophagosome-

vesicle nucleation resides in a complex containing Atg6 (orthologous to mammalian 

beclin-1) (Petiot et al., 2000). Additionally, Petiot and colleagues have shown that 

inhibition of PI3K by 3-MA and lower doses of wortmanin blocks macroautophagic 

sequestration and protein degradation. 3-MA however had no effect on cell viability 

when exposed to the current series of chemicals (see Chapter 3), which possibly 

suggests that beclin-1 up-regulation is related to CMA, rather than macroautophagy. 

Other ways in which beclin-1 may affect autophagy include UVRAG (UV irradiation 

resistance-associated gene) (Liang et al., 2006) and Ambra1 (a WD-40 domain-

containing protein) (Maria Fimia et al., 2007). UVRAG is part of class III PI-3 

complex and is involved in positive regulation of autophagy whereas Ambra1 is a 

beclin-1 interacting protein primarily expressed in neural tissues and positively 

regulates beclin-1-dependent autophagy (Mizushima, 2007). Given the up-regulation 

of beclin-1 following maneb, mancozeb and diquat exposure, it would be of interest 

to determine the effects of beclin-1 reduction following chemical exposure. 

 

 LAMP-1 and LAMP-2 are highly glycosylated lysosomal membrane proteins 

which play an important role in chaperone-mediated autophagy (Kiffin et al., 2007). 

Their down-regulation has been linked with increased sensitivity to lysosomal cell 

death (Fehrenbacher et al., 2008). Results from this study showed a significant 
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increase in LAMP1 and LAMP2 levels in response to maneb and mancozeb 

treatment. Indeed, increase in the levels of LAMP-2A and CMA has been observed 

during oxidative stress (Kiffin et al., 2004). LAMP2 has more specific tasks and can 

substitute some of the normal functions of LAMP-1 although in this study LAMP1 is 

similarly elevated. Absence of LAMP1 has been linked with an altered distribution 

of lysosomes, accumulation of autophagic structures and LC3-positive autophagic 

compartments (Satfig et al., 2008) and its depletion prevents the co-localisation of 

lysosomal and autophagosomal markers (Eskelinen et al., 2002). LAMP1 knockout 

mice are fertile and viable whereas LAMP2-deficient mice show accumulation of 

autophagic vacuoles and cause embryonic lethality (González-Polo et al., 2005). The 

current study would indicate that CMA may be involved with diquat, maneb and 

mancozeb toxicity. 

 

 An increasing number of studies have shown that neuronal aggregation of 

misfolded proteins in different brain regions can play a vital role in the development 

of neurodegenerative diseases including PD (Pan et al., 2009). Mechanisms 

including the ubiquitin-proteasome system (UPS) and autophagy lysosome pathway 

(ALP) play an important role in the clearance of misfolded proteins and aggregates 

(Klionsky and Emr, 2000) where their dysfunction may increase the accumulation of 

aggregated/misfolded proteins. In the case of PD, oxidative damage leading to cell-

death may occur if damaged mitochondria are not disposed of through autophagy 

(Germain and Slack, 2010). Virtually all eukaryotic cells have the capacity to 

sequester organelles and cytosol into autophagosomes so that they can be degraded 

through the lysosomal vacuolar system (Dunn, 1994). If this process is taken to 

completion it may cause cell-death (Xue et al., 1999). Enzyme deficiency in 

lysosomes leads to neurodegeneration in lysosome storage disorder accompanied 

with abnormal accumulation of toxic materials in the cells (Fukuda et al., 2006). 

Immunostaining analysis using LysoTracker® red showed a diffuse distribution of 

lysosomes in untreated cells whereas treatment with diquat, paraquat, maneb, 

mancozeb, MPP+ and rotenone exhibited a prominent and enlarged lysosomal 

punctate pattern of fluorescence in the cytoplasm of cells (see fig 5.16 A, B). Dyes 

like LysoTracker Red are fluorescent lipophilic weak bases which are accumulated in 

acidic organelles after becoming membrane-impermeant in their protonated form 

(Larsen and Sulzer, 2002). In this study lysosomal accumulation occurred after 
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chemical treatment, which indicates that damage organelles or proteins may be 

removed by lysosome mediated CMA.   

 

 Neuronal culture systems have been used in similar studies to investigate 

autophagy in neurones. Hollenbeck (1993) investigated the effect of nerve growth 

factor on sympathetic ganglia. Using fluorescent dextran TR-Dx marker they 

observed an exclusively punctate cytoplasmic staining consistent with lysosomal 

compartments. Electron microscopy revealed the presence of double membranes in 

most of these organelles which was characteristic of autophagic vacuoles (AVs). 

Similarly, Cubells et al (1994) exposed cultured dopaminergic ventral midbrain 

neurons to methamphetamine and noticed vacuole formation in axons and cell 

bodies. Inhibition of autophagy results in a decreased import of nutrients through the 

plasma membrane (Lum et al, 2005) and it may be possible that the rate of 

degradation of non-essential or misfolded protein is increased to provide energy for 

the cell resulting in a higher number of aggregates. Similar results have been 

reported in other studies with MPP+ treatment which caused an increase in size and 

average number of autophagic vacuoles (Zhu et al., 2007). The current results, 

particularly for maneb, mancozeb and diquat, would indicate that chemical treatment 

leads to ATP and energy depletion, direct damage to cell components (see chapter 3), 

with induction of autophagy. 

 

 Previous studies have shown that Parkin plays a role in protection from 

neurotoxicity induced by unfolded protein stresses (Imai et al., 2000). In 

experiments, where Parkin was over-expressed in human kidney-derived 293(T) and 

SH-SY5Y cells, presence of polyubiquitin proteins was noticed using western 

blotting. Similar results were observed with α-synuclein over-expression in 293T 

cells (Imai et al., 2000).  Loss-of-function of Parkin and DJ-1 can involve processes 

leading to neuronal cell death in PD (see Chapter 1). Based on these observations, it 

was anticipated that the up-regulation of these proteins might protect cells from 

toxicity. As Parkin and DJ-1 dysfunction can lead to neuronal cell death, experiments 

were designed to over-express their levels in SH-SY5Y and then measure cell-

viability in response to toxin treatment. DJ-1 is a cytosolic redox-dependent 

chaperone capable of preventing protein aggregation (Shendelman et al., 2004) and 

therefore its over-expression in cell-system could provide a protective effect. 
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Although DJ-1 plasmid DNA was successfully transfected, transfected cells were not 

significantly more resistant to non-transfected cells following toxin treatment.  

 

In the current study it is unclear whether the accumulation of autophagic 

lysosomal vacuoles in response to chemical treatment represents up-regulation or 

blockage of autophagy as neither 3-MA (chapter 3) nor ATG5 knockdown reduces 

toxicity (although ATG5 knockdown was not consistent). The up-regulation of 

beclin-1 and LAMP1/2 would suggest that there is up-regulation of autophagy in 

response to chemical treatment, possibly as a response to the formation of oxidised 

proteins, in the form of CMA. Since neurodegeneration can be caused by neural 

tissue-specific knockout of autophagy genes, it is possible that up-regulation of 

autophagic activity may play a vital role in disease pathogenesis. In the current 

context, autophagy may be an attempt to remove damaged proteins, though the 

extensive cell death seen following chemical treatment may indicate that this is not 

an effective when chemical dose is high. 
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6.1.1 Introduction: 

 Evidence from numerous studies has linked mitochondrial dysfunction with 

the development of Parkinson’s disease. Discovery of a mild deficiency in complex I 

activity in the substantia nigra of PD patients (Schapira et al., 1989; Mann et al., 

1994) followed by similar deficiencies in the frontal cortex (Parker et al., 2008), 

platelets (Blandini et al., 1998) lymphocytes (Barroso et al., 1993) and to a lesser 

extent in muscle tissue (Penn et al., 1995) showed that impairment of the respiratory 

chain can be a part of PD pathology. Substantia nigra appears more vulnerable to 

impairments of complex I activity than other brain regions and complex I activity in 

the PD substantia nigra can be reduced up to 30-40% (Dawson and Dawson, 2003). 

This can be due to complex I misassembly or insufficient production of certain 

subunits (Keeney et al., 2006). Use of cybrid cell-lines containing mtDNA from PD 

patients and normal nuclear genomes show a complex I deficit, formation of LB like 

inclusions and a higher sensitivity to MPP+ (Trimmer et al., 2004). Mitochondria are 

central to the actions of several neurotoxins and mitochondrial dysfunction caused by 

neurotoxicants leads to selective degeneration of dopaminergic neurons (Kanthasamy 

et al., 1994). Indeed, selective complex I inhibitors like MPP+ and rotenone cause 

features similar to those seen in PD and PD models (Schmidt et al., 2006). While 

there are differences in cell death mechanisms elicited by these chemicals, 

mitochondrial oxidative stress and mitochondrial autophagy have emerged as 

common factors. 

 

6.1.1.1 Aims: 

 As the mitochondrial electron transport chain is a known source of reactive 

oxygen species and generation and inhibition of mitochondrial complexes increases 

free radical production (Fiskum et al., 2003), this study was designed to investigate 

whether acute or chronic exposure to different toxins has an inhibitory effect on the 

mitochondrial complex I and II activity. Further, if there is any change in distribution 

or structure of mitochondria in response to these chemicals which may provide 

evidence of mitochondrial dysfunction. 
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6.1.2 Methods: 

  Refer to materials and methods (section 2.4). 

6.1.3 Results:  

6.1.3.1 Acute toxin exposure and complex I-II activity: 

 
 Protocol and facilities required for this study were kindly provided by Prof. 

Robert Taylor and Dr. Langping He, NHS Mitochondrial Diagnostic Service. This 

protocol is used to measure the activity of mitochondrial respiratory chain 

deficiencies in patient muscle biopsy or fibroblast for the diagnosis of mitochondrial 

disease. This study used isolated SH-SY5Y cell mitochondria instead of pig heart 

mitochondria for which this method was optimised. Therefore, the protocol was 

altered using SH-SY5Y cells and complex I-II activity from untreated SH-SY5Y 

cells (±SD) and ratios are shown in table below.  

 
Table 6.1: Standard Assay measurements: Complex I (CI; µmols of NADH 
oxidised/min), complex II (CII; µmols of DCPIP reduc/min) and citrate synthase 
(CS) activity in pig heart mitochondria (internal control) and untreated mitochondrial 
extracts from SH-SY5Y cells (n=5). 
 

 Pig Heart mitochondria 
(1:20) (µM) 

SH-SY5Y cell mitochondria 
(1:5) (nM) 

CI 6.98±1.67 128.52±0.14 
CII 10.2±1.32 178.01±2.62 

CI/CII 0.68±1.23  0.73±0.01 
CS 23.08±2.55  355.9±8.2 

CI/CS 0.1-0.2 0.37±0.008 
CII/CS 0.1-0.35 0.51±0.01 

 
  
 Rotenone (0.005mM) was used to completely inhibit complex I activity 

which was measured as the rotenone-sensitive NADH: ubiquinone oxidoreductase 

activity. Comparison of treatment with (fig 6.1b) and without rotenone (fig 6.1a) 

clearly showed that after a 5 minute time point when rotenone is added to the 

reaction mixture,  the decrease in absorbance due to the oxidation of NADH is 

stopped. Bearing in mind how quickly rotenone acts, different toxins were added to 

the reaction mixture and CI activity measured immediately to check if they are as 

potent as rotenone in inhibiting complex I. 
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Graphical presentation of results are shown in fig 6.1. Overall results showed 

that diquat (0.04mM; also see fig 6.3, 6.4), paraquat (0.04mM, 1mM), MPP+ 

(0.04mM), MPTP (0.1mM), mancozeb (0.001mM, 0.1mM, 1mM), maneb 

(0.001mM, 0.1mM, 1mM), epoxiconazole (0.1mM) and fluroxypyr methyl ester 

(0.1mM) had no immediate inhibitory effect on complex I activity (data not shown). 
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Fig 6.1: Inhibition of NADH: quinone reductase (complex I) activity: Complex I 
activity (µmols of NADH oxidised/min, Red line) in (A) Untreated (DMSO; without 
rotenone addition), (B) Rotenone(0.005mM),  (C) Diquat (0.04m), (D) paraquat 
(0.04mM), (E) MPP+ (0.04mM), (F) MPTP (0.1mM), (G) mancozeb (0.1mM), (H) 
maneb (0.1mM), (I) epoxiconazole (0.1mM) and (J) fluroxypyr methyl ester (0.1mM) 
treated SH-SY5Y cell mitochondria (n=3). (Blue line automatically generated during 
graph formation). 
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 Acute mancozeb or maneb exposure can inhibit ATP production before major 

toxicity effects take effect. These chemicals inhibit and uncouple respiration at low 

doses and completely inhibit respiration at higher dose (0.03mM) (Domico et al., 

2006). Although reports have suggested that maneb inhibits complex III (Zhang et 

al., 2003), data linking maneb or mancozeb with the inhibition of complex-I is still 

insufficient. Lower (0.001mM) or higher (1mM) doses of maneb or mancozeb had 

no significant effect on complex I or II activity. Complex II activity was unaffected 

after 1 hour exposure. Similarly, epoxiconazole and fluroxypyr methyl ester (FPM) 

had no effect on complex-I or II activity at 0.1mM after 1 hour exposure. 

 
 Although the underlying mechanisms causing the selective dopaminergic 

neuron death are not clear, mitochondrial complex I dysfunction has long been 

implicated in this process (Abou-Sleiman et al., 2006). Indeed, accidental exposure to 

MPTP provided the first evidence of complex I dysfunction in PD (Langston et al., 

1983). Later on it was revealed that MPP+, an MPTP metabolite, inhibited complex I 

activity (Dauer and Przedborski, 2003). In this study, MPP+ was added to the reaction 

mixture containing SH-SY5Y mitochondrial extracts and whilst acutely it showed no 

effect at 0.04mM (see fig 6.1E), at 10nM and 100nM doses and incubated for 1 hour 

after which complex I/II activity was measured, results showed a dose response effect 

with significant reduction in complex I activity with 100nM dose, although the level of 

reduction was not as high as rotenone. Complex II activity was unaffected after 1 hour 

exposure (fig 6.2, table 6.2).   
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Fig 6.2: Mean CI/II activity in MPP+ treated SH-SY5Y mitochondria: Complex 
I (µmols of NADH oxidised/min) and II activity (µmols of DCPIP reduc/min) in 
isolated SH-SY5Y cells mitochondria after 1 hour incubation with MPP+ (10nM and 
100nM) (n=3, ±SD, *p<0.05). 
  

Table 6.2: Complex I and II activity measurement in MPP+ treated SH-SY5Y 
cells: Complex I (µmols of NADH oxidised/min) and II activity (µmols of DCPIP 
reduc/min) in isolated SH-SY5Y cells mitochondria after 1 hour incubation with 
MPP+ (10nM and 100nM) (n=3, ±SD, *p<0.05).   
 

Sample Conc. Mean Complex I 
activity  (µM/min) 

Mean Complex I 
activity  (µM/min) 

CI/CII 

Control (+ 
rotenone) 

 
0.005mM

 
0.02±0.00 0.076±0.001 0.26 

DMSO (0.1%) - 0.09±0.007 0.086±0.0008 1.05 
MPP+ 10nM 0.08±0.033 0.087±0.001 0.92 
MPP+ 100nM 0.05±0.024* 0.083±0.003 0.60 
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 Intracellularly, diquat undergoes redox cycling, producing superoxide anions 

(Saeed et al., 2001) but it is not known if it damages mitochondria through complex-I 

inhibition. Paraquat which is of the same dipyridyl class of compounds has been 

hypothesised to inhibit complex I (Fukushima et al., 1994) but despite structural 

similarities with paraquat, diquat may not share its mode of toxicity. Results showed 

that 1 hour diquat treatment at 0.001mM, 0.01mM and 0.1mM failed to significantly 

reduce (*p<0.05) complex I activity (fig 6.3 A, B) but the use of a higher dose (1mM) 

showed a time-dependent significant reduction in complex I activity (fig 6.4 A, B; 

table 6.3). Complex-I activity at 30, 45 and 60 minutes with 1mM diquat showed a 

percentage reduction of 17%±0.93, 52%±0.93 and 64%±1.11 respectively. Complex II 

activity was unaffected after 1 hour exposure.  

 

Fig 6.3: Mean CI/II activity in Diquat treated SH-SY5Y mitochondria: (a) 
Complex I (µmols of NADH oxidised/min) and (b) II activity (µmols of DCPIP 
reduced/min) activity after 1 hour incubation with diquat at 0.001mM, 0.01mM and 
0.1mM (n=3, ±SD, *p<0.05).   
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Fig 6.4: Mean CI/II activity in Diquat treated SH-SY5Y mitochondria: Complex 
I (µmols of NADH oxidised/min) (a) and II activity (µmols of DCPIP reduc/min) (b) 
activity after 15, 30, 45 and 60 minute incubation with diquat at 1mM (n=3, ±SD, 
*p<0.05).   

 

Table 6.3: Mean CI/II activity in diquat treated SH-SY5Y cells: Complex I 
(µmols of NADH oxidised/min) and II activity (µmols of DCPIP reduc/min) after 15, 
30, 45 and 60 minute incubation with diquat at 1mM (n=3, ±SD, *p<0.05).  
 

Sample Conc.  Mean Complex I 
activity (µM/min) 

Mean Complex II 
activity (µM/min) 

CI/CII 

Control (+ 
rotenone) 

 
0.005mM 

 
0.02±0.0008 

 
0.086±0.001 

0.23 

Diquat (15min) 1mM 
 

0.201±0.0009 
 

0.077±0.002 2.61 
Diquat (30min) 1mM 0.17±0.0006* 0.079±0.006 2.15 
Diquat (45min) 1mM 0.097±0.0009* 0.077±0.003 1.27 
Diquat (60min) 1mM 0.072±0.0011* 0.075±0.00 0.97 
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 Chronic rotenone exposure has been linked with the increase of α-synuclein 

in SK-N-MC cells (Betarbet et al., 2006) and sub-lethal doses of rotenone in 

Drosophila cause selective loss of dopaminergic neurons inducing locomotor deficits 

(Coulom and Birman, 2004). In SH-SY5Y cells treated with selected toxins for a 

period of 5 weeks, complex-I activity was not significantly different from untreated 

samples but significantly higher than rotenone (0.005mM) dose used as a positive 

control (table 6.4). Complex-II activity remained unaltered.   

 
Table 6.4: Chronic toxin exposure and complex I-II activity: Mean CI/II activity 
in chronically treated SH-SY5Y cells (5 Weeks exposure, diquat (0.01mM), MPP+ 
(0.01mM), mancozeb (0.01mM) and maneb (0.01mM) (n=3, ±SD, *p<0.05). 
 

Sample Conc. 
(mM) 

Mean Complex I 
activity (µM/min) 

Mean Complex II 
activity (µM/min) 

CI/CII 

Untreated - 0.0050±0.0042 0.078±0.002 0.07 

Rotenone  5nM 0.0048±0.0032 0.076±0.002 0.063 
Diquat 

0.01mM 0.0075±0.003 0.088±0.002 0.085 
MPP+  

0.01mM 0.0058±0.0034 0.081±0.004 0.07 
Maneb 

0.01mM 0.0046±0.0001 0.092±0.004 0.05 
Mancozeb 

0.01mM 0.0046±0.00002 0.090±0.004 0.05 
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6.1.3.2 Toxin exposure and mitochondrial distribution: 

 Mitochondria are dynamic organelles as they actively divide, fuse with one 

another and are actively transported (in neurons) throughout axons and dendrites 

(Hollenbeck and Saxton, 2005; Okamoto and Shaw, 2005). Their fusion and fission 

helps in maintaining their integrity, turnover, stabilisation and segregation 

(Westermann, 2002).  

  

 To investigate the effect of toxin exposure on mitochondrial distribution, SH-

SY5Y cells were incubated with MitoTracker® Red CMXRos (Invitrogen) before 24 

hour toxin treatment including H202 (0.1mM), diquat (0.1mM), mancozeb (0.05mM), 

maneb (0.05mM), maneb (0.05mM), MPP+ (0.05mM) (fig 6.5, data not shown for 

maneb and MPP+), rotenone (0.05mM), epoxiconazole (0.05mM) and fluroxypyr 

ester (0.05mM) (fig 6.6). Results showed a higher number of cytoplasmic aggregates 

in treated cells compared with uniform distribution in untreated cells (data not 

statistically analysed). Cell viability was very low in H202 treated cells (less than 5% 

of untreated cells) making estimation of mitochondrial distribution difficult to 

visualise. Nevertheless, remaining cells showed a marked reduction in overall 

staining highlighted by aggregates distributed throughout the cell body. Similar 

results were observed in rotenone, diquat, maneb and mancozeb treated cells. 

However, a lower percentage of aggregates were seen in epoxiconazole (0.05mM) 

and fluroxypyr ester (0.05mM) treated cells. 

 

Aggregate formation in diquat treated cells was dose dependent. A relatively 

smaller number of stained bodies were seen with 0.001mM dose but their number 

increased when treated at 0.01mM and 0.1mM (fig 6.7). A similar effect was seen 

with rotenone treated cells (data not shown).  
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Fig 6.5: Mitochondrial localisation after toxin treatment: SH-SY5Y cells 
treatment with selected toxins after staining with MitoTracker® Red CMXRos. 
Viewed under fluorescent microscope (magnification x40, each image is 
representative of three independent fields). 
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Fig 6.6: Mitochondrial localisation after toxin treatment: SH-SY5Y cells 
treatment with selected toxins after staining with MitoTracker® Red CMXRos 
(magnification x40, each image is representative of three independent fields).  

 
 
Fig 6.7: Mitochondrial localisation after diquat treatment: SH-SY5Y cells 
treatment with diquat showed the formation of mitochondrial aggregates in a dose-
dependent manner (magnification x40, each image is representative of three 
independent fields). 
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6.1.4 Discussion:  

 Changes in mitochondrial function are critical for cell survival as any 

deficiency, especially in the mitochondrial respiratory chain can cause reduced ATP 

synthesis, ROS generation leading to oxidative stress and mitochondrial 

depolarisation, all leading to cell-death (Drechsel and Patel, 2008). Ageing of the 

nervous system is often associated with mitochondrial dysfunction (Melov, 2004) 

and evidence accumulated over several years links mitochondrial dysfunction with 

PD. Indeed, 15–30% reduction in complex I activity in non-familial sporadic PD 

patients has been observed (Schapira et al., 1989). Both rotenone and MPP+ 

selectively inhibit complex I and produce several features of PD, thus providing 

evidence that oxidative stress and a complex I deficiency might underlie PD 

(Schmidt and Alam, 2006).  

 

 The quality of mitochondria extracted from cells heavily relies on the method 

used to break open the cells. The use of a hypotonic buffer provided a rich 

mitochondrial pellet which also helped minimise the rotenone-insensitive 

background activity. Freeze-thawing in hypotonic media provided an accurate 

complex-I activity measurement as this method gives maximum access of the 

substrate to its binding site on the inner mitochondrial membrane. Mitochondrial 

stability is affected by the buffer composition, therefore, supplementing it with 

ubiquinone-1 increased the rate of complex-I activity. Fatty acids cause the opening 

of the permeability transition pore so by using fatty-acid free BSA; rotenone 

sensitivity was increased (Birch-Machin et al., 1994).  

 

 The objective of this study was to investigate the role of complex I inhibition 

in SH-SY5Y cell-death induced by selected agrochemicals. Results showed that 

rotenone which is a potent mitochondrial complex I inhibitor successfully inhibited 

complex I activity almost immediately at 0.005mM. Previous studies have suggested 

its IC50 between 0.1nM and 100nM depending on the method and system used (Choi 

et al., 2008). Studies using a similar human neuroblastoma cell-line SK-N-MC have 

shown dose-dependent changes in oxidative damage, ATP depletion and cell-death 

(Sherer et al., 2003). It is suggested that inhibition of mitochondrial NADH 

dehydrogenase by rotenone is linked with a reduction in mitochondrial membrane 
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potential observed after mitochondrial injury followed by the release of cytochrome c 

into cytosol which leads to caspase-9 activation (Mattson, 2000). Indeed, data from 

this study shows a complete inhibition of complex I activity at 0.005mM and 

presence of aggregates after 0.05mM exposure. This coupled with a reduction in 

mitochondrial transmembrane potential (chapter 3, fig 3.21) shows hallmarks of 

early stage of the mitochondrial apoptotic pathway. Previous studies have shown 

changes in mitochondrial structure and function in response to acute rotenone 

exposure e.g. presence of ‘donut’-shaped mitochondria in HeLa cells (Benard et al., 

2007), fragmented morphology and reduced membrane potential in human 

fibroblasts after acute high-dose rotenone exposure (Mortiboys et al., 2008), 

mitochondrial fragmentation in rat cortical neurons (Barsoum et al., 2006) and 

swelling and decreased mitochondrial motility in fibroblasts (Pham et al., 2004).  

 

 MPP+ reduced CI activity in a dose-dependent manner showing no effect at 

10nM but showing a 40% reduction at 100nM consistent with previous reports.  It is 

accepted that complex I inhibition remains the main target of MPP+ action but 

alternative mechanisms like reduction in mitochondrial transmembrane potential 

(chapter 3, fig 3.21), inhibition of glycolysis, microtubule depolymerisation and 

oxidative stress also play part in its neurotoxicity (Cappelletti et al., 2005). Similar 

suggestions have been made by Choi et al (2008) who have shown through their 

study that dopaminergic neuron loss caused by MPP+ is not entirely dependent on CI 

inhibition. The analysis of mitochondrial structure was not possible with 

MitoTracker dye and it only gave a measure of mitochondrial distribution showing 

cells under stress with clumping around the nucleus compared with untreated cells 

which showed stained structures widely and thinly spread throughout the cell-body 

(fig 6.5). 

 

 Some studies have suggested that complex I activity of isolated mitochondrial 

in vitro may be inhibited by paraquat (Fukushima et al., 1994; Tawara et al., 1996). 

The suggestion that it shares structural similarity with MPP+ and therefore acts as a 

complex-I inhibitor has been questioned by researchers (Richardson et al., 2005). 

Studies using yeast and mammalian-cells show that paraquat is actively transported 

through the mitochondrial membrane where it is reduced to a radical cation by CI 

leading to the production of mitochondria-damaging superoxide (Cocheme and 



Chapter Six                                            Toxin treatment & Mitochondrial dysfunction 

 205

Murphy, 2008) but its ability to reach the internal mitochondrial membrane and 

inhibit complex I in intact cells is still under investigation (Shimada et al., 1998). 

Data presented here support the argument that paraquat does not act as a complex I 

inhibitor as 1mM dose had no effect on either complex-I or II activities. Data from 

earlier experiments also suggested that paraquat (1mM) did not affect mitochondrial 

transmembrane potential after 24 hour exposure (see chapter 3, fig 3.21). These 

finding agree with the suggestion that oxidative stress, independent of complex-I 

inhibition may be critical in paraquat cytotoxicity (McCormack et al., 2005; 

McCormack et al., 2006). Although lower diquat doses (0.001-0.1mM) failed to have 

any effect, a 1mM dose of diquat caused a time-dependent reduction in complex-I 

activity (fig 6.4). Such a high dose can cause oxidative stress leading to a reduction 

in complex I activity rather than its direct inhibition. Intracellularly, diquat undergoes 

redox cycling, producing superoxide anions and resultant highly unstable diquat 

radical causes the formation of superoxide anion radical (Saeed et al., 2001).  This 

continuous oxidation and reduction of diquat results in superoxide anion radicals 

reacting with each other and producing molecular oxygen and hydrogen peroxide 

(Jones & Vale, 2000). This effect cannot be explained in isolated mitochondria used 

in these experiments but data from mitochondrial staining (fig 6.7) suggests a change 

in mitochondrial distribution after 0.1mM treatment with increased aggregation 

compared with 0.001mM and 0.01mM doses. Given that diquat only causes complex 

I inhibition at 1mM and following extended time periods (cf rotenone), it is unclear 

from the current studies if diquat generates free radicals via the mitochondrial 

respiratory chain or elsewhere in the cell. 

  

 Previous data suggests that maneb, mancozeb, epoxiconazole and fluroxypyr 

methyl ester do not affect the mitochondrial transmembrane potential (MTP: chapter 

3; fig 3.21) and results from this study indicate that complex-I and II activities are 

not affected by these chemicals either (fig 6.1). Depolarisation of mitochondria 

interferes with electron transport and respiration (Mookherjee et al., 2007); therefore 

it can be assumed that these chemicals do not directly lead to changes in intrinsic 

components of mitochondrial bioenergetics like mitochondrial membrane potential 

and ATP synthesis which in turn affects the mitochondrial transport and distribution. 

Minimal mitochondrial aggregation was observed compared with H2O2 (0.1mM) 

treatment which showed increased aggregation and a significant reduction in MTP. 
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Similar features have been observed in previous studies where H2O2 treatment 

changed mitochondrial structure and majority of the mitochondria were swollen and 

vacuolated (Polimeno et al., 2009). Indeed, excitotoxicity and oxidative stress can 

disrupt mitochondrial movement (Rintoul et al., 2003). This may indicate that 

maneb, mancozeb, epoxiconazole and fluroxypyr methyl ester cause cell death 

independently of mitochondria. 

 

 Chronic rotenone exposure can increase α-synuclein levels and cause 

selective loss of dopaminergic neurons in cell/drosophila-models (Betarbet et al., 

2006; Coulom and Birman, 2004) and reduce mitochondrial movement in 

differentiated SH-SY5Y cells (Borland et al., 2008). Results from this study showed 

that chronic rotenone toxin exposure did not affect complex-I or II activity, and 

similarly none of the other agrochemicals tested affected the levels of complex I or 

II. Previous studies have measured mitochondrial bioenergetics and components like 

ATP levels which can be a consequence of complex I inhibition to see if its depletion 

can be detected after chronic rotenone exposure (5nM) in SK-N-MC cells (Betarbet 

et al., 2006). Cellular ATP levels were unchanged after 3–4 weeks suggesting 

minimal disturbance of mitochondrial function. Long term exposure of cells to 

agrochemicals would therefore not appear to affect mitochondrial energetics.  

 

 Neurons depend on correct mitochondrial dynamics to meet their high energy 

demands especially in axons and nerve terminals. Mitochondria are vital for calcium 

buffering and providing energy for maintaining the vesicular neurotransmitter pool. 

If any of the above chemicals directly disturb mitochondrial function, it can disrupt 

neuronal maintenance, function, localisation and active transport, which is required 

for delivery to sites of increased energy requirement (Van Laar and Berman, 2009). 

Vulnerable neurons can be more susceptible to slight changes in mitochondrial 

maintenance as suggested by studies showing that mitochondria cover smaller 

cytoplasmic area in the substantia nigra dopaminergic neurons compared with 

neighbouring non-dopaminergic neurons or those unaffected in PD such as ventral 

tegmental area neurons (Liang et al., 2007). Any disruption in mitochondrial 

dynamics may lead to a reduced distribution of healthy mitochondria within the axon 

or at the nerve terminal and cause an accumulation of damaged mitochondria leading 
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to stress and cell-death (Van Laar and Berman, 2009). With the exception of perhaps 

diquat, the agrochemicals tested do not appreciably influence mitochondrial function. 
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7.1.1 Introduction: 

 It is hypothesised that a complex pattern of environmental and genetic factors 

contribute to the development of idiopathic PD.  Although polymorphisms (ubiquitin 

C-terminal hydrolase gene), deletions (PARKIN, PINK1 and DJ-1 genes), 

duplications/triplications (α-synuclein) and mutations (α-synuclein, LRRK2) account 

for a small percentage of PD cases (Conn et al., 2003), the role of these genetic risk 

factors can not be ignored. The selective vulnerability of nigral dopaminergic 

neurons and the widespread nature of PD pathology require an understanding of 

genetic factors which cause impairment of proteasomal activity, protein aggregation, 

mitochondrial bioenergetic dysfunction and cell-signalling leading to damage 

through oxidative stress (Borland et al., 2008).  

  

 Microarray-based gene expression profiling of isolated DA neurons from 

control and PD substantia nigra has shown the involvement of oxidative stress, 

mitochondrial and ubiquitin-proteasome dysfunction, programmed cell-death 

signalling events, down-regulation of PARK genes and changes in expression of  

genes related to ion channel and neurotransmitter (Elstner et al, 2009; Simunovic et 

al., 2009). Previous studies using cDNA microarrays to analyse SH-SY5Y cells after 

MPP+ toxicity have shown that changes in gene expression may control ER stress 

and mitochondrial dysfunction (Conn et al., 2003). Mandel et al (2000) analysed 

differential gene expression in MPTP treated mice for 5 days and noticed an increase 

in the expression of genes linked with oxidative stress, glutamate excitotoxicity, 

inflammation signal transduction molecules and proteins involved in cell-cycle 

regulation. 

7.1.1.1 Aims: 

 The aim of this study was to investigate the effect of toxin treatment on the 

expression of genes related to a number of different factors which may have a role in 

PD pathogenesis derived from study of altered gene expression in isolated SN 

neurones in PD (Elstner et al., 2009). To better understand the mechanisms of cell 

death after toxin treatment and PD neurodegeneration, TaqMan® Custom Arrays 

were used to characterise the transcriptional response of SH-SY5Y cells to acute and 

chronic toxin treatment. TaqMan® Custom Arrays, a 384-well micro fluidic card 
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allowed 384 simultaneous real-time PCR reactions and did not require extensive 

liquid-handling robots or multichannel pipettors to fill the card. This method allowed 

efficient analysis of a large number of genes and quantification of their regulation by 

running multiple samples against gene expression targets pre-loaded into each well. 

 

7.1.2 Methods: 

  Refer to materials and methods (section 2.5). 
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7.1.3 Results: 

 Expression of 48 genes (table 7.1, 7.2) was measured in appropriate control 

and treated samples. Genes were chosen on the basis of expression in cell death 

pathways and from analysis of nigral neurones in PD (Elstner et al, 2009). Two 

replicates per sample were assayed for each gene in a 384-well format plate. GAPDH 

was used as endogenous control gene and for data normalisation across samples. 

Normalisation of Ct values of each gene and determination of fold increase or 

decrease was measured by calculating the 2-∆∆Ct value (Relative Quantification 

Method, Applied Biosystems 2008). 

Table 7.1: Symbol and title of selected genes analysed through RT-PCR. 

Symbol Gene 
SNCA α-synuclein  
PDXK Pyridoxal (pyridoxine, vitamin B6) kinase 
TRAPPC4 Trafficking protein particle complex 4  
SRGAP2 Slit-robo GTPase activating protein 
MT-ND2 Mitochondrially encoded NADH dehydrogenase 2 
MT-ND1 Mitochondrially encoded NADH dehydrogenase 1 
UCHL1 Ubiquitin carboxyl-terminal esterase L1 
TH Tyrosine hydroxylase 
SLC6A3 Solute carrier family 6, member 3 
GAD1 Glutamate decarboxylase 1  
GBA Glucosidase, beta, acid  
ATG3 Autophagy related gene 3 
ATG5 Autophagy related gene 5 
BECN1 Beclin 1 
GSTM1 Glutathione S-transferase Mu 1 
GSTM5 Glutathione S-transferase Mu 5 
RIPK1 Kinase, Protein kinase, Non-receptor serine/threonine protein kinase 
BAX BCL2-associated X protein 
BID  BH3 interacting domain death agonist 
BAK1 Bcl-2 homologous antagonist/killer  
PARK7 DJ-1  
NDUFAF1 NADH dehydrog. (ubiquinone) 1 alpha sub complex 
COX7A2L Cytochrome c oxidase subunit VIIa polypeptide 2 like 
SDHB Succinate dehydrogenase complex, subunit B 
UBB Ubiquitin B 
NFKB1 Nuclear factor related to kapp beta A 
SLC25A29 Solute carrier family 25, member 29 
SLC25A42 Solute carrier family 25, member 42 
IFI6 Interferon alpha-inducible protein 6 
UQCRFS1 Ubiquinol‐cytochrome c reductase, Rieske iron‐sulfur polypeptide 1 
TBP Basal transcription factor 
PSMB5 Proteasome (prosome, macropain) subunit, beta type, 5 
FYN Proto-oncogene tyrosine-protein kinase Fyn 
DRD2 Dopamine receptor D2 
PPP1R13B Protein phosphatase 1, regulatory (inhibitor) subunit 13B 
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Table 7.2: Symbol and title of selected genes analysed through RT-PCR. 

Symbol Gene 
C20orf111 Chromosome 20 open reading frame 111 (peroxide-inducible transcript 1) 
PDCL3 Phosducin-like 3 
DAD1 Defender against cell death 1  
DNAJA1 DNAJ (Hsp40) homolog, subfamily A, member 1 
HSP90AA1 Heat shock 90kDa protein 1 
DNAJB6 DNAJ (Hsp40) homolog 
DCTN3 Dynactin 3 
RMND1 Required for meiotic nuclear division 1 homolog  
VAMP4 Vesicle‐associated membrane protein 4 
PLTP Phospholipid transfer protein 
GSTM3 Glutathione S‐transferase M3 
PRDX3-H Peroxiredoxin 3 
 

7.1.3.1 Gene expression profile of SH-SY5Y cells after acute toxin exposure: 

 SH-SY5Y cells were treated with diquat (0.1mM), epoxiconazole (0.1mM), 

fluroxypyr methyl ester (0.1mM), mancozeb (0.1mM), maneb (0.1mM) and rotenone 

(0.01mM) for 24 hours and after sample preparation, gene expression was calculated. 

Results revealed a significant fold increase (*P<0.01) in genes like SRGAP2, MT-

ND1, GBA, PARK7, SNCA, IFI6, SLC25A42, FYN, DRD2, UBB, C20orf111 and 

PPP1R13B after acute toxin exposure. A significant reduction (*P<0.01) was 

observed in GSTM1, RMND1 and SLC6A3 (table 7.3, 7.4). The subset of genes, 

whose expression was found to be differentially affected as a result of acute toxin 

treatment are shown in tables 7.3 and 7.4. Overall, SRGAP2, MT-ND1, IFI6, 

C20orf111, and PPP1R13B, SNCA and UBB, showed relatively similar modes of 

expression (up or down-regulation of ±1.4fold) for the majority of compounds tested 

suggesting a common set of genes which change following acute exposure. It is of 

interest that two of these genes, SNCA and UBB are involved with Parkinson’s 

disease and Lewy body formation and MT-ND1 and C20orf111 are associated with 

oxidative metabolism.  

7.1.3.2 Gene expression profile of SH-SY5Y cells after chronic toxin exposure: 

 For chronic exposure lasting 4 weeks, SH-SY5Y cells were grown in medium 

supplemented with diquat (0.001mM), epoxiconazole (0.01mM), fluroxypyr methyl 

ester (0.01mM), mancozeb (0.001mM), maneb (0.001mM), rotenone (5nM) and 

MPP+ (0.01mM) for 4 weeks and after sample preparation, gene expression was 

calculated. Overall results showed a significant reduction (*P<0.01) in the expression 
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of UCHL1, ATG3, BECN1, GSTM1, BAK1, PARK7, NFKB1, SLC25A29, TRAPC4, 

DCTN3, RMND1, SLC25A42 and significant (*P<0.01) increase in SDHBH, RIPK1, 

GAD1 and MT-ND1 (tables 7.5, 7.6). Genes showing relatively common expression 

(±1.4 fold) following chronic chemical exposure were ATG3, BECN1, BAK1, RIPK1 

(involved in autophagy and cell death pathways), MT-ND1, SDHB, SLC25A29 

(mitochondrial carnitine/acylcarnitine carrier protein) associated with mitochondrial 

function, and GAD1 and TRAPPC4 involved in neurotransmission. With the 

exception of MT-ND1, there were no genes which were significantly regulated in 

common between acute and chronic chemical exposure, and in the case of MT-ND1, 

exposure appears to cause a slight increase in gene expression.  
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Table 7.3, 7.4: Description of genes identified by whole genome expression after acute 24 hour toxin exposure: Tables 3 and 4 
show gene symbols and fold change in expression of only those genes which appeared to be up or down-regulated after treatment with 
selected toxins. (Significant results shown in bold, n=5, *p<0.01). 
 
Table 7.3:  
 

Chemicals SRGAP2 MT-ND1 GBA GSTM1 DJ-1 RMND1 SNCA SLC6A3
Diquat  2.2* 1.56* 2.6* 1.3* 1.8* 0.74 1.6 1.3 

Epoxiconazole 0.22 1.5 0.7 0.63* 0.77 0.65 1.5 0.86 
Fluroxypyr methyl ester 1.87* 1.8* 1.3 0.8 1.3 0.36* 1.5 1.04 

Mancozeb 2.07 1.3 1.3 0.93* 1.6 0.5 0.9 0.7 
Maneb 1.6 1.6* 1.3 1.1 1.3 0.53 1.9* 0.45* 

Rotenone 1.9 1.6* 1.3 0.78* 1.4 0.36* 1.3 0.9 
 
 
Table 7.4:  
 

Chemicals IFI6 SLC25A42 FYN DRD2 UBB PDCL3 C20orf111 PPP1R13B
Diquat 2.1 1.8* 1.7* 1.5* 1.3 1.6* 1.7 2.0 

Epoxiconazole 1.9 1.1 0.9 0.8 2.1* 1.1 3.8* 1.5 
Fluroxypyr methyl ester 1.9 1.34* 1.54* 1.80* 1.60* 1.2 1.6 2.4* 

Mancozeb 1.9 1.3 1.2 1.1 1.1 1.3 2.3 1.6 
Maneb 3.0 1.4 0.9 0.8 1.9 1.3 2.5 1.6 

Rotenone 1.6 1.3* 1.6* 1.7 1.4 1.3 1.7 2.1 
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Table 7.5, 7.6: Description of genes identified by whole genome expression after chronic 4 week toxin exposure: Tables 5 and 6 
show gene symbols and fold change in expression of only those genes which appeared to be up or down-regulated after toxin treatment. 
Significant results shown in bold (n=5, *p<0.01) (- indicates undetermined values). 
 
Table 7.5:  
 

Chemicals UCHL1 ATG3 BECN1 GSTM1 BAK1 PARK7 NFKB1 SLC25A29 MT-
ND1 

Diquat 0.13* 0.43* 0.26* 0.47* 0.07* 0.70* 0.61* 0.35* 1.02 
Epoxiconazole 1.3 0.72 0.83 0.93 0.71 1.1 1.31* 1.13 1.1 

Fluroxypyr 
methyl ester 

0.95 0.66 1.23 0.56* 0.47* 1.06 1.17 0.58 1.18 

Mancozeb 0.36* 0.45* 0.35* 0.70* 0.11* 0.84 - 0.6 1.34 
Maneb 0.31 0.28* 0.13* 0.52* 0.07* 0.45 1.20 0.24* 1.37 

Rotenone 0.71 0.45* 0.36* 0.82 0.18* 0.87 - 1.03 1.37*
MPP+ 0.30 0.37* 0.22* 0.93 0.17* 0.63 1.16 0.41 1.44 

 
 
Table 7.6:  
 

Chemicals TBP PDCL3 SDHB RIPK1 TRAPPC4 DCTN3 RMND1 SLC25A42 GAD1
Diquat 4.13* 0.49* 1.2 1.81 0.91 0.22 0.44 1.01 2.11 

Epoxiconazole - 1.29* 1.79* 1.2 0.87 - - 0.96 1.63 
Fluroxypyr methyl ester 1.67 1.2 2.50 3.84* 0.95 1.3 1.27 0.85 1.1 

Mancozeb - 1.03 1.98* 2.03 0.42* - - 1.21 1.7 
Maneb 0.33* 0.77 1.45 1.32 0.19* 0.21* 0.39* 0.87 1.34 

Rotenone - 1.1 1.47* 1.45 0.46* - - 1.03 2.08* 
MPP+ - 0.81 1.71* 1.46 0.23* - - 0.80* 1.73 
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7.1.4 Discussion:  

Accumulating evidence indicates the role of environmental toxins in the 

progression of PD but the precise mechanisms through which these chemicals cause 

cell-death remain elusive. To get a better insight into the events leading to SH-SY5Y 

cell death, gene expression after acute high dose (24h) and chronic lower dose (4 

week) treatment was investigated.  

  

Previous studies studying the effects of PD linked toxins like paraquat on SH-

SY5Y cells have shown significant alterations in the expression of genes which code 

for p53, TNF receptors and ligands, caspases, Bcl-2, TRAFs, IAPs, CARDs and 

those related with DNA damage-response and anti-apoptotic responses (Moran et al., 

2008). Acute diquat (0.1mM) exposure significantly increased the expression of 

various genes (table 7.3, 7.4) but not of those linked with protein aggregation and 

degradation (like α-synuclein, ubiquitin B, PSMB5), autophagy (BECN1, ATG3, 

ATG5) or apoptosis (BAX, BID, BAK1). DJ-1 (PARK7) was the only PD-linked gene 

which showed a significant fold increase following diquat treatment; though SNCA 

showed a 1.6 fold non-significant increase. Previous studies have shown down-

regulation of DJ-1 in PD patient nigra (Simunovic et al., 2009) and involvement in 

signalling in response to oxidative stress (Hardy et al., 2006). Other genes which 

showed an increased expression included SRGAP2 which is involved in brain 

development, induces neurite outgrowth and negatively regulates neuronal migration 

(Guerrier et al., 2009), MT-ND1 a NADH dehydrogenase which is a part of complex 

I (Lenaz et al., 2004), GBA which is involved in the synthesis of lysosomal 

enzyme beta-glucocerebrosidase (GBA mutations have been associated with an 

increased risk of PD; Nishioka et al., 2009), SLC25A42 which is involved in the 

transport of molecules over the mitochondrial membrane (Haitina et al., 2006), 

DRD2 (Dopamine receptor D2) which shows increased density in PD (Seeman and 

Niznik, 1990) and PDCL3 which is a member of the phosducin-like protein family 

involved in caspase activation during apoptosis (Wilkinson et al., 2004).  In contrast 

chronic diquat exposure predominantly reduced expression of genes involved with 

autophagic (ATG3, BECN1) and apoptotic (PDCL3, NFKB1) responses along with a 

reduced expression of GSTM1 and SLC29A, suggesting the potential of reduced 

capacity to respond to diquat exposure. Similarly, UCHL-1 was significantly down 
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regulated after chronic exposure but showed no change after 24 hour exposure. 

UCHL1 is involved in protein (de)ubiquitination and converts polyubiquitin chains 

into monomeric ubiquitin molecules. If UCHL-1 expression and its subsequent levels 

are reduced, it may lead to reduction in the available pool of ubiquitin and reduced 

UPS activity (Bossers et al., 2009). Overall, altered gene expression following acute 

diquat exposure shows the presence of oxidative stress (as observed through changes 

in GSTM1) and involvement of mitochondria (as seen with an up-regulation of MT-

ND1) which may indicate cells’ compensatory response to decreased energy levels.  

 

Han et al (2008) measured gene expression in liver tissues of male C57BL/6 

mice treated with diquat over a number of different time points lasting up to 12 hours 

and also compared the expression patterns in antioxidant knockout mice. They found 

an increase in genes linked with stress response rather than those having obvious 

antioxidant functions. p53 target genes involved in genotoxic stress checkpoint 

response were significantly up-regulated. Comparison of these results with another 

study investigating in vivo changes in gene expression after paraquat exposure 

showed that expression of 38% of genes statistically altered by diquat in the liver 

was also changed after paraquat treatment (Edwards et al., 2003).  

 

Rotenone, a complex I inhibitor, caused a significant increase in MT-ND1 

expression after both acute and chronic exposure. Whereas SLC25A42 and FYN were 

up-regulated after acute exposure but showed no change after chronic treatment. 

Autophagy related genes ATG3 and BECN1 as well as BAK1 and TRAPPC4 

(transport protein) were down-regulated after chronic exposure only, indicating 

similarities to diquat. This suggests that the expression response to elevated 

autophagic or apoptotic stress does not necessarily constitute an up-regulation of 

classical autophagic or apoptotic genes. Previously, Borland et al (2008) have shown 

that chronic rotenone exposure (50nM) only alters expression of a minority of genes 

which has no major effect on rotenone’s mechanism of toxicity. They recorded an 

up-regulation of few mtDNA coded genes linked with mitochondrial electron 

transport chain but expression of nuclear DNA coded genes remained unaltered.  

 

Dopaminergic neurodegeneration is a complex process containing a cascade 

of events that cannot be explained by changes in the gene expression of cell-death or 
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oxidative stress related genes. This is best explained with examples of maneb and 

mancozeb which have shown changes in expression of several proteins but an 

examination of their expression using RT-PCR has shown that only GSTM1 was 

down-regulated after acute mancozeb treatment, whereas SNCA, MT-ND1 and IFI6 

were significantly up-regulated after acute maneb exposure. Chronic exposure 

however showed significant down-regulation of cell-death related genes including 

ATG3, BECN1, BAK1 (both mancozeb and maneb) and PD-linked gene UCHL1 

(mancozeb only). As with diquat and rotenone, cells appear to down-regulate 

expression of autophagic and apoptotic response genes and just like epoxiconazole, 

MPP+ and rotenone, up-regulation of SDHB in mancozeb treated cells may indicate 

cellular response to mitochondrial respiratory chain inhibition. Overall, mancozeb 

and maneb showed similar gene expression changes. 

 

Acute epoxiconazole exposure significantly increased the expression of 

ubiquitin B (UBB) and C20orf111 (peroxide-inducible transcript 1) but showed a 

reduction in GSTM1 expression. The presence of up-regulated UBB expression may 

indicate a response to damaged proteins which epoxiconazole may induce and 

possible clearance via the ubiquitin proteasome system and it would be of interest to 

determine if there is altered activity and the presence of ubiquitinated proteins 

following epoxiconazole treatment. The presence of changes in GSTM1 and 

C20orf111 may indicate an oxidative stress response mechanism following 

epoxiconazole treatment which could contribute to protein damage. Chronic 

epoxiconazole exposure however showed no changes in these genes and only showed 

significantly altered expression of NFKB1, PDCL3 and SDHB (all up-regulated).  

 

Acute fluroxypyr methyl ester (FPM) exposure significantly increased the 

expression of SRGAP2, MT-ND1, SLC25A42, FYN, DRD2, UBB and PPP1R13B and 

only down-regulated RMND1 expression. These results parallel those of acute diquat 

exposure and may indicate a similar mechanism of action or alternatively a regulated 

response by SH-SY5Y cells to toxin exposure. Similar to diquat, maneb and 

mancozeb, chronic FPM exposure showed a significant reduction in GSTM1 and 

BAK1 as well as an increase in RIPK1, properties of which have been discussed in 

previous chapters, although the reduction in autophagic and apoptotic gene 

expression was not significantly altered.     
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  After chronic MPP+ exposure only SDHB was up-regulated whereas other 

genes were down-regulated. SDHB is a component of complex II of the electron 

transport chain (Ishii et al., 1998) and its up-regulation may be indicative of cellular 

response to mitochondrial respiratory chain inhibition. This is interesting since 

MPTP/MPP+ treatment is known to cause mitochondrial dysfunction and ROS 

production although in this study we did not observe a significant change in GSTM1 

expression. Previous studies exploring the effects of MPTP or MPP+ have shown 

distinct patterns of gene expression. Conn et al (2001) have shown that MPP+ 

induced gene expression changes control mitochondrial dysfunction and ER stress. 

Other studies using cDNA microarray analysis to produce a MPP+ toxicity profile 

after 72 hour exposure showed up-regulation of c-Jun, a change which has been 

observed in mice striatum (Perez-Otano et al, 1998) and substantia nigra after MPTP 

intoxication (Nishi, 1997). In the current study, ATG3, BECN1 and BAK1 were 

down-regulated after chronic exposure. Proteins of BCL2 family are involved in 

toxin induced apoptosis. Studies have shown that MPP+ can cause BCL2 and 

BCL2L1 activation in SH-SY5Y cells (Offen et al., 1998) but others show no such 

effect (Veech et al., 2000).    

  

Exposure of SH-SY5Y cells to MPP+ causes apoptotic death (Fall and 

Bennett, 1999) accompanied with an increased oxidative stress (Cassarino et al., 

1997), activation of pro- and/or anti-apoptotic signalling pathways (Cassarino et al., 

2000; Halvorsen et al., 2002), increased production of bcl-2 and bcl-XL (Dennis and 

Bennett, 2003; Veech et al., 2000) and Bax (Dennis and Bennett, 2003). Brill et al 

(2003) have shown that MPP+ induces apoptotic death through a process involving 

cytochrome c release (within 2-4 hours) and caspase-dependent DNA degradation 

between 12 to 24 hours after MPP+ exposure in SH-SY5Y cells. They suggest that 

complex I inhibition after acute MPP+ exposure leads to changes in the expression of 

multiple genes which may be linked with cell survival. They suggested that changes 

in gene expression depended on mitochondrial integrity and occurred hours before 

the appearance of apoptotic markers. In the current study, the changes seen following 

chronic MPP+ exposure where ATG3, BECN1 and BAK1 were down-regulated, may 

indicate a compensatory response to promote cell survival. 
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Results from gene and protein expression studies of post-mortem PD brains 

and in animal models have shown that expression changes occur in later stages of the 

disease when cell number is significantly lower and remaining cells are undergoing 

apoptosis or necrosis (Mandel et al., 2002). Therefore, early gene expression profile 

can reveal biochemical changes that lead to initial series of events that promote 

neurodegeneration. This could also involve novel growth factor genes and those 

related to prostaglandins, glucose metabolism-related proteins, cytochrome P450 etc 

which have been linked with events involved with neuronal cell-death (Grunblatt et 

al., 2001). Indeed, cDNA expression microarrays have been used in studies to detect 

early gene expression changes occurring within 3 to 24 hours after 

methamphetamine-induced DA neurodegeneration in mouse striatum (Cadet et al., 

2001) or midbrain (Xie et al., 2002). These studies also reported an up-regulation of 

genes related to energy metabolism (COX1, NADH2), apoptosis, inflammation, 

growth factors, signalling, stress-response, oxidative stress and ion regulation 

(SLC10A1, SLC9A3R1). Some of these findings are similar to those observed in the 

current study which also showed changes in genes involved in processes like ATP 

generation (MT-ND1, MT-ND2), solute transport (SLC25A29, SLC25A42) and 

apoptosis (BID, BAK1).   

 

Previous studies investigating the effect of chronic MPTP administration in 

animal models suggest that a cascade of events including changes in gene expression 

linked with inflammation, glucose and iron metabolism, cell cycle regulators and 

oxidative stress occurs and at the same time survival mechanisms including different 

trophic factors and anti-oxidant mechanism are activated including glutathione 

transferases, GDNF, IL-10 and cyclin B2 etc (Mandel et al., 2002). Results from this 

study showed no change in genes which may play a role in protection apart from 

GSTM1 which was significantly down-regulated after chronic toxin exposure (table 

7.5). Wang et al (2007) have reported similar results in a microarray study using 

midbrain-derived dopaminergic neuronal cells. Their data showed changes in 

molecular mechanisms common with the pathogenesis of PD. Their results suggested 

involvement of oxidative stress, apoptosis, signal transduction and iron binding after 

MPP+ induced toxicity. However, chronic MPP+ exposure in the current study failed 

to show significant change in expression of genes linked with apoptosis or signal 

transduction though changes in autophagy (BECN1, ATG3, RIPK1, BAK1) and 
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mitochondrial function (SDHB, MT-ND1) were altered. Only TRAPPC4 which has a 

role in ER to Golgi vesicle mediated transport (Elstner et al., 2009) showed down-

regulation. In general, many of the genes altered in LBD midbrain neurones (Elstner 

et al., 2009) appear to be altered by MPP+ exposure. 

 

This study did not provide complete insight in precise sequence of events 

causing cell-death although provided some indication that mechanisms like apoptosis 

and autophagy may be down-regulated and processes like oxidative stress (as 

observed through changes in expression of DJ-1, C20orf111 and GSTM1) and 

mitochondrial dysfunction (as noted by changes in MT-ND1 and SDHB) play a major 

role in toxicity. It can be deduced from this study’s results that changes observed 

here might interact with deleterious mechanisms already recognised to have a role in 

the toxin induced cell-death of SH-SY5Y cells including mitochondrial dysfunction, 

impairment of the UPS and involvement of apoptosis. Further work is required to 

explain the relationship between early gene changes and biochemical events that lead 

to late gene expression which are most likely to contribute towards DA 

neurodegeneration. SH-SY5Y cells are not primary neurons but from a 

neuroblastoma tumour lineage, therefore, it has been suggested that this may affect 

gene expression responses to sub-acute toxin exposure but they are very sensitive to 

rotenone/MPP+-induced neurotoxicity which is an advantage in the identification of 

early and subtle changes in gene expression and at the same time they provide a 

useful and readily available model for these experiments until human stem cell-

derived DA neurons become widely available.  
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8.1.1 Introduction:  

 Limited availability of human cells for both therapeutic and basic research is 

a major problem in the development of transplantation therapies for Parkinson’s 

disease. Dopaminergic neurons could be used in cell replacement therapy (Lindvall 

et al., 2001) or used for assessing the role of potential therapeutic agents in culture 

assays and if they were readily accessible, studies on cellular mechanisms involved 

in PD could be greatly facilitated. Previous studies have shown that human 

embryonic stem cells (hESCs) can divide indefinitely in culture. This makes them a 

valuable source of functional differentiated cells for cell replacement therapies as 

they can be induced to differentiate into cell types of all three germ layers in vivo and 

in vitro (Thomson et al., 1998). Therefore, these differentiation systems can provide 

a simple experimental model for developing optimal cultures of midbrain 

dopaminergic neurones suited for implantation studies in animal models of PD. That 

is why a main objective in the clinical application of hESCs is the generation of 

midbrain dopaminergic neurons for cell transplantation therapy of Parkinson’s 

disease (Freed et al., 2002). They can also be useful in understanding the factors and 

mechanisms involved in cell proliferation, differentiation pathways, derivation and 

control of different cell-lineages and in screening assays (Trosko and Chang, 2009). 

 

8.1.1.1 Aims: 

 Stable cell-lines derived from neuroectodermal, neuroendocrine or glial 

tumours and primary cultures (from embryonic rodent brain) are widely used in most 

in vitro studies. Tumour derived cell-lines provide an almost indefinite supply of 

cells for research but they have rapid growth rates in complete contrast to the adult 

CNS and are difficult to differentiate into stable cultures. Stable, often non-dividing 

cells can be derived from primary cultures but a continuous supply is needed in order 

to provide required amounts of tissue for research and testing. Since neuroblastoma 

cell-line SH-SY5Y is not derived from the CNS, it shows significant phenotypic 

differences to CNS dopaminergic neurones. This potential question can be addressed 

by developing stem cell-lines from human foetal material. This study aimed to 

overcome these limitations by deriving human Neural Precursor Cell (hNPC) lines 

and developing a simple culture system for the differentiation of hNPCs to neuronal 
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populations of cells, including the midbrain dopaminergic lineage characterised by 

the expression of different neuronal and dopaminergic markers.  

 

8.1.2 Methods:  Refer to materials and methods (section 2.6). 

8.1.3 Results:  

8.1.3.1 Differentiation of hNPSC into cells with dopaminergic-like phenotype:   

Neurospheres showed continued growth in defined serum free medium for at 

least 30 weeks from all regions tested (telencephalon, medulla, mesencephalon) with 

the exception of spinal cord which failed to proliferate after 3-4 weeks. Expression of 

classical hNPC marker such as nestin, SOX2 and vimentin and incorporation of 

BrdU were positively identified in neurospheres. hNPC neurospheres easily adhered 

to the substrate and began sprouting processes when placed in serum containing 

medium. Undifferentiated neurospheres and 14 days differentiated cells were 

extracted in native lysis buffer and analysed through western blotting to check the 

level/presence of neuronal markers. Protein expression using western blotting of 

differentiated hNPC demonstrated the presence of readily detectable levels of several 

neuronal receptors (e.g. mGluR1) and transporters (e.g. DAT) along with 

intracellular signalling proteins.  

 
 Undifferentiated neurospheres stained positive for nestin (neural 

stem/progenitor cell marker) (fig 8.1, 8.2). Other results showed a high population 

(more than 70%) of Tuj1 and TH positive cells (fig 8.4a) demonstrating that neural 

cells can be successfully derived from proliferating neural progenitor cells. However, 

hNPCs differentiated for later experiments showed a lower percentage of TH positive 

cells (fig 8.4b). An approximation of relative numbers of Tuj-1 or TH-positive cells 

was made by counting the total number of DAPI and TH-positive cells with clear cell 

morphology. In addition, larger numbers of weakly positive cells and cells with 

unclear morphology were also observed. To determine whether these growth factors 

play a role in inducing neuronal differentiation, we compared differentiation of 

hESCs in the presence or absence of stem cell factor (SCF). No significant difference 

in the number of TH-positive cells was observed among the cells differentiated either 

with or without SCF. Overall immunocytochemical analysis showed the presence of 



Chapter Eight                                                                          Differentiation of hNPCs 

 225

approximately 70% neurons as defined using neurone-specific beta-tubulin (Tuj-1), 

which could be directed to produce chemically defined neurones e.g. tyrosine 

hydroxylase (fig 8.3). Glial cell types were present with majority of cells being 

astrocytes (GFAP +ve) (fig 8.3) with small numbers (1-3%) of oligodendrocytes but 

with the presence of some nestin and BrdU +ve cells indicating dividing stem cells 

were still present.  
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Fig 8.1: Cultivation of neural stem cells. (A) Phase contrast image of 2 week-old midbrain neurospheres; (B) Neurospheres stained positive for 
stem cell marker nestin (yellow), (blue = DAPI nuclear stain); (C) Tuj-1 and (D) DAPI stained cells growing outwards from a neurospheres 
(40X magnification).    
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Fig 8.2: Immunocytochemical analysis of neurospheres. Neurospheres grown from single hNPCs on gelatine (A,B) or poly-L-lysine (C,D) 
coated slides for 14 days in DMEM/F12 supplemented with EGF, FGF2 and LIF. Neurospheres in all conditions show immunoreactivity to both 
nestin and SOX2, indicating that cells within the spheres are neural cells as defined by these markers (40X magnification). 
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Fig 8.3: Immunocytochemical analysis of differentiated N969 cells. hNPCs positively stained for (A) TH, (B) Tuj-1, (C) Nestin and (D) 
GFAP (x10 magnification, each image is representative of three independent fields).  
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Fig 8.4: Percentage of TH and Tuj1 positive cells: (A) A high percentage of TH positive 
cells were present in differentiated cell population. (B) Percentage of cells expressing TH 
marker reduced with time (n = 3, ±SD). 
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Protein expression using western blotting of differentiated hNPC 

demonstrated the presence of neural markers of specific receptors indicating the 

possibility of GABAergic, dopaminergic and glutamatergic neurones. A significantly 

higher level of tyrosine hydroxylase expression was noted in differentiated cells (fig 

8.5A). Readily detectable levels of several neuronal receptors (e.g. GABA A 

Receptor γ 2 and G protein-coupled glutamate receptors ‘mGluR1’) and transporters 

(DAT) were detected (fig 8.5B).  Detection of GABAergic marker GAD67 

confirmed a heterogeneous population of differentiated cells. Proteins involved in the 

function of the presynaptic cholinergic neurons of the CNS like RAF kinase inhibitor 

protein (RKIP/PBP) or postsynaptic marker ‘PSD95’ were also detected and 

suggested advance differentiation with cells capable of forming synaptic contacts.  

 
Fig 8.5: A) Protein analysis showing a high tyrosine hydroxylase levels in 
differentiated N969 cells. B) Expression of different neuronal markers in 
differentiated cells:  hNPCs contain a range of neural markers of specific receptors 
indicating the possibility of mixed neuronal population.  
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8.1.3.2 Toxin treatment: 

  N969 cells were induced to differentiate in 8 well chamber slides 

coated with poly-L-lysine. After 14 days, differentiated cells were treated with 

different chemicals for 24 hours (from 0.001mM-0.1mM) (fig 8.6), after which 

Alamar blue reduction was measured. Cytotoxicity screening showed that just like in 

SH-SY5Y cells, chemicals reduced cell-viability in a dose dependent manner. 

Maneb, mancozeb and rotenone caused significant reduction in viability at all three 

doses (0.1mM, 0.01mM and 0.001mM). Diquat, epoxiconazole and mecoprop-p 

caused significant toxicity at 0.01mM and 0.001mM, whereas MPTP and MPP+ 

were only toxic a1 0.1mM. Average percentage viability of hNPCs and SH-SY5Y 

cells were compared and results showed that hNPCs were marginally more sensitive 

to these toxins, especially at 0.1mM (table 8.1). Treated slides were fixed, stained 

and used for immunocytochemical analysis (fig 8.7). Co-staining and subsequent cell 

counts of TH and Tuj1 positive-cells showed that these toxins did not specifically 

target TH positive cells as no significant difference in the number of either marker 

was observed. 

 
Fig 8.6: Effect of toxin treatment for 24 h on viability in differentiated midbrain 
precursor cells: Viability for each dose (0.001-0.1mM) is shown as percentage of 
untreated control. A) MPTP,B) MPP+, C) rotenone, D) diquat, E) maneb, F) 
mancozeb, G) epoxiconazole, H) mecoprop-p (n=3, difference from control was 
tested for statistical significance, * = p values<0.05 were accepted as significant). 
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Table 8.1: Percentage viability comparison between SH-SY5Y cells and hNPCs 
after 24 hours toxin exposure:  (Percentage of untreated control) 
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Fig 8.7: Immunocytochemical staining of toxin treated cells: hNPCs were differentiated using standard protocol and then incubated with 
different toxins for 24 hours. Diquat (0.01mM) and mancozeb (0.01mM) treated slides were stained for TH and Tuj-1 markers (Each image 
representative of 3 different fields, Magnification = x10).  
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8.1.4 Discussion: 

 There are different ways to isolate hESCs and there are differences in the 

timing of cell derivation and the means by which cells are isolated. Therefore, 

characteristics and quality of resultant cells can differ but a similar pattern of stem 

cell markers is still exhibited in most cells. This study showed successful derivation 

of hNPC lines and undertook a preliminary evaluation of their suitability in 

neurotoxicology studies. Main findings suggest that these hNPC lines can be 

maintained for longer than 6 months in serum free defined media as ‘neurosphere’ 

cultures and can be successfully regrown from liquid nitrogen storage providing a 

long term supply from limiting amounts of starting material. 

 
 The neural lineages formed by this method of differentiation expressed 

specific markers of neural progenitors like SOX2 and nestin. We report that 

differentiated cells with a number of properties consistent with those of DA neurons 

can be efficiently generated from a hNPC line. Cells derived from this method are 

functionally and biochemically similar to normal dopaminergic neurons. Although 

further investigation is required to ensure other genetic or protein markers are 

expressed in these cells. The ultimate functional test of this would be to demonstrate 

dopamine release. The method used here resulted in the production of a high 

percentage of dopaminergic neuronal cells (fig 8.3E), which is essential for potential 

therapeutic application. These cultures can be induced to differentiate into neurones, 

astrocytes and oligodendrocytes by simple growth factor withdrawal and serum 

addition, or can be directed to differentiate into specific cell types (e.g. dopaminergic 

neurones) by addition of specific factors. Importantly, differentiation was not 

uniform and cell types other than non-dopaminergic cell types were present (fig 

8.3A-D). Once differentiated, these cell lines are relatively stable and show minimal 

cell division over several weeks, express neuronal and glial antigens indicating the 

capacity to produce the normal repertoire of cells found in the CNS with the 

exception of microglia. We identified mature dopamine neuron markers including 

proteins directly involved in dopamine neurotransmitter biosynthesis and function, 

especially TH and DAT. 
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Protein expression in differentiated hNPC demonstrated the presence of 

different neural markers of specific receptors and specific neurotransmitter receptors. 

Once differentiated, cells maintained their phenotype for a considerably longer 

period of time in vitro. Examination of hNPCs over extended periods showed that 

dopaminergic characteristics of differentiated cells changed over time and cells did 

not stably express tyrosine hydroxylase marker (see fig 8.3F). This showed that the 

method needs to be further optimised so that characteristic markers in these cells can 

be maintained for prolonged periods of culture and an enriched population of a 

specific cell-type can be generated. More importantly, the presence of PBP and 

PSD95 suggests a synaptic contact between cells and they are capable of forming 

cellular networks as in the adult or even developing brain. hNPCs may therefore 

provide a suitable cell system to complement existing in vitro models used in 

toxicology.   

 

 The differentiated cells are killed by a range of known neurotoxins (kainic 

acid, data not shown) using doses which usually show little effect in tumour cell lines 

indicating that they may be more sensitive to toxins and providing a more accurate 

representation of the doses of compounds likely to have an effect in vivo in  man. In 

this study toxicity screening using different chemicals has shown a dose-dependent 

reduction in cell-viability (see fig 8.5). When these results were compared to 

corresponding data from SH-SY5Y cells, it is noted that both cell-models show a 

similar pattern of toxicity with all chemicals but with hNPCs more vulnerable at 

higher doses like 0.01mM and 0.1mM (see table 8.1). Average Alamar blue 

reduction values from different experiments show slightly lower viability than that 

recorded with SH-SY5Y cells. It is possible that differences in response to toxins 

might be related to stage of cellular differentiation. A common problem of cell-

models is that the in vivo environment cannot be mimicked by the using any cell-type 

or endpoint. Stem cells exist in their own unique niche. This microenvironment 

controls their proliferation and differentiation and factors like extracellular matrices 

and extracellular soluble signals play a part in generating a response to a toxic 

chemical.  

 

 By using growth factors which have clearly enabled differentiation of hNPCs 

into a mixed population containing tyrosine hydroxylase positive neurons, we have 
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tried to provide a microenvironment allowing cell to cell contacts in the hope that 

mimicking the in vivo niche could provide an accurate measure of the toxicity of 

these chemicals. Once cells are isolated from their niche and grown in vitro, their 

sensitivity to chemicals may change. This is one advantage of using a mixed cell-

population compared with the homogeneous SH-SY5Y cell-line and may explain the 

increased vulnerability to different chemicals. The association between toxicants and 

neurological disorders has to be complemented by in vivo and in vitro experimental 

studies aimed at investigating the cellular and molecular mechanisms of toxicity. 

This study describes a method that can be used for the examination of the potential 

neurotoxic effects of pesticides in isolated dopaminergic neuronal systems. 
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Duscussion: 

The human neuroblastoma cell-line SH-SY5Y, which shows a dopaminergic 

phenotype, was successfully used as an in vitro model of dopaminergic neurones. 

Various aims were well supported by current findings. The fact that it is not derived 

from the CNS is often cited as a disadvantage because it can show significant 

differences to dopaminergic neurones derived from the CNS. Derivation of stem 

cells from human embryonic material and their successful differentiation into cells 

exhibiting neuronal phenotype and dopaminergic characteristics addressed the 

potential question of SH-SY5Y suitability. Presence of a mixed cell population gave 

a slightly more realistic picture of cell response to toxicity. In order to maintain the 

dopaminergic properties of these cells, future work should include immortalisation of 

these lines using c-myc or similar vectors. These cell lines could be characterised for 

their gene expression profile and compared to SH-SY5Y cells and adult 

dopaminergic neurones using assay of dopaminergic parameters and gene expression 

using real time Q-PCR and neurochemistry.  

  

Activation of caspases has been widely reported during apoptosis induction in 

SH-SY5Y cells (Newhouse et al., 2004). Caspases are regarded as the primary 

mediator of apoptosis and they cleave various cellular proteins including PARP, 

which showed a dose and time related increase in expression. Reduction in toxicity 

with caspase-inhibitors like zVAD.fmk was minimal when compared with Nec-1 

which provided complete protection against a number of different chemicals.  

Overall results from this study showed that PARP-1 induction was seen as a late 

event in agrochemical treated cells and treatment caused caspase independent cell 

death processes involving RIP. This study did not show any dose-related increase in 

caspase-3 levels and the use of caspase inhibitors failed to completely reduce 

toxicity. The absence of any effect of caspase inhibitors on this process for most 

agrochemicals with the exception of diquat, may suggest caspase independent 

induction of PARP-1. Assessment of cell death and apoptosis can be further 

facilitated by showing nuclear condensation, DNA fragmentation and perinuclear 

apoptotic bodies. These can be aided by using flow cytometry for nuclear pyknosis 

or TUNEL staining (if available) to show chromatin condensation and DNA strand 

breaks. Another area for future research is the identification of transcription factors 

and signalling intermediates in death pathways that are linked with toxin induced 
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apoptosis. These could include different signalling intermediates and transcription 

factors as well as those not directly associated with the apoptotic machinery but still 

interfere with apoptosis e.g. PI3K/Akt and mitogen-activated protein kinase 

signalling pathways (Franke et al., 1997; Fukunaga and Miyomoto, 1998). 

  

Data from experiments designed to investigate the role of autophagy suggest 

that chaperone-mediated autophagy may be involved with diquat, maneb and 

mancozeb toxicity. Evidence of lysosomal accumulation after chemical treatment 

indicates that lysosome mediated CMA may become active to remove damaged 

organelles. Future studies using ultra-structural microscopy, biochemical techniques, 

pharmacological agents and fluorescent markers can further help in the detection of 

autophagy. Electron microscopy can be ideal for morphological characterisation and 

detection of electron-dense AVs with double membranes, mult-ivesicular and 

residual bodies (Larsen and Sulzer, 2002). Indeed, electron microscopy has been 

used to detect autophagy in cellular models of PD (Sulzer et al., 2000; Stefanis et al., 

2001). Dyes like LysoSensor Yellow/Blue Dextran (which are degraded in 

lysosomes and endocytosed by cells) (Larsen and Sulzer, 2002) and auto-fluorescent 

monodansylcadaverine (MDC) exclusively stain AVs in both living and fixed 

neurons (Petersén et al., 2001b). Biochemical methods using radioactive amino acid 

labelling prior to autophagy induction can measure protein degradation at several 

time points (Gronostajski and Pardee, 1984). Biochemical markers such as acid 

phosphatase, cathepsins (Biederbick et al., 1995) and autophagosomal lactate 

dehydrogenase (LDH) (easily separated from cytosolic LDH through centrifugation) 

(Stromhaug et al., 1998) can be used as indicators of increased autophagy. The use of 

these methods would be of use in further characterising the cellular responses to 

chemical exposure. 

 
In order to explore the effects of mitochondrial dysfunction on neuronal 

biochemistry and physiology, fluorescence imaging techniques, mitochondrial 

complex function, change in membrane potential and, since mitochondria are widely 

considered to be an important source of reactive oxygen species, ROS generation 

was measured and visualised (including classical inducers of ROS such as enhanced 

mitochondrial membrane potential and inhibition of complex I). Discharge of 

membrane potential has different consequences for the cell, including apoptosis 
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(Abramov et al., 2007). Cell viability in response to increased ROS generation 

depends on the efficiency of cellular antioxidant systems including glutathione 

activity. A deficit of anti-oxidative glutathione and lack of mitochondrial complex I 

and dopamine in nigral neurons has been reported (Perry et al., 1986). Its depletion 

can be an indicator of oxidative stress and impair neuronal viability. Therefore, a 

measurement of glutathione activity could complement data gathered from other 

experiments investigating ROS generation. Future studies can try to differentiate 

between cytosolic reactive oxygen species and that generated by the mitochondrial 

matrix as well as ROS that is accumulated intracellularly. This has been shown by 

Shaikh and Nicholson (2009) who observed accumulation of large amounts of 

intracellular ROS in rotenone treated cells which was not released into extracellular 

environment. 

 

Mitochondria play a vital role in maintaining neuronal calcium homeostasis 

(Duchen, 2000). Future work should include measurement of intracellular calcium 

and calcium imaging, where the calcium response can be followed over a certain 

time period after toxin treatment to provide information about regulation of calcium 

signalling and if mitochondrial calcium stores are altered in cells with complex I 

defects. There is documented evidence of a chronic reduction in complex I activity 

affecting calcium signalling in SH-SY5Y cells. Indeed, rotenone exposure (lasting 2 

weeks) exhibits unusual calcium dynamics suggesting that reduced complex I 

activity renders cells susceptible to calcium overload and cell death (Sherer et al., 

2001).  

 

Neurotoxic pesticides which specifically affect mitochondria may cause acute 

inhibition of mitochondrial enzymes and elevation in cellular iron levels through 

increased iron metabolism. However, it is unknown if raised iron levels in PD 

neurones lead to mtDNA mutations or elevated levels of reactive oxygen species. 

Therefore, future experiments should be directed to the understanding of the 

mechanisms that regulate cellular iron levels and antioxidant defences. This approach 

could include determining the iron content by mass spectrometry and observing the 

expression of iron homeostasis proteins. Parkinson’s disease has been associated 

with accumulation of iron in redox-sensitive tissues like substantia nigra and 

hippocampal neurons (Hayflick, 2006). Normal substantia nigra contains higher iron 
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levels than in other brain regions but SN from PD patients contain even higher levels 

of accumulated iron than non-PD samples (Zecca et al., 2001). It has been suggested 

that primary changes in neuronal iron can lead to neurodegeneration in PD. Indeed, 

there is evidence of raised intraneuronal iron in single dopaminergic neurons which 

suggests an association between abnormal iron metabolism and PD (Oakley et al., 

2007). Experiments using SH-SY5Y cells have also shown that iron induces cell 

death through oxidative stress (Aguirre et al., 2007).  

 

Biochemical assays measuring complex I activity provided good correlations 

between cytotoxicity and complex I inhibitory activity. Acute toxin exposure had no 

effect on CI or CII activities. Similarly, chronic exposure had no effect on 

mitochondrial energetics. Future work may include experiments designed to achieve 

limited inhibition of the mitochondrial respiratory chain by administration of siRNA 

to dopaminergic cell cultures. Data form this current study can provide information 

about the chemicals and doses that affect mitochondrial function so that effects of 

acute or prolonged exposure can be measured. Addition of pesticides and selective 

mitochondrial inhibitors can be used to produce a toxicity dose response curve in the 

absence of siRNA administration. To determine if there is increased susceptibility 

and cell death in presence of low levels of siRNA, neurotoxins can be used to 

determine if the dose response curve is moved to the left indicating enhanced 

toxicity. A good candidate for siRNA knockdown is NDUFAF1, a mitochondrial 

protein which is the human homologue of Neurospora crassa complex I chaperone 

CIA30, considered to be involved in the process of complex I assembly. Indeed, its 

expression has been knocked down in previous studies using RNA interference to 

regulate the intra-mitochondrial amount of NDUFAF1 and reduce the amount and 

activity of complex I (Vogel et al., 2005).  

 

Previous studies have shown an increase in cytochrome c oxidase (COX)-

deficient neurons in PD substantia nigra (Bender et al., 2006) and abnormalities in 

the mitochondrial electron transport chain can be measured by evaluating the loss of 

COX activity in the presence of maintained succinate dehydrogenase (SDH) activity. 

SDH is encoded by the nuclear genome, whereas mtDNA encodes three catalytic 

subunits of COX. This effect has been visualised in previous studies where the 

presence of blue SDH staining and absence of brown COX staining indicates 
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respiratory chain deficiency (Reeve et al., 2008). Future experiments can determine 

if mtDNA mutations are increased in response to combination of siRNA knock down 

and pesticide administration (evaluated by COX/SDH staining). 

 
Gene expression changes, as observed through real-time PCR, have provided 

an insight into the range of proteins or cell-signalling mechanisms that may have a 

role in toxin induced cell-death of SH-SY5Y cells. Studies should use time course 

studies to identify markers and potential therapeutic targets and show the temporal 

sequence of different events which underline cell-death. This could help separate the 

cell or stress responses from defence mechanisms or those causing general 

neurotoxicity. In future, experiments using laser capture micro-dissection can be 

applied to sections of substantia nigra from neuropathologically confirmed cases of 

PD and controls. Tissue samples required for these experiments can be obtained from 

Newcastle Brain Tissue Resource. This technique can allow the isolation of 

individual dopaminergic neurons from which RNA can be extracted and amplified. 

Once it has been labelled with dye it can be hybridised to whole genome 

microarrays. This approach can help identify classes and families of genes being 

expressed as functional units and generate data which can identify gene expression 

signatures behind pathological changes found in SN neurones of PD (Elstner et al, 

2009). 

 
In the present study, various parameters of toxicity were successfully 

measured, including cytotoxicity in SH-SY5Y cells and generation of cytotoxic 

levels which were used to study the effects of cell-signalling inhibitors on viability, 

measurement of mitochondrial transmembrane potential, ROS formation, inhibitory 

activity towards mitochondrial complex I/II, protein expression after acute and 

chronic toxin treatment and changes in gene expression. Acute toxicity can be 

evaluated by examination of end points that indicate effects on cellular organelles 

such as leakage of cell constituents into the medium (e.g. lactate levels), uptake of 

dyes into the cell and the formation of surface blebs. However, long term toxicity 

assessments are highly dependent on the relevant toxic end point.  

  

Overall results from this study show involvement of ROS and mitochondrial 

dysfunction (which may well be interlinked) after toxin treatment but this needs 
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further examining since data from agrochemicals like diquat is inconclusive in 

showing whether free radical generation occurs via the mitochondrial respiratory 

chain. ROS such as superoxide anions and hydroxyl radicals are balanced by radical 

scavengers and antioxidant enzymes. Therefore, an imbalance favouring ROS 

generation can lead to lipid peroxidation with resultant membrane and DNA damage 

and subsequent cell death. Given that oxidative stress induces proteasomal 

dysfunction both mechanisms could interact and exacerbate toxicity. Most of the 

toxic responses observed in this project involve various biochemical events related to 

oxidative injury and signalling pathways. The characterisation of novel mechanisms 

involved with these toxins can contribute to an understanding of how environmental 

neurotoxins including agrochemicals might contribute to the incidence of PD. 

 

Major limitations:   

The major limitation of this study is the lack of in-depth study of precise 

mechanism of action of different toxins. The thesis is broad on several compounds 

and it does not go as deeply into one compound as perhaps is possible. A number of 

different cell death and signalling inhibitors were used but such pharmacological 

manipulation was not successful. In hindsight, inclusion of genetic manipulation at 

the expense of pharmacological manipulation could have given more favourable 

results. This could help answer the question of how extensive is the genetic 

contribution to disease and if there are different pathways with a general phenotype 

although with any long term manipulation such as siRNA knockdown may lead to 

compensatory changes in cells which may mask any significant effects. Another 

weakness may be the inclusion of several cell death mechanisms instead of choosing 

and focusing on one type. There is more scope for determination of 

lysosomal/autophagic pathway since studies on this system have indicated that this 

may be a major mechanism for some toxin exposures (e.g. MPTP). Lysosomal 

aggregation was observed after acute toxin exposures but more study is required to 

show whether such changes are productive or deleterious. Changes in protein 

expression along with gene expression data did not explain the role of different 

mutations and their mechanism and how they contribute to the development or 

progression of the disease. Gene expression study using RT-PCR needs to be 

repeated to provide a better data set, possibly complemented by the use of 
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microarrays to determine other pathways involved in the response to specific toxins. 

Immunocytochemical analysis showed distribution of different proteins but failed to 

show any aberrant deposition or aggregation, although this is not always seen in 

some forms of parkinsonism. Due to lack of time and facilities being at different 

location, the measurement of mitochondrial complexes was not carried in full detail. 

The project could have benefited from the measurement of all respiratory chain 

complexes and also by oxygen consumption by the respiratory chain. Stem cells are 

more likely to represent a stable neuronal phenotype even though they are probably 

still embryonic neurones. Due to delays in starting stem-cell work and longer period 

of their maintenance and differentiation and failure of full optimisation of protocol 

prevented a detailed study of their use.  

 

Future directions: 

Findings from this study can provide the basis for several areas of further research.  

These include the following: 

 

• Although toxicity was measured in SH-SY5Y cells and differentiated stem 

cells, comparison with other neuronal cell-lines could also be beneficial. 

Human dopaminergic neuroblastoma (BE (2)-M17) or mesencephalon-

derived dopaminergic neuronal cell line (MN9D) have been used in similar 

studies and could provide a more detailed collection of data. Previous studies 

have shown that MN9D are more sensitive to MPP+-induced toxicity (Choi 

et al., 1991).  

 

• Other assays which can lead to a comprehensive study of these chemicals 

may include lactate dehydrogenase activity assay (for cell-death), 

fluorescence-activated cell sorter (FACS) analysis to identify apoptotic cells 

and to discriminate between necrosis and apoptosis, apoptosis detection kits 

for measuring cytochrome C release from mitochondria, caspase-3 and -9 

assays to measure enzyme activity, ATP determination assays to identify if 

toxins cause ATP depletion, antioxidant enzyme activity (e.g. SOD) could be 

measured to give a clear picture of oxidative stress caused by different 

chemicals. Evaluation of neurite length and changes in cell size were not 
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quantitatively measured. Future experiments could measure these parameters 

as well as use techniques such as flow cytometry for observing changes in 

nuclear structure especially pyknosis.   

 

• To study the relationship between α-synuclein and acute/chronic toxicity, cell 

lines stably transfected with wild-type or mutant α-synuclein could be used. 

Also, a more robust method of cell transfection needs to be adapted to ensure 

a higher percentage of siRNA knockdown. This study used lentiviral delivery 

method without great success. Therefore, stable transfection which may cause 

greater integration could be tried. 
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